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Variations in shelf geometry mean that a coastal trapped wave mode can propagate within some finite

length of shelf but be evanescent outside this region. This paper constructs such geographically

localised coastal trapped waves using a WKBJ approximation. Comparison with full numerical solutions

of the non-linear differential eigenvalue problem demonstrates that the approximation is extremely

accurate. The asymptotic and full numerical models are then used to examine the parameters and

geometries that govern the existence of these modes.

& 2011 Published by Elsevier Ltd.
1. Introduction

Sub-inertial disturbances confined over stratified continental
shelves are generally described as coastal trapped waves (CTWs).
The properties of CTWs are closely related to a merging of the
internal Kelvin wave and barotropic continental shelf wave limits,
and the waves can typically be regarded as a hybrid of the two.
Most theoretical discussions of CTWs are based on the assumption
that the coast and shelf profile are uniform in the longshore
direction. However in practice there may be significant longshore
variations in shelf depth profiles and coastline curvature. These
longshore variations can give rise to regions of localised wave
propagation with modes decaying outside these regions in both
the longshore and offshore directions. These localised distur-
bances will be denoted here as localised CTWs ð‘CTWsÞ. As energy
at the ‘CTW frequency is trapped within a fixed section of the
shelf such modes could be resonantly exited by broadband forcing
from wind fluctuating and interacting with offshore eddies, and so
could appear preferentially as peaks in the low-frequency coastal
energy spectra (Schwing, 1989; Stocker and Johnson, 1991).

Johnson et al. (2006) prove that localised continental shelf
waves ð‘CTWsÞ can exist on smoothly curving coastlines,
Postnova and Craster (2008) present an asymptotic method for
determining the frequencies of ‘CTWs on slowly curving coast-
lines, discussed in greater detail in Johnson et al. (2011), and
Kaoullas and Johnson (2010) construct ‘CTWs for an idealised
model of a curved coast using a semi-analytical mode-matching
technique. All these studies restrict attention to barotropic flow
Elsevier Ltd.
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and use an approximate Neumann boundary condition at the
shelf ocean boundary. The localisation of the modes is closely
related to the behaviour of the group velocity and relies on bi-
directional energy propagation in the localisation region.
Huthnance (1978) shows that, in general, increasing stratification
changes bi-directional propagation to purely uni-directional pro-
pagation. At sufficiently high stratifications localisation is thus
impossible.

The aim of this paper is to examine the effect of variations in
stratification, alongshore shelf slope and alongshore shelf width
on ‘CTWs. Geographically localised CTWs are constructed asymp-
totically using a WKBJ approach in Section 3 to give a resonance
condition for the ‘CTW frequencies. The WKBJ approximation
appears here in the longshore direction in contrast to previous
applications in oceanography when modes decay in the offshore
direction only (e.g. in Adamou et al., 2007 in their discussion of
trapped edge waves in the internal gravity wave band). In Section
4 ‘CTWs are computed using a 3D extension to the highly
accurate 2D spectral numerical scheme of Johnson and Rodney
(2011) (JR here). Section 5 demonstrates the importance of
stratification, shelf slope and shelf-break distance from the
coastal wall on ‘CTWs. Neither the asymptotic nor the numerical
methods presented here require any approximate offshore
boundary condition and their close agreement demonstrates the
extreme accuracy of the WKBJ model in the present problem.
2. Formulation

Consider a rotating incompressible ocean with uniform Coriolis
frequency f. Take Cartesian axis Ox,Oy,Oz along the shelf, out to sea
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Fig. 1. Isobaths and depth profiles of (a,b) the shelf with local perturbation in shelf-break distance given by (54) with H0 ¼ 0:01, a¼0.01, s¼ 0:4þ0:2 expf�ðexÞ2g and

d¼ 0:15, (c,d) the shelf with local perturbation in shelf slope given by (54) with H0 ¼ 0:01, a¼0.01, s¼ 0:5 and d¼ 0:2�0:1 expf�ðexÞ2g. In (b,d) the solid line is the

unperturbed far field profile and the dashed line gives the maximally perturbed profile (at x¼0).
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and vertical with the shelf profile depending on both x and y

(Fig. 1). Let the flow be Boussinesq with total density r0ðzÞþ

rðx,y,z,tÞ and pressure p0ðzÞþpðx,y,z,tÞ. The equilibrium values r0

and p0 are in hydrostatic balance, i.e. @p0=@z¼ r0g. Introduce the
buoyancy frequency N 2

