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Abstract

In this work, we propose solutions to the problem of audio source separation from a single

recording. The audio source signals can be speech, music or any other audio signals. We

assume training data for the individual source signals that are present in the mixed signal

are available. The training data are used to build a representative model for each source.

In most cases, these models are sets of basis vectors in magnitude or power spectral

domain. The proposed algorithms basically depend on decomposing the spectrogram

of the mixed signal with the trained basis models for all observed sources in the mixed

signal. Nonnegative matrix factorization (NMF) is used to train the basis models for

the source signals. NMF is then used to decompose the mixed signal spectrogram as a

weighted linear combination of the trained basis vectors for each observed source in the

mixed signal. After decomposing the mixed signal, spectral masks are built and used to

reconstruct the source signals.

In this thesis, we improve the performance of NMF for source separation by incorpo-

rating more constraints and prior information related to the source signals to the NMF

decomposition results. The NMF decomposition weights are encouraged to satisfy some

prior information that is related to the nature of the source signals. The priors are

modeled using Gaussian mixture models or hidden Markov models. These priors basi-

cally represent valid weight combination sequences that the basis vectors can receive for

a certain type of source signal. The prior models are incorporated with the NMF cost

function using either log-likelihood or minimum mean squared error estimation (MMSE).



We also incorporate the prior information as a post processing. We incorporate the

smoothness prior on the NMF solutions by using post smoothing processing. We also

introduce post enhancement using MMSE estimation to obtain better separation for the

source signals.

In this thesis, we also improve the NMF training for the basis models. In cases when

enough training data are not available, we introduce two different adaptation methods

for the trained basis to better fit the sources in the mixed signal. We also improve

the training procedures for the sources by learning more discriminative dictionaries for

the source signals. In addition, to consider a larger context in the models, we con-

catenate neighboring spectra together and train basis sets from them instead of a single

frame which makes it possible to directly model the relation between consequent spectral

frames.

Experimental results show that the proposed approaches improve the performance of

using NMF in source separation applications.



Ses Kaynağı Ayrımı için Negatif Olmayan Matris Ayrıştırma’ya Önsel Bilgilerin Dahil
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EE, Doktora Tezi, 2013

Tez Danışmanı: Hakan Erdoğan

Anahtar Kelimeler: Tek Kanal Kaynak ayrımı, Negatif Olmayan Matris Ayrıştırma
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kestirimi (MOKH), model uyarlama, dikgenlik kısıtları, ayırt edici eğitim, sözlük
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Özet

Bu çalışmada tek bir kayıttan ses kaynaklarının ayrımı problemine çözüm önerilerinde

bulunuyoruz. Ses kaynakları konuşma, müzik veya başka ses sinyalleri olabilir. Karışmış

sinyal içerisindeki özgün sinyal kaynaklarının eğitim verilerinin elimizde mevcut olduğunu

varsayıyoruz. Eğitim verileri her kaynak için örnek model kurmak amacıyla kullanılır.

Genellikle bu modeller spektral uzayda büyüklük veya güç değerlerini açıklayan ta-

ban vektör kümeleridir. Temelde, önerilen algoritma karışmış sinyalin spektrogramının

karışmış sinyal içinde bulunan bütün kaynak sinyallerin taban eğitim modelleriyle ayrıştır-

ılmasına dayanır. Kaynak sinyallerin taban modellerini eğitmek için Negatif Olmayan

Matris Ayrıştırma (NOMA) metodu kullanılır. Daha sonra NOMA, karışmış sinyal spek-

trogramını, bu sinyal içinde bulunan bütün kaynak sinyallerin eğitilmiş taban vektörlerinin

ağırlıklı doğrusal katışımı olarak ayrıştırmakta kullanılır. Karışmış sinyali ayrıştırdıktan

sonra kaynak sinyali tekrar inşa etmek için spektral maskeler oluşturulur.

Bu tezde, NOMA ayrıştırma sonuçlarına, kaynak sinyalleriyle bağlantılı daha çok kısıt

ve önsel bilgi dahil ederek, kaynak ayrıştırmada NOMA’nın performansını arttırıyoruz.

NOMA ayrıştırmasındaki ağırlıklar kaynak sinyallerin doğasına bağlı bazı önsel kısıtları

sağlamak için teşvik edilmiştir. Kullandığımız önsel bilgi modelleri Gauss karışımı ya

da saklı Markov modelleridir. Temelde bu önsel modeller her kaynağın tabanlarının

sahip olacakları geçerli ağırlık dizilerini ifade ederler. Bu önsel modeller NOMA maliyet

fonksiyonuna log-olabilirlik ya da minimum ortalama karesel hata (MOKH) kestirimi

kullanılarak dahil edilmiştir.



Önsel bilgiler ardıl işlemler sırasında da dahil edilmiştir. Düzgünlük önsel bilgisi basit

bir ardıl düzgünleştirme ile dahil edilmiştir. Ayrıca, daha iyi ayrıştırma sağlamak için

MOKH kestirimi kullanarak ardıl iyileştirme metodu da tanıtılmıştır.

Bu tezde aynı zamanda taban modelleri için NOMA eğitimini de iyileştiriyoruz. Yeterli

eğitim verisi mevcut olmayan durumlarda karışmış sinyaldeki kaynaklara daha uygun

tabanlar bulmak amacıyla iki farklı uyarlama metodu sunuyoruz. Diğer bir katkı olarak,

kaynak sinyaller için daha ayırt edici modeller öğrenerek kaynak eğitim yordamlarını da

geliştiriyoruz. Başka bir bölümde, modellerimizin çevresel etkileri daha iyi öğrenmesi

için, komşu spektral verileri birleştirdikten sonra onlardan taban vektörleri eğitiyor ve

böylece komşu çerçeveler arasındaki bilgileri doğrudan modellemiş oluyoruz.

Deneysel sonuçlar önerilen metotların kaynak ayrıştırma uygulamalarında NOMA’nın

performansını arttırdığını göstermiştir.
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Chapter 1

Introduction

Source separation refers to the problem of separating one or more desired signals from

mixtures of multiple signals. This problem can be encountered in many different applica-

tions such as medical [2, 3, 4], military [5, 6], and multimedia [7, 8]. To perform effective

separation, this problem is usually approached by using multiple sensors each of which

measures a different mixture of the source signals to obtain sufficient information about

the incoming source signals. In most cases, the source signals are assumed to be statis-

tically independent and no extra prior information about the source signals is assumed

available. The problem is treated as blind source separation (BSS) [7, 9], which can

be performed by techniques such as independent component analysis (ICA) [9, 10, 11].

This approach performs well when the number of measuring sensors (channels) are at

least as many as the number of signal sources in the mixed signal.

A more complicated problem is that of separating multiple source signals from a single

measuring of the mixed signal. This problem is usually defined as the single channel

source separation (SCSS) problem. The goal in single-channel source separation (SCSS)

is to recover the original source signals from a single recording of their linear mixture as

shown in Figure 1.1. Since the problem is underspecified, prior knowledge or training

data for the source signals are assumed to be available.

In this thesis we consider the single channel source separation problem for audio signals.

The audio signals can be speech, music, or noise. The single-channel audio source

separation problem is encountered in many applications such as: separating instruments

in music recordings [1, 12, 13, 14], separating speech signals from multiple simultaneous

1
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speakers recording [15, 16, 17, 18, 19, 20], separating speech signals from background

music signals [21, 22, 23, 24, 25], speech denoising [26, 27], and improving automatic

speech recognition systems by removing the background signals [28, 29, 30, 31, 32].

Figure 1.1: Single channel source separation (SCSS)

1.1 Approaches to single-channel audio source separation

There are many proposed approaches to estimate the audio source signals from the

observed mixed signal. Most of these approaches rely on training data about the source

signals that are in the mixture. In many approaches, the training and the mixed signals

are usually processed in magnitude or power spectral domain [33, 34, 35, 36, 37, 38]. In

other approaches, the signals are processed in the log-spectral domain [39, 40, 41, 42].

In [16, 17, 18], the training data for each source are modeled with a Gaussian mixture

model (GMM) in the log-spectral domain. Given the trained GMMs, minimum mean

squared error estimation (MMSE) is used to estimate the source signals from the ob-

served mixed signal. This approach is usually used for separating speech signals from a

mixture of multiple speaker signals. To better model the source signals, in [43, 44, 45, 46],

the training data for each source are modeled using a hidden Markov model (HMM) and

the mixed signal is represented by a factorial hidden Markov model (FHMM) [47]. The

best state sequence of each HMM for each source that can explain the sequence of the

observed mixed signal is found. Given the state sequences, MMSE estimation is used to

find the estimate of each source. The idea of the factorial hidden Markov model was first

developed in [47]. It has been shown that FHMMs are better suited to model loosely

coupled random processes [48]. In FHMM, every hidden state is factorized into multiple
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state variables. The main limitation of using MMSE estimation to separate the source

signals in the log-spectral domain is that, the data used in training and separation stages

are assumed to have the same energy level. In practical cases, the sources are mixed

with a different energy level. There are approaches to fix this limitation [49, 50, 51]. The

basic idea is to express the probability density function (PDF) of the mixture in terms

of the individual speakers PDFs and their corresponding gains. Then, those patterns

and gains which maximize the mixture PDF are selected and used to recover the speech

signals. In [44], a non-linear optimization technique was used to estimate the ratio be-

tween the energy of the two sources. In [52], the expectation-maximization algorithm

(EM) was used to estimate the gains and the other FHMM parameters. In general, these

approaches are computationally complicated with slow performance.

Another approach for SCSS is to decompose the mixed signal spectral frames as a

weighted linear combination of the training data spectral frames. In [53, 54, 55, 56, 57,

58, 59], the mixed signal is decomposed as a linear combination of a number of exemplars

from a large exemplar dictionary of training data for each source signal. In our early

work [23], the magnitude spectrogram frames of the training data for each source were

used as a model or dictionary; then matching pursuit was used to decompose the mixed

signal magnitude spectrogram with the training data magnitude spectrogram frames;

the decomposition results were used to build spectral masks; the spectral masks were

used to estimate the contribution of each source in the mixed signal. These approaches

usually give good results but they require large dictionaries for the source signals.

Instead of using the whole training data as a dictionary, in [14, 22, 60, 61, 62] a set of

representative vectors is used as a dictionary for each source training data. The mixed

signal spectrum is represented as a linear combination of these dictionary entries. In [60],

a non-negative sparse representation is employed, and the sources are reconstructed using

the Wiener filter. In [14], sparse coding with a temporal continuity objective was used

for separating musical instruments. In [63], the training data was modeled in power

spectral density domain by a Gaussian mixture model (GMM) with zero means and

diagonal covariance matrix for each source. Every model was then adapted to better

represent the source signals in the mixed signal. Finally, the adaptive Wiener filter

was used with the adapted models to estimate the source signals in [63]. In our early

work [22], the training data was modeled by clustering the spectrogram of the training

data using K-means algorithms. Coordinate descent was used in [22] to decompose the
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spectrogram of the mixed signal with the K cluster centroids for each source training

data. Sparsity and continuity priors were enforced during the decomposition and the

sources’ STFT were reconstructed in [22] using the Wiener filter.

The most used approach for solving the SCSS problem is nonnegative matrix factoriza-

tion (NMF) [64] to train a set of nonnegative basis vectors (dictionary) for the training

data of each source. In the separation stage, NMF is used to decompose the mixed

signal as a weighted linear combination of the trained basis vectors. The estimate of

each source is found by summing its corresponding trained basis terms from the NMF

decomposition during the separation stage [13, 26, 27, 65]. The NMF is used in this

framework in magnitude spectral or power spectral domain where the nonnegativity

constraint is necessary. The number of the trained basis vectors is usually less than the

dimension of the spectral frames of the training data. Due to the efficient update rule

solutions of NMF [64] and since every source is represented by a few number of basis

vectors, this approach is considered to be fast and very simple which makes it the most

used approach in SCSS. Another advantage of using NMF in SCSS is that there is no

limitation on the energy level for the training and mixed signals. As we will show later,

NMF can be extended to consider more properties for the processed signals.

There are many other methods of using NMF in SCSS. In [12], different NMF decompo-

sitions were done for both training and testing data. The trained basis vectors were used

to learn support vector machines (SVM) classifiers. The trained SVM classifiers were

used to classify the basis vectors of the mixed signal and assign them to different source

signals. An unsupervised NMF with clustering was used in [1] to separate the mixed

signal. In [13], NMF was used to decompose the mixed data by fixed trained basis vec-

tors for each source in one method, and in another method the NMF was used without

trained basis vectors to decompose the mixed data, but it requires human interaction

for clustering the resulting basis vectors into different sources.

As can be seen in Figure 1.2, NMF is a matrix factorization that decomposes any

nonnegative matrix V into a multiplication of a nonnegative basis matrix/dictionary

B and a nonnegative gains/weights/activations matrix G [64, 66]. The decomposition

matrices are found by minimizing a predefined cost function. Like any optimization

problem, the main goal is to minimize the cost function without considering the nature of

the processed signals. To consider the prior information on the NMF solution, extra prior
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Figure 1.2: Nonnegative matrix factorization (NMF)

information can be formed as an additive regularization term to the NMF cost function.

To improve the performance of NMF, there have been many works that aim to encourage

the NMF decomposition matrices to satisfy certain characteristics of the source signals

to be estimated. In [1], continuity and sparsity priors were placed on the decomposition

weights. In [67] and [68], harmonicity and smoothness were enforced in Bayesian NMF

and applied to music transcription. In [27], a regularized NMF was used to impose

statistical structure for each audio frame using a Gaussian model, which was also used

in [26] in addition to modeling frame-to-frame temporal structure. In [69] and [3], spatial

decorrelation and other priors were incorporated with NMF for different applications.

In [70], regularized NMF with Itakura-Saito (IS-NMF) divergence was introduced with

Markov chain prior models for smoothness within a Bayesian framework. The conjugate

prior distributions on the NMF weights and basis matrices with the Poisson observation

model within Bayesian framework was introduced in [71]. In [71], Gamma distribution

was used as a prior for the basis matrix and the Gamma Markov chain [72] was used as a

prior for the weights/gains matrix. In [73], a mixture of Gamma prior model was used as

a prior for the basis matrix. In [65], sparse NMF was used with trained basis vectors to

separate the mixture of two speech signals. In [30], inverse-Gamma distribution was used

as a speech prior for speech-music separation. In [74, 75], discriminativity constraint

was applied to the NMF solution. In [76], group sparsity was enforced on the NMF

decomposition solutions.

Since NMF discards the temporal information, an extension of NMF for time series

was introduced in [77, 78] which is capable of identifying components with temporal

structure. This extension of NMF is called convolutive nonnegative matrix factorization

(CNMF). The basis matrix in CNMF contains temporal-spectral bases, which means the

basis matrix contains bases that extend in both dimensions of the input. In [79], a sparse
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CNMF was presented. In [80], CNMF was used with exemplar-based robust speech

recognition under noise. In [81], group sparsity is enforced on the CNMF decomposition.

CNMF with basis adaptation was introduced in [38].

1.2 The contributions of this thesis

In this thesis, we improve single channel source separation using NMF by incorporating

prior information about the source signals. The prior information is incorporated during

the NMF decomposition or as a post processing step. We improve the NMF performance

by incorporating more priors to the NMF matrices by using regularized NMF. The prior

information is modeled using statistical models that can capture the characteristics of the

source signals. Unlike [70, 71] the parameters of the used prior models here are trained

from training data for the source signals as opposed to choosing the parameters of the

prior models during the separation/testing stage. We model the prior information about

the NMF gains using rich models like Gaussian mixture models (GMM) and hidden

Markov models (HMM). We also propose a novel approach for applying the prior on the

NMF solutions which aims to evaluate how much the NMF solution needs to rely on

the prior information. In addition, we incorporate prior information based on intuitive

facts like discriminativity of the bases and the smoothness of the source spectra or

gains matrices or spectral masks. Furthermore, we introduce model adaptation where

the source signals are modeled by a nonnegative dictionary. Finally, we consider to

train a set of basis vectors that capture the relations between the consequent spectral

frames. We have disseminated some of our contributions in the following publications

[82, 83, 84, 85, 86, 87, 88, 89].

The contributions of this thesis can be itemized as follows:

• We use a Gaussian mixture model (GMM) to regularize the gains in NMF decom-

position to improve the separation performance. We develop new update rules for

the proposed regularized NMF. In addition, we introduce joint training to learn

both the dictionary and the prior GMM together.
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• To model the dynamic information in source signals, we introduce an HMM as a

regularizer for the gains matrix columns which characterizes the sequential depen-

dence of the temporal activations in a principled manner. We derive the update

rules for the new regularized NMF.

• As a novel idea to improve regularization and to avoid dependence on the regu-

larization parameters, we introduce a new regularization method based on MMSE

estimates under a GMM prior with a distortion model where the distortion co-

variance is estimated online. Based on the estimated covariance of the distortion,

the proposed MMSE estimation based regularized NMF decides how much the

solution relies on the GMM prior.

• We incorporate the smoothness prior information into the estimated source signals

using post-processing. The NMF solutions during the separation stage are used to

build spectral masks which are then smoothed by low pass filters. The smoothed

spectral masks are used to estimate the source signals.

• Instead of incorporating prior information about the NMF matrices, we incorpo-

rate prior information about the spectrogram frames of the source signals. The

GMMs are used to model the priors about the log-spectra of the source signals.

The MMSE estimation is used to enhance the separated signal spectrogram un-

der the trained GMM priors. To consider the temporal information between the

consequent frames of the spectrogram, MMSE estimation is applied to enhance

multiple stacked spectral frames together.

• We introduce a novel method to learn discriminative nonnegative dictionaries for

the source signals. The dictionary for each source is learned to well represent its

own source and penalized from representing the other source signals. We penal-

ize each dictionary from representing the other source signals by minimizing the

projection of each source dictionary into the other source dictionaries.

• We introduce new model adaptation techniques where the training data are mod-

eled using nonnegative dictionaries. The adaptation is used here to overcome the

lack of sufficient training data. A general dictionary is learned for speech signals

and then the proposed adaptation methods are used to adapt the general model

to better fit the speech signals that exist in the mixed signal. The Bayesian and
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linear transformation adaptations are introduced and used to adapt the source

dictionaries.

• The last contribution is to train basis matrices that can capture the relation be-

tween consequent spectral frames. The main idea is to use sliding windows with

NMF to decompose multiple stacked spectral frames together. The NMF decom-

position results are used to build spectral masks to estimate the source signals.

1.3 Organization of this thesis

In Chapter 2, we introduce the mathematical formulation for single channel source sep-

aration (SCSS) and nonnegative matrix factorization (NMF). We also show the conven-

tional use of NMF in SCSS in Chapter 2. In Chapters 3 to 5, we describe our approaches

for incorporating statistical priors to the NMF solution of the gains matrix. In Chapter

3, prior information about the NMF gains matrix is modeled by Gaussian mixture mod-

els (GMM) and this information is incorporated by adding a GMM log-likelihood term

to the NMF divergence cost function. In Chapter 4, prior information about the NMF

gains matrix is modeled by a hidden Markov model (HMM). The NMF solution of the

gains matrix is guided by the prior HMM. In Chapter 5, we incorporate statistical priors

which are modeled using GMM to the NMF solution of the gains matrix after evaluating

the actual need to the prior information by using a novel regularization method based on

MMSE estimation. Chapters 6 and 7 focus on post-processing after NMF-based source

separation. In Chapter 6, the smoothness prior is considered in the estimation of the

sources using simple post processing. Another more complex post processing approach

using MMSE estimation is introduced in Chapter 7 to enhance the separated signals.

In Chapters 8-10, we improve the dictionaries used in source separation. In Chapter 8,

discriminative training for the NMF basis matrices is introduced. In Chapter 9, adap-

tation of the basis matrix to a specific speaker is introduced. Finally, in Chapter 10,

NMF with sliding windows approach is introduced to model the relation between the

sequence of spectral frames.



Chapter 2

Background

2.1 Formulation for single-channel source separation

Single-channel audio source separation (SCSS) aims to find estimates of the original

audio source signals sz(t), ∀z ∈ {1, .., Z} given only a mixed signal y(t). The mixing

process is taken as a sum of the sources as follows:

y(t) =

Z∑
z=1

sz(t), (2.1)

where t denotes time and Z is the number of sources in the mixed signal.

This problem is usually solved in the short time Fourier transform (STFT) domain

[1, 22, 28]. Let Y (n, f) be the STFT of y(t), where n represents the frame index and f

is the frequency index. Due to the linearity of the STFT, we have:

Y (n, f) =
Z∑
z=1

Sz(n, f), (2.2)

where Sz(n, f) is the unknown STFT of source z in the mixed signal. To compute the

STFT of a given audio signal, the signal is divided into overlapping segments (frames).

For each frame, the discrete Fourier transform (DFT) is calculated and a column in the

STFT matrix is obtained. The STFT of a given signal is a matrix of complex numbers

where each column represents a DFT of a segment or frame of the audio signal and the

9
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rows represent frequency indices. We can rewrite (2.2) as follows:

|Y (n, f)| ejφY (n,f) =

Z∑
z=1

|Sz(n, f)| ejφSz (n,f), (2.3)

where φY (n, f) and φSz(n, f) are the phase angles of the mixed and zth source signal

respectively.

To find estimates for the source signals, different approximations for Equation (2.3) are

usually used to avoid dealing with complex numbers which have unknown phase angles

and magnitudes; the phase is known to be less important in audio applications. In [1,

24, 27, 28, 65, 90], it is assumed that the sources have the same phase angle as the mixed

signal, that is φSz(n, f) = φY (n, f), ∀z = 1, .., Z. Thus, the magnitude spectrogram of

the measured signal is approximated as the sum of source signal magnitude spectrograms’

entries as follows:

|Y (n, f)| =
Z∑
z=1

|Sz(n, f)| . (2.4)

In this approximation, the mixed signal and the source magnitude spectrograms can be

written in matrix form as follows:

Y =

Z∑
z=1

Sz. (2.5)

In this first approximation, Y is the magnitude spectrogram of the mixed signal and Sz

represents the unknown magnitude spectrogram of the source signal z.

The second approximation for Equation (2.3) is assuming the sources to be independent

[67, 68, 70, 83, 84]. In those works, the power spectral density (PSD) of the measured

signal is approximated as the sum of source signal PSDs as follows:

σ2
y(n, f) =

Z∑
z=1

σ2
Sz

(n, f), (2.6)

where σ2
y(n, f) = E(|Y (n, f)|2). In this approximation, the PSD frames can be written

in matrix form (spectrogram) as follows:

Y =
Z∑
z=1

Sz. (2.7)
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In this approximation, Y is the spectrogram (power spectrogram) of the mixed signal

and Sz represents the unknown spectrogram of the source signal z. The PSD for the

measured signal y(t) is calculated by taking the squared magnitude of its STFT.

In this thesis, we mainly use NMF for source separation. We give here an introduction

about different types of NMF cost functions. The conventional approach of using NMF

for source separation is introduced in the following section.

2.2 Non-negative matrix factorization

Non-negative matrix factorization [64] is an algorithm that is used to decompose any

matrix V with nonnegative entries into a nonnegative basis/dictionary matrix B and a

nonnegative weights/gains matrix G as follows:

V ≈ BG. (2.8)

So every column vector in the matrix V is approximated by a nonnegative weighted

linear combination of the basis vectors in the columns of B, where B has fewer columns

than V . The weights for basis vectors appear in the corresponding column of the matrix

G as follows:

vn =
D∑
j=1

gjnbj , (2.9)

where vn is the column n in matrix V , bj is the column j in matrix B, gjn is its weight

in the gains matrix G, and D is the number of bases in B. The matrix B contains

nonnegative basis vectors that are optimized to allow the data in V to be approximated

as a nonnegative linear combination of its constituent vectors. Figure 2.1 shows a simple

two dimensional example where the number of basis vectors is two. Any nonnegative

linear combinations of the two basis vectors appears in the nonnegative cone between

the two basis vectors as shown in Figure 2.1.

The two matrices B and G in Equation (2.8) can be computed by solving the following

minimization problem:

min
B,G

C (V ,BG) , (2.10)

subject to elements of B,G ≥ 0.
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Figure 2.1: The nonnegative linear combinations for the given two basis vectors.

Different cost functions C lead to different kinds of NMF. In [64], two different cost

functions were analyzed. The first cost function is the Euclidean distance between V

and BG, given by

min
B,G

(
‖V −BG‖22

)
, (2.11)

where

‖V −BG‖22 =
∑
i,j

(
V i,j − (BG)i,j

)2
.

The NMF solution for Equation (2.11) can be computed by alternating updates of B

and G as follows:

B ← B ⊗ V GT

BGGT
, (2.12)

G← G⊗ BTV

BTBG
, (2.13)

where the operations ⊗ and all divisions are element-wise multiplication and division

respectively. The matrices B and G are initialized by positive random numbers and

then updated iteratively using the update rules in (2.12, 2.13).

The second cost function for NMF in [64] is the generalized Kullback-Leibler (KL-NMF)

divergence cost function [64]

min
B,G

DKL (V ||BG) , (2.14)
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where

DKL (V ||BG) =
∑
i,j

(
V i,j log

V i,j

(BG)i,j
− V i,j + (BG)i,j

)
.

The NMF solution for Equation (2.14) can be computed by alternating updates of B

and G as follows:

B ← B ⊗
V
BGG

T

1GT
, (2.15)

G← G⊗
BT V

BG
BT1

, (2.16)

where 1 is a matrix of ones with the same size of V .

The third cost function is the Itakura-Saito (IS-NMF) divergence cost function [70]:

min
B,G

DIS (V ||BG) , (2.17)

where

DIS (V ||BG) =
∑
i,j

(
V i,j

(BG)i,j
− log

V i,j

(BG)i,j
− 1

)
.

The IS-NMF solutions for Equation (2.17) can be computed by alternating multiplicative

updates of B and G as shown in [70, 91]:

B ← B ⊗

V
(BG)

2G
T

1
BGG

T
, (2.18)

G← G⊗
BT V

(BG)
2

BT 1
BG

, (2.19)

where (.)2 is also an element-wise operation.

The basis and gains matrices are usually initialized by random positive numbers. Within

each iteration, the columns of the basis matrix are normalized using the Euclidean norm

and the gains matrix is calculated accordingly. Since the NMF cost functions are non-

convex with multiple local minima, the solution for the basis and gains matrices is not

unique and any local minima is a candidate solution for the cost function. To find

a better solution than the others, prior information can be incorporated to the cost

function. A better solution means a solution that is more suited to the nature of the
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processed data. The prior information can be incorporated as an additive regularization

term to the NMF cost function.

