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Abstract11

The Bjerknes feedback is the dominant positive feedback in the equatorial ocean basins.12

To examine the seasonality, symmetry, and stationarity of the Pacific and Atlantic Bjerk-13

nes feedbacks we decompose them into three feedback elements that relate thermocline14

depth, sea surface temperature (SST), and western basin wind stress variability to each15

other. We partition feedback elements into composites associated with positive or neg-16

ative anomalies. Using robust regression, we diagnose the strength of each composite.17

For the recent period 1993-2012, composites of the Pacific Bjerknes feedback el-18

ements agree well with previous work. Positive composites are generally stronger than19

negative composites, and all feedback elements are weakest in late boreal spring. In the20

Atlantic, differences between positive and negative composites are less consistent across21

feedback elements. Specifically, wind variability seems to play a less important role in22

shaping atmosphere-ocean coupling in the Atlantic when compared to the Pacific. How-23

ever, a clear seasonality emerges: Feedback elements are generally strong in boreal sum-24

mer and, for the negative composites, again in boreal winter. The Atlantic Bjerknes feed-25

back is dominated by subsurface-surface coupling.26

Applying our analysis to overlapping 25-year periods for 1958-2009 shows that the27

strengths of feedback elements in both ocean basins vary on decadal time scales. While28

the overall asymmetry of the Pacific Bjerknes feedback is robust, the strength and sym-29

metry of Atlantic feedback elements vary considerably between decades. Our results in-30

dicate that the Atlantic Bjerknes feedback is non-stationary on decadal time scales.31

1 Introduction32

The Bjerknes feedback is the dominant coupled, positive feedback in the equato-33

rial oceans (Bjerknes, 1966, 1969). It plays a crucial role in shaping Atlantic and Pacific34

equatorial variability, tying three key properties of an equatorial ocean basin into a closed35

feedback loop. These properties are the thermocline depth along the equator, which can36

be approximated by sea surface height (SSH) in the central and eastern ocean basin (Cane,37

1984; Rebert et al., 1985); eastern basin sea surface temperature (SST); and western basin38

zonal wind stress (USTR). The closed feedback loop operates as a positive feedback for39

both positive and negative anomalies in either SSH, SST, or USTR and can be decom-40

posed into three feedback elements that act in concert:41

(i) SSH→SST: “Subsurface-surface coupling”. The thermocline depth in the eastern42

ocean basin is related to net upwelling of cold water into the surface mixed layer,43

and mixing at the base of the mixed laxer (Hummels et al., 2013). Variations of44

thermocline depth are related to variations in the local warm water volume that45

in turn affect how effectively upwelling alters the mixed layer temperature.46

(ii) SST→USTR: “SST-wind coupling”. Eastern basin SST anomalies produce a lo-47

cal, Gill-type atmospheric response (Gill, 1980) that alters the sea level pressure48

gradient along the equator and affects surface winds in the western ocean basin.49

(iii) USTR →SSH: “Wind-thermocline coupling”. Zonal wind anomalies in the west-50

ern ocean basin change the local balance between zonal wind stress and the sub-51

surface pressure gradient in the ocean. The thermocline adapts to the varying sub-52

surface pressure gradient transmits the information eastward along the equator53

via an equatorial Kelvin wave. In the eastern ocean basin, thermocline variabil-54

ity couples to SST variability and closes the Bjerknes feedback loop.55

Since Bjerknes (1966) first described the closed feedback loop outlined above, different56

studies have referred to different mechanisms as “the Bjerknes feedback”, sometimes fo-57

cusing on the atmospheric or ocean parts of the coupled feedback only. Here, when we58
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discuss “the” Bjerknes feedback, we refer to the coupled feedback that links oceanic and59

atmospheric variability.60

In the equatorial Atlantic and Pacific Oceans, the Bjerknes feedback supports the61

growth of coupled air-sea anomalies associated with the Atlantic and Pacific Niños (Bjerknes,62

1969; Keenlyside & Latif, 2007; Burls et al., 2012; Lübbecke & McPhaden, 2013; Dep-63

penmeier et al., 2016; Dippe et al., 2018). While the phrase “Pacific Niño” in a strict64

sense refers to the SST manifestation of a positive El Niño-Southern Oscillation (ENSO)65

event, we use the name to refer to the entire coupled process. Likewise, when we talk66

about the “Atlantic Niño”, we mean the complete coupled atmosphere-ocean process,67

including negative events that are generally known as Niñas.68

In their respective basins, the Niños are the dominant mode of interannual SST vari-69

ability. While their corresponding names and similar patterns suggest that they are es-70

sentially manifestations of the same process, significant differences exist (Xie et al., 1999;71

Keenlyside & Latif, 2007; Burls et al., 2011; Lübbecke & McPhaden, 2013; Richter et72

al., 2013). The canonical Pacific Niño generally peaks in boreal winter and lasts for sev-73

eral months, while the Atlantic Niño is tightly phase-locked to boreal summer and rarely74

outlasts a season, achieving roughly half of the Pacific SST anomaly amplitude. The phase-75

locking of the Niños is accompanied by a strong seasonality of their supporting Bjerk-76

nes feedbacks. The Pacific Bjerknes feedback operates for most of the year, while the At-77

lantic Bjerknes feedback is active for a few months only twice a year, in boreal summer78

and again, briefly, at the beginning of boreal winter (Burls et al., 2011; Dippe et al., 2018).79

Another interesting feature of the Atlantic is that it hosts a secondary, Niño-like80

phenomenon in boreal winter. Okumura and Xie (2006) found that the “winter Niño”81

– their “Niño II” – is the product of a secondary, seasonal weakening of the trade winds82

in the Gulf of Guinea, which is able to briefly organize coupled atmosphere-ocean vari-83

ability into the Bjerknes feedback.84

Characteristics of the Atlantic and Pacific Niños vary on decadal and longer time85

scales. Losada and Rodŕıguez-Fonseca (2016) and Mart́ın-Rey, Polo, Rodŕıguez-Fonseca,86

Losada, and Lazar (2017) report that the Atlantic Multidecadal Oscillation (AMO) –87

a low-frequency phenomenon that is mainly characterized by variations of basin-wide SST88

in the North Atlantic (Schlesinger & Ramankutty, 1994; Delworth & Mann, 2000; Knight89

et al., 2006) – modulates both the spatial configuration of the Atlantic Niño SST pat-90

tern and the atmospheric response to these patterns. Mart́ın-Rey et al. (2017) argue that91

eastern equatorial Atlantic SST variability is enhanced by more than 150% in boreal sum-92

mer during negative AMO phases. Similarly, Cobb et al. (2013) and Li et al. (2013) demon-93

strate for centennial and millennial time scales that the spatiotemporal characteristics94

of the Pacific Niño are subject to low-frequency variations. For the recent decades, stud-95

ies such as Lübbecke, Burls, Reason, and McPhaden (2014) show that low-frequency vari-96

ations in the Pacific background state modulate the strength of the Pacific Bjerknes feed-97

back and hence the characteristics of the Pacific Niño.98

The spatiotemporal characteristics of warm and cold Pacific Niño events are sub-99

ject to a number of asymmetries (Takahashi et al., 2011; Dommenget et al., 2013; Capo-100

tondi et al., 2015; Chen et al., 2015; Takahashi & Dewitte, 2016). Warm events are gen-101

erally stronger in terms of their SST amplitude than cold events, while cold events last102

longer and evolve in a different spatial manner. Another aspect of the complex nature103

of the Pacific Niño is highlighted by the existence of different manifestations of Pacific104

Niño events that appear to have distinct spatiotemporal signatures (Yeh et al., 2009; Taka-105

hashi et al., 2011; Capotondi et al., 2015; Takahashi & Dewitte, 2016). Yeh et al. (2009)106

document that the last decades saw an increase in the frequency of the central Pacific107

Niño. In contrast to the canonical eastern Pacific Niño with its clear signature in the east-108

ern Pacific and seesaw-response in the anomalous Walker circulation, the pattern of the109

central Pacific Niño is constrained to the region between 160◦E and 120◦W and splits110
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the Walker circulation into two cells (Ashok & Yamagata, 2009). A generalization of these111

ENSO “flavours” has recently been proposed by Timmermann et al. (2018), who pro-112

vide an overview on what they call ENSO complexity.113

Some of the above asymmetries in the Pacific have been linked to asymmetries in114

the strength of the Pacific Bjerknes feedback elements. Dommenget et al. (2013) and DiNezio115

and Deser (2014) show that the different lengths of warm and cold events are related to116

non-linearities in the SSH-SST and SST-USTR feedback elements. In a different approach,117

Hu et al. (2017) shows that the “recharge/discharge” processes associated with wind-118

thermocline coupling operate differently for warm and cold events, favoring long cold events119

and rather short, intense warm events. Levine and McPhaden (2016) show that state-120

dependent noise forcing contributes to the SST amplitude asymmetry of the Pacific Niño.121

State-dependent noise provides an additional positive feedback between warm Pacific Niño122

events and zonal wind variability. The evolving warm event amplifies its own wind forc-123

ing by creating a state that promotes the occurrence of subsequent strong westerly wind124

bursts in the western and central ocean basin. This mechanism enhances wind-thermocline125

coupling.126

In contrast to the prominent Pacific SST amplitude asymmetry, the Atlantic Niño127

is rather symmetric. Lübbecke and McPhaden (2017) show that warm and cold Atlantic128

