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Abstract 
Activation of the oncogenic transcription factor c-Jun by the Jun N-terminal kinase 

(JNK) has been implicated in diverse biological effects, for example promoting 

intestinal proliferation or inducing neural apoptosis. Apart from differentiation, 

apoptosis plays an important role in the specification of neuronal networks in the 

developing brain. However, the molecular mechanisms governing differentiation and 

apoptosis during brain development are incompletely understood. In my PhD studies, I 

have shown for the first time that the E3 ubiquitin ligase substrate recognition 

component Fbw7 (F-box and WD repeat domain containing-7), a negative regulator of 

phosphorylated c-Jun and other oncoproteins such as Notch, is a key factor of 

differentiation and survival in the developing brain. Fbw7-deficiency caused Notch-

dependent accumulation of radial glia stem cells and c-Jun-dependent loss of 

progenitors and differentiated cells. Thus, Fbw7 acts as a key molecular switch to allow 

neural stem cells to differentiate and neural progenitor cells to survive by antagonising 

Notch and JNK/c-Jun signalling respectively. 

Whilst sustained JNK/c-Jun signalling contributes to abnormal brain development in 

conditional Fbw7-knockout mice, c-Jun activation by JNK has been suggested to be 

dispensable for mouse development but necessary for c-Jun oncogenic function. By 

mutating the four main JNK-phosphorylation sites in the Jun gene (Jun4A), I could 

show that Jun4A/4A mice are viable, do not exhibit histological abnormalities and are 

able to recover from intestinal or neural pathology. Furthermore, moderate activation of 

JNK/c-Jun signalling in the nervous system of ROSA26-LSL-JNKK2-JNK1∆N/+ mice 

did not impair brain histology but led to slightly improved nerve regeneration. In vitro, 

Jun4A/4A mouse embryonic fibroblasts underwent premature senescence independent of 
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oxidative stress and p53 levels. These findings may prove important for targeting 

JNK/c-Jun signalling in order to promote nerve regeneration and to inhibit tumour 

growth in a p53-independent manner with the potential of limited side effects. 
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Chapter 1. Introduction 
 

1.1 Stem cells, signalling and differentiation 
A big part of human life is about differentiation. It starts with the totipotent zygote 

which develops into a new organism, a new individual. Intrinsic factors inherited from 

the parents and extrinsic signals from the environment determine one’s fate. However, 

on a molecular and cellular level, we are strikingly similar, not only amongst human 

beings but amongst all mammals and other vertebrates and invertebrates. Evolutionary 

conserved genetic and epigenetic programmes specify the destiny of a cell in the body 

in the process of differentiation. Differentiation is a series of cell fate decisions which 

render a hierarchically more potent cell into a more specialised cell which fulfils a 

certain function in the body. Understanding which molecules govern cell fate decisions 

is a prerequisite to understanding life and being able to develop cell replacement 

therapies for regenerative medicine. 

 

1.1.1 Early embryonic development  
During embryonic development, differentiation starts after the 8-cell morula stage when 

totipotent blastomeres develop into either apolar inner cells (ICs) or polar outer cells 

(OCs) (Figure 1a) (Johnson and Ziomek, 1981, Yamanaka et al., 2006). It has been 

suggested that signalling through different cell-cell contact patterns of blastomeres are 

responsible for the differentiation into ICs or OCs. ICs are the precursors of pluripotent 

primitive ectoderm cells in the inner cell mass (ICM) of the blastocyst whereas OCs 

develop into trophectoderm cells of the trophoblast (Figure 1a,b). At the late morula 
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stage, OCs express high levels of the transcription factor Cdx2 (caudal type homeobox 

2) which mediates OC development into trophectoderm cells (Niwa et al., 2005). ICs 

show high expression of the transcription factor Oct4 (POU domain transcription factor 

Oct4) which is accompanied by the upregulation of the transcription factor Nanog 

(Nanog homeobox) (Chambers et al., 2003, Mitsui et al., 2003). At the blastocyst stage, 

Nanog and GATA6 (GATA binding protein 6) show a mutually exclusive expression 

pattern in the ICM where Nanog-expressing ICs differentiate into pluripotent primitive 

ectoderm cells whilst GATA6-expressing OCs develop into primitive endoderm cells 

(Figure 1b) (Chazaud et al., 2006). Primitive ectoderm cells in the ICM of the 

blastocyst are the source of pluripotent embryonic stem (ES) cells in culture whereas 

the primitive endoderm develops into extra-embryonic tissue (Evans and Kaufman, 

1981, Thomson et al., 1998). Apart from genetic regulatory networks determined by the 

transcription factors Oct4, Sox2 [SRY (sex determining region Y)-box 2] and Nanog, 

pluripotency is also defined by a unique epigenetic state. Polycomb Group (PcG) 

proteins such as Ezh2 (enhancer of zeste homolog 2) induce repressive histone 

modifications (H3K27me3) and at the same genetic locus, trithorax Group (trxG) 

proteins provide gene expression activating marks (H3K4me3). On the one hand, these 

bivalent domains are necessary for the repression of genes involved in differentiation. 

On the other hand, they provide a mechanism to rapidly induce expression of these 

developmental genes once the repressive marks are removed during differentiation 

(Bernstein et al., 2006, Boyer et al., 2006).  
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1.1.2 Post-implantation embryonic development 

After implantation of the blastocyst into the uterus, the three germ layers, i.e. the 

ectoderm, endoderm and mesoderm are formed in the process of gastrulation. In the 

mouse, gastrulation starts after the generation of the primitive streak (PS) in the epiblast 

which gives rise to the embryonic tissue. Upon expression of the TGF-β (transforming 

growth factor beta) family members BMP4 (bone morphogenetic protein 4) and Nodal 

and activation of the Wnt (wingless type MMTV integration site) signalling pathway, 

epiblast cells migrate through the PS and develop into endoderm and mesoderm  

(Figure 1c). In the absence of BMP-, Wnt- and activin/Nodal signalling, epiblast cells 

undergo a default differentiation programme into ectoderm cells. A marker of cells 

throughout the PS is Brachyury (T) whereas the expression of other transcription factors 

such as Foxa2 (forkhead box A2) is regionally restricted. High Foxa2 expression 

accompanied by sustained activin/Nodal signalling in the anterior PS triggers endoderm 

formation, while low Foxa2 levels and sustained BMP- and Wnt-signalling are detected 

in the posterior PS where the mesoderm is generated (Figure 1c). Thus, spatial and 

temporal expression of agonists and inhibitors of these signalling pathways regulate the 

differentiation into the three germ layers (reviewed in Gadue et al., 2005).  
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Figure 1 Early embryonic development: From zygote to epiblast 
(a) Schematic representation of the transition from the zygote harbouring the two 
pronuclei via the 8 blastomeres morula stage to the 16-cell morula stage. Outer cells, 
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blue. Inner cells, green. (b) Drawing depicts the blastocyst including inner cell mass 
(ICM), trophoblast and blastocoel. Trophectoderm cells, blue. Primitive ectoderm cells, 
green. Primitive endoderm cells, orange. (c) Schematic representation of the epiblast 
including primitive node and primitive streak. Up- and downregulation of pathways or 
factors involved in ectoderm (blue), mesoderm (red) and endoderm (yellow) formation, 
cell migration through the primitive streak and the anteroposterior axis are indicated in 
the drawing. 
 

1.1.3 The three germ layers - endoderm, mesoderm and ectoderm  
Endoderm-derived tissues include the liver and the pancreas which are target organs for 

potential cell replacement therapies. Activin-induced endoderm cells were reported to 

adopt the hepatic fate upon addition of FGF (fibroblast growth factor) and BMP4 to ES 

cell cultures (Gouon-Evans et al., 2006), while retinoic acid (RA) together with sonic 

hedgehog (Shh) inhibition induces the pancreatic fate (Figure 2) (D'Amour et al., 

2006). BMP- and Wnt-signalling mediate the generation of mesoderm cells which are 

characterised by the expression of the tyrosine kinase receptors Flk-1 (fetal liver kinase 

1; also known as vascular endothelial growth factor receptor, VEGFR) and PDGFR 

(platelet-derived growth factor receptor). Mesoderm-derived tissues include the 

haematopoietic and cardiac system, vasculature and skeletal muscle. Hematopoietic 

mesoderm can be induced by concerted activation of Wnt, activin/Nodal and BMP 

signalling (Figure 2) (Nostro et al., 2008). While Wnt/β-catenin signalling is required 

for the initial induction of the mesoderm, transient inhibition of this pathway has been 

shown to be essential for the subsequent specification into cardiac mesoderm (Naito et 

al., 2006, Ueno et al., 2007). As mentioned above, ectoderm development is the default 

pathway, since the absence of serum and primitive streak inducers leads to the 

development of ectoderm cells in ES cell cultures. Furthermore, the default 

differentiation of ectoderm cells is the neuroectoderm pathway. Sox2 is a key 

pluripotency transcription factor in ES cells, but is also required for specification of the 
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neural lineage. Being already expressed in ES cells, Sox2 seems to mediate the default 

differentiation of ES cells into the neural lineage (Kishi et al., 2000). Despite being the 

default pathway, the development into neuroectoderm cells is still an event dependent 

on signalling molecules. It has been shown that neuroectoderm lineage differentiation is 

dependent on endogenously produced FGF signals (Ying et al., 2003). Apart from the 

nervous system, ectoderm cells also generate the skin. Inhibition of BMP-signalling in 

ectoderm cells has been shown to block neural development and to induce epidermal 

differentiation (Figure 2) (Kawasaki et al., 2000).  

 

Figure 2 Differentiation of endoderm-, mesoderm- and ectoderm-derived cells 
Schematic representation of the differentiation of endoderm, mesoderm and ectoderm 
cells into tissue-specific cells upon up- and downregulation of different factors and 
signalling pathways.    
 

1.1.4 In vitro-differentiation of ES cells 
As seen with mouse ES cells, human ES cells differentiate by default into 

neuroectoderm while activin/Nodal signalling induces endoderm and BMP-signalling 

promotes mesoderm formation (Davis et al., 2008, Kennedy et al., 2007, Ng et al., 

2005, Pick et al., 2007, Tropepe et al., 2001). Whereas studies in various species have 
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revealed conserved signalling events which determine the specification of the primary 

germ layers, we have limited knowledge of the plethora of molecules involved in the 

differentiation of tissue-specific stem cells and functional differentiated cells. One of 

the best studied organ systems so far is the haematopoietic system. Cultured with 

serum, mouse ES cells differentiate by default into the haematopoietic lineage 

(reviewed in Keller, 2005). Gene targeting studies identified factors such as Scl (stem 

cell leukaemia protein) and Runx1 (runt-related transcription factor 1) to be involved in 

the embryonic development of the haematopoietic system (Begley et al., 1989, Wang 

and Speck, 1992). The same factors were also found to be upregulated during 

haematopoietic differentiation in ES cell cultures and thus indicating that in vitro-

differentiation faithfully recapitulates the embryonic development of the haematopoietic 

system (Figure 3) (Dzierzak and Speck, 2008). Further down the differentiation route, 

haematopoietic stem cells (HSCs) have been shown to develop into the myeloid lineage 

upon the expression of the transcription factor PU.1 or into the erythroid lineage upon 

the expression of the PU.1-antagonist GATA1 (Figure 3) (Visvader et al., 1992, Wang 

and Speck, 1992, Zhang et al., 1999, Zhang et al., 2000). Upon co-culture with bone-

marrow derived OP9 stromal cells, mouse and human ES cells have been reported to 

differentiate into haematopoietic progenitors with lymphoid potential (Figure 3) (Galic 

et al., 2006, Schmitt et al., 2004). Concerted Notch activation leads to further 

differentiation into T cells rather than the default differentiation into B cells (Schmitt et 

al., 2004, Schmitt and Zuniga-Pflucker, 2002, Watarai et al., 2010).  
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Figure 3 In vitro-differentiation of ES cells into haematopoietic cells 
Schematic representation of ES cell differentiation into haematopoietic stem cells and 
differentiated blood cells and the factors involved. The various haematopoietic 
precursor cells are not included in this depiction for clarity. 
 

1.1.5 In vitro-differentiated ES cells in cell replacement therapies 
Along these lines, progress has been made in making use of factors discovered during 

embryogenesis for in vitro differentiation of cell types from various tissues. Activation 

of activin/Nodal- and BMP-signalling in combination with inhibition of p38 MAP 
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(mitogen-activated protein) kinase has been described to significantly enhance 

cardiomyocyte differentiation in human ES cell cultures (Figure 4) (Graichen et al., 

2008). Efficient generation of cardiomyocytes in human ES cell cultures together with 

the development of prosurvival cocktails led to the successful transplantation of human 

cardiomyocytes into the infarcted rat heart which resulted in the prevention of the 

progression from myocardial infarction to heart failure (Laflamme et al., 2007, 

Laflamme et al., 2005). With regard to pancreas development and the cell-based 

treatments of Type I Diabetes, various protocols have been described to promote 

differentiation of ES cells into insulin-producing β cells. Shim et al. differentiated 

human ES cells to a PDX1 (pancreatic and duodenal homeobox 1)-positive pancreatic 

progenitor stage in culture by adding activin and retinoic acid (Figure 4) (Shim et al., 

2007). After transplantation of these cells into the kidney capsule of hyperglycaemic 

mice, blood glucose levels were significantly reduced. However, other studies using 

similar stratagies reported less efficient rescues of hyperglycaemic mice and that 

transplanted PDX1+ progenitors derived from human ES cells can only show efficient 

maturation into insulin-producing β cells when fetal pancreatic tissue is co-transplanted 

into the kidney capsule (Brolen et al., 2005, Jiang et al., 2007).  
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Figure 4 In vitro-differentiation of ES cells into cardiomyocytes and pancreatic β-
cells 
The drawing depicts the in vitro-differentiation of ES cells into cardiomyocytes and 
pancreatic β-cells and the factors involved. In vitro-generated cardiomyoctes and 
pancreatic β-cells are a promising tool for cell replacement therapies after Myocardial 
Infarction or in Type I Diabetes respectively. 
 

1.1.6 Induced pluripotent stem cells 
Apart from the promising results from the transplantation of in vitro-generated 

cardiomyocytes and β cells into animal models of heart failure and diabetes, there are 

many hurdles to overcome before these cell-based therapies are safe to use in the clinic. 

Two problems of using ES cell-derived cells are on the one hand the ethical issue of 

destroying an embryo to isolate ES cells, and on the other hand, grafted donor ES cell-

derived cells might be rejected by the host immune system. Both issues can be 

overcome by using induced pluripotent stem (iPS) cells. iPS cells can be generated from 

patient fibroblasts by introducing the key pluripotency factors Oct4 and Sox2 and the 

ES cell self-renewal factors c-Myc and Klf4 (Figure 5) (Takahashi et al., 2007, 

Takahashi and Yamanaka, 2006). The generation of iPS cells has revolutionised stem 

cell research. Currently, protocols are being developed to improve iPS cell generation, 
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for example by only transient factor expression or the discovery of small molecule 

inducers of pluripotency (Li et al., 2011). Having in hand patient-derived pluripotent 

cells gives stem cell researchers the promise of being able to study, modify and inhibit 

pathogenesis by using these cells for patient-specific cell-based therapies. However, iPS 

cells have been reported to show significant discrepancies to pluripotent ES cells, 

particularly in their epigenetic state (Kim et al., 2010, Lister et al., 2011, Polo et al., 

2010). This makes iPS cells a hybrid of pluripotent embryonic cells and aged adult cells 

and thus an even more artificial cell system than in vitro-cultured ES cells. Both cell 

types have been reported to harbour genomic abnormalities which can predispose ES 

and iPS cells to increased self-renewal and elevated expression of oncogenes (Laurent 

et al., 2011). Thus, implantation of these cells can induce tumour development in vivo, 

as was shown after stem cell transplantation of ES cell-derived immature Nestin+ 

neuroepithelial cells into the striatum of Parkinsonian rats (Roy et al., 2006). In vitro-

differentiation and subsequent transplantation might limit tumour growth in engrafted 

hosts. Furthermore, it has been described that in certain pathologies and tissues, 

differentiation signals are absent, for example in the chemically lesioned brains of rats 

(Ben-Hur et al., 2004). Thus, differentiation signals have to be provided in advance in 

vitro before transplantation.  

However, the transplantation of differentiated cells carries other risks. On the one hand, 

transplanted differentiated cells seem to be more unlikely to be integrated into the host 

tissue and thus do not survive as was shown for example in the brain (Park et al., 2005). 

On the other hand, in vivo-differentiation of many cell types is incompletely understood. 

Conditions for the in vitro-differentiation of many cell types, for example many 

subtypes of neurons, have not been established yet and the functionality of many in 
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vitro-differentiated cells still has to be proved (Wu et al., 2007). Therefore, 

understanding stem cell differentiation during embryonic development is a prerequisite 

for the efficient in vitro-differentiation of functional cells for cell-replacement therapies.  

 

Figure 5 Induced pluripotent stem cells 
Schematic representation of the in vitro-generation of induced pluripotent stem cells by 
the introduction of the genes Oct4, Sox2, c-Myc and Klf4 into fibroblasts isolated from 
patients. 
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1.2 Neural stem cells and cortical brain development 
As mentioned above, during gastrulation of mammalian development, the three primary 

germ layers are formed. The specification of epiblast cells into ectoderm, endoderm and 

mesoderm cells follows defined spatial and temporal signals which form gradients 

alongside different axes of the embryo.  

 

1.2.1 Neurulation 
For the induction of ectoderm cells, it is necessary to inhibit BMP-, Wnt- and Nodal-

signalling which induce endoderm and mesoderm formation (Figure 1). Antagonists of 

these pathways such as Noggin and Chordin for BMP-signalling, Dkk1 (dickkopf 

homolog 1) for Wnt-signalling and Cerberus for Wnt- and Nodal-signalling are secreted 

by cells in the primitive node or cells adjacent to the ectoderm (del Barco Barrantes et 

al., 2003). Additionally, FGF-signalling supports efficient induction of the 

neuroectoderm fate and is required for the expansion of neural stem cells (NSCs) in the 

neural plate (Streit et al., 2000). Recent data in non-vertebrates has shown that neural 

induction requires FGF signals leading to the activation of the MEK (MAPK/ERK 

kinase)/ERK (extracellular signal-regulated kinase)-signalling pathway (Hudson et al., 

2007, Pera et al., 2003). Furthermore, it is believed that early signals from primitive 

node cells already specify a regional identity for neural stem cells in the neural plate and 

thus determine which parts of the nervous system will be formed by which NSCs 

(reviewed in Stiles and Jernigan, 2010). During neurulation, invagination of the neural 

plate creates the neural tube which will develop into the central nervous system (CNS) 

(Figure 6). A Wnt-gradient determines anterior and posterior cells. Posterior cells show 

highly activated Wnt-signalling whereas Cerberus and Dkk1 inhibit Wnt-signalling at 
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the anterior end (Ciani and Salinas, 2005). Furthermore, retinoic acid (RA) signalling 

has been shown to be highly expressed in the posterior neural tube (reviewed in Maden, 

2007). The dorsoventral axis of the neural tube is determined by opposite gradients of 

BMP and sonic hedgehog (Shh) where BMP is secreted dorsally by the cells of the 

overlying ectoderm and Shh ventrally by the notochord (Figure 6) (reviewed in Dhara 

and Stice, 2008). The anterior part of the neural tube is the embryonic precursor of the 

brain, the posterior part develops into the spinal cord. The hollow cavity of the anterior 

neural tube eventually forms the ventricular system of the brain. The most 

undifferentiated cells line up in an area adjacent to the ventricles which is called the 

ventricular zone (VZ).  
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Figure 6 Neurulation 
Schematic representation of neural plate invagination and neural tube formation during 
neurulation. Patterning of the ectoderm-derived neural tube along the anteroposterior 
and dorsoventral axes occurs by gradients of different factors secreted by adjacent cells 
from the ectoderm-derived epidermis and the mesoderm-derived notochord. 
 

1.2.2 Brain development 
After neurulation, the anterior part of the neural tube expands to develop into the three 

primary brain vesicles. The most anterior vesicle, the prosencephalon is the precursor of 

the forebrain, followed by the mesencephalon which is the precursor of the midbrain 

and most posterior the rhombencephalon which gives rise to the hindbrain (Figure 7a). 

The prosencephalon and the rhombencephalon further divide into the telencephalon and 

the diencephalon or the metencephalon and the myelencephalon respectively       

(Figure 7b). The mesencephalon does not further divide. FGF-signalling, particularly 

induced by FGF8, has been shown to be important for the formation of the 

mesencephalon-derived midbrain (Crossley et al., 1996, Lee et al., 1997). The dorsal 

part of the mesencephalon develops into the midbrain tectum which is involved in the 

processing of auditory and visual reflexes. The telencephalon, the forebrain precursor, is 

divided into the ventral telencephalon (subpallium) and the dorsal telencephalon 

(pallium). The subpallium gives rise to the three ganglionic eminences (medial, lateral 

and caudal) which develop into the basal ganglia deep in the forebrain underneath the 

cortex (Anderson et al., 2001, Corbin et al., 2001, Nery et al., 2002). The ganglionic 

eminences produce various inhibitory interneurons which migrate throughout the 

forebrain for example tangentially into the cortex. The main components of the basal 

ganglia are the striatum, the pallidum, the substantia nigra and the subthalamic nucleus. 

The brain structure generated by the pallium is the forebrain cortex. The dorsoventral 

axis of the telencephalon is determined by opposite GLI3 (GLI family zinc finger 3) and 
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Shh-gradients (Figure 7b) (Motoyama et al., 2003, Aboitiz and Montiel, 2007). GLI3 is 

the dorsalising factor activating BMP- and Wnt-signalling whereas Shh-signalling is 

essential for the formation of the ventral telencephalon.  
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Figure 7 Early brain development 
(a) Drawing of the human embryo around embryonic day (E) 28 when the primary brain 
vesicles, i.e. the prosencephalon, the mesencephalon and the rhombencephalon are 
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formed. (b) Drawing of the E49 human embryo showing the secondary brain vesicles, 
i.e. the telencephalon, the diencephalon, the mesencephalon, the metencephalon and the 
myelencephalon. The dorsoventral axis of the telencephalon is determined by opposite 
GLI3-Shh gradients.  
 

1.2.3 Cortex development 
The cortex is the most complex and most evolved structure of the mammalian brain. It 

is the largest part of the human brain and is involved in higher brain function such as 

thought, speech, memory and the processing of various stimuli. Neural stem cells in the 

ventricular zone of the developing cortex are refined alongside the anteroposterior axis 

by expression of opposite gradients of the anterior factors Pax6 (paired box 6) and Sp8 

(transcription factor Sp8) and the posterior factors Emx2 (empty spiracles homeobox 2) 

and COUP-TF1 (chicken-ovalbumin upstream promoter-transcription factor 1)   

(Figure 8) (reviewed in O'Leary and Nakagawa, 2002, O'Leary and Sahara, 2008, 

O'Leary et al., 2007). High levels of Pax6 and Sp8 in combination with low Emx2 and 

COUP-TF1 levels specify neural progenitors for the formation of the motor cortex 

whereas the reverse combination is responsible for the specification of NSCs in the 

visual cortex (Figure 8). Intermediate levels of the anteroposterior factors induces 

NSCs forming the somatosensory cortex. Apart from the tangentially migrating 

inhibitory neurons generated in the subpallium, most of the excitatory neurons in the 

cortex are formed in the cortical ventricular zone from where they migrate radially into 

the upper layers of the cortex (Figure 9) (Rakic, 1972). At the onset of cortex 

development, the pool of early neuroepithelial stem cells expressing markers such as 

CD133 (Prominin 1), Musashi 1 (Msi1) and Nestin expands rapidly in the cortical VZ 

by symmetrical cell division in which one stem cell gives rise to two identical daughter 

stem cells. At the beginning of neurogenesis, neuroepithelial stem cells give rise to 
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radial glia stem cells (RGCs) which represent the major population of NSCs at later 

stages of embryonic cortex development (Figure 9). Radial glia cells (RGCs) were 

initially identified as “radial glia guides” (Rakic, 1972) whose processes formed a 

scaffold for radially migrating neurons in the cortex. Only decades later, it has been 

shown that apart from supporting neuron migration, radial glia cells are in fact neural 

stem cells (Noctor et al., 2001, Malatesta et al., 2000, Tamamaki et al., 2001, Miyata et 

al., 2001). RGC somata are found in the cortical VZ from which a short apical process 

connects it to the ventricular surface through RGC endfeet whereas the long basal 

process extends to the pial surface where it also forms endfeet (reviewed in Gotz and 

Huttner, 2005). At the onset of neurogenesis, RGCs divide asymmetrically to generate 

one RGC and one neuron, the former staying in the VZ, the latter migrating alongside 

the basal process into the intermediate zone (IZ) and the cortical plate (CP), areas of 

more differentiated cells (Figure 9). Cajal-Retzius cells at the pial surface control the 

correct neuronal migration and cortical lamination by expression of the signalling 

molecule Reelin. Furthermore, RGCs can give rise to intermediate progenitor cells 

which populate the subventricular zone (SVZ) adjacent to the VZ (Figure 9). 

Intermediate progenitors in the cortical SVZ express the specific marker Tbr2 (T-box 

brain protein 2) (Englund et al., 2005) and can divide symmetrically either to produce 

two progenitors or to generate two neurons (Haubensak et al., 2004, Miyata et al., 2004, 

Noctor et al., 2004).  
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Figure 8 Patterning of the cortex 
Schematic representation of the mouse forebrain and areas forming the motor, 
somatosensory and visual cortex. The anteroposterior axis of the cortex is determined 
by opposite Pax6/Sp8 and Emx2/COUP-TF1 gradients.  
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Figure 9 Neurogenesis in the cortex 
The ventricular zone (VZ) harbours early neuroepithelial stem cells as well as radial glia 
stem cells (RGCs). RGCs act as radial guides for new-born neurons which migrate into 
the intermediate zone (IZ) and the cortical plate (CP) of the cortex. RGCs also act as 
neural stem cells and can give rise to intermediate progenitors in the subventricular 
zone (SVZ) and differentiated neurons and glia. Cajal-Retzius cells at the pial surface 
are important for correct cortical layering.    
 