The shown three NMF cost functions in this thesis are special cases of the β-divergence

introduced in [92] as argued in [70, 93, 94]. The second and third divergence cost

functions were found to work better for audio source separation, and they are good

measurements for the perceptual differences between different audio signals [27, 70, 91].

In this thesis we will consider only the second and third divergence cost functions.

In source separation applications, the KL-NMF is used with matrices of magnitude

spectrograms with the approximation shown in Equations (2.4, 2.5) as in [1, 24, 26, 27,

88, 90]. IS-NMF is used with matrices of power spectral densities (spectrograms) with

the approximation shown in Equations (2.6, 2.7) as in [67, 68, 70, 91].

To understand the idea of using NMF in signal processing, let us consider the spectro-

gram shown in Figure 2.2. The figure shows the spectrogram of a signal composed of

sinusoids of three frequencies at different time intervals. NMF is applied to decompose

the spectrogram as a multiplication of a basis matrix with three basis columns and a

weights matrix. The NMF decomposition result for the basis matrix B will appear as

shown on the left hand side of Figure 2.2. The decomposition for the gains matrix G

will appear as shown on the top of the same figure. We can see from the shown bases

in the basis matrix B in Figure 2.2 that, they have energy only at the three frequencies

that are present in the signal spectrogram. The gains matrix G shows the excitation

intervals for each basis vector in the basis matrix B.

Another illustration example of using NMF in signal processing, is to decompose the

Dual-Tone Multi-Frequency (DTMF) signals using NMF. DTMF signaling is used in

communication for dialing the telephone numbers. Figures 2.3 and 2.4 show the fre-

quencies, the generated signals for each dialed number in time domain, the spectrogram

of the DTMF signals, and the NMF decomposition matrices for the DTMF spectrogram.

We can see that, DTMF signals contain seven frequency components divided into two

groups. The low frequencies group is (697 Hz, 770 Hz, 852 Hz, 941 Hz) and the high

frequencies group is (1209 Hz, 1336 Hz, 1477Hz). For each dialed number there is one

generated frequency from each group at the same time. The basis matrix B of the NMF

decomposition captures the seven frequencies that are in the DTMF signals. The gain-

s/activations matrix G of the NMF decomposition shows that, at each time (pressed
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Figure 2.2: The NMF decomposition matrices for the sinusoidal signals.

button in the telephone switchboard) there are two frequencies (two bases in matrix B)

active at the same time. The NMF decomposition results for DTMF signals capture the

frequencies and the activations for each dialed number in the telephone switchboard. For

example, when the button for symbol 1 is pressed, the frequencies 697Hz and 1209Hz are

generated. The bases number five and seven in Figure 2.4(b) represent the frequencies

697Hz and 1209Hz respectively. We can see from the activation matrix in Figure 2.4(c)

that, when the symbol 1 is pressed, the fifth and seventh rows are active. Figures 2.2 to

2.4 show very simple signals that contain few sinusoidal components. In Figures 2.2 to

2.4 the number of frequency components for each signal is assumed to be known, which

leads to the correct choice for the suitable number of basis vectors for each signal. For

natural audio data, the suitable number of bases can not be predetermined but it is

always believed that the data lie on a lower-dimensional manifold. Figure 2.5 shows an

example of the spectrogram of an audio signal and its NMF decomposition results using

128 basis vectors.
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(a) The used frequencies in the telephone switchboards.
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Figure 2.3: The DTMF signals.

2.3 NMF for single channel source separation

There are many approaches of applying NMF in single channel source separation (SCSS).

The method that is mostly used and gives reasonable results [13, 27, 65] is divided into
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Figure 2.4: The NMF decomposition matrices for the DTMF signals.

two main stages, the training stage and the separation stage. In the training stage, it

is assumed that, there is enough training data for each observed source in the mixed

signal. NMF uses these training data to train a set of basis vectors for each source. The

spectrogram Strainz of the training data of each source z is computed first using STFT.

Then NMF is used to decompose this spectrogram into a basis matrix Bz and a weights

matrix Gtrain
z as follows:

Strainz ≈ BzG
train
z . (2.20)

The basis matrix (trained bases) Bz is used as a representative model for the training

data for each source z.

In the testing or separation stage, the trained basis matrices for all sources are concate-

nated in one bases matrix. NMF decomposes the mixed signal spectrogram Y into a
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Figure 2.5: The NMF decomposition matrices for a clean speech signal.

weighted linear combination of the trained bases matrices as follows:

Y ≈ [B1, ..,Bz, ..,BZ ]G or Y ≈ [B1, ..,Bz, ..,BZ ]



G1

.

Gz

.

GZ


. (2.21)

In the testing stage, the bases matrix is kept fixed and only the weights matrix is updated.

The estimated signal spectrogram for each source is found by multiplying each source
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basis in the bases matrix with its corresponding weights in the weights matrix as follows:

S̃1 = B1G1, ..., S̃z = BzGz, ..., S̃Z = BZGZ . (2.22)

2.3.1 Reconstruction of source signals and spectral masks

In our earlier work of using NMF for source separation [24], instead of using the initial

estimates S̃1, ...., S̃Z in Equation (2.22) as the final estimates for the source signals, we

used them to build spectral masks. Special cases of this idea appear in [28, 73, 90, 95].

The sum of the estimated spectra S̃z, ∀z ∈ {1, .., Z} in (2.22) may not sum up to

the mixed magnitude-spectrogram Y . We usually obtain nonzero decomposition error.

Thus, NMF gives us an approximation:

Y ≈
Z∑
z=1

S̃z.

Assuming noise is negligible in the mixed signal, the component signals’ sum should be

directly equal to the mixed magnitude spectrogram. To make the error zero, we used the

initial estimated magnitude spectrograms S̃z, ∀z ∈ {1, .., Z} to build spectral masks as

follows:

Hz =
S̃z

p∑Z
j=1 S̃j

p , ∀z ∈ {1, .., Z} (2.23)

where p > 0 is a parameter, the operation (.)p, and the division are element-wise op-

erations. Notice that, the elements of Hz ∈ [0, 1] and using different p values leads to

different kinds of masks. When p = 2 the mask H is a Wiener filter assuming S̃
2
z are

estimates of the PSD of the zth source signal and sources are independent. The value of

p controls the saturation level of the ratio in (2.23). When p > 1, the larger source com-

ponent will dominate more in the mixture. At p =∞, we achieve a binary mask (hard

mask) which will choose the larger source component as the only component. These

masks will scale every frequency component in the observed mixed spectrogram Y with

a ratio that explains how much each source contributes in the mixed signal such that:

Ŝz = Hz ⊗ Y , (2.24)

where Ŝz is the final estimate of the source z spectrogram, and ⊗ is an element-wise

multiplication. By using this idea we make the approximation error zero, and we can
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make sure that the estimated signals will add up to the mixed signal. After finding the

contribution of each source in the mixed signal, the estimate for each source signal ŝz(t)

can be computed by inverse STFT to the estimated source spectrogram Ŝz with the

phase angle of the mixed signal. In [24], we applied this idea to separate a speech signal

from a background music signal using the KL-NMF cost function. We tried different

values for the number of trained basis vectors for each source basis matrix and different

values for the spectral mask parameter p. We achieved reasonable performance when the

number of basis was 128 basis vectors for each source and p = 3. We also evaluated this

idea in our previous work [96] to improve the audio-visual speech recognition performance

by removing the background music signal from the speech signal. In [96], we achieved

better recognition performance compared to the case when the speech recognition was

done without removing the background signals.

2.4 Performance evaluation

In this thesis, we use different metrics to evaluate our proposed ideas. The metrics are

Source to Distortion Ratio (SDR) and Source to Interference Ratio (SIR) from [97]. We

also use the regular Signal to Noise Ratio (SNR) metric. These metrics are defined as

follows:

SDR = 10 log10

‖starget (t)‖2

‖einterf (t) + eartif (t)‖2
, (2.25)

SIR = 10 log10

‖starget (t)‖2

‖einterf (t)‖2
, (2.26)

SNR = 10 log10

‖s (t)‖2

‖s (t)− ŝ (t)‖2
. (2.27)

The separated signal is a combination of different components as follows:

ŝ (t) = starget (t) + einterf (t) + eartif (t) , (2.28)

where starget (t) is the target signal which is defined as the projection of the predicted

signal onto the original desired signal, einterf (t) is the interference error due to the other

source signals only, and eartif (t) shows artifacts introduced by the separation algorithm.
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If sw (t) is the desired source signal, ŝw (t) is its estimated signal, so

starget (t) =
< ŝw (t) , sw (t) >

‖sw‖2
sw (t) ,

if the sources are mutually orthogonal,

einterf (t) =

(
Z∑
ẃ=1

< ŝw (t) , sẃ (t) >

‖sẃ‖2
sẃ

)
− < ŝw (t) , sw (t) >

‖sw‖2
sw (t) ,

where < ., . > is the dot product. If the sources are not orthogonal, one can use Gram

Schmidt orthogonalization to find the orthogonal projection onto the subspace spanned

by all the source signals [97],

eartif (t) = ŝw (t)− starget (t)− einterf (t) ,

The higher the SDR, SIR, and SNR, the better performance we achieve.

In the literature there have been some studies where the improvements appear to be

small. In [98], the SDR improvements were around 0.1 dB. In [1, 73], the improvements

in SNR were between 0.2-0.5 dB. The minimum improvement SIR was 1.5 dB in [60].



Chapter 3

Regularized NMF using GMM

priors

3.1 Motivations and overview

In this chapter, we propose a new regularized NMF algorithm that incorporates the

statistical characteristics of the source signals to steer the optimal solution of the NMF

cost function during the separation process. We propose a new multi-objective cost

function which includes the conventional divergence term for the NMF together with

a prior likelihood term. The first term measures the divergence between the observed

data and the multiplication of basis and gains matrices as shown in Equations (2.14,

2.17). The novel second term encourages the log-normalized gain vectors of the NMF

solution to increase their likelihood under a Gaussian mixture model (GMM) prior which

is used to encourage the gains to follow certain patterns. The normalization of the gains

makes the prior models energy independent, which is an advantage as compared to earlier

proposals [26, 27] where a single Gaussian was used as a prior model. In addition, GMM

is a much richer prior than the previously considered alternatives such as conjugate priors

[71, 99] which may not represent the distribution of the gains in the best possible way.

We introduce novel update rules that solve the optimization problem efficiently for the

new regularized NMF problem. This optimization is challenging due to using energy

normalization and GMM for prior modeling, which makes the problem highly nonlinear

and non-convex.

22
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As shown in Section 2.3, the conventional use of NMF in supervised source separation

is to decompose the magnitude or power spectra of the training data of each source into

a trained basis matrix and a trained gains/weights matrix as in Equation (2.20). In

previous works [24, 65], the columns of the trained basis matrix are usually used as the

only representative model for the training source signals and the trained gains matrices

were usually ignored.

As a simple example to understand the model we introduce here, we can look at the toy

example in Figure 2.4. In Figure 2.4(c), the columns of the gains matrix only appear

in certain patterns in the DTMF signal. We can also see from Figure 2.4 that some

combinations for the basis vectors in the basis matrix are not allowed. For example,

any combination between the basis vectors number two, three, four, and five is not

allowed because these basis vectors represent the lower band frequencies that can not be

combined in DTMF data as shown in Figure 2.3(a). Also any combination between the

basis vectors number one, six, and seven can not be combined because they represent the

higher band frequency components that can not be combined as shown in Figure 2.3(a).

Based on the basis matrix in Figure 2.4(b), there are many different combinations for

the basis vectors in the basis matrix but just 12 of them are only valid combinations as

we can see in Figures 2.3(a) and 2.4(c).

The columns of the trained gains matrix represent the valid weight combination patterns

that the columns in the basis matrix can jointly receive for a specific type of source signal.

A prior distribution can represent the statistical distribution of the gains vector in each

column of the gains matrix and model the correlation between their entries. Since the

trained basis matrix for each source is common in the training and separation stage, the

prior model for the gains matrix for each source can guide the NMF solution to prefer

valid gain patterns during the separation stage. We use a multivariate Gaussian mixture

model (GMM) as a prior model for the gains vector for each frame of each source.

Figure 3.1 shows an example similar to Figure 2.1 but where certain linear combinations

between the two basis vectors are allowed. The figure shows the cases where the clus-

tering structure of the nonnegative linear combinations of the given two basis vectors

can be seen. For example, for speech signals there are a variety of phonetic differences,

which causes a sort of clustering structure for the data. Since the trained basis vectors

are the same during the training and the separation stage, we believe these clustering



Regularized NMF using GMM priors 24

structures are inherited in the gains matrix. This clustering structure raises the need for

using GMMs. The GMM is a rich model for capturing the statistics and the correlations

Figure 3.1: The cluster structure for the nonnegative linear combinations of the basis
vectors.

of the valid gain combinations for a certain type of source signal. GMMs are used exten-

sively in speech recognition and speaker verification to model the multi-modal nature in

speech feature vectors due to phonetic differences, gender, speaking styles, accents [100]

and we conjecture that the gains vector can be considered as a feature extracted from

the audio signal in a frame so that it can be modeled well with a GMM. The columns

of the trained gains matrix for each source are normalized by the `2 norm, and their

logarithm is taken and used in the GMM prior. In the proposed method, the trained

basis matrix and its corresponding gains GMM prior are jointly used as a representative

model for the training data for each source.

The training can be performed either in two steps sequentially, or all the parameters

can be learned using joint training. In sequential training, we first learn the basis and

gains matrices using conventional NMF for each source from the corresponding training

data and then fit a GMM to the log-normalized gains vectors obtained in the previous

step. In joint training, we learn both the NMF matrices and the GMM parameters

using coordinate descent (or alternating minimization) on the proposed regularized cost

function directly. Jointly training the NMF and the prior models simultaneously is

a novel idea introduced in this work. In joint training, the trained basis matrix is
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also changed since the gains matrix is enforced to satisfy the NMF equation guided by

the GMM prior, so that the trained models are more consistent with the GMM prior

assumption. For this reason, we use sequential training for initialization of the model

parameters, but eventually use joint training of the model parameters in this work.

In the separation stage after observing the mixed signal, the proposed regularized NMF

is used to decompose the magnitude or power spectra of the observed mixed signal as

a weighted linear combination of the columns of trained bases matrices for all source

signals that appear in the mixed signal. The decomposition weights are encouraged

to increase their log-likelihood with their corresponding trained prior GMMs using the

regularized cost function.

In this chapter, we apply the proposed regularized NMF using the generalized Kullback-

Leibler (KL-NMF) divergence cost function [64] and the Itakura-Saito (IS-NMF) diver-

gence cost function [70] which are shown in Equations (2.14) and (2.17) respectively.

As shown in Section (2.2), the KL-NMF is used with matrices of magnitude spectro-

grams with the approximation shown in Equations (2.4, 2.5), while IS-NMF is used with

matrices of power spectral densities (spectrograms) with the approximation shown in

Equations (2.6, 2.7). We will show the proposed regularized NMF using KL-NMF first,

then we will state the differences regarding the usage of IS-NMF.

3.2 The proposed regularized nonnegative matrix factor-

ization approach

The goal of regularized NMF is to incorporate prior information on the solutions of the

matrices B and G. We enforce a statistical prior on the solution of the gains matrix

G only. We need the solution of G in Equation (2.8) to minimize the KL-divergence

cost function in Equation (2.14), and the log-normalized columns of the gains matrix

G, namely log
g
‖g‖2

, to maximize their log-likelihood under a trained GMM prior model.

Hence, the solution of G can be found by minimizing the following regularized KL-

divergence cost function:

C = DKL (V ||BG)− λL(G|θ), (3.1)
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where L(G|θ) is the log-likelihood of the log-normalized columns of the gains matrix

G under the trained prior gain GMM with parameters θ, and λ is a regularization

parameter. The regularization parameter controls the trade-off between the NMF cost

function and the prior log-likelihood. The multivariate Gaussian mixture model (GMM)

with parameters θ = {wk,µk,Σk}Kk=1 for a random variable x is defined as:

p(x|θ) =
K∑
k=1

wk

(2π)d/2 |Σk|1/2
exp

{
−1

2
(x− µk)

T Σ−1
k (x− µk)

}
, (3.2)

where K is the number of Gaussian mixture components, wk is the mixture weight, d is

the vector dimension, µk is the mean vector and Σk is the diagonal covariance matrix

of the kth Gaussian model. In this section, we assume GMM parameters θ are given.

We will mention the training of θ in the next section. The normalization is done using

the `2 norm by modeling log
g
‖g‖2

.

The reason for using the logarithm is because GMM is usually a better fit to the loga-

rithm of the values between 0 and 1 due to wider support as observed in tandem speech

recognition research [101]. The reason for normalization is to make the prior models

insensitive to the change of the energy level of the signals, which makes the same prior

models applicable for a wide range of energy levels and avoids the need to train a different

prior model for different energy levels.

The log-likelihood for the gains matrix G with N columns can be written as follows:

L(G|θ) =
N∑
n=1

log
K∑
k=1

ρk,n (θ) , (3.3)

where

ρk,n (θ) =
wk

(2π)(d/2) |Σk|1/2
exp

{
−1

2

(
log

gn
‖gn‖2

− µk
)T

Σ−1
k

(
log

gn
‖gn‖2

− µk
)}

,

(3.4)

and gn is the column numbered n in the gains matrix G. The multiplicative update rule

for the basis matrix B for the cost function in Equation (3.1) is the same as in Equation

(2.15). To find the multiplicative update rule for G in Equation (3.1), we follow the

same procedures as in [1] and [67]. We express the gradient with respect to G of the
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cost function ∇GC as the difference of two positive terms ∇+
GC and ∇−GC as:

∇GC = ∇+
GC −∇

−
GC. (3.5)

The cost function is shown to be nonincreasing under the following update rule [1, 67]:

G← G⊗
∇−GC
∇+
GC

, (3.6)

where the operations ⊗ and division are element-wise as in Equation (2.16). We can

write the gradients as:

∇GC = ∇GDKL − λ∇GL(G|θ), (3.7)

where ∇GL(G|θ) is a matrix with the same size of G. The gradient for the KL-cost

function and the prior log-likelihood can also be formed as differences between positive

terms as follows:

∇GDKL = ∇+
GDKL −∇−GDKL, (3.8)

∇GL(G|θ) = ∇+
GL(G|θ)−∇−GL(G|θ). (3.9)

We can rewrite Equations (3.5, 3.7) as:

∇GC =
(
∇+
GDKL + λ∇−GL(G|θ)

)
−
(
∇−GDKL + λ∇+

GL(G|θ)
)
. (3.10)

The final update rule in Equation (3.6) can be written as follows:

G← G⊗
∇−GDKL + λ∇+

GL(G|θ)
∇+
GDKL + λ∇−GL(G|θ)

, (3.11)

where

∇GDKL = BT

(
1− V

(BG)

)
, (3.12)

∇−GDKL = BT V

(BG)
, (3.13)

and

∇+
GDKL = BT1. (3.14)
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The row j and column n component of the gradient of the prior log-likelihood in Equation

(3.3) can be found as follows:

(∇GL(G|θ))jn =
(
∇+
GL(G|θ)

)
jn
−
(
∇−GL(G|θ)

)
jn
, (3.15)

where

(
∇−GL(G|θ)

)
jn

=

∑K
k=1

{
−ρk,n

(
Σkjj

)−1
(
µkj

gjn
+

gjn

‖gn‖
2

2

log
gjn

‖gn‖2

)}
∑K

k=1 ρk,n
, (3.16)

(
∇+
GL(G|θ)

)
jn

=

∑K
k=1

{
−ρk,n

(
Σkjj

)−1
(
µkj
gjn

‖gn‖
2

2

+ 1
gjn

log
gjn

‖gn‖2

)}
∑K

k=1 ρk,n
. (3.17)

Since the GMMs are trained by log-normalized columns, we know that the values of the

mean vectors µ are always negative. The values of the vectors g are always positive,

so the values from Equations (3.16) and (3.17) will be always positive. We can use

Equations (3.13, 3.14, 3.16, 3.17) to find the total gradients in Equation (3.10) and then

to derive the update rules for G in Equation (3.11). The initialization of the matrix G

is done by running one regular NMF iteration without any prior.

3.3 Training the source models

In the training stage, we aim to train a set of basis vectors for each source and a prior

statistical GMM for the gain patterns that each set of basis vectors can receive for each

source signal.

3.3.1 Sequential training

Given a set of training data for each source signal, the magnitude spectrogram Strainz

for each source z is calculated. The NMF is used to decompose Strainz into basis matrix

Bz and gains matrix Gtrain
z . The gains matrix Gtrain

z is then used to train the prior

GMM for each source. KL-NMF is used to decompose the magnitude spectrogram into
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basis and gains matrices as follows:

Strainz ≈ BzG
train
z , (3.18)

Bz,G
train
z = arg min

B,G
DKL

(
Strainz ||BG

)
.

After finding the basis and the gains matrices, the corresponding GMM parameters θz

are then learned as follows:

θz = arg max
θ
L (Gz|θ) . (3.19)

We use multiplicative update rules in Equations (2.15) and (2.16) to find solutions for

Bz and Gz in Equation (3.18). All the matrices B and Gtrain are initialized by positive

random noise. In each iteration, we normalize the columns of Bz using the `2 norm and

find Gtrain
z accordingly. After finding matrices B and Gtrain for all sources, all the basis

matrices B are used in mixed signal decomposition as it is shown in Section 3.4. We

use the gains matrices Gtrain to build statistical prior models. For each matrix Gtrain
z ,

we normalize its columns and the logarithm is then calculated. These log-normalized

columns are used to train a gain prior GMM for each source in Equation (3.19) using

the well-known expectation maximization (EM) algorithm [102].

3.3.2 Joint training

In Section 3.3.1, the trained NMF basis and gains matrices for each source are computed

using Equations (2.15, 2.16), and then the prior gain GMMs are trained using the

logarithm of the normalized columns of the trained gains matrix. To match between

the way the trained models are used during training with the way they are used during

separation, we jointly train the basis vectors and the prior models simultaneously to

minimize the regularized cost function:

(
Bz,G

train
z , θz

)
= arg min

B,G,θ
DKL

(
Strainz ||BG

)
− λtrainL (G|θ) . (3.20)

We use the trained NMF and GMM models from Section 3.3.1 as initializations for

the source models, and then we update the model parameters by running alternating

update (coordinate descent) iterations on Bz, G
train
z and θz parameters. At each NMF

iteration, we update the basis matrix Bz using update rule in (2.15) while keeping Gz
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fixed, and the gains matrix Gtrain
z is updated using update rule in (3.11) while keeping

Bz and θz fixed. We use a fixed value for the regularization parameter λtrain during

training. The new gains matrix is then used to train a new GMM with its parameters

θz using the EM algorithm initialized by the previous GMM parameters. By repeating

this procedure at each NMF iteration during training, the basis matrix is learnt in a

consistent way with the clustered structure of the gains matrix due to the usage of the

GMM priors. Since the original NMF problem is non-convex and there may be many

possible local minima, we conjecture that the prior term encourages an NMF solution

which is more consistent with the GMM prior assumption of the gains matrix.

3.3.3 Determining the hyper-parameters

The hyper-parameters in our model are the number of basis vectors d, number of mix-

tures K, and the regularization parameter λtrain. In addition, during testing, we may

use different λ parameters for each source depending on the energy ratios of source sig-

nals (speech-to-music or male-to-female energy ratios in our experiments) which yields

better results than using fixed values as we explain in Sections 3.4 and 3.5.

These hyper-parameters, especially λ value(s), may be learned using a fully Bayesian

treatment by putting priors on them and using the evidence framework or the integrate-

out method [103]. For Bayesian learning of number of mixtures in the GMM and the

number of basis vectors, one needs to use nonparametric Bayesian methods of Dirichlet

process mixtures [104] and Bayesian nonparametric NMF [105] which enable variable

number of mixtures and NMF basis components respectively. This overall Bayesian

treatment is possible since the divergence cost functions DKL and DIS can be seen as

negative log-likelihood functions that depend on the parameters of the NMF decom-

position under the probabilistic interpretations of NMF [70, 106]. However, Bayesian

solutions involve highly complicated computations due to sampling techniques and are

pretty cumbersome to implement. We consider these approaches as out of scope for

this work and leave them as future work. Thus, we take the conventional approach

of determining these parameters using grid search on validation data. Basically, we

perform different experiments with a range of reasonable values for each of these hyper-

parameters and choose the values that provide the best results on validation data.
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3.4 Signal separation

After observing the mixed signal y(t), the magnitude spectrogram Y of the mixed signal

is computed using STFT. To find the contribution of every source in the mixed signal

magnitude spectra, we use KL-NMF to decompose the magnitude spectra Y with the

trained bases matrices B = [B1, ...,Bz, ...,BZ ] that were found from solving Equation

(3.18) as follows:

Y ≈ [B1, ...,Bz, ...,BZ ]G. (3.21)

The only unknown here is the gains matrix G since the matrix B and the trained GMM

parameters Θ = {θ1, ..., θz, ..., θZ} were found during the training stage and they are

fixed in the separation stage. The matrix G is a combination of submatrices, and every

column n of G is a concatenation of subcolumns as follows:

G1

.

.

Gz

.

.

GZ


=



g11 . . g1n . . g1N

. . . . . . .

. . . . . . .

gz1 . . gzn . . gzN

. . . . . . .

. . . . . . .

gZ1
. . gZn

. . gZN


, (3.22)

where N is the maximum number of columns in matrix G, and gzn is the column

number n in the gain submatrix Gz for source signal z. Each submatrix represents

the gain combinations that their corresponding basis vectors in the bases matrix have

in the mixed signal. For the log-normalized columns of the submatrix Gz there is a

corresponding trained gain prior GMM. We need the solution of G in Equation (3.21)

to minimize the KL-divergence cost function in Equation (2.14), and the log-normalized

columns of each submatrixGz inG to maximize the log-likelihood with its corresponding

trained gain prior GMM. Combining these two objectives, the solution ofG can be found

by minimizing the following regularized KL-divergence cost function as in Equation (3.1):

C = DKL (Y ||BG)−R(G|Θ), (3.23)
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where R(G) is the weighted sum of the log-likelihoods of the log-normalized columns

of the gain submatrices in matrix G. For each log-likelihood of the gain submatrix Gz

there is a corresponding regularization parameter λz and GMM parameters θz. R(G)

can be written as follows:

R(G|Θ) =

Z∑
z=1

λzL(Gz|θz), (3.24)

where L(Gz|θz) is the log-likelihood for the submatrix Gz for source z as in Equation

(3.3). The regularization parameters play an important role in the separation perfor-

mance as we show later. Each source subcolumns
[
gz1 , .., gzn , .., gzN

]
in matrix G in

Equation (3.22) are normalized and treated separately than other subcolumns sets, and

each set of subcolumns is associated with its corresponding trained gain prior GMM.