¼�ðg=r0Þ dr0=dz, and scalings

ðx0,y0,z0Þ ¼ ðx=L,y=L,z=HÞ, ðu0,v0,w0Þ ¼ ðu=U,v=U,wL=UHÞ,

p0 ¼ p=r0ð0ÞfUL, r0 ¼ rgH=r0ð0ÞfUL, N ðzÞ ¼N 0bðzÞ, ð1Þ

where L is the shelf width, H deep sea depth, U typical horizontal
velocity, f the Coriolis parameter and N 0 is the maximum buoy-
ancy frequency. The nondimensional equations for a normal mode
of non-dimensional frequency o in the body of the fluid are then,
dropping the primes and omitting a common exponential factor
expf�ioftg

�iou�v¼�px, ð2Þ

�iovþu¼�py, ð3Þ

�pz�r¼ 0, ð4Þ

uxþvyþwz ¼ 0, ð5Þ

�ior�b2B2w¼ 0, ð6Þ

where, for the ease of exposition, the perturbation has been taken
to be hydrostatic. The non-dimensional parameter B¼N 0H=fL

measures the importance of stratification relative to the rotation
of the dynamics. Eqs. (2), (3), (5) and (6) combine to give the
velocity components in terms of the pressure alone as

u¼ ð�pyþ iopxÞ=ð1�o2Þ, v¼ ðpxþ iopyÞ=ð1�o2Þ,

w¼ ðio=b2B2
Þpz: ð7Þ
The vanishing of the normal component of velocity on the bottom
and coastal boundaries gives

v¼ 0 ðy¼ 0Þ, ð8Þ

w¼�uĥx�vĥy ðz¼�ĥðx,yÞ, yr1Þ: ð9Þ

For typical shelves the external Rossby deformation radius
ffiffiffiffiffiffi
gH

p
=f

is large compared to the shelf width, so the ocean surface is
effectively rigid, and the upper boundary condition is simply the
vanishing of the vertical velocity, i.e. the ‘‘rigid lid’’ boundary
condition

pz ¼ 0 ðz¼ 0Þ: ð10Þ

Surface deformation can be important over wide shelves, when
the external Rossby deformation radius is comparable to or
smaller than the shelf width, i.e. â ¼

ffiffiffiffiffiffi
gH

p
=fL is of order unity or

smaller, and then (10) becomes pzþðBbð0Þ=âÞ2p¼ 0. The extension
of the present results to this case follows immediately from JR.

For disturbances of finite energy, it is sufficient to require

rp-0, x2þy2-1, ð11Þ

as then, from (7), all velocity components vanish (exponentially
fast) at infinity.
3. Slowly varying shelf geometry

Suppose the offshore profile of shelf depth changes only slowly
with distance along the shelf, i.e. that ĥðx,yÞ ¼ hðex,yÞ ¼ hðx,yÞ
where e is a small dimensionless parameter representing the
ratio of the shelf width to the scale of the longitudinal variation in
offshore depth profile. Substituting for u,v,w in (5), (8), (9) gives

e2pxxþpyyþð1�o2ÞB�2
ðb�2pzÞz ¼ 0, ð12aÞ
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Fig. 2. Dispersion curves for modes 1 and 2 over the far shelf break (dashed line)

and close shelf break (solid line) for the depth profiles shown in Fig. 1(a,b) at

uniform stratification with (a) B¼0.01 and (b) B¼0.2.
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ioð1�o2Þb�2B�2pz ¼�ehxðeiopx�pyÞ�hyðepxþ iopyÞ

ðz¼�hðx,yÞ, yr1Þ, ð12bÞ

epxþ iopy ¼ 0 ðy¼ 0Þ, ð12cÞ

pz ¼ 0 ðz¼�1,y41Þ, ð12dÞ

pz ¼ 0 ðz¼ 0Þ, ð12eÞ

rp-0, x2
þy2-1: ð12fÞ

Consider the classical WKBJ ansatz

pðx,y,zÞ � expðiSðxÞ=eÞ
X1
j ¼ 0

ejcjðx,y,zÞ, ð13Þ

in which only the amplitude is expanded in powers of e.
Substituting (13) into (12) leads to a hierarchy of equations, the
lowest order of which, of order e0, gives