1.2.4 Radial glia stem cells 

Since the identification of radial glia cells as a subpopulation of neural stem cells a 

decade ago, radial glia stem cells (RGCs) have been of major interest in the field of 

neuroscience (Noctor et al., 2001, Malatesta et al., 2000, Tamamaki et al., 2001, Miyata 

et al., 2001). Following the discovery of RGCs as glia cells (Rakic, 1972), several 

groups identified and defined marker expression for radial glia cells (reviewed in 

Hartfuss et al., 2001). RGCs express the stem cell marker Nestin [also known as 
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intermediate filament protein (Misson et al., 1988, Edwards et al., 1990)] and RC2 

[(intermediate filament-associated protein RC2 (Misson et al., 1988)] as well as the glial 

markers GLAST [astrocyte-specific glutamate transporter; (Shibata et al., 1997)], 

Vimentin (Dahl et al., 1981, Schnitzer et al., 1981), and BLBP [brain-lipid binding 

protein; (Feng et al., 1994)] (Figure 10) (reviewed in Chanas-Sacre et al., 2000, 

Hartfuss et al., 2001). Interestingly, BLBP is a downstream target of the Notch 

signalling pathway which has been shown to be crucial for radial glia maintenance via 

its Hairy and Enhancer of Split (Hes) target genes (Hatakeyama et al., 2004). It has been 

described that during neurogenesis, subpopulations of RGCs exist which express 

distinct levels of the radial glia markers RC2, BLBP and GLAST. Subpopulations of 

RGCs show distinct lineage potentiality, for example early BLBP-positive RGCs have 

been shown to be mainly bi-potential developing into neurons and glia whereas RGCs 

expressing GLAST have been shown to mainly produce neurons (reviewed in Pinto and 

Gotz, 2007). It is believed that lineage specification already occurs early during RGC 

development defining neurogenic and gliogenic radial glia cells, although neurons and 

differentiated glia are formed at different time points with neurogenesis preceding 

gliogenesis (reviewed in Miller and Gauthier, 2007). Furthermore, regional and 

temporal specification has been shown to be important also within the RGC population 

(reviewed in Pinto and Gotz, 2007). In vitro-differentiation and transplantation 

experiments have shown that, when isolated at various stages of embryonic cortex 

development, region-specific neural stem cells are determined to develop into specific 

cortical layer neurons (McConnell and Kaznowski, 1991, Frantz and McConnell, 1996). 

This was corroborated by the discovery that precursors committed towards a layer-

specific neuron already show marker expression of these neurons (Kriegstein and Gotz, 
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2003). Furthermore, it has been shown that whereas ectopic transplantation of early 

NSCs into a mouse embryo at later stages of development has the potential to generate 

the correct neurons formed during the host stage of development, the reverse 

experiment showed that late NSCs are restricted in their fate and cannot generate stage- 

and region-specific neurons in the younger embryo (Desai and McConnell, 2000). The 

crucial transcription factor restricting late NSCs in their differentiation potential is 

FoxG1 (Hanashima et al., 2004, Shen et al., 2006). Up to E15 in mouse development, 

FoxG1 inactivation can reprogramme late NSCs into early NSCs which have the 

potential to differentiate into early born cortical neurons such as Cajal-Retzius cells 

(Shen et al., 2006). It has been suggested that NSC fate restrictions are dependent on 

extrinsic cues contained within the NSC population as well as on intrinsic signalling 

events (Shen et al., 2006, Leone et al., 2008), but the critical signalling pathways 

involved in cell fate decisions into neuronal subtypes of the cortex remain poorly 

defined (reviewed in Molyneaux et al., 2007). 
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Figure 10 Neural stem cell differentiation 
Early neuroepithelial stem cells marked by CD133 (Prominin 1), Musashi1 (Msi1) and 
Nestin develop into radial glia stem cells which express Nestin, RC2, GLAST, 
Vimentin and BLBP. Radial glia stem cells give rise to glial [marker: GFAP (glial 
fibrillary acidic protein), NG2 (chondroitin sulfate proteoglycan NG2) and Nestin] and 
neuronal [marker: Tbr2, Doublecortin (Dcx) and Nestin] progenitors which differentiate 
into GFAP/Connexin 43 (Cx43)/S100-positive astrocytes and NG2/O4 
(oligodendrocyte marker O4)-positive oligodendrocytes or neurons respectively. 
Typical neuronal markers are NeuN (neuronal nuclei), Map2 (microtubule-associated 
protein 2), Dcx, Brn2 (brain-2), Tbr1 (T-box brain protein 1) and Ctip2 (COUP-TF 
interacting protein 2). 
 
 



Chapter 1. Introduction 

 53 

1.2.5 Apoptosis in the developing brain 

Apart from NSC proliferation and differentiation, programmed cell death, i.e. apoptosis, 

of NSCs and neurons, plays a crucial role in the specification of the developing brain 

(Rakic and Zecevic, 2000). Dependent on the brain region, up to 70% of neural cells, as 

seen in some cortical layers (Rabinowicz et al., 1996), undergo apoptosis during brain 

development. Interestingly, levels of apoptotic cells are particularly high among NSC 

and progenitor populations during early neural development (Rakic and Zecevic, 2000, 

de la Rosa and de Pablo, 2000, Yeo and Gautier, 2004). The physiological disposal of 

neural cells occurs due to competition of cells for neurotrophic survival factors and thus 

guarantees the formation of correct neuronal networks in the developing brain        

(Levi-Montalcini, 1964, Huang and Reichardt, 2001). Furthermore, it is believed that 

apoptosis is also responsible for correcting errors in wrongly produced or migrated 

neurons (Buss and Oppenheim, 2004). However, the intrinsic signalling events 

governing apoptosis of neural cells during brain development are incompletely 

understood.   

 

1.2.6 In vitro-differentiation of NSCs 
Embryonic brain development is a series of refinements and specifications of neural 

stem cells through the expression of various signalling molecules. Based on discoveries 

from studies of embryonic brain development, signalling molecule combinations are 

now widely used to propagate and differentiate specific NSC and neuron subtype 

populations. Inhibitors of BMP-signalling such as Noggin and the activation of retinoic 

acid (RA) signalling have been widely used to potentiate neural induction in human and 

mouse ES cell cultures (Figure 11) (Bain et al., 1996, Schuldiner et al., 2001). FGF 
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signalling activation is commonly used to expand NSC cultures in vitro (Carpenter et 

al., 2001, Okabe et al., 1996) whereas activation of Shh and Notch signalling keeps 

NSCs in an undifferentiated and plastic state (Elkabetz et al., 2008). Several groups 

have been able to direct differentiation into various neuronal subtypes (Figure 11). 

FGF2 treatment followed by FGF8 and Shh generate forebrain dopaminergic neurons 

whereas FGF8 and Shh followed by ascorbic acid (ASA) and BDNF (brain derived 

neurotrophic factor) generates midbrain dopaminergic neurons (Yan et al., 2005, Perrier 

et al., 2004, Kim et al., 2002). In a similar protocol, using FGF4 instead of FGF8 

induces hindbrain serotonin neuron formation (Barberi et al., 2003). Furthermore, 

retinoic acid followed by Shh led to efficient production of motoneurons (Li et al., 

2005, Shin et al., 2005). Also cortical neurons were derived from ES cells in vitro 

treated with Shh signalling inhibitor (Gaspard et al., 2008). Interestingly, Gaspard et al. 

were able to show that the temporally specified generation of distinct layer-specific 

neuronal subtypes is recapitualed in vitro suggesting that after inhibition of Shh 

signalling, intrinsic mechanisms govern corticogenesis (Gaspard et al., 2008). 
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Figure 11 In vitro-differentiation into neurons 
Schematic representation of in vitro-differentiation from ES cells via NSCs into various 
types of differentiated neurons including factors involved in the differentiation into 
specific neurons. 
 

1.2.7 Cell replacement therapies and their risks and promises for the 
treatment of neurological disorders  

Some of the in vitro-generated neurons either from ES cells or iPS cells have been 

shown to functionally integrate into physiological neuronal networks in mice (Gaspard 

et al., 2008) or even in pathological conditions for example in an animal model for 

Parkinson’s Disease (PD) or spinal cord injury (Kim et al., 2002, Keirstead et al., 2005, 

Wernig et al., 2008).  
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However in humans, cell-based transplantations are only in their infancy. 

Transplantation of fetal midbrain tissue into the brains of PD patients only showed 

modest improvements of the condition and some patients developed dyskinesias most 

likely from overdosing with graft cells (Lindvall and Hagell, 2001, Hagell et al., 2002, 

Freed et al., 2001). Currently, human umbilical cord blood cells as well as adult stem 

cells are used in clinical trials for a wide range of diseases including neurological 

disorders. Up to date, many studies involving autologous transplantation of 

haematopoietic, mesenchymal and neural stem cells have shown that these cells are safe 

to use in patients (Trounson et al., 2011). However, the efficacy of treatments has often 

been limited, mainly due to insufficient survival and functional integration of engrafted 

cells for example in haematopoietic and mesenchymal stem cell transplantation for 

myocardial regeneration in heart attack patients (Kearns-Jonker et al., 2010, Rangappa 

et al., 2010, Sun et al., 2010). Consequently, in many cases, there is need for 

optimisation of treatment timing, cell type, dose and delivery method. Recently, it has 

been reported that cardiac stem cells can efficiently improve myocardial contractility in 

heart attack patients (Bolli et al., 2011). Moreover, the use of haematopoietic stem cells 

in autoimmune disorders such as multiple sclerosis and Wiskott-Aldrich disease has 

shown to markedly improve the patients’ condition (Boztug et al., 2010, Capello et al., 

2009). Nevertheless, in many cell-based therapies, it is still unclear whether there is 

long-term remission and whether the therapeutic benefits can outweigh the risks for 

example regarding the immunosuppression required for allogenic transplantation 

(Pasquini et al., 2010).  

Studies using neural stem cells isolated from adult CNS biopsies and the fetal and 

neonatal brain are less advanced - although until now, no adverse effects have been 
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detected after transplantation of these cells in Phase I clinical trials for example in 

patients of the myelination disorder Pelizaeus-Merzbacher disease (PMD), patients with 

spinal cord injury and patients of amyotrophic lateral sclerosis (ALS) (Trounson et al., 

2011). The efficacy of treatments using neural stem cells in various neurological 

disorders is unclear to date. However, there is evidence of persistent clinical benefits 

with regard to motor recovery and dopamine uptake in Phase II clinical trials with 

patients of Parkinson’s disease after autologous NSC transplantation (Lévesque et al., 

2009). Interestingly, the manipulation of NSCs might be an option for anti-cancer 

therapy. Modified NSCs producing a pro-drug activating enzyme (cytosine deaminase) 

have been transplanted into inoperable glioblastoma patients, where the NSCs target the 

tumour (Ostertag et al., 2011, Trounson et al., 2011). After the application of the non-

toxic pro-drug 5-Fluorocytosine, the enzyme converts it into the cytotoxic anti-cancer 

drug 5-Fluorouracil which is expected to destroy the tumour. Glioblastoma patients are 

currently treated in Phase I/II clinical trials, but the efficacy of this treatment is still to 

be evaluated.  

Preclinical studies for the first clinical application of human ES cell-derived cells is 

underway for the transplantation of ES-cell-derived oligodendrocytes into patients with 

spinal cord injury (comment in Alper, 2009). Furthermore, human ES cells have been 

successfully differentiated into pigmented epithelial progenitor cells and injected into 

patients of juvenile and age-related macular degeneration (Mason et al., 2011, Trounson 

et al., 2011). Similar to many studies using adult stem cells, the efficacy of treatments 

involving ES cells still needs to be proven. Unlike for adult neural stem cells, it remains 

elusive whether ES cells can be differentiated and purified sufficiently to prevent 

tumour formation in humans after transplantation. We are still at the very beginning of 
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characterising iPS cells and identifying the potential and risks of artificially induced 

pluripotency in cell-based therapy (Hayden, 2011, Dolgin, 2011).  

Understanding in vivo-differentiation and survival of stem cells and their progeny is a 

prerequisite to governing in vitro-differentiation and functional integration of cells into 

tissues in general and of neurons into the diseased brain in particular.  
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1.3 Notch: Stem cell guard and fate determinator 
One of the crucial factors in stem cell maintenance and cell fate decision from mid-

gestation onwards is Notch. Notch signalling is one of a small number of pathways 

which is used iteratively in development to control stem cell function and regulate the 

generation of differentiated cells.  

 

1.3.1 The discovery of Notch 
Much from what is known to date about the Notch signalling pathway has been 

discovered in studies in Drosophila. The Notch locus was described almost a century 

ago when John S. Dexter found a X-linked dominant mutation in Drosophila which led 

to a notch in the wings of the mutant fruit fly (Dexter, 1914, Mohr, 1919, Morgan and 

Bridges, 1916). In 1983, the Drosphila Notch gene was cloned and since then, many 

studies have contributed to defining Notch signalling as one of the best-conserved 

pathways involved in development and stem cell biology (Artavanis-Tsakonas et al., 

1983, Artavanis-Tsakonas et al., 1999). However, apart from elucidating more and more 

aspects of Notch signalling, recent work on Notch has also added a considerable 

complexity to what seemed to be a straightforward ligand-receptor interaction with no 

downstream secondary messengers (reviewed in Bray, 2006). 

 

1.3.2 Notch receptors and Notch ligands 

In contrast to the one Notch receptor in fruit flies, humans and mice carry four genes 

encoding for Notch receptors: NOTCH1, NOTCH2, NOTCH3 and NOTCH4. Deficiency 

of Notch1 or Notch2 function leads to embryonic lethality in mice around embryonic 
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day (E) 11.5 with normal development observed until E9, indicating that Notch 

signalling does not play an essential role in early embryogenesis (Swiatek et al., 1994, 

Conlon et al., 1995, Hamada et al., 1999, Shi et al., 2005). Consistently, Notch 

activation in ES cells in vitro does not block differentiation of these cells (Schmitt et al., 

2004). Lack of Notch3 and Notch4 does not result in abnormal development suggesting 

that Notch1 and Notch2 can compensate for their loss during embryogenesis (Krebs et 

al., 2000, Krebs et al., 2003). However, it has been reported that Notch3 and Notch4 are 

involved in vascular morphogenesis (Krebs et al., 2000, Domenga et al., 2004). Apart 

from the four Notch receptors, there are six Notch ligands known in mammals which 

are Delta1, Delta2, Delta3, Delta4, Jagged1 and Jagged2. Inactivation of Delta1, Delta4 

or Jagged1 has been shown to lead to embryonic lethality in mice around mid-gestation 

similar to that seen in Notch1- or Notch2-deficient mice, whereas Jagged2-knockout 

mice die perinatally (Hrabe de Angelis et al., 1997, Duarte et al., 2004, Gale et al., 

2004, Xue et al., 1999, Jiang et al., 1998). Prominent phenotypes in the above 

mentioned Notch receptor and Notch ligand mutants are excessive neuronal 

differentiation, abnormal vasculature and impaired somitogenesis. 

 

1.3.3 The Notch protein 
Notch receptors are single-pass transmembrane proteins containing large extracellular 

domains which consist mainly of epidermal growth factor (EGF)-like repeats which are 

sites for glycosylation and cysteine rich LIN (Lin-Notch) repeats (Figure 12a) 

(reviewed in Haines and Irvine, 2003). The Notch receptor generated in the 

endoplasmic reticulum (ER) interacts with the O-fucosyl transferase (O-Fut) which adds 

the first fucose which is essential for the generation of a functional Notch receptor 
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(Figure 12b) (Shi and Stanley, 2003, Sasamura et al., 2003, Okajima and Irvine, 2002). 

Furthermore, O-Fut has been shown to act as a chaperone for correct Notch folding and 

to mediate Notch transport from the ER to the plasma membrane (Okajima et al., 2005). 

Cell-type dependent O-Fut expression patterns have been suggested to contribute to 

spatial regulation of Notch activity (Okajima and Irvine, 2002). Intramolecular cleavage 

(S1) by Furin-like convertase in the Golgi apparatus generates the mature Notch 

receptor which is further glycosylated by other glycosyl transferases, such as the Fringe 

family of glycosyl transferases, on its way to the plasma membrane (Figure 12c) 

(reviewed in Haines and Irvine, 2003). Variations in glycosylation have been shown to 

alter Notch receptor ligand-affinity and -specificity (Haines and Irvine, 2003, Bruckner 

et al., 2000, Moloney et al., 2000, Sato et al., 2002). 

 

1.3.4 Delta and Jagged 
The physiological activation of Notch occurs by binding of a Notch ligand expressed in 

a neighbouring signal-sending cell to the Notch receptor in the signal-receiving cell. 

The Notch ligands Delta and Jagged are transmembrane proteins whose extracellular 

domain contains a N-terminal DSL (Delta, Serrate and Lag-2) domain essential for 

binding to the Notch receptor, several EGF-like repeats and in the case of Jagged Notch 

ligands, they also carry a cysteine rich domain (Figure 12a). Posttranslational 

modifications of these ligands have been shown to regulate Notch ligand activity. The 

E3 ubiquitin ligases Neuralized 1 and 2 (Neur1/2) and Mindbomb 1 and 2 (Mib1/2) 

have been shown to ubiquitinate Notch ligands enabling the interaction between Notch 

ligands and the ubiquitin-binding protein Epsin and Auxilin which is required for Notch 

ligand endocytic activation (Figure 12d) (Pavlopoulos et al., 2001, Le Borgne et al., 
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2005, Wang and Struhl, 2004, Wang and Struhl, 2005, Hagedorn et al., 2006). 

Furthermore, in Drosophila, the immunoglobulin C2-type cell adhesion molecule 

Echinoid has been suggested to contribute to endocytic activation of Delta and 

Echinoid-mediated cell-cell contact can promote Notch-Delta interactions (Escudero et 

al., 2003, De Joussineau et al., 2003). Thus ligand localisation in the plasma membrane 

seems to also play a role in Notch ligand activity. This is corroborated by studies 

characterising protein-protein interaction domains such as PDZ-binding motifs in the 

intracellular domains of some Notch ligands. It has been shown that via these domains, 

Notch ligands bind to cytoplasmic scaffolding proteins which determine their 

localisation (Wright et al., 2004, Ascano et al., 2003, Pfister et al., 2003). Another 

factor to influence Notch signalling activity are soluble Notch ligands. Proteolytic 

cleavage at the plasma membrane results in soluble Delta and Jagged ligands which 

have been shown to inhibit Notch signalling in most circumstances (Klueg et al., 1998, 

Qi et al., 1999, Hicks et al., 2002, Mishra-Gorur et al., 2002, Sun and Artavanis-

Tsakonas, 1997), although there are also reports about soluble Notch ligands activating 

the Notch pathway in certain cellular contexts (Hicks et al., 2002, Sapir et al., 2005, 

Chen and Greenwald, 2004). 

 

1.3.5 Notch receptor endocytosis and trafficking 
Another way of regulating the Notch pathway is via endocytosis and trafficking of the 

Notch receptor which controls the amount of Notch receptor available for signalling in 

the plasma membrane. The cytoplasmic Notch inhibitor Numb has been shown to be 

involved in Notch receptor ubiquitination, endocytosis and subsequent proteasome-

dependent degradation (Figure 12e) (McGill and McGlade, 2003, Berdnik et al., 2002). 
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Furthermore, disruptions in certain parts of the endocytic pathway such as the sorting of 

ubiquitinated membrane proteins by the ESCRT complex results in dramatic 

hyperplasia due to Notch overactivation (Thompson et al., 2005, Vaccari and Bilder, 

2005). Another protein involved in Notch internalisation is the E3 ubiquitin ligase 

Deltex which has been shown to either promote or inhibit Notch signalling by 

ubiquitination of the Notch intracellular domain dependent on Deltex binding partners 

and the cellular context (Mukherjee et al., 2005, Matsuno et al., 1995, Hori et al., 2004, 

Wilkin et al., 2008). Furthermore, the Itch/NEDD4/Su(dx) family of HECT domain E3 

ubiquitin ligases have been reported to act as negative regulators of Notch signalling by 

adding ubiquitin to the Notch intracellular domain as a degradation signal. However, 

mutations in these HECT E3 ligases only lead to mild phenotypes suggesting that they 

are not critically involved in Notch regulation (Lai, 2002, Qiu et al., 2000, Sakata et al., 

2004, Bray, 2006).  

 

1.3.6 Notch activation 
As a consequence of successful ligand binding to the Notch receptor, the 

metalloproteases ADAM10 (A disintegrin and metalloprotease 10; also known as 

Kuzbanian) and ADAM 17 (also known as TACE, tumour necrosis factor-α converting 

enzyme) mediates cleavage (S2) within the extracellular domain (Figure 12f) (Mumm 

et al., 2000, Fortini, 2001, Brou et al., 2000, Jarriault and Greenwald, 2005). This 

triggers intracellular cleavages (S3/4) of the Notch receptor by the Presenilin proteases 

of the γ-secretase complex which releases the transcriptionally active Notch intracellular 

domain (NICD) from the plasma membrane (Fortini, 2002, Selkoe and Kopan, 2003, 

Mumm and Kopan, 2000, Struhl and Adachi, 2000). 
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1.3.7 The Notch Intracellular Domain 

The NICD consists of a RAM domain, six ankyrin repeats, nuclear localisation signals 

(NLS), a PEST domain and dependent on the type of Notch receptor additional protein-

protein interaction motifs (Figure 12a). After S3/4 cleavages, the NICD translocates to 

the nucleus where it binds to the highly conserved DNA-binding protein RBPJ 

(recombination signal binding protein for immunoglobulin kappa J region; also known 

as CBF1, CSL) (Figure 12g). RBPJ is constitutively bound to the DNA and forms a 

trimeric complex with NICD and the co-activator Mastermind (Mam) (Nam et al., 2006, 

Wilson and Kovall, 2006, Wu et al., 2000, Petcherski and Kimble, 2000). This complex 

can then recruit further co-activators such as SKIP (Ski-interacting protein) and 

epigenetic modifiers such as histone acetylase p300 (Zhou et al., 2000, Wallberg et al., 

2002). Another factor recruited to the complex is cyclin-dependent kinase-8 (CDK8). 

Precise regulation of the Notch pathway is a prerequisite for Notch function in the 

spatial and temporal regulation of cell fate decisions during development requiring that 

the nuclear effectors do not have a long half-life. CDK-8 phosphorylates NICD and thus 

NICD becomes a target for the F-box domain E3 ubiquitin ligase Fbw7 (F-box and WD 

repeat domain containing-7; also known as SEL-10) which ubiquitinates NICD for 

proteasome-dependent degradation (Figure 12g) (Fryer et al., 2004, Fryer et al., 2002, 

Gupta-Rossi et al., 2001, Wu et al., 2001, Oberg et al., 2001). In the absence of NICD, 

RBPJ remains bound to the DNA and forms a repressor complex recruiting the co-

repressors Groucho, CtBP, SMRT, SHARP, SKIP, CIR and histone deacetylases (Zhou 

et al., 2000, Fryer et al., 2004, Nagel et al., 2005, Morel et al., 2001, Kao et al., 1998, 

Oswald et al., 2005, Hsieh et al., 1999). However, RBPJ-mutants only show modest 

derepression in a small number of cells such as sensory organ precursors in Drosphila 

(Barolo et al., 2000, Koelzer and Klein, 2003, Castro et al., 2005) indicating that RBPJ-
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repressor complexes are only responsible for a small part of transcriptional repression of 

target genes while RBPJ function seems to be primarily to mediate NICD driven 

transcription (Morel and Schweisguth, 2000). Apart from the canonical RBPJ-

dependent Notch pathway, Notch has been shown to act in some circumstances in a 

RBPJ-independent manner. For example, Notch inhibits muscle cell differentiation and 

can associate with components of the Wnt-signalling pathway such as β-catenin to 

regulate its transcriptional activity, both autonomously of RBPJ (Shawber et al., 1996, 

Nofziger et al., 1999, Brennan et al., 1997, Axelrod et al., 1996, Hayward et al., 2005). 

Rapid attenuation of Notch signalling has been shown to occur in some cells through an 

autoinhibitory feedback loop in which the Notch target genes of the Hes family of 

transcription factors can suppress Notch transcription (Pourquie, 2003, Giudicelli and 

Lewis, 2004). Furthermore, transient Notch pathway activation has been suggested to be 

controlled by destruction of the NICD (Fryer et al., 2004, Fryer et al., 2002). 
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Figure 12 The Notch-signalling pathway 
(a) Structural motifs of the Notch receptor and the Notch ligands Delta and Jagged.     
(b) Posttranslational fucosylation of the Notch receptor by the O-fucosyl transferase  
(O-Fut) in the endoplasmic reticulum (ER). (c) Intramolecular cleavage (S1) of the 
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Notch receptor by the Furin-like convertase in the Golgi apparatus and subsequent 
glycosylation of the Notch receptor by the Fringe family of glycosyl transferases.       
(d) Ubiquitination of Notch ligands by Neuralized 1 and 2 (Neur1/2) and Mindbomb 1 
and 2 (Mib1/2) and subsequent binding of Epsin and Auxilin which is required for 
endocytic activation of Notch ligands. (e) Notch trafficking, endocytosis and potential 
proteasomal degradation is mediated by Numb, ESCRT and the E3 ubiquitin ligases 
Deltex and Itch. (f) Activation of the Notch receptor by ligand binding leads to S2 
cleavage by ADAM10/17 and S3/4 cleavages by the γ-secretase complex, Notch 
intracellular domain (NICD) release from the plasma membrane and NICD 
translocation to the nucleus. (g) In the nucleus, NICD binds to RBPJ and Mastermind 
(Mam) and together with other co-activators such as SKIP and p300 activates 
transcription of typical target genes such as Hes1/5 and Hey1 (Hairy/enhancer-of-split 
related with YRPW motif 1). In the absence of NICD, RBPJ is bound by co-repressors. 
Fbw7 ubiquitinates the NICD after NICD-phosphorylation by CDK8 which leads to 
proteasomal degradation. The NICD can also interact with other proteins in the nucleus 
for example β-catenin. 
 

