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Abstract

In this thesis, we have investigated the effect of brain-computer interfaces (BCI)

which enable direct communication between a brain and a computer, to increase the

patient’s active involvement to his/her task in the robotic rehabilitation therapy. We

have designed several experimental paradigms using electroencephalography (EEG)

based BCIs which can be used to extract information about arm movement imagery

in the context of robotic rehabilitation experiments. In particular, we propose a

protocol that extracts and uses information about the level of intention of the subject

to control the robot continuously throughout a rehabilitation experiment. In this

context we have developed and implemented EEG signal processing, learning and

classification algorithms for offline and online decision-making.

We have used different types of controlling methods over the robotic system

and examined the potential impact of BCI on rehabilitation, the effect of robotic

haptic feedback on BCI, and information contained in EEG about the rehabilitation

process. Our results verify that the use of haptic feedback through robotic movement

improves BCI performance. We also observe that using BCI continuously in the

experiment rather than only to trigger robotic movement may be preferable. Finally,



our results indicate stronger motor imagery activity in BCI-based experiments over

conventional experiments in which movement is performed by the robot without the

subject’s involvement.
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Özet

Bu tezde, robotik rehabilitasyon terapilerinde hastanın görevine aktif katılımını

arttırmak için, beyin ve bilgisayar arasında doğrudan iletişim sağlayan beyin-bilgisayar

arayüzleri (BBA)nin etkisini araştırdık. Robotik rehabilitasyon deneyleri bağlamında,

hayali kol hareketleri hakkında bilgi elde etmek için kullanılan elektroensefalografi

(EEG) tabanlı BBA sistemleri ile çeşitli deneysel paradigmalar tasarladık. Özellikle,

gönüllünün istek düzeyi bilgisini elde eden ve bu bilgiyi rehabilitasyon deneyi sırasında

robotu sürekli olarak kontrol etmek için kullanan bir protokol öneriyoruz. Bu

bağlamda, çevrimiçi ve çevrimdışı karar verebilmek için EEG sinyalini işleme, öğrenme

ve sınıflandırma algoritmaları geliştirdik ve uygulamaya koyduk.

Robotik sistem üzerinde farklı kontrol yöntemleri kullandık ve rehabilitasyon

süreci hakkında EEG’de yer alan bilgiyi, BBA’nın rehabilitasyona ve robotik dokun-

sal geribildirimin de BBAya olan etkisini inceledik. Sonuçlarımız robot hareket

yoluyla yapılan dokunsal geribildirim kullanımının BBA performansını arttırdığını

doğruluyor. Deneyde sürekli olarak BBA kullanımının, sadece robotik hareketi tetik-

lemek yerine tercih edilebilir olduğunu da görüyoruz. Son olarak, sonuçlarımız, BBA

tabanlı deneylerde hareketin gönüllü katılımı olmadan robot tarafından yapıldığı ge-



leneksel deneylere göre daha güçlü hayali motor etkinliği olduğunu göstermektedir.
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Chapter 1

Introduction

Neurological injuries are the leading cause of long-term disabilities that restrict

activities of daily living (ADL) of millions of patients. Physical rehabilitation is the

major form of treatment for neurological disabilities helping patients regain their

motor control and actively take place in society. As rehabilitation therapies are

known to be more effective when they are repetitive, intense, long term, and task

specific; utilization of robotic devices not only eliminates the physical burden of

movement therapy for the therapists, but also motivates patients to endure intense

therapy sessions thanks to integration of multi-modalities, while simultaneously re-

ducing the treatment costs.

Recently, there has been some interest in incorporating brain-computer interfaces

(BCI) into robotic rehabilitation concepts (see Figure 1.1) to guide rehabilitation

protocols to effectively induce activity-dependent brain plasticity and to restore

neuromuscular function of patients with severe trauma due to stroke, cerebral palsy,

or injury to spinal cord or brain. BCI has been an active area of research over the

last two decades, mostly focusing on communication of patients with the outside

world. Most BCIs rely on non-invasive electroencephalogram (EEG) signals, since

collecting these electric potentials is more practical, less expensive, and safer for the

patients, compared to invasive techniques.
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Figure 1.1: BCI-based robotic rehabilitation system.

1.1 Scope

Our first objective in this thesis was to design and implement an end-to-end

system for controlling a robotic system through the EEG signals collected from a

human subject. This requires:

• The development of experimental scenarios for stimulating the appropriate

neural mechanisms in the subject,

• The design of algorithms for machine learning as well as information extraction

from the collected data,

• The construction of the robotic rehabilitation component,

• Combining the BCI component with the robotic system,

• The demonstration of successful control of the robotic system through exper-

iments.

Once we had the first version of a working system as represented in Figure 1.2,

our agenda for the remainder of the study was to conduct an experiment driven

by some of the fundamental questions in this problem. This process led to changes

2



in our design of algorithms, hardware set up and as well as design of experimental

scenarios.

Figure 1.2: Representative BCI-based robotic system.

After building a new complete EEG-based BCI system that can control a reha-

bilitation robot, we have developed new procedures and mechanisms for the use of

this integrated system in robotic rehabilitation. Afterwards, we examined challeng-

ing questions about potential impact of BCI on rehabilitation, the effect of robotic

haptic feedback on BCI, and information contained in EEG about the rehabilitation

process.

1.2 Motivation

BCI research deals with the problem of establishing direct communication path-

ways between the brain and external devices. The primary motivation is to enable

patients with limited or no muscular control (including amyotrophic lateral scle-

rosis (ALS) and brainstem stroke patients) to use computers or other devices by

automatically interpreting their intent based on measured brain electrical activity.

Although this seems to be an extremely challenging problem, a variety of studies

over the last 15-20 years have shown that non-invasively obtained electrical signals

through the scalp-recorded EEG can be used as the basis for BCIs. This early suc-

3



cess has garnered much interest in BCI technology, raising anticipation (as well as

some demonstration) for its use by healthy individuals as an additional communi-

cation pathway as well. This substantial progress has resulted in a growing interest

in extending the application domain of BCIs from communication with a computer

towards restoration of basic motor functions.

In a different area of research, studies have shown that physical rehabilitation

therapy is responsible for most of the recovery experienced by patients with disabili-

ties secondary to neurological injuries [5,6], and the therapies are more effective when

they are task specific, intense, repetitive, and allow for active involvement of patients

[7, 8]. Using robotic devices in repetitive and physically involved rehabilitation ex-

ercises helps eliminate the physical burden of movement therapy for the therapists,

and enables safe and versatile training with increased intensity. Robotic devices al-

low quantitative measurements of patient progress while enforcing, measuring, and

evaluating patient movements, and with the addition of virtual environments and

haptic feedback, they can be used to realize new treatment protocols. Therefore,

these devices not only help increase the reliability, accuracy, and effectiveness of

traditional physical rehabilitation therapies, but also help extend their applicability

beyond the boundaries of clinics, realizing hospitals without borders.

Robotic rehabilitation has been shown to have a positive impact in post-stroke

treatment for impaired patients [5, 6, 9, 10]. One key factor in the recovery of a

patient is his/her mental involvement in the process and his/her effort during the

treatment, since activity dependent plasticity requires that patients actively recruit

their own muscles to the best of their ability. However, current robotic rehabilitation

systems do not utilize any information about the mental state or intention of the

patients, although they exploit their muscular involvement. For a patient in the

early stages of recovery, muscular activity may be very limited.

In the proposed concept of a BCI-based rehabilitation system, the patient will

be established as a mentally involved participant. It is important to stress that

although muscle weakness is a problem for these patients, the most important goal

of this therapy is to induce plastic recovery of neural control systems in brain and

spinal cord.

This is a very new topic in the academic community with research efforts ini-
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tiated in a number of laboratories around the world over the last 3-4 years that

spans across multiple disciplines including neuroscience, signal processing (electron-

ics engineering), machine learning (computer science), robotics (mechatronics), and

rehabilitation (biomedical engineering). As a result, this is a vast open and ex-

tremely challenging area of research. Furthermore, this is a problem that has high

potential for immediate application and might in turn help move BCI technology

towards use in practical robotic control and rehabilitation systems.

1.3 Contributions

Our main goal of this thesis was to design, implement, and evaluate experimen-

tal protocols and real-time information extraction and robotic control strategies to

increase the patient’s involvement with the ultimate goal of improving the efficacy

of the rehabilitation process. Some of the motivating questions for this thesis are

listed as follows:

• How can BCI be used most effectively?

• Does the application of haptic feedback to a subject through a robotic system

improve the performance of a BCI system?

• What is the effect of online velocity modification of the task according to BCI

decisions compared to constant speed tasks?

For this purpose, firstly we have designed an EEG-based BCI system which has the

potential to infer the passive state of the subject, including the level of intensity in

response to task difficulty by examining whether the patterns in the EEG signal of

the patient contain any information about the intention level. Secondly, we have

built a complete EEG-based BCI system that can control a rehabilitation robot.

Moreover, we have developed new procedures and mechanisms for the use of this

system in robotic rehabilitation. Therefore the contributions of this thesis can be

summarized as follows:

• We have built BCI based robotic systems, which uses posterior probabilites

and conducted offline and online experiments.
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• We have proposed an approach that enables detecting intention levels of sub-

jects in response to task difficulty utilizing an EEG based BCI.

• We have designed an online BCI assisted protocol to continuously control the

velocity of a robotic system.

• We have built an online experimental paradigm with different conditions us-

ing BCI-assisted/triggered, robotic/virtual reality systems to investigate the

usage effect of the designed BCI and haptic feedback on the subject’s active

participation level to their imagery task .

Through the experimental analysis, our results verify that the motor imagery

activity is stronger when the feedback is given as haptically to the subject rather

than a virtual feedback. Moreover, when the subject continuously controls the

velocity of a robotic system, rather than just triggering it, the subject becomes

more involved to their tasks. Finally, our results verify the use of BCI in robotic

rehabilitation may be preferable over conventional robotic rehabilitation systems

in which movement is performed by the robot without considering the subject’s

involvement.

1.4 Outline

Chapter 2 presents the necessary background information about EEG signal

processing and classification methods, brain-computer interfaces and rehabilitation

systems by presenting a survey about published works, methods and results.

Chapter 3 covers the analysis of different EEG motor imagery movement data

sets and includes the detailed description of the experimental paradigms and the

steps followed to understand the underlying patterns in the EEG signal.

In Chapter 4, we have presented our offline experiments which involve integrating

an EEG based BCI with a robotic system to target rehabilitation therapies of spinal

cored injured patients.

Chapter 5 presents a systematic approach that enables online modification/adaptation

of robot assisted rehabilitation exercises by continuously monitoring intention levels

of patients utilizing an EEG based BCI.
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In Chapter 6, we propose an approach that enables detecting intention levels of

subjects in response to task difficulty utilizing an EEG based BCI.

Chapter 7 includes a series of online experiments with different conditions using

BCI-assisted/triggered, robotic/virtual reality (VR) systems, their detailed data

analysis and results.

Chapter 8 provides a summary of the contributions and the results of this thesis

and suggests several potential future research directions.
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Chapter 2

Background

This chapter intends to help the reader understand basic concepts about EEG

signal processing and classification methods, brain-computer interfaces and rehabil-

itation systems by presenting a survey about published works, methods, and results.

2.1 Introduction

Brain-computer interfaces generate commands by measuring the brain signals.

There exist two methods of measuring the brain activity: the invasive method in

which the electrodes are placed under the scalp by a surgical operation, and the

non-invasive method in which the brain signals are measured externally.

The invasive methods using ”electrocorticography (ECoG)”, ”intracranial EEG

(I-EEG)” or ”subdural EEG (SD-EEG)” have an excellent resolution on the elec-

trical activity of the brain, but are harder to implement and experiment with since

they require surgical operation.

The non-invasive methods can be applied by using electroencephalography (EEG),

magnetoencephalography (MEG), X-ray computed tomography (CT), positron emis-

sion tomography (PET), functional magnetic resonance imaging (fMRI) or func-

tional near infrared spectroscopy (fNIRS).

Even though other methods have advantages on effective source localization and

spatial resolution on the scalp over EEG, EEG is commonly favored for BCI appli-

cations, thanks to its portability, ease of use and low-cost. Moreover, EEG does not

involve radioactivity and because it is silent, better rehabilitation therapies can be

applied.
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2.2 EEG Signals

Electroencephalogram (EEG) is a recording technique which measures the elec-

trical activity of the brain. EEG signals can be acquired from the Ag/AgCl pin

electrodes (see Figure 2.2) placed on an electrode cap which is worn by the subject

and a conductive gel is applied to the subject’s skin to decrease the skin resistance

(see Figure 2.1). In Figure 2.3, the location of the electrodes which are placed ac-

cording to International 10-20 system, proposed by American EEG society [11] is

shown.

Figure 2.1: (a) Apply electrode gel in holes. (b) Click active electrodes into holders.

(electrodes and holders are color labelled.) [1, 2]
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Figure 2.2: The BioSemi pin-type active electrode has a sintered Ag-AgCl electrode

tip, providing very low noise, low offset voltages and very stable DC performance

and completely resistant to long term water enabling easy cleaning and disinfecting.

[3]

Figure 2.3: Location of the electrodes which are placed according to International

10-20 system, proposed by American EEG society. [4]
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2.2.1 Sensorimotor Rhythms

The sensorimotor rhythms are the oscillatory brain wave rhythms of brain ac-

tivity. Given EEG signals measured in BCI experiments designed to emphasize

sensorimotor rhythms occurring in a correlated fashion with the user’s intent, the

goal is to process these signals and automatically recognize underlying patterns.