c0yyþð1�o2ÞB�2
ðb�2c0zÞz�S02c0 ¼ 0, ð14aÞ

oð1�o2Þb�2B�2c0z ¼�S0hyc0�ohyc0y ðz¼�hðx,yÞ,yr1Þ,

ð14bÞ

oc0yþS0c0 ¼ 0 ðy¼ 0Þ, ð14cÞ

c0z ¼ 0 ðz¼�1,y41Þ, ð14dÞ

c0z ¼ 0 ðz¼ 0Þ, ð14eÞ

c0-0 y-1 ð14fÞ

and the next order, of order e, gives

c1yyþð1�o2ÞB�2
ðb�2c1zÞz�S02c1 ¼�2iS0c0x�iS00c0, ð15aÞ

ioð1�o2Þb�2B�2c1z ¼�iS0hyc1�iohyc1yþhyc0xþhxc0y�oS0hxc0

ðz¼�hðx,yÞ, yr1Þ, ð15bÞ

ioc1yþ iS0c1þc0x ¼ 0 ðy¼ 0Þ, ð15cÞ

c1z ¼ 0 ðz¼�1,y41Þ, ð15dÞ

c1z ¼ 0 ðz¼ 0Þ, ð15eÞ

c1-0, y-1: ð15fÞ

System (14) is precisely the system that would determine the
local dispersion relation at each station x¼ constant along the
shelf if the shelf were taken to be rectilinear of fixed offshore
profile. For a given frequency the dispersion relation determines a
local wavenumber k as a function of x. Fig. 2 gives typical
dispersion curves for the shelf topography of Fig. 1(a,b) (both
figures discussed in detail later). Fig. 2 shows that for each cross-
shelf mode, for the parameter values chosen here, there is a local
cut off frequency omaxðxÞ, such that for ooomaxðxÞ there are two
roots k7 for the wavenumber, corresponding to energy propaga-
tion in the positive and negative x-directions. Once the frequency
exceeds omax for a given cross-shelf mode, the wavenumbers k7

form a complex conjugate pair and the modes are evanescent. At
the cut off frequency @o=@k¼ 0, the group velocity vanishes, and
the wavenumbers k� and kþ coalesce.

Let f7
ðx,y,zÞ be the local eigenmodes, with corresponding

eigenvalues k7
ðxÞ of the following problem in the cross section

DðxÞ ¼ fðy,zÞ : �hðx,yÞrzr0, yZ0g

f7
yy þð1�o

2ÞB�2
ðb�2f7

z Þz ¼ k7 2
f7 , ð16Þ
oð1�o2Þb�2B�2f7
z þohyf

7
y ¼�k7 hyf

7
ðz¼�hðx,yÞ,yr1Þ,

ð17Þ

of7
y ¼�k7f7

ðy¼ 0Þ, ð18Þ

f7
z ¼ 0 ðz¼�1Þ, ð19Þ

f7
z ¼ 0 ðz¼ 0Þ, ð20Þ

f7
-0, y-1, ð21Þ

where, for convenience, f7 are normalised such thatZZ
D
ðf7
Þ
2 dy dz¼ 1: ð22Þ

It follows that c7
0 can be expressed as an undetermined

multiple of the local eigenmodes f7 , i.e.

c7
0 ðx,y,zÞ ¼ f 7

0 ðxÞf
7
ðx,y,zÞ: ð23Þ

The function S0 can then be identified with the two roots k7
ðxÞ

for the wavenumber. Writing S7
ðxÞ ¼ lðxÞ7mðxÞ gives

lðxÞ ¼
1

2

Z x
½kþ ðx0Þþk�ðx0Þ� dx0, ð24Þ

mðxÞ ¼
1

2

Z x

x0

½kþ ðx0Þ�k�ðx0Þ� dx0: ð25Þ
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Here l is the (fast) phase of each wave, which remains the same
for the forward and backward propagating modes defined by Sþ

and S�, and m gives the direction of propagation of the wave
envelope (and thus energy propagation), becoming singular at the
caustic, defined by kþ ¼ k�. The lower limit of integration in (25),
the ‘phase reference level’ (Heading, 1962; Berry and Mount,
1972), is determined by the location of the caustic.

It is not necessary to solve (15) completely to obtain the
eigenfrequencies. Multiplying (15a) by f, integrating over the
domain D, and using the boundary conditions (14b)–(14f) and
(15b)–(15f) gives the transport equation for the functions f 7

0

ðA7
þB7

�2oS7 0
Þf 7

0x þðC
7
�D7

þE7
�oS7 00

Þf 7
0 ¼ 0, ð26Þ

where

A7
ðxÞ ¼

Z 1

0
hy½f

7 2
�z ¼ �h dy, B7

ðxÞ ¼
Z 0

�h0

½f7 2
�y ¼ 0 dz,

C 7
ðxÞ ¼

Z 1

0
hy½f

7
x f7

�z ¼ �h dy, D7
ðxÞ ¼

Z 1

0
hx½f

7
y f7

�z ¼ �h dy,

E7
ðxÞ ¼

Z 0

�h0

½f7f7
x �y ¼ 0 dz:

The term C 7
�D7 can be rewritten as

C 7
�D7

¼
1

2

dA7

dx
þG7 , ð27Þ

where G7
ðxÞ ¼ hxðx,0Þf7 2

ðx,0,�hðx,0ÞÞ�hxðx,1Þf7 2
ðx,1,�hðx,1ÞÞ.