The multiplicative update rule for G can be found using Equations (3.11, 3.13, 3.14) as

follows:

G← G⊗
∇−GDKL +∇+

GR(G|Θ)

∇+
GDKL +∇−GR(G|Θ)

, (3.25)

where

∇GR(G|Θ) = ∇+
GR(G|Θ)−∇−GR(G|Θ), (3.26)

∇GR(G|Θ) is a matrix with the same size of G and it is a combination of submatrices

as follows:

∇GR(G|Θ) =



λ1∇GL(G1|θ1)

.

.

λz∇GL(Gz|θz)

.

.

λZ∇GL(GZ |θZ)


, (3.27)

and ∇GL(Gz|θz) can be found for each source z using Equations (3.15, 3.16, 3.17).

Normalizing vectors in the prior models slightly increases the derivation complexity and

the computational requirements of the multiplicative update rule of the gains matrix,

but it is beneficial in situations where the source signals occur with varying energy levels.

Normalizing the training and testing gain matrices gives the prior models the chance to

be applicable for any energy level that the source signals can take in the mixed signal

regardless of the energy levels of the training signals. It is important to note that,
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normalization during the separation process is done only for maximizing the prior log-

likelihood. The general solution for the cost function in Equations (3.1) and (3.23) is

not normalized.

After finding the suitable solution for the matrix G, the initial magnitude spectral

estimate of each source z is found as follows:

S̃z = BzGz. (3.28)

3.4.1 Reconstruction of source signals and spectral masks

To reconstruct the source signals, we follow the same procedures shown in Section 2.3.1.

We use the initial estimates S̃ from (3.28) to build spectral masks [23, 24, 96] as follows:

Hz =
(BzGz)

p∑Z
j=1 (BjGj)

p
, (3.29)

To be consistent with the literature [28, 73, 90, 95], for KL-NMF we use p = 1 in this

chapter. These masks will scale every time-frequency component in the observed mixed

signal spectrogram in Equation (2.2) with a ratio that determines how much each source

contributes in the mixed signal such that

Ŝz(n, f) = Hz(n, f)Y (n, f), (3.30)

where Ŝz(n, f) is the final estimated STFT for Sz(n, f) in Equation (2.2) for source z,

and Hz(n, f) is the column n and row f entry of the spectral mask Hz in Equation

(3.29). As we can see, Ŝz(n, f) has the same phase angles as Y (n, f) since H is a

real filter. After finding the contribution of each source signal in the mixed signal, the

estimated source signal ŝz(t) can be found by using inverse STFT of Ŝz(n, f).

3.4.2 Signal separation using IS-NMF

In case of using IS-NMF rather than using KL-NMF, we only need to replace the gra-

dients in Equations (3.12, 3.13, 3.14) respectively with

∇GDIS = BT 1

BG
−BT V

(BG)2 , (3.31)



Regularized NMF using GMM priors 34

∇−GDIS = BT V

(BG)2 , (3.32)

and

∇+
GDIS = BT 1

BG
. (3.33)

These gradients are used to find the update rules in Equations (3.11, 3.25). It is also

important to note that the gradients in Equations (3.16, 3.17, 3.27) will be the same in

the IS-NMF framework. Training the bases in Section 3.3 is done by using the IS-NMF

update rules. The IS-NMF is used in training and separation stages with power spectral

density (PSD) matrices rather than using magnitude spectra as in the case of KL-NMF.

In practice, we just use the squared magnitude spectra as PSD estimates. By using

IS-NMF, the value S̃z = BzGz in Equations (3.28, 3.29) is the PSD of the source z.

The spectral mask that is usually used in IS-NMF is the Wiener filter [70], which means

p = 1 in Equation (3.29) since the values of the product BzGz in IS-NMF represent

PSD estimates for the sources.

3.5 Experiments and discussion

We applied the proposed algorithm to two different problems: the first problem is speech-

music separation, and the second one is speech-speech separation. In each case, we tested

our separation algorithm using both KL-NMF and IS-NMF. This procedure results in

four different sets of experiments. The spectrograms for the training and testing signals

were calculated by using the STFT: A Hamming window with 480 points length and 60%

overlap was used and the FFT was taken at 512 points, the first 257 FFT points only

were used since the conjugate of the remaining 255 points are involved in the first FFT

points. In case of using KL-NMF we chose the value of the spectral mask parameter

p = 1 in Equation (3.29). In case of using IS-NMF we chose the Wiener filter to be the

spectral mask in Equation (3.29) as in [70].

3.5.1 Speech-music separation

In this experiment, we used the proposed algorithm to separate a speech signal from a

background piano music signal. Our main goal was to get a clean speech signal from
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a mixture of speech and piano signals. We simulated our algorithm on a collection of

speech and piano data at 16 kHz sampling rate. For speech data, we used a male Turkish

speech data for a single speaker. The data was recorded using a headset microphone in

a clear office environment. The data contains 560 short utterances with approximate

duration 4 seconds each. For training speech data, we used 540 short utterances, we

used another 20 utterances for validation and testing with 10 utterances each. For music

data, we downloaded piano music data from piano society website [107]. We used 12

pieces with approximately 50 minutes of total duration from different composers but

from a single artist for training and left out one piece for testing. We trained 128 basis

vectors for each source, which makes the size of each matrix Bspeech and Bmusic to be

257× 128.

The simulated mixed data was formed by adding random portions of the test music file

to the 20 speech utterance test and validation files at a different speech-to-music ratio

(SMR) values in dB. The audio power levels of each file were found using the “speech

voltmeter” program from the G.191 ITU-T STL software suite [108]. For each SMR

value, we obtained 20 mixed utterances. The first 10 mixed files for each SMR were

used as a validation set to choose the suitable values for regularization parameters. The

other 10 mixed files were used for testing. The proposed algorithm was run first on the

validation set by using different values for the regularization parameters. We started

with very small value 0.0001 for the regularization parameters, and we gradually in-

creased their values by a multiple of ten as long as the SNR results had been improved,

until the SNR started to decrease, then we searched close to the tried values for the

regularization parameters that gave the highest SNR. The suitable values of the regu-

larization parameters that were found using the validation set were then used on the

test set. The shown results for all experiments are the average SNR of the 10 mixed test

utterances.

The suitable number of mixture components K of the GMMs was chosen by trying

different values as we can see from Figure 3.2. The figure shows the SNR in dB of the

estimated speech signal at SMR = −5 dB, with joint training of the source models as

shown in Section 3.3.2, with λtrain = 0.0001 for both sources, and λspeech = λmusic =

0.005. we tried K ∈ {4, 8, 16, 32}. We got slightly better results for K = 16. We fixed

the value of K = 16 for all other experiments.
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Figure 3.2: The effect of changing the number of GMM mixture K for speech-music
separation using KL-NMF at SMR = −5 dB, λspeech = λmusic = 0.005, λtrain = 0.0001.

To show the performance difference between using sequential training in Section 3.3.1

and using joint training in Section 3.3.2, we used KL-NMF with two different training

cases. Table 3.1 shows the SNR of the separated speech signal using KL-NMF and

sequential training for the source models. In this case, the regularization parameters

λtrain = 0 for both sources. Second column shows the separation results of using NMF

without using the GMM gain prior models in training and separation, which means the

regularization parameters for separation λspeech = λmusic = 0. In the third column,

we show the case where the same values for the regularization parameters improve

the separation results for all SMR cases compared to using NMF without any prior
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information. If we know some information about SMR of the mixed signal or estimate

it online, we can choose different values for the regularization parameters for each SMR

case, that can lead to better results as we can see in last column in the same table.

Table 3.2 shows the results with the same data as in Table 3.1 but with joint training

for the source models. Second column in Table 3.2 shows the separation results of using

NMF without using the GMM gain prior models in training and separation, which means

λtrain = 0, λspeech = λmusic = 0 for both sources. In the third column, we show the case

where the same values for the regularization parameters improve the separation results

for all SMR cases. In the last column of the table, better results based on better choices

of the regularization parameters are shown assuming the SMR is known. The values of

the regularization parameters during training stage are λtrain = 0.0001 for both sources

in the third and fourth columns in Table 3.2. We can see that the results of jointly

training the models in Table 3.2 are better than their corresponding results in Table 3.1

for the case of training the models separately.

Figure 3.3 shows the signal to interference ratio (SIR) of the estimated speech signal

for different cases. SIR is defined as the ratio of the target energy to the interference

error due to the music signal only [97]. The line marked with × in the figure shows

the SIR corresponding to the case of using no prior in the second column in Tables

3.1 or 3.2. The SIR corresponding to the third column in Table 3.1 is shown in this

figure with line marked with circles; in this case the priors were used during separation

without performing joint training. The line with square marks in this figure shows the

SIR corresponding to the third column in Table 3.2 where the joint training was applied

with λtrain = 0.0001 for both sources and λspeech = λmusic = 0.005. We can see from

Figure 3.3 and Tables 3.1 and 3.2 that using joint training improves the performance of

the separation process. The shown values of the regularization parameters were selected

based on the validation set. Since the joint training of the source models gives better

results than the sequential training, we used joint training for our other remaining

experiments.

Table 3.3 shows the results with the same data in Table 3.2 with the same values of

λtrain but using IS-NMF with Wiener filter as a spectral mask.



Regularized NMF using GMM priors 38

Table 3.1: SNR in dB for the speech signal for speech-music separation using regu-
larized KL-NMF with λtrain = 0 and different values of the regularization parameters

in testing λspeech and λmusic.

SMR λspeech = 0 λspeech = 0.01 Best found values
dB λmusic = 0 λmusic = 0.01 λspeech λmusic
-5 4.33 4.53 4.71 0.1 0.05

0 7.96 8.14 8.14 0.01 0.01

5 9.71 9.86 9.86 0.01 0.01

Table 3.2: SNR in dB for the speech signal for speech-music separation using regu-
larized KL-NMF with different values of the regularization parameters λspeech, λmusic

and λtrain = 0.0001 for last two columns.

SMR λspeech = 0 λspeech = 0.005 Best found values
dB λmusic = 0 λmusic = 0.005 λspeech λmusic
-5 4.33 5.44 5.55 0.01 0.01

0 7.96 8.70 8.70 0.005 0.005

5 9.71 10.25 10.33 0.001 0.005

Table 3.3: SNR in dB for the speech signal for speech-music separation using regular-
ized IS-NMF with different values of the regularization parameters λspeech and λmusic.

SMR λspeech = 0 λspeech = 0.5 Best found values
dB λmusic = 0 λmusic = 0.5 λspeech λmusic
-5 3.66 4.19 5.09 0.5 0.1

0 8.02 8.51 8.81 0.5 0.1

5 10.54 10.62 10.62 0.5 0.5

3.5.2 Speech-speech separation

In this experiment, we used the proposed regularized NMF algorithm to separate a male

speech signal from a background female speech signal. Our main goal was to get a clean

male speech signal from a mixture of male and female speech signals. We simulated our

algorithm on a collection of male and female speech signals using the TIMIT database

[109]. For the training speech data, we used around 550 utterances from multiple male

and female speakers from the training data of the TIMIT database. The validation and

test data were formed using the TIMIT test data by adding 20 different female speech

files to the 20 different male speech files at a different male-to-female ratio (MFR) values

in dB. For each MFR value, we obtained 10 utterances for each test and validation set.

We trained 32 basis vectors for each source, which makes the size of each matrix Bmale

and Bfemale to be 257× 32. The number of the GMM components K is also 16 in this

experiment.
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Figure 3.3: The SIR for the case of using no priors during training and separation
stages, the case of using prior only during testing, and the case of using prior during

training and separation stages.

Table 3.4 shows the signal to noise ratio of the separated male speech signal using KL-

NMF. In the second column where no prior is used, the regularization parameters in

training and testing are all equal to zero. For the third and fourth column, the training

regularization parameters λtrain = 0.001 for both sources, and indicated values for the

regularization parameters are used in testing.

Table 3.4: SNR in dB for the male speech signal for speech-speech separation using
regularized KL-NMF with different values of the regularization parameters λmale and

λfemale.

MFR λmale = 0 λmale = 0.05 Best found values
dB λfemale = 0 λfemale = 0.05 λmale λfemale
-5 1.23 1.40 1.61 0.1 0.01

0 4.05 4.44 4.44 0.05 0.05

5 6.04 6.40 6.64 0.01 0.1
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Table 3.5 shows the results of using IS-NMF with different values of the regularization

parameters λmale, λfemale, and λtrain = 0.001 for the third and fourth columns.

Table 3.5: SNR in dB for the male speech signal for speech-speech separation using
regularized IS-NMF with different values of the regularization parameters λmale and

λfemale.

MFR λmale = 0 λmale = 1.5 Best found values
dB λfemale = 0 λfemale = 1.5 λmale λfemale
-5 1.59 1.63 1.66 1.5 1

0 3.23 3.29 3.45 1.5 5

5 4.22 4.36 5.64 0.1 10

We can see from the fourth column in Tables 3.4 and 3.5 that, at low MFR we get better

results when the values of λmale is slightly higher than their values at high MFR. This

means, when the male speech signal has less energy in the mixed signal, we rely more

on the prior model for the male speech signal. As the energy level of the male speech

signal increases, the values of the male speech prior parameter decreases and the value

of the female speech prior parameter increases since the energy level of the female speech

signal is decreased.

We can see from all tables that, comparing with no prior case, incorporating statistical

prior information with NMF improves the performance of the separation algorithm. We

also observe that, our proposed algorithm improves the performance of NMF regardless

of the application and the used NMF cost function. In addition we found that, the same

trained GMM prior model works for a range of energy levels avoiding the need to train

different GMM model for each different energy level.

3.5.3 Comparison with the use of a conjugate prior

In this section we compare our proposed method of using GMM as a prior on the

solution of NMF with the conjugate prior models for the case of KL-NMF. Instead of

using GMM as a prior for the solution of the gains matrix during the separation process,

the conjugate prior model is used as a prior for the gains matrix in this section. The

probabilistic conjugate prior model for the solution of the gains matrixG for KL-NMF is

the Gamma distribution as shown in [99]. The probability distribution function (PDF)

of the Gamma distribution with parameters a and b of a random variable x is defined
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as

p(x) =
xa−1e−

x
b

baΓ(a)
, (3.34)

where Γ(a) is the gamma function. The parameter a is known as the shape parameter

and b is the scale parameter. These parameters can be selected individually for each

gains matrix entry. Here, we fix the values for the parameters a and b for all entries of

the gains matrix for each source. The update rule of the solution of the gains matrix in

the separation stage that solve the cost function in Equation (3.23) with Gamma prior

is defined as [99]

G← G⊗
BT Y

BG + a.1̂−1̂
G

BT1 + 1̂
b.1̂

, (3.35)

where 1̂ is a matrix of ones with the same size of G, the operation a.1̂ means multiplying

each entry of the matrix 1̂ with a, and 1 is a matrix of ones with the same size of Y .

When the parameter a = 1 the prior distribution is an exponential distribution, and

solving for G in the separation stage is equivalent to solving the following sparse KL-

NMF problem [73]

C (G) = DKL (Y ||BG) + λ
∑
j,n

Gj,n, (3.36)

where the regularization parameter λ = 1
b . In this case the update rule of G in (3.35)

can be simplified as [73]

G← G⊗
BT Y

BG
BT1 + λ.1̂

. (3.37)

We repeated the speech-music separation experiment using KL-NMF in Section 3.5.1

with the same number of bases and p = 1 but using conjugate prior update rule in

Equation (3.35). We chose different values of the scale parameter for each source, bs

for speech and bm for music. We used the same value of the shape parameter a for

both sources. We tried different values of the parameters on the validation data and

the parameter values that gave the best results were then used on the test data. Table

3.6 shows the signal to noise ratio of the separated speech signal using conjugate prior

models in the case of KL-NMF with different values of the shape and scale parameters

of the conjugate Gamma prior model for each source.

Comparing the results in Table 3.2 with the results in Table 3.6 we can see that, the

third column results in Table 3.2 are better than their corresponding results in the third
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Table 3.6: SNR in dB for the speech signal for speech-music separation using conju-
gate prior KL-NMF with different values of the prior parameters.

SMR No a = 1 Best found values
dB Prior bs = bm = 103 a bs bm

-5 4.33 4.35 4.35 1 103 103

0 7.96 8.02 8.02 1 103 103

5 9.71 9.80 10.26 1 102 102

column in Table 3.6. Comparing the results in the last columns of both tables, we can

see that using the GMM prior models give better results than using conjugate prior

models at most SMR cases. We conjecture that, the GMM prior gives better results

than the conjugate prior (Gamma prior) since the Gamma distribution is incapable of

capturing the multi-mode structure that are related to the audio signals. For speech

signals in general there is a variety of phonetic, gender, speaking style, and accent

differences which raises the necessity for using many Gaussian components. As we can

see in both cases there are many parameter values to be chosen and exact comparison

can not be achieved since we can not test all possible combinations of the parameters.

From running many experiments, we observed that, the performance in the case of

using conjugate prior is very sensitive to small changes in the combination choices of the

prior parameter values especially the shape parameter a. For each NMF divergence cost

function there is a corresponding conjugate prior distribution that must be chosen. In

case of KL-NMF the conjugate prior distribution is the Gamma distribution, in IS-NMF

case the conjugate prior distribution is the inverse-Gamma PDF [70]. The GMM prior

models can be applied regardless of the type of the NMF cost function.

3.6 Conclusion

In this chapter, we introduced a new regularized NMF algorithm for single channel

source separation. The energy independent prior GMM was used to force the NMF

solution to satisfy the statistical nature of the estimated source signals. The gains

found in NMF solution were encouraged to increase their likelihood with the prior gain

models of the source signals. Gaussian mixture models were used to model the log-

normalized gain prior to improve the separation results. Our experiments indicate that
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the proposed approach is a promising method in single channel speech-music and speech-

speech separation using various target-to-background energy ratios and different NMF

divergence functions.



Chapter 4

Regularized NMF using HMM

priors

4.1 Motivations and overview

The NMF solutions in Section 2.3 do not consider the temporal information between the

consequent frames in the spectrogram. The temporal information between the frames is

important information that can be used to improve any audio signal processing system.

In Chapter 3, Gaussian mixture model (GMM) was used as a prior that guides the NMF

solution of the gains matrix to get better solution for the NMF cost function. A better

solution means a solution that is more compatible with the nature of the source signals.

GMM models the columns of the trained gains matrix without considering the dynamic

structure of the processed audio signals. GMM treats the columns of the trained gains

matrix independently from each other. The temporal structure is important information

that needs to be considered when we model any audio signal.

In this chapter, we try to guide the solution of NMF during the separation stage to

consider temporal and statistical prior information. The columns of the trained gains

matrix represent the valid gain combination sequences for a certain type of source sig-

nal. The gains matrix can be used to train a prior model for the valid weight pattern

sequence for each source. The prior models can guide the NMF decomposition weight-

s/gains during the separation stage to find a solution that can be considered as valid

weight combination sequences for the underlying source signal while minimizing the

44
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NMF reconstruction error. The trained gains matrix is used here to build a HMM prior

model for each source.

Figure 4.1 shows an example similar to Figures 2.1 and 3.1 where the clustering and

temporal structures of the nonnegative linear combinations of the given two basis vectors

can be seen. The possibility of staying at the same cluster or moving to another cluster

is considered in this figure which raises the need for an HMM to model the shown data.

This description is for a simplified case where each cluster corresponds to a single state

in the HMM model, or in other words HMM state emission distributions are single

Gaussian distributions.

Figure 4.1: The cluster and temporal structures for the nonnegative linear combina-
tions of the basis vectors.

Since the trained basis vectors are the same during the training and the separation stage,

we believe these clustering and temporal structures will be inherited in the gains matrix.

We conjecture that the sequence of columns in the gains matrix can be considered as

a sequence of features extracted from the signal so that it can be modeled well with a

HMM. HMM is used extensively in speech recognition to model time-series signals. The

columns of the trained gain matrices are normalized by the `2 norm, and their logarithm

is taken and used to train the prior HMM for each source. The trained basis matrix

and the prior HMM are jointly used as representative models for the training data for

each source. As in Chapter 3, training the basis matrix and the prior model can be
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done either in two steps sequentially, or all model parameters can be learnt using joint

training.

From the previous chapter we can see that, using joint training gives better results

than using sequential training. To avoid repetitions, we will only consider using joint

training. We use sequential training for initializing the model parameters, then we use

joint training to learn the model parameters. In the separation stage and after observing

the mixed signal, NMF is used to decompose the spectrogram of the mixed signal as a

weighted linear combination of the columns of the trained basis matrices. The sequence

of the decomposition weight combinations are jointly encouraged to increase the log-

likelihood with their corresponding trained prior HMMs. The solution that decreases

the NMF construction error and increases the log-likelihood with the prior HMMs is

computed from solving a regularized NMF cost function. The proposed algorithm models

the prior information using HMM, which is a rich model to represent the statistical

distribution of any sequential training data. Temporal relations between sequential

frames are also modeled in the HMM using transition probabilities among states. Since

the HMMs are trained using normalized data, there is no restriction on the energy level

of the testing data compared to the training data. Moreover, the source signals can

have different energy levels in the mixed signal without any limitations. In the previous

chapter, GMM priors improve the separation performance regardless of the used NMF

cost function. To avoid repetition as in previous chapter, we will apply HMM priors on

the IS-NMF solution only.

4.2 The proposed regularized NMF using HMM

In this chapter, we use the regularized NMF to incorporate dynamic statistical prior

information on the solutions of the gains matrix G. We need the solution of G in

Equation (2.8) to minimize the IS-divergence cost function in Equation (2.17), and

the log-normalized columns of the gains matrix G “log
g
‖g‖2

”, to maximize their log-

likelihood under a trained HMM prior model. Hence, the solution of G can be found by

minimizing the following regularized IS-divergence cost function:

C = DIS (V ||BG)− λL(G|θ), (4.1)
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where L(G|θ) is the log-likelihood of the log-normalized columns of the gains matrix

G under the trained prior HMM for the gain vectors with parameters θ, and λ is a

regularization parameter. The regularization parameter controls the trade-off between

the NMF cost function and the prior log-likelihood. In this section, we assume HMM

parameters θ are given and in the next section, we will mention the training procedures

of θ. The log-likelihood for the sequence of the log-normalized columns can be written

as follows:

L(G|θ) = log p

(
log

g1

‖g1‖2
, .., log

gn
‖gn‖2

, .., log
gN
‖gN‖2

|θ
)
, (4.2)

where N is the number of columns in the matrix G. To find the multiplicative update

rule for G in Equation (4.1), we follow the same procedures as in Section 3.2. From

Equations (3.5) to (3.11), we obtain

G← G⊗
∇−GDIS + λ∇+L(G|θ)
∇+
GDIS + λ∇−L(G|θ)

, (4.3)

where

∇GDIS = BT 1

BG
−BT V

(BG)2 , (4.4)

∇−GDIS = BT V

(BG)2 , (4.5)

and

∇+
GDIS = BT 1

BG
. (4.6)

To find the gradients for the log-likelihood in Equation (4.2), let log
gn

‖gn‖2
= xn, and

given a sequence of data x = {x1, ..,xn, ..,xN}, a HMM state sequence q1, .., qn, .., qN ∈

|Q|, and the trained HMM parameters θ = {A,E, π}, where A is the transition matrix

with entries aij = p (qn+1 = j|qn = i), E is the set of weights, means and covariances

parameters of the GMM emission probabilities, and π = p(q1 = i) is the initial state

probabilities, the likelihood can be calculated as follows:

p(x1:N |θ) =
∑
q1:N

p (x1:N |q1:N , θ) p (q1:N |θ) , (4.7)

where

p (q1:N |θ) =
∏
n

p (qn|qn−1, θ)
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is the multiplication of transition probabilities, and

p (x1:N |q1:N , θ) =
∏
n

p (xn|qn, θ)

is the multiplication of the GMM emission probabilities which are defined as:

p(xn|qn = j, θ) =

K∑
k=1

ρjkn, (4.8)

where

ρjkn =
wjk

(2π)d/2 |Σjk|1/2
exp

{
−1

2

(
xn − µjk

)T
Σ−1
jk

(
xn − µjk

)}
,

where K is the number of Gaussian mixture components, wjk is the mixture weight,

d is the vector dimension, µjk is the mean vector and Σjk is the diagonal covariance

matrix of the kth Gaussian model for state j. Figure 4.2 shows the graphical model

representation of a HMM. The likelihood in Equation (4.7) can be calculated using the

Figure 4.2: The graphical model representation of a HMM

forward-backward algorithm [110] as follows:

p(x1:N |θ) =

|Q|∑
j=1

αn(j)βn(j) for any n, (4.9)

where

αn(j) =

|Q|∑
i=1

αn−1(j)aijp (xn|j) ∀j = 1, ..., Q,

α1(j) = πjp (x1|j) ∀j = 1, ..., Q, (4.10)
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and

βn(j) =

|Q|∑
i=1

aijp (xn+1|j)βn+1(j) ∀j = 1, ..., Q,

βN (j) = 1, ∀j = 1, ..., Q. (4.11)

The gradient of the log-likelihood in Equation (4.2) can be computed using (4.9). The

gradient with respect to the data point gn of the log-likelihood in Equation (4.9) can be

found as follows:

∇gn
[log p(x1:N )] =

∑|Q|
j=1 βn(j)∇gn

[αn(j)]∑|Q|
j=1 αn(j)βn(j)

, (4.12)

where

∇gn
[αn(j)] =

|Q|∑
i=1

αn−1(j)aij∇gn
[p (xn|j)] . (4.13)

Note that, βn(j) in Equation (4.12) and αn−1(j) in Equation (4.13) are not functions of

gn. The gradient ∇gn
[p (xn|j)] can also be written as a difference of two positive terms

∇gn
[p (xn|j)] = ∇+

gn
[p (xn|j)]−∇−gn

[p (xn|j)] , (4.14)

these gradients can be calculated after replacing xn with log
gn

‖gn‖2
in Equation (4.8).

The component a of these gradient vectors can be calculated as follows:

∇−gn
[p (xn|j)]a =

K∑
k=1

−ρjkn (Σjkaa)−1

(
µjka
gan

+
gan

‖gn‖
2
2

log
gan
‖gn‖2

)
, (4.15)

∇+
gn

[p (xn|j)]a =
K∑
k=1

−ρjkn (Σkaa)−1

(
µjkagan

‖gn‖
2
2

+
1

gan
log

gan
‖gn‖2

)
. (4.16)

Since the HMMs are trained by log-normalized columns, the values of the mean vectors

µ will be always negative. Also since the values of the vectors g are always positive, so

the values from Equations (4.15) and (4.16) will be always positive.