EEG is typically characterized by its rhythmic activities. In 1990s, the phenom-

ena of event-related synchronization (ERS) and desynchronization (ERD) [12, 13]

patterns were introduced to identify motor imagery movements. In the case of exe-

cution of motor imagery movements, ERD or ERS occur and change the amplitude

of the signal where ERD is related to imagination of the motor tasks (see Figure

2.4) and ERS is related to the passive state.

ERD and ERS are mainly characterized by the help of spectral powers computed

in the typical EEG beta(β 16-24Hz), sigma (σ 12-16Hz) and alpha (α 8-12Hz)

frequency bands related to the preparation of the imagery movements [12].

Figure 2.4: Power spectrum density in the alpha frequency band.

Spectral powers of specified frequency bands are measured by the power spectral

density function (PSD) which computes the variations (energies) at frequencies. The
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unit of PSD is energy per frequency (width) and averaged energy within a specific

frequency band can be computed by integrating the PSD within that frequency

band. In Figure 2.5, the logarithms of the averaged PSD values versus frequencies

are shown for resting and right arm motor imagery movement. These results are

obtained in the experiments we describe in detail in Chapter 7 of this thesis.

Figure 2.5: log Power of the EEG signal recorded from channel C3 for resting and

right arm motor imagery movement.

2.2.2 Classification Methods

In the literature, linear and non linear methods have been proposed to classify

motor imagery movements using ERD/ERS patterns as features [14]. Nevertheless,

linear methods are commonly preferred, since they are generally more robust due

to their lower complexity, stationarity structure, and consistency against overfit-

ting [15]. Two of the most commonly used classifiers in BCI research are linear

discriminant analysis (LDA) and support vector machines (SVM), which result in

similar performances.

LDA is a classification method which separates classes by using hyperplanes

obtained with the linear combination of the extracted features. In LDA, by assuming
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two classes (N = 2) have normal density distributions, the classes are modelled to

have the same covariance matrix but different mean vectors. Under this assumption

a decision boundary is constructed based on the posterior probability values of each

sample as shown in Figure 2.6.

In N-class problems (N > 2) several hyperplanes are used to separate the classes

and the common approach is to make a classification between one class versus the

remaining classes. SVM is also separates classes by using hyperplanes like LDA, but

in SVM the distance between the hyperplanes and the nearest data points of every

classes to the hyperplanes should be maximized. To make the data classes more

separable, a mapping function may be used to present the data in an other space

by using kernel functions.

Consequently, in this study, LDA which is a fast, stationary classification method

that is known to produce good results in motor imagery based BCIs [16–20], is used

to classify motor imagery movements using ERD/ERS patterns.

Figure 2.6: Posterior probabilities of samples for a two class classification problem.
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2.3 EEG Based BCIs

The main purpose of non-invasive EEG-based BCI is to measure the electrical

activity using EEG signals and to classify their patterns to extract user’s inten-

tion. Up to now, various BCI applications have been designed using different EEG

features: high-speed word spelling using virtual evoked potentials (c-VEPs)[21],

Google search system by using motion onset VEP [22], brain painting system to

draw different objects [23]. In [24] used event-related synchronization (ERS) and

desynchronisation (ERD), to move forward in a Virtual Environment (VE).

Underlying patterns of EEG signals measured in experiments designed to em-

phasize sensorimotor rhythms related to the user’s intent, can be automatically

recognized by using ERD/ERS phenomena [12, 13], where ERD is related to the

motor tasks and ERS is related to the passive states. The changes in the power of

the alpha, sigma and beta frequency bands related to the preparation or planning

of the imagery movements that displays ERD and ERS, give the opportunity to

analyse EEG signals in the means of sensorimotor rhythms [12, 25]. Recognizing

these patterns of sensorimotor rhythms gives the opportunity to control cue-based

synchronous or self-paced asynchronous BCI systems, including prostheses [26, 27],

wheelchairs [28], cursors [29], robots [30], and virtual environments [24]. Because

EEG can be used in subjects who are incapable of making a motor response, this

gives the opportunity to combine BCIs with rehabilitation systems.

2.4 Rehabilitation Systems

To improve the life quality of millions of patients suffering from neurological

diseases and disabilities due to injuries, development of rehabilitation techniques

is an active research area. Effective physical rehabilitation techniques designed for

the treatment of neurological diseases has critical social and economical roles since

they enable the active participation of the patients in the daily life and society by

regaining their motor control skills.

Rehabilitation therapies are known to be more effective when they are repeti-

tive, intense, long term and task specific. However, manual administration of such

therapies are costly due to the physical burden and the manual labor involved.
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Therefore, design methodologies for rehabilitation robots have matured in recent

years. On the other hand, since active participation of patients in the therapies is

known to be crucial for motor recovery, brain-computer interface (BCI) technology

promises to become one of the main pathways to guide rehabilitation protocols to

effectively induce activity-dependent brain plasticity and to restore neuromuscular

function. Therefore under this section, rehabilitation systems are loosely categorized

into two: Conventional robotic rehabilitation systems and BCI-based rehabilitation

systems.

2.4.1 Conventional Robotic Rehabilitation Systems

Utilization of robotic devices for delivery of repetitive and physically involved

rehabilitation exercises not only eliminates the physical burden of movement ther-

apy for the therapists, but can motivate patients to endure intense therapy ses-

sions thanks to integration of multi-modalities, while simultaneously reducing the

treatment costs. Robot-assisted rehabilitation devices increase the reliability and

accuracy of treatment, while also providing quantitative measurements to track the

patient progress. Clinical trials investigating efficacy of robotic rehabilitation pro-

vide evidence that robotic therapy is effective for motor recovery and possesses high

potential for improving functional independence of patients [5, 6, 9, 10].

In recent years, design methodologies for rehabilitation robots have matured and

robotic systems for rehabilitation have become ubiquitous. Since active participa-

tion of patients in therapies is known to be crucial for motor recovery, state-of-art

rehabilitation robots regulate the physical interaction between the patient and the

device. These systems require patients to do positive work on the system such

that movement exercises can be completed. These control techniques are commonly

extended with “assist-as-needed” protocols to provide minimal assistance to the pa-

tient, since redundant amount of assistance is shown to be detrimental for recovery,

while proper amount of assistance is necessary to ensure safety and progress.

In the literature, various techniques have been proposed to ensure active par-

ticipation of patients in rehabilitation therapies by using surface electromyography

(sEMG) signals as a means to provide driving signals to control rehabilitation de-

vices. EMG signals are preferred as the human-robot interface for patients with
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remaining muscle functions, since these signals can be directly correlated with hu-

man intention and provide fast enough reactions for adjusting amount of assistance

[31–33]. In many implementations, the amount of assistance provided by the robotic

device is taken to be directly proportional to the difference between the weighted

functions of sEMG signals recorded from antagonistic muscle groups, reflecting the

users’ movement intention [34, 35]. Moreover, the linear envelope of sEMG signals

is used as an approximate estimation of joint torque, since it represents the mus-

cle activation level and direction of intended movement coherent with the action of

limb [36, 37]. Linear envelope of sEMG signals is advantageous since this method

does not require much effort to precisely calibrate the relation between the EMG in-

tensity and joint torque, as necessitated in the other approaches [34,35], but instead

it provides simple and sufficiently accurate means of torque estimation. Unfortu-

nately, since remaining muscle function is a prerequisite for EMG based approaches,

these techniques are not applicable to patients with severe disabilities. BCI-based

systems provide a viable alternative.

2.4.2 BCI Based Rehabilitation Systems

Even though active rehabilitation devices can impose forces/movements to pa-

tients with all levels of impairment, it is not trivial to extend adaptive assistance

protocols to patients with severe disabilities. In particular, severe motor disability

of these patients preclude their voluntary muscle control and physical contribu-

tion to the task, on which most of the current “assist-as-needed” protocols depend.

Bypassing the impaired neuromuscular system and enabling monitoring of the cur-

rent state of brain activity, BCI technology promises an alternative pathway to

guide rehabilitation protocols to effectively induce activity-dependent brain plas-

ticity and to restore neuromuscular function. In the literature, it has been shown

that stroke patients are capable of operating a motor imagery based BCI system

as efficiently as healthy subjects [30, 38, 39]. Besides, [40] states that rehabilitation

systems integrated with BCI are more effective when the patient’s intention to move

are simultaneously adapted by the system itself.

Rehabilitation therapy using EEG-based BCI systems can be loosely categorized

into two: systems that only represent movements corresponding to motor imagery,
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typically in a virtual reality (VR) environment, and systems that physically interact

with the patient to impose movement therapies corresponding to the motor imagery.

Belonging to the first category, in [41], 9 patients were asked to imagine reaching

and grasping movements, while a BCI system classified patients’ intentions into “no

movement”, “right arm movement” and “left arm movement” using Sensory Motor

Rhythms with Linear Discriminant Analysis (LDA). The corresponding movements

were presented to the patients in a simulated VR environment. The results of this

study indicate that the users can control a virtual avatar in a motor training task

that changes its difficulty according to the user capability. In [42], 19 healthy sub-

jects were tested to perform reaching and grasping tasks with their right arm to

three targets in a VR environment. To obtain the information about planning and

execution of the movement, an advanced nonlinear analysis technique, mutual in-

formation, was used. Visual and audio feedback were provided to patients through

a VR environment. This study argues that as well as the execution of the task,

the preparation period also creates functional changes in the brain and reaching for

the target may also be controlled using the data collected during the preparation

period. In [43], 5 stroke patients were tested using an EEG-based BCI controlled

VR ball-basket game. Intention of patients to move were extracted using event-

related synchronization (ERS) and desynchronization (ERD) patterns associated

with motor imagery from the EEG data. Results of the feasibility studies indicate

a significant improvement in average mood of patients over the treatment sessions

when motor imagery sessions are used in combination with conventional physical

practice training. This study also shows feasibility of using BCI-based mental im-

agery tasks in post-stroke rehabilitation protocols together with traditional physical

practice.

In [44], 6 healthy subjects were asked to imagine right or left arm movements to

reach given targets. The BCI system categorized the EEG data as “right”, “rest”,

“left” or “uncertainty” using a LDA based classifier on features extracted through

the wavelet transform of the EEG signal. The uncertainty state was evaluated as a

rest state. A FANUC LR Mate 200iB robot arm was used for visual feedback. The

robot arm was never in contact with the subject, but classified EEG signals were

used to direct the end-effector of the robot such that patients can control the robot
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to track a desired trajectory. Such visualization was shown to improve the accuracy

of the final decision about the mental task. In [45], a healthy subject was asked

to concentrate on reaching three targets by focusing on right or left hand move-

ments to move a 2 degrees of freedom (DoF) planar robotic arm, PupArm. Similar

to [44], the robot arm was used for visualization and was never in contact with the

subject. Normalized cross-correlation between EEG maps was utilized to classify

mental tasks. Two control strategies were compared. In the first strategy, called

hierarchical control, “up”, “down”, “right” and “left” commands were classified to

let the user decide on the axis and the direction of movement of the robot arm. In

the second strategy, called directional control, users were allowed to continuously

choose the direction of the movement and control commands were generated peri-

odically. The hierarchical control strategy is shown to be more reliable, but slower

than the directional control approach.

In the EEG-based BCI system of [45], the user can control 2D movements of the

robot arm PuParm - a force-controlled planar robot - to reach several goals without

any physical interaction. In [46], two chronic stroke patients have participated EEG-

based BCI system supported by a FES platform and had an error rate of less than

20%. However, it is not stated that BCI use resulted in any improvement in upper

limb recovery.

In the second category, rehabilitation robots are integrated with BCI to impose

necessary therapeutic exercises. In [38], 8 hemiparetic stroke patients were asked

to imagine moving their affected hands without any actual movement. Naive Bayes

Parzen Window was used to classify the ERD/ERS patterns as “move” and “rest”.

This binary information was used to trigger or stop movements of a 2 DoF MIT-

Manus robot for reaching tasks with 8 trajectories. The results of this study indicate

that most of the stroke patients are capable of operating the BCI system effectively.

In [30], 3 healthy subjects and 4 chronic stroke patients were asked to imagine mov-

ing their arm. The CSP filter was used to classify ERD/ERS as intention to “move”

or “rest”. The BCI system was augmented with a Kinect to track 3-D objects in

the workspace and an eye-tracker to allow patients to choose objects to reach, using

their gaze. An online, fully synchronized bounded jerk trajectory planning method

was utilized to provide the trajectory to the goal, and Light-Exos arm was triggered
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to impose this trajectory to the subject’s arm. This study indicates that no perfor-

mance difference has been observed between healthy subjects and stroke patients.

In [47], 18 hemiparetic stroke patients out of 47 were selected as proper candidates

for BCI based rehabilitation and were asked to imagine movements of their affected

arm. Intention of patients to move was classified using the Filter Bank Common

Spatial Pattern algorithm as “go” and “rest” states, and an MIT-Manus system was

triggered to carry out the relevant movement with respect to the output state of

the BCI system. [48] presents clinical results obtained using the same setup, but

on 11 different hemiparetic stroke patients. These patients attended 12 therapy

sessions over 4 weeks, each session lasting 1 hour. The results provide evidence that

EEG-based BCI with robotic feedback neurorehabilitation can be operated by the

majority of stroke patients and can be effective in restoring upper extremities motor

function in stroke. In [49], 6 healthy subjects and 3 stroke patients were asked to

imagine right hand movements of their (impaired) arm. Welch’s method was used to

compute estimates for the power spectral density to classify the user’s intention to

“go” or “rest”. 7 DoF Barrett WAM was triggered by these signals to impose flex-

ion/extension movements to the users. Providing studies on both healthy subjects

and stroke patients, this study provides further evidence for feasibility of successful

integration of BCI with robotic systems for rehabilitation.

However, in the BCI-based rehabilitation systems mentioned above, patients’

intentions are only used to trigger the system, to start or to stop the movement

without considering the continuity of patients’ focus during the course of the task.

