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Abstract

Interactive dynamical ocean and atmosphere models are commonly used for predictions

on seasonal timescales, but initialisation of such systems is problematic. In this thesis,

idealised coupled models of the El Niño Southern Oscillation phenomenon are used to

explore potential new initialisation methods. The basic ENSO model is derived using

the two-strip concept for tropical ocean dynamics, together with a simple empirical

atmosphere. A hierarchy of models is built, beginning with a basic recharge oscillator

type model and culminating in a general n-box model. Each model is treated as a

dynamical system. An important step is the 10-box model, in which the seasonal

cycle is introduced as an extension of the phase space by two dimensions, which paves

the way for more complex and occasionally chaotic behaviour.

For the simplest 2-box model, analytic approximate solutions are described and

used to investigate the parameter dependence of regimes of behaviour. Model space

is explored statistically and parametric instability is found for the 10-box and upward

versions: while it is by no means a perfect simulation of the real world phenomena,

some regimes are found which have features similar to those observed.

Initialisation is performed on a system from the n-box model (with n = 94), using

dimensional reduction via two separate methods: a linear singular value decompo-

sition approach and a nonlinear slow manifold (approximate inertial manifold) type

reduction. The influence of the initialisation methods on predictive skill is tested using

a perfect model approach. Data from a model integration are treated as observation,

which are perturbed randomly on large and small spatial scales, and used as initial

states for both reduced and full model forecasts. Integration of the reduced models

provides a continuous initialisation process, ensuring orbits remain close to the at-

tractor for the duration of the forecasts. From sets of ensemble forecasts, statistical

measures of skill are calculated. Results are found to depend on the dimensionality of

the reduced models and the type of initial perturbations used, and model reduction

is found to result in a slight improvement in skill from the full model in each case, as

well as a significant increase in the maximum timestep.
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3.24 n-box Poincaré section 2 . . . . . . . . . . . . . . . . . . . . . . . 114

3.25 n∗-box diagram, where the 2B arrows represent SST coordinates

forcing 2B thermocline coordinates in the equatorial and north-

ern strips at a distance xc = B∆ to the left. . . . . . . . . . . . . 115

3.26 Parameter space map of n∗-box: Mean and Near-Period . . . . . 116

3.27 n∗-box: Timeseries with (κ0, RE , RW ) = (11/5, 0.24, 0.73) . . . . 117

3.28 n∗-box: Phase plot with (κ0, RE , RW ) = (11/5, 0.24, 0.73) . . . . 118

5.1 Sample timeseries from M1 and M2 . . . . . . . . . . . . . . . . . 141

5.2 Seasonal variance of M1 and M2 and their reduced variants . . . 144

5.3 Spectra of M1 and its reduced variants . . . . . . . . . . . . . . . 145

5.4 Spectra of M2 and its reduced variants . . . . . . . . . . . . . . . 146

5.5 Stability of full and reduced models . . . . . . . . . . . . . . . . 147

6



5.6 Eigenvalues/vectors and singulare values/vectors of M1 . . . . . 152

5.7 M1 correlation 1: Target month . . . . . . . . . . . . . . . . . . . 155

5.8 M1 correlation 2: Initial month . . . . . . . . . . . . . . . . . . . 156

5.9 Difference in correlation: Approximate inertial manifold . . . . . 158

5.10 Difference in RMS error: Singular Value Decomposition . . . . . 159

5.11 Correlation and RMS of M1 and approximate inertial manifold

reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.12 Correlation and RMS of M1 and singular value decomposition

reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.13 Correlation of M1 and reduced variants: Growth phase and decay

phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.14 Difference in correlation as perturbation spatial scale is varied . . 163

5.15 Difference in RMS error as perturbation spatial scale is varied . . 164

7



Chapter 1

Introduction

1.1 Outline

The sensitive nature of the Earth’s climate system acts to shroud the details

of its future state in uncertainty. With growing concerns for the stability of

the current state comes the need for accurate predictions. Climate predictions

can come in many forms, from scales of months to years, or years to decades.

The focus here is on the former, seasonal variety of predictions. Unlike decadal

prediction, this places a high emphasis on how the current state influences the

final state at a time of interest. Sensitivity of the initial state hearkens back

to numerical weather prediction, and before discussing climate dynamics it is

worth discussing its predecessor in order to clarify the title of this work.

Seasonal climate prediction is analogous to weather prediction, albeit con-

cerning much larger spatial and temporal scales. Like any initial value based

predictive system, this requires both a mathematical model and data from the

real world. The model can fall under one of two categories; dynamical, whereby

a set of equations based on physical laws determines how initial data evolves

with time, and statistical models which deal in empirical relations. In the case of

weather forecasting, the subject of the model is the Earth’s atmosphere, whose

dynamics are predicted by solving the nonlinear primitive equations. Initial data
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comes from many sources, including weather stations and satellite observations.

It is often the case that raw initial data are not suitable for computation, due

to measurement errors or the effects of processes which are irrelevant to the

forecast upsetting the balance of energy within the system. As the atmosphere

is notoriously unstable, these imbalances can cause the forecast to drift away

substantially from actual behaviour. In practice, data from the real world is

first smoothed out and made compatible with numerical models before being

used in a forecast via a process known as initialisation.

The concept of initialisation also originated in numerical weather prediction.

Richardson was the first to use numerical approximations of fluid equations for

the purposes of predicting pressure changes[1], which ultimately failed due to

the rapid growth of initial errors. The first successful attempt was made by

Charney, Fjørtoft and von Neumann[2], a one-day forecast using a numerical

simulation run on ENIAC, one of the earliest electronic computers. One main

difference between this forecast and Richardson’s was the implementation of

an initialisation scheme whereby small scale, fast oscillations associated with

gravity waves were eliminated by time averaging coefficients. However, it was

soon discovered that in setting these modes to zero, new problems arose. For

example, where there is nonlinearity, new fast modes might be generated even

if they are initially zero. From this idea came the introduction of a new scheme

discovered independently by Machenhauer and Baer in which the fast modes

are not eliminated entirely but held in balance with the other, slower modes of

the system[3][4]. This scheme was first implemented by Tribbia to an equatorial

atmosphere model[5] and then by Leith to a simulation of the mid latitudes[6].

Leith was then motivated by this nonlinear initialisation technique to introduce

the concept of a slow manifold, a geometric interpretation of all the balanced

states of the model as a subspace of the full state space onto which initial data

is projected. Lorenz was the first to point out a connection between this slow

manifold and the concept of an attractor from the field of dynamical systems[7].

The dynamical forecasting of weather and climate is indeed strongly tied to the
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theory of dynamical systems, and this study will touch on both of these fields

of work.

By this stage new theories on seasonal forecasting, where predictions of tem-

poral and spatial averages could be made on the timescale of months to years,

had begun to take form[8]. While day to day weather patterns become unpre-

dictable as the scale of time is extended from days to weeks, the predictabil-

ity of large scale spatial features returns for longer timescales. Since on these

timescales interannual variability begins to play an important role, it was not

long before the first models of the El Niño Southern Oscillation (ENSO) were

to be developed.

While predecessors of comprehensive El Niño models began with early cli-

mate predictions, using Bryan and Manabe’s ocean-atmosphere global circula-

tion model (GCM), the first true ENSO simulation was developed by Anderson

and McCreary[9]. Although this model was considerably less detailed than the

first GCM, there was still a large degree of numerical complexity involved as it

included ocean-atmosphere interactions. It was found that a two layer ocean

when forced by an idealised atmosphere had oscillatory solutions with a period

similar to that of ENSO. Taking another step down in complexity, Vallis de-

veloped the simplest of the early ENSO numerical models which was found to

have chaotic solutions[10]. The most notable model of this era of determin-

istic El Niño models was the Cane Zebiak[11], which made the first accurate

prediction of an ENSO event[12]. Most work which followed within this era

involved stripping down the Cane Zebiak to its most basic form in an effort to

understand its underlying mechanisms, such as the Battisti and Hirst delayed

oscillator[13] or the Jin recharge oscillator[14], while Tziperman et al looked at

the interplay between nonlinear effects and the seasonal cycle which gives rise

to aperiodicity[16]. Recently, further progress has been made in the direction

of minimalistic low order models, such as the simplest recharge oscillator[23] or

the delayed differential model developed by Ghil et al[24]. Although the Cane

Zebiak model possessed instabilities which led to some realistic ENSO events, its
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deterministic nature failed to recreate realistic timeseries of the equatorial SST

(sea surface temperature) anomalies over large times, which are typically far

more sporadic. This shortcoming of deterministic models led to the beginning

of a new era in ENSO modelling.

Second generation ENSO simulations embraced the effects of randomness,

albeit at the expense of nonlinearity. An early linear empirical model from Pen-

land and Sardeshmukh[17] was developed not from fluid equations, but from a

collection of observational data and was nudged at every timestep with Gaus-

sian white noise. Physical models soon followed suit with Kleeman and Moore

introducing noise into a previously developed coupled linear model[18], and a

stochastically forced version of the linearised Cane Zebiak by Thompson and

Battisti[19][20].

The beginning of the third generation of ENSO models saw a merge of non-

linear and random effects. This could be seen for example in the statistical

Panja Burgers simple model[21], which was a simple nonlinear oscillator (the

functional form was guessed) with added white noise, or the Timmerman Jin

stochastic version of a nonlinear low order model[22]. One benefit of such an

approach is the irregularity of timeseries without the need for complex param-

eterisations. The Panja Burger model had a predictive skill close to that of

modern coupled ocean-atmosphere GCMs, casting some doubt on the require-

ment for model complexity as far as ENSO forecasting is concerned. There

may then be room for improvement as far as the predictive skill of high order

models is concerned. One way to improve this is through initialisation. Xue[25]

et al found that removal of dominant patterns improved the predictive skill of

the Cane Zebiak model, while Chen et al[26] successfully initialised the model

by data assimilation means. More complex scenarios have been treated using

similar methods such as the initialisation by Ji Leetma[27] and Wang et al[28]

of coupled GCMs.

The work described in this thesis is somewhere between the low order and

high order approaches, making use of a new ENSO model based on work by
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Jin[15] which is an extension of the 2-strip model of the equatorial thermo-

cline with Cane Zebiak[11] sea surface thermodynamics, coupled to a heavily

parametrised atmosphere. The seasonal variation of coupling is also taken into

account. While noise is not introduced in the form of stochastic forcing, ir-

regularity arises through the interaction of annual and interannual timescales,

and the effect of noise on predictive skill is studied in the form of randomly

perturbed initial conditions. A strategy is employed whereby a model of inter-

mediate complexity is reduced to a low order one as a means to improve its

accuracy in forecasting ENSO.

This chapter is comprised of two distinct parts. The first part establishes a

context for the work to follow in this thesis, with a brief discusstion of ENSO

history, modelling and theory. The second part introduces basic dynamical

systems theory which will be useful in the later chapters. The next chapter

derives the model which will be implemented in the initialisation experiments.

Chapter three examines the solutions of several variations of the main model.

ENSO-like behaviour is found in several locations within the parameter space

of this model, which includes phase locking, realistic periods and amplitudes,

aperiodic orbits with sensitive initial conditions, and in some cases attractors

with sign asymmetry. Chapter four moves away from the subject of models

altogether, describing an assortment of initialisation schemes. Predictability

of one version of the main model is tested in chapter five and improved using

two separate initialisation schemes based on reduction of dimensionality as a

means to approximate the model attractors. This includes a linear singular value

decomposition and a nonlinear approximate inertial manifold method which has

so far not been tested in ENSO modelling.

1.2 El Niño and the Southern Oscillation

Every few years around December, there is a noticeable anomalous warming of

the sea surface just off the Peruvian coast. While there is a certain amount
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Figure 1.1: Satellite image of equatorial sea surface temperature. Pos-
itive anomalies are coloured white, and negative purple. Taken from
http://photojournal.jpl.nasa.gov/.

of ambiguity as to how often this warming occurs, records confirm it is on

average every four years, although the frequency spectrum is broad[29][30]. The

anomaly extends over the eastern equatorial Pacific and has a characteristic

spatial structure which can be seen in figure 1.1. Folklore has it that this

phenomenon was first discovered by local fishermen who called it El Niño, which

is a term in Spanish for the baby Jesus, due to the time of year when it is

most intense. It is likely that the negative effect this had on the anchoveta

populations sparked such interest from the fishing community. Interest spread

beyond this local community in the mid 19th century, since the fluctuating

anchoveta population was wiping out sea birds whose guano was an important

export for Peru. It was not until the late 20th century that the infamy of the
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El Niño reached global proportions, when a large event caused the collapse of

the entire Peruvian fishing industry, stimulating worldwide scientific research.

In the early 20th century, on the other side of the Pacific ocean, the British

meteorologist Gilbert Walker was Director-General of Observatories in India.

Famines caused by the droughts in 1877 and 1899 had generated a great deal of

interest in monsoon prediction. After a failure of the monsoon led to another

drought in 1918, Walker organised groups of statisticians to examine correla-

tions in weather patterns. They found that positive pressure anomalies on one

side of the equatorial Pacific tended to coincide with negative anomalies on the

other. The evidence was pointing towards the existence of a global anomalous

pressure fluctuation, with an irregular, interannual period which Walker called

the Southern Oscillation[31]. It is unlikely, however, that he was aware 1877,

1899 and 1918 were all El Niño years, which is intimately linked with the South-

ern Oscillation. Research interest soon waned since knowledge of the Southern

Oscillation did not appear to be of any use in predicting monsoons, and peer

scepticism prevailed.

It was not until 1969 that Bjerknes proposed the El Niño and the Southern

Oscillation were both aspects of the same thing: what has now come to be known

as the combined acronym ENSO. Normally in the equatorial Pacific, surface

atmospheric pressure is low over a warm pool of water to the west, while in the

east the ocean is cooler and the atmospheric pressure is higher. This pressure

difference gives rise to trade winds blowing westward, a mechanism Bjerknes

named the Walker Circulation. The ocean is in constant circulation, with water

cooling and sinking at the poles and moving towards the equator where it it

warms and rises before heading back toward the poles. During an El Niño

event, a positive increment in sea surface temperature in the east Pacific ocean

reduces the equatorial atmospheric pressure gradient, weakening easterly winds

and allowing warm water to escape the pool in the west Pacific. This change

in gradient brings about a drop in the rate of rising cool water, explained with

more detail in the next chapter, leading to an increase in sea surface temperature
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Figure 1.2: Observational data showing the growth and decay of an
ENSO event in zonal wind, SST and isotherm depth. Taken from
http://www.pmel.noaa.gov/tao/.

and a further reduction of the pressure gradient. An example of a recent event

(2009-10) can be seen in the image 1.2: from top to bottom, a deepening of

the thermocline accompanies a positive increase in SST in the east. Bursts of

zonal winds from the west further deepen the thermocline and warm the sea

surface until a large anomaly has spread over the Pacific basin. This process

is known as Bjerknes feedback. Anomalous conditions reign for around one

year, usually followed by what are known as La Niña conditions. Essentially

this is an inverted El Niño, with a cold sea surface temperature in the east

and reinforced trade winds. This chain of events reoccurs sporadically; a global

climatological phenomenon arising through interactions between the ocean and

the atmosphere[32][35].

Temporal aspects of ENSO behaviour can be seen in figure 1.3, which shows

a timeseries plot of sea surface temperature for the indices Niño4, in the western

tropical pacific, Niño3 to the east and Niño3.4 in between. There are noticeable

peaks beginning at 1972-73, a second larger one a decade later at 1982-83 and
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Figure 1.3: Observed equatorial SST since 1950 in the Niño3 (eastern central pa-
cific), Niño3.4 (mid-central pacific) and Niño4 (western central pacific) regions.
Taken from http://www.cpc.noaa.gov/data/indices/.

finally the largest peak in 1997-98. Each event had a significant effect on the

course of human history, which will now be discussed.

1.3 Brief History of ENSO

In order to justify the efforts made to understand and accurately forecast El

Niño, it is worth looking at some case studies where the phenomenon has had

serious social and economic impacts. Catastrophes in the past have been con-

nected with El Niño events, with some radical examples being the Irish potato
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famine and the sinking of the Titanic[33]. However, these connections are spec-

ulative and insufficient evidence exists in meteorological data to prove that

ENSO was indeed related to these events. It was not until the latter half of

the 20th century that there was enough documentation and scientific records

to conclude that the phenomenon was indeed responsible for adverse weather

patterns or natural disasters. More detail on the following impacts can be found

in Glantz[32].

1.3.1 1972-73 El Niño

This was the most intense event since the 19th century, resulting in a poor

monsoon which hindered food production in India. Agriculture was also nega-

tively affected in Russia and China. The consequences were far more drastic for

Ethiopia, where there was massive social upheaval after hundreds of thousands

starved to death due to famine brought on by drought. It was this event which

first attracted the attention of the scientific community, although little is known

about it compared with the major El Niño which came a decade later, the most

retrospectively analysed event to date.

1.3.2 1982-83 El Niño

At this stage the ENSO mechanism was not wholly understood, and observa-

tional data from the ocean was limited. Subsequently this major event, whose

onset was unlike that of 1972-73, was not foreseen. Severe droughts were ob-

served in Australia resulting in large scale bush fires, and also in Indonesia,

Africa and South America, seriously affecting food production. Floods were

also observed in the Americas and Europe inducing landslides and mass evac-

uation, and the cost to the world ecomony was on the scale of billions of US

dollars. The consequences of this event were the impetus for a wave of scientific

research, in an effort to find new ways to accurately observe, model and predict

the phenomenon.
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1.3.3 1997-98 El Niño

The drastic 1997 event resulted in the hottest global temperature since records

began, drought and forest fires in Indonesia and major flooding in Ecuador

and Peru. Northern China was devastated by flooding when the Yangtze river

burst its bank in several places, resulting in the the deaths of at least 3000

people, the evacuation of 15 million and a total cost of nearly 30 billion US

dollars. The following 1998-99 La Niña produced more favourable conditions for

the formation of Atlantic hurricanes, contributing to the strength of Hurricane

Mitch, which resulted in the deaths of over 11,000 in Central America[34].

1.4 ENSO Modelling

The intense El Niño events in the early 70s and 80s were the initial stimulus

to develop a theory which could explain the dynamical processes involved. A

study of marine and observational satellite data by Rasmusson and Carpenter

of six separate ENSO events since 1949 provided a foundation upon which many

of the models to follow were based[29].

1.4.1 The Hierarchy of Climate Models

A climate model is a mathematical or computational entity which takes in in-

formation about some state of the ocean and atmosphere as input, processes

this via some formula, and generates new information describing how this state

changes with time as output. It is the tool a climate scientist uses to predict

the future environment, and also to help understand the mechanisms causing

things to happen. These are typically comprised of differential equations that

deal with the rate of change of physical quantities in terms of the quantities

themselves. Provided these terms are linear, in that they are not of order

quadratic or higher, an analytic solution is almost always possible to obtain.

Reality, however, is riddled with nonlinearities which render these equations

unsolvable. This is especially true for partial differential equations, involving
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quantities which vary in space as well as time. The best way to progress in such

a situation is to use numerical methods, although a computer model is unable to

deal with smooth functions due to the infinities involved in probing arbitrarily

small scales. Governing equations must be approximated in such a way that

they can be translated into the language of finite integers for a computer to

understand them.

It is at this stage possible to introduce the so-called hierarchy of models.

The complexity of a model is typically related to its dimensionality. This is the

number n of first order in time differential equations which are the variables

required to define the state of the system. Numbers which do not vary in

time are known as parameters. There is an upper bound on the value of n

due to the technological limitations of computational power, below which is the

position of general circulation models (GCMs) to be described shortly. The

middle range is inhabited by the intermediate, which would usually focus on

a particular climatological phenomenon. At the bottom of the scale are the

conceptual, drastically simplified versions of the GCMs or intermediate models.

ENSO, being one of the most dominant sources of climate variability, has been

modelled on just about every scale which is physically justifiable, but it is the

mid range of complexity which has yielded the most insight; the best example

of this being the Cane Zebiak model which will be described in more detail

later[37][36].

1.4.2 General Circulation Models

The most powerful tools available for climate prediction are the general circu-

lation models, representing a holistic approach to the climate problem. These

are numerical codes which calculate physical properties of the ocean and at-

mosphere over the entire planet for up to centennial timescales. Most of the

computation is involved with the time integration of the full primitive equa-

tions. The ocean and atmosphere are assumed to be in hydrostatic equilibrium

and both are driven by the influx of solar radiation. Indeed every process which
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affects the motion such as clouds, geographical features and static sea ice are in-

corporated. The most well-known limitations to the accuracy of GCMs are the

finite resolution of scale, and physical processes such as atmospheric turbulence

and sea ice dynamics which are not yet wholly understood.

The first GCM was developed by Manabe[38], which was atmosphere-only,

forced by a fixed heat distribution at the surface. Bryan[39] later developed the

first ocean model, driven by a prescribed surface wind stress. These basic models

were combined to create the first coupled ocean-atmosphere GCM (CGCM)[40]

describing a planet with land in the western hemisphere, ocean in the east, and

no north or south pole. Bjerknes feedback had remained an untested hypothesis

until it was first confirmed using a similar model[41].

Modern GCMs typically require an order of 106 or higher numbers to specify

the state of the climate at any point in time; for example HadGEM1, a coupled

ocean-atmosphere model developed by the UK Met office which also incorpo-

rated sea ice. With roughly 200 zonal, 150 meridional and 50 vertical grid points

with 4 variables ascribed to each point, over 5 million numbers were required

to specify its state[42]. However, this is still not enough to resolve the length-

scales responsible for atmospheric turbulence and other physical phenomena.

This is done using a parametrisation, an expression that gives an approximate

representation to real world processes using bulk formulae of variables.

1.4.3 Seasonal Forecasting Systems

While GCMs are commonly used to predict the long term impacts of climate

change, they are also effective at predicting Pacific SST timeseries. Due to the

coupled nature of ENSO, an ocean-atmosphere CGCM is the natural choice of

predictive system. A forecast typically involves taking a group of states which

are initially close to observation and integrating forward in time to provide a

group of final states. This allows for the calculation of a time-evolving proba-

bility distribution, giving the relative likelihood of the future state occupying

particular regions of phase space. Notable systems include those under devel-
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opment at the ECMWF and UK Met Office[43][?].

As well as using observational data to specify the inital state, new data is

assimilated into the model, nudging it towards those regions of state space which

are consistent with measurements[45]. Later in the chapter the initialisation of

seasonal forecasting systems is discussed again in relation to the slow manifold

concept. The science of seasonal prediction relies upon top of the range models

at the highest scales of complexity, and is still in its early, experimental stages.

To gain a better understanding of ENSO dynamics it is worth looking back to

some of the earlier, simpler forecast models beginning with the most well known.

1.4.4 The Cane Zebiak Model

Several attempts were made throughout the 1980s to develop a coupled ENSO

model, stemming from an early mathematical effort by McWilliams Gent[32]

and culminating in the highly successful Cane Zebiak intermediate model[11],

which was the first to successfully predict the 1986 ENSO event [12]. This study

simulated a section of the ocean and atmosphere in a rectangular box centered

around the equatorial Pacific, 60◦ latitude wide and 160◦ longitude in length.

Equations of motion for the atmosphere and ocean were linear perturbations

about a mean climatological state, which varied seasonally, introducing an in-

trinsic annual oscillation into the model which ensured events occurred at the

same time of year. Only the oceanic components were time integrated, while the

atmosphere was assumed to be in equilibrium due to the much faster timescales

involved. The ocean was modelled as a fluid of two layers with different densi-

ties, a thin layer above another denser layer of effectively infinite depth. The

interface between the two layers, known as the thermocline, is an important

concept in understanding ENSO physics and plays a leading role in the systems

to be introduced later. Surface heat and moisture fluxes drove the atmosphere,

and this fed back into the ocean as surface wind stress. As the linear model

was unstable for some parameter choices, a nonlinear term was included which

conveniently parametrised the effect of changes in thermocline depth on the sea
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surface temperature. This curbed the growth of the instability, and turned out

to be an accurate representation since the model reproduced a realistic ENSO.

Solutions to the Cane Zebiak model using were oscillatory and irregular with a

period of 3-4 years.

1.4.5 Conceptual Models

While a holistic approach to modelling yields more accurate results, the data is

difficult to interpret with regards to the underlying dynamical processes. It can

then be useful and illustrative to approach the ENSO problem from the other

end of the complexity scale, and effectively strip away everything except the

most dominant contributors to the phenomenon. The most primitive example

of an ENSO model would be a simple positive feedback equation

dT

dt
= αT, (1.1)

where α is a positive constant parametrising the Bjerknes feedback mechanism

described earlier, and T is the sea surface temperature averaged over the eastern

equatorial Pacific. Sources which contribute this value would be for example

the reduction of zonal temperature gradient or an increase in anomalous zonal

momentum, while an increase in upwelling of cool water from the deep ocean or

the dissipation rate of heat into the atmosphere would detract from it. Provided

an accurate enough value of α was chosen, this could be used to predict the early

growth of an El Niño event on a short enough timescale, given some initial value

of T , although this could only be carried out at the start of an event due to the

oscillatory nature of the phenomenon.

The late 1980s saw the development of the conceptual ENSO models; be-

ginning with Vallis[10], Anderson McCreary[9], Schopf Suarez[48] and Battisti

Hirst[13]. Vallis studied the solutions to a system of 3 ordinary differential equa-

tions (ODEs) for zonal velocity and east/west temperature anomalies, finding

chaotic solutions. The other two so-called delayed oscillator models were highly
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idealised, and each could be summarised with a single delay differential equation

(DDE). A DDE is a slightly more exotic variety of differential equation in that

it contains a delay term; the rate of change of a variable depends on the value

it took some fixed time in the past. The Bjerknes feedback equation can be

converted into a DDE by including such a term

dT

dt
= αT − βT (t− τ), (1.2)

where τ is a timescale and β is another positive constant. Physically, the delay

term corresponds to an ocean wave created by the atmospheric disturbance at

time t − τ which travels for a time τ , acting to oppose the anomaly at time t.