Provided the depth at the coast and the shelf-ocean boundary
remains constant hxðx,1Þ ¼ hxðx,0Þ ¼ 0, and so G7

ðxÞ ¼ 0. Then
(26) becomes

f 7
0x þ

1
2 ðA

7
þB7

�2oS7 0
Þx

A7
þB7

�2oS7 0

" #
f 7

0 ¼ 0: ð28Þ

Eq. (28) is an ordinary differential equation for f 7
0 ðxÞ, with

solution, to within an arbitrary multiplicative constant

f 7
0 ðxÞ ¼ ðA

7
þB7

�2oS7 0
Þ
�1=2: ð29Þ

An expression for the group velocities C 7
g of the propagating

wave solutions of (16) follows by multiplying (16) by f7 and
integrating over the domain DðxÞ, to give

A7
þB7

�2ok7
¼ C 7

g
~I
7

, ð30Þ

where

~I
7
¼ k7 2

þ

ZZ
D
f7

y 2þð1�3o2ÞB�2b�2f7
z 2 dA: ð31Þ

Comparing (29) and (30) shows that the WKBJ representations
break down in the neighbourhood of the transition (or turning)
points where C 7

g ¼ 0, denoted here by 7xc. Therefore in the
interval ð�xc ,xcÞ (excluding regions of width of e2=3 near the
endpoints, Bender and Orszag, 1978) the first-order WKBJ solu-
tion is a superposition of the forward and backward propagating
waves given by

cðx,y,zÞ ¼ af�0 f
�
ðx,y,zÞ exp PðxÞ�

i

e

Z x

�xc

Q ðx0Þ dx0
( )

þbf þ0 fþ ðx,y,zÞ exp PðxÞþ
i

e

Z x

�xc

Q ðx0Þ dx0
( )

, ð32Þ

where

PðxÞ ¼
i

2e

Z x
½kþ ðx0Þþk�ðx0Þ� dx0, Q ðxÞ ¼

1

2
½kþ ðxÞ�k�ðxÞ�: ð33Þ
The solution decaying in xo�xc is

cðx,y,zÞ ¼ C1f�0 f
�
ðx,y,zÞ exp PðxÞ�

1

e

Z �xc

x
9Q ðx0Þ9 dx0

( )
: ð34Þ

It remains to connected (32)–(34) across the turning point at
x¼�xc . In classical WKBJ applications the counter-propagating
waves in the allowed region sum to give a standing wave. Here
however the waves in (32) have different offshore structures and
it is only sufficiently close to x¼�xc (and x¼ xc) that they can be
superposed. In the interval eg4x�ð�xcÞ4e2=3 (so (32) remains
valid), where go2=3, 9x�ð�xcÞ9 is small so Q2

ðxÞ � aðx�ð�xcÞÞ for
some a40. Therefore S7 0

� kð�xcÞ7a1=2ðx�ð�xcÞÞ
1=2, and

A7
þB7

�2oS7 0
� 82oa1=2ðx�ð�xcÞÞ

1=2: ð35Þ

Hence

f 7
0 f7

� 92oa1=2ðx�ð�xcÞÞ
1=29�1=2fð�xc ,y,zÞ ð36Þ

and (32) reduces, at leading order, to

92oa1=2ðx�ð�xcÞÞ
1=29�1=2fð�xc ,y,zÞ expfPð�xcÞg

b exp
i

e

Z x

�xc

Q ðx0Þ dx0
( )

þa exp �
i

e

Z x

�xc

Q ðx0Þ dx0
( ) !

: ð37Þ

Now the connection formula across x¼�xc , obtained directly
from a consideration of Stokes and anti-Stokes lines by Berry and
Mount (1972), determines the constants a and b as

a¼ C1 expðip=4Þ, b¼ C1 expð�ip=4Þ: ð38Þ

More detailed considerations in the neighbourhood of turning
points by Berry and Mount (1972) and Bender and Orszag (1978)
show that the solution then forms an Airy front with the
equivalent composite form here being

cðx,y,zÞ ¼o�1=2C1ð2pÞ1=2
ðaeÞ�1=6Aif�e�2=3a1=3ðx�ð�xcÞÞg

�fð�xc ,y,zÞ expfPð�xcÞg, ð39Þ

where Ai is the Airy function of the first kind, smoothly matching
(34)–(37) with a and b as in (38).