1.3.8 Notch in lateral inhibition 
The Notch ligand-receptor interaction proves to be ideal for cell fate decisions which 

follow the lateral inhibition model. Cells undergoing differentiation upregulate Notch 

ligands which inhibit differentiation in the Notch receptor expressing neighbouring cell 

(Doe and Goodman, 1985, Seydoux and Greenwald, 1989, Nye et al., 1994, Kopan et 

al., 1994, Henrique et al., 1995, Chitnis et al., 1995, Henrique et al., 1997, Kawaguchi 

et al., 2008b). Recent work from Sprinzak et al. showed that apart from activating 

trans-interactions of Notch receptor and ligand expressed on neighbouring cells, cis-

interactions of Notch receptor and ligand which inhibit each other can occur on the 

same cell (Sprinzak et al., 2010). By this mechanism, the difference in Notch receptor 

and ligand between neighbouring cells is amplified and generates mutually exclusive 

Notch signalling states in these cells. Furthermore, it has been reported that in 

Drosophila neural development, filopodia containing Delta can also activate Notch 

signalling in non-neighbouring cells allowing one cell to influence a cohort of cells in 

tissue development (De Joussineau et al., 2003, Milan and Cohen, 2010). The required 
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cell-cell contact makes Notch signalling dispensable for early embryogenesis where 

gradients of soluble factors activate for example BMP-, Wnt- and Shh-signalling for 

patterning and germ layer specification (Shi et al., 2005). However, Notch has been 

implicated in boundary formation between different developmental structures (reviewed 

in Irvine, 1999).  

 

1.3.9 Notch in cell fate decisions 
Within various tissues, Notch-signalling has been shown to be involved in somatic stem 

cell maintenance and lineage decisions. In the haematopoietic system, Notch is essential 

for the formation of haematopoietic stem cells (HSCs) from early haematogenic 

endothelial cells (Figure 13a) (Kumano et al., 2003, Hadland et al., 2004). Also in the 

adult, Notch activation in HSCs by neighbouring cells in the osteoblastic niche is 

crucial for HSC maintenance and inhibits differentiation (Calvi et al., 2003, Duncan et 

al., 2005). Furthermore, Notch signalling has been reported to inhibit myeloid 

differentiation from precursors (reviewed in Suzuki and Chiba, 2005), to favour T cell 

development over B cell development at the progenitor stage (Radtke et al., 1999, Pui et 

al., 1999), to promote thymocyte differentiation and proliferation (Ciofani et al., 2004, 

Hadland et al., 2001) and to be crucial for marginal B cell development in the spleen 

(Kuroda et al., 2003, Saito et al., 2003, Tanigaki et al., 2002). During vasculature 

formation, Notch is involved in endothelial cell migration and proliferation (Iso et al., 

2003, Krebs et al., 2000), smooth muscle cell maturation (Domenga et al., 2004), 

vascular remodelling processes (Iso et al., 2003) and arterial-venous specification 

promoting the arterial fate (Domenga et al., 2004, Duarte et al., 2004, Gale et al., 2004, 

Krebs et al., 2004, You et al., 2005). Furthermore, it has been shown that Notch 
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function in the vascular system is highly dependent on its target genes of the Hey 

(Hairy/enhancer-of-split related with YRPW motif) family of transcription factors 

(Fischer et al., 2004, Iso et al., 2003). To date, Notch has been found to control lineage 

specification in many tissues. In the pancreas, Notch inhibits endocrine-lineage 

differentiation (Apelqvist et al., 1999, Jensen et al., 2000). In the intestine, Notch is 

required for stem cell/progenitor maintenance and promotes absorptive progenitor 

differentiation while inhibiting the secretory lineages (Figure 13b) (Fre et al., 2005, 

Milano et al., 2004, Sancho et al., 2010, van Es et al., 2005).  
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Figure 13 Notch signalling in haematopoietic and intestinal differentiation 
(a,b) Schematic representation of (a) haematopoietic and (b) intestinal differentiation 
and the role of Notch in inhibiting or promoting cell fates. In (a), further differentiation 
of the common myeloid progenitor is not depicted for clarity. 
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1.3.10 Notch in neural development  

The paradigm of Notch function in cell fate decisions has been established in 

Drosophila neural development (Artavanis-Tsakonas et al., 1995, Poulson, 1940). 

Attenuation of Notch signalling has been shown to result in precocious neuronal 

differentiation of neuroectodermal cells (Poulson, 1940, Gaiano and Fishell, 2002, de la 

Pompa et al., 1997, Lutolf et al., 2002). Furthermore, Notch is essential for neural stem 

cell maintenance (Figure 14) (Hitoshi et al., 2002). In the nervous system, Notch 

function is predominantly mediated by its target genes of the Hes (particularly Hes1 and 

Hes5) and Hey family of transcription factors which repress pro-neural transcription 

factors such as Ascl1 in the ventral forebrain and Neurogenin1 and 2 in the cortex 

(Ishibashi et al., 1995, Kageyama and Ohtsuka, 1999, Ohtsuka et al., 1999, Hatakeyama 

et al., 2004, Kageyama et al., 2008, Nieto et al., 2001, Powell and Jarman, 2008). 

Furthermore, Notch downregulation has been shown to be crucial for correct neuronal 

maturation, for example with regard to dendritic arborisation and axonal guidance 

(Berezovska et al., 1999, Redmond et al., 2000, Sestan et al., 1999, Giniger, 1998, Le 

Gall et al., 2008, Song and Giniger, 2011). Apart from inhibiting neurogenesis, Notch 

can promote gliogenesis in some contexts (Morrison et al., 2000, Furukawa et al., 

2000). It has been proposed that Notch acts in a stepwise manner, in which it firstly 

promotes glia precursor development and then favours astrocyte over oligodendrocyte 

differentiation (Figure 14) (Grandbarbe et al., 2003). However, recent work has 

suggested that the role of Notch in glia differentiation is rather permissive than 

instructive (reviewed in Cau and Blader, 2009). Interestingly, recent findings propose 

that Notch might also play a role in binary fate choices in neuronal differentiation. It has 

been reported that Notch is involved in the formation of excitatory and inhibitory 

interneurons in the spinal cord where Notch acts in a context-dependent manner. 
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Whereas Notch activation promotes excitatory interneuron generation dorsally, it 

favours inhibitory interneuron generation ventrally (Mizuguchi et al., 2006, Peng et al., 

2007).  

Direct transcriptional targets of Notch in neural development are BLBP and GFAP 

which are markers of subsets of radial glia and astroglia cells (Anthony et al., 2005, Ge 

et al., 2002). Notably, as discussed above, radial glia cells and reactive astroglia are 

subpopulations of neural stem cells in the developing and adult central nervous system 

(CNS) linking Notch’s function in stem cell maintenance to its function in gliogenesis 

(reviewed in Gaiano and Fishell, 2002). With regard to radial glia cells in the 

developing cortex, it has been suggested that differentiating neurons which express 

Notch ligands migrate alongside the radial glia process into the upper layers of the 

cortex, thereby activating the Notch pathway in the radial glia cell to maintain its stem 

cell character (Figure 9) (Campos et al., 2001). Furthermore, recent work from Yoon et 

al. reported that Mib1 which is essential for Notch ligand activation is primarily 

expressed in intermediate progenitors in the cortical subventricular zone and that Mib1 

deletion resulted in depletion of radial glia cells and precocious differentiation (Yoon et 

al., 2008). This study showed that apart from differentiating neurons, also intermediate 

progenitors are an important source for Notch ligands to stimulate radial glia stem cell 

maintenance. Furthermore, the notion that Notch signalling is attenuated in intermediate 

progenitors was corroborated by identifying Tbr2, a bona fide marker for intermediate 

progenitors, as a target of the pro-neural transcription factor Neurogenin 2 which is 

repressed by Notch in radial glia cells (Ochiai et al., 2009). Apart from differences in 

Notch activation between intermediate progenitors in the cortical SVZ and radial glia in 

the VZ, two distinct cell populations differing in Notch/Hes5 levels have been identified 
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within the VZ (Kawaguchi et al., 2008a, Basak and Taylor, 2007, Mizutani et al., 2007). 

This suggests that Notch is also involved in generating stem cell heterogeneity in the 

VZ, however the mechanism of how distinct subsets of stem cells utilise Notch is 

unclear (Pierfelice et al., 2011). It is likely that cell type-dependent Notch function is 

due to signalling integration into the network of other pathways. For example, the 

Notch-targets Hes1 and Hes5 form complexes with JAK2 (Janus kinase 2) and STAT3 

(signal transducer and activator of transcription 3) for mutual positive regulation in 

radial glia which has been shown to be important for stem cell maintenance (Kamakura 

et al., 2004). Also in the adult brain, Notch has been shown to be required for stem cell 

maintenance (Ables et al., 2010, Breunig et al., 2007, Ehm et al., 2010, Imayoshi et al., 

2010).  

Taken together, Notch signalling is of crucial importance during later stages of 

embryonic development where it regulates somatic stem cell maintenance and makes 

binary cell fate decisions within various tissues. However, the mechanisms controlling 

Notch activation or attenuation required at specific developmental steps is incompletely 

understood. 
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Figure 14 Notch signalling in neural differentiation  
Schematic representation of neural differentiation and Notch signalling inhibiting or 
promoting cell maintenance (round arrow) and cell fate decisions. 
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1.4 JNK/c-Jun signalling: Proliferate, die or regenerate 

1.4.1 The discovery of the Jun oncogene 

In contrast to Notch, Jun was not discovered due to its role in development. In 1987, 

Lee et al. found a DNA-binding protein which was able to induce gene transcription 

and therefore was named activator protein 1 (AP-1), but the encoding gene was not 

identified at the time (Lee et al., 1987). AP-1 dependent transcription of the model 

genes used [metallothionein, collagenase and the oncogenic Simian virus 40 (SV40)] 

was strongly induced by treatment with the tumour promoter 12-O-tetradecanoyl 

phorbol 13-acetate (TPA). Thus the AP-1 binding site is also known as the TPA 

response element (Lee et al., 1987, Angel et al., 1987). Strikingly, the AP-1 binding site 

sequence TGA(C/G)TCA was the same as the DNA binding site of the yeast protein 

Gcn4 (general control nonderepressible 4) which had been shown to activate 

transcription (Lucchini et al., 1984, Thireos et al., 1984, Hope and Struhl, 1985). At the 

same time as the discovery of AP-1, Maki et al. cloned the Jun oncogene from avian 

sarcoma virus 17 which showed sequence homology to Gcn4 and was proven to also 

share functional homology (Maki et al., 1987, Vogt et al., 1987, Struhl, 1987). Shortly 

after that, Bohmann et al. and Angel et al. reported that indeed, Jun was AP-1 

(Bohmann et al., 1987, Angel et al., 1988a). Thus, Jun was the first oncogenic 

transcription factor.  

 

1.4.2 c-Jun homo- and heterodimerisation 

Apart from Gcn4 and Jun, the oncoprotein Fos shared the same DNA binding site 

sequence (Curran et al., 1982, Curran and Teich, 1982a, Franza et al., 1988, Rauscher et 

al., 1988b). Interestingly, Fos was found to be tightly associated with a protein called 



Chapter 1. Introduction 

 76 

p39 (Curran and Teich, 1982b). The fact that Gcn4 can dimerise led to the discovery 

that indeed, Jun is p39 and can dimerise with Fos (Rauscher et al., 1988a, Sassone-Corsi 

et al., 1988). The structural explanation followed promptly by Landschulz et al. who 

discovered that several DNA-binding proteins including Jun and Fos contain a protein 

dimerisation domain called  the leucine zipper domain (Landschulz et al., 1988). Apart 

from Jun [identified as viral Jun (v-Jun) and homologous to cellular Jun (c-Jun)] and 

Fos (c-Fos), other members of these basic-zipper (bZIP) families of transcription factors 

have also been discovered, namely JunB and JunD of the Jun-family (Nakabeppu et al., 

1988, Ryder et al., 1988) and FosB, Fra1 and Fra2 of the Fos-family (Franza et al., 

1988, Cohen and Curran, 1988, Foletta et al., 1994, Zerial et al., 1989). Dimerisation of 

c-Jun is essential for DNA-binding (Halazonetis et al., 1988, Smeal et al., 1989). While 

c-Jun can either homo- or heterodimerise, Fos cannot form homodimers (Halazonetis et 

al., 1988). Other bZIP-transcription factor families have been identified to 

heterodimerise with c-Jun, such as the activating transcription factor (ATF) family 

(Benbrook and Jones, 1990). Furthermore, it has been shown that the heterodimerisation 

partners can alter DNA-binding specificity, for example the c-Jun/ATF2 dimer binds to 

the cAMP-responsive element (CRE) sequence TGACGTCA rather than the TPA 

response element TGA(C/G)TCA (Hai and Curran, 1991, Ivashkiv et al., 1990).  

 

1.4.3 Mitogen-activated protein (MAP) kinase signalling 
Another milestone was the discovery of the Jun N-terminal kinase (JNK), also known as 

stress activated protein kinase (SAPK) (reviewed in Kyriakis et al., 1994), which 

phosphorylates and activates c-Jun linking it to the mitogen-activated protein (MAP) 

kinases signalling pathway (Pulverer et al., 1993, Hibi et al., 1993, Derijard et al., 



Chapter 1. Introduction 

 77 

1994). For its growth-promoting and oncogenic activity, c-Jun requires the upstream 

signal from JNK (reviewed in Vogt, 2001). Together with extracellular signal-regulated 

kinase (ERK) and p38, JNK constitutes the MAP kinases (MAPKs) (Figure 15a). JNKs 

are expressed from three different genetic loci. JNK1, JNK2 and JNK3 give rise to 

multiple isoforms due to alternative splicing (reviewed in Davis, 2000). Whereas JNK1 

and JNK2 are widely expressed throughout the body, JNK3 expression is restricted to 

neural and cardiac cells (Gupta et al., 1996). JNK1, 2 and 3 can be activated by MAPK 

kinases (MAPKKs, MAP2Ks, MKKs, JNKKs). JNKK1 and JNKK2 (also known as 

MKK4 and MKK7) phosphorylate the activation (or T) loop of JNK, which is a 

common structural feature of all protein kinases (Hagemann and Blank, 2001, 

Goldsmith and Cobb, 1994). Upstream to JNKK1 and JNKK2, there is a large number 

of MAPKKK (MAP3Ks) which can act in a stimulus- and cell type-specific manner 

(Davis, 1995). The most potent activators of JNK signalling are the MEK (MAP/ERK 

kinase) kinases (MEKK). MEKK1, 2, 3 and 4 phosphorylate and activate JNKK1 and 

MEKK1, 2 and 3 can also activate JNKK2 (Minden et al., 1994, Blank et al., 1996, 

Gerwins et al., 1997). Other MAP3Ks discovered to activate JNK signalling are for 

example the apoptosis signal regulating kinases 1 and 2 (ASK1, 2) (Ichijo et al., 1997, 

Wang et al., 1998) and the mixed lineage kinases 2 and 3 (MLK2, 3) (Tibbles et al., 

1996, Hirai et al., 1996).  

Signalling specificity within the MAPK pathways with their large number of possible 

protein-protein interactions is mediated via scaffolding proteins which form JNK 

signalling modules (Figure 15b). The JNK interacting protein 1 (JIP1) for example 

provides a scaffold for MLK3/JNKK2/JNK1 interaction after excitotoxic stress in 

neurons which leads to c-Jun activation (Yasuda et al., 1999, Morrison and Davis, 
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2003). However, some MAP3Ks can serve as scaffolds on their own, for example 

MEKK2 mediates the formation of the MEKK2/JNKK2/JNK1 module which activates 

c-Jun (Cheng et al., 2000). Notably, other stimuli in other cell types trigger distinct JNK 

signalling module formation and target activation. For instance, T cell receptor (TCR) 

or TGF-β receptor signalling results in MEKK1/JNKK1/JNK1 module assembly and 

subsequent activation of the JNK target Itch (Xia et al., 1998).  
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Figure 15 MAPK signalling and JNK signalling modules 
(a) Schematic representation of MAPK signalling cascades which are activated by 
various stimuli. MAP3Ks phosphorylate and activate MAP2Ks. MAP2Ks, in turn, 
phosphorylate and activate MAPKs which phosphorylate and activate specific 
transcription factor targets. (b) Drawing of JNK signalling modules which provide 
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signalling specificity. Scaffolding proteins such as JIP1 together with MAP3Ks bind 
JNK signalling proteins to induce specific JNK signalling cascades which results in 
distinct target gene activation and biological outcome. P, phosphate. 
 

1.4.4  Regulation of JNK/c-Jun signalling 
JNK/c-Jun signalling can be activated by various extracellular stimuli, such as growth 

factors, inflammatory cytokines, oncogenic stress, for instance through Ras, chemical 

stress, e.g. phorbol-esters, and radiant stress, for example UV-irradiation (Figure 15a) 

(Lamph et al., 1988, Dunn et al., 2002). JNK binds to the delta docking (DD) region at 

the c-Jun N-terminus and phosphorylates c-Jun N-terminally at serine 63 and serine 73 

within the c-Jun transactivation domain which has been shown to enhance c-Jun 

transactivation funtion (Figure 16) (Smeal et al., 1991). Furthermore, recent 

publications showed that JNK also phosphorylates threonine 91 and threonine 93 within 

the N-terminal transactivation domain, which was implicated in promoting apoptosis as 

a consequence of DNA-damage through continous genotoxic stress (Morton et al., 

2003, Vinciguerra et al., 2008). Threonine 91 and threonine 93 phosphorylation by JNK 

is facilitated by phosphorylation of threonine 95 by kinases of the ataxia telangiectesia 

mutated (ATM)-signalling pathway (Vinciguerra et al., 2008). However, which c-Jun 

functions depend on phosphorylation at serine 63 and 73 or threonine 91 and 93 or at all 

of these four sites is incompletely understood. Apart from the function in 

transactivation, phosphorylation at serine 63 and 73 and threonine 91 and 93 has also 

been shown to be important for c-Jun recognition by the E3 ubiquitin ligase Fbw7 for 

subsequent degradation of N-terminally phosphorylated c-Jun (Figure 16) (Nateri et al., 

2004). Notably, these four JNK-phosphorylation sites can be moderately 

phosphorylated by ERK, however the in vivo effects of this phosphorylation might be 

sub-threshold (Morton et al., 2003, Raivich, 2008).  
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An indirect way of ERK- and phosphoinositide-3-kinase (PI3K)-signalling to influence 

c-Jun action is via phosphorylation and thus inactivation of glycogen synthase kinase-3 

(GSK3). After a priming phosphorylation by an unidentified kinase at threonine 243, 

GSK3 phosphorylates c-Jun at threonine 239, which is an alternative way to render      

c-Jun into a Fbw7-target independent of JNK-phosphorylation (Figure 16) (Wei et al., 

2005). Furthermore, activation of MAPK signalling by various stimuli has been shown 

to induce dephosphorylation at threonine 243 by an unidentified phosphatase which 

results in stabilisation of c-Jun (Morton et al., 2003, Wei et al., 2005). Another way of 

degrading c-Jun has been shown in T cells where c-Jun is targeted by the E3 ubiquitin 

ligase Itch independently of c-Jun phosphorylation status (Gao et al., 2004). Itch can be 

phosphorylated and activated by JNK and subsequently degrades c-Jun in a negative 

feedback mechanism (Gao et al., 2004). However, the Jun gene is a target of the c-Jun 

transcription factor so that c-Jun can autoregulate its levels in a positive feedback loop 

(Angel et al., 1988b).  

Furthermore, ERK plays a role in regulating c-Jun transactivation by phosphorylating 

and activating p300 (Figure 16). The co-activator p300 acetylates lysines 268, 271 and 

273 in the c-Jun C-terminal basic region (BR) which together with the leucine zipper 

(LZ) domain is responsible for DNA binding. Consequently, p300 and acetylated c-Jun 

form a DNA binding complex which can enhance c-Jun transactivation function (Wang 

et al., 2006). 
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Figure 16 c-Jun regulation 
Schematic representation of the c-Jun transcription factor and its regulation by 
JNKK/JNK-, PI3K- and ERK-signalling. DD, delta docking region. TAD, 
transactivation domain. BR, basic region. LZ, leucine zipper domain.                            
P, phosphorylation. A, acetylation. 
 

1.4.5 JNK/c-Jun signalling function 

During embryonic development, JNKs seem to have at least in part redundant functions. 

Neither JNK1-/- nor JNK2-/- nor JNK3-/- mice show lethality or obvious developmental 

defects (Yang et al., 1997, Yang et al., 1998, Dong et al., 1998, Chang and Karin, 

2001). Also JNK1-/-; JNK3-/- and JNK2-/-; JNK3-/- double mutant mice survive and 

exhibit no apparent phenotypes (Kuan et al., 1999). However, JNK1-/-; JNK2-/- double 

mutant mice die around E11.5 due to defects in neural tube closure resulting in 

hindbrain exencephaly which might be in part due to dysregulated apoptosis (Kuan et 

al., 1999). c-Jun-deficient mice are embryonic lethal around mid- and late-gestation 

with the latest time point to derive mutant embryos around E15.5 (Hilberg et al., 1993). 

Jun-/- embryos exhibit a severe defect in hepatogenesis.  
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In order to study JNK-dependency of c-Jun actions, Behrens et al. generated JunAA/AA 

mice which carry Jun alleles with inactivating mutations of the two major N-terminal 

JNK-phosphorylation sites (Ser63Ala, Ser73Ala) (Behrens et al., 1999). Interestingly, 

JunAA/AA mice are viable and show no apparent developmental defects indicating that   

c-Jun function during embryogenesis does not require serine 63 and 73 phosphorylation 

(Figure 17). On the contrary, JunAA/AA mice are protected from neuronal apoptosis 

induced by excitotoxic stress (kainate) suggesting that c-Jun action in neuronal 

apoptosis is dependent on JNK-mediated phosphorylation at serine 63 and 73 (Behrens 

et al., 1999). Moreover, mouse embryonic fibroblasts (MEFs) isolated from c-Jun-

deficient embryos exhibit a severe proliferation defect and undergo premature 

senescence (Johnson et al., 1993). In contrast, Behrens et al. have reported a moderate 

defect in MEF proliferation and no premature senescence in JunAA/AA cultures 

indicating that serine 63 and 73 phosphorylation by JNK is partially involved in c-Jun 

action in proliferation and not in senescence (Figure 17) (Behrens et al., 1999). 

However, the function of these phosphorylations in preventing premature senescence is 

unclear, since data from two studies point towards JNK-independent and JNK-

dependent c-Jun action (Behrens et al., 1999, Wada et al., 2004). 

Furthermore, JNK/c-Jun signalling is involved in epithelial sheet migration during 

development. In Drosophila, the JNK/c-Jun pathway plays an essential role for 

epithelial cell elongation and migration in dorsal closure during mid-embryogenesis 

(Glise et al., 1995, Riesgo-Escovar and Hafen, 1997a, Riesgo-Escovar and Hafen, 

1997b, Hou et al., 1997, Kockel et al., 1997). Reminiscent to dorsal closure in 

Drosophila, fusion of the developing eyelids during mammalian embryogenesis is 

JNK/c-Jun-dependent (Xia and Karin, 2004).  
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At later stages of embryonic development and in the adult, JNK1 and JNK2 play similar 

roles in activating c-Jun to induce programmed cell death of inactive thymocytes 

(Behrens et al., 2001, Sabapathy et al., 2001, Rincon et al., 1998). However, in other 

cellular contexts, JNK1 and JNK2 have been suggested to have opposite effects. After 

exiting the thymus, T helper (Th) cells differentiate into two classes of effector T cells, 

i.e. Th1 and Th2 cells, which differ in their profiles of secreted cytokines. Whereas 

JNK1-/- mice preferentially express a Th2 profile of secreted cytokines (Dong et al., 

1998), JNK2-/- mice show the inverse phenotype, i.e. an increased Th1 response (Yang 

et al., 1998). Similarly, whereas JNK1 phosphorylates c-Jun to increase fibroblast 

proliferation upon serum stimulation, JNK2 phosphorylates c-Jun in unstimulated 

fibroblasts and thus contributes to its degradation (Sabapathy et al., 2004). In the 

intestine, it has recently been reported that activation of JNK/c-Jun signalling leads to 

increased progenitor proliferation and accelerated tumour development (Sancho et al., 

2009). 

Furthermore, JNK/c-Jun signalling has been shown to be involved in metabolic control 

(reviewed in Hotamisligil, 2003). It has been suggested that obesity-induced expression 

of pro-inflammatory cytokines leads to JNK activation which contributes to the 

development of insulin resistance and subsequent Type II Diabetes (Aguirre et al., 

2000, Hirosumi et al., 2002). Strikingly, JNK1-/- mice as well as JIP1-/- mice show 

decreased fat build up and are resistant to developing insulin-resistance, whereas    

JNK2-/- mice are indistinguishable from wild type (wt) mice (Hirosumi et al., 2002, 

Jaeschke et al., 2004). In the light of these findings, JNK inhibitors have been tested and 

found to induce improved insulin sensitivity in animal models of diabetes (reviewed in 

Bogoyevitch et al., 2004).  
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Figure 17 Dependency of c-Jun functions on Ser63/Ser73 phosphorylation by JNK 
Schematic representation of c-Jun functions and their dependency on N-terminal 
phosphorylation of c-Jun at serine 63 and serine 73 by JNK. Green lines point towards 
actions promoted by JNK/c-Jun, red lines point towards actions inhibited by JNK/c-Jun. 
 