We can summarize the procedures of calculating the gradients as follows: first, we

calculate all values of α and β using Equations (4.10, 4.11) for all HMM states and

all observations after replacing each xn with log
gn

‖gn‖2
. Second, Equations (4.12) to

(4.16) are used to calculate the gradient of each column in the log-likelihood prior term.

We calculate the gradients in Equations (4.5, 4.6) and use them to derive the update

rules for G in Equation (4.3). Calculating the gradient of the log-likelihood in Equation
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(4.12) gives us the chance to scale the values of α and β as shown in [110] to avoid any

numerical problem. Using log-normalized columns helps to keep track of the positive

and negative terms in Equations (4.12) to (4.16).

4.3 Training the source models

The main goal in this stage is to train a set of basis vectors and a prior statistical HMM

for the sequence of gain combination patterns that each set of basis vectors can receive

for each source. The training for the source models can be done in two different ways,

sequential training and joint training. In Chapter 3 it was shown that, joint training

gives better performance than sequential training. In this chapter, we use sequential

training to initialize the source models, then we use joint training to train the NMF

basis vectors and the HMM prior models.

4.3.1 Initial training

The spectrogram Strainz of the available training data for each source signal z is calcu-

lated. IS-NMF is used to decompose Strainz into a basis matrix Bz and a gains matrix

Gtrain
z as follows:

Strainz ≈ BzG
train
z ,

where the solution for Bz and Gtrain
z can be found by solving the following NMF cost

function:

Bz,G
train
z = arg min

B,G
DIS

(
Strainz ||BG

)
. (4.17)

We use multiplicative update rules in Equations (2.18) and (2.19) to find solutions

for Bz and Gtrain
z in Equation (4.17). All the matrices B and Gtrain are initialized by

positive random noise. In each iteration, we normalize the columns ofBz and findGtrain
z

accordingly. After finding the basis and the gains matrices, the gains matrix Gtrain
z is

then used to train a prior HMM for each source. For each matrix Gtrain
z , we normalize

its columns and the logarithm is then computed. These log-normalized columns are

used to train a gain prior HMM for each source. We trained a fully connected HMM

for each source in an unsupervised fashion using the Baum-Welch algorithm [110]. The
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corresponding HMM parameters θz are then learned as follows:

θz = arg max
θ
L
(
Gtrain
z |θ

)
, (4.18)

where L
(
Gtrain
z |θ

)
is the log-likelihood that is defined in Equation (4.2) for the columns

of the trained gains matrix Gtrain
z . After training we hope that HMM learns meaningful

states such as phones or phone groups for speech and the probability of transitions

between them.

4.3.2 Joint training

To match between the way the trained models are used during training with the way they

are used during separation, we jointly train the basis vectors and the prior models. After

finding initial solution for the source parameters in Section 4.3.1, we use joint training

to update the basis and gains matrices with the HMMs parameters simultaneously to

minimize the following regularized cost function:

(
Bz,G

train
z , θz

)
= arg min

B,G,θ
DIS

(
Strainz ||BG

)
− λtrainL (G|θ) . (4.19)

We use the trained NMF and HMM models from Section 4.3.1 as initializations for

the source models, and then we update the model parameters by running alternating

update (coordinate descent) iterations on Bz, G
train
z and θz parameters. At each NMF

iteration, we update the basis matrix Bz using update rule in (2.18) while keeping Gz

fixed, and the gains matrix Gtrain
z is updated using update rule in (4.3) while keeping

Bz and θz fixed. We use a fixed value for the regularization parameter λtrain during

training. The new gains matrix is then used to train a new HMM with its parameters

θz using the Baum-Welch algorithm initialized from their values in the previous NMF

iteration. In joint training, the updating of the basis matrices is consistent with the

clustering structure of the gains matrix due to the usage of the GMMs as an emission

probability in the prior HMM.

After finding the suitable solutions for Equation (4.19), the trained basis matrix and the

prior HMM for each source are then used in the mixed signal decomposition in Equation

(4.21).
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4.4 Signal separation

After observing the mixed signal y(t), we need to find the estimate for each source in

the given mixed signal using NMF with the trained models. The spectrogram Y of

the mixed signal is computed and NMF is used to decompose it with the trained basis

matrices that were found from solving Equation (4.19) as follows:

Y ≈ [B1, ...,Bz, ...,BZ ]



G1

.

Gz

.

GZ


, or Y ≈ BG. (4.20)

Since the bases matrices are given and fixed, the only goal here is to find a suitable

solution for the gains matrix G. The gains matrix G is a combination of submatrices as

shown in Equation (3.22), each submatrix Gz represents the weight combinations that

its corresponding basis vectors in matrix Bz contributes in the mixed signal. For each

submatrix Gz there is a trained prior HMM that models the valid gain combination

sequences that can be seen in the gains matrix for source z. We need to find a solution

for Gz that minimizes the IS-divergence cost function and increases the log-likelihood

for each submatrix Gz with its corresponding trained prior HMM. We can formulate

these objectives using the following regularized NMF:

C (G) = DIS (Y ||BG)−R(G|Θ), (4.21)

where R(G|Θ) is the weighted sum of the log-likelihoods of the log-normalized columns

of the gain submatrices under the trained prior HMMs, and Θ is the set of parameters

for all sources’ prior HMMs. R(G) can be written as follows:

R(G|Θ) =

Z∑
z=1

λzL(Gz|θz), (4.22)

where λz is the regularization parameter of the log-likelihood of source z, L(Gz|θz) is

the log-likelihood for the submatrix Gz under the prior HMM with parameters θz that

is defined in Equation (4.2) for source z.
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The multiplicative update rule for G can be found after modifying Equation (4.3) as

follows:

G← G⊗
∇−GDIS +∇+

GR(G|Θ)

∇+
GDIS +∇−GR(G|Θ)

, (4.23)

where

∇GR(G|Θ) = ∇+
GR(G|Θ)−∇−GR(G|Θ), (4.24)

∇+
GR(G|Θ) and ∇−GR(G|Θ) are matrices with the same size of G and they are combi-

nations of submatrices. The matrix ∇+
GR(G|Θ) can be written as follows:

∇+
GR(G|Θ) =



λ1∇+
GL(G1|θ1)

.

λz∇+
GL(Gz|θz)

.

λZ∇+
GL(GZ |θZ)


. (4.25)

We can write∇−GR(G|Θ) similarly as in (4.25) after replacing∇+
G with∇−G. The solution

for ∇+
GL(Gz|θz) and ∇−GL(Gz|θz) can be found for each source z as shown in Section

4.2. The matrices ∇−GDIS and ∇+
GDIS can be computed as shown in Equations (4.5,

4.6).

After finding the suitable solution for the matrix G, the initial spectrogram estimate for

each source z is found as follows:

S̃z = BzGz. (4.26)

The final STFT estimate for the source z can be found through the Wiener as follows:

Ŝz(n, f) = Hz(n, f)Y (n, f), (4.27)

where Hz is the Wiener filter for source z which is defined as [70]:

Hz =
(BzGz)∑Z
j=1 (BjGj)

, (4.28)

where Ŝz(n, f) is the final estimated STFT for source Sz(n, f) in Equation (2.2), and

Hz(n, f) is the column n and row f entry of the Wiener filter Hz in Equation (4.28).

The Wiener filter scales the mixed signal STFT entries according to the contribution
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of each source in the mixed signal. After finding the contribution of each source in the

mixed signal, the estimated source signal ŝz(t) can be found by inverse STFT of Ŝz(n, f).

4.5 Experiments and discussion

We applied the proposed algorithm to separate a speech signal from a background piano

music signal. Our main goal was to obtain a clean speech signal from a mixture of

speech and piano signals. For speech data, we used the TIMIT database. For music

data, we downloaded piano music data from piano society web site [107]. We used 12

pieces with total duration approximate 50 minutes from different composers but from

a single artist for training and left out one piece for testing. The PSD for the speech

and music data were calculated by using the STFT: the sampling rate was 16KHz, a

Hamming window with 480 points length and 60% overlap was used and the FFT was

taken at 512 points, the first 257 FFT points only were used since the conjugate of the

remaining 255 points are involved in the first points. We trained 128 basis vectors for

each source, which makes the size of Bspeech and Bmusic matrices to be 257× 128.

The mixed data was formed by adding random portions of the test music file to 20

speech files (from the test data of the TIMIT database) at different speech-to-music ratio

(SMR) values in dB. The audio power levels of each file were found using the “speech

voltmeter” program from the G.191 ITU-T STL software suite [108]. For each SMR

value, we obtained 20 mixed utterances. We used the first 10 utterances as a validation

set to choose the suitable values for the regularization parameters λtrain, λspeech and

λmusic. The other 10 mixed utterances were used for testing. We tested our proposed

algorithm using different combination of the number of HMM states |Q| ∈ {4, 16, 20}

and different number of Gaussian components K ∈ {1, 2, 4, 8} in the GMM emission

probabilities for the HMM states. We trained HMM with fully connected states. The

regularization parameters λtrainspeech and λtrainmusic in Equation (4.19) for training were set to

be 0.1. Also The regularization parameters λspeech = 0.1 and λmusic = 0.1 in Equation

(4.22).

Performance evaluation of the separation algorithm was done using the signal to noise

ratio (SNR). The average SNR over the 10 test utterances for each SMR case are re-

ported.
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Table 4.1 shows SNR for the estimated speech signal in dB for different cases for input

SMR values. In this table we show SNR for different choices for the number of states in

the prior HMMs |Q| and the GMM mixture components K in the emission probability.

In this work, we made the speech and music prior HMMs to have the same number of

states and GMM components. As we can see from this table, using NMF with HMM

priors improves the performance compared with using NMF without prior. We obtained

the best results when |Q| = 16 and K = 4.

Table 4.1: SNR in dB for the estimated speech signal for using different HMM

SMR
Just K = 4 |Q| = 16

dB
NMF |Q| = 4 |Q| = 16 |Q| = 20 K = 1 K = 2 K = 8

-5 2.88 3.68 4.07 3.90 3.70 3.81 3.85

0 5.50 5.97 6.13 6.09 5.96 6.00 6.11

5 8.36 8.54 8.65 8.56 8.54 8.57 8.60

4.5.1 Comparison with other priors

In this section, we give comparison between using HMM priors for the NMF gains matrix

with two other prior models. The first prior model we compared with is the exponential

distribution prior model. The second prior model is the GMM without considering the

temporal prior information of the source signals.

The case of using the exponential distribution with parameter ϕ as a prior for the NMF

gains matrix is equivalent to enforcing sparsity on the NMF gains matrix [73]. The

sparse NMF is defined as [65, 73]

C (G) = DIS (V ||BG) + ϕ
∑
m,n

Gm,n, (4.29)

where ϕ is the regularization parameter. The gain update rule of G can be found as

follows:

G← G⊗
BT V

(BG)
2

BT 1
BG + ϕ

. (4.30)

The update rule in Equation (4.30) is found based on maximizing the likelihood of the

gains matrix under the exponential prior distribution. We obtained the best results in

this experiment when ϕ = 0.0001 for both sources in the training and separation stages.
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The second prior model that we used in this comparison is using GMMs as priors for

the gains matrix as shown in Chapter 3. The NMF solution for the gains matrix is

encouraged to increase its log-likelihood with the trained GMM prior as follows:

C = DIS (V ||BG)−R2(G), (4.31)

where R2(G) is the weighted sum of the log-likelihoods of the log-normalized columns

of the gains matrix G. R2(G) can be written as follows:

R2(G) =

2∑
z=1

ηzΓ(Gz), (4.32)

where Γ(Gz) is the log-likelihood for the submatrix Gz for source z. We obtained

the best results in this experiment when η = 0.1 in the training and separation stage.

Table 4.2 shows the separation results of using GMM as a prior for different number of

Gaussian components for both sources.

Table 4.2: SNR in dB for the estimated speech signal for using GMM prior models

SMR GMM GMM GMM GMM

dB K = 4 K = 16 K = 20 K = 32

-5 3.60 3.64 3.73 3.65

0 5.81 5.93 5.94 5.90

5 8.51 8.53 8.53 8.52

Table 4.3 shows comparison between using: HMMs, GMMs, and sparsity or exponential

distribution as gain priors. For HMM prior we show the results with number of states

|Q| = 16 and GMM components K = 4. We can see from the table that, using HMMs

prior gives slightly better results than GMM because HMM is able to capture the tem-

poral structure of the source signal while GMM ignoring the dynamics behavior of the

signals. The HMM and GMM give better results than the sparsity or the exponential

prior since the exponential distribution is incapable of capturing both the dynamics and

the multi-mode structure that are related to the audio signals.
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Table 4.3: SNR in dB for the estimated speech signal for using different prior models

SMR Just HMM GMM
Sparsity

dB NMF |Q| = 16,K = 4 K = 20

-5 2.88 4.07 3.73 3.06

0 5.50 6.13 5.94 5.85

5 8.36 8.65 8.53 8.51

4.6 Conclusion

In this chapter, we introduced a new regularized NMF algorithm for single channel

source separation. The energy independent HMM prior models were incorporated with

NMF solutions to improve the separation performance. In future work, we will consider

supervised training for the prior HMMs.



Chapter 5

Regularized NMF using MMSE

estimates under GMM priors

with online learning for the

uncertainties

5.1 Motivations and overview

In Chapters 3 and 4 the gains matrix during the separation stage was guided to follow

the prior information by maximizing its likelihood with a trained prior model. The prior

model was applied on the NMF solutions without evaluating the actual need for prior

information. From the results in Tables 3.1 to 3.5 in Chapter 3 we can see that, in

many cases when the desired signal has higher energy compared to other sources in the

mixed signal, the NMF solution of the gains matrix relies less on the prior information

for the desired signal and vice versa. This means that, the need for incorporating prior

information in the NMF solution depends on how bad the NMF solution for the gains

matrix is without any prior.

In this chapter, we introduce a new strategy of applying the priors on the NMF solutions

of the gains/weights matrix during the separation stage. The new strategy is based on

evaluating how much the solution of the NMF gains matrix needs to rely on the prior

models. We use here Gaussian mixture models (GMMs) to model the prior information

58
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about the gains matrix. The NMF solutions without using priors for the weights matrix

for each source during the separation stage can be seen as a deformed image, and its

corresponding valid gains matrix needs to be estimated under the GMM prior. The

deformation operator parameters which measure the uncertainty of the NMF solution of

the weights matrix are learned directly from the observed mixed signal. The uncertainty

in this work is a measurement of how far the NMF solution of the weights matrix

during the separation stage is from being valid weight patterns that are modeled in the

prior GMM. The learned uncertainties are used with the minimum mean squared error

(MMSE) estimator to find the estimate of the valid weights matrix. The estimated valid

weights matrix should also consider the minimization of the NMF cost function. To

achieve these two goals, a regularized NMF is used to consider the valid weight patterns

that can appear in the columns of the weights matrix while decreasing the NMF cost

function. The uncertainties within MMSE estimates of the valid weight combinations

are embedded in the regularized NMF cost function for this purpose. The uncertainty

measurements play very important role in this work as we will show in next sections.

If the uncertainty of the NMF solution of the weights matrix is high, that means the

regularized NMF needs more support from the prior term. In case of low uncertainty,

the regularized NMF needs less support from the prior term. Including the uncertainty

measurements in the regularization term using MMSE estimate makes the proposed

regularized NMF algorithm decide automatically how much the solution should rely on

the prior GMM term. This is the main advantage of the proposed regularized NMF

compared to the regularization using the log-likelihood of the GMM prior in previous

chapters or other prior distributions [82, 84, 99].

5.2 Regularized nonnegative matrix factorization using MMSE

estimation

In this chapter, we enforce a statistical prior information on the solution of the gain-

s/weights matrix G. We need the solution of G in Equation (2.8) to minimize the

IS-divergence cost function in Equation (2.17), and the columns of the gains matrix G

should form valid weight combinations under a prior GMM model.
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The most used strategy for incorporating a prior is by maximizing the likelihood of the

solution under the prior model while minimizing the NMF divergence at the same time.

To achieve this, we usually add these two objectives in a single cost function. In Chapter

3, a GMM was used as the prior model for the gains matrix, and the solution of the

gains matrix was encouraged to increase its log-likelihood with the prior model using

this regularized NMF cost function. The regularization parameters in Chapter 3 were

the only tool to control how much the regularized NMF relies on the prior model. The

value of the regularization parameters were chosen manually in that chapter.

Gaussian mixture model is a rich prior model where we can see the means of the GMM

mixture components as “valid templates” that were observed in the training data. Even,

Parzen density priors [111] can be seen under the same framework. In Parzen density

prior estimation, training examples are seen as “valid templates” and a fixed variance

is assigned to each example. In GMM priors, we learn the templates as cluster means

from training data and we can also estimate the cluster variances from the data. We

can think of the GMM prior as a way to encourage the use of valid templates or cluster

means in the NMF solution during the test phase. This view of the GMM prior will be

helpful in understanding the MMSE method we introduce in this chapter.

We can find a way of measuring how far the conventional NMF solution is from the

trained templates in the prior GMM and call this the error term. Based on this error,

the regularized NMF can decide automatically how much the solution of the NMF needs

help from the prior model. If the conventional NMF solution is far from the templates

then the regularized NMF will rely more on the prior model. If the conventional NMF

solution is close to the templates then the regularized NMF will rely less on the prior

model. By deciding automatically how much the regularized NMF needs to rely on

the prior we conjecture that, we do not need to manually change the values of the

regularization parameter for different energy level for the sources as shown in Tables 3.1

to 3.5 to improve the performance of NMF.

We use the following way of measuring how far the conventional NMF solution is from

the prior templates: We can see the solution of the conventional NMF as distorted

observations of a true/valid template. Given the prior GMM templates, we can learn a

probability distribution model for the distortion that captures how far the observations

in the conventional gains matrix is from the prior GMM. The distortion or the error
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model can be seen as a summary of the distortion that exists in all columns in the gains

matrix of the NMF solution.

Based on the prior GMM and the trained distortion model, we can find a better estimate

for the desired observation for each column in the distorted gains matrix. We can

mathematically formulate this by seeing the solution matrix G that only minimizes the

cost function in Equation (2.17) as a distorted image where its restored image needs to

be estimated. The columns of the matrix G are normalized using the `2 norm and their

logarithm is then calculated. Let the log-normalized column n of the gains matrix be

qn. The vector qn is treated as a distorted observation as:

qn = xn + e, (5.1)

where xn is the logarithm of the unknown desired pattern that corresponds to the

observation qn and needs to be estimated under a prior GMM, e is the logarithm of the

multiplicative deformation operator, which is modeled by a Gaussian distribution with

zero mean and diagonal covariance matrix Ψ as N (e|0,Ψ). The GMM prior model for

a random variable x is defined as:

p(x) =
K∑
k=1

ωk

(2π)d/2 |Σk|1/2
exp

{
−1

2
(x− µk)

T Σ−1
k (x− µk)

}
, (5.2)

where K is the number of Gaussian mixture components, ωk is the mixture weight, d is

the vector dimension, µk is the mean vector and Σk is the diagonal covariance matrix

of the kth Gaussian model. The GMM prior model for the gains matrix is trained using

log-normalized columns of the trained gains matrix from training data as we show in

Section 3.3.1.

The uncertainty Ψ is trained directly from all observations q = {q1, .., qn, .., qN} which

can be iteratively learned using the expectation maximization (EM) algorithm [102].

Given the learned prior GMM parameters which are considered fixed here, the update

of Ψ is found based on the sufficient statistics ẑn and R̂n as shown in Appendix A and

similar to [112, 113, 114] as follows:

Ψ = diag

{
1

N

N∑
n=1

(
qnq

T
n − qnẑTn − ẑnqTn + R̂n

)}
, (5.3)
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where the “diag” operator sets all the off-diagonal elements of a matrix to zero, N is the

number of columns in matrix G, and the sufficient statistics ẑn and R̂n can be updated

using Ψ from the previous iteration as follows:

ẑn =
K∑
k=1

γknẑkn, (5.4)

and

R̂n =

K∑
k=1

γknR̂kn, (5.5)

where

γkn =

[
ωkN (qn|µk,Σk + Ψ)∑K
j=1 ωjN

(
qn|µj ,Σj + Ψ

)] , (5.6)

R̂kn = Σk −Σk (Σk + Ψ)−1 ΣT
k + ẑknẑ

T
kn, (5.7)

and

ẑkn = µk + Σk (Σk + Ψ)−1 (qn − µk) . (5.8)

Given the learned uncertainty and the prior GMM, the MMSE estimate of the pattern

xn given the observation qn can be computed as shown in Appendix A and similar to

[112, 113, 114] as follows:

x̂n = f (qn) =
K∑
k=1

γkn

[
µk + Σk (Σk + Ψ)−1 (qn − µk)

]
, (5.9)

where

γkn =

[
ωkN (qn|µk,Σk + Ψ)∑K
j=1 ωjN

(
qn|µj ,Σj + Ψ

)] . (5.10)

The value of Ψ in the term Σk (Σk + Ψ)−1 in Equation (5.9) plays an important role in

this framework. Ψ is considered as the uncertainty measurement of the observations in

matrixG. When the entries of the uncertainty Ψ are very small compared to their corre-

sponding entries in Σk for a certain active GMM component k, the term Σk (Σk + Ψ)−1

tends to be the identity matrix, and MMSE estimate in (5.9) will be the observation qn.

When the entries of the uncertainty Ψ are very high comparing to their corresponding

entries in Σk for a certain active GMM component k, the term Σk (Σk + Ψ)−1 tends

to be a zeros matrix, and MMSE estimate will be the weighted sum of prior templates∑K
k=1 γknµk. In most cases γkn tends to be close to one for one Gaussian component,
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and close to zero for the other components. This makes the MMSE estimate in the

case of high Ψ to be one of the mean vectors in the prior GMM, which is considered

as a template pattern for the valid observation. We can rephrase this as follows: When

the uncertainty of the observations q is high, the MMSE estimate of x, relies more on

the prior GMM of x. When the uncertainty of the observations q is low, the MMSE

estimate of x, relies more on the observation qn. In general, the MMSE solution of x

lies between the observation qn and one of the templates in the prior GMM. The term

Σk (Σk + Ψ)−1 controls the distance between x̂n and qn and also the distance between

x̂n and one of the template µk assuming that γkn ≈ 1 for a Gaussian component k.

The model in Equation (5.1) expresses the normalized columns of the gains matrix as a

distorted image with a diagonal multiplicative deformation matrix. For the normalized

columns
gn

‖gn‖2
there is a deformation matrix Ed with log-normal distribution that is

applied to the correct pattern ĝn

gn
‖gn‖2

= Edĝn. (5.11)

The uncertainty for Ed is represented in the covariance matrix Ψ. Given the distorted

matrix G, we find the corresponding MMSE estimate for its log-normalized columns

Ĝ. The reason for working in the logarithm domain is that, the gains are constrained

to be nonnegative and the MMSE estimate can be negative so the logarithm of the

normalized gains is an unconstrained variable that we can work with. The estimated

weight patterns in Ĝ that are corresponding to the MMSE estimates for the correct

patterns do not consider minimizing the NMF cost function in Equation (2.17), which

is still the main goal. We need the solution of G to consider the pattern shape priors on

the solution of the gains matrix, and also consider the reconstruction error of the NMF

cost function. To consider the combination of the two objectives, we consider using

the regularized NMF. We add a penalty term to the NMF-divergence cost function.

The penalty term tries to minimize the distance between the solution of log-normalized

columns of gn with its corresponding MMSE estimate f(gn) as follows:

log
gn
‖gn‖2

≈ f
(

log
gn
‖gn‖2

)
or

gn
‖gn‖2

≈ exp

(
f

(
log

gn
‖gn‖2

))
. (5.12)

The regularized IS-NMF cost function is defined as follows:

C = DIS (V ||BG) + λL(G), (5.13)
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where

L(G) =
N∑
n=1

∥∥∥∥ gn
‖gn‖2

− exp

(
f

(
log

gn
‖gn‖2

))∥∥∥∥2

2

, (5.14)

f

(
log

gn

‖gn‖2

)
is the MMSE estimate defined in Equation (5.9), and λ is a regularization

parameter. The regularized NMF can be rewritten in more details as

C =
∑
m,n

(
V m,n

(BG)m,n

− log
V m,n

(BG)m,n

− 1

)
+ λ

N∑
n=1

∥∥∥∥∥ gn
‖gn‖2

− exp

(
K∑

k=1

γkn

[
µk + Σk (Σk + Ψ)−1

(
log

gn
‖gn‖2

− µk

)])∥∥∥∥∥
2

2

.

(5.15)

In Equation (5.15), the MMSE of the desired patterns of the gains matrix is embedded

in the regularized NMF cost function. Note that γkn is also a function of gn in this

equation. The first term in (5.15), decreases the reconstruction error between V and

BG. Given Ψ, we can forget for a while the MMSE estimate concept that leaded

us to our target regularized NMF cost function in (5.15) and see Equation (5.15) as

an optimization problem. We can see from (5.15) that, if the distortion measurement

parameter Ψ is high, the regularized nonnegative matrix factorization solution for the

gains matrix will rely more on the prior GMM for the gains matrix. If the distortion

parameter Ψ is low, the regularized nonnegative matrix factorization solution for the

gains matrix will be close to the ordinary NMF solution for the gains matrix without

considering any prior. The second term in Equation (5.15) is ignored in the case of zero

uncertainty Ψ. In case of high values of Ψ, the second term encourages to decrease

the distance between each normalized column
gn

‖gn‖2
in G with a corresponding prior

template exp (µk) assuming that γkn ≈ 1 for a certain Gaussian component k. For

different values of Ψ, the penalty term decreases the distance between each
gn

‖gn‖2
and

an estimated pattern that lies between a prior template and
gn

‖gn‖2
.

The multiplicative update rule for B in (5.15) is still the same as in Equation (2.18).

The multiplicative update rule for G can be found by following the same procedures as

in Section 3.2. From Equations (3.5) to (3.11), we obtain

G← G⊗
∇−GDIS + λ∇−GL(G)

∇+
GDIS + λ∇+

GL(G)
, (5.16)

where

∇GDIS = BT 1

BG
−BT V

(BG)2 , (5.17)
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∇−GDIS = BT V

(BG)2 , and ∇+
GDIS = BT 1

BG
. (5.18)

Note that, in calculating the gradients ∇+
GL(G) and ∇−GL(G), the term γkn is also a

function ofG. The gradients ∇+
GL(G) and ∇−GL(G) are calculated in Appendix B. Since

all the terms in Equation (5.16) are nonnegative, then the values of G of the update

rule (5.16) are nonnegative.