Consequently, these systems cannot ensure active participation of patients in the

movement therapy because regardless of whether the patient spends more or less

effort to be involved, the resulting movement is always the same. Hence, it is of

interest to develop techniques that can infer the intention level of subjects in the

course of a robotic rehabilitation routine.

Recently, [40] has advocated the importance of real-time adaptation of movement

therapies to correspond with the patients’ intention captured by EEG-based BCI.

Even though this study provides initial feasibility studies showing two stroke patients

controlling a Barrett WAM robot attached to their impaired arm, the real-time

adaptation of therapies based on BCI classification has been left as a part of their
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future work. Similarly, in [49] intentions of the subjects are decoded by computing

the PSDs of incrementally bigger time segments which includes previous time points.

The state of the robot is updated either in a passive mode where the subjects are

instructed to attempt a real/imaginary movement, or in an active mode where the

subjects’ movements are guided by the device, in every 300 ms. Updating the robot

state every 300 ms enables the system to be synchronized with subjects’ intentions.

Welch’s method has been used to compute estimates for the power spectral density

to classify the user’s intention as “go” or “rest”.

Since active participation of patients in the therapies is known to be crucial for

motor recovery, inferring the subject’s level of mental stress, conditions or emotions

from EEG signals, provides valuable information for “assist-as-needed” protocols.

[50] proposes an approach to incorporate the user’s attention state into game control,

by computing the short window energy of the EEG signals that contrasts between

attention conditions in which the subjects were asked to perform Stroop tasks and

in-attentiveness conditions in which they were instructed to relax. [51,52] present a

study to find a correlation between emotions and chronic mental stress levels mea-

sured by Perceived Stress Scale 14 (PSS-14) and EEG signals. [53] proposes a fast

emotion detection approach from EEG, by showing neutral, positive and negative

video clips to the subjects. Immediately after the played video, the subjects reported

the induced emotions during watching the video clip. But these proposed approaches

are very specific to the tasks executed in the experiments, strongly dependent on the

patients or not suitable for real-time adaptation of robotic rehabilitation systems.

On the other hand, in rehabilitation therapies, as patients are always asked to

finish a task by means of imagery or real movements, the velocity of the executed or

imagined task may also be correlated with the patient’s intention level during the

task. In [54], each subject was asked to perform elbow flexion/extension motions for

three minutes with arbitrary angles and speeds. The experimental results suggest

that EEG signals with the tested decoding model can be used to continuously decode

the elbow joint velocity. [55] shows an attempt to decode hand movement speeds

from EEG signals during a drawing task. In [56], a linearly correlated relationship

between speed and the EEG activity in the alpha and beta frequency bands during

imagined and executed hand movements is found.
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Chapter 3

Design and Evaluation of a Motor Imagery-based BCI

System

This chapter describes the motor imagery-based BCI system we have designed

and implemented. We evaluate this system on standard BCI competition data as

well as on data recorded in our laboratory. This systems serves as the basic BCI

component in robotic rehabilitation work to be described in subsequent chapters.

3.1 Analysis of BCI Competition Data set

Firstly, the data set provided by The Department of Medical Informatics, Insti-

tute of Biomedical Engineering, University of Technology Graz, for BCI Competition

2003 [57] was used to understand the underlying patterns in motor imagery move-

ments. This data set was recorded from a healthy subject who sat in a relaxing chair

with armrests. The task of the subject was to control a feedback bar by means of

imagery left or right hand movements. The order of left and right cues was random

to prevent any systematic effect. EEG signals were measured over three bipolar

EEG channels C3, Cz and C4 with 128 Hz sampling rate. The training set contains

140 trials and the testing set contains another 140 trials. The length of a trial is

9 seconds. After the quiet two seconds, an acoustic stimulus is given and a cross

‘+” is displayed for 1 second and then a right or left arrow appears as a cue for 6

seconds to indicate right or left arm imagery movement.

3.1.1 Feature Extraction

Activity of the EEG signal is mainly characterized by the help of the spectral

powers computed in the typical EEG frequency bands. The relative powers in the
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beta (β 16-24Hz), sigma (σ 12-16Hz) and alpha (α 8-12Hz) frequency bands have

been selected as relevant features that are important for classification. Then Short

Time Fourier Transform (STFT) was applied to each trial with a window which

contains 512 samples and the window was shifted for 64 samples in each step of the

transform.

The activity of the brain is observed after the cue is shown and the effect of the

cue (imagination of the movement) on the EEG signal becomes smaller as the time

passes. Hence, instead of analyzing the entire signal recorded in a trial, the timing

windows which contain the data of 3.2 − 5 s, 3.2 − 7 s, 3.5 − 5.5 s, 3.5 − 7 s and

4 − 7 s, were used. Afterwards, the averaged power spectral densities (PSDs) of

selected frequency bands in that timing window, were calculated. As a result of this

process, the extracted features of a trial consists of 9 dimensions (3 averaged PSDs

for 3 channels) and were used as the input of the classifier.

3.1.2 Classification

Linear discriminant analysis and support vector machines (SVM) were used as

classification methods. We used MATLAB’s Statistical Toolbox and the libSVM

toolbox. Classification accuracies are shown in the Figure 3.1.

Figure 3.1: The classification results on the data set provided by University of

Technology Graz, for BCI Competition 2003 for different timing windows.
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3.2 Analysis of Data Sets Recorded in Our Laboratory

After obtaining an acceptable performance with the BCI competition data set,

we have started to build our own data sets by designing different experimental

paradigms. Firstly, we have tried to classify right versus left arm imagery move-

ments. After obtaining accurate results, we have built a new classification problem

which contains right arm imagery movement and resting classes. Because in reha-

bilitation therapies, distinguishing the movement periods from the resting periods

is worthy to finish a rehabilitation task.

3.2.1 Designed Interfaces

The interfaces used in the experiments were implemented in Visual Studio, by

using C#. In Figure 3.2, the first interface where the subject’s and experimental

informations are entered (subject’s name, surname, birth date and gender; experi-

ment’s sampling rate, electrodes in use and experiment date) is shown. After clicking

the “Train” button this information is logged in a text file and the interface built for

the training session is opened. When the training session is finished this interface

becomes visible again and by clicking the ‘Test” button, testing session’s interface

is displayed.

Figure 3.2: Interface for entering the experimental information.
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Interface Type I: Right versus Left Arm Imagery Movement

Training: In the first interface type, a similar interface paradigm with the one

used by the Graz [57] group was designed to build data sets that contain right/left

arm imagery movement classes. A trial consists of a passive period followed by a

cue period. At the beginning of a trial, a cross ‘+” is displayed to indicate a passive

period and then an acoustic stimulus indicates the beginning of a cue. Then, a right

or left arrow appears as a cue for right or left imagery arm movements. The order

of the cues is random.

Figure 3.3: Training interface type I.

Testing: Additionally, for online experiments, a cue based testing interface was

designed. In the testing, the subject tries to move a virtual green ball located at the

center of the screen to the right or left in means of right/left imagery movements

according to the cues shown over the ball. Between these cues, there are passive

periods. The signal recorded in the passive periods is not processed and analysed

(see Figure 3.4). At the beginning of each trial the position of the ball is set to its

initial position which is the center of the screen. The classification result of a trial

is shown at the end of that trial.

Figure 3.4: Testing interface type I.

Interface Type II: Right Arm Imagery Movement versus Resting

Training: In the second interface type, some modifications were made to the

first interface type to record data sets which contain resting and right arm imagery
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movement classes. The subjects were asked to relax or to imagine right arm move-

ments.

For this experiment, an acoustic stimulus was added additionally to the first

interface type to indicate a new cue will appear. The right arrow cue indicates

the right arm movement periods and the “Relax” cue indicates the resting periods.

Between these cues a ‘+” stimulus was shown on the screen for passive periods. The

order of the cues is random (see Figure 3.5).

Figure 3.5: Training interface type II.

Testing: The subjects are asked to move a virtual ball located on the left hand

side of the screen by means of motor imagery right arm movements or to rest ac-

cording to the cues shown on the ball. The passive periods are followed by an active

period which contains a “right arm imagery movement” or a “Relax” cue (see Figure

3.6).

Figure 3.6: Testing interface type II.

3.2.2 Data Analysis

In this section, to build several data sets, the different types of experimental

paradigms using only the training part of the interfaces described in Section 3.2.1

were designed. Afterwards, the data sets recorded in these experiments are divided

into training and test data sets by applying two-fold cross validation. The offline

data analysis results are fully detailed and explained.
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Experiment Type I

In the experiment type I, the training part of the interface type I was used and

the subjects were asked to imagine right or left arm imagery movements according

to the cues shown on the screen. At the beginning of a trial, a cross ‘+” is displayed

for 3 seconds then, a right or left arrow appears as a cue for 6 seconds. Therefore,

the length of a trial is 9 seconds as shown in Figure 3.7. A run consists of 40 trials

(20 trials for right/left movement) and an experiment consists of 3 or 4 runs to

avoid fatigue. Six healthy subjects participated in this experiment. The signals

were sampled by 2 kHz (2048 samples) and were downsampled to 512 Hz to reduce

the amount of data to be processed.

Figure 3.7: Timing scheme of experiment Type I.

The recordings were done over 35 channels that are presented in red colour in the

Figure 3.8. But all 35 channels do not give important information about the motor

imagery movements. In the literature, it has been shown that ERD is spread mainly

over the central areas which include the central (C3,Cz,C4), frontal (FC1,FC2) and

postcentral (CP1,CP2) channels [12, 58, 59]. To find the most informative chan-

nels, the classification results of the features obtained from different channels (3

electrodes:C3, Cz, C4 and 7 electrodes: C3, Cz, C4, FC1, FC2, CP1, CP2) with two

different referencing methods were compared.
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Figure 3.8: Positions of the electrodes used in our experiments.

In the first referencing method, 4 channels positioned around a channel (upper,

lower, right, left neigbors) are used as the references of that main channel which

is located at the center. This method is called the Laplace Method. The second

referencing method is to take the upper and lower neighbors (anterior and posterior)

of a main channel as its references. The mean of the data acquired from these

references is subtracted from the main channel and a referenced channel is obtained.

The averaged PSDs of specified frequency bands (alpha, sigma and beta) were

selected as features. LDA and SVM were used as classification methods.

To eliminate data recorded before the subject has had enough time to concentrate

on the task, the first trial of each run was eliminated. Therefore, 117 or 156 trials

are obtained from one subject in 3 or 4 runs. The performance of the classifier

was measured by applying two-fold cross validation for 100 times to obtain different

training and test datasets consisting of the 75% and the 25% of the entire data set,

respectively. Overall classification accuracy was obtained by averaging over these

100 classification results (see Figure 3.9). The mean accuracies across the subjects

are presented in Figure 3.10. The averaged LDA accuracies of 3 electrodes with 2
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references and 7 electrodes with 4 references are close to each other. If we make the

recordings over many channels, then the amount of the data will be increased and

this will increase the analysis time. Therefore, we may say that the EEG signals

which are measured over 3 channels with 2 references is sufficient for the LDA

classifier.

Figure 3.9: Classification results of experiment type I.

Figure 3.10: The mean classification accuracies across the subjects of experiment

type I.

Experiment Type II

In the experiment type II, the training part of the interface type II was used. The

data set of this experiment was recorded from three healthy subjects. While subjects

sat quietly during data collection, without visible arm movements, their task was
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to close their eyes for resting or to imagine right arm movements. A run consists

of 60 trials (30 trials for right arm imagery movement and 30 trials for resting) and

an experiment consists of 3 or 4 runs to avoid the fatigue. “+” is displayed for 3

seconds then, a right arrow or “Relax” appears as a cue for 6 seconds. Therefore, the

length of a trial is 9 seconds as shown in Figure 3.11. The signals were sampled by 2

kHz (2048 samples) and were downsampled to 512 Hz. To eliminate data recorded

before the subject has had enough time to concentrate on the task the first trial of

each run was eliminated. Therefore, 177 or 236 trials are obtained from one subject

in 3 or 4 runs.

Period with Cue

0 1 2 3 4 5 6 7 8 9

Figure 3.11: Timing scheme of experiment Type II.

The recording configuration shown in Figure 3.12 uses Ag-Cl electrodes at C3,

Cz, C4 locations of the international 10-20 electrode placement system, at 512 Hz

sampling rate. Their anterior and posterior channels are used as references. By

subtracting the average of the data received from upper and lower neighbor channels

of a main channel, three referenced main channels are obtained.

Figure 3.12: Positions of the electrodes used in our experiments.
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The averaged PSDs in a specified timing window for each subject were classified

by LDA and SVM. The performance of the classifiers was measured by applying

two-fold cross validation for 100 times to obtain different training and test datasets

consisting of the 75% and the 25% of the entire data set, respectively. Overall

classification accuracy was obtained by averaging over these 100 classification results

(see Figure 3.13). The results are greater than 90% for Subject 1 and Subject 2

where as Subject 3’s performance is greater than 70%.

Figure 3.13: Classification results of right arm imagery movement or closed eyes.

Experiment Type III

In the experiment type III, the interface type II was used. To examine if closing

eyes in resting periods affects the performance of the classifier, in this experiment,

subjects were asked to rest without closing their eyes or to imagine right arm move-

ments. In resting periods, the subjects were asked to focus on the cue shown on

the screen and just relax. The data set of this experiment was recorded from nine

healthy subjects. The recording configuration uses Ag-Cl electrodes at C3, Cz, C4

locations and averaged PSDs of the alpha, sigma and beta frequency bands in a

specified timing window for each subject were used as the features.