The solution decaying in x4xc is given by

cðx,x,yÞ ¼ C2f þ0 fþ ðx,y,zÞ exp PðxÞ�
1

e

Z x

xc

9Q ðx0Þ9 dx0
( )

: ð40Þ

Considerations identical to those of (35)–(37) over the interval
�egox�xc o�e2=3 allow the propagating solution (32) to be
connected to (40) across the turning point at x¼ xc , giving the
constraint

1

e

Z xc

�xc

Q ðx0Þ dx0 � nþ
1

2

� �
pþOðeÞ, n¼ 0;1,2, . . . ð41Þ

and C2 ¼ ð�1ÞnC1, for n from (41). Since Q and xc depend on o
equation (41) determines the frequency of the ‘CTW of along-
shore mode number n, as required. A composite Airy form
equivalent to (39) again matches across x¼ xc .

One immediate result from (41) comes from noting that the
integral in (41) approaches its maximum value as xc-1 (i.e.
o-oc where oc is the cut off frequency at x¼1) fixing the total
number of trapped modes as

nr
1

pe
lim

9xc9-1

Z xc

�xc

Q ðx0Þ dx0�
1

2
: ð42Þ

4. Arbitrary coastal geometries

Following JR, recast system (12) into a linear eigenvalue
problem by writing

q¼ lp and r¼ lq, ð43Þ
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where l¼ io and map to a rectangular flow domain by introdu-
cing the vertical stretching

x¼ ex, Z¼ y, y¼ zmðex,yÞ, where m¼ 1=hðex,yÞ: ð44Þ

Then the governing equations become

e2pxxþpZZþ2ðe2yxpxyþyZpZyÞþðe2yxxþyZZÞpyþðe2y2
xþy

2
ZÞpyy

þB�2mðb�2mpyÞy ¼�lB�2mðb�2mqyÞy, ð45aÞ

e½hZðpxþyxpyÞ�hxðpZþyZpyÞ� ¼ l½b�2B�2mpyþe2hxðpxþyxpyÞ

þhZðpZþyZpyÞþb�2B�2mry� ðy¼�1,Zr1Þ, ð45bÞ

eðpxþyxpyÞ ¼ lðpZþyZpyÞ ðZ¼ 0Þ, ð45cÞ

py ¼ 0 ðy¼ 0Þ, ð45dÞ

py ¼ 0 ðy¼�1,Z41Þ, ð45eÞ

rp-0, x2
þZ2-1, ð45fÞ

where

yx ¼ mxy=m, yZ ¼ mZy=m, yxx ¼ mxxy=m, yZZ ¼ mZZy=m: ð46Þ

System (45) is a linear eigenvalue problem for l. It can be
solved accurately by extending the method in JR to three dimen-
sions. System (45) is approximated pseudo-spectrally, by forming
the 3D tensor product grid of N Chebyshev points, yi, in the
vertical, M Laguerre points, Zj, offshore and K Hermite points, xk,
alongshore. The unknown values of p on the grid, taken in
lexicographical order, then form a vector p of size NMK. Following
JR, form the discrete version of (45a) using differentiation
matrices and replace rows corresponding to boundary points
with the corresponding discrete forms of the boundary conditions
(45b)–(45e) gives a 3NMK � 3NMK generalised linear algebraic
eigenvalue problem

A 0 0

0 I 0

0 0 I

0
B@

1
CA

p

q

r

0
B@

1
CA¼ l

B C D

I 0 0

0 I 0

0
B@

1
CA

p

q

r

0
B@

1
CA, ð47Þ

where I is the NMK�NMK identity matrix and 0 is the
NMK�NMK null matrix. The accuracy and speed of the numerical
solution of (47) can be greatly increased by using the accurate
WKBJ eigenvalues as an initial estimate for an inverse iteration.
Write l¼ l0þ l̂, where l0 is the WKBJ estimate for l, so l̂51. The
generalised linear eigenvalue problem can formally be written as
the more familiar regular eigenvalue problem

Eq¼ ~lq, ð48Þ

where

E¼

A�l0B �l0C �l0D

�l0I I 0

0 �l0I I

0
B@

1
CA
�1

B C D

I 0 0

0 I 0

0
B@

1
CA, q¼

p

q

r

0
B@

1
CA ð49Þ

and ~l ¼ 1=l̂, so ~lb1. For the standard forward iteration

q̂jþ1 ¼ Eqj, qjþ1 ¼ q̂ jþ1=sjþ1, ð50Þ

where sjþ1 is a normalising factor for q̂jþ1, chosen here to be the
element of q̂ of largest absolute value, the sequence sj converges
to the largest eigenvalue of E, here ~l by construction. It is not
necessary to calculate E explicitly to implement this scheme.
Instead, (48) can be rearranged as