Precisely what these waves are will be explained later in the equatorial wave

dynamics section. This linear DDE permits some form of oscillation; one step

closer to the reality of ENSO. Unfortunately, this oscillator is unbounded and

may become unphysical for large times. A further nonlinear term is required in

order to stabilise growth

dT

dt
= αT − βT (t− τ)− γT 3. (1.3)

Nonlinear stratification in the ocean provides the physical basis for inclusion

of this third term. Choosing the right values of the parameters (α, β, γ, τ) will

yield a stable oscillation with typical ENSO period and amplitude.

A new conceptual model, the recharge oscillator, was later developed by

Jin[14]. Delay terms were avoided in the recharge oscillator by extending the

system to two coupled differential equations, one corresponding to sea surface

temperature in the eastern Pacific and the second a measure of warm water

volume in the west

dT

dt
= αT + κh− (h+ γT )3, (1.4)

dh

dt
= −ρh− µT. (1.5)
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Like the previous model, this too has solutions which are oscillatory and stable.

The above equations are an example of an autonomous system, for which there

is no time-dependent external forcing. Originally this was derived from a more

complex PDE model[15] based on wave modes on the tropical thermocline; a

boundary which separates a thin surface layer of hot, turbulent water from the

rest of the ocean which is predominantly cold and dense. The variable h is

indicative of the depth of the thermocline, averaged over some large region in

the western Pacific ocean. A similar model and the behaviour of its solutions

will be described in greater depth at the beginning of chapter three.

Realistically, the variation of the influx of solar energy into the climate sys-

tem throughout the seasons cannot be ignored. This introduces fixed periodici-

ties into a model in the form of time-dependent parameters, and the differential

equations which govern such models fall under the category of nonautonomous,

given that they are driven by some kind of external motion. Phase locking of

ENSO events to the annual cycle, or the persistence of an event to occur at

a particular time of year, comes about through periodic forcing of the climate

system from the seasonal variation of solar radiation. Tziperman et al showed

that inclusion of the seasonal cycle in oscillatory simple models leads to chaotic

behaviour[16]. Consideration of weather noise, present in all real world obser-

vations of ENSO data, leads naturally to the introduction of stochastic forc-

ing, and another important class of nonautonomous differential equations. The

Panja Burgers model consists of a pair of stochastic, nonlinear differential equa-

tions with parameters chosen to maximise predictive accuracy, model loosely

based on the recharge oscillator idea. As a forecast model, this accuracy com-

pares well with some top of the range models [21]. There is an ongoing debate

as to whether ENSO irregularity is a result of deterministic chaos or stochastic

randomness, with evidence supporting both arguments [11][20]. Understanding

the various mechanisms underlying ENSO behaviour can be achieved through

conceptual modelling, and the best way to understand the behaviour of low

order models is within the framework of dynamical systems.
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1.5 Continuous Time Dynamical Systems

The intention of this section is to act as a brief introduction to dynamical

systems theory, as much of the concepts herein shall be used throughout this

study. It should be clear at this point that differential equations form the

basis of dynamical forecasting. While there is no disputing their usefulness in

prediction, a deeper understanding can be gained through a geometric treatment

of the system as flows in a vector field. Along with this new perspective comes

many useful tools and analytical techniques for the climate scientist, together

with a theoretical framework within which all models can be discussed and

compared. Many of the basic concepts described here are discussed in more

depth in Drazin[49] or Jordan and Smith[50]. The most general definition of

a dynamical system is that it consists of a phase space, with every point in

this space corresponding to the state of the system at any given time, and

an evolution rule which describes how each point in the space evolves with

time. For most cases, the phase space is the n dimensional Euclidean space

Rn. Each evolution equation contributes another dimension to the phase space

of a system. Thus, for the Bjerknes feedback equation n = 1, for the recharge

oscillator n = 2, for a GCM n ∼ 106 and so on.

Consider

dx

dt
= f(x), (1.6)

where x(t) is a vector, x(0) = x0 and f is a continuous vector function. The

dynamic quantities are held in x, the evolution law in f , and x0 is known as the

initial condition. If f is a linear function of x, the equation can be rewritten

dx

dt
= Ax, (1.7)

where A is a matrix operator whose elements are constant coefficients, acting

on x. This can be solved in exactly the same way as (1.1), the only difference
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is that A is a matrix and not a scalar,

x(t) = eAtx(0). (1.8)

eAt is known as an evolution operator. For example in R2, take the matrix

A =

 0 −1

1 0

 . (1.9)

The square of this matrix is

A2 =

 −1 0

0 −1

 = −I, (1.10)

where I is the identity matrix. This would imply

An = (−I)n/2, (1.11)

for even values of integer n and

An = (−I)(n−1)/2A (1.12)

for n odd. Now, since

ex =

∞∑
n=0

xn

n!
, (1.13)

replacing x with At and using the expressions for An yields

eAt = I(1− t2

2!
+
t4

4!
− · · · ) +A(t− t3

3!
+
t5

5!
− · · · ), (1.14)

where the series has been separated into odd and even powers. The solution is

x(t) =

 cos t − sin t

sin t cos t

x(0). (1.15)
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Notice that the evolution operator on the right hand side is actually the rotation

matrix. All initial points are then rotated, after a time t, by an angle t about

the origin. The solutions then are constrained to a circle of radius |x0| centered

at the origin, returning to their original position whenever t takes on integer

values of 2π, and all points on the circle are different instances of the same

solution. Every point x(t) is an initial condition itself

x(t+ s) = eAsx(t), (1.16)

where s is an arbitrary timescale. An orbit is defined as the set of all points

x passes through when it is operated on by eAt as t → ±∞. It represents

the entire past and future of a single state. Since this study is concerning

climate forecasting, only times t > t0, the initial time, are important. The

above expression leads naturally to the linear condition

eA(t+s) = eAteAs = eAseAt, (1.17)

which generalises in the abstract, nonlinear case to

S(t+ s) = S(t)S(s) = S(s)S(t), (1.18)

for solution operator S, due to the fact that there is a unique direction of the

flow at every point in the phase space. This is at the heart of dynamical systems

as it is the condition for determinism; an orbit starting at the same location

always has the same destiny. Once an initial point is chosen, so too is the past

and future of that point.

1.5.1 Fixed Points

The fixed points of a dynamical system are those which satisfy

dx

dt
= 0. (1.19)
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If a point in the phase space satisfies this condition, its orbit remains there for all

time. It is an example of an invariant subspace, since it is left unchanged when

acted on by the evolution operator. While a linear system has one fixed point (or

none if the determinant of A is zero), a nonlinear system can have any number.

An important property of fixed points is their stability, which determines how a

state vector evolves when perturbed from a fixed point. Equation (1.1) possesses

what is an example of an unstable fixed point at x∗ = 0. The slightest increment

±δx will send x→ ±∞, so the origin is a point which repels all orbits.

If α was negative, the fixed point would be stable, and the origin would

attract all orbits. This is the first example of an attractor; an invariant subspace

which attracts orbits as time progresses.

For higher dimensional systems, the stability of fixed points can be found

via the Jacobian matrix J . This is given by the partial derivatives of the vector

function f(x) evaluated at the fixed point x∗. If x = (x1, x2, · · · , xn), and

f(x∗) = (f1, f2, · · · , fn), then

J(x∗) =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...

∂fn
∂x1

· · · ∂fn
∂xn

 . (1.20)

For a two-dimensional autonomous system it can be shown that the eigen-

values of J satisfy the quadratic equation

λ2 − γλ+ δ = 0, (1.21)

where (γ, δ) are the trace and determinant of J . The solution

λ =
1

2

(
γ ±

√
(γ2 − 4δ)

)
, (1.22)

is real provided γ2 ≥ 4δ, and corresponds to a stable solution when γ ≤ 0.

Stable solutions can always be converted into their unstable counterpart via
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time reversal, where λ → −λ, leaving the following distinct possible regimes

(see figure 1.4 for graphical representations)

• δ < 0: a saddle point, which attracts orbits in one direction and repels in

the other, and is hence never stable.

• δ ≥ 0, γ2 ≥ 4δ: a sink/source which absorbs/repels in all directions and

is always stable/unstable

• δ ≥ 0, γ2 < 4δ: a stable/unstable spiral similar to above but the tra-

jectories revolve around the attractor. There is therefore some ambiguity

surrounding the direction of orbits in the vicinity of the fixed point.

• δ ≥ 0, γ = 0: a centre, being a special case where orbits form a family

of ellipses around the fixed point whose axes are determined by the ini-

tial conditions and the relative magnitudes of the two purely imaginary

eigenvalues.

To each eigenvalue Λi of J , there is a corresponding eigenvector vi, satisfying

Jvi = Λivi. (1.23)

The eigenvectors reveal information about the local geometry of orbits, specifi-

cally the direction of orbits in the vicinity of a fixed point. If these vectors are

sorted into classes according to the real parts of their eigenvalues, some new

varieties of subspaces, the eigenspaces, can be defined

• Eu is the manifold spanned by the eigenvectors with eigenvalues satisfying

<(Λi) > 0,

• Es is the manifold spanned by the eigenvectors with eigenvalues satisfying

<(Λi) < 0,

• Ec is the manifold spanned by the eigenvectors with eigenvalues satisfying

<(Λi) = 0.
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Figure 1.4: Phase space representation of a linear system in two dimensions,
depicting a stable spiral (top left), sink (top right), saddle (bottom left) and
centre (bottom right).

For linear systems, these subspaces are invariant, and S(t)x ∈ E for x ∈ E. The

term manifold is, roughly speaking, a higher (or lower) dimensional generalisa-

tion of a surface which looks locally like Rn. For example, one vector defines

an infinitely long straight line, two vectors define an infinite plane and so on.

Globally for a nonlinear system, a more general definition is required since these

subspaces will not be invariant.

• Wu is the set of points satisfying S(t)x = x∗ as t→ −∞,

• W s is the set of points satisfying S(t)x = x∗ as t→ +∞.

Much like the orbits, these usually can only be calculated numerically. While

these manifolds will not be used, it is important to introduce global invariant
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manifolds at this stage as they form a basis for the analytical approach to

initialisation which is discussed further in chapter four.

1.5.2 Limit Cycles

More relevant to ENSO are orbits in phase space which correspond to oscillatory

motion, satisfying x(t + τ) = x(t). These have already been touched on in the

previous section, with the introduction of centre fixed points, where a closed

curve in the phase space defines a periodic orbit. In the macroscopic reality,

such idealistic cases are unlikely due to thermodynamical considerations. Real

systems typically dissipate energy and tend towards an attractor of some kind,

although orbits would be constantly perturbed by noise so never strictly settle

on the attractor. Just as there exist stable fixed points and stable surfaces,

there can exist stable closed curves, limit cycles, which attract orbits. The

main difference between limit cycles and centres is that, while the amplitude

of a centre is defined by its initial conditions, the amplitude of a limit cycle

is independent of its initial conditions, and depends on the parameters and

nonlinearity of the function f(x). For the right parameter values, it can be

shown that the set of equations (1.4), (1.5) possess limit cycles solutions, and

with the right period and amplitude could be used to forecast an El Niño event.

One analytic example is the set of equations

dx

dt
= x− y − x(x2 + y2) (1.24)

dy

dt
= x+ y − y(x2 + y2). (1.25)

Under a transformation to polar coordinates, this simplifies to

dr

dt
= r(1− r2) (1.26)

dθ

dt
= 1. (1.27)
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Figure 1.5: Phase space representation of limit cycle described by (1.26), de-
picting the absorption of several orbits onto the circle of radius r = 1.

The set of points at r = 1 attract orbits from the entire space, and there is an

unstable fixed point at x = y = 0. All trajectories revolve around this point at

a constant rate, and the attractor is a circle of unit unit radius (see figure 1.5).

Like fixed points, limit cycles can be stable or unstable. On a small enough

scale in the vicinity of the origin, orbits of a stable (unstable) limit cycle behave

as they would around an unstable (stable) fixed point, and on a large enough

scale they behave as if the limit cycle was a stable (unstable) fixed point. Unlike

fixed points, a limit cycle or a centre cannot exist in a R1 phase space, since an

orbit cannot change direction in a space where the flow is single valued. In other

words, the minimum embedding dimension of a limit cycle is 2. The Poincaré-

Bendixson theorem states that, in R2, the only possible bounded solutions tend

towards fixed points or limit cycles.
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1.5.3 Bifurcations

Two types of attractor have been discussed so far, the fixed point and the limit

cycle. Given a dynamical system of the general form (1.6), it is useful to develop

an understanding of how the equations describing the time evolution can give

rise to different attractors, and how one attractor can change into another.

When modelling any physical system, understanding bifurcations is essential

because they determine how the topology of orbits can change drastically by

varying model parameters even slightly.

Saddle-node Bifurcation

Consider the system in R1

dx

dt
= a− x2, (1.28)

where the parameter a is a real number. Fixed points occur at x = ±√a.

Linearising about these points for small x̂ gives

dx̂
dt = 2

√
ax̂ dx̂

dt = −2
√
ax̂, (1.29)

for x =
√
a and x = −√a respectively. There is no solution for a < 0, and

two solutions for a > 0, one stable and the other unstable (see figure 1.6).

Decreasing a from some positive value brings these solutions closer together,

ultimately annihilating each other at a = 0.

Transcritical Bifurcation

Now consider

dx

dt
= ax− x2. (1.30)

Fixed points occur at x = (0, a), and linearising about x = 0 and x = a gives

dx̂
dt = ax̂ dx̂

dt = −ax̂ (1.31)
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Figure 1.6: Bifurcation diagrams for saddle node (top left), transcritical (top
right), pitchfork (bottom left) and Hopf (bottom right).

respectively. For values of a < 0, the zero solution is the only stable one, but for

a positive, the origin is unstable and the equilibrium is at x = a. The exchange

of stability which occurs at a = 0 gives the bifurcation its name.

Pitchfork Bifurcation

In the case where

dx

dt
= ax− x3, (1.32)

there are fixed points at x = (0,±√a). Linearising about x = 0 and x = ±√a

gives

dx̂
dt = ax̂ dx̂

dt = −2ax̂ (1.33)

Clearly for a < 0 there are no solutions other than x = 0, which is stable. As

a crosses zero, again the origin loses stability and there are stable equilibria at

x = ±√a. Geometrically speaking, the point attractor splits into a pair of point
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attractors, and the final state of the system depends on the initial value of x.

The name comes from the three-pronged shape of the bifurcation diagram.

Hopf Bifurcation

Supposing the previous example is taken into the complex plane, so that

dz

dt
= λz − |z|2z, (1.34)

where z = x+ iy and λ = a+ ib. When written in polar form z = reiθ, there are

two equations. The equation for modulus is identical to that of the pitchfork

bifurcation,

dr

dt
= ar − r3, (1.35)

with r ≥ 0, while the argument

dθ

dt
= b, (1.36)

just gives the rate of an orbit about the origin as the imaginary part of the

parameter λ. As for the pitchfork bifurcation then, the origin is the attractor

for a < 0, and for a > 0, the circle of modulus
√
a. This kind of bifurcation

describes the birth of a limit cycle.

1.5.4 Strange Attractors

The Rössler System

Extending the phase space to R3 allows for the existence of bounded orbits

which are neither closed curves or isolated points. Rather, they form a fractal

set whose trajectories are highly sensitive to initial conditions. This sensitivity

to initial conditions places a limit on the predictive skill of a dynamical system

whilst operating in such a regime. The simplest example is the 3-dimensional
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Figure 1.7: Phase plot, frequency spectrum and timeseries of the Rössler at-
tractor with (a, b, c) = (0.1, 0.1, 14).

Rössler system,

dx

dt
= −y − z

dy

dt
= x+ ay

dz

dt
= b+ (x− c)z.

There are two fixed points for this system, the origin x∗ = 0 and the point

x∗ = (c− ab,−(c− ab)/a, c− ab/a), neither of which are stable. For each fixed

point there is a periodic orbit (see figure 1.7), and trajectories jump between

these orbits in an apparently sporadic manner.

To understand the process intuitively it is useful to consider the topologi-

cal properties of this new kind of attractor. First to be noted is that strange

attractors have zero volume. Orbits are effectively constrained to thin ribbon-

shaped regions of phase space. The Rössler system consists of two conjoined

ribbon types; one forming an annulus and the other a mobius band. Orbits move
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Figure 1.8: Phase plot, spectrum and time series of the Lorenz attractor with
(σ, r, b) = (10, 28, 8/3).

counter-clockwise along these ribbons. At one point in the circuit a branching

occurs, whereby an orbit can choose to either continue along on the annulus

or switch to the mobius band. Every choice will depend entirely on the initial

conditions, and the introduction of choice brings unpredictability, as two arbi-

trarily close orbits can choose to follow completely separate paths. Orbits fill

the bounded space of these ribbons, jumping from one periodic orbit to another

and giving rise to solutions which are oscillatory with an infinite period, never

settling down to a repeating pattern.

The Lorenz System

A better known example of chaos was discovered by Lorenz[53], in a simple

convection model describing a layer of fluid in two dimensions. The top and

bottom surfaces are held at different constant temperatures. After discarding

most terms, the result is another aperiodic dynamical system in 3 dimensions,
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dx

dt
= σ(y − x)

dy

dt
= −y + x(r − z)

dz

dt
= −bz + xy.

The fixed points in this case are, along with the origin, the pair x∗(±
√

(b(r−

1)),±
√

(b(r − 1)), r − 1). When r > 1, one eigenvalue of the Jacobian about

these points is negative, and the remaining two are complex conjugate pairs.

There a critical value of r at rc = σ(σ+ b+ 3)/(σ− b− 1). At subcritical values

where 1 < r < rc, the real part of the conjugate pairs is negative, and orbits will

spiral into these twin fixed point attractors. Beyond rc, the real part is positive,

resulting in a symmetric pair of periodic orbits. Trajectories, as shown in figure

1.8, revolve around a fixed point momentarily before jumping to the other.

This can be thought of geometrically as two annuli, centered at the points

(±
√

(b(r−1)),±
√

(b(r−1)), r−1). The orbits move around the left hand annu-

lus clockwise and the right hand counter-clockwise. These annuli are conjoined

in the vicinity of the origin, where an orbit can choose to move around the

left hand or right hand annulus. As with the Rössler attractor, the minimum

embedding dimension of the Lorenz attractor is 3.

1.5.5 Lyapunov Exponents

While an orbit defines the path of a single point through phase space, there

is much to be learned from analysing the time evolution of areas, volumes and

higher dimensional generalisations of these concepts. Obtained is a spectrum of

real numbers, called Lyapunov exponents, which determine the fate of a volume

element for large times and the attractor dimension of a system. The number

of exponents is equal to the dimensionality of the phase space. Qualitatively
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speaking, trajectories which are initially close diverge in a chaotic system, and

their separation will grow in time by a factor eλt, where λ is the Lyapunov

exponent. The idea is to look at the evolution of an infinitesimal n-dimensional

sphere as it travels through phase space. Mathematical rigour requires first a

definition of the tangent space for the point at the centre of the sphere, since the

phase space can only define vectors which have a base at the origin. Lyapunov

exponents are calculated by integrating the nonlinear equations to give the time

evolution of x, while simultaneously calculating the evolution of a set of basis

vectors in the tangent space of x

dx

dt
= f(x),

dei
dt

= J(x)ei,

and the result is a set of numbers providing the average growth or decay rates

of a volume over the full phase space. The concept of Lyapunov exponents is

also important in the classification of attractors. Taking the example of R3,

a fixed point is characterised by three negative exponents (−,−,−). As an

orbit approaches a fixed point, the set of basis vectors in the tangent space

are all decaying and as a result a volume element shrinks to a point. A limit

cycle has two negative and one zero exponent (−,−, 0). Two dimensions shrink

while the third is unaffected, since two points on the limit cycle will not grow

further apart or closer together, resulting in a one dimensional attractor. In

other words, the zero corresponds to translation of a volume element. Similarly,

two zero Lyapunov exponents (−, 0, 0) arise where the attractor is in the shape

of a torus. The remaining possibility is where there is one positive exponent

(−, 0,+), whereby the volume element shrinks into a thin ribbon which is then

stretched apart. A dynamical system with at least one positive exponent is by

definition chaotic.

The concept of Lyapunov exponents leads naturally to that of the pre-

dictability of nonlinear systems. Imagine a sphere is allowed to evolve near
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an attractor with a (−, 0,+) spectrum. This is similar to an ensemble forecast

whereby a group of states (in practice a finite number, but in theory contin-

uously many) close to the initial state xt0 are evolved to a time t0 + t and

statistical properties of this group are measured rather than the details of indi-

vidual trajectories. Firstly, the sphere will flatten out into a disk. The circle will

continue to translate until it reaches a branching point x∗, where an eigenvalue

of the Jacobian J(x∗) crosses zero and becomes positive, and the disk will be

stretched apart. It is at this point that states will begin to diverge, and if ξ0 is

the average distance between two states on this disc, it will evolve as

ξ(t) = ξ0e
λt, (1.37)

where λ is the positive Lyapunov exponent. Now, from a forecast point of

view if ξ is the distance between an erroneous vector and the true state of a

system, even if initially small, it may grow until the error state and true state

are unrecognisable. Thus, a cloud of initially close states will spread out into

the phase space as a plume. After some fixed forecast time tf , the width of

the plume, which is related to the magnitude of λ and the initial radius of the

sphere of states, is a measure of the predictability of a system, and the growth

rate of errors. Ultimately, since the attractor is bounded these states must

at some point converge. The length of time for which the forecast is reliable

and uncorrupted by error then depends on which point on the attractor it is

initiated, or where the sphere of states is released and allowed to evolve. This is

discussed by Palmer et al[55] in the context of weather and climate prediction.

1.5.6 Branched Manifolds

In the Lorenz and Rössler systems, the trajectories after large times live in

a space which is nearly two dimensional, and characterised by the topology

of these trajectories. This space is known as a branched manifold, owing to

the presence of singularities at the point where orbits diverge which do not
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Figure 1.9: Poincaré section of the Rössler attractor in the (r =
√
x2 + y2, z)

plane as a function of phase φ. Intersections of the orbits with the (r, z) plane
at various angles φi = (i− 2)π/6, i ∈ [0, 5] show clearly the overlapping feature
of the attractor as seen in the (+x,+y) quadrant of figure 1.7.

permit the space to be described using the same mathematics as a differentiable

manifold. A step above delving into the fractal structure of attractors, this

template structure could be the closest guess to the attractor shape for low order

systems. There are some potential benefits for the initialisation problem, whose

aim is to project onto a set of coordinates which parametrises the attractor

using the smallest number of dimensions possible.

With regards to the idea of branched manifolds, there is the Birman-Williams

projection coming from the theorem of the same name[56]. This states that two
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orbits x(t) and y(t) are equivalent if

|x− y| → 0 (1.38)

as t → ∞, or they have the same asymptotic future. This constraint projects

orbits onto the manifold which characterises the attractor. A negative Lya-

punov implies a volume is exponentially shrinking in a direction perpendicular

to the flow, and the limit is the branched manifold. This theorem has not been

generalised beyond dimension 3, but the exponentially attracting subspace is

a concept similar to the inertial manifold for systems of arbitrary dimension

described later.

In a three dimensional chaotic dynamical system, after transient motion

has dissipated, an orbit usually moves in a well defined direction along with its

neighbours. Consider a surface now through which the orbit is passing, with the

normal direction the same as that of the flow of trajectories. Orbits intersecting

this flow will usually fill a space which looks like the segment of a curve, since the

attractor has zero volume. At some point in the flow there will be a branching

point where the curve cannot be parametrised in one dimension, where the

space is stretched apart and the curve becomes multi-valued. Using cylindrical

coordinates (r, φ, z) with r =
√
x2 + y2 and looking at the intersection points of

the flow with planes at fixed values of φ provides a clearer image of the structure

of the attractor in figure 1.9. The first plane at φ0 makes an angle −π/3 to the

positive x axis, while subsequent planes are incremented by π/6, covering most

of the activity in the (+x,+y) quadrant visible in 1.7, until the last plane which

is parrallel to the positive y direction. The curve containing the orbits elongates

and folds in on itself, which is the generating mechanism of chaos in this system.

While this is a useful analogy for describing strange attractors in R3, the

dynamical systems studied in this thesis will typically be of much higher dimen-

sion. A reduction to R3 must then be guaranteed before such a projection can

be made, and it is idealistic to presume an analytical form of the branched mani-
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fold can be found. The reductions made later in the chapter on initialisation are

still of dimension greater than three, so this theory is of little practical use with

regards to the primary aims of this work. However, there exist other invariant

manifolds inherent within dynamical systems which are directly relevant to the

initialisation problem.

1.5.7 Initialisation and the Slow Manifold

The term slow manifold was first coined by Leith in the context of numerical

weather prediction[6]. Perturbing the primitive equations which describe the

atmosphere generates two kinds of waves, fast gravity waves and the slowly

propagating Rossby waves. Nonlinearity causes the waves to interact and force

each other, so while gravity waves cannot be neglected entirely a compromise

must be found between the modes so that no additional fast waves are gener-

ated. This compromise materialises as a dimensionally reduced subspace of the

full phase space which captures the asymptotic behaviour of the model. An

imbalanced initial condition will dissipate energy in the form of fast waves until

it reaches the subspace, so a successful initialisation requires that this region,

the slow manifold, be known. Unfortunately, it is not always guaranteed that

such a subspace will exist in a model.