The performance of the LDA classifier was measured by applying two-fold cross

validation for 300 times to obtain different training and test datasets consisting of

the 75% and the 25% of the entire data, respectively. Overall classification accuracy
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was obtained by averaging over these 300 classification experiments. Classification

accuracy values vary between 84% and 63% across the subjects (see Table 3.1). The

results show that the performance of motor imagery movement based BCIs, depend

on the subject, his/her fatigue level and concentration. The level of accuracy we

obtain is comparable to results reported in the BCI literature.

Subject No Accuracy (%)

1 70.1622

2 83.9504

3 64.0922

4 69.5714

5 70.3694

6 63.0357

7 79.8810

8 74.6047

9 72

Table 3.1: LDA classification accuracies.

3.3 Conclusion

In this chapter we have described the BCI system that we have developed for

classification of motor imagery. We have demonstrated the performance of the

system on a number of sets and experimental protocols. These experiments have

shown that our system achieves classification accuracies similar to other methods

in the literature (see, e.g., [41, 42, 44, 45, 49, 57]). This system is used as the BCI

component of the robotic control and rehabilitation work to be presented in the rest

of this thesis.
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Chapter 4

Offline BCI Based Robotic Experiments Utilizing Posterior

Probabilities

In this chapter, an electroencephalogram (EEG) based Brain-Computer Interface

(BCI) is integrated with a robotic system designed to target rehabilitation therapies

of spinal cored injured patients such that patients can control the rehabilitation

robot by imagining movements of their right arm. In particular, the power den-

sity of frequency bands are used as features from the EEG signals recorded during

the experiments and they are classified by Linear Discriminant Analysis (LDA). As

one of the novel contributions of this chapter, the posterior probabilities extracted

from the classifier are directly used as the continuous-valued outputs, instead of

the discrete classification output commonly used by BCI systems, to control the

velocity of the therapeutic movements performed by the robotic system. Since, the

probabilistic outputs may correspond to the instantaneous intention levels of motor

imagery and this information can be used to determine the amount of assistance

for “assist-as-needed” protocols. Adjusting the exercise velocity of patients online,

as proposed in this study, according to the instantaneous levels of motor imagery

during the movement, has the potential to increase efficacy of robot assisted ther-

apies by ensuring active involvement of patients. The proposed BCI-based robotic

rehabilitation system has been successfully implemented on physical set ups in our

laboratory and sample experimental data are presented.
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4.1 Designed BCI System

4.1.1 Continuous Output from the LDA

In this study, the data set recorded in the experiments presented in Section 3.2.2

was used. A classification problem which contains two classes (right arm imagery

movement and rest period), was built and LDA which separates classes by using

hyperplanes, was used as a classifier. The assumption made for the training data is,

its two classes have multivariate normal density distributions. Training set classes

are modelled to have the same covariance matrix but different mean vectors. These

are estimated from the training data as shown in Eqns. (4.1) and (4.2).

µ̂k =

∑N
i=1Mikxi∑N
i=1Mik

(4.1)

Σ̂k =

∑N
i=1

∑2
k=1Mik(xi − µ̂k)(xi − µ̂k)T

N − 2
(4.2)

If a sample xi belongs to class k, the value of Mik is 1, otherwise it is 0. A testing

sample is classified by minimizing the expected cost value as shown in Eqn. (4.3).

ŷ = argminy=1,2

2∑
k=1

P (k|x)C(y|k), (4.3)

where C is the cost function, ŷ is the assigned class of the sample and k is its true

class. If a testing sample is classified falsely, then the cost function is equal to 1,

otherwise it is equal to 0. This cost function results in the maximum a posteri-

ori (MAP) decision rule, hence each sample is assigned to the class providing the

maximum posterior probability for that sample.

The binary ŷ output of the LDA classifier was used to calculate the classifica-

tion accuracies which are presented in Section 3.2.2. In this chapter, the posterior

probability values which are calculated using Eqns. (4.4) and (4.5), were used as

continuous-valued outputs and used to control the velocity of the robot instead of

the binary classification output commonly used by BCI systems. Since the proba-

bilistic outputs may correspond to the instantaneous intention levels of motor im-

agery and this information can be used to determine the amount of assistance for

“assist-as-needed” protocols. The analysis of the relationship between the posterior

probabilities and the intention levels, is presented in detail in Chapter 6.

P (x|k)=
1

(2π|Σk|)1/2
exp

(
−1

2
(x− µk)Σ−1

k (x− µk)T
)

(4.4)

33



P (k|x) =
P (x|k)P (k)

P (x)
(4.5)

4.2 Designed Robotic System

For the physical experiments in this chapter, a robotic system which was designed

for upper limb rehabilitation therapies (see Figure 4.1). The posterior probabilities

obtained from the offline analysis of the data set presented in Section 3.2.2, were

used to control the velocity of the robot that follows a fixed contour. During the

physical therapy exercises, to ensure the safety of robot-human interaction Passive

Velocity Field Control (PVFC) [60–62] was used.

PVFC has multiple advantages for rehabilitation purposes: First of all, PVFC

provides passivity with respect to the external forces. This property guarantees

that the system causes no harm to patients during the contour tracking task, even

if they fail the tracking at any given time. Furthermore, by monitoring the applied

forces; the amount of assistance as well as the complexity of the task can easily

be modified in order to prevent slacking continuous decrease in the levels of the

muscle activation during repetitive motions as the movement error becomes slow-

a fundamental property of human motor control. The BCI-based rehabilitation

system has the same idea; except the controller does not use the muscle activity to

detect slacking but the EEG data provided by BCI system. BCI-based rehabilitation

system with PVFC control motivates the patients to intend to perform the task at

all times. PVFC guarantees that no harm is done to patients at all times. Moreover,

the patients can simultaneously change the behavior - speed, contour, etc. - of the

robot with their intention levels so that they can relate their motor tasks to physical

outcome better.

4.3 Experiments

In this chapter, our aim was to obtain continuous outputs which correspond

to the instantaneous intention levels of motor imagery, from the classifier rather

than to solve a classification problem. In order to control the velocity of the robot,

Subject 2’s data were used. Two-fold cross validation was applied to obtain training

and test data sets consisting of the 60% and the 40% of the entire data set, respec-
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Figure 4.1: Robotic system.

tively. Because the goal of rehabilitation therapies is to be able to execute real

movements, the trials which contain resting periods were eliminated for this study.

Besides, the posterior probabilities of the misclassified right arm imagery move-

ments are set to zero. Therefore, it is known that only right arm motor imagery

cues are given and it is possible to automatically detect the incorrect classifications.

The posterior probability values assigned to the correctly classified right arm im-

agery movements and the posterior probabilities of misclassified right arm imagery

movements which are set to zero were used to adjust the velocity of the robot.

The energy of the system was calculated by PVFC and according to the energy,

the instantaneous velocity of the robot was determined. Thus, the probabilistic out-

puts which may correspond to the instantaneous intention levels of motor imagery,

are used to guide the speed of the contour following task by directly adjusting the

speed coefficient ρ = 0.7 of PVFC. Therefore, the robot can follow the task with

minimum 0.7 and maximum 1.7 times greater than its velocity field.

PVFC was implemented with a sampling frequency of 500 Hz through a desktop

computer equipped with a PCI I/O card. To have smooth movements at the robotic

system, a 4-second window contains 2000 samples, was shifted along the data and the

mean of the posterior probabilities in the temporal window was calculated and fed

to the input of the robotic system. The zero values were excluded from the window

as they present misclassification. The robot was moved with its new determined
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velocity for 2 seconds.

Figure 4.2 depicts a sample plot for the kinetic energy of the system, as well as

the windowed probability values provided to PVFC. Kinetic energy of the overall

system is directly proportional to the tracking speed in the given desired velocity

field.

In this chapter, we have proposed a method to obtain instantaneous intention

levels of motor imagery from the LDA classifier. We have used the posterior prob-

abilities to control the velocity of the robot. We have demonstrated the integration

of the BCI and the robotic system was implemented successfully as shown in Fig-

ure 4.2. Our agenda for the remainder of this study is to achieve real-time control

of a rehabilitation robot, by utilizing posterior probabilities, which is presented in

Chapter 5.

Figure 4.2: (a) Probability values and windowed probability values; (b) Kinetic

energy of the robotic system.
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Chapter 5

Online BCI Based Robotic Experiments Utilizing Posterior

Probabilities

In this chapter, we present a systematic approach that enables online modifica-

tion/adaptation of robot assisted rehabilitation exercises by continuously monitor-

ing intention levels of patients utilizing an EEG based BCI. In particular, we use

LDA to classify event-related synchronization (ERS) and desynchronization (ERD)

patterns associated with motor imagery; however, instead of providing a binary

classification output, we utilize posterior probabilities extracted from LDA classifier

as the continuous-valued outputs to control a rehabilitation robot as described in

detail in Chapter 4.

The experimental procedure we describe in this chapter corresponds to the BCI-

based robotic control paradigm we propose for rehabilitation experiments. This

chapter simply describes the approach and demonstrates its implementation to

achieve real-time control of a rehabilitation robot. Since giving patients real-time

control over the speed of the task, the proposed approach ensures active involve-

ment of patients throughout exercise routines and has the potential to increase the

efficacy of robot assisted therapies. Chapter 7 contains a detailed analysis of this

protocol and its comparison with other rehabilitation protocols.

5.1 Designed BCI System

An experiment consists of an offline session which is similar to the experimental

paradigm presented in Section 3.2.2 and an online session. For online sessions the

testing interface presented in Section 3.2.1 was used. The task of the subject is to

move a virtual green ball by means of imagery right arm movements.
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During online sessions, the posterior probabilities assigned to right arm imagery

movement class are considered to control the velocity of the robot. As it is known

that the true class is always right arm imagery movement, only true positive (TP)

and false negative (FN) right arm imagery movements are analyzed. Therefore,

if data are classified as a rest period, than it is a FN decision and the value of

the posterior probability assigned to right arm imagery movement class is equal

or less than 0.5 where for TP decisions it is equal or greater than 0.5. For that

reason, FN posterior probabilities assigned to right arm imagery movement class,

are used as a decreasing effect where TP right arm imagery movement posterior

probabilities have an increasing effect on the speed of the robot. Moreover, to have

smooth movements at the robotic system, the mean of the posterior probabilities

in the temporal window is calculated and fed to the input of the robotic system.

A 3-second window is shifted along the data and the classifier produces a posterior

probability output for every second using the model built in the offline session.

The recording configuration uses Ag-Cl electrodes at C3, Cz, C4 locations of the

international 10-20 electrode placement system, at 512 Hz sampling rate. Their

anterior and posterior channels are used as references. By subtracting the average

of the data received from upper and lower neighbor channels of a main channel,

three referenced main channels are obtained.

5.2 Designed Robotic System

AssistOn-Mobile, a 3 DoF series elastic actuator, is used for assisting pa-

tients while completing therapeutic table-top exercises. AssistOn-Mobile consists

of a 3-DoF planar, compliant parallel mechanism coupled to an omni-directional

Mecanum-wheeled mobile platform. The deliberate introduction of a multi-DoF

compliant element between the mobile multi-DoF actuation unit and the patient

transforms the non-backdriveable active holonomic platform into a multi-DoF series

elastic actuator.

In addition to administering active, passive, and resistive therapeutic exercises,

AssistOn-Mobile can assist-as-needed [60], that is, it can interactively adjust

the amount of assistance, to help increase the training efficiency by ensuring active

participation of patients. AssistOn-Mobile can also easily be integrated with
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BCI using PVFC as detailed in the next section. A picture of AssistOn-Mobile

is presented in Figure 5.1.

Figure 5.1: A prototype of AssistOn-Mobile

5.3 Online Integration of BCI with AssistOn-Mobile

Contour following tasks are preferable in rehabilitation, since these exercises em-

phasize coordination and synchronization between various DoF during therapeutic

exercises, while allowing patients to take control of exact timing along the path.

Trajectory following controllers cannot guarantee that patients are always on the

pre-determined path due to the radial reduction phenomena [63, 64]. Hence, we

utilize PVFC to administer contour following tasks.

Employment of PVFC is advantageous in rehabilitation exercises, since with this

controller in place, the task and the speed of the task can be decoupled from each

other. Consequently, patients can be allowed to proceed with their preferred pace,

while assistance can still be provided as determined by the therapist. In PVFC, the

task is embedded in a predefined velocity field, while the speed of the task depends

on the instantaneous energy of the closed loop system. In particular, PVFC mimics

the dynamics of a flywheel; therefore, it cannot generate energy, but can only store

and release the energy supplied to it. As a result, the controller renders the closed-

loop system passive with respect to externally applied forces. This is one of the

unique features of PVFC, as classical passivity-based robot control laws [65–67]

cannot guarantee passivity when external forces (other than joint motor torques)
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are considered as the input. Passivity with respect to external forces is crucial

in human-machine interaction, since it enhances safety by limiting the amount of

energy that can be released to the operator, especially in case of an unexpected

system failure.

In PVFC, the pace of the task is determined by the total energy present in the

system. This energy is due to the initial conditions and the work done by the external

forces, that is, the energy provided/subtracted by the patient and disturbance forces

acting on the system. However, the speed of the contour following task can also be

controlled by regulating the total energy of the system by the actuators through

an exogenous control term appended to the original PVFC controller. This extra

control term features a speed coefficient r that allows easy modification of the task

speed. The reader is referred to [61,68,69] for theory and implementation details of

PVFC.

For BCI experiments, to enable online adaptation of robot assisted rehabilita-

tion exercises with the intention of the patients, the posterior probabilities extracted

from the LDA classifier are used as the continuous-valued outputs to PVFC. These

outputs correspond to the instantaneous levels of motor imagery during the move-

ment, and are used to guide the speed of the contour following task by directly

adjusting the speed coefficient r in PVFC. With increased level of “intention”, a

higher speed to complete the task is supplied to the patient providing feedback to

encourage active participation of the patient.