Niño events are effectively mirror images of each other. Additionally, they diagnose the129

strength of the Bjerknes feedback elements for both positive and negative summer events130

and conclude that, unlike the Pacific Bjerknes feedback, the Atlantic summer Bjerknes131

feedback is largely symmetric.132

Here, we revisit the work of Lübbecke and McPhaden (2017) by taking into account133

zonal, seasonal, and decadal variations of the Bjerknes feedback strengths associated with134

positive and negative events in the equatorial Atlantic. Specifically, we seek to answer135

the following question: For the summer and winter Niños in the equatorial Atlantic, does136

the Bjerknes feedback operate symmetrically for cold and warm events? Are these find-137

ings stationary, or do they depend on the analysis period?138

The remainder of this study is structured as follows. Section 2 explains how we es-139

timate the Bjerknes feedback and on which datasets we base our analysis. Section 3 dis-140

cusses the results of our analysis. In Section 4, we discuss our findings in comparison to141

Lübbecke and McPhaden (2017) and attempt to assess the stationarity of our results.142

A discussion is provided in the last section.143

2 Data and Methods144

2.1 Data145

Our analysis is based on two groups of datasets that each contain monthly mean146

SSH, SST, and USTR in the equatorial Atlantic and Pacific ocean basins.147

1. “OBS”, 1993-2012, direct satellite observations, reconstructions, and reanalysis.148

We use SSH provided by AVISO (https://www.aviso.altimetry.fr/en/home.html);149

SST from NOAA’s Extended Reconstructed Sea Surface Temperature (Smith &150

Reynolds, 2003, ERSST), version 5 (Huang et al., 2017); and USTR from the ERA-151

Interim Reanalysis (Dee et al., 2011). While ERA-Interim is not an observational152

dataset, we call this group “OBS” for the sake of readability.153

2. “ORAS4 ”, 1958-2009, ECMWF’s Ocean Reanalysis System Version 4 (Balmaseda154

et al., 2012), which provides dynamically consistent SSH, SST, and USTR. SSH155

and three-dimensional ocean potential temperature data were downloaded from156

the University of Hamburg’s Integrated Climate Data Center (http://icdc.cen.uni-hamburg.de/projek-157

te/easy-init/easy-init-ocean.html). We use SSH as provided by the reanal-158

ysis; the first level of the ocean potential temperature as SST; and the same wind159
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stress dataset as in Lübbecke and McPhaden (2017). This corresponds to the wind160

stress forcing of ORAS4, using ERA-40 (Uppala et al., 2006) data from January161

1958 to December 1988, and ERA-Interim data afterwards. Note that reanalysis162

products potentially suffer from model-induced biases, and that the accuracy of163

results is highly sensitive to the quality of the assimilated data. Uncertainties are164

generally larger prior to the advent of satellite observations in the late 1970s. Be-165

cause of this, our discussion of ORAS4-based results in Section 4 will focus on gen-166

eral issues rather than on exact numerical values.167

As pointed out in the Introduction, SSH is a reliable proxy for thermocline depth168

in the central and eastern equatorial ocean basins only (Cane, 1984). Hence, results in-169

volving SSH should be treated cautiously in the western warm pool regions.170

Anomalies in this study are calculated as follows: We first remove the linear trend171

from the entire time series, then subtract the seasonal cycle to obtain monthly anoma-172

lies. For each analysis, we calculate the anomalies with respect to the chosen analysis173

periods.174

For the overlap period 1993-2009, we compare the time series of anomalies and the175

seasonal distribution of standard deviations between the two dataset groups for each vari-176

able (Fig. 1). To facilitate comparison, we average our data into indices of the Atl3 and177

Nino3.4 regions (3◦S to 3◦N , 20◦W to 0◦E, and 5◦S to 5◦N , 170◦ to 120◦W , respec-178

tively) in the Atlantic and Pacific for both SSH and SST; and into the WAtl and Nino4179

regions (3◦S to 3◦N , 40◦ to 20◦W , and 5◦S to 5◦N , 160◦E to 150◦W ) for USTR. The180

datasets agree well with each other, and anomaly correlation values between pairs of time181

series of the same variable all exceed values of 0.9. Additionally, Fig. 1 highlights dif-182

ferences between the Atlantic and Pacific Niños (see Introduction). It is obvious that Pa-183

cific Niño events have a distinct signature in the anomaly time series of SSH, SST, and184

USTR, being characterized by intermittent, strong events that are clearly phase-locked185

to boreal winter (Fig. 1a,e,i). In contrast, variances in the Atlantic are much smaller and186

events occur more regularly, producing anomaly time series that resemble white noise187

(Fig. 1b,f,j). Panels 1k,l indicate that the ERA-Interim and ORAS4 USTR data are not188

exactly equal, although they are both ERA-products. This could be due to the blend-189

ing in ORAS4, and to a lesser degree to the different horizontal resolutions of the two190

datasets, with ORAS4 USTR being higher resolved than the ERA-Interim data used in191

this study.192

2.2 Estimating the strength of the Bjerknes feedback elements193

We use robust regression to diagnose the strength of individual Bjerknes feedback194

elements (Holland & Welsch, 1977; Street et al., 1988; Huber & Ronchetti, 2009). In sta-195

tistical analysis, developing a model of a given dataset requires assumptions about the196

processes that generated the data. Ordinary least squares-based linear regression (OLS)197

can be unreliable when these assumptions are violated, especially in the presence of out-198

liers, since OLS minimizes the squared distances between the original data and the guess199

of the prediction. Robust regression techniques – a collection of methods that seek to200

lessen the sensitivity of the regression coefficients to outliers – generally change the weight201

that is attributed to each residual when considering its impact on the final regression202

coefficients. A common approach is to assign a relatively strong weight to small resid-203

uals, and decrease the weight of large residuals that are likely associated with outliers.204

While robust regression has been designed with outliers in mind, Zheng, Fang, Yu, and205

Zhu (2014) demonstrated that it is a valid way to perform regression analysis based on206

small datasets in climate science. We adopt this approach here, using Matlab’s imple-207

mentation of robust regression (robustift, current documentation provided by https://de.mathworks.com/help/stats/robustfit.html).208

For our analysis, we use the default robustfit of Matlab’s 2018-distribution, which it-209

eratively re-weights least squares with a bisquare weighting function.210

–5–

©2018 American Geophysical Union. All rights reserved.



manuscript submitted to JGR-Oceans

Figure 1: Key features of employed datasets. Time series of anomalies with respect to
the linear trend and the seasonal cycle (upper two rows, panels a-b, e-f, i-j), and monthly
stratified standard deviations (lower two rows, c-d, g-h, k-l, months from January to De-
cember indicated by their first letter on the x-axis). Both quantities have been diagnosed
with respect to the overlap period of the two dataset groups, 1993-2009. Each panel shows
the same quantity for the OBS and ORAS4 dataset groups as red and blue lines, respec-
tively, and all quantities are shown for SSH, SST, and USTR in the left-hand (a-d),
middle (e-h), and right-hand row (i-l). The OBS group contains AVISO-SSH, ERSST-
SST, and ERA-Interim zonal wind stress (USTR). Data has been averaged into the Atl3
and Nino3.4 regions in the Atlantic and Pacific for both SSH and SST; and into the WAtl
and Nino4 regions for USTR.

To diagnose the strength of the Bjerknes feedback elements in our zonal analysis,211

we average equatorial SSH and SST into 4◦ longitude × 4◦ latitude boxes that slide along212

the equator. Zonal wind stress (USTR) is fixed to WAtl in the Atlantic, and Nino4 in213

the Pacific, since it is the western basin wind stress that dominantly contributes to the214

closed Bjerknes feedback, and not the local wind stress.215

As in the case of OLS, robust regression, too, assumes a linear relationship between216

the two variables that are related to each other. In the tropical Atlantic, Lübbecke and217

McPhaden (2017)’s recent study shows a fairly linear relationship for all elements of the218

Bjerknes feedback (see their Fig. 3). In the equatorial Pacific, on the other hand, a num-219

ber of studies have shown that non-linear processes affect the variability associated with220
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the Pacific Niño (Dommenget et al., 2013; Takahashi & Dewitte, 2016; Timmermann et221

al., 2018). These processes, however, usually serve to explain the strongest events or the222

overall asymmetry between warm and cold events (see Introduction). Here, we recog-223

nize the overall asymmetries and are interested in a canonical analysis of the Bjerknes224

feedback associated with the Pacific Niño. Because of this, and for the sake of direct com-225

parability between the Atlantic and Pacific basins, we have decided to apply the same226

(linear) analysis to both ocean basins.227

2.3 Including lagged feedback elements into the analysis228

Unless stated otherwise, we take into account that any of the Bjerknes feedback229

elements could be lagged when we calculate composite strengths in this study (see Sec-230

tion 2.4 for details on the feedback element composites). To identify lags, we use robust231

regression to conduct a cross-regression analysis prior to diagnosing the composite strengths232

for each analysis period. During the cross-regression analysis, we fix the forcing variable233

of the feedback element – the variable that “drives” the feedback element, i.e. SSH, SST,234

and USTR for the SSH-SST, SST-USTR, and USTR-SSH feedback elements – to our235

analysis month and shift the month at which the response variable is measured for up236

to ±8 months. Negative lags indicate that the relationship is strongest when the response237

variable leads the forcing variable. In this case, the causality of the three relationships238

forming the Bjerknes feedback is severed. For this reason, we will discard results asso-239

ciated with negative lags for the remainder of the study.240

Figure 2 shows the lags that our cross-regression analysis identified, for the OBS241

dataset group and the period 1993-2012. To produce the results shown in Section 3, we242

assume that the lags are independent of the subset of data that was used to diagnose243

them (see Section 2.4). In Section A.1 of the Appendix, we discuss the validity of this244

assumption and find that it generally holds. However, this assumption can locally de-245

grade the strength of the feedback element, demonstrating again how diverse the mech-246

anisms are that produce the variability of the Atlantic and Pacific Niños, and that it may247

not be justified to make equivalent assumptions for warm and cold events.248

Figure 2 shows that in the Pacific, all feedback elements are generally character-249

ized by positive lags that start to occur in May and decrease until boreal winter, indi-250

cating that the closed feedback loop becomes more instantaneous in the latter half of the251

year (Fig. 2a-c). Zonal variations are small, and lags tend to occur uniformly across large252

parts of the Pacific.253

In the Atlantic, lags associated with subsurface-surface coupling are generally pos-254

itive (Fig. 2d), indicating that SSH leads SST variability by three months at most. Dur-255

ing June and July, and again in boreal winter, lags vanish and subsurface-surface cou-256

pling becomes instantaneously. The SST-USTR and USTR-SSH feedback elements, on257

the other hand, are characterized by lags ≥ 0 only during spring and early summer, and258

again during boreal winter. In agreement with previous studies on the seasonality of the259