1.4.6 JNK/c-Jun signalling in the nervous system 
Many of the JNK signalling components show particularly high expression in the 

nervous system underscoring the importance of JNK signalling in this tissue (Nateri et 

al., 2004, English et al., 1995, Casanova et al., 1996, Gupta et al., 1996, Lee et al., 1999, 

Kim et al., 1999, Zhang et al., 2003a, Zhang et al., 2003b). JNK/c-Jun signalling has 

mainly been associated with regulating apoptosis in the nervous system. c-Jun mediated 

apoptosis has been shown to involve expression of target genes Fas ligand (FasL) and 

pro-apoptotic members of the Bcl2-family of genes such as Bim (Bcl-2 interacting 

mediator of cell death) and dp5 (death protein 5) (Le-Niculescu et al., 1999, Bossy-
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Wetzel et al., 1997, Whitfield et al., 2001, Ma et al., 2007). During embryonic neural 

development, c-Jun is widely expressed after neurulation (Bennett et al., 1997). Strong 

c-Jun expression has been detected before and during periods of intense programmed 

cell death (Sun et al., 2005). Motoneurons that lack survival-promoting signals and thus 

undergo apoptosis exhibit high levels of phosphorylated c-Jun (in the following, 

‘phosphorylated c-Jun’ stands for ‘N-terminally phosphorylated c-Jun’). Also in vitro, 

withdrawal of nerve growth factor (NGF) trophic support from PC12 neuronal cell 

cultures results in upregulation of phosphorylated c-Jun and increased cell death which 

can also be induced by c-Jun over-expression and can be prevented by dominant-

negative c-Jun expression (Ham et al., 1995). In the early developing brain, JNK/c-Jun 

signalling acts in a more complex way. Around E9.5, JNK1-/-; JNK2-/- mice show 

reduced apoptosis in the hindbrain followed by increased apoptosis in the forebrain and 

hindbrain at E10.5 (Kuan et al., 1999, Sabapathy et al., 1999). This indicates that 

JNK/c-Jun signalling has anti- and pro-apoptotic function during brain development 

dependent on the spatial and temporal context. However, c-Jun is not essential for 

apoptosis during CNS development as deletion of c-Jun does not alter physiological cell 

death (Roffler-Tarlov et al., 1996, Herzog et al., 1999). In the postnatal brain, c-Jun has 

been implicated with apoptosis following a plethora of excitotoxic stresses. c-Jun 

activation has been reported after brain ischaemia (Kindy et al., 1991, Wessel et al., 

1991), trauma (Herdegen et al., 1991, Jenkins and Hunt, 1991, Raivich et al., 2004) and 

seizures (Morgan and Curran, 1988, Gall et al., 1990, Gass et al., 1993). Furthermore, 

upregulation of phosphorylated c-Jun has also been linked to loss of neurons in 

neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) (Migheli et al., 

1997), Alzheimer’s dementia (Pearson et al., 2006, Thakur et al., 2007) and Parkinson’s 
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disease (Oo et al., 1999, Saporito et al., 2000) making JNK/c-Jun signalling a promising 

therapeutical target in these diseases (Silva et al., 2005, Borsello and Forloni, 2007).  

As mentioned, JunAA/AA mice show resistance to neuronal apoptosis induced by kainate 

which causes seizures and apoptosis of hippocampal neurons (Behrens et al., 1999). 

Similarly, JNK3-/-, but not JNK1-/- and JNK2-/- mice are resistant to kainate-induced 

apoptosis (Yang et al., 1997, Kuan et al., 1999). Furthermore, JNK3-/- mice have been 

shown to be resistant to ischaemic apoptosis and to cell death of dopaminergic neurons 

in an animal model of Parkinson’s disease [1-methyl-4-phenyl-1,2,4,6 

tetrahydropyridine (MPTP) treatment] (Kuan et al., 2003, Hunot et al., 2004). Thus, it 

has been suggested that JNK1 is required for basal JNK activity in the brain whereas 

JNK3 mediates stress-induced apoptosis but is not required in brain development (Yang 

et al., 1997, Le-Niculescu et al., 1999, Kuan et al., 2003).  

Apart from its role in neuronal apoptosis, JNK/c-Jun signalling plays an important role 

in promoting neurite outgrowth (Dragunow et al., 2000, Leppa et al., 1998, Levkovitz 

and Baraban, 2002). After injury, c-Jun deficient axotomised motoneurons fail to 

undergo apoptosis and gradually become atrophic (Raivich et al., 2004). Furthermore, 

they show decreased perineuronal sprouting and reduced target re-innervation leading to 

a significant delay in regeneration. 

All in all, the role of JNK/c-Jun signalling during embryonic development as well as 

postnatally is only insufficiently defined, in particular in the brain where many JNK 

signalling components are highly expressed. Furthermore, the JNK-dependency of 

physiological and pathological c-Jun functions are incompletely understood. For the 
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establishment of JNK/c-Jun signalling as a therapeutical target, it will be important to 

dissect JNK-dependent from JNK-independent c-Jun actions. 
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1.5 Fbw7: The significance of degradation   
One protein that brings both of the signalling pathways Notch and JNK/c-Jun together 

and leads them into ubiquitin-proteasome-dependent proteolysis is the F-box protein 

Fbw7 (F-box and WD repeat domain containing-7; also known as Fbxw7, SEL-10, 

Ago, hCdc4). 

 

1.5.1 The ubiquitin-proteasome pathway 
Fbw7 is part of the ubiquitin-proteasome pathway of degradation which is the major 

regulated destruction system for proteins in eukaryotic cells. Apart from cellular 

homeostasis, the ubiquitin-proteasome pathway has been shown to be involved in many 

cellular processes such as stem cell regulation, proliferation, DNA damage repair and 

apoptosis and dysregulation of the pathway has been linked to many diseases such as 

cancer, inflammatory diseases and neurodegenerative diseases (reviewed in Schwartz 

and Ciechanover, 2009). The degradation system is initiated by a three-stepped 

enzymatic cascade (Figure 18) (reviewed in Hershko, 1983, Schwartz and Ciechanover, 

2009). Firstly, the E1 ubiquitin-activating enzyme forms a thiol ester bond with the 

small regulatory protein ubiquitin in an adenosine triphosphate (ATP)-dependent 

manner and thus activates it. Secondly, activated ubiquitin is transferred to the E2 

ubiquitin-conjugating enzyme and binds via a thiol ester bond to the E2. Thirdly, the E3 

ubiquitin ligase binds on the one hand to the E2 and on the other hand to a substrate and 

thus brings ubiquitin and the target protein in close spatial proximity. Consequently, 

ubiquitin is transferred and covalently bound to lysine residues of the substrate. 

Ubiquitin itself has multiple acceptor lysine sites which determine the length of the 

ubiquitin chain and the effect of ubiquitination on the substrate (reviewed in Pickart and 
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Eddins, 2004). Ubiquitin chains extending from ubiquitin lysines 11 and 48 have been 

shown to target substrates to the 26S-proteasome where they are subsequently degraded 

(Xu et al., 2009). Other ubiquitin chains extending from lysines 29 and 63 for example 

or mono-ubiquitination do not function as degradation signals but are important for 

substrate localisation or activity (Mukhopadhyay and Riezman, 2007).  

 

Figure 18 Ubiquitination 
Drawing of the three steps of ubiquitination. Firstly, the E1 ubiquitin-activating enzyme 
forms a thiol-ester bond with ubiquitin (u) in an adenosine triphosphate (ATP) 
dependent manner. Secondly, ubiquitin is transferred to the E2 ubiquitin-conjugating 
enzyme. Thirdly, the E3 ubiquitin ligase brings E2 and substrate in close spatial 
proximity and ubiquitin is covalently bound to the substrate. AMP, adenosine 
monophosphate. PPi, pyrophosphate. 
 

1.5.2 E3 ubiquitin ligases 

Whereas E2 ubiquitin-conjugating enzymes have been reported to be crucial for the 

assembly of the various types of ubiquitin chains, E3 ubiquitin ligases are responsible 

for substrate specificity (reviewed in Pickart and Eddins, 2004, Ye and Rape, 2009). 

Classes of E3 ubiquitin ligases share common structural motifs. The two biggest classes 

are the HECT (homologous to E6-associated protein C-terminus) domain and the 

RING-finger domain containing E3 ligases (reviewed in Weissman, 2001). RING-

finger E3 ligases can be either single proteins or multi-subunit complexes. The main 

subclasses of multi-subunit RING-finger E3 ligases are the anaphase promoting 

complex/cyclosome (APC/C) and the complex of SKP1/CUL1/F-box protein (SCF) 
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ligases (reviewed in Skaar and Pagano, 2009). The SCF complex contains an invariable 

part consisting of S-phase kinase-associated protein 1 (SKP1) and cullin 1 (CUL1). The 

RING box 1 (RBX1) protein, another constant component of the SCF complex, was 

identified later. CUL1 serves as a scaffold protein and binds RBX1 and SKP1 on 

opposite ends (Figure 19). RBX1 recruits the E2 ubiquitin-conjugating enzyme through 

its RING-finger domain whereas SKP1 binds to the F-box protein (Schulman et al., 

2000, Zheng et al., 2002). The F-box protein is the variable part of the SCF E3 ubiquitin 

ligase complex and is responsible for substrate specificity. Over 70 F-box proteins have 

been identified so far in humans (reviewed in Winston et al., 1999, Onoyama and 

Nakayama, 2008). The common structural motif of these proteins is the F-box domain 

which is essential for the binding of the F-box protein to SKP1 (Bai et al., 1996).  

 

Figure 19 The SCF complex 
Schematic representation of the SCF complex. The constant part consists of CUL1, 
RBX1 which recruits the E2 ubiquitin-conjugating enzyme and SKP1 which binds the 
F-box protein. The F-box protein is the variable part of the SCF complex and is 
responsible for substrate specificity. u, ubiquitin. 
 
 

1.5.3 The F-box protein Fbw7 

One of the F-box proteins is the tumour suppressor Fbw7. Fbw7 is responsible for the 

recognition of phosphorylated forms of important oncoproteins such as c-Myc (Yada et 

al., 2004, Welcker et al., 2004a), cyclin E (Moberg et al., 2001, Strohmaier et al., 2001, 

Koepp et al., 2001), Notch (Hubbard et al., 1997, Gupta-Rossi et al., 2001, Oberg et al., 
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2001, Wu et al., 2001, Sundaram and Greenwald, 1993) and c-Jun (Nateri et al., 2004, 

Wei et al., 2005) (Figure 20). Apart from the F-box domain, Fbw7 contains eight 

WD40 tandem repeats which provide substrate specificity. The WD40 repeats form a 

barrel-shaped eight-bladed β-propeller structure which carries binding pockets for the 

interaction with specific substrates (Orlicky et al., 2003, Hao et al., 2007). Most critical 

for Fbw7-substrate interaction are three highly conserved arginine residues (R465, 

R479 and R505) within WD40 repeats 3 and 4 which recognise the Cdc4 phospho-

degron (CPD), a specific consensus phospho-motif found in most of Fbw7-target 

proteins (Hao et al., 2007, Nash et al., 2001). The main characteristics of the CPD are a 

serine or threonine phosphorylation site together with a negative charge at the             

+4 position which is provided either through glutamate or phosphorylation. 

Phosphorylation of serines and threonines within the CPDs of some Fbw7 targets such 

as c-Myc and c-Jun has been shown to be mediated by glycogen synthase kinase-3 

(GSK3) (Wei et al., 2005, Cohen and Frame, 2001, Welcker et al., 2004b). However, it 

has been reported that other arginine residues within the WD40 propeller also contribute 

to substrate binding and that Fbw7 can target substrates in a CPD-independent manner 

(Orlicky et al., 2003, Hao et al., 2007, Kitagawa et al., 2010).  

Furthermore, Fbw7 contains a N-terminal dimerisation domain (D domain). Fbw7 

forms homodimers which has been shown to play a role in substrate-affinity and              

-specificity (Hao et al., 2007, Welcker and Clurman, 2007, Tang et al., 2007, Zhang and 

Koepp, 2006, Kominami et al., 1998). For example, the prototype Fbw7-target in yeast, 

Sic1 does not contain an optimal consensus CPD but carries several low-affinity 

degrons (Orlicky et al., 2003, Verma et al., 1997a). Thus, Fbw7-Sic1 interaction 

requires Fbw7 dimerisation (Tang et al., 2007). On the contrary, monomeric Fbw7 is 
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sufficient to target substrates containing high-affinity degrons such as cyclin E and      

c-Myc (Hao et al., 2007, Welcker and Clurman, 2007). 

 

Figure 20 Fbw7 and its substrates 
Schematic representation of Fbw7 including the dimerisation (D) domain, the F-box 
domain which binds to SKP1 and the WD40 repeats which are responsible for substrate 
recognition. 
 

1.5.4 Fbw7 isoforms 
The D domain, F-box domain and the WD40 repeats are structural motifs shared by all 

three Fbw7 isoforms, Fbw7α, β and γ. Human FBW7 is encoded by 11 exons spreading 

over the more than 200 kb FBXW7 locus on chromosome 4 (4q32), a region which is 

frequently lost in tumours (Spruck et al., 2002). All Fbw7 isoforms share the last         

10 exons and only differ in exon 1. Fbxw7α, Fbxw7β and Fbxw7γ transcripts are 

produced by alternative splicing of the first exon. Furthermore, each Fbxw7 isoform has 

its own promoter allowing differential transcriptional control in diverse tissues (Spruck 
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et al., 2002). Whereas Fbw7α is ubiquitously expressed in the mouse, Fbw7β levels are 

high in the brain and Fbw7γ has been detected in muscle tissue and the haematopoietic 

system (Matsumoto et al., 2006). Little is known about Fbxw7 isoform-specific 

regulation apart from Fbxw7β being a p53 target (Kimura et al., 2003, Mao et al., 2004). 

Although all three Fbw7 isoforms are in general functionally identical, the difference in 

the N-terminus has been shown to determine distinct subcellular localisation. Fbw7α 

localises to the nucleoplasm, Fbw7β to the cytoplasm and Fbw7γ to the nucleolus 

(Spruck et al., 2002, Welcker and Clurman, 2008, Kimura et al., 2003). 

 

1.5.5 Fbw7 and its substrates 
The ever growing list of Fbw7 target proteins started with the cyclin-dependent kinase 

(CDK) inhibitor Sic1 in yeast where the Fbw7 orthologue Cdc4 was first identified 

(Figure 20) (Verma et al., 1997a, Hartwell et al., 1973, Schwob et al., 1994, Verma et 

al., 1997b, Skowyra et al., 1997, Feldman et al., 1997). In C. elegans, it was reported 

that SEL-10, the nematode Fbw7 orthologue, regulates Notch1 (Hubbard et al., 1997, 

Sundaram and Greenwald, 1993). Homology to SEL-10 led to the identification of 

Fbw7 in mice and humans where its function in Notch1 degradation is conserved 

(Gupta-Rossi et al., 2001, Oberg et al., 2001, Wu et al., 2001, Maruyama et al., 2001). 

Fbw7 seems to play a prominent role in Notch regulation. Apart from targeting Notch, 

Fbw7 ubiquitinates two other proteins involved in Notch signalling, Presenilin and       

c-Myc (Yada et al., 2004, Wu et al., 1998, Li et al., 2002). Presenilin is part of the        

γ-secretase complex which is required for Notch activation. c-Myc is a direct 

transcriptional target of Notch and has been shown to play a critical role in Notch-
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associated leukaemia (Klinakis et al., 2006, Palomero et al., 2006, Weng et al., 2006). 

Furthermore, considering that Notch signalling plays a critical role in vascular 

development, it is noteworthy that Fbw7-knockout mice, which die around E10.5 due to 

vascular and placental defects, exhibit increased abundance of Notch (Figure 21) 

(Tetzlaff et al., 2004, Tsunematsu et al., 2004).  

Moreover, archipelago (AGO), the Drosophila Fbw7 orthologue, was described as a 

negative regulator of the cell cycle progression protein cyclin E (Moberg et al., 2001). 

Also Fbw7 function in cyclin E degradation was shown to be conserved in mammals 

(Strohmaier et al., 2001, Koepp et al., 2001). The cyclin E CPD can be phosphorylated 

by GSK3 or is autophosphorylated by the cyclin E-cyclin dependent kinase 2 (CDK2) 

complex (Clurman et al., 1996, Won and Reed, 1996). Disruption of Fbw7-dependent 

degradation of cyclin E has been reported to result in a large expansion of progenitors 

and impaired erythropoiesis in the haematopoietic system and increased proliferation 

and apoptosis in mammary epithelia (Figure 21) (Strohmaier et al., 2001, Minella et al., 

2008). Also, Fbw7-knockout mice, which die around E10.5 due to vascular and 

placental defects, exhibit increased levels of cyclin E in placental tissues (Tetzlaff et al., 

2004). 

Furthermore, the transcription factor and oncoprotein c-Myc which positively regulates 

proliferation for example in ES cells [notably Fbw7 expression is low in ES cells 

(Reavie et al., 2010)] has been identified as a Fbw7-substrate (Yada et al., 2004). Fbw7-

mediated degradation of c-Myc depends on the phosphorylation of its CPD by GSK3 

and ERK (Welcker et al., 2004a). c-Myc regulation by Fbw7 has been shown to be of 

major importance in the haematopoietic system (Figure 21) (Reavie et al., 2010, 
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Matsuoka et al., 2008, Thompson et al., 2008). Absence of Fbw7 causes loss of 

quiescent HSCs and haematopoietic precursor expansion. Although other Fbw7-

substrates such as Notch1 and cyclin E were upregulated in the haematopoietic system 

in the Fbw7-knockout background, only attenuation of c-Myc was able to correct the 

proliferative abnormalities (Onoyama et al., 2007), suggesting that c-Myc is the key 

substrate of Fbw7 in the haematopoietic system (Welcker and Clurman, 2008). 

Recently, one study showed that overexpression of Fbw7α, which is localised to the 

nucleoplasm, leads to decreased c-Myc levels and sustained HSC quiescence 

(Iriuchishima et al., 2011). Furthermore, it has been reported that the de-ubiquitinating 

enzyme ubiquitin-specific peptidase 28 (USP28) antagonises Fbw7α activity and 

stabilises c-Myc levels in the nucleoplasm and its function in proliferation (Popov et al., 

2007). Interestingly, growth-promoting c-Myc function has been at least partially 

attributed to c-Myc action at ribosomal DNA transcription sites in the nucleolus 

(Gomez-Roman et al., 2006, Grandori et al., 2005). Consistently, Fbw7γ which is 

localised to the nucleolus has been shown to target c-Myc in the nucleolus and to 

regulate its growth-promoting activity (Welcker et al., 2004a). 

Another oncoprotein identified to be ubiquitinated by Fbw7 is the transcription factor   

c-Jun (Nateri et al., 2004). Targeting of c-Jun by Fbw7 has been reported to occur either 

in a JNK-dependent or in a GSK3-dependent manner (Nateri et al., 2004, Wei et al., 

2005). Recent work on Fbw7 function in the intestine suggests that following loss of 

Fbw7 in the gut, Notch and c-Jun levels are upregulated in this tissue leading to 

increased progenitor proliferation and impaired goblet and paneth cell differentiation 

(Figure 21) (Sancho et al., 2010).  
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Other prominent Fbw7-substrates recently identified are for example the sterol 

regulatory element binding protein (SREBP) which controls membrane synthesis and 

lipid metabolism (Sundqvist et al., 2005) and the oncoprotein mTOR (mammalian 

target of rapamycin) which is involved in cell growth, proliferation and survival (Mao et 

al., 2008, Crusio et al., 2010). 

 

Figure 21 Substrate-dependent Fbw7 function 
Schematic representation of Fbw7 functions in various tissues and their dependency on 
the degradation of specific Fbw7 target proteins. Green lines point towards actions 
promoted by Fbw7, red lines point towards actions inhibited by Fbw7. TA cell, transit 
amplifying cell. 
 

1.5.6 The tumour suppressor Fbw7 

The tumour suppressor Fbw7 has been reported to be mutated or inactivated in a variety 

of human cancers. Overall, 6% of all tumours carry Fbw7 mutations (Akhoondi et al., 
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2007). Fbw7 mutations were found in 35% of cholangio-carcinomas, 31% of T cell 

acute lymphocytic leukaemia (T-ALL) and 9% of colon and endometrial tumours 

(Akhoondi et al., 2007). Interestingly, other tumour types such as leukaemias other than 

T-ALL and cancers of the liver, lung, breast, bladder, ovary and bone have not or rarely 

been associated with Fbw7 mutations pointing towards a tissue-specific tumour 

suppressor function of Fbw7 (Nowak et al., 2006, Woo Lee et al., 2006, Kwak et al., 

2005, Sgambato et al., 2007, Yan et al., 2006). Remarkably, 43% of Fbw7 mutations 

were identified to be missense mutations that lead to amino acid substitutions at the key 

substrate binding arginines within the WD40 domain (Calhoun et al., 2003). 

Consistently, mutations within the CPDs of Fbw7-substrates have been detected in 

various cancers, for example mutations of the c-Myc CPD in Burkitt lymphoma and 

mutations in the Notch CPD in T-ALL (Gregory and Hann, 2000, Bahram et al., 2000, 

Maser et al., 2007). Strikingly, ~50% of T-ALL tumours carry Notch-activating 

mutations (Weng et al., 2004) and the second most commonly mutated gene in T-ALL 

is Fbxw7 (~30%) (Maser et al., 2007). The role of Fbw7 inactivation in 

lymphomatogenesis however has been linked to c-Myc upregulation (Onoyama et al., 

2007). In the brain, ~80% of glioblastoma, the most aggressive brain tumour type, 

exhibit reduced Fbw7 levels and consequently increased Notch levels rendering Fbw7 a 

prognostic marker for survival for brain cancer patients (Hagedorn et al., 2007). 

Furthermore, in endometrial tumours, Fbw7 mutations have been shown to result in 

cyclin E accumulation and genomic instability (Hubalek et al., 2004). Recently, Fbw7 

inactivation has been reported to promote intestinal tumourigenesis in a Notch- and      

c-Jun dependent manner (Sancho et al., 2010). Furthermore, it has been suggested that 
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loss of Fbw7 and loss of p53 can cooperatively promote tumourigenesis (Welcker and 

Clurman, 2008, Minella et al., 2007). 
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1.6 The aim of this thesis  
The ubiquitin ligase Fbw7 has been shown to mediate degradation of important 

oncoproteins involved in cell cycle regulation, apoptosis and differentiation. Tissue-

specific Fbw7 isoform and Fbw7 substrate expression patterns point towards distinct 

functions of Fbw7 in different contexts. Apart from the well-established role of Fbw7 in 

the haematopoietic and vascular system, Fbw7 function in various other tissues remains 

enigmatic. Due to the fact that Fbw7-knockout embryos die around E10.5 because of 

vascular and placental defects (Tetzlaff et al., 2004, Tsunematsu et al., 2004), it had not 

been possible to investigate Fbw7 function in the brain. Thus, I analysed CNS-specific 

conditional Fbw7-knockout mice (Fbxw7f/f; Nestin-Cre) which die perinatally 

suggesting that Fbw7 is also essential during brain development. The aim of my thesis 

is to investigate Fbw7 function in the developing brain. 

Furthermore, JNK/c-Jun signalling has been shown to mediate different biological 

effects dependent on the organ system, e.g. it promotes proliferation in the intestine 

while inducing apoptosis in the brain (Sancho et al., 2009, Behrens et al., 1999). 