From a dynamical systems point of view, the slow manifold is effectively

the attractor (in some cases the branched manifold containing the attractor),

and initialisation is the art of approximating it. Consider a modified version of

(1.26) where the angular coordinate is slowly evolving, then

dx

dt
= x− εy − x(x2 + y2) (1.39)

dy

dt
= εx+ y − y(x2 + y2). (1.40)
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so

dr

dt
= r(1− r2) (1.41)

dθ

dt
= ε, (1.42)

where ε� 1. Introducing a slow time τ = εt, the equations become

ε
dr

dτ
= r(1− r2) (1.43)

dθ

dτ
= 1. (1.44)

For long times where asymptotic behaviour dominates and ε→ 0, the left hand

side of the r equation vanishes and all that remains is the circle of unit radius,

which is the attractor for this system. Since the value of r is known, the system

has been reduced to one dimension and it is only necessary to integrate θ with

respect to time.

Suppose now the symmetry of (1.39) is broken by the addition of a vector

x̃ = (εx, 0) to the right hand side. After conversion to polar coordinate, this

leaves

ε
dr

dτ
= r(1 + ε cos2 θ − r2) (1.45)

dθ

dτ
= 1− 1/2 sin 2θ, (1.46)

one slow and one fast mode. Note that there is an epsilon on both sides of the

equation, so some care must be taken in the limiting process. The asymptotic

behaviour of r can be found by taking an expansion in terms of small parameter

ε,

r =

∞∑
i=0

riε
i. (1.47)

Considering only the first two terms of the expansion, zeroth order in ε yields
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the same equation as (1.43),

ε
dr0

dt
= r0(1− r2

0) (1.48)

with a stable fixed point at r0 = 1. First order gives

ε
dr1

dt
= r0 cos2 θ − 3r2

0r1 + r1, (1.49)

and letting r0 = 1,

ε
dr1

dt
= cos2(θ)− 2r1. (1.50)

Setting dr1
dt to zero gives a asymptotic solution for r in terms of θ,

r(θ) = 1 + (ε/2)cos2θ +O(ε2). (1.51)

Again, the fast equation need not be integrated as its asymptotic behaviour can

now be found in terms of the slowly varying θ, via a slaving function r(θ). This

radius-angle relation allows the dynamical system in R2 to be parametrised in

a periodic interval of R1. The slaving function concept will be useful later on,

and its application to higher dimensional chaotic systems will be described in

greater detail in chapter 4, with the introduction of the Baer-Tribbia series and

the inertial manifold.

Coupled GCM simulations for seasonal prediction are at the present stage

too complex to be treated in the same way, and instead rely on observational

data to keep from drifting to the wrong parts of phase space. The process

of data assimilation involves regularly projecting model state vectors onto the

data manifold, the space of all possible states given some measured variables.

An ideal way to initialise such a system would be to project initial states onto

the intersection between the data manifold and the slow manifold[57]. However,

current predictions do little to separate fast and slow dynamics[58]. The ocean

and atmosphere are assimilated separately which can result in the generation of
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fast dynamics due initialisation shock.

The methods outlined in this thesis circumvent the problem of initialisa-

tion shock by considering the ocean-atmosphere system as a single dynamic

entity. Calculating the normal modes of this system allows for a dimensionality

reduction whereby only the slower dynamics are integrated. This process re-

sults in the generation of families of submodels with varying degrees of slowness

which can be integrated with longer timesteps and demonstrate improvements

in predictive skill on seasonal timescales. It is found that the lower dimensional

parametrisation of the model attractor results in a better forecast, provided the

reduced model behaviour remains loyal to that of the full model.

Initialisation aims to create a channel through which information about infi-

nite dimensional real world dynamics can be passed on to the finite dimensional

computer model, filtering out all unwanted data. The first logical step then, is

to ensure the real world system and the models can be understood within the

same framework.

1.5.8 Partial Differential Equations as Dynamical Systems

Predicting climate, like any fluid dynamics problem, ultimately involves solving

partial differential equations (PDEs). The problem with posing PDEs such as

the diffusion equation

∂tT (x, t) = ∂xxT, (1.52)

subject to some boundary condition, say

T (−1, t) = T (1, t) = 0 (1.53)

as dynamical systems is that every single point in this region for example

T (−99/100, t), T (1/
√

2, t) et cetera, adds another dimension to the phase space,

and there is an uncountable infinity of points within [−1, 1]. It is then useful

to consider a snapshot of T (x, t) at each point in time and expand the function
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into an infinite set of continuous basis functions

T (x, t) =

∞∑
n=1

cn(t)sin(πnx), (1.54)

at least reducing the spatial dimensionality of the dynamical system from an

uncountable infinity to a countable one. Taking advantage of the orthogonality

of the basis functions leaves an infinite set of time-dependent coefficients which

satisfy

dcn
dt

= −n2cn. (1.55)

Before solving this, it is worth noting the similarities between this equation and

(1.6); it describes a dynamical system in an infinite dimensional phase space of

an coefficients. While it is tempting to call this space R∞, there is no guarantee

that the Euclidean norm

‖c‖ =

√√√√ ∞∑
i=1

c2n (1.56)

will return any meaningful answer. It is helpful at this point to introduce the

concept of a Hilbert space, a generalised Euclidean space which treats functions

as infinite dimensional vectors, but with the same geometric notions of lengths

and angles. Considering only real functions, the familiar dot product of a vector

space

f · g =

N∑
i=1

figi, (1.57)

is replaced with ∫
Ω

f(x, t)g(x, t)dx, (1.58)

over some domain Ω. A time-dependent PDE is effectively a dynamical system

whose state is given at each point in time by a point in a Hilbert space. While

the phase space of a PDE system is infinite dimensional, it can be shown that the

attractors are finite dimensional subsets of the full phase space. Furthermore, if

f(t) and g(t) are two solutions of the PDE, there is a property which guarantees

that if there is a projection from a Hilbert space to a finite dimensional space
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which is determining, that is

|P (f(t)− g(t))| → 0 as t→∞, (1.59)

then in the infinite space

|f(t)− g(t)| → 0 as t→∞. (1.60)

This confirms the attractor of an infinite dimensional dynamical system can

be contained within a finite dimensional space. However, yet to be found is

some way to map from the infinite to the finite and back again. This is the

key to improving predictability of complex models, and the theory of inertial

manifolds, which shall be introduced in the initialisation chapter, is one possible

route to bridging this gap. Many of these ideas were inspired by Robinson[82],

a good introduction to the treatment of PDEs as dynamical systems. There are

many well known ways in which the infinite dimension can be approximated by

a low order system, typically involving functions with special properties.

1.5.9 Orthogonal Decomposition

To solve any partial differential equation numerically, it is essential to first find

a way of translating from the infinite dimensional function space to a vector

space of finite, preferably low, dimension with a minimal loss of information.

There are several known ways of achieving this.

A vector x in a Hilbert space can usually be written in the form

x =
∑
n

cnφn, (1.61)

where φn defines a set of vectors or functions which satisfy

φn · φm = δn,m, (1.62)
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with δn,m the Kronecker delta satisfying

δn,m =

 1 if n = m

0 otherwise
(1.63)

A set of basis functions which can reconstruct any vector in the space as in (1.61)

is known as complete. Changing the basis of an equation is a straightforward

process, for example substituting (1.61) into the general linear equation (1.7)

gives ∑
n

dcn
dt

φn = A
∑
n

cn(t)φn, (1.64)

and since taking the dot product over another index φm gives a 1 if n = m or

0 otherwise, the summation disappears leaving

dcn
dt

= B
∑
n

cn(t), (1.65)

where B = φmAφn. For function spaces, these bases φn are usually the functions

sin(nx), cos(nx), but could also be other periodic functions or special sets of

polynomials. The basis functions used in this research were those of a finite

difference type, which will be explained in the next section.

In the example from the end of the previous section, a solution to the tem-

perature equation was expressed in terms of an infinite sum of sin(nx) basis

functions. The coefficients satisfied

dan
dt

= −n2an. (1.66)

Now, large values of n correspond to functions which oscillate spatially with a

high frequency, and are associated with the smaller length scales. Note also that

perturbations of these terms decay very rapidly with time. If the interest is in

the large scale, long term behaviour it should be sufficient to compute only a

small number of an(t), and assume the small scale, rapidly decaying terms are

negligible. However, this scheme often fails for nonlinear systems, where high
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frequency spatial components are not so easily separated from the low frequency

ones, and is the premise for slow manifold techniques discussed later.

Finite Difference Basis

Consider a function Θ(x) with x ∈ [0, 1]. The idea behind finite difference will

be to divide this space into N subspaces, with larger N resolving smaller scale

with a better approximation to Θ. Throughout this work, the choice of basis

functions will be the set

fi =

 1/N if (i− 1)/N < x < i/N ;

0 otherwise.
, (1.67)

where 1 ≤ i ≤ N . From a climate modelling perspective, this is analogous

to dividing up properties along a one dimensional region, say the depth of the

Pacific thermocline along the equator, into N box averaged quantities. It is a

trivial exercise to check that these functions satisfy orthonormality, that is

fi · fj = δi,j , (1.68)

where δi,j is the Kronecker delta. Any function Θ can be decomposed into

coefficients

ci = (fi ·Θ), (1.69)

The usual definition of derivative,

df

dx
= lim
δ→0

f(x+ δ)− f(x)

δ
, (1.70)

becomes

D+Θ = (fi+1 − fi)Θ, (1.71)

for the forward difference of a point and its nearest right hand neighbour, and

D−Θ = (fi − fi−1)Θ, (1.72)

50



for the backwards difference with the neighbour on the left hand side. It is

important to point out that a basis of N functions generates a derivative set of

N−1 functions. Every time a spatial derivative is taken, the space corresponding

to one basis function is lost from the set, but this information is always regained

through the introduction of boundary conditions. The details of these conditions

will be covered in the next chapter where the model equations are derived.
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Chapter 2

The 2-strip Model

This chapter will derive the governing equations for the ENSO models stud-

ied in the next chapter. Beginning with the fluid mechanics of the equatorial

waveguide, dispersion relations are derived which lead to a 2-strip system de-

scribing thermocline motion in terms of two wave modes (one Kelvin and one

Rossby). Next the evolution of the sea surface temperature (SST) anomaly,

largely influenced by thermocline motion, is derived from basic temperature

advection equations which have been linearised about a climatological mean

state. Finally the atmospheric response to an SST anomaly is described, and

this generates a wind stress anomaly which drives the thermocline.

2.1 Geophysical Fluids Background

2.1.1 Equatorial Wave Dynamics

Since the ocean is effectively a thin layer on the surface of a rotating sphere,

with the average depth of the ocean being only a few kilometres compared to the

radius of the earth which is on the scale of thousands of kilometres, horizontal

motion dominates on length scales larger than the ocean depth. While the ocean

has in reality many layers, a simple stratified ocean has two layers of density ρ0

(top) and ρ0 +∆ρ (bottom), with the interface between the layers corresponding
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to the thermocline. Displacements of the ocean surface in comparison with

thermocline depths are negligible, so the former can be thought of as a rigid lid

and only variations of the interface are considered. The reader is now referred to

the appendix, where this two-layer model of the linear shallow water equations

in the equatorial beta plane is derived from the rotating shallow water equations

on an equatorial β-plane. Additionally, these same derivations can be found in

Gill[60] or Pedlosky[59]. The end result is the set of equations

∂u

∂t
− βyv = −g′ ∂h

∂x
, (2.1)

∂v

∂t
+ βyu = −g′ ∂h

∂y
, (2.2)

∂h

∂t
+H

(
∂u

∂x
+
∂v

∂y

)
= 0, (2.3)

describing the difference in zonal and meridional velocity between the two layers

and the deviation h from the average depth H of the density interface. Here, the

positive x-direction goes from west to east, and the positive y-direction south

to north, with y = 0 on the equator. Atmospheric forcing will be ignored for

now. Reduced gravity is defined by

g
′

=
∆ρ

ρ0
g, (2.4)

with ∆ρ the difference in density between the layers, and it is helpful to define

a wave speed

c =
√
g′H. (2.5)

Now, on the equator the β term vanishes, leaving

∂u

∂t
= −g′ ∂h

∂x
, (2.6)
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Figure 2.1: Dispersion relation of equatorial waves in the (Ω,K) plane.

The equation for the conservation of potential vorticity

ζ =
∂v

∂x
− ∂u

∂y
(2.7)

of this system is

∂

∂t

(
ζ − βy h

H

)
+ βv = 0. (2.8)

Operating on (2.1) and (2.3) with −(βy/c2)∂t, (2.2) with ∂2
t /c

2, (2.8) with −∂x,

and taking the sum yields

∂

∂t

[
1

c2

(
∂2v

∂t2
+ β2y2

)
−
(
∂2v

∂x2
+
∂2v

∂y2

)]
− β ∂v

∂x
= 0. (2.9)
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Looking for solutions of the form v = v̂(y)ei(kx−ωt) gives

d2v

dy2
+

(
ω2

c2
− k2 − βk

ω
− β2y2

c2

)
v = 0. (2.10)

When subjected to the boundary conditions v → 0 as y → ±∞, a solution to

the above equation is

v = Dn(Y ) cos(kx− ωt), (2.11)

where Dn are parabolic cylinder functions for integer n and

Y =

√
2
β

c
y. (2.12)

Now (2.10) can be rearranged and written in the form of an eigenvalue equation

(
2
d2

dY 2
− Y 2

2

)
v = Ev, (2.13)

where

E = βc

(
ω2

(βc)2
− k2

β2
− k

βω

)
. (2.14)

At this stage it is useful to define the ladder operators

L± =
d

dY
∓ Y

2
, (2.15)

which have the properties

L+Dn = −Dn+1 L−Dn = nDn−1. (2.16)

Since (
2
d2

dY 2
− Y 2

2

)
v = (L+L− + L−L+) v, (2.17)

using properties of the ladder operators the left hand side reads

1

2
(L+L− + L−L+)v = −(2n+ 1) (2.18)
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leading to the dispersion relation

ω2

(βc)2
− k2

β2
− k

βω
= (2n+ 1)

1

βc
. (2.19)

Temporarily rescaling coordinates Ω = ω/
√

(cβ), K = k
√
c/β provides a neater

form of the above

Ω2 −K2 − K

Ω
= (2n+ 1) (2.20)

for n = 0, 1, 2 . . . etc. If n = −1, this equation has a trivial solution

Ω = K, (2.21)

or

ω = ck (2.22)

which is a special case corresponding to the equatorial Kelvin wave. The case

n = 0 corresponds to a mixed Rossby-Kelvin wave, or Yanai wave. Every

integer n > 0 corresponds to both a Rossby and Poincaré mode, as shown in

the dispersion relation figure 2.1. Because the relevant physics here is on the

large scale and slow timescale, the low frequency, low wavenumber limit is taken

as depicted in 2.1 by the region within the box centered around (Ω,K) = 0. By

operating on 2.1 with ∂
∂t leaving

∂v

∂t
=

1

βy

(
∂2u

∂t2
+ g

′ ∂2h

∂t∂x

)
, (2.23)

and substituting h = ĥ(y)ei(kx−ωt), u = û(y)ei(kx−ωt), the right hand side

becomes

1

βy

(
kωg

′
ĥ− ω2û

)
→ 0, (2.24)

tending to zero in the low frequency/wavenumber limit. This way, acceleration

in the meridional direction can be neglected and equations (2.1), (2.2) and (2.3)
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reduce to

∂u

∂t
− βyv = −g′ ∂h

∂x
, (2.25)

βyu = −g′ ∂h
∂y
, (2.26)

∂h

∂t
+H

(
∂u

∂x
+
∂v

∂y

)
= 0. (2.27)

2.1.2 Kelvin Mode

On the equator, y = 0, and (2.25) and (2.27) can be written in terms of h alone

in the form of the wave equation in the x direction

(
∂2

∂t2
+ c2

∂2

∂x2

)
h = 0. (2.28)

The above equation can be solved exactly using the D’Alembert solution for h

h(t) = h+(x+ ct, y) + h−(x− ct, y), (2.29)

implying from (2.27)

Hu(t) = −c [h+(x+ ct, y)− h−(x− ct, y)] . (2.30)

with h+ and h− unknown functions. Substituting in the trial solutions for

westward h+ and eastward h− propagating waves individually into (2.26) results

in the expressions

h+y = a2 ∂h+

∂y h−y = −a2 ∂h−
∂y , (2.31)

where a2 = c
β . The constant a is known as the equatorial radius of deformation,

to be explained shortly. Assuming a separable solution such that

h−(x− ct, y) = Y−(y)X−(x− ct) h+(x+ ct, y) = Y+(y)X+(x+ ct), (2.32)
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leads to (
y − a2 d

dy

)
Y+ = 0

(
y + a2 d

dy

)
Y− = 0, (2.33)

with solutions

Y± = e±
y2

2a2 . (2.34)

Solutions which decay as y → ±∞ are therefore guaranteed by choosing h+ = 0.

So the waves are uni-directional and non-dispersive with relation

ω = ck, (2.35)

with an amplitude which decays off the equator, and the equatorial Kelvin wave

has been rederived along with its meridional structure.

2.1.3 Rossby Mode

In the low frequency, low wavenumber limit nonlinear terms ω2 and k2 can be

neglected from (2.20), leaving

ω =
−ck

(2n+ 1)
, (2.36)

corresponding to an infinite family of westward propagating Rossby waves. Now,

considering only the first few (n = 1, 2 and 3), their parabolic cylinder functions

are

D1(Y ) = Y e−Y
2/4 (2.37)

D2(Y ) =
(
Y 2 − 1

)
e−Y

2/4 (2.38)

D3(Y ) =
(
Y 3 − 3Y

)
e−Y

2/4. (2.39)

Since the atmospheric forcings involved are largely symmetric about the equator,

Rossby waves which have contributions to u and h which are symmetric about

the equator are the most relevant, the dominant being D1 with phase speed
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Figure 2.2: Diagram depicting Rossby and Kelvin mode interactions in the
equatorial strip, with the Kelvin mode K changing identity into a Rossby R
mode at the eastern boundary x = xE , and the Rossby mode becoming a
Kelvin mode at the western boundary x = xW .

−c/3, the next in line D3 with phase speed −c/7. There are then two distinct

classes of wave mode, one Kelvin mode which for which h peaks on the equator

and moves east, and a family of Rossby modes which have peaks off the equator

and propagates slowly to the west. The distinct structural imprint of Kelvin

and Rossby modes on the equatorial thermocline depth make it a convenient

quantity to model in this context, as the evolution equations describing its

dynamics have a relatively simple form.

2.2 The 2-strip System

2.2.1 Main Equations

Thermocline wave modes play an important role in ENSO dynamics, in both

the growth and termination of events. Of major importance are the eastward

travelling Kelvin mode, which propagates along the equator, and the westward

travelling Rossby modes, which propagate in both the equatorial region and the

off-equatorial regions to the north and south. When the Kelvin (Rossby) mode

reaches the eastern (western) boundary, it is reflected imperfectly as a Rossby
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(Kelvin) wave. Translation of waves induces a motion of the thermocline which

changes the sea surface temperature, effectively building or breaking up a tem-

perature anomaly. In the 2-strip system[15], the shape of the thermocline can be

expressed entirely in terms of these modes which vary zonally while their merid-

ional structure is fixed in time, with symmetry about the equator. Derivation of

the equations is largely the same as the original work by Jin, but a new dimen-

sionless parameter µ is introduced for purposes which will be explained shortly.

In the models which are to be derived, an overwhelming proportion of phase

space is attributed to the state of the thermocline depth, so their importance

cannot be understated. After taking the low frequency/wavenumber limit of

equations (2.1), (2.2) and (2.3), a zonal wind stress τx is applied over the upper

layer and for the sake of stability a weak damping term ε is included to give

(
∂

∂t
+ ε

)
u− βyv + g

′ ∂

∂x
h =

τx
ρH

, (2.40)

βyu+ g
′ ∂h

∂y
= 0, (2.41)(

∂

∂t
+ ε

)
h+H

(
∂

∂x
u+

∂

∂y
v

)
= 0. (2.42)

After some algebra, an equation in terms of h alone is

(
∂

∂t
+ ε

)[
h− ∂

∂y

(
a4

y2

∂h

∂y

)]
− ca

2

y2

∂h

∂x
=

∂

∂y

(
a2

y

τx
cρ

)
, (2.43)

where again the equatorial radius of deformation a =
√
c/β and Kelvin wave

speed c =
√
g′H. In the equatorial strip, a slightly different form to Jin

h(x, y, t) = he(x, t) + (1− e−
y2

2a2 )∆h(x, t) (2.44)

is assumed, where ∆h = µhn−he. The parameter µ controls the partitioning of

the response to wind stress forcing between Kelvin and Rossby waves, but for

most cases will be set to unity, making the response the same as Jin. Leaving

µ unconstrained leads to a more general, and potentially more realistic system.
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Substituting into (2.43), carrying out the derivatives and multiplying through

by (y/a)2 leaves

(
∂

∂t
+ ε

)[
(y/a)2(h+ 2∆h) + ∆h

]
− c∂h

∂x
=

1

cρ

(
y
∂

∂y
τx − τx

)
. (2.45)

On the equator, y = 0, this reduces to

−
(
∂

∂t
+ ε

)
∆h+ c

∂he
∂x

=
τx
cρ
, (2.46)

Zonal velocity at the equator, which shall come in useful later on, is

u = − c

H

a2

y

∂h

∂y
, (2.47)

becoming

u|y=0 = − c

H
∆h (2.48)

when evaluated at the equator. Substituting into the expression (2.46) for the

wind forced equatorial thermocline yields an evolution equation for ue,

(
∂

∂t
+ ε

)
u|y=0 +

c2

H

∂he
∂x

=
τx
ρH

. (2.49)

As y is increased to a finite value the nature of the equations changes as the

equatorial Kelvin mode decays. For some finite value yn off the equator, ther-

mocline displacement is observed to reach an extremum and

h� ∂

∂y

(
a4

y2
n

∂h

∂y

)
. (2.50)

Equation (2.43) then becomes

(
∂

∂t
+ ε

)
hn − c

a2

y2
n

∂hn
∂x

=
∂

∂y

(
a2

yn

τx
µcρ

)
, (2.51)
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describing a single Rossby mode of the equation, which propagates westward.

This is representative of the effect a group of Rossby waves has on the off-

equatorial strip at y = yn. The governing equations are thus

(
∂

∂t
+ ε

)
(he − µhn) + cK

∂he
∂x

= Fe(x, t) (2.52)

at the equatorial strip y = 0, where cK = c and Fe = τx/cρ and

(
∂

∂t
+ ε

)
hn + cR

∂hn
∂x

= Fn(x, t) (2.53)

at the northern strip y = yn, with cR = −c(a/yn)2 and

Fn =
∂

∂y

(
a2

y

τx
µcρ

) ∣∣∣∣
y=yn

, (2.54)

where

x ∈ [−L,L] t ∈ R+. (2.55)

Northern strip yn is located at the extrema of the function which is a combi-

nation of the first two modes which are symmetric in u and h, i.e. D1 and D3.

These modes have wave speeds −cK/3 and −cK/7 respectively, and the value

of cR used is the average of these

cR = −cK
2

(
1

3
+

1

7

)
≈ −cK/4, (2.56)

so yn = 2a. Equations (2.52) and (2.54) are subject to the reflective boundary

conditions

hn(L, t) = REhe(L, t) he(−L, t) = RWhn(−L, t) (2.57)

at the western (xW = −L) and eastern (xE = +L) boundaries. This is shown

graphically in image 2.2. Although the full model will eventually be coupled,

with the forcing terms dependent on the thermocline variables, there is still
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something to be said about the uncoupled system with idealised forcing. While

hn is affected only by Rossby modes, he has contributions from both Kelvin

and Rossby modes. It should be possible to write equations (2.52) and (2.54) in

terms of Kelvin and Rossby modes alone, or as quantities which move at their

respective velocities. If it is assumed that ε = 0, the 2-strip equations can be

written in matrix-vector form

γ∂th + C∂xh = F, (2.58)

with F = (Fe, Fn)T , h = (he, hn)T , and γ, C the matrices

γ =

 1 −1

0 1

 , C =

 cK 0

0 cR

 . (2.59)

Multiplying through on the left by the inverse of γ, the equation becomes

∂th + C̃∂xh = F̃ (2.60)

where a tilde implies left multiplication of γ−1. The problem is now to find

the left eigenvalues and eigenvectors of the matrix C̃. The eigenvalues are the

wave speeds and taking the dot product of the associated eigenvectors with the

vectors h and F̃ will return the quantity which moves at that wave speed and

the forcing required to excite a pure mode. C̃ has eigenvalues

λ1 = cK , λ2 = cR (2.61)

and normalised eigenvectors

v1 =

 1

0

 , v2 = N

 1

cR−cK
cR

 , N = 1√
1+(1−cK/cR)2

. (2.62)
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Figure 2.3: Diagram depicting the wind driven surface layer of depth H1, mean
thermocline depth H1+H2 and thermocline depth anomaly h, along with surface
current u1 and subsurface current u2.

The linear combinations and their associated forcings are thus

h1 = N(he + cR−cK
cR

hn) F1 = N(Fe − cR−cK
cR

Fn)

h2 = hn F2 = Fn.
(2.63)

This way, any thermocline profile (he, hn) can be decomposed into separate

Kelvin and Rossby components. Thus, while a Kelvin mode is contributes only

to he, a Rossby mode influences both he and hn.