ðA�l0B�l2
0C�l3

0DÞp̂jþ1 ¼ ðBþl0Cþl2
0DÞpj

þðCþl0DÞqjþDrj, ð51Þ

q̂jþ1 ¼ p̂ jþ1þl0pj, ð52Þ

r̂ jþ1 ¼ q̂ jþ1þl0qj: ð53Þ
For appropriate initial estimates l0, p0, q0 and r0, Eq. (51) is a
standard set of NMK linear equations of the form Ax¼ b, which
can be solved by standard means. In particular the matrix on the
left hand side of (51) can be factorised once and for all at the
beginning of any computation, and subsequent inversions of (51)
reduce to back substitution. In all subsequent numerical results,
presented here, N, M and K have been chosen sufficiently large so
that the eigenvalues are resolution independent at the stated
accuracy.
5. Geometric and stratification effects on localised modes

5.1. Shelf geometries

Consider the non-rectilinear depth profile in yZ0 and 9x9o1,
normalised to give unit depth at y¼0 and y¼1, given by

ĥðx,yÞ ¼ 1�½1�dðexÞH0� exp �
ay

ð1�yÞ

� �
1�tanh

y�sðexÞ
dðexÞ

� �� �	
2,

ð54Þ

where d¼ ½1�2H0þtanhð�s=dÞ�=½H0 tanhð�s=dÞ�H0�, H0 is the
depth at the coast, a measures the gradient of the shelf slope, s
gives the distance of the shelf break from the coast and d
measures the slope of the shelf break. Various forms for the
longshore variation s and d are discussed below. In all computa-
tions the shelf width to alongshore variation is taken to be e¼ 0:1.

5.2. Local CTW dispersion properties

As CTWs propagate along shelves with slow longshore varia-
tions in bottom topography or coastline curvature it is the local
structure of the waves that determine the existence of ‘CTWs.
Huthnance (1978) shows that at short wavelengths the frequency
of all CTWs approaches the same value, o1 say, where

o1 ¼ lim
k-1
¼ B max½bðzÞ dh=dy�z ¼ �hðyÞ: ð55Þ

For a given profile there is thus a critical stratification para-
meter Bc given by

ðBc
Þ
�1
¼max½bðzÞ dh=dy�z ¼ �hðyÞ, ð56Þ

such that dispersion curves pass through f for stratification B4Bc ,
but fail to reach f for stratification BoBc. For strong stratification
where B4Bc everywhere, energy propagates unidirectionally and
no ‘CTWs exist. For weaker stratification, where BoBc somewhere,
the group velocity changes sign and energy can propagate in both
directions. Typical dispersion curves for different values of B with b

constant are shown in Fig. 2 for the wide shelf break (at x¼0) shown
in Fig. 1(a). For weak stratification dispersion curves have at least
one turning point, where o has a local maximum (Fig. 2(a)). There is
also an intermediate range of stratification, where in addition to a
local maximum, oðkÞ may also have a local minimum. This inter-
mediate regime is discussed in more detail below.

5.3. Perturbations in shelf-break distance

5.3.1. Conditions for trapping

Fig. 2 shows the dispersion relation for the widening shelf of
Fig. 1(a,b) following JR. As expected, the increase in shelf-break
distance, i.e. the weakening of the coastal constraint (Johnson and
Kaoullas, 2011) in the neighbourhood of the origin raises the
maximum frequency for propagating CTWs. For sufficiently low
stratification the flow is essentially barotropic and the local
dispersion relations in Fig. 2(a) have a single maximum for o.
Let om

c,far be the frequency of mode m at the local maximum for
the far field shelf geometry at 9x9¼1, and om

c,local the
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corresponding frequency for the locally perturbed shelf at x¼0.
For intermediate stratifications there may also exist a local
minimum for o. For B¼0.2 the local minimum o1,n

c,far of mode
1 for the far field geometry is clearly visible in Fig. 2(b). This local
minimum gives the lowest frequency for which a particular mode
has a negative group velocity. For B¼0.01 (see Fig. 2(a)), it is clear
that om

c,faroom
c,local for modes 1 and 2, and o1 gives the lower

bound for waves with negative group velocity. Therefore a CTW
with frequency om, with om

c,faroomoom
c,local, propagates locally

to the wide shelf, but is cut-off in the far field.
With increasing stratification there is a qualitative change in

the waves. For the localised widening of the shelf given by the
depth profile shown in Fig. 1(a,b), there is no longshore variation
in the value of max hy9z ¼ �hðyÞ. Thus, from (55), for uniform
stratification, only changes in B affect o1: for a given B all modes
have the same limiting frequency o1 at each point along the
coast, as in Fig. 2(b). For mode 2, o1 is now the maximum
frequency of propagation everywhere. Thus for waves with
frequency ooo1 energy propagation is strictly unidirectional
and mode 2 is not localised on this profile. The qualitative
behaviour of mode 1 remains the same as for Fig. 2(a).