Atlantic Bjerknes feedback by Keenlyside and Latif (2007) and Burls et al. (2011), this260

indicates that the Bjerknes feedback can only establish a closed feedback loop during early261

summer and winter. Another feature of Fig. 2d-f is that the lags of the feedback elements262

are not distributed evenly across the zonal extent of the basin. Rather, positive lags oc-263

cur predominantly in or close to the Atl3 region, showing that not only is the Atlantic264

Bjerknes feedback constrained to two short periods, but also to a narrow spatial domain.265

We include lags into our robust regression analysis by shifting the time series of266

the response variable according to the identified lag.267
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Figure 2: Lag in months at which the relationship for each of the three Bjerknes feed-
back elements is strongest. Data is shown along the equator (x-axis) and stratified into
calendar months (y-axis) for both the Pacific (left column, panels a-c), and the Atlantic
(right column, d-f). The sign of the lag is with respect to the forcing variable of the feed-
back element, i.e. SSH, SST, and USTR for the SSH-SST, SST-USTR, and UTRS-SSH
feedback elements, respectively. A positive lag indicates that the forcing variable leads the
response variable. Positive lags are shown in colour, with a lag of zero months indicated
by yellow. Negative lags are shown in grey shading. The top, middle, and bottom rows
show results for subsurface-surface coupling (a,d), SST-wind coupling (b,e), and wind-
thermocline coupling (c,f). For each longitude, data has been averaged into 4◦ longitude
×4◦ latitude bins prior to calculation. This binning has been done for each analysis, un-
less stated otherwise. Coloured bars below the titles indicate the zonal extent of the Nino4,
Nino3.4, and Nino1.2 (WAtl and Atl3) regions in the Pacific (Atlantic) in blue, light blue,
and dark blue (blue and light blue)

2.4 Assessing the symmetry of the Bjerknes feedback: Compositing feed-268

back elements269

To assess the symmetry of a Bjerknes feedback element, we partition it into pos-270

itive and negative composites. Note that we do not separate our feedback elements into271
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consistent warm/cold composites according to SST conditions, but rather assign indi-272

vidual composites to each feedback element, based on its forcing variable.273

Figure 3: Schematic of the feedback decomposition approach. The closed Bjerknes feed-
back loop is decomposed into three interacting feedback elements (partitioned ring around
the central circle). These feedback elements are the subsurface-surface coupling (SSH-
SST, dark blue, bottom right), SST-wind coupling (SST-USTR, light blue, top right), and
wind-thermocline coupling (USTR-SSH, blue, left). Each feedback element is additionally
partitioned into two composites (red and blue boxes below each feedback element). Com-
posites are based on the sign of the anomalies of the forcing variable, i.e. SSH, SST, and
USTR for the SSH-SST, SST-USTR, and USTR-SSH feedback elements, respectively. The
text in the composite boxes explains how each composite can be interpreted with respect to
its “parent” feedback element (see Section 2.4).

Figure 3 illustrates this two-step decomposition of the Bjerknes feedback loop – into274

feedback elements first, then into composites of the feedback elements – and lists how275

negative and positive composites of each feedback element can be interpredted in terms276

of the forcing variable. Because of the partitioning of our base data pool into positive277

and negative composites prior to our regression analysis, the effective sample sizes for278

our robust regression are on the order of 10 for the period 1993-2012 (Section 3), and279

12 for the 25-year periods considered in Section 4. This is a very small sample size. Even280

though we employ robust regression, we will refrain from attributing too much value to281

individual numbers, and will rather focus on general patterns.282
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2.5 Bootstrapping significances283

Significance in our study indicates that a given composite of a feedback element284

(or their difference) is significantly different from the expected strength (difference) of285

that feedback element when it is diagnosed from a random sub-sample of the data. We286

estimate this significance using a simple bootstrapping approach outlined below.287

For a (strength) composite of a Bjerknes feedback element, we generate a distri-288

bution of the expected feedback element strength by re-diagnosing the robust regression289

coefficients for random sub-samples of the full data pool. Sub-samples ignore compos-290

ites, but have the same sample size as the composites they test and obey the same lags291

(see Fig. 2). By iterating through a large number of sub-samples, we bootstrap a dis-292

tribution of pseudo-composite strengths, whose expected value corresponds to the rela-293

tionship strength of the feedback element when the data is not partitioned into compos-294

ites. Next, we use the bootstrapped distribution to perform a simple significance test.295

If the composite strength is outside the 90%-area of the bootstrapped distribution for296

a significance level of α = 0.1 and the case of a one-sided test, we reject the null hy-297

pothesis that the composite strength is equal to the relationship strength based on the298

full dataset. The composite strength is significant.299

For the difference between the positive and negative composites, we repeat the above300

method, but use the difference between the calculated composite strengths as the tar-301

get of the test, instead of the absolute composite strength. For this, we again determine302

the size of our sub-sample, randomly draw a new sample of the same size, and use the303

remaining data in the pool as the pseudo-counter composite. In both cases, we perform304

1,000 bootstraps and use a significance level of 0.1.305

3 Symmetry of the Atlantic and Pacific Bjerknes feedbacks 1993-2012306

3.1 Bjerknes feedback element strengths307

To validate our method of partitioning the strength of the Bjerknes feedback el-308

ements into positive and negative composites, we discuss our results based on the OBS309

dataset group for the Pacific (Figs. 4, differences shown in Fig. 5a-c). We use the lags310

shown in Fig. 2.311

In agreement with the equatorial Pacific “spring barrier”, both the composites of312

the SST-USTR and USTR-SSH feedback elements decline during late boreal winter and313

spring in the Pacific (Fig. 4b-c,e-f). The spring barrier is a concept that originates from314

seasonal predictability studies and refers to the drop in predictability of the Pacific Niño315

during boreal spring (Torrence & Webster, 1998; Duan & Wei, 2013). Wengel, Latif, Park,316

Harlaß, and Bayr (2018) showed that the spring barrier is associated with a weakening317

of the atmosphere-ocean coupling in the tropical Pacific, which temporarily decreases318

the strength of the Bjerknes feedback estimated by Jin, Kim, and Bejarano (2006)’s Bjerk-319

nes stability index (see Section 5). Our results confirm this.320

In the Nino3.4 region and the eastern ocean basin, negative composites are signif-321

icantly different from the expected relationship strength more frequently than positive322

composites. This is shown by the distribution of significance, indicated by overlaid black323

crosses in Fig. 4. The dominance of positive events over negative events is in agreement324

with previous studies on Pacific Niño asymmetries. In particular, while cold events are325

rather modest in magnitude, virtually all extreme events are warm and hence strongly326

shape the overall characteristics of the Pacific Niño (note, however, that really only one327

“extreme event” occurred in the short period 1993-2012). Consequently, the positive com-328

posites of the feedback element strengths are in better agreement with the expected over-329

all relationship strengths than the negative composites.330
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Figure 4: Composites of the OBS-based feedback elements in the Pacific, for the recent
period 1993-2012 along the equator (x-axis) and stratified into calendar month (y-axis)
with respect to the forcing variable. The top, middle, and bottom row show results for the
SSH-SST (panels a,d), SST-USTR (b,e), and USTR-SSH feedback elements (c,f), with
forcing variables SSH, SST, and USTR, respectively. To estimate the sensitivity of the
two involved variables for the case of either positive or negative anomalies of the forcing
variable, cf. Section 2.4, we use the slope parameter provided by robust regression. Colour
shading indicates positive values, with small values shown in blue, and the highest values
shown in reds and yellows. Negative values, indicating that a feedback element disrupts
the closed Bjerknes feedback, are shown in grey shading, with the lightest greys indicating
the largest negative values. White indicates that, at the given longitude and month, the
lag diagnosed in Fig. 2 is negative and hence is not in agreement with the framework of
the Bjerknes feedback. Sensitivities are given in units of K/m, N/(m2K), and m3/N for
the three feedback elements, respectively. The left and right columns show the sensitivi-
ties for the negative (a-c) and positive composites (d-f). Significance is indicated by black
crosses with a white outline (see text for details). Coloured bars below the title indicate the
zonal extent of the Nino4, Nino3.4, and Nino1.2 regions in blue, light blue, and dark blue,
respectively.
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Figure 5: Similar to Fig. 4, but showing the difference between positive and negative
composites of the feedback elements in the Pacific (left column, panels a-c) and the At-
lantic (right column, d-f), for the SSH-SST (a,d), SST-USTR (b,e), and USTR-SSH (c,f)
feedback elements. Blue (red-yellow) shading indicates that the negative composite is larger
(smaller) than the positive composite. Coloured bars below the titles indicate the zonal ex-
tent of the Nino4, Nino3.4, and Nino1.2 (WAtl and Atl3) regions in the Atlantic (Pacific)
in blue, light blue, and dark blue (blue and light blue).