2.2.2 Wind Forcing

Atmospheric motion affects the thermocline by raising or lowering the sea sur-

face over large scales, inducing a pressure difference which draws the interface

closer or pushes it further away from the surface. The shear layer can be re-

garded as a turbulent surface layer of constant depth, which induces upwelling

or downwelling currents within the mixed layer. Dissipation of energy of the

system is strongly affected by the inclusion of this layer, making the terms which
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follow a necessary component of the coupled model. Similar derivations can be

found in Jin and Neelin[62] or Zebiak and Cane[11]. First, the upper ocean layer

is partitioned into a surface layer of constant depth H1 and subsurface layer of

constant depth H2, such that the entire upper layer depth is

H = H1 +H2. (2.64)

If the upper layer velocities (u, v) derived earlier are taken to represent the depth

average of the surface and subsurface layers, the average velocity of the surface

layer is

u1 = u+ us, v1 = v + vs, (2.65)

while the average of the whole upper layer is

(u, v) =
H1(u1, v1) +H2(u2, v2)

H
(2.66)

making the shear current

(us, vs) = [(u1, v1)− (u2, v2)] (H2/H). (2.67)

Starting with the zonal momentum equations in the surface and subsurface

layers, (
∂

∂t
+ ε

)
u1 − βyv1 + εsus =

τx
ρH1

(2.68)

and (
∂

∂t
+ ε

)
u2 − βyv2 −

H1

H2
εsus = −g′ ∂h

∂x
, (2.69)

where εs is a damping coefficient of around 1/2 days−1. With this information,

momentum difference

(u1, v1)− (u2, v2) =
τx
ρH1

(εs, βy)

ε2s + (βy)2
(2.70)
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can be calculated[62][11], where εs is a strong surface damping rate. Contribu-

tions to SST typically come from upwelling, which at the base of the surface

layer is

w1 = H1

(
∂

∂x
u1 +

∂

∂y
v1

)
, (2.71)

and evaluated at the equator this amounts to

ws = H2
(εs∂xτx − βτx)

ε2sρH
. (2.72)

Typically the β term dominates, leaving at H1

ws ' −H2
βτx
ε2sρH

. (2.73)

On the equator, the currents are then

u1|y=0 =
cK
H

(he − µhn) +
H2

εsH1

τx
ρH

, (2.74)

w1|y=0 = −H1

H

(
∂

∂t
+ ε

)
he −

βH2

ε2s

τx
ρH

. (2.75)

Figure 2.3 depicts a zonal cross section of the equatorial Pacific basin identifying

the different layers.

2.2.3 SST Dynamics

An equation parametrising the time evolution of SST anomalies is now derived.

This information is essential for determining wind stress anomalies, as the at-

mosphere itself is driven largely by the thermal energy which it draws from the

ocean. Thermodynamical considerations also introduce the first nonlinearities

which curb the instability of Bjerknes feedback, the process by which changes in

the SST induce a pressure difference which affects the strength of atmospheric

forcing, leading to further changes in SST. The main region where the SST

influences wind motions which drive the thermocline is the eastern half of the

Pacific basin at the equator. Here the time evolution of the equatorial SST is
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given by a modified scalar advection equation,

∂tT + (u · ∇)T = −εT (T − T ), (2.76)

where u = (u, v,R(w)). The sea surface tends to equilibrium temperature T

over a timescale 1/εT , parametrising various surface physics effects, while being

subjected to variability through the interior flows of the ocean. Vertical velocity

is here the argument of the ramp function,

R(x) =

 x x < 0;

0 x ≥ 0.
, (2.77)

since the SST is unaffected by downwelling. If T = Te + TC and u = ue + uC,

where terms with subscript e are small perturbations from a climatological mean

state with subscript C. this can be linearised to

∂

∂t
Te + ue · ∇TC + uC · ∇Te = εTTe. (2.78)

It is assumed (see Battisti and Hirst[13]) that the term vC
∂
∂yTe is small enough

to be neglected. Climatological ocean currents tend to have a positive feedback

effect on the temperature, so

(
uC

∂

∂x
+ vC

∂

∂y

)
Te = −KTe, (2.79)

for constant K. The surface velocities, including currents induced by wind

shear, are

ue =
H2

εsH1

τx
ρH

+
cK
H

(he − µhn), (2.80)

we = −βH2

ε2s

τx
ρH
− H1

H

(
∂

∂t
he + εhe

)
. (2.81)

Arguably the most important term in the temperature equation is ∂
∂zTe, as it

contains a nonlinearity which comes from the stratification of the ocean. Taking
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one point at the surface, where the temperature is just Te, and a reference point

in the subsurface layer z = −HB ,

∂

∂z
Te =

Te − TB
HB

. (2.82)

The temperature anomaly at the base of the layer TB depends on the depth

of the thermocline layer he, and a mathematically convenient approximation

(based on observational data[13]) is

TB = T0 tanh(he/H
∗), (2.83)

where T0 and HB are coefficients representative of the temperature difference

above and below the layer, and the lengthscale over which this temperature

difference occurs. This way, extreme thermocline anomalies at the equator do

not result in rapid changes in SST due to the small range of the function TB ,

which acts to limit the thermal response to he. Overall, the evolution is

∂Te
∂t

= αTe − ue
∂TC
∂x
− we

∂TC
∂z

+
wc
HB

T0 tanh

(
he
H∗

)
(2.84)

where α = K+εT−wC/HB . Similar derivations can be found in Cane Zebiak[11]

or Battisti Hirst [4], and the physical constants used for this model are listed at

the end of the chapter.

2.2.4 Atmospheric Coupling

In the coupled 2-strip model, temperature anomalies arising through thermo-

cline motion drive an atmospheric response which feeds back into the model as

wind stress, based on a Gill atmosphere[61]. For this study, the atmosphere is

parametrised by nonlocal cause and effect, whereby a zonal wind stress anomaly

is linearly coupled to an SST anomaly a fixed distance xc to the east. The merid-
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Figure 2.4: Schematic of interactions in the tropical pacific. A positive SST
anomaly induces an atmospheric wind stress anomaly triggering a downwelling
Kelvin wave Kd, and upwelling Rossby Ru mode. The upwelling Rossby mode
is reflected in the western boundary into an upwelling Kelvin mode Ku, which
ultimately ends the El Niño event and starts a La Niña.

ional profile of this wind stress anomaly is roughly Gaussian, so the form

τx(x, y, t) = κ(t)Te(x+ xc)f(x)e−
1
2 ( y

b )2 (2.85)

is used, where κ is a coupling strength and b is a lengthscale related to the

atmospheric Rossby radius of deformation[62]. The meridional structure of the

atmospheric response is equivalent to that of the ocean, with one Kelvin and

one Rossby mode, but the radius of deformation b is larger due to the faster

wave speeds. Now, the oceanic Kelvin wave is forced directly by wind stress, so

Fe(x, t) = κTe(x+ xc, t), (2.86)

while the equatorial Rossby is forced by the curl of the wind stress ∂
∂y (τx/y)|y=yn ,

then

Fn(x, t) = rfFe(x, t) (2.87)

where

rf = −
(

2y2
n + b2

µy2
nb

2

)
. (2.88)

Sign is important here as when a positive SST anomaly Te generates a down-

welling wave in he, it generates an upwelling wave in hn at the same time which,
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after a delay due to wave propagation time, will reflect into he as an upwelling

Kelvin wave and oppose the anomaly. This is shown in the schematic diagram

2.4 which summarises the various feedbacks involved in the growth and decay

of an ENSO event. Zonal structure of the wind stress anomaly is given by the

function f(x) which for all purposes here is represented by a central block,

f(x) =

 1 if |x| < L/3;

0 otherwise.
(2.89)

Throughout the modelling process there will be several further parametrisations

of atmospheric motion, mostly exploring different SST box averages. It is im-

portant to note the time dependence of the coupling coefficient κ(t). While this

number ideally varies both stochastically and periodically due to the effects of

turbulence and the annual cycle respectively, this study will focus on the latter

such that

κ(t+ τa) = κ(t), (2.90)

where τa is a timescale of one year. Ignoring random variations in coupling and

considering only mean values allows for a complete description of the model

within the theory of autonomous dynamical systems, and the shape of the at-

tractor is fixed in time. Had stochastic effects been included, nonautonomous

systems of the form

dx

dt
= f(x, t), (2.91)

would constantly be nudged around and so could never settle down onto an

attractor in the traditional sense, and the concept of a pullback attractor is

required. The pullback attractor at time t is given by a probability distribution

function built from orbits which flow onto it from a point s in the past, and

ideally taking the limit s→∞[63]. Now, to avoid couplings of the form (2.90)

resulting in a system of the form (2.91), some trickery is required. An increase
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in phase space by dimension 2 allows for the subsystem

x1 = −ωax2 x2 = ωax1, (2.92)

where the value of ωa is chosen such that a point in the (x1, x2) plane takes one

year to return to its initial position, that is ωa = 2π/τa. The simple harmonic

motion of this subsystem models the sinusoidal oscillations of the annual cycle

without introducing time-varying coefficients. Initial values are chosen such that

x1(t0)2 + x2(t0)2 = 1, (2.93)

so orbits in this plane are constrained to a circle of unit radius for all time.

Seasonal variability of the atmosphere is relevant in the study of ENSO since

phase locking to the annual cycle is a key property of any simulation of the

phenomenon. Coupling parameter κ takes the form

κ(t) = κ0 + κax1 (2.94)

where κ0, κa are positive constants. Through an increase of dimensionality, a

coupled ocean-atmosphere model forced by the seasonal cycle is described by

an autonomous dynamical system, with an additional quadratic nonlinear term.

Coupling amplitude is controlled by κa and a larger amplitude is likely to result

in stronger nonlinearity. At this stage there are no further mechanisms to con-

sider or derivations to be made, so the process of truncating and parametrising

the system equations will begin in the next chapter.
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2.2.5 Physical Constants

Symbol = Value (Units) Meaning

ρ = 1000 kg/m3 density of water

∆ρ = 0.003 kg/m3 density difference between mixed layer and deep ocean

g = 9.8 m/s2 acceleration due to gravity

g
′

= g∆ρ
ρ reduced acceleration due to gravity

∂
∂zTC = 0.04 m◦Cm−1 mean vertical temperature gradient

∂
∂xTC = −10−6 m◦Cm−1 mean horizontal temperature gradient

T0 = 5 ◦C maximum temperature of upwelled water

H1 = 50 m shear layer depth

H2 = 100 m shear to thermocline depth

H = 150 m mean upper layer depth

H∗ = 40 m thermocline variability scale

HB = 75 m upwelling depth scale

cK =
√
gH = 2.1 ms−1 Kelvin wave speed

a = 2× 105 m equatorial Rossby radius

2L = 1.5× 107 m width of Pacific basin

ε = 5× 10−9 s−1 ocean adjustment damping

εs = 5.8× 10−6 s−1 Upper layer timescale

β = 2.3× 10−11 s−1m−1 Beta parameter
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Chapter 3

Box Models

This chapter will cover all of the models covered in this thesis, derived as discreti-

sations of the 2-strip system. Beginning with the 2-box, a recharge oscillator

type model with limit cycle solutions, the focus later shifts to more complex

models with chaotic solutions and larger phase spaces, such as the 10-box, culi-

mating in the n-box and n∗-box PDE models (using coarse and fine atmospheric

parameterisations respectively), with the ability to resolve the spatial structure

of thermocline anomalies with arbitrary precision.

3.1 The 2-box model

The 2-strip equations are first reduced to a system of ordinary differential equa-

tions through a primitive discretisation process. A similar approach to the

discretisation of the 2-strip model has been carried out already by Jin for the

well-known recharge oscillator model[14]. The equatorial and northern strips

(marked with subscripts e and n respectively) are each divided into western and

eastern halves (subscripts W and E, see figure 3.1), and the thermocline depth

in each quadrant is represented by a single coordinate. The upstream Euler

method defines the difference across each strip. This way, in the equatorial
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Figure 3.1: East/west box average discretisation of the 2-strip model with the
northern strip on top and equatorial strip on the bottom.

strip the zonal gradient term becomes

∂

∂x
he =

heE − heW
L

, (3.1)

while in the northern strip

∂

∂x
hn =

hnE − hnW
L

, (3.2)

Implementing the boundary conditions

heW = RWhnW hnE = REheE , (3.3)

reduces the model to three coordinates; the two thermocline depths heE and

hnW , and the average eastern equatorial SST anomaly TeE from which the

forcing terms are determined. Primitive atmospheric parametrisation is used

whereby the wind stress is proportional to the box averaged eastern equatorial

SST

τx = κTeE , (3.4)
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for some constant (annual averaged) value κ. This linear relationship is approx-

imately true for monthly mean values, as seen in GCMs and observation[67].

A further reduction is made by assuming the equatorial strip is in Sverdrup

balance, that is the zonal momentum has reached a steady state determined by

the temperature gradient, and (2.49) becomes

(c2K/H)
heE − heW

L
=
κTeE
ρH

, (3.5)

that is

heE = RWhnW + (LH/c2K)
κTeE
ρH

. (3.6)

Again this is only true for long timescales, as Sverdrup balance is reached over

several months. Now there are only two free variables, east equatorial SST TeE

and west thermocline depth of the northern strip hnW . Time evolution of hnW

is

dhnW
dt

= −εhnW − (REheE − hnW )
cR
L

+ rf
κTeE
ρH

, (3.7)

while that of TeE , as derived from (2.84) is

dTeE
dt

= αTeE − ueE
∂

∂x
TC − weE

∂TC
∂z

+
wc
HB

T0 tanh(
heE
H∗

), (3.8)

where

ueE = (H2/εsH1)
κTeE
ρH

+
cK
H

(1− µRE)heE , (3.9)

weE = −(βH2/ε
2
s)
κTeE
ρH

− (H1/H)

(
d

dt
+ ε

)
heE , (3.10)

and the expression for heE in terms of hnW and TeE is given above. The full

system can then be written in the form

dh

dt
= −a1h− a2T, (3.11)
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for the northwest thermocline depth anomaly and

dT

dt
= b1T + b2h+ b3 tanh[b4h+ b5T ] (3.12)

for the east equatorial temperature anomaly, where h = hnW and T = TeE .

Locator subscripts have been dropped for the duration of the discussion of the

2-box model. Coefficients for the thermocline depth evolution equation are

a1 = (RERW − 1)
cR
L

+ ε, (3.13)

a2 = cR(RE − 1)(H/c2K)
κ

ρH
. (3.14)

Calculation of thermodynamic evolution coefficients is somewhat more demand-

ing, with

b0 = 1− ∂TC
∂z

κ

ρH
(LH1/c

2
K), (3.15)

b1 =
α+ b1b + b1c

b0
; (3.16)

b1b =
∂TC
∂x

κ

ρH
[(µRE − 1)(L/cK)− (H2/εsH1)] , (3.17)

b1c =
∂TC
∂z

κ

ρH

[
(βH2/ε

2
s) + ε(LH/c2K) + cRRW (1−RE)(H1/c

2
K)
]
, (3.18)

b2 =
∂TC
∂x

(cK/H)RW (µRE − 1) +
∂TC
∂z

(cRH1/LH)(1−RERW ), (3.19)

b3 = (wC/b0HB)T0, (3.20)

b4 = RW /H
∗, (3.21)

and

b5 = (LH/H∗c2K)
κ

ρH
. (3.22)

Some typical values when RE = 0.5 and RW = 0.75 are a1 = 0.004 days−1,
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b4 = 0.02 metres−1.

3.1.1 Nondimensionalisation

At this stage the parameter space of the model is 7 dimensional, with two

contributions from the h equation and five from the T equation. It is useful to

reduce this parameter space by rescaling h,T and t appropriately. One way to

do this is to write

ĥ = b4h, (3.23)

t̂ = a1t, (3.24)

T̂ = (a2b4/a1)T. (3.25)

This transforms (3.11) and (3.1) into

dĥ

dt̂
= −ĥ− T̂ (3.26)

and

dT̂

dt̂
= (b1/a1)T̂ + (b2a2/a

2
1)ĥ+ (b3b4a2/a

2
1) tanh[ĥ+ (b5a1/b4a2)T̂ ]. (3.27)

For convenience, let

η = (b4a2/b5a1), (3.28)

ν = (b3b5/a1), (3.29)

P = (b1 + b3b5)/a1 − 1 (3.30)

and

Q = (b2 + b3b4)a2/a
2
1 − (b1 + b3b5)/a1. (3.31)
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Then, removing the hats from the rescaled variables and writing (3.11) and (3.1)

in the new nondimensional form,

dh

dt
= −h− T, (3.32)

dT

dt
= (P + 1)T + (P +Q+ 1)h+ ην[tanh(h+ T/η)− (h+ T/η)], (3.33)

a planar four parameter system. Note that the expression in square brackets

above is fully nonlinear, with a Taylor expansion around (h, t) = 0 starting with

cubic terms. The system can then be written in one line

dΘ

dt
= MΘ + ην[tanhNΘ−NΘ], (3.34)

where Θ1 = h, Θ2 = T ,

M =

 −1 −1

P +Q+ 1 P + 1

 (3.35)

and

N =

 0 0

1 1/η

 . (3.36)

This system is then completely described by the state vector Θ = (h, T )T ; a

notation which shall be used throughout this study.

3.1.2 Regime Behaviour

Consider the points in the (h, T ) phase space (R2) satisfying dΘ/dt = 0, that is

0 = −h− T, (3.37)

0 = (P + 1)T + (P +Q+ 1)h+ ην[tanh(h+ T/η)− (h+ T/η)], (3.38)
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so h = −T and thus

[Q+ ν(1− η)]T = ην tanh[T (1− η)/η]. (3.39)

The right hand side of this expression looks like ν(1 − η)T in the vicinity of

T = 0, flattening out to ±ην as T → ±∞. The left hand side is a straight line

which intersects the right hand in one place (the origin) if Q > 0, and three

places if Q ≤ 0: the origin and the two nontrivial solutions of (3.39). Positive Q

values then correspond to a single equilibrium, while negative or zero Q values

to a multiple equilibria regime.

Stability of fixed point at (h, T )=0

Examined first is the case where Q > 0. Linearising (3.34) about T = 0 gives

dΘ

dt
= MΘ, (3.40)

and eliminating h from the equations leads to a single ODE in T

d2T

dt2
− P dT

dt
+QT = 0. (3.41)

Substituting T = eσt leads to the relation

σ2 − Pσ +Q = 0, (3.42)

which is satisfied when

2σ = P ±
√
P 2 − 4Q. (3.43)

In regimes where P < 0, solutions decay away and the point T = 0 is a stable

equilibrium. Conversely, P > 0 corresponds to an unstable fixed point at T = 0,

and if P 2 < 4Q these solutions are oscillatory, unstable spirals as depicted in

chapter 1.
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Multiple equilibria

As Q is taken from a positive value to a negative one across zero, the system

undergoes a bifurcation. At Q = 0, this bifurcation is either a pitchfork or a

Hopf bifurcation, whereby the origin becomes unstable and the solution heads

to a different equilibrium point or a stable limit cycle. As for the nonzero

equilibria, there are two solutions at T = (T+, T−). These can be calculated by

solving

QT± = νη(tanh[(1− η)T±/η]− [(1− η)T±/η]). (3.44)

When |T±| the above equation is approximated by a Taylor series about zero,

the solutions are given by T = 0 and

T± ≈ ±
√

3Qη2

ν(η − 1)3
. (3.45)

It is worth noting that T± is independent of P . There are some parts of pa-

rameter space where T± are stable, and can be especially sensitive to initial

conditions. Figure 3.2 shows an example of this, where three initially close or-

bits have three distinct asymptotic solutions. There are two basins of attraction

surrounding T+ and T−. Initial states inside these basins will tend towards the

corresponding fixed point, while those outside will end up on the limit cycle.

Stability of T± can be found by replacing P with P
′

where P ′ = P + P0 with

P0 = ν tanh2

[
T±(1− η)

η

]
(3.46)

and Q
′

= Q−Q0 with

Q0 = (1− η)ν tanh2

[
T±(1− η)

η

]
, (3.47)

so if 0 < P < P0 these points will attract local trajectories.
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Figure 3.2: 2-box model operating in a low frequency regime (P,Q, η, ν) =
(0.225,−0.05, 1/2, 2) with nearby initial Θ2 coordinates and Θ1 = −0.02 demon-
strating sensitivity to initial conditions.

3.1.3 Approximation of limit cycle

Growing oscillatory solutions are curbed by the tanh nonlinearity, and tend to-

ward an attracting closed curve or limit cycle. It is possible to make an approx-

imation for small Q, just after the bifurcation point, of the limit cycle solution

in the (h, T ) plane. Similar work on the approximation of recharge oscillator

type limit cycles has been done by Wu, using a homotopy analysis method for

strong nonlinearity [64]. This method is valid for the weakly nonlinear limit for

which oscillatory behaviour is nearly sinusoidal, and the tanh term is expanded

via Taylor series and approximated as

tanh[h+ T/η] ≈ (h+ T/η)− (h+ T/η)3/3. (3.48)
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The truncated nonlinear system is

dh

dt
= −h− T, (3.49)

dT

dt
= (P + 1)T + (P +Q+ 1)h− (ν/3η2)(ηh+ T )3. (3.50)

Using a guessed solution

T = A cos(σt), (3.51)

h = B cos(σ[t− δ]). (3.52)

Substitution then reveals

σ = tan(σδ) (3.53)

and

B = −A cos(σδ). (3.54)

Expanding out the nonlinear term and matching the harmonic terms gives

cos2(σδ) =
1

P (1− η)Q+ 1
, (3.55)

and the existence of solutions of the assumed form requires that

P (1− η) +Q > 0. (3.56)

Frequency of oscillation can be shown to be

σ =
√
P (1− η) +Q, (3.57)

and similarly the amplitude

A2 =
4Pνη2

cos2(σδ)[(1 + η)2 − 1] + 1
. (3.58)
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Figure 3.3: ENSO-like 2-box model (P,Q, η, ν) = (0.14, 0.28, 1/2, 2) with sinu-
soidal limit cycle (black curve), compared with linear approximation (magenta
curve).

3.1.4 Geometric Interpretation

The approximation of solutions as given above is realised geometrically as an

ellipse embedded in the (h, T ) space, centered around zero. Due to the delay

term cos(σ[t− δ]), the two axes of this ellipse will not be parallel to the h and

T axes, but will be rotated around by some unknown angle. The purpose of

this section is to determine specific geometric properties of this rotated ellipse.

Parametric equations for an ellipse are

x = a cos θ,

y = b sin θ,
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where taking θ ∈ [0, 2π] defines a closed curve. x and y then satisfy

(x/a)2 + (y/b)2 = 1, (3.59)

or

xTx = 1 (3.60)

where x = (x/a, y/b). Constants a and b define the axes of the ellipse. Equation

(3.51) is of the form

x = a cos θ

y = b(cos θ cosφ+ sin θ sinφ),

or

(x/a) = cos θ

(y/b) = (x/a) cosφ+ sin θ sinφ,

and the aim is to express the equations above in the same form as (3.60).

Beginning with taking the square of both sides of the expression for (y/b), and

making use of the relation sin2 θ = 1− (x/a)2 gives

(x/a)2 + (y/b)2 − 2(x/a)(y/b) cosφ = sin2 φ. (3.61)

Dividing through by sin2 φ and defining

(X,Y ) =
(x/a, y/b)

sinφ
(3.62)

gives

X2 + Y 2 − 2γXY = 1, (3.63)
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where γ = cosφ. Finally, defining a new basis (p,q) such that

X = p+q√
2(1−γ)

Y = p−q√
2(1−γ)

, (3.64)

the resulting equation is of the form

pTp = 1. (3.65)

with φ = (p, q). Thus, (3.51) corresponds to a scaled ellipse rotated by an angle

π/4 about the origin. This is useful to know for instance if it was necessary to

initialise the 2-box model. An initial state vector may be projected near the

attractor using the ellipse approximation. If the transient, dissipative motion

is normal to the limit cycle while long term behaviour is tangent, any initial

vector can be projected onto the attractor using the matrix

Π = R−1S(θ)R, (3.66)

where R is the rotation matrix

R =
1√
2

 1 1

−1 1

 , (3.67)

and the operator S(r, θ) acts on the new set of polar coordinates in the rotated

frame, scaling a vector of length r by a factor f(θ)/r where f(θ) is the equation

for an ellipse. The basis is then rotated back to its original position. Through

this process, any initial condition is radially projected onto the ellipse and in-

formation corresponding to fast, transient motion is destroyed, assuming the

ellipse is a perfect approximation of the actual limit cycle. A comparison of an

approximate solution with a limit cycle in the phase plane can be seen in figure

3.3. Once the numerical solution has dissipated onto the cycle, the period and

amplitude are in agreement with the sinusoidal approximation.
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Figure 3.4: Mean of fine scale SST coordinate Θ2 (left) and period (right, in
years, as calculated from winding number) for the 2-box as a function of reflec-
tion coefficients RE and RW .

3.1.5 2-box Analytical Summary

To summarise the regime behaviour of the 2-box model, for values of Q > 0,

• If P < 0, the origin is a point attractor.

• If P = 0, orbits form a family of ellipses centered at the origin.

• If P > 0, the origin repels all orbits.

• In any case when P 2 < 4Q the solutions are oscillatory, and the amplitude

of oscillation tends towards zero as P → 0 from above.

Similarly, when Q < 0,

• If 0 < P < −Q/(η − 1), the origin repels orbits, and there are two point

attractors outside the origin. Orbits will go to one or the other depending

on initial conditions.