5.3 The proposed regularized NMF for source separation

Figure 5.1 shows the flow chart that summarizes all stages of applying the proposed

regularized NMF method for single channel source separation (SCSS) problems for only

two sources. The proposed algorithm is used for SCSS in two main stages. The first

stage is to train a set of basis vectors for each source using NMF in Equation (2.17), and

also to train the prior GMM for the valid gain patterns that the trained basis vectors

can possible have for each source as shown in Section 3.3.1 and learning the source’s

models stage in Figure 5.1. The second stage is the separation process which is done

in three main sequential steps. The first step is using NMF in Equation (2.17) to find

the gain matrices by decomposing the mixed signal spectrogram with the trained basis

vectors without using any prior for the gains matrix. The second step is to use the gain

matrices with the prior GMMs to learn the uncertainty parameters, which measure how

far the columns in the gain matrices are in the separation stage from being a valid gain

pattern for each source. These two steps are shown in learning the uncertainties stage

in Figure 5.1. The last step shown in the figure is to use the learned uncertainties and

the prior GMMs with the proposed regularized NMF cost function in Equation (5.15)

to find the final values for the gain matrices.

5.3.1 Signal separation

Lets assume we have only two sources for simplicity. After observing the mixed signal

y(t), NMF is used to decompose the mixed signal spectrogram Y with the trained bases
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Figure 5.1: The flow chart of using regularized NMF with MMSE estimates under
GMM priors for SCSS. The term NMF+MMSE means regularized NMF using MMSE

estimates under GMM priors.

matrices B1 and B2 that were found from solving Equation (2.20) as follows:

Y ≈ [B1,B2]G, or Y ≈ [B1 B2]

 G1

G2

 , (5.19)

then the corresponding spectrogram estimate for each source can be found as:

S̃1 = B1G1, S̃2 = B2G2. (5.20)

Let B = [B1,B2]. The only unknown here is the gains matrix G since the matrix B

was found during the training stage and it is fixed in the separation stage. The matrix

G is a combination of two submatrices as in Equation (5.19). NMF is used to solve for

G in (5.19) using the update rule in Equation (2.19) and G is initialized with positive

random numbers. The estimated spectrograms S̃1 and S̃2 in Equation (5.20) that are

found from solvingG using (2.19) may contain residual contribution from each other and

other distortions. To fix this problem, more constraints must be added on the solution of
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each submatrix. Recall that, for each submatrix in G, there is a corresponding trained

GMM prior for the valid weight combinations that its corresponding log-normalized

columns can have. The resulting solution for each submatrix in G using (2.19) does not

consider the prior information on the valid weight combinations that the basis vectors

can possible have for each source. The normalized columns of the submatrices G1 and

G2 can be seen as deformed images as in Equation (5.11) and their restored images are

needed to be estimated. First, we need to learn the uncertainty parameters Ψ1 and Ψ2

for the deformation operators Ed1 and Ed2 respectively for each image. The columns

of the submatrix G1 are normalized and their logarithm are calculated and used with

the GMM prior parameters for the first source to estimate Ψ1 iteratively using the EM

algorithm in Equations (5.3) to (5.8). The log-normalized columns “log
gn

‖gn‖2
” ofG1 can

be seen as qn in Equations (5.3) to (5.8). We repeat the same procedures to calculate Ψ2

using the log-normalized columns of G2 and the prior GMM for the second source. The

uncertainties Ψ1 and Ψ2 can also be seen as measurements of the remaining distortion

from one source into another source, which also depends on the mixing ratio between the

two sources. For example, if the first source has higher energy than the second source in

the mixed signal, we expect the values of Ψ2 to be higher than the values in Ψ1 and vice

versa. After calculating the uncertainty parameters for both sources Ψ1 and Ψ2, we use

the regularized NMF in (5.13) to solve for G with the prior GMMs for both sources and

the estimated uncertainties Ψ1 and Ψ2 as follows:

C = DIS (Y ||BG) +R(G), (5.21)

where

R(G) = λ1L1(G1) + λ2L2(G2), (5.22)

L1(G1) is defined as in Equation (5.14) for the first source, L2(G2) is for the second

source, λ1, and λ2 are their corresponding regularization parameters. The update rule

in Equation (5.16) can be used to solve for G after modifying it as follows:

G← G⊗
∇−GDIS +∇−GR(G)

∇+
GDIS +∇+

GR(G)
, (5.23)
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where ∇+
GR(G) and ∇−GR(G) are nonnegative matrices with the same size of G and

they are combinations of two submatrices as follows:

∇−GR(G) =

 λ1∇−GL(G1)

λ2∇−GL(G2)

 , ∇+
GR(G) =

 λ1∇+
GL(G1)

λ2∇+
GL(G2)

 , (5.24)

where ∇+
GL(G1),∇−GL(G1),∇+

GL(G2), and ∇−GL(G2) are calculated as in Section 5.2

for each source.

The normalization of the columns of the gain matrices are used in the prior term R(G)

and its gradient terms only. The general solution for the gains matrix of Equation (5.21)

at each iteration is not normalized. The normalization is done only in the prior term

since the prior models have been trained by normalized data before. Normalization is

also useful in cases where the source signals occur with different energy levels from each

other in the mixed signal. Normalizing the training and testing gain matrices gives the

prior models a chance to work with any energy level that the source signals can take in

the mixed signal regardless of the energy levels of the training signals.

5.3.2 Source signals reconstruction

After finding the suitable solution for the matrix G, the initial estimated spectrograms

S̃1 and S̃2 can be calculated from (5.20) and then used to build spectral masks as

follows:

H1 =
S̃1

S̃1 + S̃2

, H2 =
S̃2

S̃1 + S̃2

, (5.25)

where the divisions are done element-wise. The final estimate of each source STFT can

be obtained as follows:

Ŝ1 (n, f) = H1 (n, f)Y (n, f) , Ŝ2 (n, f) = H2 (n, f)Y (n, f) , (5.26)

where Y (n, f) is the STFT of the observed mixed signal in Equation (2.2), H1 (n, f)

and H2 (n, f) are the entries at row f and column n of the spectral masks H1 and H2

respectively. The spectral mask entries scale the observed mixed signal STFT entries

according to the contribution of each source in the mixed signal. The spectral masks

can be seen as the Wiener filter as in [70]. The estimated source signals ŝ1(t) and ŝ2(t)

can be found by inverse STFT of its corresponding STFT Ŝ1(n, f) and Ŝ2(n, f).
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5.4 Experiments and discussion

We applied the proposed algorithm to separate a speech signal from a background piano

music signal. Our main goal was to get a clean speech signal from a mixture of speech

and piano signals. We simulated our algorithm on the same speech and piano data that

were used in Section 4.5 with the same setup for calculating the STFT. We trained 128

basis vectors for each source, which makes the size of Bspeech and Bmusic matrices to be

257× 128, hence, the vector dimension d = 128 in Equation (5.2) for both sources. The

mixed data was formed by adding random portions of the test music file to 20 speech files

(from the test data of the TIMIT database) at different speech-to-music ratio (SMR)

values in dB. For each SMR value, we obtained 20 mixed utterances. We used the first

10 utterances as a validation set to choose the suitable values for the regularization

parameters λspeech and λmusic and the number of Gaussian mixture components K. The

other 10 mixed utterances were used for testing. The regularization parameters were

chosen once and kept fixed regardless of the energy differences between the source signals.

Performance evaluation of the separation algorithm was done using the signal to noise

ratio (SNR). The average SNR over the 10 test utterances for each SMR case are re-

ported. We also used signal to interference ratio (SIR), which is defined as the ratio of

the target energy to the interference error due to the music signal only [97]. To compare

with other prior models, we also used signal to distortion ratio (SDR). SDR is defined as

the ratio of the target energy to all errors in the reconstructed signal. The target signal

is defined as the projection of the predicted signal onto the original speech signal [97].

Table 5.1 shows SNR and SIR of the separated speech signal using NMF with different

values of the number of Gaussian mixture components K and fixed regularization pa-

rameters λspeech = λmusic = 1. The second column of the table, shows the separation

results of using just NMF with no prior, which is equivalent to λspeech = λmusic = 0.

Table 5.1: SNR and SIR in dB for the estimated speech signal with regularization
parameters λspeech = λmusic = 1 and different number of Gaussian mixture components

K.
SMR No prior K = 1 K = 4 K = 8 K = 16 K = 32
dB SNR SIR SNR SIR SNR SIR SNR SIR SNR SIR SNR SIR

-5 2.88 4.86 3.31 5.71 3.61 6.58 4.24 8.07 4.76 10.07 4.27 8.39

0 5.50 8.70 5.74 9.31 5.90 9.99 6.32 11.61 6.45 13.02 6.54 12.42

5 8.37 12.20 8.46 12.40 8.55 12.98 8.74 14.13 8.73 15.62 8.69 14.51
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As we can see from the table, the proposed regularized NMF algorithm improves the

separation performance for challenging SMR cases compared with using just NMF with-

out priors. Increasing the number of Gaussian mixture components K improves the

separation performance until K = 16. The best choice for K usually depends on the

nature and the size of the training data. For example, for speech signal in general there

are variety of phonetic differences, gender, speaking styles, accents, which raises the

necessity for using many Gaussian components.

5.4.1 Comparison with other priors

In this section, we compare our proposed method of using MMSE under GMM prior

on the solution of NMF with the three other prior methods that are shown in Section

4.5. The first prior is the sparsity prior, the second prior is enforced by maximizing

the log-likelihood under GMM prior distributions, and the third prior is enforced by

maximizing the log-likelihood under HMM prior distributions.

In sparsity, GMM, and HMM based log-likelihood prior methods, to match between the

used update rule for the gains matrix during training and separation, the priors were

enforced during both training and separation stages. In sparse NMF, we used sparsity

constraints during training and separation stages. In regularized NMF with GMM and

HMM based log-likelihood prior we trained the NMF bases and the prior GMM and

HMM parameters jointly as shown in Chapters 3 and 4.

In the sparse NMF case, we obtained best results when the regularization parameters

equal 0.0001 for both sources in the training and separation stages. In the case of

enforcing the gains matrix to increase the log-likelihood under GMM prior as shown

in Chapter 3 we obtained the best results when the regularization parameters equal

0.1 in the training and separation stages. The number of Gaussian components was

K = 20 for both sources. In the case of enforcing the gains matrix to increase the

log-likelihood under HMM prior as shown in Chapter 4, we obtained the best results

when the regularization parameters equal 0.1 in the training and separation stages. The

number of Gaussian components was 4 and the number of states was 16 for both sources.

It is important to note that, in the case of using MMSE under GMM prior there is no

need to enforce prior during training since the uncertainty measurements during training
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are assumed to be zeros since the training data are clean signals. When the uncertainty

is zero, then the regularized NMF in case of MMSE under GMM prior is the same as

the NMF cost function, then the update rule for the gains matrix in the training stage

is the same as the update rule in the case of using just NMF.

Figures 5.2 to 5.4 show the SNR, SIR, and SDR for the different type of prior models.

The lines marked with . show the separation performance in the case of no prior is used.

The lines marked with • show the performance for the case of using sparse NMF. The

lines with mark × show the performance in the case of enforcing the gains matrix to

increase its likelihood with the prior GMM. The lines marked with square sign show the

performance in the case of enforcing the gains matrix to increase its likelihood with the

prior HMM. The lines marked with ◦ show the separation performance in the case of

using MMSE estimate under GMM prior that is proposed in this chapter.
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Figure 5.2: The effect of using different prior models on the gains matrix on the SNR
values.

As we can see from the figures, the proposed method of enforcing prior on the gains

matrix in this chapter gives the best performance comparing with the other methods.
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Figure 5.3: The effect of using different prior models on the gains matrix on the SIR
values

The uncertainties work as feedback measurements that adjust the needs to the prior

based on the amount of distortion in the gains matrix during the separation stage.

5.5 Conclusion

In this chapter, we introduced a new regularized NMF algorithm. The NMF solution

for the gains matrix was guided by the MMSE estimate under GMM prior where the

uncertainty of the observed mixed signal was learned online from the observed data.

The proposed regularized NMF in this chapter gives better separation results than the

other regularized NMF that were introduced in Chapters 3 and 4.
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Figure 5.4: The effect of using different prior models on the gains matrix on the SDR
values



Chapter 6

Spectro-temporal post-smoothing

6.1 Motivations and overview

In this chapter, we propose a new, simple, fast, and effective method to enforce temporal

smoothness on nonnegative matrix factorization (NMF) solutions by post-smoothing the

NMF decomposition results. The need for temporal smoothness/continuity of the NMF

decomposition results is due to the fact that, the neighboring spectrogram frames are

highly correlated with slow changes. In [1, 67, 70], the continuity and smoothness

were enforced within the NMF decomposition by using different regularized NMF cost

functions. In [22], the continuity was enforced within the decomposition algorithm with

a penalized least squares approach. Enforcing continuity and smoothness within the

decomposition algorithm needs to define a cost function for the temporal continuity,

which makes the decomposition algorithm slightly more complicated.

In this chapter, we propose a simple and effective method to enforce temporal smoothness

on the estimated source signals. NMF decomposition results are used to build a spectral

mask as shown in Equations (2.23, 3.29, 4.28, 5.25). The spectral mask explains the

contribution of each source signal in the mixed signal. To enforce temporal smoothness

on the estimated source signal, we pass the spectral mask through a smoothing filter. The

spectral mask is treated as a 2-D image signal. We use three different types of smoothing

filters. First filter is the median filter. The second filter is the moving average low pass

filter. The third is the Hamming windowed moving average filter, which we write as

Hamming filter for short. Here, we have more freedom to choose any length for the filter,

74
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which means we can consider smoothness between more than two consequent frames.

We also have different ways of smoothing the spectral mask. The final estimates for the

source signal spectrograms are found by element-wise multiplication of the smoothed

spectral mask with the STFT of the mixed signal. That means, the entries of the

estimated STFT for each source are the scaled version of their corresponding entries in

the mixed signal STFT.

6.2 Source signals reconstruction and smoothed masks

Instead of finding the source signal estimates using Equation (2.22) as usually used in

the literature, we have proposed a different method to find the estimates of the source

signals [24]. The solution of Equation (2.21) is used to build a spectral mask for source

z as follows:

Hz =
(BzGz)

p∑Z
j=1 (BjGj)

p
, (6.1)

where p > 0 is a parameter, (.)p, and the division are element-wise operations. Notice

that, elements of Hz ∈ [0, 1], and using different p values leads to different kinds of

masks. These masks will scale every entry of the mixed signal magnitude spectrogram

with a ratio that explains how much each source contributes in the mixed signal as

follows:

Ŝz = Hz ⊗ Y , (6.2)

where Ŝz is the final estimate of the magnitude spectrogram of source z, and ⊗ is

element-wise multiplication. As shown in [23, 24], changing the value of p may improve

the performance of the separation results. When p = 2, the mask can be considered as

a Wiener filter, and when p =∞ we obtain a binary mask.

Typically, in the literature [1], the continuity and smoothness between the estimated

consequent frames are enforced in the solution of the matrix G in Equation (2.21).

In this chapter, we enforce smoothness by applying different smoothing filters to the

spectral mask Hz. We deal with the mask as a 2-D image, and we apply the smoothing

filter in two different ways using three different types of filters for each way. The first
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way of applying the smoothing filter to the spectral mask is as follows:

Az = ξ

(
(BzGz)

p∑Z
j=1 (BjGj)

p

)
, (6.3)

where ξ (.) is a smoothing filter and Az is the smoothed mask that is used to estimate

the source z as follows:

Ŝz = Az ⊗ Y , (6.4)

The second way of applying the smoothing filter to the spectral mask is as follows:

Az =
(Bzξ (Gz))

p∑Z
j=1 (Bjξ (Gj))

p
, (6.5)

which means we apply the smoothing filter on the gains matrices only in the spectral

mask formula.

The first type of filters that are used in this work is the median filter, which replaces

the entry values of the mask by the median of all entries in the neighborhood. The

second filter is the moving average low pass filter. The 1-D moving average low pass

filter coefficients cn′ are defined as

cn′ =
1

b
, n′ = {1, 2, ...., b} ,

where b is the filter length. The third filter is the Hamming windowed moving average

filter “Hamming filter” for short with 1-D coefficients cn′ defined as

cn′ =
1

c
wn′ , n′ = {1, 2, ...., b} ,

where c is chosen such that
∑

n′ cn′ = 1, and w is the Hamming window with length b.

The direction of the smoothing filter is usually in the time axis, which is the horizontal

axis of the spectral mask. As we elaborate in the next sections, it is important to note

that, both methods of applying the smoothing filters on the spectral mask are neither

similar to applying the same smoothing filter to the gains matrix G without mask, nor

applying the same smoothing filter to the estimated magnitude spectra of the source

signals.

After finding suitable estimates of the magnitude spectrograms of the source signals. The
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estimated source ŝz(t) can be found by inverse STFT of the estimated source magnitude

spectrogram Ŝz with the phase angle of the mixed signal.

6.3 Experiments and discussion

We applied the proposed algorithm to separate a speech signal from a background piano

music signal. Our main goal was to get a clean speech signal from a mixture of speech

and piano music. We simulated our algorithm on a collection of Turkish speech data

and piano music data at 16kHz sampling rate. For training speech data, we used 540

short utterances from a single speaker, we used other 20 utterances of the same speaker

for testing. For music data, we downloaded piano music from piano society web site

[107]. The magnitude spectra of the training speech and music data were calculated

by using the STFT: A Hamming window with 480 points length and 60% overlap was

used and the FFT was taken at 512 points, the first 257 FFT points only were used

since the conjugate of the 255 remaining points are involved in the first FFT points.

The test data was formed by adding random portions of the test music file to the 20

speech utterance files at different speech-to-music ratio (SMR) values in dB. For each

SMR value, we obtained 20 test utterances.

We trained 128 basis vectors for each source in Equation (2.20), which makes the size

of each trained basis matrix Bspeech and Bmusic to be 257 × 128, and we fixed the

parameter p = 3 in Equation (6.1). Those choices gave good results on the same data

set in [24].

Table 6.1: SNR in dB for the estimated speech signal using spectral mask without and with
smoothing filter, with different filter types and different filter size a× b.

SMR
Just Median Filter Moving Average Filter Hamming Filter

dB
Using a = 1 a = 1 a = 1 a = 1 a = 2 a = 1 a = 1 a = 1 a = 1 a = 2 a = 1 a = 1 a = 1 a = 1 a = 2

Mask b = 3 b = 5 b = 7 b = 9 b = 3 b = 2 b = 3 b = 5 b = 7 b = 3 b = 3 b = 5 b = 7 b = 9 b = 3

-5 7.05 7.26 7.44 7.45 7.30 7.04 7.18 7.34 7.38 7.32 6.84 7.17 7.39 7.43 7.42 6.72

0 10.37 10.69 10.86 10.82 10.71 10.47 10.56 10.72 10.74 10.57 10.13 10.51 10.76 10.80 10.75 10.01

5 12.46 12.80 12.95 12.92 12.73 12.31 12.60 12.77 12.72 12.44 11.87 12.59 12.81 12.81 12.70 11.78

Table 6.2: SNR in dB for the estimated speech signal using spectral mask after smoothing
the matrix G in the mask, with different filter types and different filter size a× b.

SMR
Median Filter Moving Average Filter Hamming Filter

dB
a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1

b = 3 b = 5 b = 7 b = 3 b = 5 b = 7 b = 9 b = 11 b = 3 b = 5 b = 7 b = 9 b = 11 b = 13

-5 7.16 7.17 7.15 7.56 7.79 7.85 7.82 7.74 7.21 7.60 7.76 7.85 7.88 7.89

0 10.46 10.48 10.41 10.95 11.16 11.18 11.12 10.99 10.56 10.97 11.13 11.20 11.22 11.20

5 12.57 12.69 12.57 13.12 13.40 13.48 13.44 13.31 12.67 13.15 13.35 13.46 13.51 13.51
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Table 6.1 shows the signal to noise ratio results of the estimated speech signal using

spectral mask without and with smoothing filter as in Equation (6.3). In this table,

we show the results for different types of filters and different filter size a × b. Where

a is the size of the filter in the vertical direction, which is the frequency direction of

the spectral mask, and b is the size of the filter in the horizontal direction, which is

the time direction of the spectral mask. If a > 1 then the filter is smoothing in the

frequency direction. If b > 1, the filter is smoothing in the time direction, which is

equivalent to temporal smoothness. As we can see from the table, using the median

filter gives better improvement in the results than using other filters. Also, we can see

that, using smoothed spectral mask gives better results than using only the spectral

mask. Smoothing the mask in frequency direction as shown in the table for a > 1 cases,

does not improve the results but it degrades the performance.

Table 6.2 shows the signal to noise ratio of applying the smoothing filter only on the

matrix G in the mask as shown in Equation (6.5). In this table, we obtained the best

SNR results by using the Hamming filter.

It is important to note that, finding the estimates of the sources by smoothing G in

the mask formula is different than finding the estimate by smoothing G without mask.

Finding the final estimate of the source signal magnitude spectrogram by smoothing G

without mask degrades the separation performance as we can see from Table 6.3. In

Table 6.3, we found the final estimate of the speech magnitude spectrogram as follows:

Ŝspeech = Bspeechξ(Gspeech), (6.6)

where Bspeech is the trained basis matrix for the training speech signal, Gspeech is the

speech gains submatrix in the gains matrix G in Equation (2.21). The smoothed G in

(6.6) is not a minimum of D (Y ||BG), and it does not guarantee the sum of the two

estimated sources to be equal to the mixed signal. Smoothing G inside the spectral

mask in Equation (6.5) guarantees the sum of the two estimated sources to be equal to

the mixed signal. This explains the better results in Table 6.2 comparing to the results

in Table 6.3.

Table 6.4 shows the differences between applying the smoothing filter to the spectral

mask as in Table 6.1, and applying the smoothing filter directly to the estimated mag-

nitude spectrogram. In Table 6.4, we estimated the speech magnitude spectrogram as



Spectro-temporal post-smoothing 79

follows:

Ŝspeech = ξ
(
Hspeech ⊗ Y

)
. (6.7)

This means, we applied the mask on the mixed signal magnitude spectrogram and then

we smoothed the result. The effect of the smoothing filter on the widely changing term

Hspeech ⊗ Y is different than the effect of the smoothing filter on the mask Hspeech ∈

[0, 1] in Equation (6.1). As we can see from Tables 6.1 and 6.4, smoothing the spectral

mask using Equation (6.3) gives better results than the smoothing in Equation (6.7).

In Tables 6.3 and 6.4, we showed the results for b = 3 only. Since using b = 3 did not

yield better results than the proposed approaches, we did not continue for larger b.

Table 6.3: SNR in dB for the estimated speech signal with smoothing G without using
mask with different filters with a = 1, b = 3.

SMR Median Moving Average Hamming
dB Filter Filter Filter

-5 5.29 5.89 6.18

0 7.17 8.52 9.11

5 7.99 9.83 10.70

Table 6.4: SNR in dB for the estimated speech signal with smoothing the estimated mag-
nitude spectrogram of speech signal with different filters with a = 1, b = 3.

SMR Median Moving Average Hamming
dB Filter Filter Filter

-5 6.96 7.05 7.18

0 9.86 10.06 10.49

5 11.49 11.69 12.54

6.3.1 Comparison with regularized NMF with continuity prior

For comparison with our proposed algorithm, we applied the continuity prior algorithm

in [1] on our training and testing data set. In [1], the solution ofG in Equation (2.21) was

computed by solving the following regularized Kullback-Leibler divergence cost function:

C (Bd,G) = Cr (Bd,G) + λCt (G) . (6.8)

Where Bd =
[
Bspeech, Bmusic

]
, Cr is the generalized Kullback-Leibler divergence cost

function in (2.14), λ is a regularization parameter, and Ct is the continuity penalty term
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that was defined as

Ct (G) =
K∑
k=1

1

σ2
k

N∑
n=2

(gk,n − gk,n−1)2 , (6.9)

where k, n are the row and column index of the gains matrixG, and σk =
√(

1
N

)∑N
n=1 g

2
k,n.

In our experiment, we chose different values for the regularization parameter for each

source signal. λs is the regularization parameter for the speech continuity prior and λm

is for the music continuity prior.

Table 6.5, shows the signal to noise ratio results of the estimated speech signal. We

chose the best results according to different values of the parameters λs and λm. We

also show the separation results using only NMF without any continuity prior or any

spectral masks. As we can see from Table 6.5, using regularized NMF with continuity

prior does not improve the results at low SMR ratio. It is shown in [86] that, regularized

NMF with continuity prior remarkably improves the separation results at SMR higher

than 5 dB.

Comparing the results of enforcing temporal smoothness in the spectral mask as shown

in Tables 6.1 and 6.2, with the results of using regularized NMF in Table 6.5, we can

see that using smoothed masks give better results for all SMR values. We obtained the

best results as shown in Table 6.2 by using Hamming filter to smooth the mask using

Equation (6.5). Smoothing the mask using Equation (6.5) is the only method in this

work that guarantees the sum of the estimated source signals to be equal to the observed

mixed signal.

Comparing our results in Tables 6.1 and 6.2, with the results of using only NMF without

using the smoothed masks as shown in the first column in Table 6.5, we can see that,

our proposed method improves the results by 3 dB in some cases.

Table 6.5: SNR in dB for the estimated speech signal using only NMF and with using
regularized NMF in [1].

SMR
Just NMF regularized NMF

dB
No Mask λs = 10−5

No priors λm = 10−5

-5 6.17 6.13

0 9.15 9.16

5 10.81 10.81
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6.3.2 Comparison with regularized NMF with MMSE priors

In this section, we compared between the achieved improvements of using MMSE es-

timates based regularized NMF that is shown in Chapter 5 with the improvements of

using post-smoothing. Since we obtained better results in Table 6.2, we repeated the

same experiments in Table 6.2 using the same dataset and the same NMF cost function

that were used in Chapter 5 without regularization. The used mask here is the Wiener

mask. Table 6.6 shows the results of using post-smoothing that are corresponding to

the achieved results in Table 5.1 in Chapter 5.