Pacific subsurface-surface coupling (Figs. 4a,d) is positive for almost the entire year331

and across most of the Pacific basin. East of 150◦W (210◦E), the positive composite is332

generally stronger than the negative composite (Fig. 5a), in particular in the far east-333

ern basin during late boreal summer, coinciding with the main onset phase of warm Pa-334

cific Niño events.335

Pacific SST-wind coupling, too, is generally stronger for the positive composite (Figs.336

4b,e, and 5b). Physically, this could be due to a threshold dependence of equatorial deep337

convection. While warm SST anomalies promote overlying convection effectively, cold338

SSTs do not necessarily suppress convection to the same degree (Levine & Jin, 2017).339
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Consequently, wind variability is more sensitive to warm SST anomalies than to cold SST340

anomalies.341

An interesting feature of the positive composite of the Pacific SST-USTR feedback342

element is that it is strongest in the central Pacific (Fig. 4e) – it seems to operate more343

locally in our analysis framework than expected (this, however, could be a consequence344

of USTR being fixed to the western ocean basin). The strength of the positive feedback345

element peaks just after the collapse of the spring barrier in early boreal summer, when346

a clear asymmetry between the negative and positive composites emerges. This asym-347

metry persists into boreal winter and is strongest in the Nino3.4 region (Fig. 5b). SST-348

wind coupling stops contributing to a closed Bjerknes feedback in November for both349

composites (Fig. 4b,e, and lags shown in Fig. 2b).350

Last, Figs. 4c,f, and 5c indicate that Pacific wind-thermocline coupling is highly351

asymmetric for the second half of the year, especially in the eastern portion of the basin.352

Again, the feedback element is strongest after the collapse of the spring barrier. The zonal353

distribution of the feedback strength composites indicates that the Nino4 wind stress in-354

deed is strongly related to thermocline variability in the central and eastern ocean basin,355

in good agreement with the Bjerknes feedback framework.356

Overall, the elements of the Pacific Bjerknes feedback display a clear asymmetry.357

Positive composites are generally stronger than negative composites, especially so in the358

eastern ocean basin when SSH is involved. Simultaneously, negative composites are more359

frequently significantly different from the overall expected relationship strength, indi-360

cating that the characteristics of the Pacific Bjerknes feedback elements are largely shaped361

by the positive composites. These findings are in excellent agreement with previous stud-362

ies on Pacific Niño asymmetries and demonstrate that our lagged, robust regression-based363

feedback analysis is well suited to investigate feedback asymmetries in an equatorial ocean364

basin.365

A peculiar finding is that our lagged feedback strengths appear to be phase-locked366

to early boreal summer rather than winter. While the feedback elements do persist into367

boreal winter, they are strongest in summer. This suggests that the weak spring cou-368

pling very rapidly turns into effective coupling that organizes incipient anomalies in the369

atmosphere and the ocean into the Bjerknes feedback. During the peak phase of the Pa-370

cific Niño these feedback elements are still active, but they are weaker than during the371

initial growth phase in boreal summer. On the one hand, these findings seem to be at372

odds with a number of previous studies, including Zhu, Kumar, and Huang (2015)’s dis-373

cussion of the seasonality of Pacific subsurface-surface coupling (their “thermocline feed-374

back”). They report that instantaneous subsurface-surface coupling is weakest in March,375

and then gradually increases until it peaks in October and November. However, their376

study does neither explicitly consider lags, nor does it distinguish between “deep” and377

“shallow” thermocline depths as we do here. On the other hand, recent work by Wengel378

et al. (2018), supported by early work by Zebiak and Cane (1987), suggests that atmosphere-379

ocean coupling in the tropical Pacific indeed is strongest in late boreal spring and early380

summer, in agreement with our findings. The discrepancies between these studies and381

our findings will have to be resolved by future research.382

Next, we present our results for the Atlantic Bjerknes feedback (Figs. 5d-f, 6). In agree-383

ment with Lübbecke and McPhaden (2017), the range of the feedback element strengths384

is generally comparable to the Pacific, except for the weak Atlantic wind-thermocline385

coupling (Figs. 6c,g). In addition to the weak sensitivity between USTR and subsurface386

variability, the following factors are commonly discussed to explain the muted amplitude387

of the Atlantic Niño. First, the zonal extent of the Atlantic is much smaller than in the388

Pacific, which could constrain the fully coupled feedback. Second, the Bjerknes feedback389

operates on shorter time scales in the Atlantic, effectively coupling the atmosphere and390
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Figure 6: Same as Fig. 4, but for the Atlantic. Coloured bars below the title indicate the
zonal extent of the WAtl and Atl3 regions in dark and light blue, respectively.

the ocean for only two-to-three months in a row at best, and hence diminishing the am-391

plitude that anomalies can grow to. This is consistent with our analysis.392

Atlantic subsurface-surface coupling appears to be the dominant element of the At-393

lantic Bjerknes feedback (Fig. 6). Clear asymmetries emerge throughout boreal summer394

and early winter (Fig. 5d). In boreal summer, during the peak season of the summer Niño,395

the negative composite is stronger until July; for the remainder of boreal summer and396

early fall, the positive composite contributes more effectively to the overall feedback el-397

ement. This suggests that subsurface-surface coupling sets in earlier for cold Atlantic Niño398

events. (While it is tempting to argue that the SSH-SST feedback element should nat-399

urally be stronger for shallow thermoclines due to the enhanced sensitivity of SST to small400

changes in thermocline depth, this reasoning clearly breaks down in the equatorial Pa-401

cific, where subsurface-surface coupling is strongest for deeper-than-normal thermoclines,402

cf. Fig. 5d. A possible explanation for this is that shallow thermoclines have to outcrop403

at some point, capping the maximum strength of the negative SSH-SST feedback ele-404
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ment, while the thermocline can deepen more or less without constraints for the posi-405

tive SSH-SST composite.) In boreal winter, the negative composite re-emerges, while the406

positive composite is practically absent. The overall seasonality of Atlantic subsurface-407

surface coupling is in good agreement with our understanding of the Atlantic Niño. An408

interesting side note is that the Atlantic SSH-SST feedback element appears to be stronger409

than its Pacific counterpart when it peaks (cf. Figs. 4a,d and 6a,d).410

Atlantic SST-wind coupling, on the other hand, appears to be weaker than its Pa-411

cific counterpart (cf. Figs. 4b,e and 6b,e). Nevertheless, consistent asymmetries arise be-412

tween positive and negative composites. In agreement with the enhanced sensitivity of413

wind variability to warm SST anomalies discussed for the Pacific SST-USTR feedback414

element, the positive composite is generally stronger than the negative composite. How-415

ever, the lags that we used to diagnose the Atlantic SST-USTR feedback element are neg-416

ative from June to September (Fig. 2f) and SST-wind coupling hence only really con-417

tributes to a closed Bjerknes feedback loop in May. This limited contribution of the SST-418

USTR feedback element indicates that equatorial wind variability is less sensitive to ocean419

variability in the Atlantic than in the Pacific.420

Last, Atlantic wind-thermocline coupling is clearly weaker than its Pacific coun-421

terpart (Figs. 6c,f). In the case of the negative composite, it changes from being weakly422

positive to negative in August, indicating that it blocks anomaly growth and hence ef-423

fectively contributes to the breakdown of the Atlantic Bjerknes feedback. This agrees424

with Dippe et al. (2018), who show that the closed Atlantic Bjerknes feedback collapses425

in August. Differences between the negative and positive composites are generally small,426

with the positive composite prevailing slightly. (The substantial difference in August is427

of no practical concern, since even the apparently overwhelming positive composite is428

only weakly positive in absolute terms, cf. Fig. 6f.) Similar to the SST-wind coupling429

discussed above, wind-thermocline coupling, too, can only contribute to a closed Bjerk-430

nes feedback in early boreal spring and winter, when the lag relationships are positive.431

Overall, we identified asymmetries for all Atlantic Bjerknes feedback elements. These432

asymmetries occur mainly in boreal summer and are most pronounced for the SSH-SST433

feedback element associated with subsurface-surface coupling. The two feedback elements434

that involve wind variability produce a less straight-forward picture. They are weaker435

than their Pacific counterparts and constrain the Atlantic Bjerknes feedback to boreal436

summer and winter. This rather disruptive wind variability and decreased wind sensi-437

tivity to SST is in agreement with previous studies on the Atlantic Niño. A physical ex-438

planation of this difference between the Pacific and Atlantic Niños could be linked to the439

small zonal extent of the Atlantic, which substantially decreases the “fetch” of the wind440

stress variability in comparison to the Pacific. Additionally, enhanced interference, for441

example from mid-latitudes or the tropical Pacific, could explain why wind plays a some-442

what different role for the Atlantic.443

3.2 The total Bjerknes feedback444

In Section 3.1, we have demonstrated that both the Atlantic and Pacific Bjerknes445

feedback elements can be asymmetrical. Here, we attempt to combine our findings for446

the individual feedback elements, and assess how symmetric the overall effect of the closed447