5.4 Experiments

We have performed a feasibility study with a healthy subject for a single session

in order to validate the applicability of the proposed control scheme. The subject

(Subject 9 in Table 3.1) whose offline session data had 72% averaged classification

accuracy, participated in the experiment involving control of AssistOn-Mobile.

The experimental setup consists of a Biosemi ActiveTwo EEG System and

AssistOn-Mobile robot as shown in Figure 5.2. PVFC is implemented in real-

time with a sampling frequency of 500 Hz through a desktop computer equipped

with a PCI I/O card.
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Figure 5.2: Experimental setup consisting of the Biosemi ActiveTwo EEG measure-

ment device and AssistOn-Mobile

The experiment starts by introducing EEG-based BCI system to volunteers using

the test algorithms detailed in Section 5.1. Once the subject is ready, the first phase

of the experiment is initiated to familiarize the subject with the online modification

of the speed of the contour following task. In this phase, the subject is instructed

to control AssistOn-Mobile via motor imagery of his/her right arm movements

tracing the contour, without causing any actual movement with the arms. At this

phase, there is no physical interaction with the robot, but the subject is placed in

front of AssistOn-Mobile so that he/she can observe the result of the intended

movement.

In the second phase, the subject is attached to AssistOn-Mobile and asked not

to make any voluntary arm movements, while he/she controls the robot via motor

imagery of his/her right arm movements tracing the contour using the proposed

control framework. In order to avoid sudden variations in the contour tracking speed,

instantaneous signals provided by the BCI classifier at each second are averaged over

3 seconds using a moving window for a smoother therapy experience.

This phase of the experiment starts with AssistOn-Mobile in idle condition

and the user is instructed to imagine moving his/her right arm to follow the desired

contour, which is taken as a straight line for simplicity. With increased level of

intention, a higher speed to complete the task is supplied to the patient providing
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Figure 5.3: (a) Moving window averaged probability of patient intention and (b)

kinetic energy of the augmented system

positive feedback to encourage the active participation of the patient. Once the

contour is traversed in forward direction, motion of the device is deliberately stopped

and the subject is instructed to rest for a few seconds. Then, the contour is traversed

backwards.

Figure 5.3 depicts a sample plot for the kinetic energy of the system, as well as

the windowed probability values provided to PVFC at each second throughout the

exercise. As detailed in Section 5.2, PVFC can regulate the speed of the contour

tracking task by providing/extracting energy to/from the system through its control

parameters depending on the intention level of subjects. Therefore, kinetic energy of

the overall system presented in Figure 5.3(a) is directly proportional to the tracking

speed in the given desired velocity field [70]. Comparing Figure 5.3(a) and (b), it
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can be observed that PVFC can successfully administer the contour following task

at the speed levels dictated by the BCI signals.

Figure 5.4 presents the magnitude of the resultant interaction forces between the

subject and AssistOn-Mobile during the same trial. During a large portion of the

exercise, the subject applies no apparent external forces, while some unintentional

movements can be observed at several instances. Note that residual movements,

such as involuntary contractions, can also be applied by patients on the device.

Thanks to inherent passivity of our contour tracking controller with respect to ex-

ternal forces, the coupled human-robot system stays passive and faithfully tracks

the desired contour even under such forces.
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Figure 5.4: Force readings during the exercise.

5.5 Conclusions

In this chapter, we have proposed and implemented a BCI-based robotic reha-

bilitation system that enables online control of the robot’s velocity with the im-

plicative probabilities of intention extracted from the LDA classifier. The control

scheme was successfully implemented on the AssistOn-Mobile, where the speed

of contour tracking was increased with increased intention level classified by BCI.

Since this rehabilitation system was primarily designed for patients with little to

no motion capability, increased intention to move the injured limb will be rewarded

by faster task execution. On the contrary, lower intention levels will be penalized

by slowing down the movement and halting it at the worst case. This real-time
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modification/adaptation of the robot’s velocity, ensures the active participation of

the patient to his/her task. The proposed framework with contour tracking exer-

cises has been shown to enable seamless on-line modification of task speed without

endangering the safety of the patient, especially due to externally applied forces.
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Chapter 6

Detection of Intention Level in Response to Task Difficulty

from EEG

In Chapter 4 and 5, we have proposed a method which uses the posterior prob-

abilities as the instantaneous intention levels of motor imagery but we have not

analyzed the relationship between them. Hence, in this chapter, we present an

approach that enables detecting intention levels of subjects in response to task diffi-

culty utilizing an EEG based BCI. In particular, we use LDA to classify event-related

synchronization (ERS) and desynchronization (ERD) patterns associated with right

elbow flexion and extension movements, while lifting different weights. We observe

that it is possible to classify tasks of varying difficulty based on EEG signals. Ad-

ditionally, we also present a correlation analysis between intention levels detected

from EEG and surface electromyogram (sEMG) signals. Our experimental results

suggest that it is possible to extract the intention level information from EEG sig-

nals in response to task difficulty and indicate some level of correlation between

EEG and EMG. With a view towards detecting patients’ intention levels during

rehabilitation therapies, the proposed approach has the potential to ensure active

involvement of patients throughout exercise routines and increase the efficacy of

robot assisted therapies.

6.1 BCI System

The training part of the Interface Type II (see Section 3.2.1) was used as the

BCI component of this study to build datasets which contain resting and movement

periods. A trial consists of a passive period followed by an active period with a

cue. At the beginning of a trial, an acoustic stimulus indicates the beginning of a
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trial and then a cross ‘+’ is displayed for 6 seconds which indicates a passive period.

Then, a right arrow or ‘Relax’ text appears as a cue for 6 seconds. Therefore, the

length of each trial is 12 seconds as shown in Figure 6.1. The order of the cues

is random and a session consists of 3 runs with 20 trials (10 trials for right arm

movement and 10 trials for relax).

Figure 6.1: Timing scheme

6.2 EEG Experiments

A cue-based synchronous offline experiment consisting of 3 consecutive sessions

with resting periods between each them to avoid fatigue, was designed to detect

the intention level in response to task difficulty, from EEG signals. The task of

the subjects is to relax or execute right elbow in fully flexed position followed by

extension movements while lifting loads of different weights by their right hands

according to the cues shown in the interface. The first session involves flexion and

extension movements without any load. In the second session, the subject lifts a

dumbbell when asked to execute right arm movements. For the third session, the

weight of the dumbbell is increased. The weight of the lifted loads varies between

1280− 7280 g depending on the subject’s skeletal muscles’ maximum power output.

6.2.1 EEG Data Collection

For EEG recordings, a Biosemi ActiveTwo EEG System is used. The recording

configuration uses Ag-Cl electrodes at C3, Cz, C4 locations of the international 10-20

electrode placement system, at 512 Hz sampling rate. Their anterior and posterior

channels are used as references. By subtracting the average of the data received

from anterior and posterior channels of a channel, three referenced main channels

are obtained.
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6.2.2 EEG Data Analysis

In this study, ERD and ERS are mainly characterized by the help of spectral

powers computed in the typical EEG alpha (α, 8−13Hz), sigma (σ, 14Hz−18Hz),

beta (β, 16 − 24Hz) and beta2 (β2, 24 − 30Hz) frequency bands related to the

preparation of the movements. To analyze these frequency bands the Short Time

Fourier Transform is applied to each trial. The activity of the brain can be observed

after the cue is shown. Hence, instead of analyzing frequency bands of the entire

signal, a timing window is used. Afterwards, the average power spectral densities of

the 4 selected frequency bands are calculated and selected as features. Therefore, 4

different spectral power densities are calculated for 3 different electrodes resulting

in a 12-dimensional feature vector.

The performance of the LDA classifier is measured by applying two-fold cross

validation for 300 times to obtain different training and test data sets which con-

sists of the 75% and the 25% of the entire data, respectively. Overall classification

accuracy is obtained by averaging over these 300 classification experiments.

The first classification problem is built separately for each session to classify right

arm movement periods vs. resting periods. In the second classification problem, each

session is classified against each other (load 1 vs load 2, load 1 vs. load 3, load 2 vs.

load 3). Finally, the third classification problem contains 3 classes (load 1, load 2,

load 3) and tries to find which load was being lifted during the trial. We note that

load 1 indicates no load; load 2 is the lighter load, and load 3 is the heavier load.

Right handed 2 subjects, aged 23 and 25, have participated in this study. The

classification accuracies obtained are listed in Tables 6.1, 6.2 and 6.3. For this

experiment, β is found as the most informative frequency band. Therefore, the

classification results where only the power spectral density of β is used as the

feature, are also presented. The results show that movement periods can be detected

successfully and the intention level of the subject in response to task difficulty may

be extracted from the EEG signals with promising accuracy. Note that results in

Tables 6.1 and 6.2 correspond to a two-class problem, whereas those in Table 6.3

correspond to a three-class problem.
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Session Frequency Subject A Subject B

1 all 79.64 83.43

β 82.10 78.55

2 all 83 79.60

β 85.38 78.29

3 all 88.22 87.36

β 89.60 86.21

Table 6.1: Classification accuracies of the first classification problem (load vs. relax)

of the EEG based experiments.

Load Frequency Subject A Subject B

1 vs. 2 all 58.64 55.31

β 64.62 63.90

1 vs. 3 all 88.31 79.05

β 94.32 73.19

2 vs. 3 all 80.90 78.95

β 89.45 79.52

Table 6.2: Classification accuracies of the second classification problem of the EEG

based experiments.

Frequency Subject A Subject B

all 62.92 60.59

β 69.83 61.11

Table 6.3: Classification accuracies of the third classification problem of the EEG

based experiments. This is a three-class problem.
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6.3 EEG and EMG Experiments

EEG classification experiments in Section 6.2.2 have provided evidence that the

EEG signals contain information about motor task difficulty. In this section, we con-

sider a slightly different experimental set up, and not only run similar classification

experiments to Section 6.2.2, but also provide an alternate evaluation mechanism to

explore the same question. In particular, we exploit (and also verify) the well-known

direct relationship between rectified sEMG signals and the weight of the load, and

evaluate the correlation between simultaneously recorded EEG and sEMG signals.

In this experiment, subjects are asked to execute flexion and extension movements

where the elbow flexion is limited to 30◦ as shown in Figure 6.2. The angular limit

in the elbow flexion plays an important role in the accuracy of the sEMG signal

validation.

In this experiment, sEMG signals are collected simultaneously with EEG signals,

from the biceps branchii, which is the muscle that lies on the upper arm between

the shoulder and the elbow, with the aid of surface electrodes of a sEMG signal

acquisition device (Delsys-Bagnoli-8). In particular, raw sEMG signals sampled at

1 kHz (using NI USB 6251) are filtered against inherent environmental noise and

artifacts with a band-pass filter with a passband of 20-500 Hz. Then, these signals

are full-wave rectified. The full-wave rectified signals are later utilized to extract the

relation between the force exerted by the muscle and the intensity of sEMG signals.

Figure 6.2: Elbow flexion of 30° followed by extension.
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6.3.1 EEG Data Analysis

Right handed 3 subjects (1 male, 2 females), aged 23-31, have participated in the

EEG-EMG experiments. The same classification problems presented in Section 6.2.2

are analyzed and the accuracy results are shown in Tables 6.4, 6.5 and 6.6. The

results support the inferences of Section 6.2.2 and demonstrate that elbow flexion

which is limited to 30◦ periods, can be detected successfully and the intention level

of the subject in response to task difficulty may be extracted from the EEG signals.

Since we have obtained promising accuracies when the average power spectral

densities of alpha (α, 8−13Hz), sigma (σ, 14Hz−18Hz), beta (β, 16−24Hz) and

beta2 (β2, 24−30Hz) frequency bands were used as the features of the LDA classifier,

we present a correlation analysis in Section 6.3.3 between these EEG features and

the intention level features detected from sEMG.

Session Frequency Subject C Subject D Subject E

1 all 62.43 53.64 69.17

β 59.38 53.64 65.62

2 all 71.72 60.45 74

β 76.67 72.21 59.86

3 all 84.69 61.95 66.64

β 83.23 64.69 71.03

Table 6.4: Classification accuracies of the first classification problem of the EEG-

EMG based experiments.
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Load Frequency Subject C Subject D Subject E

1 vs. 2 all 60.98 75.19 67.14

β 70.74 77.31 64.12

1 vs. 3 all 84.46 76.36 76.26

β 78.64 77.82 73.82

2 vs. 3 all 75.69 78.90 65.67

β 60.74 74.21 68.15

Table 6.5: Classification accuracies of the second classification problem of the EEG-

EMG based experiments.

Frequency Subject C Subject D Subject E

all 54.65 63.37 49.85

β 52.017 68.45 49.84

Table 6.6: Classification accuracies of the third classification problem of the EEG-

EMG based experiments. This is a three-class problem.

6.3.2 EMG Data Analysis

The RMS value of the sEMG signal is correlated with the level of physiological

activities in the motor unit during muscle contraction. Hence, four different features

were extracted from the RMS value of sEMG signals to reflect the properties of the

muscle activation level depending on the executed task [71]. In particular, the

maximum, sum and energy of the data inside the window containing the 3000th −

5000th samples (5.9 − 9.8s) and the energy of the 1500 samples centered around

the maximum point of the EMG in a trial were used as the EMG features. In

Figure 6.3, the means and the standard deviations of each feature calculated from

the sEMG of Subject D and their p-values obtained from a t-test are shown. The

increasing value of these features as a function of task difficulty indicates the positive

correlation between the two, which is an expected behavior.
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Figure 6.3: EMG features and p-values of Subject D: (a) Maximum, (b) sum, (c)

energy of the signal between the 3000th−5000th samples, and (d) energy of the 1500

samples centered around the maximum point of the EMG in a trial.