• If Q/(η− 1) < P < P0 there exist both stable limit cycles centered on the

origin and point attractors further from the origin.

• If Q/(η − 1) < P0 < P there are limit cycles centered on the origin.

In other words, there is a bifurcation point at Q = 0 which is either a pitchfork

(P < Q/(η − 1)) or Hopf (P ≥ Q/(η − 1)). This will be confirmed numerically
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later, but first there will be some discussion of the methods used to integrate

the 2-box, as well as the more complex models that follow it.

3.1.6 Numerical Integration

The numerical solution to (3.34) is found by integrating over discrete time inter-

vals with an Adams-Bashforth multistep method. This approximates the time

derivative in (1.6) at step i by a linear combination of vectors at steps i− s to

i− 1, where s is the order. The first order is just the Euler method

xi = xi−1 + ∆tf(xi−1), (3.68)

while the 2nd order is given by

xi = xi−1 + ∆t

[
3

2
f(xi−1)− 1

2
f(xi−2)

]
, (3.69)

the second order being the maximum used throughout this study. Thus, be-

ginning timestep uses the Euler method while all those which follow store the

right hand side from the previous two timesteps in a (2 × n) array, where n is

the number of boxes or length of xi, and calculate the state at time i∆t using

the above formula. Before integrating directly, it should be checked whether the

model satisfies the criteria which ensure basic numerical stability.

The Courant Friedrichs Lewy Condition

As for any model which involves the propagation of information across a spatial

domain, it is essential to introduce the condition which places some constraints

on the size of timestep ∆t. A balance must be maintained between the spatial

and temporal resolution of a model, in that

v
∆t

∆x
≤ 1, (3.70)
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Figure 3.5: Map of maximum value of Θ2 (on the right hand side) compared
with amplitude of linear approximation of 2-box for varying (P,Q) values (on the
left hand side). The range of parameters is truncated due to globally unstable
solutions where nonlinearity dominates.

were ∆t is the timestep, ∆x is the grid spacing and v is the maximum velocity

of propagation. This places an upper bound on the maximum possible timestep

which cannot be crossed, and this threshold decreases with the number of boxes.

However, in some cases the condition can be bypassed, permitting longer mini-

mum timesteps at no cost to the resolution. More detail will be provided in the

initialisation section.

3.1.7 Time Series Statistics

To gain an overview on how orbits behave throughout different regions of the

parameter space, a brief summary of some statistical tools which will be used to

analyse timeseries elements Θi(j∆t) where i indicates phase space coordinate
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Figure 3.6: Map of scaled winding number of Θ2 (on the right hand side) com-
pared with frequency of linear approximation of 2-box for varying (P,Q) values
(on the left hand side).

and j the timestep. These include mean

Mean[Θi] =
1

N

N∑
j=1

Θi(j∆t), (3.71)

range

Range[Θi] = max[Θi(j∆t)]−min[Θi(j∆t)], (3.72)

winding number,

Wn[Θi] =

N−1∑
j=1

H (sign[Θi((j + 1)∆t)]− sign[Θi(j∆t)]) , (3.73)

used for the calculating the period of the 2-box model, where H(·) is the Heavi-

side step function which is 1 if the sign of Θi(j∆t) < 0, Θi((j+1)∆t) > 0 and 0
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otherwise. Another timescale approximation, the near-period, is calculated the

same way as Ghil et al[24]

Pn[Θi] = npδt, (3.74)

where np is the integer which minimises

tn =

∑N
np+1 [Θ(n∆t)−Θ((n− np)∆t)]2

N − np
, (3.75)

for the values n ∈ [1, N ]. The numerator will locate the first element when

a pattern repeats itself, and the denominator ensures the first is chosen rather

than a later period. This is more suited than the winding number for calculating

the period of the 10-box model described later. The reason period is calculated

for the 2-box in a different way than the 10-box is because the former has

a continuous range of periodicities, while the latter has a discrete range due

to phase locking. Mean value and period of Θ2 were calculated as reflection

coefficients RE and RW are varied, and figure 3.4 shows a clear divide between

oscillatory and nonoscillatory behaviour for high RW /low RE and low RW /high

RE respectively. While there is no evidence of parametric instability at this

stage, later models which are discretisations of the same original PDE system do

show signs of this. Maximum value and winding number of the 2-box for varying

P and Q values are shown in figures 3.5 and 3.6, along with the limit cycle

approximation of amplitude and frequency. These compare well throughout

much of the parameter space, particularly in the (+P,+Q) quadrant.

Table 3.1: 2-box Parameters
Parameter Value

P [−1, 1]
Q [−1, 1]
µ 2
η 0.5
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3.2 2-strip Revisited

In the lead up to the n-box model, a separate nondimensionalisation is required

for the PDEs prior to discretisation. This must be more general than the previ-

ous treatment and be prepared for cases where there is no Sverdrup balance. To

make the three equations dimensionless, each variable v is written in the form

v = v∗v̂ (3.76)

where v̂ is a number and v∗ is the characteristic unit of a variable. Beginning

with the 2-strip equations, the zonal coordinate x is scaled with the half basin

width L, and t with the time taken for a Kelvin signal to cross this width

x∗ = L (3.77)

t∗ =
x∗

cK
. (3.78)

Moving onto the temperature equation, the most obvious choice for scaling he

is H∗, and

T ∗ =
LwCT0

cKHB
(3.79)

as this tidies up the tanh term significantly. The magnitude of atmospheric

forcing, represented by a central block on the equator, becomes

F̂ (t) = κ(t̂)

∫ 1

0

T̂e(x̂, t̂)dx̂ (3.80)

where

κ0 =
t∗T ∗

H∗ρcK
µc. (3.81)

As was mentioned in the previous chapter,

κ(t) = κ0 + κax1(t). (3.82)
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Removing hats, the equations for evolution of thermocline anomalies are

(
∂

∂t
+ ε

)
(he − hn) +

∂he
∂x

= κ(t)Fe, (3.83)

(
∂

∂t
+ ε

)
hn + rs

∂hn
∂x

= rfκ(t)Fe, (3.84)

and temperature anomalies

∂t (Te + γhe) = αTe + σFe + tanh(he), (3.85)

where

Fe(x, t) = κ(t)Π(2x/3)

∫ 1

0

Te(x, t)dx (3.86)

for a uniform wind stress model, where

ε = t∗ε, (3.87)

rs =
cR
cK

, (3.88)

α = t∗αT , (3.89)

γ = −∂TC
∂z

(H∗H1/T
∗H), (3.90)

σ =
∂TC
∂z

(H∗H2/T
∗H)

βcK
ε2s

. (3.91)

Over the model hierarchy development, three separate atmospheric parametri-

sations are used. Starting with the simplest, integrating (3.85) over the range

[0, 1] eliminates the x dependence of Te, leaving

dT̄eE
dt

=

[
α+

1

3
σκ(t)

]
T̄eE +

∫ 1

0

[
tanh(he)− γ

∂he
∂t

]
dx, (3.92)

where

T̄eE =

∫ 1

0

Tedx. (3.93)
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The second begins with dividing the interval [0, 1] into three, and the atmo-

sphere is coupled to the SST over the first two regions T̄e1(x, t), x ∈ [1/3, 2/3]

and T̄e2(x, t), x ∈ [0, 1/3]. This reverse numbering is due to the numbering of

discretised coordinates, which will be discussed later with regard to the n-box

model. There are then two dynamic temperature equations

dT̄e1
dt

= [α+ σκ(t)] T̄e1 +
∫ 2/3

1/3

[
tanh(he)− γ ∂he

∂t

]
dx, (3.94)

dT̄e2
dt

= αT̄e2 +
∫ 1/3

0

[
tanh(he)− γ ∂he

∂t

]
dx, (3.95)

where the main difference between the two equations is that T̄e2 is in a wind

forced region while T̄e1 is not. From this stage on (3.94) will be referred to as

coarse (atmospheric) parametrisation. The third and most complex parametri-

sation is pointwise and does not involve spatial averaging

∂t (Te(x, t) + γhe(x, t)) = αTe + σFe + tanh(he), (3.96)

where

Fe(x, t) = κ(t)Te(x+ xc, t). (3.97)

Here xc = 1
3 quantifies the nonlocality of the atmospheric response to an SST

anomaly. This will be referred to as fine (atmospheric) parametrisation and will

be implemented at the top of the model hierarchy. There are some steps before

this stage, and the next model above the 2-box in the complexity scale is the

10-box model, which is the first to incorporate the annual cycle.

3.3 The 10-box model

The next stage of advancement before discussing the general PDE system can

be seen as a stepping point in between a conceptual and intermediate complex-

ity model. While still a relatively simple model, the 10-box has a much larger

phase space and therefore more degrees of freedom, allowing for more complex
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Figure 3.7: 10-box diagram, where boxes marked with a filled circle are wind
forced and thermocline anomalies are averaged over the area within the loop.
Boxes marked with

⊗
are not integrated, and correspond to Θ←5 in the equa-

torial and Θ↑1 in the northern strip.

behaviour and a better spatial resolution of thermocline structure than the 2-

box. A convenient discretisation of the thermocline depth which resolves both

the central forced patch (one third of the unit interval) and the eastern inter-

action zone affecting the forcing (one half of the unit interval) is six boxes in

each strip. This, together with the SST and seasonal cycle coordinates amount

to a thirteen dimensional phase space. Reflective boundary conditions reduce

the space to eleven dimensions, of which ten are box variables, one an average

SST coordinate and two are seasonal cycle simple harmonic motion resulting in

a simple model which behaves in a similar way to the continuous case. Contri-

butions to the phase space then come from the thermocline anomaly Θ1 → Θ10

(describing he and hn), east equatorial SST Θ11 (or TeE), and the simple har-

monic motion of the annual cycle comes from Θ12 and Θ13. The configuration of

box variables is demonstrated in 3.7, where coordinates with indices 1 ≤ i ≤ 5

correspond to the equatorial strip and 6 ≤ i ≤ 10 the northern strip boxes. The

governing nondimensionalised equations for the equatorial strip are found using

an upstream difference appropriate for the Kelvin wave propagation (without
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Sverdrup balance),

d

dt
(Θi −Θ↑i ) = ε(Θ←i −Θi) +

1

∆
(Θ←i −Θi) + Fi, (3.98)

Fi =

 (κ0 + κaΘ12)Θ11 if 3 ≤ i ≤ 4;

0 otherwise.
(3.99)

Here ε is a damping term, ∆ is the box spacing, and Θ12 is oscillating with

unit amplitude and period one year. The ← and ↑ tags of Θi refer to the boxes

to the left and above of Θi respectively, where Θ↑1 = REΘ1 and Θ←5 = RWΘ6

due to the boundary conditions. The northern strip equations implement an

upstream difference for the Rossby wave

d

dt
Θi = −εΘi +

rs
∆

(Θi −Θ→i ) +Gi, (3.100)

Gi =

 rf (κ0 + κaΘ12)Θ11 if 8 ≤ i ≤ 9;

0 otherwise.
(3.101)

The factor rf relates a forcing of a Kelvin wave in the equatorial strip to

that of a Rossby wave in the northern strip, while rf is the ratio of Rossby and

Kelvin wave speeds, the → tag of Θi refers to boxes to the right of Θi, and the

boundary conditions impose Θ→10 = REΘ1.

The 10-box model implements a very primitive atmospheric parametrisation

(3.92) whereby the SST coordinate TeE , with index i = 11, is the temperature

integrated over the eastern half of the equatorial strip

Θ11 = ∆

3∑
i=1

Ti, (3.102)

whose evolution is given by

d

dt

(
Θ11 − γ∆

3∑
k=1

Θk

)
=
[
α+

σ

3
(κ0 + κaΘ12)

]
Θ11+∆

3∑
k=1

tanh(Θk), (3.103)
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where α and γ are constants relating to feedback and upwelling respectively,

while σ quantifies the degree to which wind stress affects SST dynamics. Finally,

this model includes two annual cycle coordinates which are in perpetual simple

harmonic motion

Θ12 = −ωΘ13, (3.104)

and

Θ13 = ωΘ12. (3.105)

Subscript a has been dropped here as from this point onwards ω will represent

the timescale of the annual cycle.

3.3.1 Regime Behaviour

Table 3.2: 10-box Parameters
Parameter Physical Interpretation Value

ε Weak ocean adjustment damping 0.03
α0 SST damping rate 0.43
γ Thermocline motion SST factor 0.19
κ0 Ocean/Atmosphere Coupling strength [4/3,8/3]
RE Eastern boundary reflection coefficient [0,1]
RW Western boundary reflection coefficient [0,1]
rs Ratio of Rossby/Kelvin wave speeds -0.25
rf Ration of atmospheric forcing of Rossby/Kelvin waves -0.25
σ Shear influence on SST 0.15

As in Jin[15], the parameter space is mapped out to find the regions of

different orbit behaviour. The ranges of (RE , RW ) are ([1/4, 1], [0, 3/4]) while

κ0 ∈ [2/3, 3/2] and κa = κ0. Realistic values of RE and RW are around 0.5 and

0.75 respectively, while κ0 is closer to 2 with κa comparatively small. Distinct

regimes are found by analysing the the statistical properties of timeseries as

parameters are varied. These properties include near-period in figure 3.8, range

in 3.9 and mean in 3.10. The differences between parameter maps of the 2-box

model in (P,Q) space and the 10-box in (κ0, RE , RW ) space are immediately

apparent in the period map 3.8, which displays a landscape with a discrete spec-

trum of timescales, compared with the continuous map in figure 3.6. This is due
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Figure 3.8: Near-Period of 10-box (in years) TeE = Θn+1 for RE ∈ (0, 0.75) and
RW ∈ (0.25, 1.0) for the values κ0 = (4/6, 5/6) top (left,right), κ0 = (1, 7/6)
centre (left,right), κ0 = (8/6, 9/6) bottom (left,right).

to the quantisation of periods coming about through the locking of the ENSO

phase to the annual cycle. Phase locking is first visible as discontinuous bands of

constant period at low coupling, evolving into low frequency ridges which then

fragment and begin to spread over the parameter space. The final stage is a thin

band where frequency of oscillation is somewhat arbitrarily based on parameter

choices (possibly due to structural instability), surrounded by uniform regions

of small period. For low RW values on the left hand side, trajectories oscillate

with a one year period with nonzero mean (see figure 3.10), while for high RW

to the right they are period doubled, and oscillate about a mean Θ = 0. The
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Figure 3.9: Range of 10-box TeE = Θn+1 for RE ∈ (0, 0.75) and RW ∈ (0.25, 1.0)
for the values κ0 = (2/6, 5/6) top (left,right), κ0 = (1, 7/6) centre (left,right),
κ0 = (8/6, 9/6) bottom (left,right).

average and range parameter maps (figures 3.10 and 3.9 respectively) look sim-

ilar to the (P,Q) parameter maps 3.6 and 3.5 for weak coupling, with pitchfork

type behaviour in one region (low RW ) and Hopf type in another (high RW ),

separated by a stable belt. As coupling strengthens, eventually the pitchfork

and Hopf regions collide, but there is no clear distinction between them. In-

stead they are separated by a rough, fractal boundary where there is no clear

dominant behaviour. The irregular models similar to the observed ENSO exist

in this liminal space between the two extremes. A more detailed analysis can

be made by looking at phase portraits, Poincaré sections and spectra for these
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Figure 3.10: Mean of 10-box TeE = Θn+1 for RE ∈ (0, 0.75) and RW ∈
(0.25, 1.0) for the values κ0 = (2/6, 5/6) top (left,right), κ0 = (1, 7/6) centre
(left,right), κ0 = (8/6, 9/6) bottom (left,right).

models, to be discussed now.

3.3.2 Analysis of Timeseries

Beginning with simplest behaviour, regions of strong coupling and reflection in

the western boundary are dominated by period doubled annual orbits such as

that shown in figures 3.11 and 3.12. This is confirmed by Poincaré section, where

there are two separate intersection points at a fixed phase of the annual cycle,

and spectrum, with a peak at two years. SST amplitudes are slightly larger

than seen in nature, which is common for large κ0, as can be seen in figure
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Figure 3.11: 10-box thermocline and SST timeseries with frequency spectrum
(Fourier transform) for (κ0, RE , RW ) = (4/6, 0.10, 0.95) and κa = κ0.

3.9. For similar coupling strength values, and weak west boundary reflection,

orbits oscillate around a nonzero equilibrium with a period of one year, similar

to figures 3.3.2 and 3.14, where there is no La Niña. Here parameters have been

chosen where trajectories oscillate irregularly around the warm phase, although

for low RW a regular periodic cycle is more common, as can be seen in figure

3.8. This can be explained physically as a permanent warm phase with seasonal

fluctuations, where there is no low frequency oscillation as the upwelling Rossby

wave is reflected as an upwelling Kelvin wave whose magnitude is insufficient to

disturb the eastern SST anomaly.

An example which is close to real world ENSO is shown in figures 3.3.2 and

3.16. The orbits appear to be aperiodic with a frequency peak between three and

four years. Evidence that the attractor is strange appears due to the irregular

pattern formed at intersection points. The shape of the attractor could imply
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Figure 3.12: 10-box phase plot (top) and Poincaré section (bottom) for
(κ0, RE , RW ) = (4/6, 0.10, 0.95). Box in phase plot represents region section
was sampled from.

that chaos arises through the breakup of a homoclinic orbit, whereby trajectories

jump between two periodic orbits, one representing a warm and the other a cold

phase. While it has been speculated that some of the 10-box models may be

oscillating chaotically, there is as yet no quantitative proof that this is the case.

The next section will show explicitly that these models have positive Lyapunov

exponents, confirming that they demonstrate chaotic behaviour.

3.3.3 Lyapunov Spectra

Lyapunov exponents of the 10-box model are calculated for a variety of dif-

ferent parameters. The method[65][66] used here, based on the code provided

by Wolf[54], takes an n-dimensional model and integrates it forward in time.

Meanwhile, a set of n linear equations are time integrated which track the evo-
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Figure 3.13: 10-box thermocline and SST timeseries with frequency spectrum
(found by Fourier transforming timeseries) for (κ0, RE , RW ) = (3/2, 0.43, 0.60)
and κa = κ0.

lution of a set of n basis vectors in the tangent space. There is a technical

problem in that basis vectors have a tendency to line up in the same direction

and diverge, but this can be overcome by performing periodic Gram-Schmidt

reorthonormalisation on the set of basis vectors, that is defining a new basis

e
′

1 = e1

‖e1‖

e
′

2 =
e2−〈e2,e

′
1〉e
′
1

‖e2−〈e2,e
′
1〉e
′
1‖

...

e
′

n =
en−〈en−1,e

′
n−1〉e

′
1−...−〈en,e

′
1〉e
′
1

‖en−〈en−1,e
′
n−1〉e

′
1−...−〈en,e

′
1〉e
′
1‖
.

102



0 5 10 15 20 25
0

1

2

3

4

Θ
11

t/yrs

0 5 10 15 20 25
−2

0

2

4

Θ
2

t/yrs
0 0.5 1 1.5 2 2.5 3 3.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Θ
11

Θ
2

0.4 0.45 0.5 0.55 0.6 0.65 0.7
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Ps(Θ
11

)

P
s(

Θ
2)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

f/yrs−1

F
t(

Θ
11

)

Figure 3.14: 10-box phase plot (top) and Poincaré section (bottom) for
(κ0, RE , RW ) = (3/2, 0.43, 0.60).

The code integrates n(n+ 1) ordinary differential equations, renorthonormalis-

ing every k timesteps. Each time Gram-Schmidt is performed, the lengths of

the basis vectors are measured. Taking the sum of these lengths gives a set of

n numbers which is an approximation of the Lyapunov spectra. Before calcu-

lating the spectra of the 10-box system, the exponents of the Lorenz model are

calculated first to test the method, and are found to agree with the published

values. Positive exponents are found for certain parameter choices of the 10-box

model (see table 3.3). For the 10-box model, the annual cycle variables Θ12 and

Θ13 each contribute a Lyapunov exponent which is exactly zero. Since only

Θ12 affects influences the other coordinates while Θ13 is only present to ensure

oscillation, the latter coordinate is not taken into account when calculating the

Lyapunov dimension. The pair can be thought of as a single complex number

with a fixed absolute value and time-varying argument (indeed for the n-box
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Figure 3.15: 10-box thermocline and SST timeseries with frequency spectrum
(Fourier transform) for (κ0, RE , RW ) = (7/6, 0.41, 0.88) and κa = κ0.

model only the argument is integrated, explained later), thus only contribut-

ing one degree of freedom to the system. There are several paired exponents

for both 10-box models, and these arise due to the presence of complex modes

within the system, and these are found explicitly in chapter five. Exponents

were calculated for more than one set of parameters for this system to check

that both limit cycle (10-box 1) and chaotic solutions (10-box 2) resulted in

Lyapunov spectra consistent with timeseries data. Since there are at this stage

over a hundred ODEs being solved at once with reorthonormalisation in a ten

dimensional space, it would not be computationally practical to calculate the

spectra of systems with arbitrarily large phase spaces such as those which will

be introduced over the next sections.
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Figure 3.16: 10-box phase plot (top) and Poincaré section (bottom) for
(κ0, RE , RW ) = (7/6, 0.41, 0.88).

3.4 The n-box model

The configuration of the 10-box model is the foundation of the generalised n-

box model, which has an arbitrarily fine ocean forced by a coarse atmosphere.

Driven by two temperature coordinates, the n-box model is the first to introduce

spatially varying SST, leading to a more complex atmospheric parametrisation.

Six boxes in each strip (the same boxes from the 10-box system) are each discre-

tised further into B boxes so that the total number of boxes is 12B − 2, where

the subtraction of two comes from the reflective boundary conditions. This al-

lows for the resolution of any scale with no further alterations to the equations,

provided the number of boxes is valid (i.e. (n+ 2) is a multiple of 12) and the

Courant Friedrichs Lewy condition is satisfied. A visual representation of this

model can be seen in 3.17, where the top row corresponds to the northern strip
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Table 3.3: Lyapunov Spectra for Lorenz and 10-box systems, where× 2 indicates
an identical pair of exponents.

Model Parameters Exponents Dimension
Lorenz (σ, r, b) = (16, 45.92, 4) 2.18 2.07

0.02
-32.4

10-box 1 (κ0, RE , RW ) = (7/6, 0.41, 0.88) 0.094 2.43
-0.22
-0.58
-0.96

-1.66 × 2
-3.63 × 2
-5.10 × 2

-8.50
10-box 2 (κ0, RE , RW ) = (4/6, 0.10, 0.95) -0.17 × 2 1.0

-0.80
-1.17

-1.58 × 2
-1.66 × 2
-3.66 × 2
-4.92 × 2

-5.88

thermocline and the bottom row the equatorial strip, quantities within loops

affect SST coordinates and their coupling to an atmospheric forcing is denoted

by an arrow, and the forced regions are marked with a dot. In the equatorial

strip, the thermocline he is contained within Θi coordinates with 1 < i < n/2,

and they evolve according to

d

dt
(Θi −Θ↑i ) = ε(Θ←i −Θi) +

1

∆
(Θ←i −Θi) + Fi, (3.106)

with

Fi =


(κ0 + κaΘn+3)Θn+1 if 2B + 1 ≤ i ≤ 3B;

(κ0 + κaΘn+3)Θn+2 if 3B + 1 ≤ i ≤ 4B;

0 otherwise.

(3.107)

For the northern strip hn, contained within coordinates Θi, n/2 + 1 < i < n,

dΘi

dt
= εΘi +

rs
∆

(Θi −Θ→i ) +Gi, (3.108)
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Figure 3.17: n-box diagram, as with the 10-box but with the first of B coordi-
nates shown in each box. SST is averaged over two boxes of the coarse grid and
each forces a group of B thermocline coordinates in the central Pacific.

and

Gi =


rf (κ0 + κaΘn+3)Θn+1 if 9B ≤ i ≤ 10B − 1;

rf (κ0 + κaΘn+3)Θn+2 if 8B ≤ i ≤ 9B − 1;

0 otherwise.

(3.109)

where Θn+1 = Te1, Θn+2 = Te1. The last two coordinates, like the 10-box

model, evolve according to

dΘn+3

dt
= −ωΘn+4 (3.110)

dΘn+4

dt
= ωΘn+3. (3.111)

During integration for this model, a different notation is used for convenience,

and Θn+3 is written cos(φ) where φ is periodic in [0, 2π]. The equation

dφ

dt
= ω (3.112)

is integrated with instead of the mathematically equivalent (Θn+3,Θn+4) sub-

system described previously. Defining annual phase as φ will also be used later
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Figure 3.18: Mean of Θ100 (left) and period (right, in years) for the n∗-box with
κ0 = κa = 7/5.

when looking at Poincaré sections. Boundary conditions are

Θ↑1 = REΘ1 Θ←6B = RWΘ6B−1, (3.113)

where Θ6B−1 is the last thermocline coordinate in the equatorial strip.

Two eastern equatorial SST boxes feed back into the system as Te1 (in this

case Θ95)

d

dt
Θn+1 = αΘn+1 +

1

B

B∑
k=1

tanh(Θk+B), (3.114)

and Te2 (or Θ96)

d

dt
Θn+2 = [α+ σ(κ0 + κaΘn+3)]Θn+2 +

1

B

B∑
k=1

tanh(Θk+2B). (3.115)

feed back into the system as blocks of forcing, B subgrid points wide. The num-

ber of boxes required for an accurate resolution of spatial thermocline features

should be ' 100, making the mapping of three dimensional parameter space

an expensive numerical task. For this reason the n-box (all examples show the

case n = 94 and B = 8) and the n∗-box, discussed shortly, are mapped out

for a fixed coupling strength. Like the 10-box, the n-box exhibits parametric

instability for strong ocean-atmosphere coupling and this can be seen in figure

3.18. While the n-box model is not as complete as the next and final covered
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Figure 3.19: n-box (n=94) thermocline and SST timeseries and spectrum
(Fourier transform) for (κ0, RE , RW ) = (3/2, 0.26, 0.39), κa = κ0.

in the thesis, due to its coarse atmospheric parametrisation, it will be the main

subject of the initialisation experiments in later chapters.