Bjerknes feedback loop is for warm and cold conditions in the central equatorial ocean448

basin. We call this integrative measure the total Bjerknes feedback.449

We diagnose the total Bjerknes feedback by adding the strengths of the instanta-450

neous feedback elements of the positive and negative composites. Instantaneous feed-451

back elements are calculated in the same manner as lagged feedback elements, but use452

a constant lag of zero months, i.e. the two time series contributing to each strength es-453

timate have been sampled at the same calendar month. We use instantaneous feedback454

elements to avoid running into timing discrepancies.455
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Our approach of adding up the strength composites of the individual Bjerknes feed-456

back elements is much simpler than the existing framework of Jin et al. (2006)’s Bjerk-457

nes stability (BJ) index. The BJ index assesses the overall stability of the coupled equa-458

torial system, and hence its ability to support self-sustained growth of SST anomalies.459

The BJ index implicitly considers both processes that damp and promote anomaly growth.460

Damping processes are associated with mean upwelling and thermal damping; amplify-461

ing processes are the positive thermocline, zonal advection, and Ekman feedbacks. Our462

analysis, on the other hand, is confined to the framework of the positive, anomaly-growth-463

promoting Bjerknes feedback.464

In contrast to the Bjerknes feedback elements shown in Figs. 4 and 6, the total Bjerk-465

nes feedback corresponds to warm and cold SSTs in the equatorial ocean basin. See Sec-466

tion A.2 of the Appendix for the total Bjerknes feedback associated with westerly/easterly467

wind anomalies or with deep/shallow thermoclines, or for the case using the “native” com-468

posites of each feedback element.469

For the previous analysis, our estimate of the composite strengths was the regres-470

sion parameter that we obtained from robust regression. This method produced strength471

estimates that preserved a meaningful physical unit. Now, we normalize our feedback472

strengths to constrain them to values between −1 and +1, without units. For the nor-473

malization in both the Atlantic and the Pacific basins, we use the values 60K/m, 0.075N/(m2K),474

and 11m3/N for the SSH-SST, SST-USTR, and USTR-SSH feedback elements, respec-475

tively. Strength estimates whose magnitude exceeds these “cut-off values” are set to ±1,476

depending on their sign. The cut-off values were chosen such that, based on all diagnosed477

strengths of the same composite in both basins, the magnitude of 95% of all values are478

smaller or equal to the cut-off value. Last, we add up all normalized feedback strengths479

contributing to the same composite, and obtain composites of the total Bjerknes feed-480

back with respect to cold and warm SSTs.481

Figure 7 shows the total feedback according to our simple measure. Instances where482

the feedback loop is “broken” by a single feedback element contributing negative values483

and hence inhibiting anomaly growth are shown in white.484

In agreement with previous studies, the total (instantaneous, SST-based) Pacific485

Bjerknes feedback is dominated by contributions from its positive composite, i.e. it is486

stronger for warm SSTs (Figs. 7a-c). The feedback forms a closed loop for practically487

the entire year, indicating that feedback-driven anomaly growth can be active for much488

of the year. A clear, common seasonality for both the cold and warm composites does489

not exist. The cold composite is weakest in boreal summer, while the warm composite490

is diminished at the beginning of the calendar year, indicating that the spring barrier491

affects positive and negative composites in a slightly different fashion. An interesting de-492

tail in the distribution of the composite totals is that the Bjerknes feedback is not closed493

in the negative composite in the far-eastern basin, not even during the peak time of the494

Pacific Niño in boreal winter. This is in agreement with studies on different regimes of495

the Pacific Niño arguing that negative Pacific Niño events (La Niñas) tend to develop496

in the central basin and hardly ever manifest in the far eastern basin in their extreme497

form (Takahashi et al., 2011; Dommenget et al., 2013; Capotondi et al., 2015; Takahashi498

& Dewitte, 2016).499

In contrast to the Pacific, the total Atlantic Bjerknes feedback displays a pronounced500

seasonality (Figs. 7d-f). Both the warm and cold composites are generally strong in sum-501

mer and early boreal winter, but almost vanish in-between. However, Fig. 7d,e shows502

that the timing and magnitude of these seasonal peaks is different for the warm and cold503

composites – asymmetries emerge in the total Atlantic Bjerknes feedback.504

During boreal summer, the cold composite is strongest in May and June, while the505

warm composite lasts a month longer. This agrees with Burls et al. (2012), who argued506
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Figure 7: SST-based estimate of the total Bjerknes feedback during 1993-2012 in the
Pacific (panels a-c) and Atlantic (d-f), along the equator (x-axis) and stratified into calen-
dar months (y-axis), diagnosed for the OBS dataset group. The top, middle, and bottom
rows show the total of all negative composites (a,d), the total of all positive composites
(b,e), and the difference between the positive and negative composites of the total Bjerknes
feedback (c,f). Feedback strengths of the individual Bjerknes feedback elements have been
normalized with 60K/m, 0.075N/(m2K), and 11m3/N for the SSH-SST, SST-USTR,
and USTR-SSH feedback elements, respectively. All feedback elements have been diagnosed
without considering lag, and for each composite, they all use the same subsample of the
data. These composites were diagnosed from the sign of the SST anomaly. Hence, the
positive and negative composites of the total feedback assess the strength of the Bjerknes
feedback when SSTs are warm or cold, respectively. The composites of the total feedback
are the sum of all normalized composites. See text for additional details on how the total
Bjerknes feedback was computed. White indicates that at least one of the feedback ele-
ments was negative, i.e. that the Bjerknes feedback loop was not closed. For the difference
plots (c,f), white indicates that at least one feedback element was negative in either of the
positive or negative composites.
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that cold summer Niño events are associated with an early onset of the cold tongue, while507

cold tongue development is delayed during warm events. In boreal winter, cold SST anoma-508

lies feed coupled anomaly growth in late winter, with warm SST anomalies lending lit-509

tle support to anomaly growth. These results suggest that the Bjerknes feedback sup-510

porting the Atlantic summer Niño relies on contributions from both cold and warm con-511

ditions. The winter Niño and possible coupled variability during the first months of the512

year, on the other hand, is mainly associated with negative SST anomalies, at least within513

the framework of the Bjerknes feedback.514

4 Stationarity of the Bjerknes feedback515

The results of the previous section for the Atlantic appear to be at odds with the516

results of Lübbecke and McPhaden (2017). One core result of their study is that the SST517

anomalies associated with warm and cold Atlantic Niño events are effectively mirror im-518

ages of each other, and that the associated, seasonal Bjerknes feedbacks appear to be519

symmetric as well. While Lübbecke and McPhaden (2017) find a weak disparity for the520

positive and negative composites of the strength of subsurface-surface coupling, this asym-521

metry is not comparable to the pronounced asymmetries associated with the Pacific Niño.522

Lübbecke and McPhaden (2017) base their analysis on the approximately 50-year pe-523

riod 1958-2009, and diagnose feedback strengths using data of at least two months, al-524

lowing for lags of one month between the involved time series.525

Our data situation is different. The OBS dataset group spans the 20-year period526

1993-2012, and we have chosen to resolve our results as highly as possible, taking into527

account month-to-month variations and a possible dependence on longitude as well.528

To facilitate a direct comparison and assess the robustness of our results, we cal-529

culate the index-based monthly composite strengths of all feedback elements for the over-530

lap period of the OBS and ORAS4 dataset groups 1993-2009 (Fig. 8). The feedbacks531

are calculated in the same manner as above, but use indices that are averaged over the532

Atl3/WAtl and Nino3.4/Nino4 regions in the Atlantic and Pacific for SSH and SST/USTR,533

respectively. Lags are re-diagnosed for the period 1993-2009, and incorporated in the same534

manner as in Section 3.535

Agreement between the two dataset groups is excellent in the Pacific (Fig. 8d-f).536

Timing is mostly congruent, apart from the very sharp drop in the positive composite537

of the SST-USTR feedback element that occurs in May in the OBS, and in April in the538

ORAS4 dataset group, consistent with the spring barrier. Additional smaller discrep-539

ancies are apparent for wind-thermocline coupling, while preserving the overall seasonal540

structure of the two composites.541

In the Atlantic, discrepancies are apparent mainly for the SSH-SST and SST-USTR542

feedback elements. Timing in these cases can be very different. For example, the neg-543

ative composite of the SSH-SST feedback element peaks in June in ORAS4, but in May544

in OBS. ORAS4 produces a stronger positive SSH-SST feedback element composite, how-545

ever largely preserving significances. On the other hand, the dominant features identi-546

fied in Section 3.1 are evident in both datasets: strong negative composites in early sum-547

mer, strong positive composites in late summer, weak positive composites during win-548

ter. In a similar fashion, small discrepancies are apparent for SST-wind coupling, while549

the general distribution of feedback strengths and asymmetries is present in both dataset550

groups. In particular, the negative composite is weakest in summer and strongest in late551

winter, while the positive composite peaks in May.552

Overall, the OBS and ORAS4 dataset groups agree well in the Pacific, and sup-553

port the main features identified in our analysis for the Atlantic, while differing in the554

details there. It follows that the apparent discrepancies between our work and Lübbecke555

and McPhaden (2017)’s study must be partially attributed to the different analysis pe-556
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Figure 8: Comparison of feedback element composites in the OBS and ORAS4 dataset
groups in the Pacific (left column, panels a-c) and Atlantic (right column, d-f) for the
overlap period 1993-2009. The top, middle, and bottom row shows results for the SSH-
SST, SST-USTR, and USTR-SSH feedback elements, respectively. Composites of the
feedback elements have been diagnosed with respect to Atl3/WAtl in the Atlantic, and
Nino3.4/Nino4 in the Pacific, for SSH and SST/USTR, respectively. Line colour indi-
cates the positive and negative composites in red and blue, resoectively. Star-shaped and
square line markers indicate the OBS and ORAS4 dataset groups. Coloured (grey) line
markers show that the respective composite is (not) significant (see text for details). For
the two sets of twelve values each associated with the two dataset groups shown here, the
resulting anomaly correlation coefficients are given in parentheses below each panel. Note,
however, that correlations for small sample sizes can be unreliable. As in Fig. 4, white
shading indicates that the associated lags (not shown) were negative.