Previous studies suggested that c-Jun action is essential for mouse development 

whereas JNK-dependent c-Jun function is dispensable for development but is required 

for tumourigenesis (Behrens et al., 1999, Hilberg et al., 1993, Behrens et al., 2000). To 

establish JNK/c-Jun signalling as a target for tumour therapy, it is necessary to dissect 

JNK-independent from JNK-dependent c-Jun functions. Thus, I generated two 

transgenic mouse lines which either lack JNK-dependent c-Jun phosphorylation at the 

four main sites (Jun4A; Ser63Ala, Ser73Ala, Thr91Ala, Thr93Ala) or which carry 

constitutively active JNK (ROSA26-LSL-JNKK2-JNK1). The aim of my thesis is to 
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examine JNK-dependency of various c-Jun functions under physiological and 

pathological conditions. 
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Chapter 2. Materials and Methods 

2.1 Materials 

2.1.1 Reagents and consumables 

The following reagents and consumables used in this study were obtained from the 

given companies or the London Research Institute (LRI)/Cancer Research UK (CR-UK) 

Central Services: 

0.5 ml, 1.5 ml, 2 ml tubes    Eppendorf (Cambridge, UK) 

1 kb DNA ladder     Invitrogen (Paisley, UK) 

15 ml, 50 ml tubes     Corning (Corning, USA) 

2-propanol      Fisher Scientific (Loughborough, UK) 

5 ml, 10 ml, 25 ml serological pipettes  Corning (Corning, USA) 

1 ml, 5 ml, 10 ml syringes   BD Plastipak (Oxford, UK) 

18-gauge needles    BD Microlance (Oxford, UK) 

25cm2-flasks (adherent cells)    Corning (Corning, USA) 

75cm2-flasks (adherent cells)    Corning (Corning, USA) 

150cm2-flasks (adherent cells)   Corning (Corning, USA) 

25cm2-flasks (suspension culture)   Sarstedt (Leicester, UK) 

75cm2-flasks (suspension culture)   Greiner bio-one (Stonehouse, UK) 

6-well plate (flat bottom)    BD Falcon (Oxford, UK) 

24-well plate (flat bottom)    BD Falcon (Oxford, UK) 

96-well plate (flat bottom)    BD Falcon (Oxford, UK) 

ABC Kit      Vector Laboratories (Peterborough, UK) 
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AccuMax™      PAA (Yeovil, UK) 

Acetic acid     Fisher Scientific (Loughborough, UK) 

Acrylamide mix (30%)    National Diagnostics (Hessle, UK) 

Agarose      Bioline (London, UK) 

Albumin     Sigma-Aldrich (Poole, UK) 

Alcian blue     Sigma-Aldrich (Poole, UK) 

Ammonium persulfate    Sigma-Aldrich (Poole, UK) 

Ampicillin     Sigma-Aldrich (Poole, UK) 

Anisomycin     Sigma-Aldrich (Poole, UK) 

B27 Supplement     Invitrogen (Paisley, UK) 

BCIP      Roche Applied Science (Burgess Hill, UK) 

Blocking Reagent    Roche Applied Science (Burgess Hill, UK) 

Bovine serum albumin    Sigma-Aldrich (Poole, UK) 

BrdU      Sigma-Aldrich (Poole, UK) 

Bromophenol blue     Sigma-Aldrich (Poole, UK) 

Cell strainer (70 µm Nylon)    BD Falcon (Oxford, UK) 

CellTraceTM CFSE Cell Proliferation Kit  Molecular Probes/Invitrogen (Paisley, UK) 

Chloramphenicol    Sigma-Aldrich (Poole, UK) 

Chromatography paper (3 mm)   Whatman (Brentford, UK) 

CIP      New England Biolabs (NEB, Hitchin, UK) 

Coverslips      Menzel-Glaeser (Braunschweig, Germany) 

Cuvettes      Fisher Scientific (Loughborough, UK) 

DAB solution      BioGenex (Burlingame, UK) 
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DAPI       Sigma-Aldrich (Poole, UK) 

ddH2O      LRI/CR-UK (London, UK) 

DirectPCR Lysis Reagent   Viagen Biotech (Los Angeles, USA) 

DeadEnd™ Colorimetric TUNEL System  Promega (Southampton, UK) 

Disodium tetraborate     AppliChem (Darmstadt, Germany) 

DMEM     Invitrogen (Paisley, UK) 

DMSO      Sigma-Aldrich (Poole, UK) 

DPX mounting medium    Raymond A. Lamb (London, UK) 

DSS      MP Biomedicals (Illkirch, France) 

DyeEx® 2.0 Spin Kit     QIAGEN (Crawley, UK) 

ECL Western Blotting Detection Reagents  GE Healthcare (Little Chalfont, UK) 

EDTA      Sigma-Aldrich (Poole, UK) 

EGF (human)      PeproTech (London, UK) 

EGTA      Sigma-Aldrich (Poole, UK) 

Embedding cassettes     Tissue Tek (Basingstoke, UK) 

Eosin Y      Sigma-Aldrich (Poole, UK) 

Ethanol      Fisher Scientific (Loughborough, UK) 

Ethidium bromide     Sigma-Aldrich (Poole, UK) 

FACS tubes      Becton Dickinson (Oxford, UK) 

FGF-basic (human)     PeproTech (London, UK) 

Fluorescent Mounting Medium   DAKO (Ely, UK) 

Foetal calf serum (FCS)    PAA (Yeovil, UK) 

Gelatin      Sigma-Aldrich (Poole, UK) 
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Glycerol      Sigma-Aldrich (Poole, UK) 

Glycine      Sigma-Aldrich (Poole, UK) 

Goat serum      Sigma-Aldrich (Poole, UK) 

Harris`s haematoxylin    LRI/CR-UK (London, UK) 

HBSS + Ca2+/Mg2+     Invitrogen (Paisley, UK) 

Hydrochloride acid     Sigma-Aldrich (Poole, UK) 

Hydrogen peroxide     Sigma-Aldrich (Poole, UK) 

illustra GFX DNA Purification Kit  GE Healthcare (Little Chalfont, UK) 

Industrial methylated spirit (IMS)   LRI/CR-UK (London, UK) 

Kanamycin     Sigma-Aldrich (Poole, UK) 

Laminin     Sigma-Aldrich (Poole, UK) 

L-arabinose     Sigma-Aldrich (Poole, UK) 

L-glutamine      Invitrogen (Paisley, UK) 

L-glycine      Sigma-Aldrich (Poole, UK) 

LB medium     LRI/CR-UK (London, UK) 

Marvel skimmed milk powder   A1 Laboratory Supplies Ltd (Enfield, UK) 

Mayer`s haematoxylin    LRI/CR-UK (London, UK) 

Magnesium chloride     LRI/CR-UK (London, UK) 

β-mercaptoethanol     Sigma-Aldrich (Poole, UK) 

Methanol      Fisher Scientific (Loughborough, UK) 

Microscope slides     Menzel-Glaeser (Braunschweig, Germany) 

N-2 supplement    Invitrogen (Paisley, UK) 

NBT      Roche Applied Science (Burgess Hill, UK) 



Chapter 2. Materials and Methods 

 106 

Neurobasal Medium     Gibco/Invitrogen (Paisley, UK) 

NeuroCult® Differentiation Supplement  StemCell Technologies (London, UK) 

Neutral buffered formalin (NBF)  LRI/CR-UK (London, UK) 

Nuclear fast red    Vector Laboratories (Peterborough, UK) 

NucleoBond® Plasmid Purification Kit  Clontech (Saint-Germain-en-Laye, France) 

Ponceau S      Sigma-Aldrich (Poole, UK) 

Paraffin wax      Tissue Tek (Basingstoke, UK) 

Paraformaldehyde     Sigma-Aldrich (Poole, UK) 

PBS      LRI/CR-UK (London, UK) 

Penicillin/Streptomycin    Invitrogen (Paisley, UK) 

Periodic Acid-Schiff    Sigma-Aldrich (Poole, UK) 

PIPES       Sigma-Aldrich (Poole, UK) 

Phenylmethylsulfonyl fluoride (PMSF) Sigma-Aldrich (Poole, UK) 

Poly-L-ornithine     Sigma-Aldrich (Poole, UK) 

Protease Inhibitor     Sigma-Aldrich (Poole, UK) 

Proteinase K      Melford Laboratories (Ipswich, UK) 

Protein Assay Dye Reagent    Bio-Rad (Hemel Hempstead, UK) 

QIAGEN Plasmid Maxi Kit    QIAGEN (Crawley, UK) 

QIAprep Spin Miniprep Kit    QIAGEN (Crawley, UK) 

Rainbow markers     GE Healthcare (Little Chalfont, UK) 

Restriction endonucleases   New England Biolabs (NEB, Hitchin, UK) 

RIPA buffer      New England Biolabs (NEB, Hitchin, UK) 

RNase-Free DNase Set    QIAGEN (Crawley, UK) 
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RNeasy Midi-kit    QIAGEN (Crawley, UK) 

RNeasy Mini-kit     QIAGEN (Crawley, UK) 

Senescence Histochemical Staining Kit Sigma-Aldrich (Poole, UK) 

Shandon Cytoblock® Cell Preparation  Thermo Scientific (Basingstoke, UK) 

Sodium acetate    Sigma-Aldrich (Poole, UK) 

Sodium azide      Sigma-Aldrich (Poole, UK) 

Sodium chloride     LRI/CR-UK (London, UK) 

Sodium dodecyl sulfate    Sigma-Aldrich (Poole, UK) 

Sodium fluoride    Sigma-Aldrich (Poole, UK) 

Sodium orthovanadate    New England Biolabs (NEB, Hitchin, UK) 

Superfrost Ultra Plus charged slides   Menzel-Glaeser (Braunschweig, Germany) 

Superscript III cDNA synthesis kit   Invitrogen (Paisley, UK) 

SYBR Green     Invitrogen (Paisley, UK) 

T4 DNA ligase     New England Biolabs (NEB, Hitchin, UK) 

Taq PCR Core Kit     Qiagen (Crawley, UK) 

TEMED      Sigma-Aldrich (Poole, UK) 

Tetracycline     Sigma-Aldrich (Poole, UK) 

Tris       Sigma-Aldrich (Poole, UK) 

Trisodium citrate     Sigma-Aldrich (Poole, UK) 

Triton X-100      Sigma-Aldrich (Poole, UK) 

Trypan Blue      Sigma-Aldrich (Poole, UK) 

Trypsin     Invitrogen (Paisley, UK) 

Vi-Cell™ sample vial    Beckman Coulter (High Wycombe, UK) 
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X-ray film, Fuji    Fisher Scientific (Loughborough, UK) 

Xylene      LRI/CR-UK (London, UK) 

 

2.1.2 Buffers and media 
 

Blocking buffer (in situ hybridisation) 

10 % Blocking Reagent (Roche)  

dissolved in 1X Maleic Acid Buffer  

 

Citrate buffer 

Trisodium citrate      2.94 g 

HCl (0.2 M)        22 ml 

ddH2O                              up to 1 l 

 

Detection buffer (in situ hybridisation)  

5 M NaCl          1 ml 

1 M MgCl          2 ml 

0.5M Tris-HCl (pH 9.5)     10 ml 

Levamisol (2 mM final conc.)     24mg    

make up to 50 ml with ddH2O 
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Disodium tetraborate buffer       final conc.: 

Disodium tetraborate in ddH2O                      150 mM 

pH 8.5 

 

DMEM + 10% FCS (MEFs) 

DMEM              445 ml 

(+ 4.5 g/l glucose, + l-glutamine, + pyruvate) 

FCS                50 ml 

1% (v/v) Penicillin/Streptomycin (10000 U/ml)         5 ml 

 

Harris`s haematoxylin 

Haematoxylin         2.5 g 

Absolute alcohol                25 ml 

Potassium alum                  50 g 

ddH2O                          500 ml 

Sodium iodate                  0.5 g 

Glacial acetic acid                20 ml 
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Hybridisation solution                                 final conc.: 

Deionized formamide      50% 

Dextran sulfate      10% 

Denhardt’s Solution        1x 

Tris-HCl pH7.5            10 mM 

NaCl            600 mM 

EDTA                1 mM 

SDS                0.25% 

tRNA             1 mg/ml 

diluted in DEPC water 

 

Loading buffer (for agarose gels) 

Xylenecyanol                       0.025 g 

EDTA (0.5M)                          1.4 ml 

Glycerol                3.6 ml 

ddH2O                7.0 ml 

 

10x Maleic acid buffer  

Maleic acid                116g 

NaCl        88g 

ddH2O              800 ml 
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Mayer`s haematoxylin 

Haematoxylin              1 g 

ddH2O                     1000 ml 

Potassium alum                 50 g 

Sodium iodate                 0.2 g 

Citric acid                    1 g 

Chloral hydrate SLR                 50 g 

 

NB + Differentiation Supplement (for 50 ml) 

Neurobasal Medium                          43 ml 

2% (v/v) B27 Supplement                 1 ml 

1% (v/v) L-Glutamine (200 mM)            0.5 ml 

1% (v/v) Penicillin/Streptomycin (10000 U/ml)        0.5 ml 

10% NeuroCult® Differentiation Supplement            5 ml 

 

NB + GF (embryonic neurospheres; for 500 ml) 

Neurobasal Medium          479.8 ml 

2% (v/v) B27 Supplement              10 ml 

1% (v/v) L-Glutamine (200 mM)    5 ml 

1% (v/v) Penicillin/Streptomycin (10000 U/ml)  5 ml 

20 ng/ml EGF (100 µM)             100 µl 

20 ng/ml FGF-basic (100 µM)            100 µl 
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NB + GF (adult neurospheres; for 500 ml) 

Neurobasal Medium          474.8 ml 

2% (v/v) B27 Supplement              10 ml 

1% (v/v) L-Glutamine (200 mM)    5 ml 

1% (v/v) Penicillin/Streptomycin (10000 U/ml)  5 ml 

1% (v/v) N-2 supplement    5 ml 

20 ng/ml EGF (100 µM)             100 µl 

20 ng/ml FGF-basic (100 µM)            100 µl 

 

NB + GF + laminin (adherent NSCs; for 500 ml) 

Neurobasal Medium          474.8 ml 

2% (v/v) B27 Supplement              10 ml 

1% (v/v) L-Glutamine (200 mM)    5 ml 

1% (v/v) Penicillin/Streptomycin (10000 U/ml)  5 ml 

1% (v/v) N-2 supplement    5 ml 

20 ng/ml EGF (100 µM)             100 µl 

20 ng/ml FGF-basic (100 µM)            100 µl 

Laminin             0.5 mg 
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Phosphate buffered saline (PBS)               final conc.: 

NaCl             136 mM 

KCl                 3 mM 

Na2HPO4 • 2 H2O               8 mM 

KH2PO4                                                                                                   15 mM 

 

PIPES buffer (in ddH2O)   final conc.: 

PIPES               80 mM 

MgCl2                      1 mM 

EGTA                5 mM 

Triton X-100                 0.5% 

pH 6.8 

 

Protein loading buffer (Laemmli buffer)  final conc.: 

Tris-HCl (pH 6.8)             63 mM 

SDS (w/v)                   2% 

Glycerol (v/v)      10% 

bromophenol blue (w/v)        0.0025% 

+ β-mercaptoethanol (v/v)              2.5% 
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10% Resolving gel 

ddH2O             19.8 ml 

30% acrylamide mix (v/v)           16.7 ml 

1.5 M Tris (pH 8.8) (v/v)           12.5 ml 

10% SDS (v/v)              500 µl 

10% ammonium persulfate (APS)                           500 µl 

TEMED                 20 µl 

 

RIPA cell and tissue lysis buffer (for 5 ml) 

RIPA buffer (10 x)              500 µl 

Protease inhibitor (100 x)                 50 µl 

PMSF                   50 µl 

NaF                            50 µl 

NaVO4                                       25 µl 

ddH2O                                 4.325 ml 

 

10x SDS-PAGE Running buffer 

Tris                 300 g 

Glycine              1400 g 

20% SDS (v/v)            250 ml 

ddH2O         up to 10 l 
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1x Semi-dry transfer buffer   final conc.: 

Tris               24 mM 

Glycine            192 mM 

Methanol (v/v)     20% 

SDS (v/v)              0.01% 

 

Sodium acetate buffer 

1 M sodium acetate                 99 ml 

1 M acetic acid                 960 µl  

ddH2O up to 1 l 

 

20x SSC 

NaCl              17.53g 

sodium citrate               8.82g 

DEPC water, pH 5.0              80 ml 

 

5% Stacking gel 

ddH2O               6.8 ml 

30% acrylamide mix              1.7 ml 

1.0 M Tris (pH 6.8)            1.25 ml 

10% SDS               100 µl 

10% ammonium persulfate (APS)            100 µl 

TEMED                 10 µl 
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50x TAE buffer               

Tris (0.2 M)                242 g 

Acetic acid             57.1 ml 

Na2EDTA x 2 H2O              37.2 g 

ddH2O           up to 1 l 

 

Tail buffer 

DirectPCR Lysis Reagent (mouse tail)          100 µl 

Proteinase K (10 mg/ml)     3 µl 

 

20x Tris buffered saline Tween-20 (TBS-T) 

NaCl (5 M)          3 l 

Tris (1 M; pH 7.5)         2 l 

Tween-20              200 ml 

ddH2O         up to 10 l 

 

2.1.3 Bacteria 

For the expression of plasmid DNA, XL10-Gold® Ultracompetent Cells (Stratagene) 

were transformed. For the expression of the pENTR1A-vector containing a ccdB gene, 

transformation was performed using ccdB-tolerant Library Efficiency DB3.1™ 

Competent Cells (Invitrogen). 
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2.1.4 Vectors and expression plasmids 

 

pBabe-JNKK2-JNK1 

The plasmid consists of a 5.1 kb pBabe backbone vector containing an ampicillin-

resistance gene and a 2.7 kb JNKK2-JNK1 construct which was inserted into the SnaBI 

restriction site of the pBabe vector. The insert consists of a 3 x HA-tag followed by the 

human JNKK2 cDNA, a 5 x Gly-Gly repeat sequence and the human JNK1 cDNA. 

Apart from the BamHI restriction site in the multiple cloning site of the pBabe-vector, 

another BamHI restriction site located at the 3` end of the insert behind the human 

JNK1 cDNA was identified by restriction digest and DNA sequencing.  

 

pENTR1A 

The pENTR1A-vector was obtained from Invitrogen (Paisley, UK). It contains a 

kanamycin resistance gene for selection in E. coli and a multiple cloning site flanked by 

attL1 and attL2 sites for site-specific recombination between the entry clone and a 

Gateway® destination vector (Invitrogen). Furthermore, it contains a toxin encoding 

ccdB gene between the two attL1 and attL2 sites for negative selection. 

 

pSc101-BAD-gbaAtet 

The pSc101-BAD-gbaAtet expression plasmid was obtained from Gene Bridges 

(Heidelberg, Germany). It contains genes for Red/ET recombination protein expression 
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and a tetracycline resistance gene. Transformation of E. coli hosts with this plasmid 

leads to acquisition of tetracycline resistance at 30°C, expression of the Red/ET 

recombination proteins is induced by L-arabinose activation of the BAD promoter at 

37°C. 

 

Minimal vector 

The minimal vector (Gene Bridges) served as a PCR-template for the generation of a 

linear vector carrying a ColE1 origin and an ampicillin resistance gene. 

 

loxP-PGK-gb2-neo-loxP 

The plasmid was obtained from Gene Bridges. It contains a PGK-gb2-neo cassette with 

a kanamycin/neomycin resistance gene. This cassette is flanked by loxP-sites. 

 

pMSCV-Jun4A 

This plasmid contains a pMSCV backbone vector with an ampicillin resistance gene 

and an insert of the mouse Jun cDNA carrying mutations in four JNK-phosphorylation 

sites: Ser63Ala, Ser73Ala, Thr91Ala, Thr93Ala. 
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2.1.5 Oligonucleotides 

The following primers were used in this study. Oligonucleotides were synthesised by 

Sigma-Aldrich (Poole, UK).   

Table 1 Primers for genotyping 

 

 

PCR-product Primer sequences    Band size 

Fbxw7  

wild type(wt)/ 

floxed(f)/ 

deleted 

 

forward: 5`-CAG TGG AGT GAA GTA CAA 
CTC TGG-3` 

reverse: 5`-GCA TAT TCT AGA GGA GGG 
TAT CGG-3` 

deletion reverse: 5`-G GCC AGC CTG GTC 
TGT ATA GAG-3` 

wt: 

288 bp 

floxed: 

388 bp 

deleted: 

744 bp 
 

 

Jun 

wt/floxed (f)/ 

deleted/AA 

 

 

 

forward: 5`-CTC ATA CCA GTT CGC ACA 
GGC GGC-3` 

reverse: 5`-CCG CTA GCA CTC ACG TTG 
GTA GGC-3` 

deletion reverse: 5`-CAG GGC GTT GTG 
TCA CTG AGC T-3` 

 

wt: 

300 bp 

floxed: 

350 bp 

deleted: 

700 bp 

AA: 

380 bp 

Jun 

wt/4A 

forward: 5`-AGA ACT TGA CTG  GTT GCG 
ACA-3` 

reverse: 5`-AGT CCA TCG TTC TGG TCG 
CGC-3` 

wt: 

198 bp 

4A: 

248 bp 
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PCR-product Primer sequences Band size 

Notch1 

wt/floxed (f)/ 

deleted 

 

forward: 5`-CTG ACT TAG TAG GGG GAA 
AAC-3` 

reverse: 5`-AGT GGT CCA GGG TGT GAG 
TGT-3` 

deletion reverse: 5`- TAA AAA GCG ACA 
GCT GCG GAG-3` 

 

wt  

300 bp 

floxed: 

350 bp 

deleted: 

470 bp 

 

Cre 

 

forward 5`-CGG TCG ATG CAA CGA GTG 
ATG AGG-3` 

reverse 5`-CCA GAG ACG GAA ATC CAT 
CGC TCG-3` 

 

Cre: 

600 bp 

 

eGFP 

forward: 5`-CCT ACG GCG TGC AGT GCT 
TCA GC-3` 

reverse:  5`-CGG CGA GCT GCA CGC TGC 
GTC CTC-3` 

eGFP: 

300 bp 



Chapter 2. Materials and Methods 

 121 

Table 2 Sequencing primers 
Sequencing DNA Primer sequences 

pBabe-JNKK2-

JNK1 

forward (T3): 5`-GCA ATT AAC CCT CAC 

TAA AGG-3` 

reverse (T7): 5`-TAA TAC GAC TCA CTA 

TAG GG-3` 

pENTR1A-JNKK2-

JNK1 

forward: 5`-GTT CGT TGC AAC AAA TTG 

ATA AGC-3` 

reverse: 5`-GTA ACA TCA GAG ATT TTG 

AGA CAC-3` 

Jun4A 

forward: 5`-TGA ACC TGG CCG ACC CGG 

TGG-3` 

reverse: 5`- TCA GCC AGG GCG CGC ACG 

AAG-3` 

 

Table 3 Primers used to generate the Jun4A targeting construct  
forward: 5`-AGT TCC TAG TAC AGT ACC TGA CAC ATA GTG AAT GTT 

CAT AAA ATA ATA TTT TGG TAC CCG AGT AAA CAC  AGT TTA AAC 

TCA CAG CTT GTC TGT AAG CGG ATG-3` 

reverse: 5`- TGT AGA AAT GTA CTT CTT GCT CAG GGT CAG AAG GGT 

TTT GCT TAA TGT GTT TAA CTA GTC TGA AGA TGG TAC GCG TGC 

TCT CCT  GAG TAG GAC AAA TC-3` 
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Table 4 qRT-PCR primers  
Gene Primer sequences Amplicon 

Bad 

forward: 5`-CAG GGA GAA GAG 
CTG ACG TAC A-3` 

reverse: 5`-CCA CCC CTC  CGT GGC 
TAT-3` 

 

65 bp 

Bcl2 (beta) 

forward: 5`-GCT CCC CTG ACC TCT 
CAC TCT-3` 

reverse: 5`-CTG GAT TCT TGC TCC 
CTC ACA-3` 

 

97 bp 

Bcl2l11 
(Bim)  

forward: 5`-CCC CTA CCT CCC TAC 
AGA CAG A-3` 

reverse: 5`-GCG CAG ATC TTC AGG 
TTC CT-3` 

 

329 bp 

Jun 

forward: 5`-TGA AAG CTG TGT CCC 
CTG TC-3` 

reverse: 5`-ATC ACA GCA CAT GCC 
ACT TC-3` 

 

220 bp 

Fbxw7α 

forward: 5`-CTG ACC AGC TCT CCT 
CTC CAT T-3` 

reverse: 5`-GCT GAA CAT GGT ACA 
AGG CCA-3` 

 

147 bp 

Fbxw7β 

forward: 5`-TTG TCA GAG ACT GCC 
AAG CAG-3` 

reverse: 5`-GAC TTT GCA TGG TTT 
CTT TCC C-3` 

 

177 bp 

Fbxw7γ 

forward: 5`-AAC CAT GGC TTG GTT 
CCT GTT G-3` 

reverse: 5`-CAG AAC CAT GGT CCA 
ACT TTC-3` 

 

148 bp 
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Gene Primer sequences Amplicon 

Fbxw7 
(exon5) 

forward: 5`-TTC ATT CCT GGA ACC 
CAA AGA-3` 

reverse: 5`-TCC TCA GCC AAA ATT 
CTC CAG TA-3` 

 

70 bp 

Gapdh 

forward: 5`-TGA AGC AGG CAT 
CTG AGG G-3` 

reverse: 5`-CGA AGG TGG AAG AGT 
GGG AG-3` 

 

102 bp 

Hes1 

forward: 5`-TCA GCG AGT GCA 
TGA ACG A-3` 

reverse: 5`-TGC GCA CCT CGG TGT 
TAA C-3` 

 

68 bp 

Hes5 

forward: 5`-TGC AGG AGG CGG 
TAC AGT TC-3` 

reverse: 5`-GCT GGA AGT GGT AAA 
GCA GCT T-3` 

 

74 bp 

Hey1 

forward: 5`-GGC AGC CCT AAG 
CAC TCT CA-3` 

reverse: 5`-TTC AGA CTC CGA TCG 
CTT ACG-3` 

 

76 bp 
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2.1.6 Antibodies 

Table 5 Primary antibodies 

 
 

Primary antibody Species Application, dilution Supplier 
Actin (β) rabbit, polyclonal WB: 1:2000 Sigma (Poole, UK) 

activated Notch1 rabbit, polyclonal IHC: 1:200              
WB: 1:500 

Abcam   
(Cambridge, UK) 

active Caspase-3  rabbit, polyclonal IHC: 1:300 R&D Systems 
(Abingdon, UK) 

BLBP rabbit, polyclonal IF, IHC: 1:100 Abcam  
(Cambridge, UK) 

Brn2 goat, polyclonal IHC: 1:50 Santa Cruz    
(Calne, UK) 

Chromogranin rabbit, polyclonal IHC: 1:200 Abcam  
(Cambridge, UK) 

CD133 (Prominin1) rat, monoclonal IF: 1:50 eBioscience 
(Hatfield, UK) 

c-Jun (H-79) rabbit, polyclonal WB: 1:500 Santa Cruz    
(Calne, UK) 

Connexin-43 rabbit, polyclonal IF: 1:50 Zymed/Invitrogen 
(Paisley, UK) 

Ctip2 rat, monoclonal IHC: 1:100 Abcam  
(Cambridge, UK) 

Doublecortin goat, polyclonal IHC: 1:50 Santa Cruz    
(Calne, UK) 

Fbw7 rabbit, polyclonal WB: 1:500 Abcam   
(Cambridge, UK) 

GFP rabbit, polyclonal IHC: 1:200 Invitrogen (Paisley, 
UK) 

GFAP rabbit, polyclonal IF, IHC: 1:500 DAKO (Ely, UK) 

GLAST guinea pig, 
polyclonal 

IHC: 1:200 LifeSpan 
Biosciences 
(Nottingham, UK) 

HA rabbit, polyclonal WB: 1:500 Sigma (Poole, UK) 
Ki67 rat, monoclonal IHC: 1:125 DAKO (Ely, UK) 
Lysozyme rabbit, polyclonal IHC: 1:500 DAKO (Ely, UK) 
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Primary antibody Species Application, dilution Supplier 
Map2 mouse, monoclonal IF: 1:100 Sigma (Poole, UK) 
Musashi-1 rabbit, polyclonal IHC: 1:200 Chemicon/Millipore 

(Watford, UK) 

Nestin mouse, monoclonal IF: 1:300 BD (Oxford, UK) 

Nestin mouse, monoclonal IHC: 1:75 Chemicon/Millipore 
(Watford, UK) 

Nestin rabbit, polyclonal IF: 1:100 Abcam   
(Cambridge, UK) 

NeuN mouse, monoclonal IHC: 1:1000 Chemicon/Millipore 
(Watford, UK) 

NG2 rabbit, polyclonal IHC: 1:200 Chemicon/Millipore 
(Watford, UK) 

O4 mouse, monoclonal IF: 1:200 Chemicon/Millipore 
(Watford, UK) 

p53 mouse, monoclonal WB: 1:500 Santa Cruz    
(Calne, UK) 

p-c-Jun (Ser63) rabbit, polyclonal IF, IHC: 1:50;         
WB: 1:500 

Cell Signaling 
(Hitchin, UK) 

p-c-Jun (Ser73) rabbit, polyclonal IHC: 1:50;               
WB: 1:500 

Cell Signaling 
(Hitchin, UK) 

p-c-Myc           
(Thr 58/ Ser 62) 

rabbit, polyclonal WB: 1:500 Santa Cruz    
(Calne, UK) 

p-cyclin E         
(Thr 395) 

rabbit, polyclonal WB: 1:500 Santa Cruz     
(Calne, UK) 

pH3 rabbit, polyclonal IHC: 1:250 Millipore   
(Watford, UK) 

RC2 mouse, monoclonal IF: 1:50 DSHB             
(Iowa City, USA) 

S100 rabbit, polyclonal IHC: 1:10 Abcam    
(Cambridge, UK) 

Tbr1 rabbit, polyclonal IHC: 1:500 Abcam  
(Cambridge, UK) 

Tbr2 rabbit, polyclonal IHC: 1:500 Abcam   
(Cambridge, UK) 

Vimentin mouse, monoclonal IF: 1:50 Abcam   
(Cambridge, UK) 
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Table 6 Secondary antibodies 
Secondary antibody Application, 

dilution 

Supplier 

Alexa Fluor® 488 or 546 goat anti-

mouse IgG  

IF: 1:500;    

IHC: 1:350 

Invitrogen (Paisley, UK) 

Alexa Fluor® 488 goat anti-mouse 

IgM (µ chain) 

IF: 1:500 Invitrogen (Paisley, UK) 

Alexa Fluor® 488 or 546 goat anti-

rabbit IgG 

IF: 1:500;    

IHC: 1:350 

Invitrogen (Paisley, UK) 

Alexa Fluor® 488 goat anti-guinea 

pig IgG 

IHC: 1:350 Invitrogen (Paisley, UK) 

Biotinylated goat anti-mouse IgG IHC: 1:250 Vector Laboratories  

(Peterborough, UK) 

Biotinylated goat anti-rabbit IgG IHC: 1:250 Vector Laboratories 

(Peterborough, UK) 

Biotinylated goat anti-rat IgG IHC: 1:250 Vector Laboratories 

(Peterborough, UK) 

Biotinylated rabbit anti-goat IgG IHC: 1:250 Vector Laboratories 

(Peterborough, UK) 

Cy3-conjugated AffiniPure goat 

anti-mouse IgG (subclasses 1 + 2a 

+ 2b + 3), Fcγ fragment specific  

IF: 1:500 Jackson Immuno Research 

Laboratories (Newmarket, UK) 

Horseradish peroxidase-

conjugated goat anti-mouse IgG 

WB: 1:15000 Jackson Immuno Research 

Laboratories (Newmarket, UK) 

Horseradish peroxidase-

conjugated goat anti-rabbit IgG 

WB: 1:15000 Jackson Immuno Research 

Laboratories (Newmarket, UK) 

Sheep anti-DIG alkaline 

phosphatase-conjugated 

polyclonal antibody 

ISH: 1:1000 Roche Applied Science (Burgess 

Hill, UK) 
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2.2 Methods 

2.2.1 Animal work 

2.2.1.1 Animal handling 

Mice were housed in the London Research Institute animal facilities at Lincoln’s Inn 

Fields Laboratories and Clare Hall Laboratories. In agreement with Schedule 1 of the 

Animal Scientific Procedures Act 1986, culling of adult mice was performed by 

cervical dislocation, culling of mouse embryos was performed by decapitation. All 

experiments involving mice were approved by the London Research Institute Animal 

Ethics Committee following UK Home Office guidelines.  