3.4.1 Analysis of Timeseries

As the models become more complex, the exploration of parameter space will

focus on locating ENSO-like regimes in the hope of finding a model suitable

for testing initialisation schemes in chapter five. Only chaotic solutions to the

n-box equations are considered, which fall under two categories depending on

the nature of the parameters: those which are strongly (for example figures 3.19

and 3.20) and weakly (figure 3.4.1 and 3.22) phase locked to the seasonal cycle.

Ideally, the test model would lie somewhere between these two cases. Strongly

phase locked (κa = κ0) models have roughly the same amplitude and period

as ENSO, but the spectral peaks are thin and oscillations too regular. Weakly
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Figure 3.20: n-box (n=94) phase plot (top) and Poincaré section (bottom) for
(κ0, RE , RW ) = (3/2, 0.26, 0.39).

phase locked (κa = κ0/4) models are more sporadic with broad spectral peaks,

but the amplitudes are slightly higher than observed in reality and the periods

are longer (3.4.1 shows a spectral peak indicating a period of approximately 5

years). For the weakly phase locked model, Poincaré sections were taken at a

phase resolution of π/6 giving some insight into the chaos generating mechanism

of this model. If the direction of increasing φ is tangent to the flow (contributing

a zero Lyapunov exponent), it is useful to think of the Poincaré section in the

(Θ5,Θ95) = (he(4/5, t), Te1) plane as a cross section of a three dimensional

object in (Θ5,Θ95, φ) space. For the phases φ ∈ [0, π] orbits are constrained to

a strip (see figure 3.23), implying volume elements are flattening in the same

manner as in the Lorenz or Rössler systems, so there is at least one negative

Lyapunov exponent. In the complimentary phases φ ∈ [π, 2π] the strip stretches

out and folds in on itself (see figure 3.24, particularly the last two sections
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Figure 3.21: n-box (n=94) thermocline and SST timeseries and spectrum
(Fourier transform) for (κ0, RE , RW ) = (13/8, 0.47, 0.65), and κa = κ0/4.

φ = [10π/6, 11π/6]). An extension of the strip to nearly twice its length could

be an indication of a positive Lyapunov exponent. Through this mechanism, if a

segment of the curve (the intersection of a plane of constant φ with the attractor

in the (Θ5,Θ95, φ) space) corresponds to an initial error, this will be stretched

out over time until it covers the entire attractor, and at this stage predictability

is lost. While there is no qualitative proof, some evidence presented here would

imply that, for some parameter choices, the 94-box model loses predictability

in the same way as low order chaotic systems.

3.5 The n∗-box model

At the top of the hierarchy of ENSO models covered by this thesis is the n∗-

box model, with a fine ocean as well as a fine atmospheric parametrisation.
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Figure 3.22: n-box (n=94) phase plot (top) and Poincaré section (bottom) for
(κ0, RE , RW ) = (13/8, 0.47, 0.65), and κa = κ0/4.

This is a variation of the n-box model, implementing the spatially varying wind

stress which requires an extension of 2B = (n + 2)/6 (i.e. n∗ = n + 2B,)

beyond the thermocline and annual phase space to incorporate extra fine-scale

SST coordinates. These coordinates interact with the atmosphere and force the

ocean, as shown in 3.25 with the same diagrammatic notation as the n-box,

evolving as

d

dt
(Θn+i − γΘB+i) = αΘn+i + σFB+i + tanh(ΘB+i), (3.116)

for 1 ≤ i ≤ 2B. For n = 94 (i.e. B = 8), n∗ = 110 and there are 16 fine-scale

SST coordinates. Thermocline evolution equations are the same as the n-box,
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Figure 3.23: Poincaré section of the n-box model (n=94, (κ0, RE , RW ) =
(13/8, 0.47, 0.65)) in the (Θ5,Θ95) plane as a function of phase φ taking the
values ∈ [0, π] at regular intervals of π/6.

although with a slight alteration to the forcing terms

Fi =

 (κ0 + κaΘn+2B+1)Θn+i if 2B + 1 ≤ i ≤ 4B;

0 otherwise.
, (3.117)

and in the northern strip, this runs backwards due to the differencing scheme

used

Gi =

 (κ0 + κaΘn+2B+1)Θn+2B−i if 8B ≤ i ≤ 10B − 1;

0 otherwise.
(3.118)
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and finally the annual cycle is contained within the subsystem

dΘn∗+1

dt
= −ωΘn∗+2, (3.119)

dΘn∗+2

dt
= ωΘn∗+1, (3.120)

Timeseries statistics were gathered for varying (RE , RW ) and fixed κ0, and

the detailed structures seen in figure 3.26 would suggest that this model has

the most sensitive parameter dependence of all the hierarchy. Figure 3.27 shows
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Table 3.4: n-box Parameters
Parameter Physical Interpretation Value (M1/M2)

ε Weak ocean adjustment damping 0.03
α SST damping rate -0.43
γ Thermocline motion SST factor 0.19/0
κ0 Ocean/Atmosphere Coupling mean strength 13/3/9/3
κa Ocean/Atmosphere Coupling amplitude k0/4/k0

RE Eastern boundary reflection coefficient [0,1]
RW Western boundary reflection coefficient [0,1]
rs Ratio of Rossby/Kelvin wave speeds -0.25
rf Ration of atmospheric forcing of Rossby/Kelvin waves -0.25
σ Shear influence on SST 0.25

Θ5B+1 Θ4B+1 Θ3B+1 Θ2B+1 ΘB+1 Θ1

Θ6B Θ7B Θ8B Θ9B Θ10B Θ11B

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

??????????????????

Θ12BΘ13B

Figure 3.25: n∗-box diagram, where the 2B arrows represent SST coordinates
forcing 2B thermocline coordinates in the equatorial and northern strips at a
distance xc = B∆ to the left.

an ENSO-like solution of the n∗-box, which is highly irregular and apparently

asymmetric. Due to the symmetry of the equations, this is most likely due to

the presence of a separatrix in the phase space, and this way different initial

conditions would result in the mirror image of the attractor depicted in 3.28

over the page. While the amplitude and frequency of occurrence do not reflect

observation, there are sporadic extreme events similar to those seen in for ex-

ample figure 1.3 in the first chapter. From the Poincaré section it is difficult

to determine whether the chaos generating mechanism is similar to that of the

n-box, as cross sections in the (Θ5,Θ95, φ) space for fixed values of φ do appear

to be constrained to a one dimensional region, but spread across the (Θ5,Θ95)

plane, occasionally clustering (see figure 3.28).
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Figure 3.26: Mean of fine scale SST coordinate Θ100 (left) and period (right, in
years) for the n∗-box with κ0 = κa = 7/5.

3.6 Summary

A hierarchy of models has been developed from the 2-strip system of wave

modes on the equatorial thermocline and a nonlinear sea surface temperature

parametrisation. Beginning with a basic east/west finite difference truncation of

the model equations, a conceptual model in R2 was found to possess limit cycle

solutions with a similar period and amplitude to the observed ENSO. A linear

analytical approximation was made to the model equations which compared

well to the nonlinear numerical solutions. Resolution of the finite difference

truncation was increased, resulting in a 10-box model which also incorporated

the annual cycle. This system was proven to have chaotic solutions by tracing

the evolution of a set of basis vectors in the tangent space, finding positive

Lyapunov exponents. A statistical map of the model space showed that it is

parametrically unstable and was used to find ENSO-like solutions. The 10-box

was used as a foundation to develop two general models which could resolve

arbitrarily small scales, the n-box with a coarse atmospheric parametrisation

similar to that of the 10-box, and the n∗-box with a fine parametrisation taking

more advantage of the extra degrees of freedom released with the small scales.

The chaos-generating mechanism which brought unpredictability to the n-box

was described briefly and a map of the parameter space was made for fixed

coupling values of both the n-box and n∗-box. ENSO-like regimes were found
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Figure 3.27: n∗-box (n∗=110) thermocline and SST timeseries, (κ0, RE , RW ) =
(11/5, 0.24, 0.73), and κa = κ0.

in both models, and while it is most likely that the n∗-box is less predictable and

more sensitive to initial conditions, the initialisation schemes discussed in the

next chapter will be performed on the n-box model due to technical problems

which will be made clear in chapter five.
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Figure 3.28: n∗-box (n∗=110) phase plot (top), Poincaré section (bottom) for
(κ0, RE , RW ) = (11/5, 0.24, 0.73), and κa = κ0.
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Chapter 4

Initialisation I: Methods

Positive Lyapunov exponents leading to the divergence of initially close orbits

severely hinder forecasting predictability, since the slightest error in the mea-

surement of an initial state can grow in time, sending even a perfect simulator

of reality off into the wrong region of phase space. These divergences are often

a result of erroneous observational data or effects due to subgrid scale turbu-

lence causing the model to deviate from observation. In fact, data from the real

world is typically riddled with noise from the sporadic nature of weather sys-

tems, making initialisation an essential bridge from stochastic physical reality to

the deterministic model environment. The following chapter will be dedicated

to describing several techniques, although not all of them will be implemented.

These techniques fall under one of two classes; those linear schemes which seek

to filter out fast processes entirely, or nonlinear schemes which include fast pro-

cesses as functions of the slow ones.

This study will adopt two different approaches from the brief compendium

of schemes. The first method is empirical and linear, and the model equations

are restricted to a manifold of maximum variance; a linear subspace of the full

model where trajectories have visited based on a large enough dataset. It is

effectively an n-dimensional generalisation of the least squares fit algorithm.

The second method is a truncation of the model equations such that there is a
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small number of slow modes with the dominant behaviour, and the remaining

fast modes are functions of these dominant modes. The dominant slow modes

are hypothesised to live in a nonlinear finite dimensional subspace of the full

infinite dimension phase space known as the inertial manifold, and this study

employs a non-rigorous scheme to approximate the manifold in the finite, albeit

large, dimensional case. Before discussing projection onto these manifolds, it is

worth mentioning some ways in which error is simulated in order to test model

predictability.

4.1 Perturbation

One way to determine the predictability of an n dimensional dynamical system

is to probe the local space around an initial state on the attractor, so the in-

terest is not the entire phase space but the tangent space of this state as time

progresses. A set of randomly perturbed, and therefore imbalanced initial states

is then represented by a set of vectors in this tangent space. In practice, ran-

domly choosing these vectors from a potentially vast tangent space is typically

not the most effective way to measure the robustness of a model. In meteorology

for example, an SST perturbation which fluctuates wildly on small scales but

averages out to zero on large scales may be less likely to induce a large scale

atmospheric response than an extended spatial feature. It is important to seek

out the directions in this tangent space which have long term consequences for

the orbits which have been perturbed in this way. There exist several meth-

ods to determine these directions, or modes, which will be discussed but not

implemented in this model; specific perturbations used for this model will be

described in the final chapter.

4.1.1 Lyapunov Vectors

Lyapunov vectors spring naturally from the Osedelec multiplicative ergodic

theorem[68], which allowed for accurate computations of Lyapunov exponents
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for the first time. Ergodic theories typically involve measuring statistical prop-

erties of dynamical systems, and this one concerns the time averaged behaviour

showing that a Lyapunov spectrum can be found which is irrespective of start-

ing position on the phase space. The theorem states that, except in some rare

cases, given a dynamical system (1.6) in Rn, for every vector x there is a local

decomposition of the phase space into a direct sum (i.e. a sum of basis vectors

in the tangent space of x) of k ≤ n subspaces

Rn =

k⊕
i=1

Hi(x),

corresponding to a set of n Lyapunov exponents

λi(x) < · · · < λk(x) (4.1)

determined by

±λi = lim
t→±∞

1

|t− t0|
log

( |S(t− t0)e|
|e|

)
, (4.2)

where

e ∈ Hi(x). (4.3)

The solution operator S(t− t0) is the cocycle, or product of Jacobians of f(x(t))

over the range [t0, t].

S(t− t0) = J [f(x(t))] · · · J [f(x(t0))], (4.4)

and the exponents are invariant under the action of these operators. By identi-

fying subspaces corresponding to positive values of λi, the source of error growth

can be allocated in a model. Similarly, negative λi correspond to directions of

growth while the direction of flow is the Hi where λi = 0. to decay and zero to

the direction of flow. Also, there exists a limit operator

L = lim
t→∞

(
ST (t− t0)S(t− t0)

) 1
2t , (4.5)
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where superscript T denotes transpose. The eigenvalues of L are the squares of

the exponentials of the Lyapunov exponents, while the eigenvectors are known

as Lyapunov vectors.

4.1.2 Bred Vectors

Leading on directly from Lyapunov vectors are their computationally practi-

cal counterparts, finite time Lyapunov vectors or bred vectors[70]. These are

calculated by randomly perturbing some initial state x0 by an amount δx0.

Integrating forward the perturbed and unperturbed states gives

S(t)(x0 + δx0) = x(t) + δx(t). (4.6)

The new perturbation δx(t) is rescaled by a factor ρ so that

ρ|δx(t)| = |δx0|. (4.7)

The rescaled grown perturbation ρδx(t) is then added to the unperturbed run

x(t) and again integrated

S(t)(x(t) + ρδx(t)) = x(2t) + ρδx(2t), (4.8)

and so on, and the perturbation δx(t) will then tend toward the direction of

the fastest growing perturbation as t → ∞. Bred vectors are useful in probing

the sensitivities of a model, and empirically finding the unstable directions in a

particular vicinity of its phase space.

4.1.3 Singular Vectors

Another useful product of the Osedelec theorem is the singular vector, a linear

tangent model approach to growing vectors [69]. Consider the general evolution

equation

dx

dt
= f(x), (4.9)
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or

x(t) = S(t)x(0). (4.10)

Bridging the gap between the former expression and the latter involves the

calculation of the Jacobian J of f at the point x, since in the vicinity of x

dx

dt
= J(x)x. (4.11)

The instantaneous solution operator, or propagator, is then

SL(t) = eJt. (4.12)

This defines a linear tangent model which is valid while the trajectories are close

to x. An initial perturbation δx0 will grow as

δx(t) = SL(t)δx0, (4.13)

and the relative size is then

|δx(t)|
|δx0|

=

√
(δx0eJ

∗t, eJtδx0)

|δx0|
. (4.14)

Unlike the example given in the introduction, there is rarely a neat way of

expressing S(t) analytically. If the sphere of states around the point x is trans-

formed into an ellipse by the action of S, its axes will expand or contract with

the flow. Of interest is the direction of most rapid expansion, which is the eigen-

vector corresponding to the largest eigenvalue of STS. This method is closely

related to the singular value decomposition described later.
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4.2 Linear Methods

4.2.1 Exponential Time Differencing

While this scheme is not reductive, in that it does not involve integrating quan-

tities which have been projected onto a lower dimensional subspace of the full

state space, it does introduce some concepts which will be intuitively useful later

on such as the distinction between fast and slow modes. Consider a system

dx̂

dt
= f(x), (4.15)

which satisfies f(x∗) = 0 for a point or set of fixed points x∗. Linear dynamics

governed by

dx̂

dt
= Λx̂, (4.16)

with solution

x̂(t) = eΛtx̂0, (4.17)

correspond to fast oscillations which are enveloped by slow, nonlinear behaviour

N(x). A convenient change of basis involves scaling by an integrating factor

χ = e−Λtx, (4.18)

so that

dχ

dt
= e−Λt

(
dx

dt
− Λx

)
. (4.19)

Now, notice that rearranging and multiplying through (4.26) with e−Λt gives

e−Λt

(
dx

dt
− Λx

)
= e−ΛtN(x), (4.20)

which is in fact another way of writing

dχ

dt
= e−ΛtN(eΛtχ). (4.21)
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Only the nonlinear part is integrated and the linear oscillations are contained

within it, allowing for the Courant Friedrichs Lewy condition to be bypassed,

provided N(x(t)) is indeed slowly varying. This idea is analogous to the concept

of a wave envelope, with fast waves moving at phase speed while the amplitude

modulated signal moves at a slow group velocity. Originally this scheme was

proposed as a means to minimise error growth in the ENSO box models consid-

ered in this thesis, but it was found that in some cases nonlinearity was large

and thus fast and slow motion could not be separated simply in terms of linear

and nonlinear modes, so instead the focus moved to model reduction methods

for the initialisation experiments.

4.2.2 Galerkin Truncation

Any process involving the reduction of PDEs to a finite set of ODEs involves a

truncation of some type of normal mode, as a computer is incapable of dealing

with the infinities involved in a continuum. A PDE is first decomposed into

orthogonal basis functions, typically with the low (high) order modes resolving

large (small) scale structures. The time evolution of the state vector x whose

elements are basis functions can be written

dx

dt
= Lx + N(x), (4.22)

where the linear part L = J(x∗) is the Jacobian of x∗, and N is a vector

function of the state vector; the nonlinear part. Typically x∗ is a fixed point

of the system, and a good choice of fixed point is one which best represents

some kind of mean state, or has a particular symmetry. In most cases L will be

similar to a matrix which has nonzero entries in the diagonal elements only, so

there exists a matrix V such that

L = V ΛV −1. (4.23)
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The n nonzero elements of Λ are its eigenvalues of L and the n columns of V

are its eigenvectors. If

x = V χ, (4.24)

multiplying through (4.22) by V −1 yields

dχ

dt
= Λχ+ η(χ), (4.25)

where η = V −1N(V χ) which is the PDE rewritten in terms of its normal modes.

One way to think of the normal mode of a nonlinear system is a way of defining

some kind of collective motion, representing the dynamics of a structure rather

than an individual quantity. The concept of a Galerkin truncation is fairly

simple: a projection operator Pm : H → Rm such that m is minimised but at

the same time best represents the full dynamics in H. Dimensions of χ which

are outside the range of Pm correspond to those eigenvalues of L which are large

and negative, which rapidly dissipate and do not affect the dynamics on long

timescales. Operating on (4.26) with Pm gives

dp

dt
= Λp + Pmη(p), (4.26)

where p = Pmχ and η is a function of reduced state vector p. In cases of the

n-box model for large enough n it is assumed that the model in Rn is a perfect

representation of the mode in the full Hilbert space H. While being essential for

the numerical modelling of any PDE, this scheme can also be seen as a filtering

of high frequency modes via a projection from the full model in Rn onto a slow

subspace m < n. However, there is a limit to how far this analogy can be taken

when nonlinear terms come into play, and this shall be discussed in the later

parts of this chapter.
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4.2.3 Proper Orthogonal Decomposition

Expanding the set of initialisation tools beyond the model equations, and in-

cluding the data generated by these equations allows for a powerful statistical

technique for the approximation of attractors and reduction of models. Origi-

nally this came from a theory of Loeve concerning the decomposition of random

functions into sums of orthogonal functions with random coefficients[71]. The

first applications of this theory to the field of fluid mechanics were made by

Lumley[72], as a means to extract features from turbulent flows. An overview

of the subject can be found in Berkooz, Holmes and Lumley[73], while an in-

troduction to the subject can be found in Chaterjee[74]. Consider a function h

over the domain x ∈ Ω. Now, the inner product of two functions h and g

(h, g) =

∫
Ω

h(x)g(x)dx, (4.27)

and the norm is

|h| =
√

(h, h). (4.28)

Say that h is allowed to vary indefinitely with time, then the average

〈h〉 = lim
t→∞

1

t

∫ t

0

h(x, t)dt. (4.29)

Extraction of features from the function space involves finding a function φ such

that the variance in the direction φ,

V =

〈
|(h, φ)|2

〉
(φ, φ)

, (4.30)

is maximised. It is known that the function φ is in fact an eigenfunction of the

average two point covariance tensor,

R(x, x
′
) = lim

t→∞

1

t

∫ t

0

h(x, t)h(x
′
, t)dt. (4.31)
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There is an infinite set of these functions, call them φk and they satisfy the

orthonormality condition

(φj , φj′ ) = δkk′ , (4.32)

each corresponding to an eigenvalue λk. Since R(x, x
′
) is a symmetric tensor, the

eigenvalues are all positive real numbers. The tensor can then be diagonalised

into

R(x, x
′
) =

∑
λjφj(x)φ∗j (x

′
). (4.33)

Eigenvalues are typically ordered in descending order, that is λj > λj+1, starting

at a finite value but tailing off to zero as index j increases. The basis functions

corresponding to the zero eigenvalues are largely irrelevant and do not affect the

outcome of time integration if removed, so completeness of the basis allows the

following decomposition

h(x) =

m∑
j

cjφj(x), (4.34)

where m is the value of j for which λj+1 = 0.

4.2.4 Singular Value Decomposition

Proper orthogonal decomposition (POD) leads naturally to the discussion of the

singular value decomposition (SVD) of a matrix. This is an extremely useful

method which involves expressing a matrix A in the form

A = UΣV T , (4.35)

where the matrix Σ is a diagonal matrix whose entries are positive real numbers

called the singular values of A. U and V are matrices satisfying V TV = 1 and

UUT = 1, where the normal transpose is used as the assumption is made that

they are not complex. These are not necessarily the same size, meaning Σ and

indeed A need not be square in order for the SVD to be calculated. The columns

of U form the eigenvectors of ATA, and columns of V the eigenvectors of AAT ,
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known as the proper orthogonal modes.

SVD methods in the context of timeseries are effectively an m dimensional

generalisation of the least squares fit. Taking a sample of N state vectors xi

from a time series one can construct a matrix which is the discrete version of

the correlation tensor R(x, x
′
), or

R =
1

N

N∑
i=1

xi ⊗ xi, (4.36)

where superscript T denotes transpose, the covariance matrix, and the operator

⊗ is the outer product of two vectors. The eigenvalues of R are related to the

variance of the dataset, and in decreasing order their corresponding eigenvectors

point in the direction of maximum to minimum variance. Since the covariance

matrix is symmetric, the eigenvalues are all real and positive, while the eigenvec-

tors are orthogonal. The eigenvalues give an upper bound on the dimensional

size of the attractor, as they give the magnitudes of the principal axes of a

family of n dimensional ellipsoids, where n is the size of the phase space. This

family of ellipsoids defines curves of constant probability in the phase space.

When a certain direction in the phase space is rarely explored by orbits, the

probability is low and the ellipse is flattened in this direction. In this sense, an

eigenvalue corresponding to an ellipse which has been flattened sufficiently can

be assumed to be a negligible direction of the phase space (or one with a very

low probability for finite values), which need not be integrated. Say that there

are n−m negligible directions, then the remaining m form a new basis spanning

the linear subspace which is the phase space of the reduced model. Any system

dx

dt
= Lx + N(x), (4.37)

can be expressed in terms of the principal components. Given a set of m prin-

cipal vectors φ, x can be decomposed via the m× n matrix V as

x = V φ, (4.38)
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and since V TV = 1, equation (4.37) describing an n dimensional system becomes

a lower order m dimensional system

dφ

dt
= V TLV φ+ V TN(V φ) (4.39)

through multiplication by the m × n transpose of V . Another useful property

of the SVD is that it allows for the calculation of the pseudoinverse of A[75],

A† = V Σ−1UT , (4.40)

a generalisation of the inverse for nonsquare matrices with the following prop-

erties

AA†A = A, (4.41)

A†AA† = A†, (4.42)

(AA†)∗ = AA†, (4.43)

(A†A)∗ = A†A. (4.44)

It can be used to solve linear systems of equations regardless of whether a

unique solution exists, which shall be crucial for projecting onto the approximate

inertial manifold which will now be explained.

4.3 Nonlinear Methods

4.3.1 The Baer-Tribbia Series

A well known initialisation scheme for projecting onto the slow manifold was

developed by Baer and Tribbia[4]. It assumes the model equations contains a

small parameter ε < 1 such that (4.22) separates into a fast and slow evolving
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part with

L =

 εΛx 0

0 Λy

 , (4.45)

N = ε

 Nx

Ny

 , (4.46)

and

x =

 X

Y

 , (4.47)

so that

dX

dt
= εΛxX + εNx(x) (4.48)

dY

dt
= ΛyY + εNy(x), (4.49)

where X and Y represent slow and fast components of x respectively. Here the

equations have been written in their Jordan normal form, so Λ is diagonal. The

vector x is then expanded into a power series in terms of ε

x =

∞∑
i=0

xiε
i, (4.50)

and the time variable is split into fast t∗ = t and slow τ = εt timescales, so

(4.48) reads

∂X

∂t∗
= ε

(
ΛxX−

∂X

∂τ

)
+ εNx(x), (4.51)

∂Y

∂t∗
= ΛyY − ε

∂Y

∂τ
+ εNy(x, ). (4.52)

By choosing the correct initial value of Y then, it should be possible to

eradicate fast motion from the system altogether, that is Y is independent of
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the fast time t∗. Taking these expressions to zero order in ε gives

∂Y0

∂t∗
= ΛyY0

∂X0

∂t∗ = 0. (4.53)

and to first order

∂X1

∂t∗
= ΛxX0 −

∂X0

∂τ
+ Nx(x0), (4.54)

∂Y1

∂t∗
= ΛyY1 + Ny(x0). (4.55)

From (4.53) the t∗ independence of X0 is clear. For Y0 this can be attained by

setting

Y0(0) = 0. (4.56)

Removing t∗ dependence from (4.53) results in

dX0

dτ
= ΛxX0 + Nx(x0), (4.57)

and

Y1 = Λ−1
y Ny(x0). (4.58)

One potentially restrictive aspect of this scheme with regards to the aforemen-

tioned box models is the demand for a small parameter, ε, as it is not unusual for

an n-box system to have nonlinear terms which outweigh the linear, for example

due to the presence of limit cycles.