6.3.3 Correlation Analysis

Given the well-known relationship between the EMG signals and task difficulty,

we are now interested in analyzing the correlation between features extracted from

EEG and EMG signals. This analysis is aimed at supplementing our EEG clas-

sification experiments, which have already demonstrated that EEG signals are in-

formative about intention levels of the subjects in response to task difficulty. The

EEG-EMG correlation study provides an alternate analysis. The correlation co-

efficients for each of the EMG features were calculated for each frequency band,

electrode and subject. The mean correlation coefficients across the EMG features

for each subject are shown in Figure 6.4(a) and across the subjects for each EMG

feature are presented in Figure 6.4(b). We observe that the correlation between the

EMG features and the EEG features from the C3 and Cz channels are consistent

for each subject and for each EMG feature. Moreover, the correlation coefficients

calculated in the C4 channel are less than C3 and Cz, when we use the all and alpha

frequency bands as the EEG feature vector. Because for movement and imagery

right arm tasks, a more intense response is obtained in C3 than in C4, indicating

52



laterality in the motor cortex [12,58,59].

Figure 6.4: Correlation analysis: (a) The mean correlation coefficients across the

EMG features for each subject, (b)the mean correlation coefficients across the sub-

ject for each feature.

6.4 Conclusions

In this chapter, we considered the question of whether EEG signals can provide

information about the intention level of a subject in a motor task experiment in

response to task difficulty. This is motivated by the desire to exploit information

about the level of intention of patients in BCI-based robotic rehabilitation. We

designed two distinct data collection experiments involving different levels of elbow
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flexion and extension movements. Each experiment contained sessions dedicated to

lifting loads of different weights, leading to varying levels of task difficulty. We col-

lected EEG data using a cue-based synchronous set up, where subjects were asked

to rest or to execute right elbow extension and flexion movements while lifting var-

ious weights. We used LDA to classify the ERD/ERS patterns. We posed several

two-class and three-class classification problems, where classes correspond to task

difficulty (weight of the load lifted) or indicate a relaxation interval. Our experi-

mental results suggest that it is possible to extract information from EEG signals

about the intention level of the subjects in response to task difficulty. In the second

experiment, we collected EMG data in synchrony with the EEG data as well. Since

EMG data are known to capture information about task difficulty in a motor task

execution experiment, we also examined the information content of the EEG signals

about task difficulty by analyzing the correlation between features extracted from

EEG and EMG signals. Our results indicate some level of correlation between the

two types of signals. On the other hand, the experiments presented in this chapter

have some limitations which can be summarized as follows:

• During each following session, the weight of the loads gets heavier (e.g. In

the first session, the subjects have not lifted any load and in the last session,

they have lifted the heaviest load.). This may cause fatigue, and we may

classify the fatigue state rather than the intention levels from the EEG. On

the contrary, when there is fatigue, the task will be more difficult for the

subject and therefore we may still detect the intention levels in response to

task difficulty. Consequently, it will be worth to conduct these experiments

with different order of sessions.

• Because of real arm movements, there will be some EMG artifacts in the EEG

signals. There are several published works to eliminate the muscle artifacts

from the EEG, by using linear filtering, regression, blind source separation,

principal component analysis etc. [72]. An additional step which uses one of

these methods may be added to be sure if the EEG features are classified or

not.
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Chapter 7

Comparative Experimental Analysis of BCI-Assisted

Robotic Rehabilitation

Up to now, we have built an online EEG-based BCI system which has the po-

tential to infer the motor imagery states of the subject to control a rehabilitation

robot (see Chapter 5) and we have investigated the intention level information in

the EEG as described in Chapter 6. Our agenda for the remainder of this thesis,

is to present a series of online experiments to analyze the motivating key points of

this study, which are listed as follows:

• Impact of robotic haptic feedback on BCI performance

• Comparison of using BCI continuously throughout robotic movement versus

just for triggering the robotic movement

• Impact of the presence of BCI within the rehabilitation protocol on the motor

cortical activity of the subject.

For this purpose, in this chapter, we present the new procedures and mecha-

nisms we have developed for the use of the designed EEG-based BCI system in

robotic rehabilitation, analyze the subject’s active involvement levels, and present

the detailed results with their conclusions.

7.1 Experimental Paradigm

In the state-of-art BCI-based rehabilitation systems the patients are asked to

control a robotic device to which their arms are attached or to control a virtual sys-

tem without obtaining any haptic feedback. In Chapters 4-5, we have implemented
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offline and online robotic experiments but we have not analyzed the effect of online

modification of the robot’s velocity. Moreover, we have not conducted any online

experiment to control a virtual ball presented in the testing part of the Interface

Type II in Section 3.2.1. Therefore, we have not analyzed the effect of haptic or

visual feedback on the active participation of the subject.

Consequently, an experiment in which the subject is asked to control a virtual

ball of a VR shown on the screen or a robotic system, in particular AssistOn-

Mobile , by means of right arm imagery movements, was designed to analyze the

key issues listed at the beginning of this chapter.

A representative set-up of the experiments is shown in Figure 7.1.

Figure 7.1: Representative experiment set-up.

An experiment consists of one session recorded in a day with consecutive 7

conditions (C1, C2, C3, C4, C5, PA ,PP ) where each condition includes its own

training and testing blocks as briefly shown in Table I. The order of the conditions

was randomized and there were resting breaks between each condition to prevent

fatigue and any systematic effect.
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Conditions Training Testing

C1 Robot moves BCI assisted robot

C2 Robot does not move BCI assisted robot

C3 Robot moves BCI triggered robot

C4 Robot does not move BCI assisted VR

C5 Robot does not move BCI triggered VR

PP - Patient passive

PA - Patient active

Table 7.1: Experiment conditions.

The EEG signals were measured over C3, Cz, C4 locations of the international

10-20 electrode placement system, at 2048 Hz sampling rate. Their anterior and

posterior channels are used as references (CP3, FC3 for C3, CPz, FCz for Cz and

CP4, FC4 for C4). By subtracting the average of the data received from anterior

and posterior channels of a channel, three referenced main channels are obtained.

We note that the C3 and C4 notation indicates the condition 3 and 4, whereas the

C3 and C4 notation indicates the name of the channels.

13 right-handed healthy subjects participated in this study voluntarily. All sub-

jects participated in all conditions of an experiment. Before the experiments, all

subjects have attended in a session in which they experience all the conditions of

an experiment. Moreover, the subjects gave informed consent by signing a form.

Among 13 subjects, the results given in this study are based on 6 of them, since

the remaining 7 subjects’ data are inconsistent for each condition. Low classification

accuracies (below 50% for at least 2 conditions) were obtained for these subjects.

Therefore they were extracted from the data analysis part. The remaining 6 subjects

are five males and one female with ages between 24 and 29 years.

In Figure 7.2, one of the excluded subject’s and one of the included subject’s

averaged data across the trials of the C2 condition are shown. In the excluded

subject’s data, resting and MI periods cannot be separated and the classification

accuracy of this condition is 46.2%. In the included subject’s data, the resting and

the MI periods are separated and the PSD values of the MI are smaller than the
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resting periods as it is expected. Moreover, testing and training data are similar,

since they both include MI periods.

Figure 7.2: Subject elimination (results of channel C3).

7.2 Training

We use separate training blocks for each condition. Each training block contains

10 trials (5 MI, 5 resting task) where a trial consists of 8 s of a passive period

followed by 5 s of an active period with a cue. Therefore, the length of each trial is

13 s as shown in Figure 7.3(a). The training Interface Type II (see Section 3.2.1)

was used. The first trial always contains a MI task to remind the condition protocol

and is eliminated for the analysis of the data to have equal size of trials for each

task.

Figure 7.3: (a) Training timing scheme (b) Testing timing scheme of

C1, C2, C4, PA and PP (c) Testing timing scheme of C3 and C5
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In the passive periods the signals are not analyzed to give the opportunity to the

subjects to execute little movements to prevent fatigue before the active periods. In

the active periods, the subjects are asked to rest or imagine right arm movements

according to the cues shown on the screen. In C1 and C3, the robotic system on

which the subjects’ arm is attached, moves forward with a constant velocity during

the right arm imagery movement tasks to assist the subject to be more involved in

their tasks. The robotic system returns to its initial position in 5 s in the passive

periods. In C2, C4 and C5, there is no robotic movement in the training phase.

The subject is asked either to perform MI or rest. The recorded labelled EEG data

are used to train the classifiers, just like in a BCI experiment (such as the ones

described in Chapter 3) without any robotic movement.

7.2.1 Analysis of the Training Data

In Figure 7.4 the logarithm of the averaged PSD values between the second and

the third seconds of the active period, versus the frequency band 0 − 30Hz are

presented for C3, Cz, C4 channels. Looking at the figures, the difference between

the log power values of the resting and MI periods in the alpha frequency band are

greater than the log power values in the other frequency bands. This significant

difference indicates that the alpha frequency band may be used to infer the MI

periods. Moreover, the log power values of the resting periods are greater than the

log power values of the MI periods for all electrodes, since ERD occurs during MI

and the PSD values become smaller.
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Figure 7.4: Averaged log PSDs for robot and non-robot assisted MI tasks.

The training blocks are very important for BCI based systems, since the quality

of the training data directly affects the performance of the classifier and consequently

the efficacy of the BCI systems. In particular, we are interested in understanding

whether such haptic feedback improves the separability of MI and rest classes in the

measured EEG data. To this end, the averaged results over robot-assisted (C1, C3)

and non-robot assisted (C2, C4, C5) conditions are analyzed.

In Figures 7.5 to 7.7, the averaged power spectrum densities across the subjects as

a function of time are shown for the C3, Cz and C4 electrodes. Our key observations

concluded from these figures can be listed as follows:
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• The PSD values of motor imagery (MI) task are smaller than the resting task

as expected in the active period. Consequently, the ERD in the case of motor

imagery (MI) task is more intense.

• The PSD values of MI periods are smaller in channel C3 than Cz and C4.

Because of the laterality in the motor cortex, during the right arm MI tasks,

the left side of the brain becomes more intense [12,58,59].

• The resting periods are similar for robot assisted and non-robot assisted pro-

tocols, since there isn’t any robot movement in the resting periods of the robot

assisted protocols either.

• We observe that the PSD values of resting periods in channel Cz are greater

than the values in the C3 and C4 channels. Since we focused on the MI tasks

to analyze the involvement level of the subject in different protocols in this

chapter, the reason of this observation will be investigated in a future study.

• For the C3 channel, the suppression in the PSD values of the robot assisted

training tasks is more continuous than the non-robot assisted training tasks.

The PSD values of the robot assisted training tasks are suppressed prior to

non-robot assisted tasks.

• For the Cz channel, the suppressions in the PSD values of the robot assisted

and non-robot assisted training tasks are not continuous.

• For the C4 channel, the PSD values of the robot assisted training tasks are

continuously suppressed where the PSD values of the training tasks without

robot assistance increases at 3 s after the cue is shown.

• We may say that the robot assisted training protocols provide more intense

MI tasks for the C3 and C4 channels and the PSD values are more suppressed

in the C3 channel for the robot and non-robot assisted training tasks.
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Figure 7.5: PSD across time values of the electrode C3: Power spectra in movement

periods and the rest periods for the electrode C3 in the frequency band 6−15Hz for

the training blocks with and without the robotic system guiding the subjects arm.
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Figure 7.6: PSD across time values of the electrode Cz: Power spectra in movement

periods and the rest periods for the electrode Cz in the frequency band 6−15Hz for

the training blocks with and without the robotiv system guiding the subjects arm.
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Figure 7.7: PSD across time values of the electrode C4: Power spectra in movement

periods and the rest periods for the electrode C4 in the frequency band 6−15Hz for

the training blocks with and without the robotic system guiding the subjects arm.

A one tailed t-test which tests if the averaged PSDs in the alpha frequency band

of the resting periods are significantly (p = 0.05) greater than the motor imagery

periods (PSDResting > PSDMI) was applied and the p-values are graphically pre-

sented for robot assisted and non-robot assisted training protocols in Figure 7.8.

We can list our key points as follows:

• For the robot assisted training protocols, the PSDResting becomes significantly

greater than the PSDMI 1 s after the cue is shown till the end of the trial.

• The p-values are mostly smaller for the MIs with robot movements than the

MIs without robot movements. This point supports the inference that the

robot assisted training protocols provide more intense MI tasks.

• For all three electrodes, we obtained small p-values. Therefore, we may say

that the feature obtained from C3, Cz and C4 can be used for right arm imagery

movement and resting tasks discrimination.
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Figure 7.8: p-values of t-test (PSDResting > PSDMI) for averaged PSDs in the

alpha, as a function of time. The cue is shown at 0s. (a-b) C3, (c-d) Cz, (e-f) C4

In conclusion, we may say that we can build the training model with better

quality by using the robot-assisted training protocols which measures the EEG over

C3, Cz and C4 channels and uses the averaged PSDs of alpha frequency band as the

features. For this study, we have mainly focused on the C3 channel to analyze the

participation level of the subjects, because of the laterality of the brain.
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7.2.2 Building the Training Model

ERD and ERS are characterized by the help of spectral powers computed in the

typical EEG alpha band (8− 13Hz) for the C3 channel. To analyze this frequency

band the Short Time Fourier Transform is applied to each trial. The activity of

the brain can be observed after the cue is shown. Hence, instead of analyzing

frequency bands of the entire signal, a timing window between 2 and 3 seconds is

used. Afterwards, the average power spectral densities of the alpha frequency band

are calculated and selected as features. Therefore, spectral power densities of alpha

are calculated for 3 different electrodes resulting in a 3-dimensional feature vector.