 

2.2.1.2 Mouse lines 

The floxed exon 5 Fbxw7 mice were generated by Dr Anett Jandke in the Mammalian 

Genetics Lab (Jandke et al., 2011). The Jun4A and the ROSA26-Lox-STOP-Lox(LSL)-

JNKK2-JNK1 transgenic constructs were electroporated into ES cells, stable 

transfectants were selected and mice generated according to standard protocols 

(Behrens et al., 1999). Junf/f, JunAA/AA, Notch1f/f, ROSA26-LSL-YFP and Nestin-Cre 

mice have been described (Srinivas et al., 2001, Behrens et al., 1999, Radtke et al., 

1999, Raivich et al., 2004). 

 

2.2.1.3 BrdU injection 
To study proliferation of cells in the gut, mice were injected intraperitoneally with    

100 µg (per g bodyweight) 5-bromo-2’-deoxyuridine (BrdU; Sigma; stock: 20 µg/µl in 

endotoxin-free PBS). Mice were culled and analysed 1.5 h after injection. 
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To examine proliferation of cells in the SVZ and the RMS of the adult brain, mice were 

given 1 mg/ml BrdU in drinking water. BrdU drinking water was changed daily. Mice 

were culled and analysed after 14 days. 

 

2.2.1.4 DSS treatment 
To induce colitis and study gut regeneration, 2- to 3-month old mice were treated with 

dextran sodium sulfate (DSS). The mice received 2% DSS in drinking water for 7 days 

followed by three days of normal drinking water for recovery, after which mice were 

culled and analysed. 

 

2.2.1.5 Facial axotomy and whisker movement test 
Facial axotomy and whisker movement test were performed as previously described 

(Raivich et al., 2004). The right facial nerve fibers (including the retroauricular branch) 

of 2- to 3-month-old mice were crushed at the stylomastoid foramen under tri-brom-

ethanol (Avertin) anaesthesia. 7-26 days after facial axotomy, whisker pad reinnervation 

was assessed by scoring whisker movement on the axotomised side in comparison to 

whisker movement on the control side. Scores were given in steps of 0.5 between 0 = no 

whisker movement and 3 = normal whisker movement. The whisker movement test was 

performed blindly and independently by two observers. 
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2.2.2 Cell Culture 

2.2.2.1 Embryonic neurosphere cultures 

Fore- and midbrains were dissected from E14.5 mouse embryos, transferred to PBS and 

crushed by trituration with a pipet. Cells were cultured under self-renewal (growth) 

conditions in neurobasal medium (NB; Invitrogen) supplemented with 1% (v/v) 

penicillin and streptomycin (10,000 U/ml; Invitrogen), 1% (v/v) l-glutamine (200 mM; 

Invitrogen), 2% (v/v) B27 supplement (Invitrogen) and human epidermal growth factor 

(EGF; 20 ng/ml; PeproTech) and fibroblast growth factor (FGF-basic; 20 ng/ml; 

PeproTech). Cells were cultured in tissue culture flasks for suspension cultures 

(Sarstedt; Greiner bio-one) in a humidified incubator at 37°C, 5% CO2. Medium was 

changed every three days. All experiments were performed using secondary and tertiary 

neurospheres. 

 

2.2.2.2 Adherent neural stem cell cultures 
Adherent NSC cultures were derived as previously described (Pollard et al., 2006). 

Cells were cultured in neurobasal medium (Invitrogen) supplemented with 1% (v/v) 

penicillin and streptomycin (10,000 U/ml; Invitrogen), 1% (v/v) l-glutamine (200 mM; 

Invitrogen), 2% (v/v) B27 supplement (Invitrogen), 1% (v/v) N-2 supplement 

(Invitrogen), 20 ng/ml EGF (PeproTech), 20 ng/ml FGF-basic (PeproTech) and 1 µg/ml 

laminin (Sigma). Cells were cultured in tissue culture flasks for adherent cells (Corning) 

in a humidified incubator at 37°C, 5% CO2. Medium was changed every three days. 
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2.2.2.3 Adult neurosphere cultures 

Adult brains were dissected from 2- to 3-month-old mice. The midbrain was removed 

and the forebrain was embedded in low melting point agarose [dissolved in phosphate 

buffered saline (PBS); Invitrogen]. Brains were sectioned at 230 µm thickness using a 

vibratome (Leica VT1000). Sections containing the SVZ were carefully collected with a 

pasteur pipet and transferred into PBS. The SVZ was dissected from every section 

under a dissecting microscope and transferred into a 1.5 ml tube containing 200 µl PBS. 

The tissue was crushed by trituration with a pipet and the cell suspension was added to a 

well of a 6-well plate containing 4 ml neurobasal medium (Invitrogen) supplemented 

with 1% (v/v) penicillin and streptomycin (10,000 U/ml; Invitrogen), 1% (v/v)              

l-glutamine (200 mM; Invitrogen), 2% (v/v) B27 supplement (Invitrogen), 1% (v/v) N-2 

supplement (Invitrogen), 20 ng/ml EGF (PeproTech), 20 ng/ml FGF-basic (PeproTech). 

Adult neurospheres were cultured in plates/flasks for suspension cultures [Becton 

Dickinson (BD) Falcon; Sarstedt] in a humidified incubator at 37°C, 3% O2, 5% CO2 

and medium was changed every three days. 

 

2.2.2.4 Generation of single cell suspensions from neurospheres 
For the generation of single cell suspensions, neurospheres were treated with 

AccuMax™ (PAA Laboratories). Neurospheres were harvested and resuspended in 1 ml 

PBS and the same amount of AccuMax™ was added. Cells were incubated at 37°C for 

7 min applying gentle agitation every other minute. After that, 10 ml PBS were added 

and the cell suspension was pipetted through a cell strainer (70 µm Nylon; BD Falcon) 

to remove remaining neurospheres. The cell strainer was rinsed twice with 10 ml PBS. 

The single cell supension was spun down and cells were resuspended in fresh medium. 
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2.2.2.5 Mouse embryonic fibroblast cultures 

For the preparation of mouse embryonic fibroblast (MEFs) cultures, the head and the 

internal organs of E13.5 mice were removed. The remaining body was transferred into 

PBS and crushed by passing it through a 1 ml syringe (BD) and a 18-gauge needle 

(BD). Cell suspension was added to a well of a 6-well plate (BD) containing 4 ml 

Dulbecco’s Modified Eagle Medium (DMEM, + 4.5 g/l glucose, + l-glutamine, 

+pyruvate; Invitrogen) medium supplemented with 10% foetal calf serum (FCS; Sigma) 

and 1% (v/v) penicillin and streptomycin (10,000 U/ml; Invitrogen). Confluent MEFs 

were trypsinised for 10 min and passaged to three times bigger plates/flasks for 

adherent cultures (BD Falcon; Corning) or one third of MEFs was plated to a same size 

plate/flask. MEFs were cultured in a humidified incubator at 37°C, 5% CO2 either at 

standard atmospheric O2 or 3% O2. 

 

2.2.2.6 Determination of cell numbers in vitro 
Cells were counted using an Improved Neubauer counting chamber (Weber). To 

exclude dead cells, 40 µl of Trypan Blue solution (Sigma) was added to 40 µl of cell 

suspension and applied to the counting chamber. Viable cells in the 4 big quadrants 

(containing 16 small quadrants) were counted under the microscope. The number of 

counted cells was divided by two and multiplied with 104 to determine the cell number 

per ml. 

For the growth curve analysis, MEFs were harvested by trypsinisation, resuspended in  

1 ml medium and transferred to a Vi-Cell™ sample vial (Beckman Coulter). To 
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determine the number of cells, the cell suspension was passed through a Vi-Cell™ XR 

Cell Viability Analyzer (Beckman Coulter). 

 

2.2.3 Cell Biology 

2.2.3.1 Differentiation of neurospheres 

For the differentiation of neurospheres, single cell suspensions were generated as 

described above. 5 x 105 cells were cultured under self-renewal conditions for two days. 

After that, neurospheres were transferred to neurobasal medium containing 1% (v/v) 

penicillin and streptomycin (10,000 U/ml; Invitrogen), 1% (v/v) l-glutamine (200 mM; 

Invitrogen), 2% (v/v) B27 supplement (Invitrogen) without growth factors, but 

supplemented with 10% (v/v) NeuroCult® Differentiation Supplement (StemCell 

Technologies). Neurospheres were added to a well of a 24-well plate (BD) containing a 

12 mm diameter glass cover slip which was coated with poly-L-ornithine (0.01% 

solution; Sigma; diluted 1:10 in 150 mM disodium tetraborate buffer; Sigma). Cells 

were cultured in a humidified incubator at 37°C, 5% CO2. Differentiation medium was 

changed every other day. 

 

2.2.3.2 Neurosphere formation assay 
Single cell suspensions were generated from neurospheres using AccuMax™ (PAA 

Laboratories) as described above. Neurosphere derived cells were counted and plated in 

a limiting dilution from 500 to 4 cells per well of a 96-well plate (BD). Cells were 

cultured under self-renewal conditions in a humidified incubator at 37°C, 5% CO2 and 

every 5 days, 100 µl of fresh medium was added to each well. To assess neurosphere 
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formation, newly formed neurospheres were counted under the microscope after two 

weeks in culture. 

 

2.2.3.3 Neurosphere sections 

In order to obtain neurosphere sections, the Shandon Cytoblock® Cell Preparation 

System (Thermo Fisher Scientific) was used according to the manufacturer’s 

instructions. For fixation, neurospheres were sedimented in a tube for 5 min. All but   

0.5 ml medium was removed and double the amount of 10% neutral buffered formalin 

(NBF) was added. Neurospheres were incubated at 37°C overnight. Cytoblock cassettes 

were assembled into the horizontal Cytoclip and three drops of Cytoblock solution #1 

was applied into the center of the well in the board insert. Next, a Cytofunnel 

disposable chamber was placed over the prepared Cytoblock and the metal clip holder 

was secured. Afterwards, the assembled Cytoclip was clamped into the Cytospin-

Rotor. After removal of the 10% NBF, four drops of Cytoblock solution #2 was added 

to the neurospheres. The mixed cell suspension was subsequently applied into the 

Cytofunnel. After placing the Cytospin rotor in the Shandon Centrifuge Cytospin2 

(Thermo Fisher Scientific), centrifugation took place at 1500 rpm, low acceleration for  

5 min. After that, Cytofunnel assemblies were removed, Cytoclip was placed 

horizontally, the clip was released and the funnel was discarded. One drop of Cytoblock 

solution #1 was applied onto the cell button in the well. Next, the board insert was 

carefully removed and placed into a Tissue Tek® embedding cassette with two filter 

papers on the bottom and two filter papers on top. The cassette was placed in 10% 
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NBF to await processing. Processing was performed as described for tissues below. For 

embedding, the filter paper was folded back, the cell button was dislodged from the 

insert and embedded in paraffin wax (Tissue Tek) in the base mould.  

Alternatively, fixed neurospheres were washed with PBS and sedimented in agarose 

(Bioline). After that, the agarose block containing the neurospheres was embedded in 

paraffin. Neurosphere sections at a thickness of 4 µm were cut with a manual microtome 

(RM2235, Leica, U.K.) and were allowed to uncrease in a water bath at 37°C. 

Afterwards, sections were mounted on Superfrost Ultra Plus charged slides (Menzel-

Glaeser). 

 

2.2.3.4 CFSE cell proliferation assay 

Single cell suspensions were generated from neurosphere cultures using AccuMax™ 

(PAA Laboratories) as described above. For the assessment of CFSE 

(carboxyfluorescein diacetate succinimidyl ester; CellTrace CFSE Cell Proliferation 

Kit, Invitrogen) intensity over a period of 7 days, 1 x 106 cells were necessary for the 

following flow cytometry measurements with a fluorescence-activated cell sorter 

(FACS; BD). CFSE staining was performed according to the manufacturer’s 

instructions with minor modifications. One fifth of the cell suspension remained 

unstained and served as unstained control (u). The rest of the cells were spun down at 

450 x g, 4°C for 5 min and resuspended in 1 ml PBS + 7 µl 5 mM CFSE (Invitrogen). 

Cells were incubated for 5 min at room temperature for CFSE staining of cellular 

proteins. In order to stop the reaction, 13 ml of neurobasal medium + 20% FCS (Sigma) 
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was added. After centrifugation at 450 x g, 4°C for 5 min, stained and unstained cells 

were resuspended in fresh medium. Cells were cultured under self-renewal conditions in 

25cm2-culture tissue flasks for suspension cultures (Sarstedt), one culture for each 

measurement: unstained control (u), day 1 (d1), day 3 (d3), day 5 (d5) and day 7 (d7). 

Each day before the FACS measurements, single cell suspensions were prepared using 

AccuMax™. Cells were spun down at 450 x g, 4°C for 5 min, resuspended in 1 ml PBS 

and transferred to FACS tubes (BD). After washing the cells once again in PBS, 2 µl of 

4-6-diamidino-2-phenylindole (DAPI, 200 µg/ml) was added to the samples to be able 

to exclude dead cells. 3 x 104 viable cells were counted for each sample with a LSR II 

Flow Cytometer from BD. Analysis was carried out using CellQuestPro (BD) and 

FlowJo (Tree Star) software. 

 

2.2.3.5 TUNEL apoptosis assay 
For the identification of apoptotic cells, TdT-mediated dUTP-biotin nick end labeling 

(TUNEL) was performed using the DeadEnd™ Colorimetric TUNEL System 

(Promega) according to the manufacturer’s instructions. Neurosphere and tissue 

sections were incubated twice for 5 min in xylene to remove paraffin. After that, slides 

were washed in 100% ethanol for 5 min before rehydration in decreasing concentrations 

of ethanol. Next, neurosphere sections were washed in 0.85% NaCl and in PBS for        

5 min each. Slides were immersed in 4% paraformaldehyde (PFA) solution for 15 min. 

Sections were washed twice in PBS and subsequently incubated with 100 µl of 20 µg/ml 

Proteinase K solution (Melford Laboratories) at room temperature for 10 min for 

permeabilisation. After that, slides were washed with PBS and fixation was repeated 
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with 4% PFA for 5 min. Sections were washed with PBS and equilibrated in 

equilibration buffer at room temperature for 5 min. For labeling of apoptotic cells,     

100 µl of TdT reaction mix was added to each slide, the slide was covered with a plastic 

cover slip and incubated at 37°C in a dark, humidified chamber for 1 h. To stop the 

reaction, cover slips were removed and slides were immersed twice in 2x SSC buffer 

for 15 min. Sections were washed three times with PBS and then incubated in 0.3% 

hydrogen peroxide (H2O2; Sigma) for 3 min. Slides were washed three times with PBS 

before adding 100 µl streptavidin horseradish peroxidase (HRP; diluted 1:500 in PBS) 

to the slides. After incubation at room temperature for 30 min, slides were washed three 

times with PBS and 100 µl diaminobenzidine (DAB) was added to the sections. 

Staining reaction was stopped by washing the slides several times in deionized water. 

Nuclei were counterstained with Mayer’s haematoxylin and sections were mounted 

using DPX mounting medium (Raymond A. Lamb). Sections were analysed by light 

microscopy (AX10 Imager.A1, Carl Zeiss). 

 

2.2.3.6 β-galactosidase senescence assay 

Cellular senescence was detected in MEFs using the Senescence Cells Histochemical 

Staining Kit (Sigma) according to the manufacturer’s instructions. Cells were incubated 

in the staining mixture at 37°C in a non CO2 enriched environment overnight. The next 

day, cells were washed with PBS and cells were analysed by light microscopy (AX10 

Imager.A1, Carl Zeiss). The number of blue-stained β-galactosidase-positive cells 

represents the number of senescent cells. 
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2.2.3.7 Immunocytochemistry with cell permeabilisation 

After removal of the medium, cells plated on 12 mm diameter cover slips were washed 

once with PBS. Next, cells were incubated for 30 s in 500 µl PIPES buffer [80 mM 

PIPES (Sigma), 1 mM MgCl2 (LRI/CRUK), 5 mM EGTA (Sigma), 0.5% Triton X-100 

(Sigma); pH 6.8]. After that, cells were fixed with 1 ml methanol (Fisher Scientific) for  

3 min at –20°C and washed three times with 500 µl PBS + 0.1% Triton X-100 for         

5 min. For blocking of unspecific binding, cells were incubated in PBS + 0.1% Triton X-

100 + 5% goat serum (Sigma) + 0.1% sodium azide (Sigma) for 15 min. Next, 250 µl of 

primary antibodies (for a list of primary antibodies and dilutions, see page 124) diluted 

in PBS + 0.1% Triton X-100 (Sigma) + 5% goat serum (Sigma) + 0.1% sodium azide 

(Sigma) were added to the cells. After 45 min of incubation at room temperature, 

primary antibodies were removed and cells were washed three times with 500 µl PBS + 

0.1% Triton X-100 for 5 min. Next, corresponding fluorochrome labeled secondary 

antibodies (for a list of secondary antibodies and dilutions, see page 126) diluted in PBS 

+ 0.1% Triton X-100 + 5% goat serum were added and cells were incubated for 45 min 

in the dark at room temperature. As a control for antibody specificity, some cells were 

only incubated with 250 µl of secondary antibodies but not with primary antibodies. 

Cells were washed three times with 500 µl PBS + 0.1% Triton X-100 and DNA was 

counterstained with 500 µl Hoechst 33342 solution (10 mg/ml, Sigma) diluted 1:2000 in 

PBS + 0.1% Triton X-100 for 5 min. Cells were washed once with 500 µl PBS. Cover 

slips were washed once in ddH2O and mounted upside down on a drop of Fluorescent 

Mounting Medium (DAKO) on microscope slides (Menzel-Glaeser). The next day, the 

cover slips were sealed on the microscope slides with nail polish. Slides were stored in 
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the dark at 4°C. Cells were analysed by confocal microscopy (LSM 510 Inverted 

Microscope, Carl Zeiss; software: LSM 510 version 2.8 SP1, Carl Zeiss). 

 

2.2.3.8 Immunocytochemistry without cell permeabilisation 

For staining of the surface sulfatide O4, immunocytochemistry was performed without 

cell permeabilisation. After removal of the medium, cells plated on 12 mm diameter 

cover slips were washed once with PBS. Next, 250 µl of primary O4-antibody 

(Chemicon; diluted 1:200 in PBS + 5% goat serum) was added to each well and cells 

were incubated for 20 min at 37°C, 5% CO2. Cells were washed twice with 500 µl warm 

HBSS + Ca2+/Mg2+ (Invitrogen). For fixation, cells were incubated in 4% PFA solution 

(Sigma; dissolved in PBS; pH 7.4) for 20 min. After three washes with PBS, 250 µl of 

Alexa Fluor® 488 goat anti-mouse IgM (µ chain, Invitrogen; diluted 1:500 in PBS + 5% 

goat serum) was added to each well and cells were incubated for 90 min in the dark at 

room temperature. Cells were washed three times with PBS and DNA was 

counterstained with 500 µl Hoechst 33342 solution (10 mg/ml, Sigma) diluted 1:2000 in 

PBS for 5 min. Cells were washed once with 500 µl PBS. Cover slips were washed once 

in ddH2O and mounted upside down on a drop of Fluorescent Mounting Medium 

(DAKO) on microscope slides (Menzel-Glaeser). The next day, the cover slips were 

sealed on the microscope slides with nail polish. Slides were stored in the dark at 4°C. 

Cells were analysed by confocal microscopy (LSM 510 Inverted Microscope, Carl 

Zeiss; software: LSM 510 version 2.8 SP1, Carl Zeiss). 
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For the O4/Map2/Cx43 (for primary antibody details, see page 124) triple staining, the 

primary antibody incubation step with O4 was performed before fixing the cells using 

4% PFA and antibody staining for Map2 and Cx43. Secondary antibodies used for the 

triple staining were Alexa Fluor® 633 goat anti-rabbit (Invitrogen; diluted 1:500 in PBS 

+ 5% goat serum), Alexa Fluor® 488 goat anti-mouse IgM (µ chain, Invitrogen; diluted 

1:500 in PBS + 5% goat serum) and Cy3-conjugated AffiniPure goat anti-mouse IgG 

(subclasses 1 + 2a + 2b + 3), Fcγ fragment specific (Jackson ImmunoResearch 

Laboratories, diluted 1:500 in PBS + 5% goat serum) (for secondary antibody details, 

see page 126). 

 

2.2.4 Histology 

2.2.4.1 Tissue processing 

Tissues were fixed in 10% neutral buffered formalin (NBF) overnight. The next day, the 

tissue was incubated at 40°C in 70% (v/v) ethanol for 30 min, in 85% (v/v) ethanol for  

1 h, in 95% (v/v) ethanol for 1 h and three times in 100% (v/v) ethanol for 1 h for 

dehydration. Afterwards, the tissue was cleared three times in xylene for 1 h at 40°C 

and infiltrated three times with paraffin wax for 1 h at 60°C. Tissue processing after 

fixation was performed with a Tissue-Tek VIP® 5 Vacuum Infiltration Processor. Heads 

were cut sagittally. Tissue was embedded in paraffin wax (Tissue Tek) in Tissue-Tek® 

embedding cassettes and cooled for 30 min at 4°C. Tissue sections were cut at a 

thickness of 4 µm using a manual microtome (RM2235, Leica) and were allowed to 

unfurl in a water bath at 37°C. Afterwards, sections were mounted on Superfrost Ultra 
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Plus charged slides (Menzel-Glaeser). 

 

2.2.4.2 Haematoxylin and eosin (H&E) staining 

Haematoxylin stains basophilic structures such as nucleic acids blue whereas eosin 

stains eosinophilic structures such as proteins pink. Consequently, in H&E stained 

tissue sections, nuclei appear blue while the cytoplasm is stained pink. 

Paraffin sections were dewaxed in xylene three times for 3 min. After that, sections were 

hydrated through graded alcohols to water: 2 x in 100% industrial methylated spirit 

(IMS) for 3 min, 2 x in 70% (v/v) IMS for 3 min and 2 x in water for 3 min. The 

sections were stained for 5 min in Harris`s haematoxylin and subsequently washed in 

running tap water for 5 min. Next, sections were differentiated in 1% (v/v) acid alcohol 

(1% HCl in 70% alcohol) for 5 s and washed in running tap water for 5 min. The 

sections were stained in 1% (w/v) eosin Y and washed in running tap water for 5 min. 

After that, sections were dehydrated through graded alcohols: 2 x in 70% (v/v) IMS for 

3 min and 2 x in 100% IMS for 3 min. Finally, sections were cleared twice in xylene for 

3 min and mounted with DPX mounting medium (Raymond A. Lamb). 

 

2.2.4.3 Immunohistochemistry 

Paraffin sections were dewaxed in xylene three times for 3 min. After that, sections were 

hydrated through graded alcohols to water: 2 x in 100% industrial methylated spirit 

(IMS) for 3 min, 2 x in 70% (v/v) IMS for 3 min and 2 x in water for 3 min. Next, citrate 
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buffer (2.94 g trisodium citrate plus 22 ml 0.2 M HCl filled up to 1 l with ddH2O) was 

heated for 5 min at full power in a microwave, sections were added and for antigen 

retrieval microwaved for 10 min at full power. Sections were then allowed to cool for 30 

min at room temperature. Sections were incubated in 1.6% H2O2 (v/v) in PBS for 10 min 

and subsequently washed three times with PBS for 3 min. To block unspecific binding, 

10% (v/v) goat serum diluted in 1% (w/v) bovine serum albumin (BSA)/PBS was added 

and sections were incubated for 30 min at room temperature. After removal of the goat 

serum, primary antibodies (for a list of primary antibodies and dilutions, see page 124) 

diluted in 1% (w/v) BSA/PBS were applied to the sections for 1 h at room temperature. 