riods. In agreement with Mart́ın-Rey et al. (2017)’s proposed non-stationarity of the At-557

lantic Niño itself, the Atlantic Bjerknes feedback appears to vary on decadal time scales.558
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To illustrate this further, we apply a “running” analysis that highlights low-frequency559

variations in the composite strengths of the Bjerknes feedback elements and their sym-560

metry. For this analysis, we again use ORAS4 index data confined to the Atl3/WAtl and561

Nino3.4/Nino4 regions employed above. For consecutive, overlapping periods of 25 years,562

we re-diagnose our lags and repeat our robust regression analysis, producing compos-563

ites of running index-based feedback elements. Anomalies are calculated separately with564

respect to each period of the running analysis. This means that for each 25-year-long565

sub-period the data is detrended independently, and anomalies are diagnosed relative566

to the local seasonal cycle of each sub-period. Because both the equatorial Pacific and567

Atlantic basins are subject to decadal variability, this method could potentially distort568

our results when a common reference frame for the anomalies is required. However, re-569

peating our analysis without detrending the data yielded practically the same results in570

the Pacific, and minor deviations in the Atlantic (not shown). Because of this and and571

consistency, we calculate the composite strengths of our feedback elements in the same572

manner as above, including a “running” detrending.573

Figures 9 to 11 show the results of our running analysis. The Pacific Bjerknes feed-574

back elements exhibit low-frequency variations (Fig. 9). All feedback elements, and gen-575

erally both the positive and negative composites, show a basic change that occurs around576

the early 1970s and is characterized by (i) a weakening subsurface-surface coupling; (ii)577

SST-wind coupling that appears to decrease for the negative composite, but shows no578

clear change for the positive composite; and (iii) strengthening wind-thermocline cou-579

pling that is more apparent in the negative composite than in the positive composite.580

These changes are in rough agreement with the “Pacific climate shift” that took place581

in 1976/77 (Graham, 1994; Trenberth & Hurrell, 1994; Ding et al., 2013). A secondary582

climate shift in the Pacific occurred in 1998/99, exchanging intense, eastern warm events583

for a more moderate regime characterized by warm events that occur closer to the cen-584

ter of the basin and are reduced in amplitude (Lübbecke et al., 2014; Hu et al., 2012).585

Both climate shifts have been related to the low-frequency variability of the Pacific Decadal586

Oscillation (Minobe, 1997, 2000; Mantua & Hare, 2002, PDO). The 1998/99 shift, how-587

ever, is not resolved in our analysis, since our datasets span only twelve years of the post-588

shift era, which constitutes half a period of our running analysis.589

As for the OBS-based subsurface-surface coupling discussed in Section 3.1, our re-590

sults for the SSH-SST feedback element are not consistent with Zhu et al. (2015). Sea-591

sonalities of the two results disagree (with our SSH-SST feedback elements being strongest592

in April-June, while Zhu et al. (2015)’s thermocline feedback consistently peaks in September-593

December). Periods of enhanced subsurface-surface coupling, too, do not agree. In par-594

ticular, our results indicate that the SSH-SST feedback element was strongest in the pe-595

riod spanning the 1960s to 1990s, for both the positive and the negative composites. Zhu596

et al. (2015) find fairly consistent thermocline feedbacks in winter, while relationships597

in boreal spring were very weak in the 1960s-1980s, and again in the mid-1990s to early598

2000s. We suspect that methodological differences will most likely explain the apparent599

discrepancies in seasonality and timing of exceptionally weak or strong relationships: Zhu600

et al. (2015) used correlations as a measure for the sensitivity between thermocline depth601

– theirs diagnosed from the depth of the 20◦C-isotherm, ours gleaned from SSH – their602

running analysis periods had lengths of eleven years in contrast to our 25, and they did603

not separate positive and negative composites from each other.604

While the overall strength composites of the Pacific feedback elements change, the605

asymmetry between them is largely preserved (Fig. 10). An exception is the SST-USTR606

feedback element (Fig. 10b), which displays varying ratios of the positive and negative607

strength composites.608

In the Atlantic, all feedback elements vary substantially on decadal time scales (Fig.609

11). Even when focusing on the important summer and winter seasons, the symmetries610

of the Bjerknes feedback elements change from decade to decade. Subsurface-surface cou-611

–20–

©2018 American Geophysical Union. All rights reserved.



manuscript submitted to JGR-Oceans

Figure 9: Decadal variations of the composites of the Pacific Bjerknes feedback ele-
ments, based on the ORAS4 dataset group for running sub-periods (x-axis, shown dates
label the start of each analysis period) and each calendar month (y-axis). The left and
right columns show variations of the negative (panels a-c), and positive composites (d-f).
Rows show variations of the individual feedback elements, for the SSH-SST (a,d), SST-
USTR (b,e), and USTR-SSH feedback elements (c,f). Composites have been diagnosed
with respect to Nino3.4 for SSH and SST, and with respect to Nino4 for USTR. Crosses
indicate that the diagnosed feedback strength is significant (see text for details). Anomalies
have been diagnosed with respect to the running analysis period. The width of the running
window is 25 years.

pling, for example, was the dominant feedback element during the period 1993-2012 (Figs.612

10d and 11a,d). On decadal time scales, this is not necessarily the case. The SSH-SST613

feedback element during early boreal summer was dominated by the positive compos-614

ite in the 70s and 80s, and only recently started to draw more strongly from the nega-615

tive composite. Similarly, the July feedback used to be strongly influenced by the neg-616

ative composite, and only started to be dominated by the positive composite in the mid-617

80s. Subsurface-surface coupling in winter, too, has not always been exclusively supported618

by the negative composite. These shifting symmetries suggest that the relative contri-619

butions of positive and negative composites to the SSH-SST feedback element are highly620

variably on decadal time scales. In a similar fashion, the overall strengths and symme-621
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Figure 10: Similar to Fig. 9, but showing the difference between positive and negative
composites in the Pacific (left column, panels a-c) and the Atlantic (right column, d-f),
for the SSH-SST (a,d), SST-USTR (b,e), and USTR-SSH (c,f) feedback elements.

tries of the two wind-related feedback elements changed over the course of the past 50622

years.623

We conclude that the Atlantic Bjerknes feedback and its symmetry are non-stationary.624

Keep in mind, however, that the absolute numerical values shown here might be subject625

to large uncertainties, due to rather short analysis periods and inhomogeneities in the626

data available to the ORAS4 reanalysis. Hence, while our analysis clearly demonstrates627

that the Atlantic Bjerknes feedback does vary on decadal time scales, the magnitudes628

of these variations may not be well constrained by our data base.629

An important consequence of our findings is that diagnosing the strength of the630

Atlantic Bjerknes feedback on the basis of a rather long dataset might obscure crucial,631

albeit non-stationary details, in the same manner that averaging over long time scales632

will effectively lose information on short-time scale processes.633

–22–

©2018 American Geophysical Union. All rights reserved.



manuscript submitted to JGR-Oceans

Figure 11: Same as Fig. 9, but for the Atlantic. Feedback strengths have been diagnosed
with respect to Atl3 for SSH and SST, and with respect to WAtl for USTR.

5 Summary and Discussion634

5.1 Summary635

We have studied the symmetry of the Atlantic and Pacific Bjerknes feedbacks, us-636

ing robust regression to diagnose the strength of the three feedback elements that form637

the closed Bjerknes feedback loop – the SSH-SST, SST-USTR, and USTR-SSH feedbacks638

that relate to coupling between the subsurface and surface, SST and wind, and wind and639

thermocline depth, respectively. Our analysis of the Pacific agrees well with previous re-640

search and lends credibility to our results for the Atlantic.641

During the recent period 1993-2012 in the Atlantic, asymmetries emerge for all feed-642

back elements during boreal winter and summer, when the Atlantic Bjerknes feedback643

forms a closed positive feedback loop. During these months, the strengths of all feedback644

elements are positive, for both types of composites. While both positive and negative645

composites are strong during boreal summer, the positive composites are much weaker646

during boreal winter. The two wind-related feedback elements are weaker than their Pa-647

cific counterparts, and produce summer and winter asymmetries to a varying degree. The648

total Atlantic Bjerknes feedback is dominated by the negative strength composites in bo-649
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real winter, and shows mixed influences from positive and negative composites in sum-650

mer.651

Comparing our work with Lübbecke and McPhaden (2017)’s study suggested that652

the results of a feedback analysis in the equatorial Atlantic are highly sensitive to the653

chosen analysis period. Indeed, our ORAS4-based running analysis of the Atlantic Bjerk-654

nes feedback elements provides further evidence for the non-stationarity of the Atlantic655

Bjerknes feedback. One important result of our study is that conclusions drawn for feedback-656

related issues in the tropical Atlantic will always have to explicitly consider the analy-657

sis period that they are based on.658

5.2 Discussion659

Taking into account the proposed non-stationarity of the Atlantic Bjerknes feed-660

back, our study serves as a reminder that processes in the coupled equatorial Atlantic661

climate system can unfold on substantially smaller spatiotemporal scales than their Pa-662

cific counterparts. We concede that using even monthly mean data for our analysis might663

be insufficient to resolve the rapid processes that establish the intricate variability in the664

tropical Atlantic.665

Another problem that we ran into are the very small sample sizes as soon as anal-666

ysis periods are shorter than 30 years. For our analysis, we used period lengths between667