Comparing the limiting frequency o1 and local maximum
frequency as a function of stratification for the two profiles gives a
clearer demonstration of the importance of these limiting frequen-
cies on the existence of trapped modes. Fig. 3(a) shows the variation
of the local maximum (solid lines) and limiting frequency o1
(dashed lines) for the two limiting shelf topographies as a function
of stratification (for b(z) constant). The shaded areas show the range
of stratification where trapping is possible, and the lower and upper
bounds of the trapped mode frequencies, i.e. a frequency within the
grey shaded region is greater than the maximum frequency of
propagation in the far field and is therefore cut-off. The same
frequency on the local wide section is less than the local maximum,
and therefore energy propagates in both directions. Since higher
modes have lower frequencies (Huthnance, 1978), the range of
stratifications for which the maximum frequency of propagation on
the wide shelf is above the limiting frequency o1 is smaller for
higher modes and so ‘CTWs exist over smaller ranges of stratifica-
tion. Fig. 3(a) shows the range for possible trapping of mode
1 extends to BC0:2, whereas for mode 2 it extends to only
BC0:1. In general, for a given stratification, localisation of mode n

requires

maxðo1,om
c,farÞoom

c,local: ð57Þ

The frequencies om
c,local and maxðo1,om

c,farÞ then give upper and
lower bounds for the trapped mode frequency respectively.

5.3.2. Trapped modes

‘CTWs can be characterised by their cross-shelf mode number
m and their along-shore mode number n. Denote the frequency of
the (n,m) mode by on,m. Six digit accuracy is achieved for mode
o0;1 with B¼0.01, bðzÞ � 1, N¼8, M¼34 and K¼34, computed as
in Section 4. Higher modes require more grid points for compar-
able accuracy. Fig. 4 shows the real parts of pðx,y,�hÞ of the
bottom pressure for modes o0;1 and o0;2 at B¼0.01. The offshore
structure of the modes follows Huthnance (1978) with the
number of zero crossings equal to the mode number, and the
largest displacement found near the coast.

Table 1 gives the comparison between the WKBJ and numer-
ical eigenvalues. Constraint (41) was solved combining Gaussian
quadrature with an adaptive secant root finding algorithm to
determine the frequency o. Since the integral constraint is
symmetric, for the chosen profiles, it is sufficient to consider only
the range ½0,xc�. Accuracy is further improved by removing the
square root singularity in Q, at x¼ xc , through the change of
variable w¼ ðx�xcÞ

1=2. The function Q ðxÞ at each Gaussian point
along the coast is obtained rapidly and accurately using inverse
iteration as in JR, with initial guess linearly extrapolated from the
portion of the function Q ðxÞ already determined. The eigenvalues
thus obtained in each cross section are accurate to nine significant
figures and comparable accuracy for the ‘CTW frequency requires
only 10 Gaussian points. The WKBJ determined frequencies are
accurate to within a 10th of a percent with accuracy increasing
with offshore and alongshore mode numbers. The agreement with
the full numerical solution even for this modest e is remarkable.

5.4. Perturbations in shelf slope

For a shelf whose slope increases locally, as the depth profile of
1(c,d), the limiting frequency o1 varies as a function of both the
stratification and position along the shelf, giving parameter
ranges with more complicated variations in dispersion relations.
Fig. 5 shows typical dispersion relations. The local minimum for
mode 1 in the steep section at B¼0.15 is labeled o1,n

c,local in
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Table 1

The eigenfrequencies oA
n,m from the WKBJ method and the numerical eigenfre-

quencies oN
n,m for the topography of Fig. 1(a,b), for various modes and stratifica-

tion B with bðzÞ � 1.

n m B oA
n,m oN

n,m
Error (%)