Sections were washed three times with PBS for 5 min and subsequently incubated with 

corresponding fluorochrome-conjugated secondary antibodies (for a list of secondary 

antibodies and dilutions, see page 126) for 1 h at room temperature. Alternatively, 

sections were incubated with corresponding biotinylated secondary antibodies (diluted 

in 1% BSA/PBS) for 1 h at room temperature. Sections were washed three times in PBS 

for 5 min and incubated in ABC reagent (horseradish peroxidase avidin-biotin complex; 

Vector Laboratories, Vectastain Elite, ABC Kit) for 30 min. After washing the sections 

three times for 5 min in PBS, sections were incubated in diaminobenzidine/H2O2 (DAB 

solution; Biogenex) for 2-5 min and color reaction was monitored microscopically. 

Staining was stopped by rinsing the sections with distilled water. Sections were 

counterstained with Mayer`s haematoxylin for 3 min and subsequently washed in 

running tap water for 5 min. Sections were dehydrated through graded alcohols: 2 x in 

70% IMS for 3 min and 2 x in 100% IMS for 3 min. Finally, sections were cleared twice 
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in xylene for 3 min and mounted using DPX mounting medium (Raymond A. Lamb). 

Sections were analysed by light or fluorescence microscopy (Carl Zeiss Axioplan 2 

Imaging). 

For staining of alkaline phosphatase-positive enterocytes, nitro blue tetrazolium (NBT; 

Roche)/5-bromo-4-chloro-3-indolyl phosphate (BCIP; Roche) substrate solution was 

used and nuclei were counterstained with nuclear fast red (Vector Laboratories). To 

visualise mucous glycoconjugate-containing goblet cells, alcian blue (AB; Sigma)/periodic 

acid-Schiff (PAS; Sigma) staining was performed. 

For the GFP-staining on E14.5 mouse embryos, samples fixed in 4% PFA were 

embedded in 1.5 g gelatin and 90 g albumin dissolved in 300 ml 0.1 M sodium acetate 

buffer (for recipe see page 115). For polymerisation, 500 µl 25% glutaraldehyde was 

added to 10 ml of the gelatin/albumin solution. After solidifying, the samples were cut at 

200 µm using a vibratome (Leica VT1000). Permeabilisation was performed using PBS 

+ 0.5% Triton X-100 (Sigma). Unspecific binding was blocked by incubation with PBS 

+ 0.5% Triton X-100 (Sigma) + 10% goat serum. The sections were incubated with 

polyclonal rabbit anti-GFP primary antibody (Invitrogen) at 4°C overnight. After 

washing with PBS + 0.5% Triton X-100 (Sigma), samples were incubated with Alexa 

Fluor® 488 goat anti-rabbit IgG secondary antibody (Invitrogen) at room temperature 

for 2 h. After washing with PBS + 0.5% Triton X-100 (Sigma) and PBS, sections were 

mounted and images were acquired by confocal microscopy (LSM 510 Inverted 

Microscope, Carl Zeiss; software: LSM 510 version 2.8 SP1, Carl Zeiss).  
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2.2.4.4 Determination of cell numbers 

In order to be able to obtain comparable sections of the developing brain from different 

mice, serial sections were cut and every 5th section was stained with H&E. By analysing 

the H&E stainings, comparable sections were selected according to prominent brain 

structures such as the lateral ventricle. Cell numbers were counted throughout the cortex 

and the tectum on one representative section per brain in comparable areas of the same 

width which are represented by the low magnification pictures in the results chapters. 

Layer boundaries were determined by cell morphology and layer-specific marker 

expression.  

In the adult brain, comparable sections were obtained as described for the developing 

brain. Cellularity was determined by counting cells throughout the rostral migratory 

stream on low magnification pictures. 

In the intestine, comparable areas of the ileum and the colon were selected at the distal 

part of the small or the large bowel respectively. Cellularity was determined by 

counting cells in 10 villi or 10 crypts per mouse.  

 

2.2.4.5 In situ hybridisation 
For non-radioactive in situ hybridisation (ISH), all steps were performed under RNase-

free conditions using Digoxigenin (DIG)-labelled RNA-probes which were designed 

and generated by Dr Rocio Sancho. Tissues were dissected in ice-cold PBS and fixed in 

10% NBF overnight. Tissues were then processed, embedded in paraffin and sectioned 

at 8 µm. Paraffin sections were dewaxed in xylene twice for 5 min. Next, sections were 

hydrated through graded alcohols to water: 2 x in 100% ethanol for 5 min, 1 x in 95% 
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(v/v) ethanol for 5 min, 1 x in 70% (v/v) ethanol for 5 min and 1 x in DEPC water. Slides 

were washed once in PBS for 5 min and incubated in 10 µg/ml Proteinase K diluted in 

pre-warmed (37°C) 100 mM Tris-HCl pH7.5/50 mM EDTA for 15 min. Sections were 

washed once in 0.2% glycine in PBS and incubated in 4% PFA for 10 min. After 

washing three times in PBS, sections were incubated once in 4x SSC buffer for 2 min. 

Next, sections were pre-hybridised in hybridisation solution (for recipe, see page 110) 

without the probe for 1 h at 57°C in a humidified chamber. Then, 1 ng/ml from the in 

vitro transcription probe was added to the hybridisation solution and denatured at 75°C 

for 15 min. After cooling on ice for 5 min, the hybridisation solution including the probe 

is pipetted onto the sections and hybridisation takes place at 57°C overnight in a 

humidified chamber. The next day, sections were processed as follows: 1 x in 5x SSC at 

60°C for 10 min, 1 x in 50 % formamide/2x SSC at 60°C for 30 min, 1 x in 2x SSC at 

60°C for 30 min, 2 x in 0.2x SSC at 60°C for 30 min, 1 x in maleic acid buffer at room 

temperature for 5 min and 1 x in blocking buffer (for recipes see pages 108, 110, 115) at 

room temperature for 30 min. After that, sections were incubated in sheep anti-DIG 

alkaline phosphatase-conjugated antibody (Roche; diluted 1:1000 in blocking buffer) at 

37°C for 2 h. Next, sections were washed twice in maleic acid buffer at room 

temperature for 15 min before incubation in detection buffer (for recipe see page 108) at 

room temperature for 5 min. To develop, sections were incubated in the dark with 1 ml 

detection buffer plus 4.5 µl nitro blue tetrazolium (NBT; Roche) and 3.5 µl 5-bromo-4-

chloro-3-indolyl phosphate (BCIP; Roche) and the chromogenic reaction was monitored 

under the microscope. The reaction was stopped by incubation of the sections in 
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detection buffer for 15 min and then water for 15 min. After that, sections were 

mounted in VectaMount AQ (Vector Laboratories). 

For the radioactive in situ hybridisation, probes were designed and generated by          

Dr Anett Jandke and the labelling and sample processing was performed by the LRI In 

Situ Hybridisation Service. Images were acquired using a darkfield microscope 

(Olympus). 

 

2.2.5 Biochemistry 

2.2.5.1 Protein extraction 

Cells or tissues were washed in PBS and spun down at 1500 rpm, 4°C for 5 min. 

Afterwards, cells or tissues were treated with 400 µl of 1x RIPA buffer (NEB, 10x 

RIPA buffer (for recipe see page 114; diluted 1:10 in ddH2O) supplemented with 1:100 

protease inhibitor (PI; 100 x; Sigma), 1:100 phenylmethylsulfonyl fluoride (PMSF) and 

1:100 sodium fluoride and incubated on ice for 15 min. Cells were sonicated three times 

for 15 s at an amplitude of 10 microns (MSE Soniprep 150, SANYO) and immediately 

put on ice afterwards. Tissues were disrupted three times for 15 s using the Ultra 

Turrax® disperser (IKA). After that, suspensions were spun down at 16000 x g, 4°C 

(Eppendorf Centrifuge 5415 R) for 10 min and supernatants containing the protein 

extracts were removed for use or storage at -20°C. 
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2.2.5.2 Determination of protein amounts (Bradford assay) 

By means of a Bradford assay, protein amounts of protein extracts were determined. 

The Protein Assay Dye Reagent (Bradford Reagent (BR), Bio-Rad) contains Coomassie 

Brilliant Blue G-250 which binds to proteins and consequently changes the absorption 

maximum from 465 nm to 595 nm. This increase can be measured with a 

spectrophotometer and used to determine protein amounts in protein extracts. To 

obtain a standard curve, 0, 1, 2, 4, 8, 16 and 32 µl of a 1.5 mg/ml BSA solution were 

added to cuvettes containing 1 ml BR (diluted 1:5 in ddH2O) and absorption was 

measured with a spectrophotometer (Ultrospec 3100 pro, GE Healthcare). Afterwards, 

1 µl of protein extracts was added to cuvettes containing 1 ml BR and absorption was 

measured with a spectrophotometer. In reference to the standard curve, protein amounts 

could be determined. Protein amounts of comparative samples were standardised to the 

lowest protein concentration by diluting the samples containing higher protein levels 

with the corresponding amount of RIPA buffer plus supplements. Protein extracts were 

stored at -20°C. 

 

2.2.5.3 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis 

(SDS-PAGE) 
After determination of protein amounts and standardisation of protein concentrations of 

comparative samples, protein loading buffer (Laemmli buffer; for recipe, see page 113) 

was added 1:5 to protein extracts and samples were boiled for 5 min on a heat block 

(Techne Dri-Block DB-2D). Furthermore, 5% stacking gel solution and 10% resolving 

gel solution were prepared (for recipes see pages 114, 115). For polymerisation, 
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tetramethylethylenediamine (TEMED) and ammonium persulfate (APS) were added 

directly before pouring gels into assembled glass plates for vertical electrophoresis 

(C.B.S Scientific). After filling ~3/4 of the gel chamber between assembled glass plates 

with 10% resolving gel, 1 ml 2-propanol (Fisher Scientific) were pipetted on top of the 

resolving gel solution in order to obtain an even edge at the top of the gel. After 

polymerisation of the resolving gel and removal of the 2-propanol, the rest of the gel 

chamber was filled with 5% stacking gel and a gel comb (C.B.S Scientific) was 

inserted. After polymerisation of the stacking gel, the gel chamber was clamped into an 

Adjustable Slab Gel Kit (C.B.S Scientific), the tank was filled with 1x SDS-PAGE 

Running Buffer (for recipe see page 114), the gel comb was removed and samples and 

rainbow markers (GE Healthcare) were loaded. Protein separation took place at 45 mA 

for 2.5 h. 

 

2.2.5.4 Western Blot 

Western blotting was performed in a semi-dry blot chamber (Hoefer Scientific 

Instruments). Proteins separated in SDS gels were transferred on nitrocellulose 

membranes (Whatman) with three layers of blotting paper (Whatman) underneath the 

membrane and three layers of blotting paper on top of the gel. Before, the blotting paper 

was soaked with 1x semi-dry transfer buffer (recipe see page 115) and the nitrocellulose 

membrane was equilibrated with ddH2O and then transfer buffer. Proteins were 

transferred for 2 h at 144 mA. To visualise transferred proteins, nitrocellulose 

membranes were incubated briefly in Ponceau S solution (Sigma) and afterwards washed 

with distilled H2O. Unspecific binding was blocked by incubating the membrane for at 
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least 1 h in 10% (w/v) skimmed milk [A1 Laboratory Supplies Ltd; dissolved in Tris-

Buffered Saline Tween-20 (TBS-T)] supplemented with 1% (v/v) sodium fluoride 

(Sigma), 0.5% (v/v) sodium orthovanadate (NEB) and 0.02% (v/v) sodium azide 

(Sigma). After that, membranes were incubated with primary antibodies diluted in 5% 

(w/v) skimmed milk or 5% BSA at 4°C overnight on a shaker. The next day, membranes 

were washed three times with TBS-T at room temperature for 10 min on a shaker. 

Membranes were incubated with horseradish peroxidase(HRP)-conjugated secondary 

antibodies (Jackson Laboratories) diluted in 5% skimmed milk or 5% BSA at room 

temperature for 1 h on a shaker. Afterwards, membranes were washed again three times 

with TBS-T at room temperature for 10 min on a shaker and subsequently, membranes 

were incubated for 3 min in ECL Detection Solution 1 and 2 (1:1 dilution; GE 

Healthcare). According to signal intensities, Fuji X-ray films (Fisher Scientific) were 

exposed to the membranes in developing chambers for various periods of time. 

 

2.2.6 Molecular Biology 

2.2.6.1 DNA isolation 

For genotyping, murine material was incubated in 100 µl DirectPCR Lysis Reagent 

(Viagen) + 3 µl Proteinase K (10 mg/ml, Melford) overnight at 56°C. The next day, 

samples were incubated at 85°C for 45 min to inactivate Proteinase K. Samples were 

then vortexed and centrifuged at full speed for 15 min (Eppendorf Centrifuge 5415 D). 

Afterwards, 2 µl of the lysates were used for genotyping and lysates were stored at        

-20°C. 
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For cloning, cell suspensions were incubated in 500 µl DNA Lysis buffer (50 mM Tris, 

pH 8; 100 mM EDTA; 100 mM NaCl; 1% SDS) + 30 µl Proteinase K (10 mg/ml, 

Melford) overnight at 56°C. The next day, samples were shaken for 5 mins at 37°C on a 

heat block (Eppendorf Thermomixer compact) and subsequently 200 µl of 5 M NaCl 

was added. After shaking the samples again at 37°C for 5 min, they were centrifuged at 

full speed for 15 min (Eppendorf Centrifuge 5415 D). Supernatants were transferred to 

new tubes and 500 µl of 2-propanol (Fisher Scientific) was pipetted to each sample. 

After shaking the samples at 37°C for 10 min, samples were spun down at full speed 

for 10 min. Supernatants were discarded and DNA-pellets were air dried for 20 min. 

Afterwards, 40 µl ddH2O was added and samples were shaken for 1 h at 37°C to 

dissolve the DNA.  

 

2.2.6.2 Genotyping PCR 

After DNA isolation, genotyping polymerase chain reaction (PCR) mix was prepared 

using 2 µl DNA per reaction: 
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1 x PCR-Mix (Qiagen): 

1 x CoralLoad PCR Buffer:   2 µl (10 x stock)  

1 x Solution Q:   4 µl (5 x stock) 

dNTPs (0.25 mM):   0.2 µl (25 mM stock) 

Primer forward (1 µM):  0.2 µl (100 µM stock) 

Primer reverse (1 µM) :  0.2 µl (100 µM stock) 

Taq-Polymerase (0.2 U):  0.2 µl (5 U/µl stock) 

ddH2O:    11.2 µl                   

+ DNA    2 µl                  

        20 µl 

For a list of genotyping primer combinations and sizes of expected bands, see page 119. 
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Table 7 PCR programme 
For Fbxw7, Jun, Notch1, Cre and eGFP PCR: 

Step Temperature Time Number of cycles 

 

  initial denaturation 

 

 

94°C 

 

 

3 min 

 

 

1 

 

  denaturation 

 

 

94°C 

 

 

30 s 

 

 

  annealing 

 

 

60°C 

 

 

45 s 

 

   

  extension 

 

 

72°C 

 

 

45 s 

 

 

 

 

 

35 

 

  final extension 

 

72°C 

 

10 min 

 

1 

 

2.2.6.3 Agarose gel electrophoresis 

PCR products were separated on a 1.5% agarose (Bioline) gel (diluted in 1x TAE; + 1:10 

ethidium bromide (10 mg/ml; Sigma-Aldrich) for 1 h at 120 V. To determine band size, 

10 µl of a 1 kb DNA ladder (Invitrogen) was loaded. 
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2.2.6.4 Transformation of bacteria 

For the amplification of plasmid DNA, bacteria were transformed using XL10-Gold® 

Ultracompetent Cells (Stratagene) according to the manufacturer’s instructions with 

minor modifications. Ultracompetent cells were thawed on ice and 150 µl of cell 

suspension were transferred to pre-chilled polypropylene round-bottom tubes (BD 

Falcon). 6 µl of β-mercaptoethanol (Stratagene) were added and after gently mixing the 

cells, they were incubated for 10 min on ice gently swirling them every other minute. 

After that, 20-50 ng of plasmid DNA or 2-4 µl of a ligation mixture were added to the 

cells and tubes were incubated on ice for 30 min. Next, transformation was induced by 

heat shock for 30 s in a 42°C water bath. After that, cells were incubated on ice for        

2 min, 1 ml of SOC-medium (Invitrogen) was added and cells were incubated at 37°C for 

1 h shaking at 250 rpm. Afterwards, 50 µl, 100 µl and 200 µl of the transformation 

mixture were plated on lysogeny broth (LB; LRI/CRUK) agar plates containing the 

appropriate antibiotic. The plates were incubated at 37°C overnight and the following 

day, colonies were picked and grown in 2 ml LB containing the appropriate antibiotic or 

plates were stored at 4°C. Alternatively, 1 ml of transformation mixture was used to 

inoculate 200 ml of LB containing the appropriate antibiotic. 

For the amplification of pENTR-vectors containing a ccdB gene, transformation was 

performed as described using Library Efficiency DB3.1™ Competent Cells (Invitrogen). 
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2.2.6.5 Preparation of plasmid DNA 

After centrifugation of the bacterial cell suspensions at 1350 x g, 4°C for 10 min, 

plasmid DNA was isolated from bacterial cell pellets using the QIAprep Spin Miniprep 

Kit (QIAGEN) or the QIAGEN Plasmid Maxi Kit (QIAGEN) for high copy plasmids 

and the NucleoBond® Plasmid Purification Kit (Clontech Laboratories) for low copy 

plasmids according to the manufacturers’ instructions. DNA concentrations and quality 

were measured using the NanoDrop spectrophotometer (Thermo Scientific). The ratio 

of OD260/OD280 should be ~1.8. Plasmid DNA was verified by restriction enzyme digest 

followed by gel electrophoresis or DNA sequencing. 

 

2.2.6.6 Restriction enzyme digest and DNA purification 
DNA was analysed or DNA fragments were excised by cutting DNA with restriction 

endonucleases (NEB; Fermentas, Thermo Scientific) for at least 2 hours or overnight 

according to manufacturer’s instructions. DNA product from enzymatic reactions were 

either purified using the illustra GFX PCR DNA and Gel Band Purification Kit (GE 

Healthcare) according to manufacturer’s instructions or DNA fragments were separated 

by gel electrophoresis, excised from the gel and subsequently purified. 
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2.2.6.7 DNA sequencing 

For DNA sequencing, 200 ng of DNA was added to the sequencing PCR mix and made 

up to 20 µl with ddH2O: 

1 x sequencing PCR-Mix: 

8 µl BigDye Terminator reaction mix (BDT)  

0.32 µl Primer (from 10 µM stock) 

 

For a list of sequencing primers, see page 121.  

 

The sequencing PCR programme consisted of the following steps repeated over 28 

cycles: 

1. 95°C for 30 s 

2. 55°C for 30 s 

3. 60°C for 4 min 

 

Next, sequencing PCR-products were purified using the DyeEx® 2.0 Spin Kit 

(QIAGEN). Samples were dried in a Savant DNA Speed Vac® Concentrator (Thermo 

Scientific) at high drying rate for 20 min and sent to the LRI Equipment Park for 

sequencing. 
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2.2.6.8 Ligation of DNA fragments 

DNA fragments were ligated using T4 DNA ligase (NEB) according to the 

manufacturer’s instructions with minor modifications. To reduce the self-ligation of a 

vector digested with restriction enzymes creating compatible sticky ends, vector DNA 

was pre-treated with Calf Intestinal Alkaline Phosphatase (CIP; NEB) at 37°C for 1 h. 

25 ng vector DNA was pipetted to the ligation reaction mix. Insert DNA was added in a 

5 (insert):1 (vector) or 3:1 molar ratio. The amount of insert DNA to use can be 

calculated as follows: 

                                                                 ratio 

                                                              5:1   3:1                vector input 

                                                                ↓     ↓                          ↓ 

                           (5 or 3 x bp insert) x 25 ng 

insert DNA ng =       ____________________________________ 

                               bp vector 

 

The ligation mix was incubated at 16°C overnight and 2-4 µl of ligation mix was used in 

a subsequent transformation of bacteria to amplify the DNA. All ligations were 

performed together with a vector only control. 

 

2.2.6.9 BAC subcloning 

Bacterial artificial chromosome (BAC) subcloning by Red®/ET® Recombination was 

performed using the BAC Subcloning Kit (Gene Bridges) according to the 
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manufacturer’s instructions with minor modifications. I designed oligonucleotides 

consisting of 50 bp BAC homology arms (flanking a 10 kb region containing the Jun 

locus), a unique restriction site and a given primer sequence for amplification of a linear 

vector carrying a ColE1 origin and an ampicillin (AMP) resistance gene from a minimal 

vector PCR-template (2.7 kb; Gene Bridges). The 2.7 kb PCR-product was purified 

using the illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare) 

according to manufacturer’s instructions. Next, the bacteria containing the BAC clone 

with the Jun locus [RP23 117A16 (BPRC), chloramphenicol (CAM) resistance] were 

plated on LB agar plates containing 12.5 µg/ml CAM (Sigma). The next day, 10 colonies 

were picked and grown in 1 ml LB medium + 12.5 µg/ml CAM shaking at 37°C 

overnight. The next day, 1.4 ml LB medium + 12.5 µg/ml CAM were inoculated with  

30 µl of the overnight culture and incubated for 2 hours shaking at 37°C. After that, 2 µl 

the Red/ET recombination protein expression plasmid pSC101-BAD-gbaAtet carrying a 

tetracycline resistance gene was electroporated into the cells using a Bio-Rad Gene 

Pulser® II at the following settings: Voltage: 1.8 kV, capacitance: 25 µF, resistance:    

200 Ω, pulse: 5 ms. Electroporated cells were then incubated in 1 ml LB medium 

without antibiotics and shaking at 30°C for 70 min. Next, 200 µl of the cells were plated 

on LB agar plates containing 12.5 µg/ml CAM and 3 µg/ml tetracycline (TET, Sigma) 

and incubated at 30°C in the dark for 48 h. After that, 10 colonies were picked and 

incubated in 1 ml LB medium plus 12.5 µg/ml CAM and 3 µg/ml TET shaking at 30°C 

overnight. The next day, 1.4 ml LB medium plus 12.5 µg/ml CAM and 3 µg/ml TET 

were inoculated with 30 µl of the overnight culture and incubated shaking at 30°C until 

OD600 ~0.3. After that, 50 µl of 10% L-arabinose were added to half of the tubes to 
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induce the expression of the Red/ET recombination proteins while the other half was 

used as negative control. The cells were incubated shaking at 37°C for 1 h. Cells were 

then spun down at 11000 rpm, 2°C for 30 s and washed twice with 1 ml chilled ddH2O. 

After a further centrifugation step, the supernatant was discarded, so that 20-30 µl were 

left in the tube with the pellet. Next, 3 µl (0.1-0.2 µg) of the prepared linear vector 

fragment PCR-product with homology arms was added and electroporation was 

performed using the Bio-Rad Gene Pulser® II as described above. 1 ml of LB medium 

with 50 µl 10% L-arabinose (Sigma; not added in the negative control) but without 

antibiotics was added and the cells were incubated at 37°C for 2 h to allow 

recombination to occur. Next, 100 µl of the cultures were plated on LB agar plates 

containing 100 µg/ml AMP and incubated at 37°C for 48h, at which temperature the 

Red/ET recombination plasmid will be lost. Whereas there were no colonies detectable 

on the negative control (without L-arabinose) plates, individual colonies were picked 

from the plates with the L-arabinose induced cultures and cultured in 3 ml LB plus     

100 µg/ml AMP shaking at 37°C overnight. Plasmid DNA was prepared using the 

QIAprep Spin Miniprep Kit (QIAGEN) as described above. Successful homologous 

recombination was confirmed by restriction digest using various restriction enzyme 

combinations. Subsequently, parts of the genomic BAC sequence were excised by 

restriction digest and substituted by mutated sequences. To generate the final targeting 

construct, a loxP-PGK-gb2-neo-loxP fragment was excised from a plasmid DNA 

template (Gene Bridges) by restriction digest. This fragment contains a neomycin 

resistance gene and was inserted into a unique restriction site of the genomic locus after 
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the Jun open reading frame (ORF) as a selective marker to be able to identify properly 

targeted ES cell clones. Correct insertion of the neomycin cassette was confirmed by 

restriction digest. The final targeting construct was sequenced and linearised by 

restriction digest. 

For a list of primers used to generate the Jun4A targeting construct, see page 121. 

  

2.2.6.10 Southern Blot 

Southern blot analysis for correct insertion of the LSL-JNKK2-JNK1 targeting 

construct into the ROSA26 locus was performed by Lieven Haenebalcke in Dr Jody 

Haigh’s Lab at the University of Gent, Belgium as previously described (Nyabi et al., 

2009). 5’ integration was assessed by using a 550bp 5’-external probe which, after 

BamHI digest of genomic DNA, detects the wt allele at 5.8 kb and the targeted allele at 

3.0 kb. 3’ integration was analysed by using a 800bp 3’-external probe which, after 

KpnI digest detects the wt allele at 37 kb and the targeted allele at 8.8 kb. 

 

2.2.6.11 RNA isolation 
RNA was isolated from cells using the RNeasy Mini- or RNeasy Midi-kit (QIAGEN) 

according to the manufacturer’s instructions. To homogenise the lysates, samples were 

passed through an 18-gauge needle (BD) several times. On-Column DNase digestion 

was performed using the RNase-Free DNase Set (QIAGEN). RNA quality was checked 

by gel electrophoresis where two distinct bands representing 28s-rRNA and 18s-rRNA 

are expected to be seen. RNA concentrations and quality were measured using the 
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NanoDrop spectrophotometer (Thermo Scientific). The ratio of OD260/OD280 should be 

between 1.8 and 2.0. RNA was used immediately for cDNA-synthesis or stored at        

-80°C. 