4.3.2 The Inertial Manifold

Although turbulence as it stands is still an incomplete theory, there have been

some advances over the past few decades which may be of some practical use

in climate prediction. One example comes from the combination of dynamical

systems theory with functional analysis, giving rise to the theory of infinite di-

mensional dynamical systems[82][83]. This field of work is mainly concerned in

proving that within the infinite dimensional phase space of certain PDEs there
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exists a finite dimensional global attractor; an invariant set which attracts all

orbits within the space. While it has been known for some time that flows in a

Hilbert space have finite dimensional attractors[76], the earliest known example

was proven by Mallet-Paret, whether or not turbulence is a finite dimensional

phenomenon is still an open question. Attempts to answer this question within

a rigorous mathematical framework led to the discovery of the inertial mani-

fold, an invariant finite dimensional manifold which contains the global attrac-

tor and attracts all orbits exponentially in time[77]. These have been proven

to exist for some PDEs, including the Kuramoto-Sivashinksky[78] and complex

Ginsburg-Landau[79] equations. Connections between inertial manifold theory

and weather prediction have already been established, and it has been shown

that the slow manifold is a special case of inertial manifold[80]. Indeed, there

are similarities between the Baer-Tribbia expansion and the inertial form which

will be described shortly. Model reduction via the approximation of inertial

manifolds for chaotic systems would seem a more natural choice than the ap-

proximation of the attractor itself, since this typically has a fractal structure for

chaotic flow.

Proving the existence involves taking a Fourier decomposition of the PDEs,

and showing that a condition known as the squeezing property holds[83]. It

could be possible to check a modified version of this property for finite dimen-

sional systems by looking at the difference between two solutions projected onto

fast and slow subspaces, but the following discussion will refer to the infinite

dimensional case. To achieve the squeezing one must separate the identity ma-

trix I which operates on a Hilbert space H into finite P (the low modes) and

infinite Q (the high modes) dimensional projectors

I = Pm +Qm, (4.59)
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then, if x1 and x2 are two different trajectories on the attractor, either

|Qm(S(t)x1 − S(t)x2)| ≤ |Pm(S(t)x1 − S(t)x2)|, (4.60)

with S(t) the solution operator for some fixed time t, or else

|S(t)x1 − S(t)x2| ≤ δ|x1 − x2|. (4.61)

where 0 < δ < 1. The projection index m is a function of δ such that reducing

δ calls for an increase in the dimensionality of Pm. Thus, either low modes

dominate the motion or solutions are tending toward the same asymptotic fu-

ture. Now, letting Pmx = p and Qmx = q, this leads to the strong squeezing

condition which states that either

|q1(0)− q2(0)| ≤ L|p1(0)− p2(0)|, (4.62)

implying

|q1(t)− q2(t)| ≤ L|p1(t)− p2(t)|, (4.63)

or

|q1(t)− q2(t)| ≥ L|p1(t)− p2(t)|, (4.64)

implying

|q1(t)− q2(t)| ≤ |q1(t)− q2(t)|e−kt, (4.65)

where L, k are positive constants. Roughly speaking, this states that either a

system is dominated by slow modes, and if not the fast modes dissipate over

time. The first statement is more relevant here, since the interest is in asymp-

totic behaviour. These conditions guarantee the existence of a smooth mapping

Φ from PmH → QmH. That is, if q is a function Φ(p) then

dΦ(p)

dt
= ΛΦ(p) +Qmη(p + Φ(p)), (4.66)
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where η is the nonlinear part of the system in terms of normal modes (see

equation (4.26)). Integrating directly over all history to initial time t0 = 0 gives

Φ(p) =

∫ 0

−∞
ΛΦ(p) +Qmη(p + Φ(p)). (4.67)

The inertial manifold Φ is then defined as the fixed point of the operator T

where

TΦ(p) =

∫ 0

−∞
e−ΛsQmη (p + Φ(p)) ds, (4.68)

and the manifold can be evolved via numerical integration. Finding the inertial

manifold is effectively finding the asymptotic slaving function of a dynamical

system in a function space. Some analytical approximations can be made by

considering the steady state solutions of Φ, where the right hand side of (4.66)

is set to zero so that

Φ = −Λ−1Qmη(p + Φ(p)). (4.69)

Then be found by iterating

ΦN+1 = −Λ−1Qmη(p + ΦN ), (4.70)

with

Φ0 = 0, (4.71)

Φ1 = −Λ−1Qmη(p0), (4.72)

Φ2 = −Λ−1Qmη(p0 − Λ−1Qmη(p0)), (4.73)

and so on. It is worth noting that, to first order, the inertial manifold has the

same form as the first term in the Baer-Tribbia series, and Boyd has remarked

these are two aspects of the same thing[85].

For practical purposes such as the numerical modelling of PDEs, the Hilbert

space H is replaced by a finite dimensional phase space Rn. In this case, the

inertial manifold is replaced by convergent families of approximate inertial mani-
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folds, which can be calculated as follows[81]. Starting with the system separated

into linear and nonlinear parts

dx

dt
= Lx + N(x), (4.74)

where this time each element of x corresponds to a Fourier coefficient of a PDE

system, this system is transformed, as before, into normal modes

dχ

dt
= Λχ+ V −1N(V χ), (4.75)

where Λ is a diagonal matrix of eigenvalues of L. The individual nonzero el-

ements Λi,i are arranged so that the element with the most positive real part

comes first, and the following elements are in descending order according to

<(Λi,i). If there are to be m low modes and therefore n −m high modes, the

n× n identity matrix is again separated into projectors

I = Pm +Qm, (4.76)

where Pm is effectively the identity with all diagonal elements > m equal to

zero. This time the range of the operator Qm is finite dimensional. Since Pm

and Qm commute with Λ, the low and high resolution parts become

dp

dt
= Λp + PmV

−1N(V (p + q)),

dq

dt
= Λq +QmV

−1N(V (p + q)),

respectively. To find the approximate inertial manifold, the steady state solu-

tions of Φ(p) = q are

dq

dt
= 0, (4.77)

so that q is a (nonlinear) function of p only

q = −Λ−1QmV
−1N(V (p + q)). (4.78)
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The main difference between the approximate inertial manifold method and the

Galerkin truncation is that the m dimensional subset containing the attractor is

allowed to have curvature based on the nonlinear part of the dynamical system.

Now, using

Φ(p) = −Λ−1QmV
−1N(V [p + Φ(p)]). (4.79)

with initial guess

Φ0 = 0, (4.80)

the next iterate is

Φ1 = −Λ−1QmV
−1N(V p). (4.81)

For the sake of computational efficiency, no further iterations are made and the

modified p equation is

dp

dt
= Λp + V −1N(V [p− Λ−1QmV

−1N(V p)]), (4.82)

the inertial form of the model equations. Consequently, if it takes m deter-

mining modes to sufficiently approximate an attractor then the model in the n

dimensional phase space has been reduced by n−m dimensions.

It is important to point out that conventional computations of inertial man-

ifolds employ a Fourier decomposition of the state vector, while this study em-

ploys a finite difference scheme. Inertial manifold theory has been applied to

finite difference approximations to PDEs[84], but this study adopts a differ-

ent, non-rigorous approach. Due to the nature of the eigenfunctions of L in

the finite difference scheme, modes corresponding to more positive eigenvalues

have a tendency to resolve large scale structures, while eigenfunctions which

are more rapidly decaying resolve small scale spatial patterns. Hence, the for-

mer are chosen to represent the P modes and the latter the Q, so that the

slow motion is associated with smooth eigenfunctions while the fast processes

stem from small scale disturbances. Projection onto the slow manifold is then

effectively a smoothing out of the initial conditions, while integrating on this
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manifold is timestepping through regions of the phase space which are devoid of

discontinuities. Potential hazards in employing this method as an initialisation

scheme include the problem of orthogonality of the eigenfunctions, which is not

guaranteed, and the difficulties in the inversion of L, should there exist parallel

eigenfunctions or eigenvalue degeneracy.
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Chapter 5

Initialisation II:

Experiments

This chapter will use model reduction methods described in chapter four and

apply them to some of the models discussed in chapter three. First the accu-

racy of the reduction schemes is tested, then numerical stability as timestep is

increased. A parameter selection is chosen for one of the box models and data

from this model is used to simulate observational data. For the experiments,

this data is perturbed on multiple spatial scales and fed into the full model and

its reduced versions as initial conditions. Predictability of these models is com-

pared using statistical measures of how they deviate from simulated observation

over a 12 month forecast.

5.1 Methodology

An idealised hierarchy of ENSO models has been developed, and from the com-

plex end of the scale a model with behaviour similar to that observed in reality

is chosen to represent a perfect simulator of the phenomenon. The n-box model

with n = 94 is integrated forward in time until a balanced state is reached,

which is used as the initial state in a longer integration to be stored as artificial
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observational data. Two reduction schemes outlined in the last chapter, the ap-

proximate inertial manifold (the acronym AIM is used from now on, see 4.3.2)

and singular value decomposition (acronym SVD, see 4.2.4), are then applied

to the selected model resulting in a pair of low order models.

To generate initial perturbations which act on large and small spatial scales,

a combination of 10-box and n-box basis functions are used. A random sum

over all functions is weighted according to the basis used and combined to give

an initial perturbation. Weights can be coarse for 10-box scale thermocline per-

turbations and SST variables, or fine for n-box scale thermocline perturbations,

and the experiments described in this chapter show how varying these weights

affects ensemble forecasts of the selected model. For the initialisation experi-

ments, ensembles of randomly perturbed true states are fed into the full model

and reduced models as erroneous initial states, and statistics of how these en-

sembles deviate from the true states provide a means to calculate error growth.

Standard error magnitude is measured by examining differences between the

perfect observation and forecasts made using perturbed initial data with the

perfect model. If the growth of this error is reduced with forecasts made using

perturbed initial data with the AIM or SVD models, there has been an im-

provement of predictability and it can be said that an improved initialisation

has been performed. At this stage there is enough foundation work to proceed

with the initialisation experiments which will form the main result of this study.

5.1.1 Parameter Selection

While it is unlikely that an n-box model (with n=94) will satisfy all the criteria

of the observed ENSO, the pair M1 at (κ0, RE , RW ) = (13/4, 0.47, 0.65) with

κa = κ0/4, and M2 at (κ0, RE , RW ) = (3/2, 0.26, 0.39) with κa = κ0, have

many similar characteristics (see table 3.4 for full list of parameters used). M1

(see figure 5.1) has the properties

• Fourier spectrum of SST time series indicates an oscillation period of

greater than 4 years.
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Figure 5.1: Sample timeseries of eastern equatorial SST TeE from M1 (top) and
M2 (bottom).

• Amplitude of this oscillation is larger than observed in reality,

• Variance as a function of annual phase shows phase locking is present, but

not dominant,

and M2 satisfies

• Fourier spectrum of SST time series indicates an oscillation period of ex-

actly 4 years,

• Amplitude of this oscillation is within a physically justifiable range,

• Variance as a function of annual phase shows phase locking dominates

behaviour.

While both models are sensitive to initial perturbations, M1 being weakly cou-

pled to the annual cycle results in ensembles with more spread, while M2 suf-

fers from strong seasonal dissipation and orbits converge rapidly through some

phases of the annual cycle. An ensemble of perturbed initial states at certain

times of year will return to a common state for M2, but diverge regardless for

M1, making the latter more suitable for initialisation experiments. Although
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M2 and its reduced versions will be used later to test stability as the timestep

is increased, M1 is selected as the main model for the tests of predictability.

5.1.2 Simulation Data

Since a model has been designated to generate artificial observational data, time

series generated by M1 can be seen as a history of the true state of the system;

a set of data free from the uncertainties which arise through atmospheric turbu-

lence, exterior forcings or instrumental inaccuracy. Run for a sufficient length

beyond spin up time (at least 30 years), to ensure a balanced state has been

reached, the final state is used as an initial condition. M1 is then integrated a

further 105 timesteps (with the step size around half a day), and approximately

140 years worth of data is recorded. The phase space has 94 thermocline co-

ordinates, 2 box averaged SST coordinates and it is also convenient to include

one coordinate φ representing the annual cycle, so the data array is 105 by 97.

Coupling κ(t) = κ0 + κa cos(φ) takes a maximum value at φ = 0 (see 3.4, equa-

tion (3.112)), and the region [0, 2π] is divided into 12 segments with the first

month starting at φ = 0, second at φ = π/6 and so on. This data, used in

the initialisation experiments and finding empirical normal modes, describes an

ENSO with a period roughly between 3 and 7 years, a stronger than average

event every 15-20 years and a long event lasting for 3 years or more around

every 30-40 years. Since the experiments have the potential to generate large

amounts of timeseries data, it is useful to define an index which is representative

of the entire system at any point in time. In this study, the index will be the

mean temperature over the eastern equator, that is

TeE(t) =
1

2
[Θn+1(t) + Θn+2(t)] , (5.1)

where Θ1 = Te1 and Θ2 = Te2, for a box model of n = 94 thermocline variables.

Predictability of M1 will be tested using perturbed initial conditions from the

perfect observation as a function of φ, and the key to improving this accuracy
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is in the reduction of M1 to lower dimensions.

5.2 Reduction

In order to improve the forecast skill of M1, a reduction to a lower dimensional

model is performed. This lower dimensional model does not integrate directly

the model coordinates Θi, but instead the normal modes χi which resolve large

spatial scales for small i and small scale for large i. Dimensions corresponding

to χi where i is large are not integrated, and this is found to slow error growth

in M1 (see initialisation experiments later) and allows for a larger timestep to

be chosen without loss of stability for M2. Two methods were used to find

these normal modes, the first using only the equations of the n-box model

and the second using empirical data from the perfect observation. Spatial and

temporal characteristics of the reduced models of various dimensionalities are

now compared with those of M1 and M2, including a time step sensitivity test

for the latter and its reduced counterparts.

Variance

Variance of the TeE index is measured as a function of month, or phase φ divided

into twelve segments jπ/6 integer j, for the n-box model operating in the ENSO-

like regimes at (κ0, RE , RW ) = (3, 0.26, 0.39) with κa = κ0 and (13/4, 0.47, 0.65)

with κa = κ0/4. Reduced model variances are shown in figure 5.2, in red for the

AIM integration and blue for the SVD with M1 on the left and M2 on the right.

The black curve shows the seasonal variation in amplitude for both models,

confirming each is phase locked to the annual cycle with a maximum at month

4, or φ = 2π/3, and a minimum at month 10 (φ = 5π/3). In between these

months is known as the decaying phase of ENSO, while the complementary

region is the growing phase. While the variance of M1 varies sinusoidally as

a function of φ with a finite minimum, M2 has a peak at φ = 2π/3 which

diminishes rapidly in the decaying phase. The long phase where the variance is
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Figure 5.2: Variance of reduced models compared with full model starting with
the lowest m = 5 (top) to highest m = 11 (bottom) dimensionality. AIM
reduction is in red, while SVD is in blue, with black curves M1 on the left and
M2 on the right.

near zero indicates M2 is too strongly locked to the annual cycle.

Now looking at the variance of the reduced models, it is clear that the SVD

approximation does not resemble either M1 or M2 for low dimension, but after

m = 7 the amplitude is reproduced fairly accurately. Integrations performed

on the AIM begin inaccurate for the lowest dimension m = 5, but converge

gradually to the correct values as m is increased. At around m = 11 both

reductions have roughly the same seasonal variance as the full models. Mean

is also calculated as a function of φ, but is not shown as it is found to be very

close to zero throughout the year; this is to be expected due to the symmetry

arguments.

Spectra

Long integrations of the full and reduced models provide 700 years worth of

TeE data which are Fourier decomposed. The resulting frequency spectra show
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with the lowest m = 5 (top) to highest m = 11 (bottom) dimensionality. AIM
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curve corresponding to the frequency spectrum of the full model.

how the reduced models compare with the strongly phase locked M2 and the

low frequency dominated M1. Figures 5.3 and 5.4 reveal a similar picture as

the seasonal variance, as the AIM gradually converges to a good approximation

and the SVD disagrees for low dimension but agrees well for m ≥ 9.

There is an advantage AIM has over SVD which means it can reproduce

the dynamics of M1 and M2 at lower dimension, and for this reason the AIM

initialisation experiments begin at m = 7, while SVD starts at m = 9. It may

be worth noting that M1 has three distinct low frequency peaks which neither

reduction method reproduces exactly for the tested dimensionalities, although

it was not checked whether these peaks were merely an artifact of this particular

integration of the full model.

Stability

Reduced models have the beneficial ability to use longer timesteps without suc-

cumbing to numerical instability. This is due to the subspace in which they

operate corresponding to spaces of smooth functions, or state vectors repre-
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senting structures which vary only on large spatial scales. To test the stability

at different timesteps, the variance of the indicator coordinate is measured for

model M2 run throughout various points from the perfect observation as the

timestep is gradually increased.

The full model becomes physically inconsistent when the timestep is in-

creased beyond 2 days. This is not the case for the reduced models, which re-

main stable for at least twice this step size at even the highest tested (m = 15)

dimension. The AIM method is clearly stronger for long timesteps, crossing

over a half month at m = 9. At this stage it may be speculated that a tenfold

increase in timestep is practical for lower dimensional approximations, although

these experiments are numerically expensive and a distraction from the main

focus of this research, which is the improvement of forecast skill.
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Figure 5.5: Variance (annual mean) of TeE , of the full model and reduced models
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5.3 Initialisation Experiments

5.3.1 The Forecast Array

The main product of the initialisation experiments is a group of three arrays

containing monthly averages of all the ensemble forecasts using initial conditions

from the perfect observation. For each of the models, the full model, the inertial

manifold approximation and the singular value decomposition, there is a four
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dimensional array

F ri,j,k,l =
1

nm

nm∑
s=1

T keE(12nmi∆t+ nm(j + l)∆t+ s∆t) (5.2)

where the subscript i refers to the year number, j the month when the forecast

was initiated, k distinguishes one randomly perturbed forecast from another,

and l the lead time. The superscript r determines the reduced space in which

the model is operating, S for the singular value truncation and I for the inertial

form truncation. For example, FS10,3,2,6 will correspond to year 10, the 6th month

of an integration starting in month 3, the second in an ensemble of forecasts in

month 9, initiated 6 months earlier. While cumbersome, this notation will be

useful later on for calculating statistical properties of ensemble forecasts.

5.3.2 Artificial Observation Array

Deviation from observation is what determines the predictability of the models,

so along with the forecast data there must also be a recording of simulated

empirical data from the full model. This is effectively the artificial observation

divided up into monthly averages, that is a two dimensional array

Pm,n =
1

nm

nm∑
s=1

TeE(12nmm+ nmn+ s) (5.3)

where again n is the year number, m is the month and nm the number of

timesteps ∆t amounting to one month. Error norms are calculated using the

forecast array and observation array. Before calculating the statistical proper-

ties, a correspondence must be made between the forecast array and the obser-

vation array, since each element of Fi,j,k,l represents a deviation from Pm,n. To

relate a forecast at lead month l initiated at month j and year i to an element
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of Pm,n, an algebraic relation between (m,n) and (i, j, l) can be derived as

m = i+ σ(j, l) (5.4)

n = j + l − [1 + 12σ(j, l)], (5.5)

where

σ(j, l) =

 1 if j + l − 1 > 12;

0 otherwise.
, (5.6)

and indices (m,n) remain unchanged for different values of ensemble index k.

5.4 Initial Perturbations

As was mentioned in the previous chapter, it is important to choose initial

perturbations carefully so that the right regions of the tangent space of an

initial state are explored. For this model, the tangent vectors will be composed

of high and low resolution components, in order to test the sensitivity of the full

and reduced models to changes in the spatial scale of random initial errors. It is

worth making these perturbations for the n-box model neutral with regards to

the initialisation schemes chosen, in that neither eigenvectors of the covariance

matrix nor the Jacobian are used. Instead the choice of modes hearkens back

to the foundations of the n-box model and its predecessor the 10-box.

5.4.1 Fine Perturbations

Small scale perturbations εf of initial states from M1 physically represent ran-

dom fluctuations of the thermocline profile due to weather noise, and are of the

same resolution as the model itself. These are added to the hn and he coordi-

nates of Θ only due to the coarse nature of the atmospheric parametrisation

used in the n-box model. That is,

εf = wf
∑
k

Xek (5.7)
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for the n-box thermocline coordinates, where X is a random variable sampled

from the uniform distribution centered around zero

f(X) =

 1 |X| < 1/2;

0 otherwise.
, (5.8)

so X can take any value between X = −1/2 and X = +1/2. The vectors e(k)

are finite difference basis functions for the n-box model, defined by

ek =

 1 k = i;

0 otherwise.
(5.9)

The weight parameter wf controls the amount of small scale noise in the random

perturbation. Temperature coordinates Θn+1 and Θn+2 are unaffected by fine

perturbations.

5.4.2 Coarse Perturbations

Climatological fluctuations are parametrised by εc, which affects thermodynamic

variables and clusters of thermocline depths on a large scale. The thermocline

structure of this low resolution noise resembles a randomised 10-box model, and

the SST coordinates are also altered. Coarse perturbations can be expressed as

εc = wc
∑
k

Xek, (5.10)

where ek are finite difference basis functions for the 10-box model, defined by

ek =

 1 1 + (k − 1)B < i < kB;

0 otherwise.
, (5.11)
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in the equatorial strip where k ∈ [1, 6],

ek =

 1 (k − 1)B < i < kB − 1;

0 otherwise.
, (5.12)

in the northern strip where k ∈ [7, 12]. Again the points i = 6B − 1 and

i = 12B − 1 are missing due to the boundary conditions. SST variables Θn+1

and Θn+2 are also perturbed with random variables from the same distribution.

The degree to which this manner of perturbation will affect the initial condition

of a forecast is controlled by the number wc, and temperature coordinates are

affected in the same manner as would a B-sized box of thermocline coordinates.

5.5 Projection

5.5.1 Approximate Inertial Manifold

To perform a calculation on the approximate inertial manifold, first the projec-

tion matrix must be found. Diagonalising the Jacobian at the origin provides a

sequence of eigenvalues and a matrix of associated eigenvectors. The first three

eigenvectors are shown in figure 5.6, corresponding to the first three eigenvalues

which are all real. Examining e1, the only growing mode, reveals a structure

similar to the observed ENSO. A positive SST anomaly, shown with the dotted

curve, is accompanied by a deepening of the equatorial thermocline to the east

and shallowing of the northern strip in the central Pacific. This is contrasted

with e2, which shows no thermocline activity but a single positive SST box

anomaly, a slowly decaying mode. The third eigenvector has most of the ac-

tivity concentrated in the northern strip, where the thermocline is deepened in

the east and shallowed in the west. In the equatorial strip, the thermocline is

shallowed overall with one positive and one negative SST box anomaly.

It is the inverse of the matrix of eigenvectors which projects a vector to the

normal modes, of which the first few m primary modes p are dominant. The q
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Figure 5.6: First 15 eigenvalues (decreasing from most positive real part) and
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modes are not integrated but affect the nonlinear part of the dynamic equation.

A problem arises for the n-box and n∗-box models when n is large enough and

the determinant of the matrix of eigenvectors shrinks to near zero. This is due

to the tendency of some eigenvectors to align and their dot product tended to

unity, while the eigenvalues remain distinct. Where standard inverse calculation

methods fail where the matrix is nearly singular, the Moore-Penrose generalised

inverse, mentioned in the previous chapter, is used instead.

Further problems arise in the calculation of the projection matrix for the n∗-

box model. The eigenfunction corresponding to Λ2 (the second diagonal element
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of Λ in (4.82)), which looks like a unit eigenvector of the n-box model in the

Θn+2 direction with a flat thermocline, is the first indication of a problem

developing as it would appear that there is an uncoupled variable which is

slowly varying. As more SST coordinates are added, more modes crop up with

the same eigenvalue, meaning the matrix of eigenvectors is singular and thus

noninvertable, so the projection onto the approximate inertial manifold cannot

be made. This makes sense; the temperature equations are identical and thus

have identical eigenvalues. The n-box model avoids this problem as the evolution

equation for Θn+2 is distinct from that of Θn+1 since the latter is not forced

by the atmosphere. Some possible ways around this include coupling each SST

equation with a unique weight to the atmosphere, or adding random noise to

the linear matrix corresponding to the SST variables.

5.5.2 Singular Value Decomposition

Empirical data from the perfect run provides a means to calculate the directions

of maximum variance in the phase space. Consider an array which contains each

of the components of state vector Θi(t) at times t = jδt, where δt is the timestep,

written Θj
i . The covariance matrix is then

R =
1

N

∑
Θj
iΘ

j
k, (5.13)

where a repeated index implies summation over this index and N is the total

number of timesteps. The eigenvalues of R, when arranged in decreasing order,

drop off to zero after around the values between 5 and 10, as is shown in figure

5.6. This places an upper bound on the dimensionality of the attractor. Since

the SVD method requires only empirical data to calculate the projections, and

no information about the model equations are required, there is no problem

in generalising to more complex models making this a more versatile approach

to model reduction. The projection matrix in this case is the transpose of

the first m eigenvectors of R. Eigenvectors of R bear some similarity to the
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eigenvectors of the Jacobian about Θ = 0, with the exception of e2. There is

one ENSO-like mode, and a pair of northern strip modes with opposite signs

for the thermocline anomalies, but the same SST structure. The first and third

eigenvectors are nearly identical to e1 and e3, respectively.