20 and 25 years. Separating the data into positive and negative composites left us with668

data pools that rarely exceeded the size of ten to twelve entries per analysis step. To re-669

duce the arbitrariness of our results, we chose robust regression as our analysis method.670

As our results have demonstrated, decreasing the temporal and spatial extent of our anal-671

ysis domain reveals important details of the mechanisms that govern the tropical Atlantic.672

A related issue is that our results concerning the stationarity of the Bjerknes feed-673

back elements rely on a single dataset, i.e. ORAS4, which in addition is a reanalysis. It674

would be interesting to assemble additional datasets, preferentially based on direct ob-675

servations, and repeat our analysis.676

To conclude our study, we seek to consolidate the asymmetries that we detected677

in the recent, OBS-based Pacific and Atlantic Bjerknes feedback with the symmetry of678

SST variability in the central equatorial ocean basins. Our analysis to this effect is based679

on SST “events”. To identify an SST event, we first calculate the anomalies of the time680

series with respect to the linear trend and the seasonal cycle. For both positive and neg-681

ative anomalies separately, we calculate the partial standard deviation. In either case,682

we select all instances for which anomalies exceed 0.5 times the partial standard devi-683

ation. These are potential contributions to events. We next identify periods during which684

potential contributions have the same sign for at least three consecutive months. These685

“persisting” anomalies form an SST event. For each event, the anomaly of the largest686

magnitude provides the strength of the event. We diagnose events in the same 4◦ lon-687

gitude ×4◦ latitude boxes of SST data that we used for our previous analysis.688

Figure 12 shows the average strength of positive and negative SST events along the689

equatorial Pacific and Atlantic, in the same period that we used to diagnose our lagged690

composite strengths in Section 3 (1993-2012). During boreal winter in the Pacific, the691

well-known amplitude asymmetry emerges (Fig. 12a). East of 170◦W (190◦E), Pacific692

warm events are substantially stronger than cold events, especially so in the Nino3.4 re-693

gion. The difference between average warm and cold events can be as high as 1◦C.694

In contrast, SST events are much more symmetric in the Atlantic. This agrees with695

Lübbecke and McPhaden (2017)’s findings. Summer Niños during the recent period seem696

to have been slightly dominated by cold events (Fig. 12b), with a maximum difference697

between negative and positive SST events of about 0.5◦C. This corresponds to the asym-698
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Figure 12: Zonal distribution of the ERSST-based average strength of positive (red)
and negative (blue) SST events for the period 1993-2012 (see text for details on how SST
events have been diagnosed). SST events have been considered along the equatorial Pacific
when they occurred between November and January (NDJ, panel a), and along the equa-
torial Atlantic when they occurred between May and July (MJJ, b), or between October
and December (OND, c). Note that because our analysis period is very short (to match
the period for which we diagnosed the lagged, OBS-based feedback element strengths), the
number of events diagnosed for each longitude box is smaller than ten. Note also that
the y-axes span different strengths for the Pacific and Atlantic analysis. Overlaid rect-
angles indicate the Nino4, Nino3.4, and Nino1.2 (WAtl and Atl3) regions in the Pacific
(Atlantic).

metry of subsurface-surface coupling that we identified in Fig. 5a, where the SSH-SST699

feedback element is clearly stronger for shallow thermoclines (associated with reduced700

SSTs) than for deep thermoclines (warm SSTs). Considering the total Bjerknes feedback701

–25–
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with respect to cold and warm SST conditions softens the relationship (cf. Fig. 7d-f).702

While the total Bjerknes feedback was indeed stronger when diagnosed with respect to703

cold SSTs in June, the response to warm SSTs dominated in May and July. (The ab-704

solute magnitude of this asymmetry depends on which method is chosen to diagnose the705

total feedback, cf. Section A.2 in the Appendix. All methods, however, agree on the neg-706

ative composite dominating June, and the positive composite dominating July. This is-707

sue again raises the question whether it is appropriate to weight all feedback elements708

equally when calculating the total Bjerknes feedback.) Both measures – the strength of709

subsurface-surface coupling by itself, including lags, and the estimate of the instanta-710

neous total Bjerknes feedback – indicates a weak correspondence between the symme-711

try of the (total) Bjerknes feedback and the observed, weak amplitude asymmetry.712

In contrast, the Atlantic winter Niño is mostly symmetric (Fig. 12c), even though713

the total Bjerknes feedback as well as the SSH-SST and USTR-SSH feedback elements714

are clearly dominated by their negative composites during boreal winter (Figs. 7f, 5d,f).715

While the (total) Bjerknes feedback is asymmetrical in winter, it does not project onto716

the observed SST variability – indicating that the Bjerknes feedback plays a minor role717

in establishing the Atlantic winter Niño. This in agreement with Dippe et al. (2018) who718

have found that dynamical, Bjerknes feedback-related contributions to Atl3 SST vari-719

ability do increase in winter, but are much smaller in magnitude than in summer. Rather720

than being a dynamically driven phenomenon as in the Pacific, the Atlantic winter Niño721

appears to be much more susceptible to atmospheric noise forcing.722

Last, we briefly assess how stationary the symmetry of the Pacific and Atlantic Niños723

are. Figure 13 shows how the strength of positive and negative SST events varied over724

the past five decades, using again sliding analysis windows of a length of 25 years each,725

considering both Pacific events in boreal winter, and Atlantic events in boreal summer.726

In the Pacific, the basic asymmetry between warm and cold events did not change727

over the past 50 years (Fig. 13a-c). However, how much warmer the warm events east728

of 120◦W (240◦E) are than the corresponding cold events is indeed varying from decade729

to decade. The strongest asymmetry so far occurred in the 1970s and 1980s, during a730

warm phase of the Pacific Decadal Oscillation, with average warm events exceeding av-731

erage cold events by more than 1.5◦C.732

In the Atlantic, general characteristics of equatorial SST events have not changed733

dramatically over the past 50 years, while minor variations do occur (Fig. 13d-f). The734

location of the strongest cold SST events, for example, appears to have slightly shifted735

from the western into the central Atl3 region (Fig. 13d). Additionally, cold SST events736

have become stronger within the last 30 years. Warm SST events, on the other hand,737

have clearly weakened over the past 50 years (Fig. 13e), in agreement with Tokinaga and738

Xie (2011). The resulting effect is that cold events in the eastern equatorial Atlantic dom-739

inated the summer Niño during recent decades, while the 1960s and 1970s seem to have740

seen stronger warm events (Fig. 13f). An interesting detail of this analysis is that asym-741

metries identified in the Atl3 region do not extend homogeneously towards the eastern742

edge of the basin. Rather, positive SST events become more pronounced close to the African743

coast.744

These findings complement our results on the decadal modulation of the Bjerknes745

feedback’s strength and could contribute to the understanding of decadal variability in746

the tropical Pacific and Atlantic. In both ocean basins, a change in the characteristics747

of the respective Niños has been noted in the 1970s. For the Pacific, this shift has been748

related to the Pacific Decadal Oscillation (Mantua & Hare, 2002). The 1980s and 1990s749

were characterized by strong eastern Pacific El Niño events, while the preceding and sub-750

sequent decades featured weaker events that occurred more frequently and were more751

often located in the central equatorial Pacific (An & Wang, 2000; Chung & Li, 2012).752

In agreement with the 1976/77 climate shift, all Pacific Bjerknes feedback elements changed753
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Figure 13: Decadal variations of ERSST-SST event strengths along the equator (x-axis)
for running sub-periods (y-axis, shown dates label the start of each analysis period) in
the Pacific (left column, panels a-c) and the Atlantic (right column, d-f). SST events
have only been considered when they peaked in November-January (NDJ) and May-July
(MJJ) in the Pacific and Atlantic, respectively. The left, middle, and right columns show
the strength of negative and positive SST events, as well as their difference, respectively
(see text for details on how SST events have been diagnosed). Black crosses indicate that
average negative and positive event strengths are significantly different from each other,
according to a Student t test and the significance level 0.1. The length of each sub-period
is 25 years, and events have been diagnosed with respect to each sub-period.

in the 1970s (Fig. 9a-c), and the asymmetry between warm and cold events increased754

correspondingly (Fig. 13c).755

For the tropical Atlantic, earlier studies on decadal time scales focused mainly on756

the variability of the interhemispheric SST gradient (Mehta & Delworth, 1995; Mehta,757

1998; Wainer et al., 2008), while recent work started to address decadal variations in the758

eastern equatorial Atlantic SST variability with bearings on the Atlantic Niño. Losada759

and Rodŕıguez-Fonseca (2016) describe differences in the spatial pattern of the Atlantic760

Niño before and after the 1970s, with positive SST anomalies restricted to the eastern761

equatorial Atlantic in the earlier and a more basin-wide SST signal in the later period.762

Additionally, Tokinaga and Xie (2011) find a weakening of SST variability in the east-763

ern equatorial Atlantic over the time period 1950 to 2009. These changes are roughly764
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reflected in the weakening of the SSH-SST feedback element’s positive composite (Fig.765