0 1 0.01 0.7518365 0.7519881 0.0201

1 1 0.01 0.7454791 0.7456205 0.0190

2 1 0.01 0.7393040 0.7394385 0.0182

0 1 0.15 0.7615593 0.7616983 0.0182

1 1 0.15 0.7555876 0.7557198 0.0175

2 1 0.15 0.7497965 0.7499211 0.0166

0 2 0.01 0.3647694 0.3647729 0.0009

1 2 0.01 0.3640451 0.3640447 0.0001
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Fig. 5(b). Fig. 3(b) gives the variation of the cut-off frequencies,
the limiting frequencies o1 and the local minimum o1,n

c,local as a
function of B, at uniform stratification, for the shelf profile given
by Fig. 1(c,d). The shaded regions, again show the permitted
regimes where CTWs are evanescent in the far field and have bi-
directional group velocity above the steep section—a necessary
requirement for ‘CTWs. At frequencies within the narrow
hatched region of Fig. 3(b) mode 1 is evanescent in the far field,
but propagates as a superposition of three transverse waves on
the steep shelf: two waves of comparable wavelength close to the
local maximum and a comparatively shorter wave, shorter than
the wavelength at the local minimum. Since the modes are
evanescent in the far field they can superimpose to form a
trapped mode. Even though the WKBJ approximation omits the
shortest locally propagating mode, the WKBJ frequencies once
again agree closely with numerical solutions to the full problem
found by continuation, gradually increasing the stratification
from a known asymptotic solution (in the shaded region). The
crosses in Fig. 6 show the converged (to six digit accuracy)
numerical eigenfrequencies o0;1 that lie close to or within the
hatched region of Fig. 3(b), as a function of the stratification B (for
bðzÞ � 1).

A mode with a frequency within wide hatched region of Fig. 3
propagates as a mode with uni-directional group velocity on the
steep shelf but is cut-off in the far field. A similar uni-directional
topographic wave problem in Johnson (1985) shows that energy
accumulates in singular regions when wave reflection is not
possible. An and McDonald (2005) show that nonlinearity leads
to eddy shedding from these regions. Similar effects can be
expected in this particular parameter regime of the current
problem. Fig. 7(a) shows the real part pðx,y,�hÞ of the bottom
pressure for the fundamental ‘CTW for the depth profile shown in
1(c,d) at B¼0.25. The along-shore extent of the mode is smaller
here, at higher stratification, than for the equivalent ‘CTW of
Fig. 4.
6. Discussion

Localised coastal trapped waves, ‘CTWs, have been con-
structed for a continuously stratified shelf abutting a constant
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depth ocean, both semi-analytically for slowly-varying shelves
and numerically for arbitrary variations. The two methods show
remarkable agreement. Considering the local dynamics of CTWs
shows that the important parameters governing the existence of
‘CTWs are the stratification, shelf slope and the distance of the
shelf break from the coastal wall. ‘CTWs occur for a wider range
of parameters when the coastal constraint is locally weakened by
the shelf-break moving further offshore, when the shelf steepens
and when stratification is weaker. ‘CTWs are the superposition of
two CTWs carrying energy in opposite directions and so in regions
of parameter space where bi-directional energy propagation is
not possible no ‘CTWs exist. In parameter regimes where a CTW
propagates uni-directionally towards a section of shelf where that
mode is evanescent, the incident CTW energy may be converted
to eddy motion.

The present analysis extends the localised barotropic shelf
wave theory to include stratification and constructs ‘CTWs for
stratification for Bt0:25. The ‘CTWs have little vertical structure
and so would not be sensitive to vertical resolution in coastal-
ocean models. However, it would seem that model simulation of
‘CTWs would require sufficient horizontal resolution to capture
longshore topographic variations and the offshore decay of
the modes.

Since energy absorbed by ‘CTWs cannot propagate away the
‘CTW frequencies may appear as pronounced peaks in low
frequency spectra of coastal flows. Observations on the Scotian
shelf (Schwing, 1989) show that the frequency of energetic
disturbances near the Laurentian channel are higher than those
of propagating modes on the shelf, consistent with localised
trapping in the estuary region (Stocker and Johnson, 1991).
Similarly topographic variations in lakes appear to allow localised
modes. Modes concentrated at lake ends have been found
numerically in both the finite-element model of the lake of
Laguno (Trösch, 1986) and the rectangular basin with variable,
but symmetric, topography model of Stocker and Hutter (1987).
Johnson and Kaoullas (2011) use a simple geometrical lake-end
bay model to attribute these localised bay-modes to geographi-
cally localised topographic waves. The inclusion of a flat bay
raises the frequency of the locally propagating waves at the lake-
end and modes exist that propagate in the neighbourhood of the
bay region but decay exponentially in the far-field. The present
results suggest that ‘CTWs could be observed in the neighbour-
hood of local coastal geometric variations, such as increases in
shelf slope, shelf break distance or curvature, which raise the
maximum allowable frequency of propagation.
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