Table 6.6: SNR and SIR in dB for the estimated speech signal using spectral mask
after smoothing the matrix G in the mask, with different filter types and different filter

size a = 1 and different values for b.
SMR No smoothing Median Filter b = 7 Moving Average Filter b = 13 Hamming Filter b = 19
dB SNR SIR SNR SIR SNR SIR SNR SIR

-5 2.88 4.86 3.45 6.52 4.19 4.84 4.22 4.90

0 5.50 8.70 6.09 10.33 6.62 8.69 6.64 8.73

5 8.37 12.20 8.87 13.66 9.33 12.13 9.36 12.14

Comparing the results in Table 5.1 with Table 6.6, the SIR values that are achieved in

Table 5.1 are better comparing to the results in Table 6.6. The SNR in both Tables 5.1

and 6.6 are close to each other (within ±0.5 dB differences for different SMR values).

6.3.3 Combining MMSE estimation based regularized NMF with post-

smoothing

The post smoothing can also be used as a post process to the regularized NMF using

MMSE estimates that is described in Chapter 5. This means, we applied the regularized

NMF approach in Chapter 5 to solve for the gains matrices. Then we post-smoothed

the gains matrix solution within the spectral mask using the 2D smoothing filters. Since

median filter gives better SIR values and Hamming filter gives better SNR as shown in

Table 6.6, we tried the combination of both methods (regularized NMF using MMSE and

NMF with post-smoothing) using just these two filters as shown in Table 6.7. Comparing

the results in Table 6.6 with Table 6.7, we can see that, using post smoothing with

the MMSE estimates based regularized NMF gives a remarkable improvement in the

SIR values and good improvements in SNR values compared to the case of using post

smoothing with NMF without the MMSE regularization.
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Table 6.7: SNR and SIR in dB for the estimated speech signal using MMSE estimates
based regularized NMF and smoothed masks for different filter types and different filter

size a = 1,K = 16, λ = 1 and different values for b.
SMR No smoothing Median Filter Hamming Filter

b = 7 b = 19 b = 7
dB SNR SIR SNR SIR SNR SIR SNR SIR

-5 2.88 4.86 5.88 15.23 6.04 9.92 5.67 10.33

0 5.50 8.70 7.18 16.90 7.54 12.81 7.26 13.28

5 8.37 12.20 9.26 18.65 9.69 15.15 9.47 15.73

Comparing the results in Table 5.1 with Table 6.7, we can see that, using post smoothing

with median filters after MMSE estimates based regularized NMF improves both the

SIR and SNR values compared to the case of using regularized NMF only without post

smoothing. For the case of using Hamming filter for smoothing after the regularized

NMF, we obtained better SNR values but slightly better values for SIR when b = 7.

The achieved improvement due to combining MMSE estimates based regularized NMF

with the post-smoothing compared with the case of using just NMF (first column in

Tables 6.6 and 6.7) is considered to be remarkable.

Table 6.8 shows the “oracle” results where we put the correct magnitude of the speech

signal with the phase of the mixed signal. These results represent the gold standard

that can be achieved when the magnitude spectra are recovered exactly. As can be seen

from Tables 6.7 and 6.8, the achieved SIR results of using MMSE estimation in the

regularized NMF followed by smoothed masks are very close to the SIR in the oracle

experiment. The achieved SNR results in Table 6.7 are considered to be good as well

but there is more that can be achieved for the SNR.

Table 6.8: SNR and SIR in dB for the oracle experiment.

SMR Oracle
dB SNR SIR

-5 9.25 15.21

0 11.62 16.90

5 14.46 19.41

6.4 Conclusion

In this chapter, we studied new methods to enforce smoothness on the NMF solutions

rather than using regularized NMF with the continuity prior. The new methods are
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based on post-smoothing the NMF decomposition results. We also studied the case when

the MMSE estimates based regularized NMF that had been introduced in Chapter 5 was

followed by the post-smoothing process that was presented in this chapter. The achieved

improvements of using post-smoothing for the case of using NMF with and without

MMSE estimates based regularization is considered to be quite large improvements.



Chapter 7

Spectro-temporal

post-enhancement using MMSE

estimation

7.1 Motivations and overview

In Chapter 5, minimum mean squared error (MMSE) estimation was used to improve/-

correct the gains matrix solution of the NMF. MMSE estimate based correction of the

gain matrices was performed using a regularized NMF cost function. In this chapter,

MMSE estimation is used to improve/correct the NMF separated spectrograms. MMSE

estimate based correction of the separated spectrograms is embedded in the Wiener filter

to guarantee that the sum of the estimated sources be equal to the mixed signal. In

Chapter 5, we were trying to improve the IS-NMF solution for the gains matrices only

since the trained basis matrices were assumed to be good in representing the training

data. The trained basis matrix that is usually used as a representative for each source

training data is usually not sufficient to represent all the characteristics of each source.

This representation may be limited since the dynamic information between the frames

is missing and there is no analytical approach for choosing a suitable number of bases

for a given source signal. More information about the sources besides their trained basis

matrices is usually needed.

84
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In this chapter, besides training a basis matrix for each source, the spectrogram for

each training data is directly used to train a Gaussian mixture model (GMM) in the

logarithm domain. The trained basis matrices are used with NMF to compute a spec-

trogram for each source from the mixed signal. The computed spectrogram of each

source is then treated as a 2D distorted signal. The trained GMM and the expectation

maximization algorithm (EM) [102] are used to learn the distortion in each separated

signal spectrogram. The trained GMMs, the learned distortions, the minimum mean

squared error (MMSE) estimates, and the Wiener filters are used to find enhanced ver-

sions of the separated spectrograms. To consider the dynamic information between the

spectrogram frames, we apply the enhancement approach on multiple consequent frames

at once instead of applying it frame by frame.

7.2 MMSE estimation for post enhancement

The assumption that is inherent in the solution of Equations (2.20) to (2.22) in Chapter

1 is that, the trained basis matrix for each source is a sufficient representative for the

training data for each source. Some obvious drawbacks of this assumption are that

the number of bases can not be determined analytically and the trained matrices do

not capture the dynamic information for the source signals. In addition, NMF may

cause high overlap among sources due to accepting the whole span of the bases as

representations. The initial estimated spectrogram S̃z in (2.22) for each source z is

treated as a distorted 2D signal (image) that needs to be restored. MMSE estimation

is used as a post process to find better estimates for the source signals.

We first need to build a model for the correct/expected frames that the spectrogram

S̃z should have. For example, the sequence of PSD (power spectral density) frames in

the spectrogram Strainz in Equation (2.20) can be seen as valid PSD frames that the

spectrogram of the source z can have. The training signal spectrogram Strainz can be

used to train a Gaussian mixture model GMMz for the valid PSD frames that can be

seen in source z. Then, how far the statistics of the spectrogram S̃z from the trained

GMMz is learned which is considered as a measurement of the amount of distortions

that exist in the spectrogram S̃z. Based on the amount of the existed distortions and the

GMM that model the valid frames, MMSE estimates are used to find a better solution

for each source spectrogram S̃z. To consider the dynamic information of the source
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signals, we deal with multiple PSD frames stacked together in one column for training

the GMMs and for the MMSE estimates in the enhancement stage. To avoid dealing

with the gain differences between the training and separated signals, we normalize each

column (stacked PSD frames) using the `2 norm. To avoid dealing with the nonnegativity

constraints we enhance the signals in the log-spectrogram domain. The overall idea of

post enhancement here can be seen as a shape or pattern correction. The patterns

that exist in the training data spectrograms are used to enhance the NMF separated

signal spectrograms through the MMSE estimates. The formulas for calculating MMSE

estimates are the same as in Section 5.2 but we repeat them in this chapter to make it

self contained and avoid confusion.

7.2.1 Training the source GMMs

First, we stack L frames of the training data spectrogram Strainz for a given source z

into one super-frame. Each super-frame is normalized and its logarithm is calculated.

We form a super-matrix with columns containing the logarithm of the normalized super-

frames as shown in Figure 7.1. We pass a window with length L frames on the training

Figure 7.1: Columns construction and sliding windows with length L frames.

data spectrogram Strainz to select the first column of the super-matrix, then we shift or

slide the window by one frame to choose the next super-frame. The super-frames for

each source are used to train a GMM. The GMM for a random vector x is defined as:

p(x) =

K∑
k=1

ωk

(2π)d/2 |Σk|1/2
exp

{
−1

2
(x− µk)T Σ−1

k (x− µk)

}
, (7.1)

where K is the number of Gaussian mixture components, ωk is the mixture weight, d is

the vector dimension, µk is the mean vector and Σk is the diagonal covariance matrix

of the kth Gaussian model. In training the GMM, the expectation maximization (EM)

algorithm [102] is used to learn the GMM parameters (ωk,µk,Σk, ∀k = {1, 2, ...,K}) for
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each source given the logarithm of its normalized super-frames as training data. After

training the GMM parameters using each source training data, we will have trained

GMMz for each source z.

7.2.2 Learning the distortion

We need to learn how much the spectrogram S̃z for a given source z in (2.22) is distorted

compared with its corresponding trained GMMz. First, we need to form a super-matrix

for each S̃z in (2.22). We attach L − 1 frames with values close to zeros to the far left

and right to each spectrogram S̃z. Then we start forming super-frames with L stacked

frames for the spectrogram S̃z as we did during training the GMMs in Section 7.2.1.

Every super-frame is normalized and its logarithm is calculated and used to form a

super-matrix Qz for its corresponding spectrogram S̃z. The normalization values for

the super-frames are saved to be used later. Data corresponding to each PSD frame

in S̃z will appear L times in its corresponding super-matrix Qz as sub-vectors in the

corresponding super-frame columns. Each column qn in Qz can be seen as a noisy

observation which can be written as a sum of a clean observation xn and an additive

noise ez as follows:

qn = xn + ez, (7.2)

where xn is the unknown desired pattern that corresponds to the observation qn and

needs to be estimated under a trained GMMz from Section 7.2.1, ez is the logarithm

of a distortion operator, which is modeled here by a Gaussian distribution with zero

mean and diagonal covariance matrix Ψz as N (e|0,Ψz). The uncertainty Ψz is trained

directly from all columns q = {q1, .., qn, .., qN} inQz, where N is the number of columns

in the matrix Qz. The uncertainty Ψz can be iteratively learned using the expectation

maximization (EM) algorithm. Given the GMMz parameters which are considered fixed

here, the update of Ψz is found based on the sufficient statistics ẑn and R̂n as in

Appendix A as follows [112, 113, 114]:

Ψz = diag

{
1

N

N∑
n=1

(
qnq

T
n − qnẑTn − ẑnqTn + R̂n

)}
, (7.3)

where the “diag” operator sets all the off-diagonal elements of a matrix to zero, and the

sufficient statistics ẑn and R̂n can be updated using Ψz from the previous iteration as
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follows:

ẑn =
K∑
k=1

γknẑkn, and R̂n =
K∑
k=1

γknR̂kn, (7.4)

where

γkn =

[
ωkN (qn|µk,Σk + Ψz)∑K
j=1 ωjN

(
qn|µj ,Σj + Ψz

)] , (7.5)

R̂kn = Σk −Σk (Σk + Ψz)
−1 ΣT

k + ẑknẑ
T
kn, (7.6)

and

ẑkn = µk + Σk (Σk + Ψz)
−1 (qn − µk) . (7.7)

Ψz is considered as a general uncertainty measurement over all the observations in

matrix Qz. Ψz can be seen as a model that summarizes the deformation that exists

in all columns in the super-matrix Qz. Given the trained GMMz, the super-matrix Qz

that is corresponding to the distorted spectrogram S̃z, the uncertainty Ψz is calculated

iteratively for each source z using Equations (7.3) to (7.7).

7.2.3 Calculating MMSE estimates

Given the GMMz parameters and the uncertainty measurement Ψz for a given source

signal z, the MMSE estimate of each pattern xn given its observation qn under the

observation model in Equation (7.2) can be found as in Appendix A as follows:

x̂n =
K∑
k=1

γkn

[
µk + Σk (Σk + Ψz)

−1 (qn − µk)
]
, (7.8)

where

γkn =

[
ωkN (qn|µk,Σk + Ψz)∑K
j=1 ωjN

(
qn|µj ,Σj + Ψz

)] . (7.9)

The model in Equation (7.2) expresses the normalized super-columns before calculating

the logarithm of the spectrogram S̃z as a distorted image with a multiplicative defor-

mation diagonal matrix. For the normalized super-frame columns sn
‖sn‖2

of S̃z there is

a deformation matrix Edz with log-normal distribution that is applied to the correct

pattern that we need to estimate ŝn as follows:

sn
‖sn‖2

= Edz ŝn. (7.10)
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The uncertainty for Edz for source z is represented in the covariance matrix Ψz. The

MMSE estimation based post enhancement here can be seen as performing denoising un-

der multiplicative noise. We believe this is beneficial since the additive noise is assumed

to be removed by NMF.

After calculating x̂n, ∀n ∈ {1, .., N}, we calculate the exponent for each entry of x̂n, ∀n ∈

{1, .., N} and form a matrix T z by inserting x̂n’s in its columns. The procedures in

Sections 7.2.2 and 7.2.3 are repeated for each source. The norm for each super-column

that was calculated in Section 7.2.2 is used to scale its corresponding super-column

in T z. The columns of T z are scaled by multiplying each super-frame (column) with

its corresponding norm from Section 7.2.2. The norm rescaling is used to preserve the

energy differences between the two source signals. We convert the scaled super-frames of

T z into the original size of the spectrograms by reframing its super-frames. Since every

PSD frame appears L times in different L consequent super-frames, we take the average

to find the final enhanced spectrogram Sz. The spectrograms Sz, ∀z ∈ {1, .., Z} are

then used in the Wiener filter Hz to find the final source STFTs as follows:

Hz =
Sz∑Z
l=1 Sl

, (7.11)

Ŝz (n, f) = Hz (n, f)Y (n, f) , (7.12)

where the divisions are done element-wise. The use of the Wiener filters here is very

important since it is the only way to guarantee that the two estimated source spectro-

grams add up to the mixed signal spectrogram. The estimated source signals ŝz(t) can

be found by using inverse STFT of Ŝz(n, f).

7.3 Experiments and discussion

We applied the proposed algorithm to separate a speech signal from a background piano

music signal. Our main goal was to get a clean speech signal from a mixture of speech

and piano signals. We simulated our algorithm on the same training and testing speech

and piano data that were used in Sections 4.5 and 5.4 with the same setup for calculating

the STFT. We trained 128 basis vectors for each source, which makes the size of Bspeech

and Bmusic matrices to be 257× 128.
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Performance evaluation of the separation algorithm was done using the signal to noise

ratio (SNR), signal to distortion ratio (SDR), and the signal to interference ratio (SIR)

that are described in Section 2.4. The average SNR, SDR, and SIR over the 10 test utter-

ances are reported. The higher SNR, SDR, and SIR we measure, the better performance

we achieve.

Table 7.1 shows the SNR, SDR, and SIR of the separated speech signal using IS-NMF

without post enhancement and NMF with post enhancement using MMSE estimates

with different values of GMM components K and the number of the stacked frames L.

The second column of the table shows the separation results of using just NMF with

spectral masks without post enhancement as shown in Equations (2.23) to (2.24). The

third and fourth columns show the results of using NMF with MMSE estimation based

post enhancement with the Wiener filters as shown in Equations (7.11) and (7.12). The

choice for K and L was done by trying different combinations. In this chapter, we

chose the same value for L for both sources and also for K. The shown results are just

examples for the improvements that can be achieved. Better results can be achieved for

different combinations of K and L.

Table 7.1: SDR and SIR in dB for the estimated speech signal.

SMR NMF NMF+Post MMSE
L = 11, K = 256 L = 3, K = 32

dB SDR SIR SNR SDR SIR SNR SDR SIR SNR

-5 1.51 4.86 2.88 3.45 9.47 5.25 2.52 6.30 4.05

0 4.53 8.70 5.50 6.05 12.89 6.95 5.61 10.19 6.53

5 7.74 12.20 8.37 8.84 15.76 9.12 8.74 13.45 9.28

As we can see from the table, the proposed NMF with post enhancement using MMSE

estimates improves the separation performance comparing with just using NMF. In-

creasing the value of L improves the performance but it requires increasing the value of

K. The best choice for K usually depends on the nature and the size of the training

data and also on the value of L. It is important to note that, applying MMSE estimates

directly on the mixed signal without using NMF (not shown in the table) gives worse

results than just using NMF because the MMSE estimate post enhancement removes

only the multiplicative noise while the music signal here is considered as an additive

noise.
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Comparing the performance in Table 6.6 of using post smoothing idea that is shown in

Chapter 6 with the performance of using post enhancement idea that is shown in Table

7.1, we can see that, post enhancement gives better results than post smoothing.

Comparing the performance shown in Table 5.1 and Figure 5.4 of using MMSE estima-

tions under GMM prior for regularized NMF that is introduced in Chapter 5 with the

performance of using MMSE estimates as post enhancement that is shown in Table 7.1,

we can see that, MMSE estimates as post enhancement gives better SDR and SNR re-

sults than using MMSE estimates for regularized NMF. Regularized NMF using MMSE

estimates gives better SIR values than using MMSE estimates as post enhancement. In

general, the exact comparison between these two approaches is not guaranteed because

of the many free parameters that need to be chosen for each approach. Using MMSE

estimation as post enhancement considers the temporal structure of the source signals

while the regularized NMF using MMSE does not consider the temporal structure.

7.4 Conclusion

In this chapter, we improved the quality of NMF based source separation by employing a

novel MMSE estimation technique based on trained GMMs. The distortion was learned

online from the NMF separated signal spectrograms. The dynamics or the sequential

information of the sources was considered by enhancing multiple frames of the spec-

trograms at once. The results show that, the proposed MMSE estimation based post

enhancement improves the quality of the NMF separated sources.



Chapter 8

Discriminative nonnegative

dictionary learning using

cross-coherence penalties

8.1 Motivations and overview

In this chapter, we introduce a new discriminative training method for nonnegative

dictionary learning. As shown before, nonnegative matrix factorization (NMF) is used

to learn a dictionary (a set of basis vectors) for each source as in Equation 2.20. NMF

is then used to decompose the mixed signal magnitude spectrogram as a weighted linear

combination of the trained dictionary entries for all sources in the mixed signal. The

estimate for each source is found by summing the decomposition terms that include its

corresponding trained basis vectors as shown in Equations (2.21) and (2.22). One of

the main problems of this framework is that, the trained basis vectors for each source

dictionary can represent the other source signals. When a dictionary of one source is

able to represent the other source signals, the estimated separated signal for this source

in Equation (2.22) will contain signals from the other sources that are in the mixed

signal. A solution for this problem is to learn the entries for each source dictionary to

be more discriminative from the entries of the other sources’ dictionaries. The goal in

this chapter is to train nonnegative discriminative dictionaries simultaneously for the

source signals. Discriminative dictionary for a source signal in this work means that, a
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dictionary that is good in representing this source signal and at the same time is bad

in representing the other source signals [115]. Enforcing the dictionary for each source

signal to poorly represent the other source signals increases the separation capability of

the NMF decomposition of the observed mixed signal.

The NMF solution for training a dictionary for a source signal is usually not unique,

and there are multiple solutions that can be used as a dictionary for the same source.

In this chapter, we are seeking a dictionary for each source during the training that

minimizes the reconstruction error and prevents its bases from representing the other

sources. To prevent the dictionaries from representing the sources of each other, we

propose to minimize the cross-coherence between the source dictionaries. Minimizing

the cross-coherence is equivalent to minimizing the projection of every source signal on

the subspaces that are spanned by the other source’s dictionaries. To achieve good rep-

resentative and discriminative dictionaries with nonnegativity constraints, we formulate

these objectives using a regularized NMF cost function with simplified cross-coherence

penalties. The new update rules for simultaneously training the dictionaries that solve

the regularized NMF cost function are introduced in this chapter.

In this work, we use the generalized Kullback-Leibler divergence cost function in Equa-

tion (2.14) with the approximation shown in (2.4). We also assume that, the number of

sources is two for simplicity.

8.2 Dictionary learning

The matrix B in Equation (2.8) can be seen as a dictionary with nonnegativity con-

straints that represents each column v in V as a weighted linear combination of its

constituent vectors as follows:

vn =
D∑
j=1

gjnbj , bj ∈ B, (8.1)

where vn is the column n in matrix V , bj is the column j in matrix B and gjn is its

weight in the gains matrix G. One of the main quality measurements of a dictionary is

its coherence [116]. The coherence is a measurement of the redundancy of the dictionary

and small coherence indicates that the dictionary is not far from an orthogonal basis.
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Minimizing the coherence of a dictionary is defined as follows:

min
B

µ (B) , where µ (B) = max
bi,bj∈B

< bi, bj >, (8.2)

and < ., . > is the dot product.

Given two dictionaries for two different source signals, we try to minimize the coherence

between the first dictionary B1 with respect to the second dictionary B2 which is called

cross-coherence [117]. Preventing the two dictionaries B1 and B2 from representing

the data for each other can be done by minimizing the cross-coherence between the

two dictionaries. Minimizing the cross-coherence between two dictionaries is defined as

follows:

min
B1,B2

χ (B1,B2) , where χ (B1,B2) = max
bi∈B1,bj∈B2

< bi, bj > . (8.3)

We can achieve the minimum of χ when every basis vector in B1 is orthogonal to each

basis vector in B2. Since the two dictionaries are nonnegative matrices, if the set of

bases in B1 are orthogonal on the set of bases in B2 we expect that some rows in B1 are

zeros and their corresponding rows in B2 may have nonzero values and vice versa. We

need to simplify the cross-coherence in (8.3) with another formulation that can be easily

minimized with the nonnegativity constraint. We propose to replace the maximum in

(8.3) with the summation. We define the simplified cross-coherence penalty as follows:

φ (B1,B2) =
∑
bi∈B1

∑
bj∈B2

< bi, bj > . (8.4)

The obvious minimizer of φ is still the set of basis vectors in B1 that are orthogonal on

the set of bases in B2.

The formula in (8.4) can be seen from a least squares point of view, ignoring the nonneg-

ativity constraint, as follows: Given a spectrogram frame (vector) x of the training data

of the first source that can be represented well using the first dictionary as x = B1γ1,

if we try to represent x using the second dictionary by minimizing the following least

squares problem as

γ̂2 = arg min
γ2

‖x−B2γ2‖
2
2 ,
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the pseudo-inverse (least squares) solution for γ̂2 will be

γ̂2 =
(
BT

2B2

)−1
BT

2B1γ1.

From the previous formula, if we want x not to be represented byB2 we needBT
2B1 = 0.

Minimizing the entries of the multiplication BT
2B1 or BT

1B2 minimizes the possibility

of each source dictionary from representing the other sources.

The dictionaries B1 and B2 that minimize φ in (8.4) may not be a good representative

for Strain1 and Strain2 in Equation (2.20) (or Equation (8.5, 8.6) in next section). We use

regularized NMF to find the basis matrices B1 and B2 that can solve Equations (8.5),

and (8.6) and minimizes (8.4) at the same time.

8.3 Discriminative learning through cross-coherence penal-

ties

The available training data for each source signal is used with NMF to train a dictionary

of basis vectors for each source. The trained dictionaries will be used for the mixed signal

decomposition as shown in next section. To train the dictionaries, the magnitude spectra

for each source training data Strain1 and Strain2 are needed to be decomposed into basis

and gains matrices as follows:

Strain1 ≈ B1G
train
1 , (8.5)

Strain2 ≈ B2G
train
2 , (8.6)

where Strain1 ∈ <M×N1
+ , Gtrain

1 ∈ <D1×N1
+ , Strain2 ∈ <M×N2

+ , Gtrain
2 ∈ <D2×N2

+ , and the

dictionaries B1 ∈ <M×D1
+ , B2 ∈ <M×D2

+ . The NMF can be used to solve Equations

(8.5, 8.6) but we need the two basis matrices to be more discriminative from each other.

To avoid the dictionary of each source from representing the other sources, we need the

projection of the basis vectors of the first source dictionary on the basis vectors of the

second source dictionary to be small. We also need to make sure that the set of bases for

each source is capable of representing its own source signal efficiently. To compromise
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these two goals we formulate this problem as a regularized NMF problem as follows:

C = DKL

(
Strain1 ||B1G

train
1

)
+ α1DKL

(
Strain2 ||B2G

train
2

)
+ α2

∑
i,j

(
BT

1B2

)
ij
, (8.7)

where α1 is a regularization parameter that can be used to balance the energy scale

differences between the two sources training data, α2 is a regularization parameter that

controls the trade-off between the NMF reconstruction error terms and the simplified

cross-coherence penalty term. The last term in Equation (8.7) enforces the discrimina-

tivity between the two dictionaries. The value of α1 can be determined for example from

the ratio between the sum of all entries in matrix Strain1 to the sum of Strain2 entries.

To find the update rule solutions for the basis matrices we follow the same procedures

as in [1, 67, 84]. We express the gradient with respect to B1 of the cost function in

Equation (8.7) as a difference of two positive terms ∇+

B1
C and ∇−

B1
C as follow:

∇B1
C = ∇+

B1
C −∇−

B1
C. (8.8)

The cost function is shown to be nonincreasing under the following update rule [1, 67]

B1 ← B1 ⊗
∇−
B1

C

∇+

B1
C
. (8.9)

The gradient with respect to B1 of the cost function in Equation (8.7) can be calculated

as follows:

∇B1
C =

(
1− Strain1

B1G
train
1

)
GtrainT

1 + α2B212, (8.10)

where 1 is a matrix of ones with the same size of Strain1 and 12 ∈ <D2×D1
+ is a matrix of

ones. The gradient can be divided as in Equation (8.8) as

∇−
B1

C =
Strain1

B1G
train
1

GtrainT

1 , (8.11)

∇+

B1
C = 1GtrainT

1 + α2B212. (8.12)
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The final update rule for matrix B1 can be written from Equations (8.9, 8.11, 8.12) as

follows:

B1 ← B1 ⊗
Strain

1

B1G
train
1

GtrainT

1

1GtrainT

1 + α2B212

. (8.13)

The only difference between the update rule in Equation (8.13) and Equation (2.15) is

the additional term in the denominator due to the cross-coherence penalty term.

Following the same procedures, the update rule for B2 is

B2 ← B2 ⊗
Strain

2

B2G
train
2

GtrainT

2

1GtrainT

2 + λB111

, (8.14)

where λ = α2/α1, 11 ∈ <D1×D2
+ is a matrix of ones.