5.6 Skill Measures

Monthly averages of the observational sets and perturbed model forecasts at

fixed φ values provides two sets of values which can be treated as random vari-

ables. From these two sets can be calculated commonly used statistical prop-

erties which measure how different they are from each other. The data sets X

and Y are calculated from the forecast and observational arrays respectively,

and forecast skill is calculated as the deviation of X from Y .

5.6.1 Root mean square

This is a measure of the average Euclidean distance between two sets of data.

First, the mean is removed to give anomalies (X
′

i , Y
′

i ) = (Xi−X,Yi−Y ). This

step is occasionally neglected in the case of very small mean values. Given two

sets of N random variables X
′

i and Y
′

i , the root mean square error is

ν(X
′
, Y
′
) =

√∑N
i=1(X

′
i − Y

′
i )2

N
, (5.14)

the average distance between the members of the sets X
′

and Y
′
.

5.6.2 Correlation

The second test of similarity between the two sets of variables is the correlation,

measuring the strength of a linear relationship between variables Xi and Yi.

Again, the mean is removed (X
′

i , Y
′

i ) = (Xi−X,Yi−Y ), which is not neglected
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Figure 5.7: Correlation (left) and RMS Error (right) as a function of lead month
(l) and target month (a function of i and l). Noise scale varies from fine (top)
to coarse (bottom).

even for very small mean values. The correlation is then calculated as

%(X
′
, Y
′
) =

∑N
i=1X

′

iY
′

i(∑N
i=1X

′2
i

)(∑N
i=1 Y

′2
i

) . (5.15)

This will take the values [−1, 1] for variables which lie exactly on a straight line

through (X,Y ) = 0 with a negative or positive gradient, or zero for variables

which fill the space in a manner depending on the probability distribution they

satisfy.
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Figure 5.8: Correlation (left) and RMS Error (right) as a function of initial
month (i) and lead month (l). Noise scale varies from fine (top) to coarse
(bottom).

5.7 Results

5.7.1 Full Model

Predictability of the full model is measured as a function of annual phase. The

code developed to calculate this analyses the perfect observation one timestep

at a time. Every time annual phase φ crosses into another dodecant, a set

of 20 random perturbations are added to the state vector which is then time

integrated forward one year. This goes on for 50 years until a total of 1000

forecasts have been made for each month, after which the monthly averages are
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taken and stored in the forecast array. The sets X
′

and Y
′

used to calculate

skill measures then each contain 1000 elements, and the values ν(i, l) and %(i, l)

are calculated for three different types of initial perturbation, varying from

fine dominated (wc, wf ) = (1, 3), then intermediate (wc, wf ) = (2, 2) to coarse

dominated (wc, wf ) = (3, 1).

Figure 5.7 shows how well each month is predicted as a function of lead time,

confirming there is an annual dependence on forecast skill. Different types of

initial perturbation also have an effect on the outcome of the initialisation ex-

periments. When initial perturbations are on the small scale, the most accurate

months are between 8 and 10 as relatively high correlation lasts around 9 months

and forecasts remain close to the simulated observation. As the spatial scale

increases, the peak shifts back a few months and the best correlation is between

6 and 8 for coarse perturbations. As far as RMS deviations are concerned, the

worst months are between 4 and 6, with maximum drift spreading back as far

as month 2 and overall magnitude increasing by around 50% for large scale

perturbations.

Another arrangement of the same data can be seen in figure 5.8, which show

how forecasts initiated at different times of the year fare as lead time is increased.

While integrations started after the beginning of the year are the most accurate

for fine perturbations, with correlation still high (around 3/4 of the original

value) after 12 months, increasing the scale to coarse drastically reduces this

timescale to around 8 months. Ensembles passing into and out of an ENSO

event are analysed using a collection of 9 ENSO events from the M1 simulation,

with a reduction dimension m = 9 and coarse dominated noise. Forecasts (5

in total for each event) are taken around the point where the SST anomaly

crosses zero from below for the growth phase, and around the nearest maximum

for the decaying phase. Figure 5.13 shows how correlation in the decaying

phase, starting low, drops rapidly but starts high and gradually decreases in the

growing phase.
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Figure 5.9: Correlation difference δ% = %r(i, l) − %(i, l) between M1 and AIM
dimension m = 7, with low resolution noise (wc, wf ) = (3, 1).

5.7.2 Reduced Models

As with the full model, ensemble forecasts are made on the linear and nonlinear

subspaces corresponding to the singular value decomposition and approximate

inertial manifold respectively, while intensities of coarse and fine noise and re-

duced model dimension are varied. Correlation νR(i, l) and root mean square

deviation %R(i, l) are measured in the same way as before, and the figures 5.9

and 5.10 look at the differences δν = νr(i, l) − ν(i, l) and δ% = %r(i, l) − %(i, l)

between reduced model and full model statistics. As a general rule, it was found

that the magnitude of this difference follows the magnitude of error generated

by the full model when predicting itself, and decreases as m is increased.

A comparison between the empirical reduction scheme and the full model

when mixed scale initial perturbations can be seen in 5.12, showing a clear
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Figure 5.10: RMS difference δν = νr(i, l) − ν(i, l) between M1 and the SVD
reduction dimension m = 9, with mixed resolution noise (wc, wf ) = (2, 2).

reduction in RMS error growth has been made. In contrast, the slow manifold

approach has a clear improvement in correlation for lead times approaching

one year, and this is visible in figure 5.11. Again, measures denoted by the

dashed lines in figures 5.12 and 5.11 have been calculated from data produced

by modified versions of M1, where the integration has been performed in a

subspace of the full phase space. Skill dependence as a function of ENSO phase

is calculated or reduced dimension m = 9 and coarse scale noise, and figure 5.13

shows an improvement for both reduced models in the growth phase. Only the

AIM method improves predictability in the decay phase, while the SVD method

proves to have less skill than the full model towards the end of the forecast.

Described here in detail are the results of skill differences δν and δ% for coarse

dominated noise and fine dominated noise. Results for the intermediate case,
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Figure 5.11: Comparison of correlation and RMS error for M1 (solid line) and
the AIM reduction of dimension m = 7 (dashed line) for initial month 8. Noise
is coarse, parametrised by (wc, wf ) = (3, 1).

which can be seen in figures 5.14 and 5.15, lie somewhere in between the two

cases.

Fine Noise

Random perturbations on the small spatial scales are found to be the least ef-

fective in filtering out the weaker initialisation schemes in favour of the stronger

ones, and this can be seen in 5.15. It is found that the AIM reduction has vir-

tually no effect on RMS deviation compared with M1, while the SVD reduction

does keep trajectories close to the attractor for low dimensionality, so is more

robust with regard to small scale perturbations. An increase in SVD dimension-

ality to m = 11 results in a loss of skill (see figure 5.10), but ultimately there is

little difference for large dimensions (m = 15). This could provide an indication

of the spatial scale of noise (around m = 10) which damages the forecast and
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Figure 5.12: Comparison of correlation and RMS error for M1 (solid line) and
the SVD reduction of dimension m = 9 (dashed line) for initial month 6. Noise
is mixed, parametrised by (wc, wf ) = (2, 2).

has been filtered for low dimension.

Coarse Noise

Large scale perturbations are more effective than small scale ones, as is demon-

strated in the M1 ensembles as well as the approximate models. Integrations of

the inertial form have a clear seasonal dependence, and have more of an impact

on correlation than RMS error. Quite the opposite is true for the singular value

decomposition, which keeps orbits close to the attractor but is less effective at

preserving a linear relationship. A comparison of correlation for both models

shown in figure 5.14 would imply that there is a strong seasonal dependence on

forecast skill on the AIM, which is less apparent for the SVD. RMS error on

the other hand (see figure 5.15), is significantly improved by the SVD method

while the AIM has little effect.
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Chapter 6

Conclusions

6.1 Summary of Research

The research described in this thesis was carried out with the aim of developing

new initialisation strategies for use in ENSO modelling. Beginning with low

order models, the key idea was to develop a scheme for simple models which was

general enough to be applied to a model of arbitrary complexity. This process

can be divided into three phases. The first involved deriving a simple 2 ODE

system by discretising the Jin[15] 2-strip model, and oscillatory solutions to this

model were found with periods and amplitudes close to that of the observed

phenomenon. Some regions of the parameter space had multiple solutions, both

stable equilibria and limit cycles with a separatrix. An early attempt was made

to represent this 2-box system by approximating the attractor of the limit cycle

solutions with an ellipse, which was found to be best in the weakly nonlinear

limit just after the Hopf bifurcation. However, this representation was not

suitable for some of the irregular oscillations encountered in later models.

Phase two was concerned with the evolution of the 2-box into more complex

variants based on the 2-strip system, beginning with the 10-box model which

incorporated the seasonal cycle and culminating in the n-box PDE system. Map-

ping out statistics of numerical solutions to these models showed that there was
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significant parametric instability, and irregular solutions of infinite period were

rare, arising through the interaction of unstable modes and the seasonal cycle

since no stochastic forcing was introduced. Chaos was found only in cases with

strong ocean-atmosphere coupling and, due to the autonomous dynamical sys-

tems approach to modelling, this meant nonlinearity was strong. The transition

from a nonautonomous system to an autonomous one with additional nonlinear

terms was originally made for numerical efficiency, with an alternative 10-box

model with time integrated normal modes. Eigenvectors and eigenvalues were

changing with every timestep and needed to be recalculated continuously, so a

scheme was devised to make the system autonomous by introducing artificial

normal modes representing the seasonal cycle. It also turned out to be useful

for normal mode initialisation.

Many solutions were heavily phase locked to the annual cycle with periods

which were integer multiples of one year, which could on some occasions be

attributed to the large amplitude of coupling variation in the 10-box model.

Lyapunov spectra were then calculated using a tangent space method and posi-

tive exponents were found. A pair of general PDE models, the n-box and n∗-box

models, were then developed using the 10-box as a foundation, each with its own

atmospheric parametrisation. While the n∗-box was more complex with a fine

scale atmospheric coupling, the n-box was the only model which passed on to

the final phase of research, and generated the data to be used as observation.

A considerable amount of research time involved finding the appropriate pa-

rameters which satisfied the criteria that the n-box model (with n = 94) was

sufficiently sensitive to initial conditions, had a period and amplitude close to

those observed in the real world, and the oscillation was neither too strongly

nor too weakly locked to the annual cycle. As a side effect of the parametric

instability of the model, a perfect simulation could be an infinitesimal step away

in model space to a completely unsuitable one.

Once the appropriate parameters had been found, initialisation schemes were

outlined to provide the background for the experiments which comprised the fi-
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nal phase, where the n-box model was modified to improve forecast skill. Using

two of the schemes outlined, a reduction of models was performed by project-

ing onto either a nonlinear manifold calculated from the model equations or a

linear manifold which was calculated empirically. While problems with matrix

inversion arose with the generalisation to the n∗-box model where the projec-

tion matrix was found to be singular, the nonlinear reduction made a better

approximation at lower dimension. It was also found to be the most resilient to

increases in timestep: the linear reduction scheme allowed for a larger timestep

than the full model but to a lesser degree. Using timeseries from the n-box

model as a proxy for observational data, ensemble forecasts were triggered each

month for 50 years with initial conditions provided by this set. These initial

states were integrated forward 12 months for the full n-box model and two re-

duced variants. The full model forecast skill was strongly dependent on initial

phase of the annual cycle (phase zero being at the maximum ocean-atmosphere

coupling strength), with decorrelation and drift occuring most in the early to

mid phases. Results of initialisation experiments for the reduced variants were

mixed, but overall the nonlinear method was more effective at improving corre-

lation while the linear method was better for reducing root mean square error.

While the linear method was less phase dependent, the nonlinear method had a

clear seasonal bias with skill improvement in the first half of the year, roughly

at the same phase and lead times where the full model faltered. Forecasts

of the growth and decay of events found that correlation dropped gradually

in the former case and rapidly in the latter for the full model. In the decay

phase, forecasts made by the full model decorrelated rapidly. Linear reduction

did worse than the full model in this case, while nonlinear reduction improved

predictability.
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6.2 Developments

Advancements have been made in the area of ENSO theory starting with the Jin

2-strip model of equatorial thermocline dynamics. With the first discretisation

came the 2-box model, and a proposed linear approximation for limit cycles

of delayed oscillator type models which was close to numerical simulations near

points of bifurcation. A 10-box conceptual model was derived with the following

discretisation, which modelled the annual cycle as a subsystem in perpetual

simple harmonic motion. This was purely for convenience as it allowed the

system, nonautonomous due to the seasonal variation of coupling, to be treated

as an autonomous system. Nonetheless the method had not been implemented

in other known ENSO-type systems. It has also been shown that the 10-box

demonstrates structural instability, and there are chaotic regimes with positive

Lyapunov exponents. The final discretisation based on the 10-box was a general

PDE system, the n-box model, which was explored empirically for sensitivity to

initial conditions. Error growth was reduced using two comparitive schemes, one

linear and the other nonlinear. Although the underlying idea for the nonlinear

method has not been used in the context of ENSO prediction, it was found to be

mathematically equivalent, at least to first order, to other well-known nonlinear

initialisation schemes.

6.3 Implications

Beginning with the research into ENSO dynamics and modelling in the early

stages, a good approximation was made for the 2-box limit cycle using param-

eters based on observation. This led to the proposal of a new initialisation

scheme which could be used to improve forecast skill for simple models. An

original ENSO conceptual model, the 10-box, was derived from a set of cou-

pled PDEs describing the atmospheric forcing of two equatorial wave modes.

To incorporate the seasonal cycle, artifical modes were introduced in perpetual

simple harmonic motion. While originally included for numerical convenience,

168



it proved to be useful in normal mode initialisation and could be beneficial for

any predictive system with coefficients which vary periodically. It was found,

by mapping out statistical properties of the 10-box model whilst varying pa-

rameters, that in regions where the dynamics were close to that of the observed

ENSO, the system was not structurally stable. This roughness also permeated

the parameter space of both the n-box and n∗-box generalisations of the 10-box

model. Owing to the persistence of this theme throughout the model hierarchy

a general observation could be made on arbitrarily complex models of this type,

as to whether the characteristic period is robust to parametric disturbances or

prone to drastic change when an infinitesimal change is made to the system. A

similar question has been raised by Ghil et al on the role of structural instability

with regards to uncertainties in GCM climate projections[88].

Using a choice of parameters from the n-box models, a pair of reductions

were made. Integrations were made on a linear manifold calculated empirically

and a nonlinear slow manifold derived from the model equations. While the

approximate inertial manifold has not been used as an initialisation scheme

for ENSO, it is not clear how distinct this method is from the nonlinear nor-

mal mode initialisations of Leith or Baer and Tribbia. To first order, the two

schemes appear to be mathematically equivalent. Additionally, a problem with

the inversion of the matrix of normal modes placed an upper bound on the

complexity limit of this scheme. However, the scheme was able to reproduce

the attractor of the full model in a lower dimensionality than the empirical

reduction, and predictability was smoother as a function of the annual phase,

improving correlation most where forecasts were entering the decaying phase

of ENSO. Additionally, the nonlinear reduction allowed for a larger timestep.

One interpretation is that this is a slow-fast system, where the attractor of this

n-box system lives in a nonlinear manifold and a linear scheme is not a suf-

ficiently good approximation to reproduce model dynamics at low dimension.

Initialisation as a function of reduced dimensionality m suggests a dimension of

less than 10 is required for a substantial reduction in error growth, as beyond
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this little change is observed from the full model. This provides an indication of

the scale threshold of perturbations, as beyond m = 10 the process of filtering

initial data has no effect on predictability.

6.4 Future Research

6.4.1 Dynamics Perspective

On reflection, while most of the aims of the original research were met there

were just as many questions raised as answered. Some avenues of research which

were intended to be explored included the analysis of experimental data for ev-

idence of off-equatorial Rossby wave propagation, analysing the 10-box model

with the atmospheric parametrisation of the n-box, exploring the effect of vary-

ing different parameters such as wave speed ratio rs and coupling amplitude

ka, or testing the forecast skill of other n-box models. The key issues were

noninvertability of the matrix of eigenvalues (of the Jacobian at the origin) for

projection onto the approximate inertial manifold, as well as the problem of

finding rare irregular solutions with the right timescales in a large parameter

space and the generality of initialisation schemes for low order models. All of

these could potentially be overcome by embracing stochastic effects and the

theory of nonautonomous (or random) dynamical systems. For the Jacobian

problem, eigenvalue degeneracy arose due to the indistinguishability of SST

evolution equations. Perturbing those elements of the Jacobian corresponding

to SST dynamics randomly by a small amount could disperse these clustered

eigenvalues. Alternatively, a different function parametrising the zonal spatial

structure of a wind stress anomaly (a tent shape, for example) would ensure

each SST equation is unique, since it has been shown the particular shape of

zonal wind stress does not affect asymptotic solutions[87]. Much research time

was committed to finding irregular solutions with a period and amplitude close

to that of the observed ENSO, which could have been saved if irregularity was

introduced more cheaply by implementing stochastic forcing. Finally, there was
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the issue of transfer to an autonomous dynamical systems which required the

expansion of phase space to incorporate artificial modes. While including these

modes did not improve predictability in any way, they did permit the separa-

tion of time varying and fixed value coefficients by introducing a new nonlinear

term which was a prerequisite for the normal mode initialisation scheme used to

improve model skill. If instead the pullback attractor (briefly mentioned in the

second chapter) were to be approximated, there would be no need to introduce

these artificial modes. Additionally, random forcing need not be treated any dif-

ferently as the resulting systems also fall under the category of nonautonomous

dynamics. However, the rigorous theory is relatively new[89] and as a result

practical approximations of pullback attractors may be out of reach for now. It

is also worth noting that stochastic systems are inherently unpredictable, and

should be approached with caution when used as predictive systems.

6.4.2 Initialisation Perspective

It has not yet been explored as to whether initialising the 2-box can assist in

improving forecast skill. While the model is intrinsically predictable with some

multiple equilibria regimes, the inclusion of both stochastic forcing and the

seasonal variation of coupling could result in a sporadic model with a period

and amplitude close to the observed mechanism as well as a noisy frequency

spectrum. By applying the R−1SR operator on initial data, it may be possible

to improve the predictability of this model.

An underlying theme of the research presented in this thesis was the ap-

proximation of model attractors as a means to reduce error growth. Based on

the fact that a nonlinear scheme was better at approximating behaviour at low

dimension than a linear empirical one, an interesting avenue for research could

be whether a nonlinear empirical scheme would be advantageous. Nonlinear

feature extraction is a well known technique in artificial intelligence and ma-

chine learning[90], and has recently seen application in ENSO prediction[91].

An inertial manifold is a finite dimensional manifold embedded in an infinite
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dimensional space which attracts orbits exponentially with time. While finite,

the dimensionality may well be large, but once the manifold is known it may

be possible to find a mapping between a PDE system and a comparatively low

order ODE system. While the human brain is constrained to visualise objects

in three dimensions or less, there is no dimensional limit to computer vision,

meaning that given a long enough timeseries is provided there is no reason why

the manifold containing the attractor cannot be learned numerically. Although

it has been remarked that ENSO is currently a weakly nonlinear phenomenon

excited by noise[23], it has been shown in this thesis that in the case of strong

nonlinearity a nonlinear normal mode initialisation scheme may well be a better

approach than a linear method for improving correlation in seasonal forecasts.

Should there be a regime shift after which the ENSO behaves in a less lin-

ear manner, it could be worth investigating nonlinear methods for initialising

CGCMs where there may be room for improvement as far as predictability is

concerned.
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Appendix A

Shallow Water Equations

A.1 Derivation

Here the equations underlying equatorial wave dynamics from which the 2-strip

equations are derived, the shallow water equations in an equatorial β-plane, are

worked out from scratch. Derivation begins with the Euler equations

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ F, (A.1)

with the incompressibility condition

∇ · u = 0, (A.2)

where u is the three component velocity vector, p pressure, ρ is (constant)

density and F a body force. The first two components of u, (u, v), are tangent

to the surface of the earth, with u pointing in the positive x direction from west

to east and v pointing in the positive y direction from south to north, the third,

w points in the vertical direction. Here the force is induced by gravity and the

rotation of the Earth

F = −2Ω× u +∇(φc − gz), (A.3)
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with the potential term being a combination of centripetal acceleration from

rotation and acceleration due to gravity, with the former to be absorbed into

the pressure term. Ω from the Coriolis term is the angular velocity, which is at

its maximum at the poles and minimum at the equator. Then, taking θ as the

angle of inclination measured from the zenith (the North Pole),

Ω× u =

∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

0 0 Ω sin θ

u v w

∣∣∣∣∣∣∣∣∣∣
= Ω sin θ


−v

u

0

 . (A.4)

Consequently, the inviscid Euler equations become

∂u

∂t
+

(
u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
u− fv = −1

ρ

∂p

∂x
,

∂v

∂t
+

(
u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
v + fu = −1

ρ

∂p

∂y
,

∂w

∂t
+

(
u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
w = −1

ρ

∂p

∂z
− g,

where f = 2Ω sin θ and p = p − ρφc. Now, the average depth of the ocean is

around 4 kilometres, while the radius of the earth is around 6000 kilometres,

so the ocean is in fact a thin film on the surface of the planet. It can then be

treated as an almost two dimensional flow. Taking the characteristic vertical

lengthscale to be D and the horizontal L, the quantity

δ =
D

L
� 1 (A.5)

permits the scaling out of terms from the rotating Euler equations. After some

algebra, the left hand side of the vertical velocity equation turns out to be

of relative order δ2, and drops out of the equations, leaving the hydrostatic

equation

−1

ρ

∂p

∂z
− g = 0. (A.6)

174



Integrating this with respect to z, assuming ρ is constant, gives

−p
ρ
− gz = A0(x, y, t). (A.7)

Consider a rectangular basin of ocean whose surface displacement is η(x, y, t),

with some topography at the ocean floor at z = 0 given by ηb(x, y), so that the

total depth is H = η − ηb. It is reasonable to assume that the pressure at the

surface z = η is some constant value p0, and it follows that

A0(x, y, t) = −p0

ρ
− gη, (A.8)

so the pressure is given by

p = p0 + ρg(η(x, y, t)− z). (A.9)

From this the right hand side of both horizontal equations can be determined

−1

ρ

∂p

∂x
= −g ∂η

∂x
, (A.10)

−1

ρ

∂p

∂y
= −g ∂η

∂y
. (A.11)

Since the right hand side is independent of z, so must the left hand side, eliminat-

ing two terms from the horizontal equations. Integrating the incompressibility

condition with respect to z gives

w(x, y, z, t) = w(x, y, t)− z
(
∂u

∂z
+
∂v

∂y

)
, (A.12)

whereby the background velocity w can be found by exploiting the imperme-

ability condition at the ocean floor,

w(x, y, ηb, t) = u
∂ηb
∂x

+ v
∂ηb
∂y

, (A.13)
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thus,

w = u
∂ηb
∂x

+ v
∂ηb
∂y

+ ηb

(
∂u

∂z
+
∂v

∂y

)
. (A.14)

Similarly, at the surface z = η,

w =
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
. (A.15)

Substitute this into the integrated incompressibility condition at z = η,

∂η

∂t
+

∂

∂x
[u(η − ηb)] +

∂

∂y
[v(η − ηb)] = 0, (A.16)

and all that remains are the three shallow water equations

∂u

∂t
+

(
u
∂

∂x
+ v

∂

∂y

)
u− fv = −g ∂η

∂x
,

∂v

∂t
+

(
u
∂

∂x
+ v

∂

∂y

)
v + fu = −g ∂η

∂y
,

∂H

∂t
+

∂

∂x
(uH) +

∂

∂y
(vH) = 0.

Most of the dynamics relevant to ENSO occur in the vicinity of the equator,

where f = 2Ω sin θ is small enough to make the approximation

sin θ ≈ θ, (A.17)

then

f ≈ Ωθ = βy, (A.18)

where β = 2Ω/R0, R0 is the radius of the earth. This is known as the equatorial

beta plane approximation.
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A.1.1 Linear Shallow Water Theory

To study analytic solutions of the shallow water equations, the equations must

be first written in their linear form. Let

H(x, y, t) = H0(x, y) + η(x, y, t). (A.19)

Removing all terms which are quadratic or higher in (u, v, η) results in

∂u

∂t
− fv = −g ∂η

∂x
, (A.20)

∂v

∂t
+ fu = −g ∂η

∂y
, (A.21)

∂η

∂t
+

∂

∂x
(uH0) +

∂

∂y
(vH0) = 0. (A.22)

Taking partial derivatives ∂
∂y of (A.20) and − ∂

∂x of (A.21) gives

∂ζ

∂t
+ f

(
∂u

∂x
+
∂v

∂y

)
= 0, (A.23)

where ζ is the relative vorticity

ζ =
∂v

∂x
− ∂u

∂x
. (A.24)

By dividing through (A.22) by H0, it can be seen that the second term in (A.23)

is in fact −f∂tη/H0, resulting in the conservation law

∂

∂t

(
ζ

f
− η

H

)
= 0, (A.25)

where the conserved quantity

PV =
ζ

f
− η

H0
(A.26)
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is the potential vorticity. In the special case that PV = 0, the linearised shallow

water equations reduce to the Klein-Gordon equation

∂2η

∂t2
− c2

(
∂2

∂x2
+

∂2

∂y2

)
η + f2η = 0, (A.27)

where

c2 = gH. (A.28)
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