11d) and the associated weakening of the warm events (Fig. 13e).766

Overall, we have shown that the Atlantic Bjerknes feedback appears to be config-767

ured in subtly different ways for positive and negative Atlantic Niño events, both dur-768

ing summer and winter. While these asymmetries project weakly onto the symmetry of769

summer SST events, the winter Niño is much more susceptible to other influences. Both770

the Atlantic Bjerknes feedback and the symmetry of the Atlantic Niño appear to vary771

on decadal time scales.772

A Appendix773

A.1 Using the same lags for positive and negative composites774

In the main text, we presented composites of the Bjerknes feedback elements and,775

as discussed in the “Methods” section, included feedback lags that we previously diag-776

nosed for our full anomaly time series, disregarding the sign of the forcing variable. Here,777

we assess whether using these lags enhances our feedback strengths as expected and whether778

it affects positive and negative composites equally. We do this by repeating our regres-779

sion analysis, but this time using a constant lag of 0 months for each feedback element780

(“instantaneous feedback elements”), at all locations and during all months. We then781

subtract the lagged feedback elements from the instantaneous feedback elements to as-782

sess when including lags into our analysis enhances the composite of the feedback ele-783

ment (negative difference). Note that the positive and negative composites that we use784

are identical in both cases, because they are based on the forcing variable of each feed-785

back element. It is the offset in time of the response variable that differs between the786

two cases.787

Figures A.1 and A.2 show the difference between the instantaneous and the lagged788

feedbacks. Including feedback lags into our analysis does enhance the composites of the789

Bjerknes feedback elements in general. Calculating the mean across all pixels contribut-790

ing to Figs. A.1 and A.2 yields, both in the Atlantic and the Pacific, negative values for791

all feedback elements and both composites, except for the positive composite of the At-792

lantic USTR-SSH feedback element. However, while the overall effect is in agreement with793

our goals, including the lags can have unexpected local effects.794

In the Pacific, including lags into our analysis generally enhances the strength of795

the feedback composites (Fig. A.1), with three notable exceptions: First, the negative796

SSH-SST composite appears to be degraded by lags to the east of the Nino3.4 region for797

the entire year (Fig. A.1a). This indicates that subsurface-surface coupling operates in798

a slightly different manner for negative Pacific Niño events, which in turn is perhaps re-799

lated to the different average thermocline depths associated with warm and cold Pacific800

Niños. Second, the negative SST-USTR feedback element composite is degraded by lags801

during the spring barrier. This, however, is of no practical concern, since the overall cou-802

pling during boreal spring in any case is decreased. Third, in a similar fashion, the pos-803

itive USTR-SSH feedback element during the spring barrier clearly suffers when incor-804

porating lags.805

Figure A.2 shows that the impact of lags on Atlantic feedback strengths is less straight806

forward than in the Pacific. While lags generally enhance the feedback strengths, they807

can have severely detrimental effects in certain regions and seasons. Three notable cases808

are: First, similar to the Pacific, the lags of the SSH-SST feedback element differ from809

each other; unlike in the Pacific, they do so during the crucial month of May (Fig. 2a,d810

of the main text). Here, lags strongly decrease the positive composite of the SSH-SST811

feedback element. The overall effect of this degradation, however, is small, since the cor-812

responding lagged negative composite is clearly enhanced by the incorporation of lags.813

The overall May asymmetry between the positive and negative composites of the SSH-814

–28–

©2018 American Geophysical Union. All rights reserved.



manuscript submitted to JGR-Oceans

Figure A.1: OBS-based comparison between lagged and instantaneous feedback element
composites in the Pacific, along the equator (x-axis) and stratified into calendar months
(y-axis). The instantaneous feedback elements have been diagnosed in the same manner as
the lagged feedback elements shown in the main text, but using a constant lag of 0 months
when performing robust regression. Positive values indicate that the instantaneous com-
posites are stronger than the lagged composites. Coloured bars below the title indicate the
zonal extent of the Nino4, Nino3.4, and Nino1.2 regions blue, light blue, and dark blue,
respectively.

SST feedback element remains intact. Second, the negative SST-USTR feedback element815

composite suffers when using lags in June and July (Fig. A.2b). These months, however,816

are characterized by weakly negative lags (Fig. 2e of the main text) and we expect that817

they do not contribute substantially to the closed Atlantic Bjerknes feedback. Third, in818

a similar fashion, the August degradations of both the positive and the negative USTR-819

SSH feedback element composites are of no practical concern.820
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Figure A.2: Same as Fig. A.1, but for the Atlantic. Overlaid coloured rectangles indi-
cate the zonal extent of the WAtl and Atl3 regions.

Overall, we conclude that using a constant lag for positive and negative feedback821

element strength composites does, in general, enhance the strength of the feedbacks as822

expected. When exceptions occur, they are usually related to negative lags that are of823

little importance for the closed Bjerknes feedback.824

Nevertheless, this simple comparison serves to demonstrate again how diverse the825

mechanisms are that produce the variability of the Atlantic and Pacific Niños, and that826

it may not be justified to make equivalent assumptions for warm and cold events.827
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A.2 On the sensitivity of the total feedback to different diagnosis meth-828

ods829

In addition to the SST-based total feedback shown in the main text, we present830

three ancillary manifestations of the total Bjerknes feedback in Figs. A.3-A.5.831

We diagnose the total Bjerknes feedback in two ways, depending on which subset832

of our data we select to calculate the strength of the three feedback elements contribut-833

ing to the total feedback composites.834

1. “Constant-composite” total feedbacks (panels a-b, d-e in Figs. A.3 to A.5): Com-835

posites of the individual Bjerknes feedback are identical. This is the method that836

was used to diagnose the SST-based total feedback shown in the main text. To-837

tal feedbacks of this class are directly linked to a single variable. The SST-based838

total feedbacks are a measure of the strength of the total feedback when SST anoma-839

lies are either positive or negative. Likewise, negative/positive USTR-based and840

SSH-based total feedback composites are associated with westerly/easterly wind841

stress anomalies and shallower/deeper thermocline depths, respectively.842

2. “Variable-composite” total feedbacks (panels c,f in Figs. A.3 to A.5): For each feed-843

back element, we use individual, “native” composites that depend on the specific844

feedback element. This method is congruent with the way we diagnosed our lagged845

feedback elements in Section 3.1 of the main text. Composites for the SSH-SST,846

SST-USTR, and USTR-SSH feedback elements are based on the sign of SSH, SST,847

and USTR anomalies, respectively. Again, this means that positive composites of848

any two feedback elements do not necessarily share the same base data.849

In the Pacific, results are consistent between different manifestations of the total850

Bjerknes feedback (panels a-c of Figs. A.3 to A.5). Seasonalities of positive and nega-851

tive total feedback composites are well comparable for all manifestations, as are the rel-852

ative strengths. This highlights the large-scale character of the Pacific Niño, showing that853

SSH, SST, and USTR vary largely synchronously when measured at the same calendar854

months during periods when the total Bjerknes feedback is strong. On the other hand,855

constant-composite feedbacks can be twice as strong as the corresponding variable-composite856

feedbacks, according to our simple measure. This perhaps indicates that using constant857

composites prevents compensation effects between the three individual feedback elements.858

Providing consistent composites for all feedback elements in the constant-composite case859

emphasizes interactions between all three variables, while the variable-composite case860

focuses on interactions of only two variables, ignoring the third link in the Bjerknes feed-861

back loop.862

In the Atlantic, results are largely consistent for different manifestations of the to-863

tal Bjerknes feedback (panels d-f of Figs. A.3-A.5d-f). Irrespective of the compositing864

type, total feedbacks are stronger when they are associated with negative anomalies in865

boreal winter, and weaker in summer. As in the Pacific, details differ between the three866

constant-composite manifestations, and the variable-composite manifestation produces867

weaker total feedbacks. A prominent example are the positive composites of the constant-868

composite manifestations in July. For this calendar month, the total feedback is pronounced869

for deep thermoclines, moderately strong for warm SSTs, and effectively absent for east-870

erly wind stress anomalies. However, as our base data pool only spans 20 years in to-871

tal and we subdivide these further into positive and negative composites, we expect that872

the details of our analysis are subject to large uncertainties.873

Overall, qualitative results are consistent when comparing different manifestations874

of the total Bjerknes feedback, lending some credibility to our method. While details dif-875

fer for the three constant-composite feedbacks, results are much more sensitive to the876
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choice of either constant or variable composites when diagnosing the individual feedback877

elements contributing to the total feedback.878
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Figure A.3: OBS-based comparison of different manifestations of the negative compos-
ite of the total Bjerknes feedback in the Pacific (left column, panels a-d) and the Atlantic
(right column, e-h) for the period 1993-2012. All panels show total feedbacks along the
equator (x-axis) and stratified into calendar months (y-axis). The first, second, third,
and fourth rows show the negative composites of the total Bjerknes feedback using con-
stant composites based on SST (a,e; these are the same as in the main text), SSH (b,f),
constant composites based on USTR (c,g), and variable composites (d,h) (see text for
details on the differences between the manifestations). Recall that the SST/SSH/USTR-
based total feedback composites are a measure of the total Bjerknes feedback for when the
SST/thermocline/zonal wind stress in the western ocean basin is warmer/deeper/more
easterly (positive anomalies) or cooler/shallower/more westerly (negative anomalies) than
on average. White indicates that at least one of the feedback elements contributing to the
composite of the total feedback was negative. Coloured bars below the title indicate the
zonal extent of the Nino4, Nino3.4, and Nino1.2 (WAtl and ATl3) regions in blue, light
blue, and dark blue (blue and light blue) in the Pacific (Atlantic), respectively.
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Figure A.4: Same as Fig. SA.3, but for manifestations of the positive composites of the
total Bjerknes feedback.

–38–

©2018 American Geophysical Union. All rights reserved.



manuscript submitted to JGR-Oceans

Figure A.5: Same as Fig. SA.3, but for the difference between the positive and negative
composites of different manifestations of the total Bjerknes feedback.
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