To see the effect of adding cross-coherence penalties between the two basis dictionaries,

we can rewrite the update rules in Equations (8.13) and (8.14) in more details as follows:

B1ij ← B1ij

∑
kG

train
1jk

Strain1ik
/
(
B1G

train
1

)
ik(∑

mG
train
1jm

)
+ α2

∑
lB2il

, (8.15)

B2ij ← B2ij

∑
kG

train
2jk

Strain2ik
/
(
B2G

train
2

)
ik(∑

mG
train
2jm

)
+ λ

∑
lB1il

. (8.16)

We can see that, each row entry in matrix B1 is divided over the sum of the entries

of its corresponding row in matrix B2 and vice versa. Since B1 and B2 can not have

negative values, the only way to enforce orthogonality between the two dictionaries is

by making each row entries of one basis dictionary to be much smaller (close to zero)

than the entries of its corresponding row in the other basis dictionary. The extra terms

in the denominators guarantee that, some rows will dominate more in one dictionary

over their corresponding rows in the other dictionary.

The multiplicative update rule solutions for the gains matrices Gtrain
1 and Gtrain

2 are

exactly the same as in Equation (2.16). All basis and gain matrices are initialized using

positive random numbers.
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8.4 Signal separation

The NMF is used to decompose the magnitude spectrogram Y with the trained dictio-

naries B1 and B2 that were found from solving Equation (8.7) as follows:

Y ≈ [B1,B2]G or Y ≈ [B1 B2]

 G1

G2

 . (8.17)

The update rule in Equation (2.16) is used to find G. After finding the value of G, the

initial estimate for each source magnitude spectrogram can be found as:

S̃1 = B1G1, S̃2 = B2G2. (8.18)

The initial estimated magnitude spectrograms S̃1 and S̃2 are used to build spectral

masks [24, 86] as follows:

H1 =
S̃1

S̃1 + S̃2

, H2 =
S̃2

S̃1 + S̃2

. (8.19)

The final estimate of each source STFT can be obtained as follows:

Ŝ1 (n, f) = H1 (n, f)Y (n, f) , Ŝ2 (n, f) = H2 (n, f)Y (n, f) . (8.20)

The estimated source signals ŝ1(t) and ŝ2(t) can be found by inverse STFT of Ŝ1(n, f)

and Ŝ2(n, f) respectively.

8.5 Experiments and discussion

We applied the proposed algorithm to separate a speech signal from a background piano

music signal. Our main goal was to get the clean speech signal from a mixture of

speech and piano signals. We simulated our algorithm on the same training and testing

speech and piano data that were used in Sections 4.5 and 5.4 with the same setup for

calculating the STFT. We trained 128 basis vectors for each source dictionary, which

makes the size of Bspeech and Bmusic matrices to be 257 × 128. In this experiment, we

used the same values for the regularization parameters in Equations (8.13, 8.14) which

means α1 = 1, α2 = λ.
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The mixed data was formed by adding random portions of the test music file to 20 speech

files from the test data of the TIMIT database at different speech to music ratios.

Performance evaluation of the separation algorithm was done using the signal to distor-

tion ratio (SDR) and the signal to interference ratio (SIR) that are shown in Section

2.4. The average SDR and SIR over the 20 test utterances are reported.
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Figure 8.1: The simplified cross-coherence penalty.

Figure 8.1 shows the behavior of the simplified cross-coherence penalty term in Equations

(8.4) and (8.7) with respect to the change in the regularization parameter λ = α2 value.

As can be seen, increasing the value of λ decreases the simplified cross-coherence which

increases the discriminativity between the basis matrices Bspeech and Bmusic.

Figure 8.2 shows the SDR and SIR values in dB for the estimated speech signal with dif-

ferent values for the regularization parameter λ at SMR= 0. We can see that, increasing

the value of λ until λ = 100 improves the SDR and SIR values. That means, enforcing

cross-coherence penalties between the two sources’ dictionaries gives better separation

results and improves the signal to distortion ratio of the estimated speech signal. When

λ > 100 the SIR is increasing but SDR is decreasing. Increasing λ prevents the bases

in the dictionary Bspeech to be able to represent the music signal and also preventing

the bases in Bmusic to be able to represent the speech signal which improves the SIR.

However, increasing the value of λ > 100 makes each source bases in Bspeech and Bmusic

to start loosing their capability of fully representing their own source signals because of

the many zeros that appear in their entries, which leads to decreasing the values of SDR.
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(a) The SDR of the separated speech signal.
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(b) The SIR of the separated speech signal.

Figure 8.2: SDR and SIR in dB for the estimated speech signal.

According to the shown figure, the good candidate value for λ that improves both SDR

and SIR values for the used data sets is 100. Comparing the results of using only NMF

without any constraint (λ = 0), we can see from the shown figure that, discriminative

training for the source bases models by using cross-coherence penalties can improve the

performance of the separation process.

Table 8.1 shows the separation performance of using NMF without any constraint and

with discriminative learning with λ = 100 for different SMR values.

Table 8.1: SDR and SIR in dB for the estimated speech signal.

SMR Just NMF Regularized NMF
λ = 0 λ = 100

dB SDR SIR SDR SIR

-5 2.41 4.94 3.45 7.78

0 4.90 8.28 5.54 11.49

5 8.05 12.30 8.06 14.61

8.6 Conclusion

In this chapter, we introduced a new discriminative training method for NMF dictionary

models. The main idea was to prevent the dictionary of each source from representing
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the other sources. We trained dictionaries with a set of basis vectors for each source

where the projection between the bases for different sources is small. The proposed

training method improved the performance of source separation.



Chapter 9

Adaptation of speaker-specific

bases in non-negative matrix

factorization

9.1 Motivations and overview

Most algorithms that use NMF to separate source signals from a mixture of source

signals assume that, there is enough training data available for each source. NMF uses

these data in magnitude spectral domain to train a set of basis vectors for each source.

These sets of bases are used with NMF to estimate the source signals from the mixture.

This kind of algorithms produce good results when sufficient training data are available

and the spectral characteristics of the training data are similar to those of the data in

the mixture. In speech-music separation, sometimes finding enough training speech data

for a specific speaker that is in the mixture signal is not easy. Building a source model

using little training data leads to a poor model that is incapable of capturing the actual

characteristics of the source signal. Also using other speakers’ speech signals that are

not in the mixture as a training data leads to a mismatch between the training and the

target data, which decreases the quality of the obtained solution.

Model adaptation is usually an alternative approach that is used to overcome the problem

of the lack of enough training data to accurately model the actual characteristics of any

signal. A general model is built first from general training data, then this model is
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adapted to capture the properties of the target data. In speech recognition, adaptation

is used extensively to adapt the parameters of the speech models [118]. Model adaptation

is also used in single channel source separation applications to adapt the source signal

models to better represent the actual properties of the observed signals in the mixed

signal. In [63], Bayesian adaptation was used to adapt the GMM model for each source

signal. The data that was used to adapt the models was estimated from the observed

mixed signal directly in [63]. In [73, 119], the adaptation of the set of basis vectors

that models every source signal was introduced, and the adaptation is done within the

separation process without any need for an extra adaptation stage.

The key idea in this chapter is, rather than using the small training data for a specific

speaker to train a set of basis vectors with more entries to estimate, we train a general

set of basis vectors using enough speech signals from multiple speakers. Then we adapt

these basis vectors to better match the target data. First, we use NMF and training

speech data of many speakers to train a general set of basis vectors. Second, we adapt

these bases using a small amount of training data of a specific speaker to get speaker-

specific bases. The adapted bases are used to separate the speech signal of the same

speaker from the background music. Here, we assume that a small amount of isolated

training speech data of the speaker is available.

This chapter introduces two adaptation algorithms for the nonnegative matrix factor-

ization basis models. The proposed adaptation algorithms are Bayesian adaptation and

linear transformation adaptation. Training speech data for multiple speakers are used

with NMF to train a set of basis vectors as a general model for speech signals. For

the first adaptation method, the probabilistic interpretation of NMF is used to achieve

Bayesian adaptation to adjust the general model. The second adaptation method is

based on linear transform, which changes the subspace that the general model spans to

better match the speech signal that is in the mixed signal.
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9.2 Probabilistic perspective of NMF

As shown in [71, 106], each entry vk,j of the matrix V in (2.14) can be modeled by

Poisson distribution as follows:

p(vk,j |bk,1:I , g1:I,j) = PO(vk,j ;
I∑
i

bk,igi,j), (9.1)

where bk,1:I denotes the kth row of B, g1:I,j the jth column of G, respectively, and the

Poisson distribution defined as

PO(v;λ) =
e−λλv

Γ (v + 1)
, (9.2)

where Γ (v) is the gamma function. Assuming that each entry vk,j is statistically inde-

pendent conditional on B and G, the model can be denoted by:

p (V |B,G) =
∏
k,j

e
−[BG]

k,j [BG]
[V ]

k,j

k,j

Γ
(

[V ]k,j + 1
) . (9.3)

The maximum likelihood solution is found by

(B,G) = arg max
B,G

log p (V |B,G) , (9.4)

where

log p (V |B,G) =
∑
k,j

− [BG]k,j + [V ]k,j log
(

[BG]k,j

)
− log

(
Γ([V ]k,j + 1)

)
.

We can see that finding the maximum likelihood solution is equivalent to solving the

objective function (2.14). The advantage of using NMF in probabilistic framework is

the ability to put priors on every entry of the matrices B and G [71]. In this chapter,

we will use the advantage of putting priors only on the entries of the bases matrix B as

we will show in the next sections.
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9.3 Basis vectors matrix prior p(B)

In [71], the prior on each basis vector matrix entry is assumed to be independently drawn

from a Gamma distribution:

p(bk,i) = G(bk,i;αk,i, β
−1
k,i ) =

b
αk,i−1
k,i β

αk,i

k,i e
−bk,iβk,i

Γ(αk,i)
. (9.5)

The hyperparameters αk,i and βk,i of the model can be selected individually for each

basis matrix entry. It is also assumed that p(B) =
∏I
i=1

∏F
k=1 p(bk,i) then we have

log p(B) =+
I∑
i=1

F∑
k=1

(αk,i − 1) log(bk,i)− bk,iβk,i. (9.6)

Here =+ denotes equal up to irrelevant constant terms (i.e. p ∝ q ⇐⇒ log p =+ log q).

The joint posterior distribution is given by Bayes rule p(B,G|V ) ∝ p(V |B,G)P (B,G)

which factorises to p(V |B,G)P (B)P (G). The MAP estimate can be found as

arg max
B,G

[log p(V |B,G) + log p(G) + log p(B)] . (9.7)

In this chapter, we do not use any prior on the gain matrix p(G). We substitute the

terms in (9.7) with the ones from Equations (9.4) and (9.6). The MAP estimator can be

derived [71], and the update rule for each element in the bases matrix B and the gain

matrix G is given as

bk,i ← bk,i

(αk,i−1)
bk,i

+
∑K

j=1 gi,j
vk,j∑I

i=1 bk,igi,j

βk,i +
∑K

j′=1 gi,j′
, (9.8)

G← G⊗
BT V

BG
BT1

. (9.9)

Notice that the update rule (9.8) differs from the basic NMF update (2.15) only by

additive terms in the numerator and denominator, which are due to the priors.

9.4 Training the bases

Given a set of training data for music and speech of multiple speakers signals, The

STFT is computed for each signal, and the magnitude spectrogram Strain and M train
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of speech and music respectively are calculated. Then NMF is used to decompose these

spectrograms into bases and weights matrices as follows:

Strain ≈ BspeechGspeech. (9.10)

M train ≈ BmusicGmusic. (9.11)

The update rules in Equations (2.15) and (2.16) are used to solve Equations (9.10) and

(9.11). We call the trained bases matrix Bspeech a general model for multiple speakers

speech signals, and this matrix needs to be adapted to specific speaker speech signals.

9.5 Speech model adaptation

Given the general speech model which represents multiple speakers speech signalsBspeech,

the goal now is to adapt this model using a small amount of a specific-speaker speech

signals to better match the target speech signal that is in the mixture. We introduce

two adaptation techniques to adapt the speech model. First adaptation algorithm is

the Bayesian adaptation, which is derived from the probabilistic framework of NMF in

Equation (9.8). Second adaptation algorithm which we introduce is derived from maxi-

mum likelihood linear regression (MLLR) adaptation [120], linear regression which aims

to change the subspace of the model to better match the target data.

9.5.1 Bayesian adaptation of the speech bases

In this chapter, we assume that we have a small adaptation data of speaker-specific

speech signal sadapt(t). The goal now is to use the magnitude spectrogram of this new

data Sadapt to adapt the general bases matrix Bspeech to become speaker specific bases

matrix Bs. We will use first the Bayesian adaptation in Equation (9.8) by replacing β−1

values with the entries of Bspeech, and α = 2 everywhere inspired from [71]. This choice

makes the mode of the Gamma distribution equal to the general model bases Bspeech

which means that the general model is used as a prior for Bs, so the update rules will

be as follows:

Bs ← Bs ⊗
1′

Bs
+
Sadapt

BsGa
GT
a

1′

Bspeech
+ 1GT

a

, (9.12)
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Ga ← Ga ⊗
BT
s

Sadapt

BsGa

BT
s 1

. (9.13)

The matrix Bs is initialized with Bspeech and Ga is initialized by positive random noise.

Here every division is done element-wise and 1′ is a matrix of ones of the same size of

Bspeech.

9.5.2 Linear transformation adaptation of the speech bases

Another method to adapt the general bases matrix Bspeech is by multiplying it with an

adaptation matrix A as Bl = ABspeech. A is the adaptation matrix which is unknown

and needs to be calculated as follows:

D (Sadapt‖BlGa2) = D (Sadapt‖ (ABspeech)Ga2) , (9.14)

A,Ga2 = arg min
A,Ga2

D(Sadapt‖ABspeechGa2). (9.15)

We employ alternating minimization for Equation (9.15) by fixing BspeechGa2 as one

matrix and first update A using Equation (2.15) as follows:

A← A⊗

Sadapt

A
(
BspeechGa2

) (BspeechGa2)T

1 (BspeechGa2)T
, (9.16)

then we fix ABspeech as one matrix and find Ga2 using Equation (2.16) as follows:

Ga2 ← Ga2 ⊗
(ABspeech)T

Sadapt

ABspeechGa2

(ABspeech)T 1
, (9.17)

Bspeech is always fixed in both Equations. We need only to use A to find the linearly

adapted bases matrix as

Bl = ABspeech. (9.18)

Since we assume that, the adaptation data is small then it is better if there are fewer

values to be estimated in the matrix A. We enforce the adaptation matrix A to be

diagonal with extra non-zero column by initializing it this way since the update rule

for A in Equation (9.16) is element-wise multiplication. We also add an extra row in

matrix Bspeech with ones to enable a bias term similar to maximum likelihood linear
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regression (MLLR) adaptation in [120]. By multiplying the adaptation matrix A with

Bspeech the columns of the adapted matrix Bl can span any other subspaces that the

adaptation data may lie on which the columns of Bspeech can not span. We achieved

that by estimating fewer parameters for the matrix A rather than using speaker specific

data to train the bases matrix with more parameters, especially since the speaker specific

training data (adaptation data) is small.

9.5.3 Combined adaptation

The two methods of adaptation that are shown in Sections 9.5.1 and 9.5.2 can also be

combined in a sequential manner. The Bayesian adaption can be used first to adapt the

general model then the linear transformation adaptation is used to adapt the Bayesian

adapted model or vice versa.

9.6 Signal separation and reconstruction

After observing the mixed signal y(t), the magnitude spectrogram Y of the mixed signal

is computed using STFT. NMF is used to decompose the magnitude spectrogram Y of

the mixed signal as a linear combination with the trained basis vectors in Bmusic and

the adapted basis matrix Badapt as follows:

Y ≈ [Badapt Bmusic]G, (9.19)

where Badapt is the adapted basis matrix using one of the described adaptation methods

in Sections 9.5.1 to 9.5.3 and Bmusic is obtained from Equation (9.11). Here only the

update rule in Equation (2.16) is used to solve Equation (9.19), and the bases matrix is

fixed. G is initialized by positive random noise.

The initial spectrogram estimates for speech and music signals are respectively calculated

as follows: S̃ = BadaptGS and M̃ = BmusicGM . Where GS and GM are submatrices in

matrix G that correspond to the speech and music components respectively in Equation

(9.19). The final estimate of the speech signal spectrogram is found as follows:

Ŝ = H ⊗ Y , (9.20)
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where H is defined as follows:

H =
S̃

S̃ + M̃
. (9.21)

After finding the contribution of the speech signal in the mixed signal, the estimated

speech signal ŝ(t) can be found by using inverse STFT to the estimated speech spectro-

gram Ŝ with the phase angle of the mixed signal.

9.7 Experiments and results

We simulated the proposed algorithms on a collection of speech and piano music data

at 16kHz sampling rate. For the general training speech data, we used around 600

utterances from multiple male speakers from the TIMIT database. For testing, we

applied the proposed algorithm on 20 different speakers, and we averaged the results.

We used 20 utterances from different 20 speakers that are not included in the training

data for testing and adaptation. We experiment with 10 and 15 seconds for each speaker

as adaptation data to adapt the general bases matrix for each speaker individually,

which means we obtained 20 adapted models, one for each speaker for each available

adaptation data case. All the speech signals that were used in our experiments are from

male speakers. For music data, we downloaded piano music from piano society web site

[107]. The magnitude spectrograms for the training speech and music data are calculated

as in Section 3.5. We trained the general speech bases matrix using 32 basis vectors and

the same for the music signal. The test data was formed by adding random portions

of the test music file to the 20 speech utterance files at different speech to music ratio

(SMR) values in dB. For each SMR value, we obtained 20 test utterances of different 20

speakers. Performance measurement of the separation algorithms was done using signal

to noise ratio in the time domain.

We tried to separate the speech signal from the music background using different ex-

periments. In every experiment, we use a different bases matrix for the speech signal.

In the first experiment, we tried to separate the mixture using only the general bases

matrix Bspeech without any adaptation. In the second experiment, we used the adapta-

tion data, which is a speaker specific signal with duration 10 or 15 seconds only to train

the bases matrix Bspeaker from scratch without using the general bases matrix at all. In

the third experiment, we used the Bayesian adaptation only to find Bs. In the fourth
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experiment, we used the linear transformation adaptation only to find Bl without the

Bayesian adaptation. In the fifth experiment, we used the two adaptation algorithms

first with Bayesian adaptation to find Bs then we applied the linear transformation

adaptation on the Bayesian adapted model to get Bsl. In the sixth experiment, we also

used the two adaptation algorithms first with linear transformation adaptation to find

Bl then we applied the Bayesian adaptation to find Bls.

Table 9.1 shows the results of these experiments in case of using 10 seconds for each

speaker as adaptation data to adapt the general bases matrix for each speaker individu-

ally. These results are the average over 20 different speakers. Table 9.2 shows the results

of these experiments in case of using 15 seconds for each speaker as adaptation data.

The results show that, using Bayesian and linear transformation adaptation improves the

results compared with using the general model directly. Also using linear transformation

adaptation after Bayesian adaptation improves the results even more than using only

Bayesian or linear transformation adaptation only. For the second experiment that uses

the small speaker-specific training speech data only to train the bases matrix model

without using the general model, we obtained the worst results in most of SMR except

at -5 dB case. These results show that if we need to separate a mixture of speech and

music signals, and we have a small amount of training speech data of the speaker that is

in the mixed signal, the better way to build a speech model is to train a general model

using plenty amount of multiple speakers training data, then use the small amount of

the speaker specific data to adapt the general model. We also can see that using more

adaptation data in Table 9.2 gives slightly better results in most cases compared with

the results in Table 9.1.

Table 9.1: Signal to Noise Ratio (SNR) in dB for the separated speech signal for every
experiment with 10 seconds samples.

SMR Using only Using only Using only Using only Using Using
dB Bgeneral Bspeaker Bs Bl Bsl Bls

-5 3.40 3.77 3.37 3.54 3.49 3.51

0 5.60 5.11 5.76 5.79 5.83 5.82

5 7.47 6.43 7.73 7.67 7.74 7.70
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Table 9.2: Signal to Noise Ratio (SNR) in dB for the separated speech signal for every
experiment with 15 seconds samples.

SMR Using only Using only Using only Using only Using Using
dB Bgeneral Bspeaker Bs Bl Bsl Bls

-5 3.40 3.80 3.36 3.52 3.45 3.47

0 5.60 5.53 5.81 5.80 5.87 5.87

5 7.47 6.56 7.79 7.69 7.80 7.74

9.8 Conclusion

In this chapter, we proposed two model adaptation algorithms to adapt the NMF basis

vectors for a speech signal. The proposed algorithms use adaptation data to adapt

the basis vectors. The Bayesian adaptation and the linear transformation adaptation

of basis vectors were introduced in this chapter. We applied the proposed adaptation

algorithms to separate a speech signal from a background music signal when enough

training data for the speech signal that is in the mixture is not available.



Chapter 10

Nonnegative matrix factorization

with sliding windows and spectral

masks

10.1 Motivations and overview

In [24, 27, 65], NMF was used with training data to train a set of basis vectors for

each source, then these basis vectors were used with NMF to separate the mixed signal.

The separation was done frame by frame without considering the smoothness transition

and any other information between the consequent frames. To make NMF consider the

relation between the consequent spectral frames in the training and separation stages, we

form the columns of the matrices that need to be decomposed from multiple consequent

spectral frames stacked together in super-frames. Rather than using NMF to directly

decompose the spectrogram of the signals in training and separation stages as shown in

Equations (2.14) to (2.22), we form the matrices to be decomposed as follows: We

stack L spectrogram frames in one vector, we pass a window with length equal to

multiple spectral frames size to select the first column of the matrix, then we shift

or slide the window by one frame to choose the next column as shown in Figure 10.1.

Therefore, NMF is used in this work to decompose matrices with columns that contain

L multiple spectral frames in both training and separation stages. Thus, rather than

decomposing every spectral frame in the spectrogram independently from each other, we
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Figure 10.1: Columns construction and sliding windows with length L frames.

decompose multiple frames at once in one column. Sliding the window by one frame each

time to get the next column makes every frame decomposed L times with different L

neighbor frames. We take the average of the different decomposion results for each frame

to find an accurate decomposion of the spectrograms. The novelty of this work is in

using NMF with sliding windows and different types of spectral masks. The experiment

results show that using NMF, spectral masks, and sliding windows with multiple spectral

frames improve the separation results compared to using NMF only. We also compare

convolutive nonnegative matrix factorization (CNMF) [77, 78] with the proposed NMF

with sliding windows approach. In this chapter, we assume the number of sources is two

for simplicity.

10.2 Training the bases

The training procedure for training a set of basis vectors for each source here is similar

to the procedure shown in Equation (2.20). The only difference here is that, each column

in the matrices to be decomposed are combined of L consequent frames from the source

spectrograms as shown in Figure 10.1.

10.3 Signal separation and masking

After observing the mixed signal y(t), the magnitude spectrogram Y of the mixed signal

is computed. Instead of using NMF directly to decompose the spectrogram of the mixed

signal, we build a matrix Y 2 with columns that contain L frames of the mixed signal

spectrogram as shown in Figure 10.1. We attach L− 1 frames with zeros values to the
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far left and right to each spectrogram Y . Then we start forming the columns of the

matrix Y 2 with L stacked frames for the spectrogram Y as shown in Figure 10.1. The

NMF is used again here to decompose the matrix Y 2 but with a fixed concatenated

bases matrix as follows:

Y 2 ≈ [B1 B2]G, (10.1)

where B1 and B2 are obtained from Section 10.2. Here only the update rule in Equation

(2.16) is used to solve forG in Equation (10.1), and the bases matrix is fixed. The matrix

Sz that contains rough estimates of the magnitude spectral frames of source z in the

mixture is found by multiplying the bases matrix Bz with its corresponding weights in

matrix Gz in Equation (10.1) as follows:

Sz = BzGz, ∀z ∈ {1, 2} (10.2)

where Gz is a submatrix in the gain matrix G that is correspond to source z in Equation

(10.1). In the matrix Sz the estimated spectrogram frames of the estimated source signal

are estimated differently L times with different L neighbor columns. To find a smooth

estimate of every spectral frame, we take the average of its corresponding L frames in

the matrix Sz. After taking the average, we build the matrix S̃z which is the initial

estimate of the magnitude spectrogram of the source signal.

10.3.1 Source signals reconstruction and masks.

As shown in section 2.3.1, we can use the initial estimated spectrograms S̃1 and S̃2 to

build masks as follows:

H1 =
S̃1

p

S̃1
p

+ S̃2
p , H2 =

S̃2
p

S̃1
p

+ S̃2
p , (10.3)

where p > 0 is a parameter, (.)p, and the division are element wise operations. The

elements of H1,H2 ∈ [0, 1] and using different p values lead to different kinds of masks.

These masks will scale every frequency component in the observed mixed spectrogram

Y with a ratio that explains how much each source contributes in the mixed signal such

that:

Ŝ1 = H1 ⊗ Y , Ŝ2 = H2 ⊗ Y , (10.4)
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where Ŝ1 and Ŝ2 are the final estimates of the sources spectrograms, and ⊗ is element-

wise multiplication. By using these spectral masks, we can make sure that the two

estimated signals will add up to the mixed signal. After finding the contribution of each

source in the mixed signal, the estimated for each source signal ŝz(t) can be found by

using inverse STFT to the estimated speech spectrogram Ŝz with the phase angle of the

mixed signal.

10.4 Experiments and discussion

We applied the proposed algorithm to separate a speech signal from a background piano

music signal. Our main goal was to get the clean speech signal from a mixture of speech

and piano signals. We simulated the proposed algorithms on a collection of speech and

piano music data at 16kHz sampling rate. For speech data, we use the single speaker

(Turkish) database that was used in Section 6.3 and also the music data.

We concatenated every consequent five (L = 5) spectrogram frames of the training

data in one column vector with size (5*257) as we have mentioned in Section 10.2. Each

vector in Strain
speech and Strain

music is in 1285 dimensions (5*257). We trained different number

of bases Ns for training speech signal and Nm for training music signal. Ns and Nm

take values 1285, 642, 321, and 160 bases. The test data was formed by adding random

portions of the test music file to the 20 speech utterance files from the same speaker at

different speech to music ratio (SMR) values in dB.

Table 10.1 shows the separation performance of using NMF with a different number of

bases Ns and Nm. We obtained these results by using the spectral mask with p = 3 in

Equation (10.3) and sliding window with L = 5. Table 10.2 shows the performance of

Table 10.1: SNR in dB for the speech signal using NMF with sliding window and
spectral mask with p = 3 for different numbers of bases.