7.3 Testing

A testing block contains 15 trials where a trial consists of 8 s of a passive period

followed by 5 s of an active period in which the subjects are asked to execute imagery

or real right arm movements (see Figure 7.3(b)). At the beginning of each period,

an acoustic stimulus indicates the beginning of a trial. The feedback to the subject

is given with a virtual ball presented in the testing part of the Interface Type II

(see Section 3.2.1) or AssistOn-Mobile robotic system in the active periods. The

feedback system returns to its initial position during the passive period during which

the signals are not analyzed and waits for the next trial. There are four kinds of

testing blocks which are defined as follows:

• BCI-assisted Conditions: The subjects are asked to execute right arm

imagery movements to move a virtual ball or the AssistOn-Mobile robotic

system as fast as they can. The velocity is updated every 250 ms according

to the outputs obtained from the LDA classifier of BCI, aiming to reflect the

intention level of the subject. In C1 and C2, AssistOn-Mobile provides

haptic feedback, and in C4, the virtual reality system provides a feedback

with a virtual ball.

• BCI-triggered Conditions: In the triggered conditions there is an addi-

tional period between passive and active periods which is called the waiting

period. In this period, the subjects are asked to execute right arm imagery
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movements to trigger a virtual ball or the AssistOn-Mobile robotic system

movement with a constant velocity. When an intention of movement is de-

tected, the waiting period ends and the active period starts. The maximum

and the minimum duration of a waiting period is 10 s and 500 ms long since

the first 250 ms of a waiting period is not analyzed and the first intention can

be detected in the second 250 ms (see Figure 7.3(c)). In the active period,

the feedback system moves with a fixed velocity without considering the LDA

classifier outputs. Therefore even if the subject is not actively involved in the

task during the active period and has a decrease in his/her intention level, the

system gives the same feedback. In C3 and C5, the subjects were asked to

trigger the AssistOn-Mobile and the virtual ball, respectively, by executing

right arm imagery movements.

• Patient Active: In the PA condition, the subjects are asked to move AssistOn-

Mobile by applying forces. The velocity of the robot is updated based on the

applied force magnitude. Therefore, in this condition the subjects are actively

involved in the task.

• Patient Passive: In the PP condition, AssistOn-Mobile moves forward

with a constant velocity and guides the subject’s arm to complete the move-

ment without considering the EEG signals. Therefore, in this condition the

subjects do not control the system and they do not have to execute right

arm imagery movements. This protocol is the conventional robotic rehabili-

tation protocol for the patients whose severe motor disabilities preclude their

voluntary muscle control and physical contribution to their task.

7.3.1 Analysis of the Testing Data

The aim of this study was to compare the active participation level of the subjects

in their tasks in different conditions to find the most efficient rehabilitation concept.

We measure this participation level with the PSD values. Since it is known that

during MI, ERD occurs and the PSD values become smaller, then the active par-

ticipation level may be measured by the values of PSDs. Hence, our objective is to

find a therapy protocol in which the PSD values are continuously the smallest. For
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this analysis, because of the laterality of the brain we have presented the results

obtained from the C3 channel. Therefore, we analyzed the data with 4 small timing

windows (0− 1, 1.25− 2.25, 2.5− 3.5, 3.75− 4.75 s).

The logarithm of the averaged PSD values between the second and the third

seconds of the active period are shown in Figure 7.9 as a function of frequency band

0−30Hz. Looking at the figures, we observe the peaks in the alpha frequency band.

Our key observations, which we subsequently justify through quantitative analysis

in this chapter, are as follows:

• The impact of haptic feedback through robotic movement on cortical

activity (hence BCI performance):

When we examine the results of the BCI-assisted protocols, the log power

values in the alpha frequency band of the C4 in which the virtual ball was

controlled are greater than the values obtained in the condition C1 in which the

haptic feedback was provided to the subject by the robotic system. Moreover

the log power values of the condition C2 which also provides haptic feedback

but has a non-robot assisted training protocol, are close to C4 in the alpha

frequency band.

For BCI-triggered protocols, the C3 protocol in which the robotic system was

controlled has smaller log power values in the alpha frequency band than C5.

This difference may be caused because of the haptic feedback which has the

potential to make the subjects more involved in their tasks.

• The impact of adding BCI to a robotic rehabilitation protocol:

In C1 and PA in which the subjects are the active participant of the

protocol, we observe lower PSD values in the alpha frequency band than values

of the PP condition in which the subject is not an active participant of the

protocol. Consequently, we may say that more intense MIs can be observed

in C1 and PA conditions than PP .

The log Power values computed from the C3 channel are similar for the C1

and the PA conditions. As it known that PA is a protocol which guarantees

the active participation of the subject, we may say that the impact of adding
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BCI in C1 to the robotic rehabilitation protocol has the potential to increase

the subject’s active participation level.

Overall, these observations suggest that BCI-assisted robotic therapy can

enable motor cortical activity, which is

1. similar to a scenario in which the subject could actually execute the

motion,

2. much stronger than the activity produced in a conventional patient-

passive rehabilitation protocol.

• Comparison of two different ways to use BCI (continuous use during

movement versus just to trigger movement):

The BCI-triggered robotic condition C3 has larger log Power values than

the BCI-assisted robotic condition C1. The BCI-triggered VR condition C5

has larger log Power values than BCI-assisted robotic condition C4. These

observations favor the continuous use of the BCI during the MI.

Figure 7.9: Averaged log PSDs for all conditions at C3 channel.

We applied three different types of analysis to investigate these motivating ob-

servations in detail. For this purpose, we present the figures of averaged PSD values
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across the subjects for each condition with their conclusions and we provide the

t-test results of these analysis. In these t-tests, the p-value has been chosen as 0.05

for the statistical significance level.

Analysis 1: The impact of haptic feedback through robotic movement on

cortical activity (hence BCI performance)

In Figure 7.10, the averaged PSD values across the subjects are given for C1,

C2 and C4 conditions for the C3 channel. We can observe from the figure that the

PSD values of C1 are more intense than the PSDs of C4. Since C1 provides haptic

feedback where C4 provides virtual feedback. Moreover, the PSD values in C1 are

more suppressed and more continuous than the values in the C2. The suppression

in the C2 begins prior to the C4 and it is more intense at the beginning of a trial,

but it is not continuous. As the time passes these two conditions become similar.

One tailed and two tailed t-tests were applied to investigate the difference of the

PSD values in these conditions The t-test results given in Table 7.2 and Figure 7.10

show that:

• In the first timing window, the PSD values of C1 are not significantly smaller

than C2 but the p-value is very close to 0.05. As the time passes, for the

other timing windows they become significantly smaller than the values in C2.

Since the C1 has a robot-assisted training protocol, the subject’s performance

is better than C2 because of the quality of training model.

• The PSDC1 is significantly smaller than the PSDC4 for all timing windows.

C1 has a larger ERD than C4 since the feedback was given haptically instead

of virtually.

• At the beginning of the trials (in the first timing window), C2 is more intense

than C4. But in the following timing windows, these two conditions become

similar and they are not significantly different.
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Figure 7.10: PSD values across time for C1, C2, C4 conditions obtained from the

C3 channel.

Table 7.2: p-values for C1, C2, C4.

0–1 1.25–2.25 2.5–3.5 3.75–4.75

C1<C2 0.056017 0.037798 0.02194 0.008087

C1<C4 2.17E-05 0.000801 0.008295 0.000103

C2<C4 0.000963 0.15447 0.532643 0.537954

C1/C2 0.112034 0.075596 0.04388 0.016174

C1/C4 4.33E-05 0.001601 0.016589 0.000206

C2/C4 0.001927 0.308939 0.934713 0.924093

In Figure 7.11 , the averaged PSD values across the subjects are given for C3

and C5 conditions which contain the triggered protocols. From this figure, it can

be observed that the ERD in C3 is greater than C5. This may be because of the

haptic feedback provided in C3. One tailed and two tailed t-tests results are given

in Table 7.3. The significant p-values in every timing window indicates that the
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PSDC3 is smaller than the PSDC5. Therefore, the haptic feedback through robotic

movement appears to enhance the MI activity observed in the motor cortex. This

suggests the potential of haptic feedback to improve BCI performance.

Figure 7.11: PSD values across time for C3, C5 conditions obtained from the C3

channel.

Table 7.3: p-values for C3, C5.

0–1 1.25–2.25 2.5–3.5 3.75–4.75

C3<C5 0.016046 6.64E-05 4.7E-08 5.2E-09

C3/C5 0.032093 0.000133 9.41E-08 1.04E-08

Analysis 2:The impact of adding BCI to a robotic rehabilitation protocol.

In Figure 7.12, the averaged PSD values across the subjects are given for C1,

PA and PP . In PA, the subject is the active participant, whereas in PP , the

subject is passive. C1 is the condition which has a robot assisted training protocol

that gives the opportunity to build training models with better quality and in the

testing block C1 uses the BCI as the continuous controller of the robot’s velocity.

We compared C1 with PA and PP conditions to investigate the impact of adding

BCI to a robotic rehabilitation protocol.

Examining Figure 7.12, we may say that PSDPP is greater than PSDC1 and

PSDPA. This is an expected behaviour, since in PA, it is known that the patient

actively moves his/her arm, whereas in PP the robot moves the subject’s arm when
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the subject is passive , and finally in C1 the subject tries to actively imagine right

arm movement. Moreover, we cannot differentiate PA and C1 by looking their PSD

plots.

One tailed and two tailed t-test results are given in Table 7.4. The significant p-

values in every timing window indicates that the PSDC1 is smaller than the PSDPP .

PSDPA is significantly smaller than PSDPP for all timing windows except the last

one. Moreover, according to the results, PSDC1 and PSDPA are not significantly

different except the last timing window. This result is promising for BCI-based reha-

bilitation, since having a rehabilitation system for stroke patients which helps them

to imagine movements as strong as the active movements, may increase the effec-

tiveness of the therapy. Therefore, we may make an PSDPA
∼= PSDC1 < PSDPP

order to measure the participation level of the subjects.

Figure 7.12: PSD values across time for C1, PA, PP conditions obtained from the

C3 channel.
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Table 7.4: p-values for C1, PA, PP .

0–1 1.25–2.25 2.5–3.5 3.75–4.75

C1<PA 0.176782 0.202874 0.234988 0.021459

C1<PP 0.002824 0.001112 0.00206 0.003573

PA<PP 0.040901 0.001749 0.008047 0.094319

C1/PA 0.353564 0.405747 0.469977 0.042918

C1/PP 0.005648 0.002225 0.004119 0.007147

PA/PP 0.081802 0.003498 0.016093 0.188638

Analysis 3: Comparison of two different ways to use BCI for robotic con-

trol (continuous use during movement versus just to trigger movement.):

In Figure 7.13, the averaged PSD values across the subjects are given for BCI-

assisted and BCI-triggered robotic control conditions C1 and C3. From this figure,

it can be observed that the ERD in C1 is more intense than in C3. One tailed

and two tailed t-tests results are given in Table 7.5. At the beginning of a trial

the difference between these two conditions are not significant. But in the following

timing windows, PSDC1 becomes significantly smaller than PSDC3.

Figure 7.13: PSD values across time for C1, C3 conditions obtained from the C3

channel.

In Figure 7.14, the averaged PSD values across the subjects are given for BCI-

assisted and BCI-triggered VR conditions C4 and C5. From this figure, we see that

the ERD in C5 is not continuous and the PSDC5 values are getting larger than C4

as the time passes. From the one tailed and two tailed t-tests results given in Table
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Table 7.5: p-values for C1, C3.

0–1 1.25–2.25 2.5–3.5 3.75–4.75

C1<C3 0.12701 0.001001 0.012594 0.001346

C1/C3 0.25402 0.002002 0.025187 0.002693

7.6, we see that in the first timing window these two conditions are not significantly

different but in the other three timing windows PSDC4 is significantly smaller than

PSDC5.

Figure 7.14: PSD values across time for C4, C5 conditions obtained from the C3

channel.

Table 7.6: p-values for C4, C5.

0–1 1.25–2.25 2.5–3.5 3.75–4.75

C4<C5 0.951512 0.000143 5.15E-06 1.06E-07

C4/C5 0.096975 0.000286 1.03E-05 2.11E-07

In conclusion, in this analysis we compared the two different ways to use BCI for

robotic control (continuous use during movement versus just to trigger movement.).

We may conclude that the continuous use of BCI may help the subject remain

continuously involved in their tasks.
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7.3.2 Classification

In the previous sections of this chapter, we have analyzed the structure of the

training and the testing data. We have concluded that adding BCI to a robotic reha-

bilitation system has a potential to help the patient imagine movements as strong as

the active movements and increase the effectiveness of the therapy. The efficacy of

the BCI is very important for the robotic rehabilitation systems, to provide “assist-

as-needed” protocols. Therefore in this section, we compare the performance of the

ways (triggered/assisted) to use BCI and the methods (haptic/visual) to provide

feedback. For this purpose, we analyzed the MI detection performance of the LDA

classifier for C1, C2, C3, C4 and C5 conditions.

In the training blocks, we have collected data of two classes (right arm imagery

movement and resting task). On the other hand, in the testing blocks the subjects

were asked to imagine only right arm movements. Therefore, we have built a de-

tection problem for MI periods rather than a classification problem. Two different

values were used to present the two classes. 2 is used to indicate MI tasks where the

resting tasks are indicated by 1. In the testing block, the LDA classifier uses the

power spectrum densities in the alpha frequency band as the feature and produces

an output in each 250 ms. The first 500 ms and the last 250 ms of an active period

are not analyzed. Therefore by using Equation 7.1, there are 17 window samples

for each trial and 255 for a condition. The outputs are averaged in a moving win-

dow of 1 s and form a continuous input for the feedback system for online velocity

modification.
5 s− 750 ms

250 ms
= 17 windows. (7.1)

As the power spectral densities of one frequency band (alpha) are calculated

for 3 different electrodes, we obtain a 3-dimensional feature vector. In the online

experiments, we have used the features obtained from C3, Cz, C4 electrodes. But for

the offline analysis of the data, we have focused on the C3 channel. Because during

the right arm MI tasks, the left side of the brain becomes more intense [12, 58, 59].