SMR Ns = 1285 Ns = 1285 Ns = 1285 Ns = 642 Ns = 642 Ns = 321 Ns = 321
dB Nm = 1285 Nm = 642 Nm = 321 Nm = 642 Nm = 160 Nm = 642 Nm = 160

-5 8.00 7.31 5.33 8.19 4.90 7.84 6.53

0 10.91 10.88 9.05 11.48 8.65 10.60 10.02

5 12.76 13.34 11.99 13.52 11.75 12.05 12.77

using NMF and sliding window without masks and with different kinds of masks, which

shows that, we obtained better results when p = 3 and p = 4 in Equation (10.3).
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To show the importance of using sliding windows with multiple frames, we repeated

our experiments by using NMF with mask without using sliding windows [24]. NMF

was used in this experiment to decompose matrices with columns containing a single

spectral frame with length 257. Which means we used NMF to directly decompose the

spectrograms of the signals. We used fewer numbers of bases (Ns = Nm = 128) since

the dimension in this case was just 257. Table 10.3, shows the results of this experiment.

By comparing the results of using NMF only with using neither spectral mask nor sliding

window as in the literature, which is shown in the first column in Table 10.3 with the

results of using NMF with p = 3 mask and sliding windows as in Tables 10.1 and 10.2, we

can see that our proposed algorithm gives improvements around 3 dB in the separation

performance.

Table 10.2: SNR in dB for the speech signal in case of using NMF with sliding window
and different masks, with Ns = Nm = 642.

SMR No
p = 1 p = 2 p = 3 p = 4 p = 5

Hard
dB mask mask

-5 6.61 6.62 8.07 8.19 8.13 8.04 7.40

0 9.52 9.54 11.25 11.48 11.44 11.36 10.74

5 11.08 11.11 13.15 13.52 13.55 13.50 12.87

Table 10.3: SNR in dB for the speech signal in case of using NMF with different
masks, without sliding window, with Ns = Nm = 128.

SMR No
p = 1 p = 2 p = 3 p = 4

Hard
dB mask mask

-5 6.17 6.18 7.05 7.05 6.96 6.34

0 9.15 9.17 10.29 10.37 10.31 9.68

5 10.81 10.83 12.26 12.46 12.45 11.95

10.4.1 Comparison with post-smoothing in Chapter 6 and CNMF

We compared the best achieved results in Table 10.2 when L = 5 and p = 3 with the

results in Table 6.2 when post-smoothed mask using Hamming filter with b = 11 is used.

Table 10.4 shows the percentage of the improvements when the single speaker database

and KL-NMF cost function were used. The improvements in SNR are measured with

respect to the case of just using NMF with neither spectral masks nor sliding windows.

We can see from table 10.4 that, in most SMR cases using NMF with sliding windows
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Table 10.4: The percentage improvement for SNR and SIR in dB for the estimated
speech signal for using post-smoothing and NMF with sliding windows.

SMR post-smoothing Sliding windows
dB SNR SIR SNR SIR

-5 27.71% 121.82% 32.74% 124.62%

0 22.62% 66.33% 25.46% 71.09%

5 24.98% 46.15% 25.07% 50.26%

gives better performance than using post-smoothed masks.

We also applied NMF with sliding windows on the same multi-speakers TIMIT dataset

and the same IS-NMF cost function that were used in Table 6.6. The used mask here

is the Wiener mask. We also compared with using convolutive nonnegative matrix

factorization (CNMF) [77, 78] in source separation. CNMF is an extension of NMF for

time series which is capable of identifying components with temporal structure. The

basis matrix in CNMF contains temporal-spectral bases, which means the basis matrix

contains bases that extend in both dimensions of the input. The CNMF approximation,

cost function, and the update rules that corresponds to NMF in Equations (2.8) to (2.19)

are as follows:

V ≈
L−1∑
l=0

Bl

l→
G, (10.5)

Λ =
L−1∑
l=0

Bl

l→
G, (10.6)

DIS =
∑
i,j

(
V i,j

Λi,j
− log

V i,j

Λi,j
− 1

)
, (10.7)

Bl ← Bl ⊗
V
Λ2

l→
G
T

1
Λ

l→
G
T
, (10.8)

G← G⊗
BT
l

l←(
V
Λ2

)
BT
l

1
Λ

, (10.9)

∀l ∈ {0, .., L− 1} ,

where
l→
(.) is an operator which shifts columns l places to the right, as each column is

shifted to the right the leftmost columns are zero filled.
l←
(.) is shifting to the left operator.

More details about CNMF can be found in [77, 78].
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Table 10.5 shows the results of using IS-NMF with sliding windows and IS-CNMF that

can be compared to the achieved results in Table 6.6 in Chapter 6. Comparing the

Table 10.5: SNR and SIR in dB for the estimated speech signal in the case of using
NMF with sliding window and CNMF with different L values and p = 2.

SMR NMF NMF with sliding-windows CNMF
L = 1, Ns = Nm = 128 L = 7, Ns = Nm = 180 L = 7, Ns = Nm = 128

dB SNR SIR SNR SIR SNR SIR

-5 2.88 4.86 5.59 8.46 4.32 6.79

0 5.50 8.70 7.72 12.03 6.77 10.67

5 8.37 12.20 10.28 14.76 9.04 13.34

results in Table 10.5 with Table 6.6 we can see that: using CNMF gives better results

than using NMF with post-smoothed masks; using NMF with sliding windows gives

better results than using CNMF; NMF with sliding windows requires more basis vectors

than CNMF. Using 180 bases in CNMF gave worse results than using 128 bases.

10.5 Conclusion

In this chapter, we introduced single channel source separation using nonnegative ma-

trix factorization (NMF) with sliding windows and spectral masks. We used NMF to

decompose matrices with columns containing multiple spectral frames. We built a spec-

tral mask from the decomposition results to find the contribution of each source signal

in the mixed signal. The proposed algorithm gave better results and more accurate

source separation for both cases when the training and testing data are from the same

or different speakers. It was also shown that, using NMF with sliding windows gives

better results than CNMF.
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Conclusions and future work

In this thesis, we improved the performance of nonnegative matrix factorization (NMF)

for source separation applications. We combined many machine learning and statistical

signal processing approaches to enhance the NMF performance for source separation.

We improved the solution of NMF by incorporating prior information on the basis and

gains matrices. In Chapters 3 to 5, we guided the NMF solution of the gains matrix

by rich prior models to find better suited estimates to the source signals. The priors

were modeled in Chapters 3 and 5 using GMMs and in Chapter 4 using HMMs. The

priors were incorporated into the NMF solution using either log-likelihood as shown in

Chapters 3 and 4 or minimum mean squared error (MMSE) estimation as shown in

Chapter 5. We introduced three different methods to improve the gains matrix solution

of NMF. Guiding the gains matrix solution of NMF using MMSE estimates under GMM

prior gave better results compared to the other prior methods. Using MMSE estimates,

we achieved improvement around 2 dB in SNR and 6 dB in SIR. The usage of the

HMM as a prior model for regularized NMF is considered to be a good idea that can be

improved in future work. In general, the approaches of using GMMs and HMMs as prior

models for the regularized NMF can be improved by using supervised learning for the

source models especially the prior models. For example, training speech signals can be

clustered based on phonemes. The initialization of the parameters for the prior GMMs

and HMMs can be done based on this phoneme clustering to obtain better prior models.

In Chapters 6 and 7, the prior information was incorporated as post processing. In
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Chapter 6, we incorporated the smoothness prior on the NMF solutions by using post-

smoothing of masks or gains. Although the introduced idea in that chapter is very

simple, the achieved improvements show that it is a very effective approach. In Chapter

7, the MMSE estimation was also used as post processing to enhance the NMF solution

for the spectrograms of the separated source signals. The post enhancement using

MMSE estimation under GMM prior gave better performance than the post-smoothing

approach. The MMSE estimation based post enhancement can be improved by using

HMMs instead of GMMs to model the log-spectra of the training data.

In Chapters 8 and 9 we improved the training procedures for the basis matrices for the

source signals. In Chapter 8 we learned discriminative dictionaries where a dictionary

of one source was penalized from representing the other sources. The achieved improve-

ments in Chapter 8 can be increased by adjusting the energy differences between the

training data of sources. In Chapter 9, we introduced the idea of model adaptation

where the training data were modeled using dictionaries. The model adaptation was

introduced in this thesis to overcome the problem of lack of sufficient training data for a

specific source signal. In Chapter 9, a general nonnegative dictionary model for speech

signals was trained and then adapted to the target speech signals that exist in the mixed

signal to improve the performance of NMF for source separation.

In Chapter 10, we trained basis matrices that consider the relation between consequent

frames by processing multiple stacked frames together. Based on the simplicity of the

proposed approach in Chapter 10, the achieved results in Tables 10.2 and 10.5 are

considered to be very good.

Because of the simplicity of the post-smoothing approach that is shown in Chapter 6, it

can be combined with the other proposed approaches in this thesis. The best achieved

results in this thesis are shown in Table 6.7 where the regularized NMF using MMSE

estimates was combined with the post-smoothed masks. The SNR improvement in Table

6.7 is around 3 dB and the improvement in SIR is around 10 dB which is considered a

remarkable improvement.

In general, a fair comparison between the proposed approaches in this thesis is not guar-

anteed since for each approach there are many free parameters that need to be chosen.

As many machine learning problems, the performance of the proposed approaches in

this thesis can differ based on the type and nature of the processed signals.
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11.1 Future work

Many of the proposed approaches in this thesis can be combined to achieve better

separation performance. There are many approaches/ideas that we consider as future

work which can be itemized as follows:

• The idea of using MMSE estimation under GMM prior in regularized NMF that

is introduced in Chapter 5 can be generalized for many other cost functions and

applications as MMSE estimates based regularization.

• The idea of using MMSE estimation under GMM prior in regularized NMF can

be improved by replacing GMMs by HMMs to consider the temporal behavior of

the source signals.

• The idea of using MMSE estimation under GMM prior for post enhancement that

is introduced in Chapter 7 can also be improved by replacing GMMs by HMMs

to consider the temporal behavior of the source signals in a model-based fashion

rather than using multiple spectral frames stacked together.

• Most of the methods that use GMMs and HMMs to model the data in this thesis

can be improved by using supervised learning. For example, the training of HMM

in Chapter 4 for a speech signal can be improved by first clustering the training

speech data into phonemes and using these clusters to initialize the HMM states.
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Appendix A

In this appendix, we derive the MMSE estimate formula and the learning algorithm for

the parameter Ψ that was mentioned in Chapters 5 and 7 similar to [112, 113, 114].

Assume we have a noisy observation y as shown in the graphical model in Figure 12.1,

which can be formulated as follows:

y = x+ e, (12.1)

Figure 12.1: The graphical model of the observation model.

where e is the noise term, and x is the unknown underlying correct signal which needs

to be estimated under a GMM prior distribution:

p (x) =
K∑
k=1

ωkN (x|µk,Σk) , (12.2)
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the error term e has a Gaussian distribution with zero mean and diagonal covariance

matrix Ψ:

p (e) = N (e|0,Ψ) . (12.3)

The conditional distribution of y is a Gaussian with mean x and diagonal covariance

matrix Ψ:

p(y|x, k) = p(y|x) = N (y|x,Ψ) . (12.4)

The distribution of y given the Gaussian component k is a Gaussian with mean µk and

diagonal covariance matrix Σk + Ψ:

p(y|k) = N (y|µk,Σk + Ψ) . (12.5)

The marginal probability distribution of y is a GMM:

p(y) =

K∑
k=1

ωkN (y|µk,Σk + Ψ) , (12.6)

where the expectations E (x) = E (y), and E (e) = 0. Note that, this observation model

has some mathematical similarities but different concepts with factor analysis models

assuming the load matrix is the identity matrix [112, 113, 114].

The MMSE estimate of x can be found by calculating the conditional expectation of

x given the observation y. Given the Gaussian component k, the joint distribution

of x and y is a multivariate Gaussian distribution with conditional expectation and

conditional variance as follows [112, 121]:

E (x|y, k) = µk + ΣkxyΣ−1
ky

(y − µk) , (12.7)

var (x|y, k) = Σk −ΣkxyΣ−1
ky

ΣT
kxy , (12.8)

we know that

Σky = Σk + Ψ, (12.9)
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and

Σkxy = cov (x,y)

= E
(
xyT

)
− E (x)E

(
yT
)

= E
[
x
(
xT + eT

)]
− E (x)E

(
yT
)

= E
(
xxT

)
+ E (x)E

(
eT
)
− E (x)E

(
yT
)

= var (x) + E (x)E
(
xT
)
− E (x)E

(
yT
)

= var (x) = Σk. (12.10)

The conditional expectation given the Gaussian component k of the prior model is

E (x|y, k) = µk + Σk (Σk + Ψ)−1 (y − µk)

= x̂k. (12.11)

We also can find the following conditional expectation given only the observation y as

follows:

E (x|y) =
K∑
k=1

p (k|y)E (x|y, k)

=

K∑
k=1

γkE (x|y, k)

= x̂, (12.12)

where

p (k|y) =
ωkp (y|k)∑K
j=1 ωjp (y|j)

= γk. (12.13)

From equations (12.11, 12.12, 12.13) we can write the final MMSE estimate of x given

the model parameters as follows:

x̂ =
K∑
k=1

γk

[
µk + Σk (Σk + Ψ)−1 (y − µk)

]
. (12.14)
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We need also to find the following sufficient statistics to be used in estimating the model

parameters:

var (x|y, k) = Σk −Σk (Σk + Ψ)−1 ΣT
k , (12.15)

E
(
xxT |y, k

)
= var (x|y, k) + E (x|y, k)E (x|y, k)T

= Σk −Σk (Σk + Ψ)−1 ΣT
k + x̂kx̂

T
k

= R̂k, (12.16)

and

E
(
xxT |y

)
=

K∑
k=1

p (k|y)E
(
xxT |y, k

)
=

K∑
k=1

γkE
(
xxT |y, k

)
=

K∑
k=1

γkR̂k

= R̂. (12.17)

Parameters learning using the EM algorithm

In the training stage, we assume we have clean data with e = 0. The prior GMM

parameters ω,µ,Σ are learned as regular GMM models. The only parameter that need

to be estimated is Ψ, which is learned from the deformed signal “qn” in Chapters 5 and

7. The parameter Ψ is learned iteratively using maximum likelihood estimation. Given

the data points q = q1, q2, . . . , qn, . . . , qN , and the GMM parameters, we need to find

an estimate for Ψ. We follow the same procedures as in [112, 113, 114].

Let us rewrite the sufficient statistics in Equations (12.13, 12.11, 12.14, 12.16, 12.17)

after replacing x with z (to avoid confusion between calculating the MMSE estimate



Appendix A 126

and training the model parameters) as follows:

γkn =
ωkN (qn|µk,Σk + Ψ)∑K
j=1 ωjN

(
qn|µj ,Σj + Ψ

) , (12.18)

ẑkn = Ezn|qn,k
(zn|qn, k) = µk + Σk (Σk + Ψ)−1 (qn − µk) , (12.19)

ẑn = Ezn|qn
(zn|qn) =

K∑
k=1

γknẑkn, (12.20)

R̂kn = Ezn|qn,k

(
znz

T
n |qn, k

)
= Σk −Σk (Σk + Ψ)−1 ΣT

k + ẑknẑ
T
kn, (12.21)

and

R̂n = Ezn|qn

(
znz

T
n |qn

)
=

K∑
k=1

γknR̂kn. (12.22)

We define q = {q1, q2, . . . , qN}, z = {z1, z2, . . . ,zN}, and K = {k1, k2, . . . , kN}. Given

the generative model in Figure 12.2, the complete log-likelihood can be written in a

product form as follows:

l (q, z,K|θ) = log

N∏
n=1

p(kn)p(zn|kn)p(qn|zn, kn)

= log

N∏
n=1

K∏
k=1

[p(k)p(zn|k)p(qn|zn, k)]δk,kn

= log
N∏
n=1

K∏
k=1

[ωkN (zn|µk,Σk)N (qn|zn,Ψ)]δk,kn , (12.23)

where θ = {µ,Σ, ω,Ψ}, δk1,k2 =

 1 k1 = k2

0 else

 ,

l (q, z,K|θ) =

N∑
n=1

K∑
k=1

δk,kn logωk+

N∑
n=1

K∑
k=1

δk,kn logN (zn|µk,Σk)+

N∑
n=1

K∑
k=1

δk,kn logN (qn|zn,Ψ) .

(12.24)
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Figure 12.2: Graphical representation of the observation model for a set of N data
points.

The conditional expectation of the complete log likelihood, which is conditioned on the

observed data q can be written as:

Q
(
θ|θold

)
= Ez,K|q,θold

(
l (q, z,K|θ) |q, θold

)
. (12.25)

We can show that:

Ekn|qn,θ
old

(
δk,kn |qn, θold

)
=

K∑
kn=1

p(kn|qn, θold)δ(k, kn) = p(k|qn, θold). (12.26)

We define:

γkn = p(k|qn, θold) =
ωkN (qn|µk,Σk + Ψ)∑K
j=1 ωjN

(
qn|µj ,Σj + Ψ

) .
We can also show that, for any function F (zn):

Ezn,kn|qn,θ
old

(
δk,knF (zn)|qn, θold

)
=

∫
zn

K∑
kn=1

p(kn, zn|qn, θold)δ(k, kn)F (zn)dzn

=γknEzn|k,qn,θ
old

(
F (zn)|qn, k, θold

)
. (12.27)

We can write the conditional expectation of the complete log-likelihood as follows:

Q
(
θ|θold

)
=

N∑
n=1

K∑
k=1

γkn logωk +
N∑
n=1

K∑
k=1

γknEzn|qn,k,θ
old

(
logN (zn|µk,Σk) |qn, k, θold

)
+

N∑
n=1

K∑
k=1

γknEzn|qn,k,θ
old

(
logN (qn|zn,Ψ) |qn, k, θold

)
. (12.28)
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For the parameter Ψ, we need to maximize the third part of Equation (12.28) with

respect to Ψ:

Q′ =

N∑
n=1

K∑
k=1

γknEzn|qn,k,θ
old

(
logN (qn|zn,Ψ) |qn, k, θold

)
=

N∑
n=1

K∑
k=1

γknEzn|qn,k,θ
old

(
log

1

(2π)
d
2 |Ψ|

1
2

exp

{
−1

2
(qn − zn)T Ψ−1 (qn − zn)

}
|qn, k, θold

)

=

N∑
n=1

K∑
k=1

γknEzn|qn,k,θ
old

(
−d
2

log (2π)− 1

2
log |Ψ| − 1

2
(qn − zn)T Ψ−1 (qn − zn) |qn, k, θold

)
,

(12.29)

the derivative of Q′ with respect to Ψ−1 is set to zero:

∂Q′

∂Ψ−1 =
N∑
n=1

K∑
k=1

γknEzn|qn,k,θ
old

(
1

2
Ψ− 1

2
(qn − zn) (qn − zn)T |qn, k, θold

)
= 0,

(12.30)

Ψ

N∑
n=1

K∑
k=1

γkn =

N∑
n=1

K∑
k=1

γknqnq
T
n −

N∑
n=1

qn

K∑
k=1

γknEzn|qn,k,θ
old

(
zn|qn, k, θold

)T
−

(
N∑
n=1

qn

K∑
k=1

γknEzn|qn,k,θ
old

(
zn|qn, k, θold

)T)T

+
N∑
n=1

K∑
k=1

γknEzn|qn,k,θ
old

(
znz

T
n |qn, k, θold

)
, (12.31)

we know that
N∑
n=1

K∑
k=1

γkn = N and
K∑
k=1

γkn = 1,

then
N∑
n=1

qnq
T
n

K∑
k=1

γkn =

N∑
n=1

qnq
T
n ,

and

Ψ
N∑
n=1

K∑
k=1

γkn = NΨ.

We can use the values of
∑K

k=1 γknEzn|qn,k,θ
old

(
zn|qn, k, θold

)
and∑K

k=1 γknEzn|qn,k,θ
old

(
znz

T
n |qn, k, θold

)
from Equations (12.20, 12.22) to update the es-

timate of Ψ as follows:
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Ψ̂ = diag

{
1

N

N∑
n=1

(
qnq

T
n − qnẑTn − ẑnqTn + R̂n

)}
, (12.32)

where the “diag” operator sets all the off-diagonal elements of a matrix to zero.



Chapter 13

Appendix B

In this appendix, we calculate the gradients of the penalty term in the regularized NMF

cost function in Section 5.2. To calculate the update rule for the gains matrix G, the

gradients ∇+
GL(G) and ∇−GL(G) are needed to be calculated. Lets recall the regularized

NMF cost function

C (G) = DIS (V ||BG) + αL(G), (13.1)

where

L(G) =

N∑
n

∥∥∥∥ gn
‖gn‖2

− exp (f (gn))

∥∥∥∥2

2

, (13.2)

f (gn) =

K∑
k=1

γkn

[
µk + Σk (Σk + Ψ)−1

(
log

gn
‖gn‖2

− µk
)]

, (13.3)

and

γkn =

 ωkN
(

log
gn

‖gn‖2
|µk,Σk + Ψ

)
∑K

j=1 ωjN
(

log
gn

‖gn‖2
|µj ,Σj + Ψ

)
 . (13.4)

Since the training data for the GMM models are the logarithm of the normalized vectors,

then the mean vectors of the GMM are always not positive, also the values of log
gn

‖gn‖2
are also not positive, and gn is always nonnegative.

Let gn = x, and its ath component is gna
= xa, and f(gn) = f(x). We can write the

constraint in Equation (13.2) as:

L(x) =

∥∥∥∥ x

‖x‖2
− exp (f(x))

∥∥∥∥2

2

. (13.5)
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The a component of the gradient of L(x) is

∂L(x)

∂xa
= 2

(
xa
‖x‖2

− exp (f(xa))

)(
1

‖x‖2
− x2

a

‖x‖32
−∇f(xa) exp (f(xa))

)
= ∇L(xa), (13.6)

which can be written as a difference of two positive terms

∇L(xa) = ∇+L(xa)−∇−L(xa). (13.7)

The component a of the gradient of f (x) can be written as a difference of two positive

terms:
∂f (x)

∂xa
= ∇+f (xa)−∇−f (xa) . (13.8)

The component a of the gradient of L (x) in Equation (13.7) can be written as:

∇+L(xa) = 2

{
xa
‖x‖2

(
1

‖x‖2
+ exp (f(xa))∇−f(xa)

)
+ exp (f(xa))

(
x2a

‖x‖32
+ exp (f(xa))∇+f(xa)

)}
,

(13.9)

and

∇−L(xa) = 2

{
xa
‖x‖2

(
x2a

‖x‖32
+ exp (f(xa))∇+f(xa)

)
+ exp (f(xa))

(
1

‖x‖2
+ exp (f(xa))∇−f(xa)

)}
.

(13.10)

We need to find the values of∇+f(xa) and∇−f(xa). Note that, the term Σk (Σk + Ψ)−1

forms a diagonal matrix.

Let

H(xa) = µka + Σkaa (Σkaa + Ψaa)
−1

(
log

xa
‖x‖2

− µka

)
, (13.11)

then f(x) in Equation (13.3) can be written as:

f(x) =
K∑
k=1

γk(x)H(x). (13.12)

The gradient of f(x) in Equation (13.12) can be written as:

∇f(xa) =
K∑
k=1

[γk(x)∇H(xa) +H(xa)∇γk(xa)] , (13.13)
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where

γk(x) =

 ωkN
(

log x
‖x‖2
|µk,Σk + Ψ

)
∑K

j=1 ωjN
(

log x
‖x‖2
|µj ,Σj + Ψ

)
 =

Mk(x)

Nk(x)
. (13.14)

We can also write the gradient components of H(xa) and γk(x) as a difference of two

positive terms

∇H(xa) = ∇+H(xa)−∇−H(xa), (13.15)

and

∇γk(xa) = ∇+γk(xa)−∇−γk(xa). (13.16)

The gradient of f(xa) in Equations (13.8, 13.13) can be written as:

∇+f(xa) =
K∑
k=1

[
γk(x)∇+H(xa) +H+(xa)∇+γk(xa) +H−(xa)∇−γk(xa)

]
, (13.17)

∇−f(xa) =

K∑
k=1

[
γk(x)∇−H(xa) +H−(xa)∇+γk(xa) +H+(xa)∇−γk(xa)

]
, (13.18)

where

∇+H(xa) = Σkaa (Σkaa + Ψaa)
−1 1

xa
, (13.19)

∇−H(xa) = Σkaa (Σkaa + Ψaa)
−1 xa

‖x‖22
, (13.20)

and H(xa) can be written as a difference of two positive terms:

H(xa) = H+(xa)−H−(xa), (13.21)

where

H+(xa) = −Σkaa (Σkaa + Ψaa)
−1µka , (13.22)

and

H−(xa) = −
[
µka + Σkaa (Σkaa + Ψaa)

−1 log
xa
‖x‖2

]
. (13.23)
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We can rewrite γk(x) in Equation (13.14) as:

γk(x) =
Mk(x)

Nk(x)
, (13.24)

note that γk(x),Mk(x), Nk(x) ≥ 0.

The component a of the gradient of γk(x) can be written as:

∇γk(xa) =
Nk(x)∇Mk(xa)−Mk(x)∇Nk(xa)

N2
k (x)

. (13.25)

We can write the gradients of Mk(x) and Nk(x) as a difference of two positive terms

∇Mk(xa) = ∇+Mk(xa)−∇−Mk(xa), (13.26)

and

∇Nk(xa) =

K∑
k=1

∇+Mk(xa)−
K∑
k=1

∇−Mk(xa). (13.27)

The gradient of γk(xa) in Equation (13.16) can be written as:

∇+γk(xa) =
Nk(x)∇M+

k (xa) +Mk(x)
∑K

k=1∇−Mk(xa)

N2
k (x)

, (13.28)

∇−γk(xa) =
Nk(x)∇M−k (xa) +Mk(x)

∑K
k=1∇+Mk(xa)

N2
k (x)

, (13.29)

where

∇+Mk(xa) = Mk(x) (Σkaa + Ψaa)
−1

[
−1

xa
log

xa
‖x‖2

−
µkaxa

‖x‖22

]
, (13.30)

and

∇−Mk(xa) = Mk(x) (Σkaa + Ψaa)
−1

[
−µka
xa

− xa

‖x‖22
log

xa
‖x‖2

]
. (13.31)

After finding ∇+γk(xa), and ∇−γk(xa) from Equations (13.28, 13.29), and ∇+H(xa),

and ∇−H(xa) from Equations (13.19, 13.20), we can find the gradients ∇+f(xa), and

∇−f(xa) in Equations (13.17, 13.18), which complete our solution for ∇+L(xa), and

∇−L(xa) in Equations (13.9, 13.10).
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