Consequently, we present our results obtained by only using the C3 channel which

is located on the left hand side of the brain.

The training blocks for each condition are independent and separate classifiers

are learned from such training data. Therefore, although both C1 and C3 have
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robot assisted training protocols, they have their own training blocks. In the same

way, C2, C4 and C5 have their own training blocks.

In Figure 7.15, three vectors which are averaged across the subjects and normal-

ized by using Equation 7.2 to visualize their relationship are presented in the time

domain for the C3 channel:

V ectornormalized =
V ector −min(V ector)

max(V ector)−min(V ector)
. (7.2)

1. PSD vector: The PSD values obtained from the C3 channel which are the

inputs of the classifier. As the PSD values decrease the subject becomes more

involved to his/her tasks.

2. Feature vector: The vector obtained by multiplying the PSD vector with the

weights assigned by the classifier’s training model.

3. Class vector: The classifier’s outputs. As they are normalized values, 1 indi-

cates the classes detected as MI periods where 0 indicates the detected resting

periods (before the normalization they were 2 and 1). Therefore if a class

value is close to 1, this means the classification accuracy in that time point is

close to 100%.

The inversely proportional relationship between the PSD vector and the class

vector can be seen in this figure. The active period starts at 0 in the time domain by

showing the cue on the screen. For all conditions after that time point, the smaller

PSD values and consequently larger classification accuracies are obtained.
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Figure 7.15: Averaged classification results across subjects and trials in the time

domain with one input channel C3.

In Figure 7.16, we present the averaged feature, class and PSD vectors in the

4 small timing windows (0 − 1, 1.25 − 2.25, 2.5 − 3.5, 3.75 − 4.75 s) which are also

used for the t-test of the testing data. The class vector is directly proportional to

the feature vector and inversely proportional to the PSD vector.
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Figure 7.16: Averaged classification results in the four timing windows obtained

from the C3 channel.

To see the differences among the conditions, in Figure 7.17, we present the

normalized results of each condition in the same plot. For this purpose, the vectors

were divided by the maximum value of the three vectors to obtain the normalized

data. The class and the PSD vectors are inversely proportional.

• The impact of haptic feedback through robotic movement on corti-

cal activity: According to the averaged class vector results across the sub-

jects and the trials, the classification accuracies of C1 which provides haptic

feedback are greater than C4 for every timing window. Moreover, for BCI-

triggered conditions, C3 in which the feedback is given haptically has a better

accuracy than C5 which provides visual feedback. This may be because the

robotic system assists the subjects during the training and testing blocks.

• Comparison of two different ways to use BCI (continuous use dur-

ing movement versus just to trigger movement.): In the classification

results shown in Figure 7.17, the performance of C3 which is a BCI-triggered
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condition, decreases across the time where the performance of C1 which is a

BCI-assisted condition stays consistent and has higher performance than C3.

This may be because of the continuous assistance of the BCI system. Besides,

although C5 gives a better performance than C4 in the first timing window,

as the time passes by its accuracies become smaller and C4 becomes better

than C5. C4 provides BCI-assisted control where C5 provides BCI-triggered

control and does not use the BCI output to control the feedback system.

Figure 7.17: Averaged classification results in the four timing windows of every

condition and their feature vectors.

In Table 7.7, the classification accuracies of the experiment for each subject and

each condition are presented. The independent training data was used to build the

training model and the C3 electrode is selected as the input channel.

The averaged classification accuracies across the subjects can be listed asACCC1 >

ACCC2 > ACCC3 > ACCC4 > ACCC5. Since the accuracy results given in this

table, contain all timing points, we cannot differentiate the accuracy change in the

time domain (e.g. the performance decrease of the C3 and C5 in the time domain
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Table 7.7: Classification accuracies averaged across the trials for each condition and

subject.

Classification Accuracy

c1 c2 c3 c4 c5

S1 94.5098 83.52941 93.72549 92.15686 61.56863

S2 98.03922 84.31373 97.64706 92.94118 68.23529

S3 84.70588 88.23529 43.13725 85.09804 81.96078

S4 95.29412 80.78431 90.19608 34.90196 71.76471

S5 84.70588 98.82353 99.21569 93.72549 71.76471

S6 68.23529 77.64706 78.82353 74.5098 70.58824

average 87.5817 85.55556 83.79085 78.88889 70.98039

cannot be observed from this table.). Therefore, tehse results are used to support

our previous results.

To sum up, in Figure 7.18, the overall analysis results have been shown. From

the logarithm of PSD values as a function of frequency band 0 − 30Hz , we have

extracted our motivating observations to apply three different analysis (see Figure

7.9):

1. Analysis 1: The impact of haptic feedback through robotic movement on cor-

tical activity. C1 vs. C2 vs. C4

2. Analysis 2: The impact of adding BCI to a robotic rehabilitation protocol.

C1 vs. PA vs. PP

3. Analysis 3: Comparison of two different ways to use BCI for robotic control

(continuous use during movement versus just to trigger movement.) C1 vs.

C3 and C4 vs. C5.

According to the peak values in the alpha frequency band shown in Figure 7.9,

we have defined an order of PSD values, which is not based on a statistical analysis.

Afterwards, we have presented the PSD value plots of each condition in the time

domain (see Figures 7.10 to 7.14), and we have analyzed the figures with these pre-

defined three analysis. Moreover, we have conducted a t-test over the conditions for
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every subject and we have obtained similar analytical results with our observations

(see Tables 7.2 to 7.6). Then, we have demonstrated the relationship between the

PSD, weighted feature and the classification accuracy values in the time domain in

Figures 7.15 to 7.17. By using the inversely proportional relationship between the

PSD values and the classification performance, we have concluded in the similar

PSD order of the conditions. Finally, we have presented the accuracies for each

subject and condition, and provided the averaged overall classification accuracies in

Table 7.7. These averaged accuracies support our previous statements.

Figure 7.18: The overall performance results. The obtained order of the PSD val-

ues from the three analysis and the classification accuracy order which is inversely

proportional to the PSD values order.

According to the performance order presented in Figure 7.18, we may group the

conditions as follows:

• PA, C1 and C2: robot movement based on subject’s continuous intent

• C3, PP : robot movement without subject’s involvement during the movement

• C4, C5: no robotic movement

In this study we have demonstrated that robotic haptic feedback increases the

BCI performance. Moreover, we have provided evidence that using BCI continu-

ously versus just for triggering the feedback system should be preferred to make

the subjects more involved to their tasks. Furthermore, our results suggest that the

presence of BCI within the rehabilitation protocol, provides a similar impact on the

motor cortical activity of the subject to actual movements in which the subject is

the active participant of the task. Despite the promising outputs of this experiment,
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it is important to note that the presented results might have some sensitivity to the

choice of electrodes or timing windows, and this variation suggests that further ex-

periments and analysis are necessary to build more confidence on the findings of our

preliminary study.
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Chapter 8

Conclusion

8.1 Summary

In this thesis, we have proposed, designed, implemented and evaluated a new

approach for BCI based robotic rehabilitation. In particular, we have developed

several experimental scenarios for stimulating the appropriate neural mechanisms

in the subject and designed algorithms for machine learning as well as information

extraction from the collected EEG data. Once we have demonstrated the perfor-

mance of the BCI system on a number of sets and experimental protocols, we have

combined the BCI component with the robotic system and demonstrated the suc-

cessful control of the robotic system through experiments.

Afterwards, we have proposed a method to obtain continuous outputs from the

LDA classifier to control the velocity of the robot. For this purpose, the posterior

probabilities of the LDA classifier were extracted and used as the instantaneous

intention levels of motor imagery. We have demonstrated that the offline/online

integration of the BCI and the robotic system was implemented successfully. The

online modification/adaptation of the robot’s velocity ensures the active participa-

tion of the patient to his/her task.

Moreover, we have proposed an approach that enables detecting intention levels

of subjects in response to task difficulty utilizing an EEG based BCI. We have

designed two distinct data collection experiments involving different levels of elbow

flexion and extension movements. Each experiment contained sessions dedicated to

lifting loads of different weights, leading to varying levels of task difficulty. Our

experimental results suggest that it is possible to extract information from EEG

signals about the intention level of the subjects in response to task difficulty.
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Besides, we have collected EMG data in synchrony with the EEG data as well.

Since EMG data are known to capture information about task difficulty in a motor

task execution experiment, we have also examined the information content of the

EEG signals about task difficulty by analyzing the correlation between features

extracted from EEG and EMG signals. Our results indicate some level of correlation

between the two types of signals.

Lastly, we have built an online experimental paradigm with different conditions

using BCI-assisted/triggered, robotic/virtual reality systems to investigate the im-

pact of haptic feedback through a robotic system on the BCI performance, adding

BCI to a robotic rehabilitation protocol and providing continuous use of BCI for

robotic control. Our results indicate that the motor imagery activity is stronger

when the haptic feedback is provided rather than a visual feedback. Moreover,

when the subject continuously controls the velocity of a robotic system, rather than

just triggering it, the subject becomes more involved to their tasks. Finally, our

results verify the use of BCI in robotic rehabilitation may be preferable over con-

ventional robotic rehabilitation systems in which movement is performed by the

robot without considering the subject’s involvement.

8.2 Future Works

In this thesis, we have built several EEG based BCIs and integrated them with

robotic systems. In the context of rehabilitation experiments, we have observed that

our proposed BCI-based protocols lead to stronger activity during motor tasks. We

view this as partial evidence that the proposed protocol keeps the subjects more

involved in their tasks and hence could strengthen the efficacy of robot-assisted

rehabilitation. However, we are still a long way from claiming that such a protocol

could help in the motor learning and rehabilitation process of a stroke patient.

One might raise a number of questions related to our current protocol some of

which motivate its potential extensions. One question is whether inclusion of the

possibility of controlling a robot through EEG in the rehabilitation protocol would

cause patients to stop trying to perform actual movements of their extremities,

and whether this would hurt the rehabilitation process. This question motivates

further studies on how the BCI piece should be positioned within the overall robotic
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rehabilitation protocol. Secondly, an important question is whether the BCI-based

rehabilitation protocol can enhance the motor learning process. All we have shown

up to this point is that it leads to stronger motor cortex activity, as compared to

other protocols. However a related but more important question is to determine its

potential in improving the motor capabilities of subjects. In order to answer that

question one needs to perform motor task performance experiments before and after

the use of our BCI-based protocol. A further question is how one could bring in

carefully designed neurofeedback mechanisms (in addition to the visual and haptic

feedback already present) into the rehabilitation protocol to ensure motor learning.

These questions motivate future work built on top of the contributions of this thesis.

8.2.1 BCI Based Robotic Experiments Utilizing Posterior Probabili-

ties

Future work includes the comparison of the posterior probabilities with the fea-

tures of the LDA classifier which are the power spectrum densities of specified fre-

quency bands. This comparison includes the analysis of each electrode and each

frequency bands in details by obtaining classifier weights.

8.2.2 Detection of Intention Level in Response to Task Difficulty from

EEG

During each following session, the weight of the loads gets heavier. This may

cause fatigue, and we may classify the fatigue state rather than the intention levels

from the EEG. On the contrary, when there is fatigue, the task will be more difficult

for the subject and we may still detect the intention levels in response to task

difficulty. Consequently, it will be worth to conduct these experiments with different

order of sessions. Besides, because of real arm movements, there will be some EMG

artifacts in the EEG signals. An additional step can be added to be sure if the

EEG features are classified or not. Moreover, a larger scale experiment with healthy

volunteers are planned to test consistency of the proposed approach.
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8.2.3 Comparative Experimental Analysis of BCI-Assisted Robotic Re-

habilitation

Future work for this study includes a larger scale experiment with healthy vol-

unteers and clinical trials with spinal cored injured patients to further test efficacy

and effectiveness of the proposed results. Furthermore, the proposed online method

for building the training model can be specialized for each subject. Lastly, a better

threshold can be found for the waiting periods of the triggered protocols.

87



Bibliography

[1] Biosemi, the preparations for an EEG measurement. [Online]. Available:

http://www.biosemi.com/pics/apply cap2 large.jpg

[2] Biosemi, the preparations for an EEG measurement. [Online]. Available:

http://www.biosemi.com/pics/apply cap3 large.jpg

[3] Biosemi, pin-type active-electrodes. [Online]. Available: http://www.biosemi.

com/pics/pin bundle2 large.jpg

[4] Biosemi, 64 channels surgical medium/small (red/yellow) 10/20 layout.

[Online]. Available: http://www.biosemi.com/pics/cap 64 layout medium.jpg

[5] G. Kwakkel, B. J. Kollen, and H. I. Krebs, “Effects of robot-assisted therapy

on upper limb recovery after stroke: A systematic review,” Neurorehab. and

Neural Repair, vol. 22, no. 2, pp. 111–121, 2008.

[6] K. Nykanen, “The effectiveness of robot-aided upper limb therapy in stroke

rehabilitation: A systematic review of randomized controlled studies,” Master’s

thesis, University of Jyvaskyla, Institute of Health Sciences, Physiotherapy,

2010.

[7] N. A. Bayona, J. Bitensky, K. Salter, and R. Teasell, “The Role of Task-Specific

Training in Rehabilitation Therapies,” Topics in Stroke Rehabilitation, vol. 12,

no. 3, pp. 58–65, Jun. 2005.
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