 

2.2.6.12 cDNA-synthesis 
RNA amounts were standardised using RNase-free water and cDNA-synthesis was 

performed using the Superscript III First-Strand cDNA synthesis kit (Invitrogen) and 

random hexamer primers (Invitrogen) according to the manufacturer’s instructions.  

 

2.2.6.13 Quantitative real-time PCR analysis 
For quantitative real-time PCR (qRT-PCR) analysis, cDNA was diluted 1:5 in ddH2O. 

3.5 µl of cDNA were used per qRT-PCR reaction which was conducted in triplicates. 

qRT-PCR was performed measuring SYBR Green incorporation (Platinum Quantitative 

PCR SuperMix-UDG w/ROX, Invitrogen) on an ABI7900HT (Applied Biosystems). 

Data were analysed using the SDS 2.3 software (Applied Biosystems). Primers were 

designed using Primer Express 3.0 software (Applied Biosystems).  

For a list of qRT-PCR primers, see page 122.  
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3x qRT-PCR-Mix (triplicate): 

37.5 µl Platinum SYBR Green  

34.5 µl ddH2O 

1.5 µl Primer 1 (10 µM stock) 

1.5 µl Primer 2 (10 µM stock) 

+ 3.5 µl cDNA 

 

To exclude primer dimer and unspecific amplification, ‘no template’ control was 

included and a dissociation curve performed. To retrieve Ct values, the threshold was 

set within the exponential phase of the amplification plots. 

 

2.2.7 Statistical analysis 
Statistical evaluation was performed by Student’s unpaired t-test. Data are presented as 

mean ± standard error of the mean (s.e.m.); P ≤ 0.05 was considered statistically 

significant. n represents the number of independent biological replicates, i.e. for 

histology the number of mice analysed per genotype and for cytology the number of 

mice used per genotype to isolate primary cell lines for independent experiments.   
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Chapter 3. Results 
 

3.1 Fbw7 controls cell number and differentiation in the 

developing brain 
 

3.1.1 Conditional deletion of Fbw7 in the nervous system 
Due to the fact that Fbw7 knockout mice die around embryonic day (E) 10.5 as a 

consequence of placental and vascular defects (Tetzlaff et al., 2004, Tsunematsu et al., 

2004), conditional Fbw7 knockout mice were generated in our laboratory (Jandke et al., 

2011) to investigate the importance of Fbw7 at later stages of development. These 

floxed Fbxw7 (Fbxw7f) mice carry a Fbxw7 allele in which exon 5 is flanked by loxP-

sites (Figure 22a). Exon 5 encodes for the essential F-box domain of the protein which 

is responsible for the binding of Fbw7 to the SCF E3 ubiquitin ligase complex. Upon 

crossing Fbxw7f/f mice to transgenic mice expressing Cre recombinase, exon 5 is 

excised and the open reading frame (ORF) of the Fbxw7 gene is disrupted. Cre 

expression under the control of a Nestin-promoter has previously shown to result in 

Cre-mediated recombination specifically in the nervous system (Kramer et al., 2006, 

Raivich et al., 2004). As proof of principle, crossing Nestin-Cre mice to ROSA26-LSL-

YFP mice resulted in tissue-specific deletion of the loxP-STOP-loxP (LSL) cassette and 

consequently reporter gene expression in the nervous system with no recombination 

detectable in neural crest-derived cells (Figure 22b,c). By crossing Nestin-Cre mice to 

Fbxw7f/f mice, the resulting Fbxw7f/f: Nestin-Cre+ (Fbxw7ΔN) mice show tissue-specific 

deletion of Fbw7 in the central nervous system. Neither RNA nor protein levels of 

Fbw7 were detectable by in situ hybridisation in the E18.5 brain or by western blot 
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analysis on protein extracts from neural cells isolated from E14.5 Fbxw7ΔN mice 

(Figures 22d and 41).  

Apart from its crucial role in vascular development (Tetzlaff et al., 2004, Tsunematsu et 

al., 2004), Fbw7 also seems to be of major importance for the development of the 

nervous system since Fbxw7ΔN mice exhibited perinatal lethality. 
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Figure 22 Efficient Fbxw7 deletion in Fbxw7ΔN mice. 
(a) Schematic representation of the targeting construct before and after Cre 
recombination. Exon 5 of the Fbxw7 allele is flanked by loxP-sites (Fbxw7f) and 
excised upon crossing Fbxw7f/f mice to transgenic mice expressing Cre recombinase. 
Conditional knockout of Fbxw7 in the brain occurs by expressing Cre under the control 
of a Nestin promoter (Fbxw7ΔN). (b) Bright field and fluorescence microscopy pictures 
of ROSA26-LSL-YFPLSL/+ and ROSA26-LSL-YFPLSL/+; Nestin-Cre E14.5 embryos 
lateral view (upper panels) and dorsal view (lower panels). (c) Bright field pictures and 
immunocytochemistry for GFP (green) on comparable sagittal sections from ROSA26-
LSL-YFPLSL/+ and ROSA26-LSL-YFPLSL/+; Nestin-Cre E14.5 embryos showing dorsal 
root ganglia (DRG). White squares mark areas shown in high magnification in panels 
on the right. GFP-positive cells were only detectable in the spinal cord of ROSA26-
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LSL-YFPLSL/+; Nestin-Cre mice but not in the neural crest derived DRG. (d) Fbxw7 
(exon 2–5 specific probe) in situ hybridization (lower panels) with Giemsa counterstain 
(blue, upper panels). Rectangles mark comparable regions of the cortex (1, 1’) shown 
below in high magnification for Fbxw7f/f and Fbxw7ΔN E18.5 heads. Scale bars: 100 µm. 
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3.1.2 Absence of Fbw7 affects cellularity in the developing brain 

Due to the perinatal lethality, the latest time point I was able to obtain Fbxw7ΔN embryos 

was around E18.5. By histological analysis of the E18.5 wild type (wt) and Fbw7-

deficient brain, I could not detect differences in the overall structure of the brain, e.g. 

the size and the thickness of the forebrain cortex was unaffected in the mutant brain 

(Figure 23). However, haematoxylin and eosin (H&E) staining revealed a widespread 

reduction in cell number in the midbrain tectum and the forebrain cortex               

(Figure 24a-d). Interestingly, the decreased cellularity was only detectable in areas of 

progenitors and differentiated cells. In the midbrain tectum, cell numbers in the mantle 

layer (ML) were reduced by 34%. In the forebrain cortex, the cellularity in the 

subventricular zone (SVZ) was decreased by 29%, in the intermediate zone (IZ) by 27% 

and in the cortical plate by 30%. On the contrary, cell numbers in areas which harbour 

stem cells, i.e. the tectal and cortical ventricular zones (VZ), were either unaltered as 

seen in the cortex or increased as seen in the tectum of the mutant brains              

(Figure 24a-d). Also other regions of the developing brain such as the lateral ventricle 

and the thalamus showed no obvious structural abnormalities in the Fbw7-deficient 

brain. However, the cerebellar anlage seemed to be slightly reduced in size and showed 

abnormal fissure formation (Figure 24e) in the Fbxw7ΔN developing brain, which has 

recently been shown to result in a smaller cerebellum and atypical fissures in the adult 

brain of cerebellum-specific conditional Fbw7-knockout mice (Jandke et al., 2011). As 

seen in the cortex and the tecum, Fbw7 deletion also led to decreased cellularity in areas 

of differentiated cells in the cerebellar anlage and the thalamus (Figure 24e,f).  
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Figure 23 Cortex size in the Fbxw7ΔN brain. 
(a) Schematic representation of the E18.5 mouse forebrain (fb; green) and midbrain 
(mb; red) dorsal view. Comparable sagittal sections of Fbxw7f/f and Fbxw7ΔN E18.5 
heads were taken alongside the lateral-medial axis (1, 2, 3) and are shown in (b) stained 
with haematoxylin and eosin (H&E). Scale bars: in 1, 580 µm; in 2, 730 µm; in 3,     
870 µm.  
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Figure 24 Fbw7 controls cell number in the brain. 
(a) H&E staining of the E18.5 forebrain cortex from Fbxw7f/f and Fbxw7ΔN mouse 
embryos. Rectangles mark comparable regions of the cortex shown below in high 
magnification. Scale bars, 100 µm. (b) H&E staining of comparable regions of the 
Fbxw7f/f and Fbxw7ΔN E18.5 midbrain tectum. Rectangles mark the area of the tectum 
shown below in high magnification. Scale bars, 200 µm. (c) Histogram showing the 
relative quantity of cells in the ventricular zone (VZ), subventricular zone (SVZ), 
intermediate zone (IZ) and cortical plate (CP) of the Fbxw7f/f and Fbxw7ΔN E18.5 
cortex. Cell number in the Fbxw7f/f E18.5 cortex is normalized to 1 (100%); n = 3.      
(d) Histogram showing the relative quantity of cells in the VZ and the mantle layer 
(ML) of the Fbxw7f/f and Fbxw7ΔN E18.5 tectum. Cell numbers in the Fbxw7f/f E18.5 
tectum are normalized to 1 (100%); n = 5. (e,f) H&E staining of the E18.5                   
(e) cerebellum and (f) thalamus from Fbxw7f/f and Fbxw7ΔN mouse embryos. Rectangles 
mark comparable regions shown below in high magnification. Scale bars: 50 µm. 
Error bars, standard error of the mean (s.e.m.); n.s., not significant; *P ≤ 0.05;            
**P ≤ 0.01; ***P ≤ 0.001 (unpaired t-test). 
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3.1.3 Loss of Fbw7 does not alter proliferation but apoptosis in the 

developing brain 
The question arising from the widespread reduction in cellularity in areas of progenitors 

and differentiated cells in the Fbxw7ΔN brain was, which cellular mechanism is involved 

in this phenotype? Thus, I analysed the number of proliferative cells in the Fbw7-

deficient brain at different stages of embryonic development. The number of cells 

expressing the mitotic marker phospho-histone H3 (pH3) in the E16.5 mutant midbrain 

tectum was not significantly altered in comparison to the wt midbrain tectum      

(Figure 25a,b). Similarly, the number of Ki67-positive proliferative cells was the same 

in the wt and Fbw7 mutant forebrain cortex at E10.5, E14.5, E16.5 and E18.5      

(Figure 25c-g). Another cellular mechanism which could explain the decreased 

cellularity in areas of progenitors and differentiated cells is apoptosis. Although the 

number of apoptotic cells expressing active Caspase-3 was similar in the E18.5 wt and 

Fbw7 mutant midbrain tectum, I could detect a significant increase in the number of 

apoptotic cells at an earlier stage of development, at E16.5 (Figure 26a,b). 

Interestingly, the increase in the number of apoptotic cells was mainly detectable in the 

lower part of the ML where progenitors migrate out of the VZ and differentiate on their 

way into the upper part of the tectum. This was the first indication that there is 

increased progenitor apoptosis in the absence of Fbw7. In the forebrain cortex, the 

number of apoptotic cells was markedly increased in the Fbw7 mutants at E14.5 

(Figure 26c,d). Notably, also in the cortex, elevated levels of apoptosis were detected 

mainly in the SVZ where Tbr2-positive intermediate progenitors reside whose numbers 

were markedly reduced in the Fbxw7ΔN cortex (Figures 26c,e and 29a,b). This 

suggested that loss of Fbw7 results in increased progenitor apoptosis and consequently 

decreased numbers of progenitors and differentiated cells. 
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Figure 25 Loss of Fbw7 does not affect proliferation in vivo. 
(a) 3,3′-Diaminobenzidine (DAB) staining for the mitotic marker phosphorylated 
histone H3 (pH3) on representative sections of the Fbxw7f/f and Fbxw7ΔN E16.5 tectum. 
Cells are counterstained with haematoxylin. Scale bars, 50 µm. (b) Quantification of 
pH3-positive cells in the Fbxw7f/f and Fbxw7ΔN E16.5 tectum; n = 3. (c-f) DAB staining 
for the S-phase marker Ki67 on representative sections of the Fbxw7f/f and Fbxw7ΔN 
cortex at (c) E10.5, (d) E14.5, (e) E16.5 and (f) E18.5. Cells are counterstained with 
haematoxylin. Scale bars: 50 µm. (g) Quantification of Ki67-positive cells in the E10.5 
Fbxw7f/f and Fbxw7ΔN cortex and in the SVZ of the E14.5, E16.5 and E18.5 Fbxw7f/f 
and Fbxw7ΔN cortex. n = 3. 
Error bars, s.e.m.; n.s., not significant (unpaired t-test). CP: cortical plate, IZ: 
intermediate zone, ML: mantle layer, SVZ: subventricular zone, VZ: ventricular zone. 
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Figure 26 Loss of Fbw7 leads to increased apoptosis 
(a) Immunohistochemistry for active caspase-3 (Casp3; green) on representative 
sections of the Fbxw7f/f and Fbxw7ΔN E16.5 tectum. DNA (blue) is counterstained with 
DAPI. Scale bars, 50 µm. (b) Quantification of active Casp3+ cells in the Fbxw7f/f and 
Fbxw7ΔN E16.5 tectum; n = 3. (c) Immunohistochemistry for active caspase-3 (Casp3; 
green; left panels) and Tbr2 (green; right panels) on representative sections of the 
Fbxw7f/f and Fbxw7ΔN E14.5 cortex. DNA (blue) is counterstained with DAPI. Scale 
bars, 50 µm. (d,e) Quantification of (d) active Casp3+ and (e) Tbr2+ cells in the Fbxw7f/f 
and Fbxw7ΔN E14.5 cortical SVZ; n = 3. 
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Error bars, s.e.m.; *P ≤ 0.05 (unpaired t-test). CP: cortical plate, IZ: intermediate zone, 
ML: mantle layer, SVZ: subventricular zone, VZ: ventricular zone. 
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3.1.4 Fbw7-deficiency leads to stem cell accumulation in the brain 

To further investigate the role of Fbw7 in the developing brain, I examined the Fbw7 

expression pattern by in situ hybridisation. In the E14.5 wt cortex, Fbw7 was highly 

expressed in areas of stem cells and progenitors, i.e. the cortical SVZ and VZ, whereas 

there was only scattered Fbw7 expression detectable in areas of more differentiated 

cells, i.e. the IZ and the CP (Figure 27a). The increased number of cells in the tectal 

VZ was a first indication that Fbw7 plays a role in stem cell regulation (Figure 24b,d). 

Indeed, when I performed immunofluorescence staining for the stem cell and progenitor 

marker Nestin on the E14.5 wt and mutant brain, Nestin expression was substantially 

increased in the absence of Fbw7 throughout the cortex (Figure 27b). The difference in 

Nestin reactivity between the wt and Fbw7-deficient brain became more pronounced at 

later stages of development, i.e. at E16.5 and E18.5 (Figure 27c,d). Furthermore, the 

expression of BLBP and GLAST, markers for the main subset of stem cells at this stage 

of development, radial glia stem cells, was also significantly elevated in the E16.5 and 

E18.5 mutant brain (Figure 27c,e-g). Similar results were obtained when analysing the 

E18.5 tectum where the expression of the early stem cell marker Musashi 1 (Msi1), the 

expression of the radial glia stem cell marker BLBP and the expression of the stem cell 

and progenitor marker Nestin was significantly increased in the mutant embryonic brain 

(Figure 28). Considering that there is no difference in proliferation during embryonic 

brain development in the absence of Fbw7 (Figure 25), the accumulation of stem cells 

during embryonic brain development might be due to a differentiation defect of neural 

stem cells lacking Fbw7 – a hypothesis I went on to test. 
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Figure 27 Increased number of stem cells in the forebrain cortex in the absence of 
Fbw7 
(a) Fbxw7 (probe specific to exons 6–10) in situ hybridisation and sense control with 
haematoxylin stain (left) on the Fbxw7f/f E14.5 cortex. Scale bars, 50 µm.                     
(b) Immunohistochemistry for Nestin (red) on the Fbxw7f/f and Fbxw7ΔN E14.5 cortex. 
White rectangles mark areas shown in high magnification in panels at the top. DNA 
(blue) is counterstained with DAPI. Scale bars, 50 µm. (c) Immunohistochemistry for 
Nestin (red; left panels) and BLBP (red; right panels) on the Fbxw7f/f and Fbxw7ΔN 
E16.5 cortex. White rectangles mark areas shown in high magnification in panels at the 
top. DNA (blue) is counterstained with DAPI. Scale bars, 50 µm. (d,e) DAB staining 
for (d) Nestin and for (e) BLBP on the Fbxw7f/f and Fbxw7ΔN E18.5 cortex. Black 
rectangles mark areas shown in high magnification in panels at the top. Cells are 
counterstained with haematoxylin. Scale bars, 50 µm. (f) Quantification of BLBP-
positive cells in the SVZ of the Fbxw7f/f and Fbxw7ΔN E18.5 cortex. n = 3. Error bars, 
s.e.m.; **P ≤ 0.01. (unpaired t-test). (e) Immunohistochemistry for GLAST (green) on 
the Fbxw7f/f and Fbxw7ΔN E18.5 cortex. White rectangles mark areas shown in high 
magnification in panels at the top. DNA (blue) is counterstained with DAPI. Scale bars, 
50 µm.  
CP: cortical plate, IZ: intermediate zone, SVZ: subventricular zone, VZ: ventricular 
zone. 
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Figure 28 Increased number of stem cells in the Fbxw7ΔN midbrain tectum  
From left to right: Immunohistochemistry for Musashi 1 (Msi1; red), BLBP (red) and 
Nestin (red) on representative sections of the Fbxw7f/f and Fbxw7ΔN E18.5 tectum. DNA 
(blue) is counterstained with DAPI. ML: mantle layer, VZ: ventricular zone. Scale bars: 
50 µm. 
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3.1.5 Decreased numbers of progenitors and neurons in the Fbxw7ΔN 

brain 
After examining stem cell marker expression in the developing brain, I performed 

immunohistochemistry (IHC) for markers of more committed progenitors and 

differentiated cells. The number of Tbr2-positive intermediate progenitors was 

significantly reduced in the absence of Fbw7 (Figures 26c,e and 29a,b). Similarly, the 

number of Doublecortin (Dcx)-positive progenitors which had committed to the 

neuronal lineage was significantly decreased throughout embryonic brain development 

in the cortical SVZ of Fbxw7ΔN mice (Figure 29c-f). Next, I examined the expression of 

a marker for mature neurons, NeuN. Loss of Fbw7 led to a significantly decreased 

number of NeuN-positive neurons in the tectal ML and in the cortical IZ and CP 

(Figure 30a-c). To find out whether there is a block in neurogenesis in general or 

whether a specific subset of neurons is affected in particular, I performed IHC for 

various cortical layer neurons. As a result, the expression of all the different neuronal 

markers Tbr1, Ctip2 and Brn2 was reduced indicating that indeed, loss of Fbw7 leads to 

a general differentiation defect of neural stem cells into neurons (Figure 30c-f). 

Notably, the number of differentiated glia cells was not affected by Fbw7-deficiency. 

The expression of the astroglia markers GFAP and S100 and the oligodendroglia 

marker NG2 was similar in the wt and mutant cortex (Figure 31). 

Taken together, the reduced cellularity in areas of differentiated cells accompanied by 

decreased expression of neuronal markers in these areas accounts for a severe reduction 

in neurons which is likely to contribute to the perinatal lethality of Fbxw7ΔN mice. 
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Figure 29 Reduced number of neuronal progenitors in the Fbxw7ΔN cortex. 
(a) DAB staining for Tbr2 on the Fbxw7f/f and Fbxw7ΔN E18.5 cortex. Black rectangles 
mark areas shown in high magnification in panels at the top. Cells are counterstained 
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with haematoxylin. Scale bars, 50 µm. (b) Quantification of Tbr2-positive cells in the 
IZ and the CP of the Fbxw7f/f and Fbxw7ΔN E18.5 cortex. n = 3. (c-e) DAB staining for 
Doublecortin (Dcx) in the (c) E18.5, (d) E16.5 and (e) E14.5 Fbxw7f/f and Fbxw7ΔN 
cortex. Black rectangles mark areas shown in high magnification in panels at the top. 
Cells are counterstained with haematoxylin. Scale bars: 50 µm. (f) Quantification of 
Dcx-positive cells in the SVZ of the E18.5 (n = 4), E16.5 (n = 3) and E14.5 (n = 3) 
Fbxw7f/f and Fbxw7ΔN cortex.  
Error bars, s.e.m.; *P ≤ 0.05 (unpaired t-test); **P ≤ 0.01. CP: cortical plate, IZ: 
intermediate zone, SVZ: subventricular zone, VZ: ventricular zone. 
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Figure 30 Decreased number of neurons in the Fbxw7ΔN brain. 
(a) Immunohistochemistry for NeuN (green) on representative sections of the Fbxw7f/f 
and Fbxw7ΔN E18.5 tectum. DNA (blue) is counterstained with DAPI. Scale bars:         
50 µm. (b) DAB staining for NeuN on the Fbxw7f/f and Fbxw7ΔN E18.5 cortex. Black 
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rectangles mark areas shown in high magnification in panels at the top. Cells are 
counterstained with haematoxylin. Scale bars, 50 µm. (c) Quantification of NeuN, Tbr1, 
Ctip2 and Brn2-positive cells in the IZ and the CP of the Fbxw7f/f and Fbxw7ΔN E18.5 
cortex. n = 3. (d-f) DAB staining for (d) Tbr1, (e) Ctip2 and (f) Brn2 on the Fbxw7f/f 
and Fbxw7ΔN E18.5 cortex. Black rectangles mark areas shown in high magnification in 
panels at the top. Cells are counterstained with haematoxylin. Scale bars, 50 µm.  
Error bars, s.e.m.; *P ≤ 0.05 (unpaired t-test); CP: cortical plate, IZ: intermediate zone, 
ML: mantle layer, SVZ: subventricular zone, VZ: ventricular zone. 
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Figure 31 Loss of Fbw7 does not affect gliogenesis. 
(a) Immunohistochemistry for GFAP (red) on representative sections of the Fbxw7f/f 
and Fbxw7ΔN E18.5 cortex. DNA (blue) is counterstained with DAPI. Scale bars:          
50 µm. (b,d) DAB staining for (b) S100 and (d) NG2 in the CP of the E18.5 Fbxw7f/f 
and Fbxw7ΔN cortex. Red arrowheads denote positive cells. Cells are counterstained with 
haematoxylin. Scale bars: 50 µm. (c,e) Quantification of (c) S100-positive and (e) NG2-
positive cells in the IZ and the CP of the E18.5 Fbxw7f/f and Fbxw7ΔN cortex. n = 3.  
Error bars, s.e.m.; n.s.: not significant (unpaired t-test). CP: cortical plate, IZ: 
intermediate zone, SVZ: subventricular zone, VZ: ventricular zone. 
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3.1.6 Fbw7 controls neural cell number in vitro 

Having discovered Fbw7 function in the regulation of cell number and neural 

differentiation in the developing brain, I examined whether neural cells from Fbxw7ΔN 

embryos show similar results to the observed in vivo phenotypes in vitro. I isolated 

neural cells from the wt and mutant E14.5 brain and cultured them in a medium 

conditioned with the growth factors EGF and FGF which is selective for neural stem 

cells (NSCs) and neural progenitor cells (NPCs). As a result, these cells form 

neurospheres which consist of NPCs and to a small extent of NSCs and more 

differentiated cells (Reynolds and Rietze, 2005). By light microscopy, it was clear that 

neurospheres in Fbw7 mutant cultures were significantly decreased in size and in 

number (Figure 32). The reduced number of neurosphere cells in the absence of Fbw7 

in vitro might be similar to the in vivo-observation that loss of Fbw7 results in 

decreased numbers of progenitors. 
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Figure 32 Absence of Fbw7 results in reduced cellularity in vitro. 
(a) Phase contrast pictures of Fbxw7f/f and Fbxw7ΔN neurosphere (arrowheads) cultures 
under self-renewal conditions. Scale bars, 100 µm. (b,c) Histograms showing (b) the 
diameter (in µm) and (c) the relative quantity of Fbxw7f/f and Fbxw7ΔN neurospheres. 
Neurosphere numbers in Fbxw7f/f cultures are normalized to 1 (100%); n = 4. 
Error bars, s.e.m.; **P ≤ 0.01; ***P ≤ 0.001 (unpaired t-test). 
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3.1.7 Loss of Fbw7 does not affect proliferation but leads to increased 

progenitor apoptosis in vitro 
To further investigate the decreased number of neurosphere cells in Fbw7 mutant 

cultures, I examined proliferation in wt and Fbw7-deficient neurospheres. By 

immunofluorescence staining for the mitotic marker pH3 on neurosphere sections, I 

could not detect a difference in the number of proliferative cells in wt and Fbw7 mutant 

neurospheres (Figure 33a). Furthermore, I performed carboxyfluorescein diacetate 

succinimidyl ester (CFSE) staining which labels all cellular proteins and is subsequently 

diluted out at each cell division, so that loss of CFSE intensity by cells over time can be 

used as a measure of their proliferation rate. FACS analysis of CFSE-stained cells 

revealed that proliferation rates of wt and mutant neurosphere cells were nearly 

identical, with a neurosphere cell dividing on average every 14 h independent of its 

Fbw7 status (Figure 33b-d).  

Since proliferation was unchanged, I investigated whether differences in the level of 

apoptosis could explain the decreased cell number in Fbw7 mutant cultures. TdT-

mediated dUTP-biotin nick end labeling (TUNEL) assay revealed that the number of 

apoptotic cells is significantly higher in Fbw7-deficient neurospheres in comparison to 

wt neurospheres (Figure 34a,b). Considering that neurospheres consist predominantly 

of neural progenitors, this indicated that the absence of Fbw7 leads to increased 

progenitor apoptosis. 

As seen in the cortex, the expression of the astroglia marker S100 and the 

oligodendroglia marker NG2 was similar in wt and mutant neurospheres (Figure 34c-f). 
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Furthermore, the vast majority of neurosphere cells expressed the neural stem cell and 

progenitor marker Nestin (Figure 34g). However, the percentage of cells positive for 

the early stem cell marker Musashi 1 (Msi1) was significantly increased in mutant 

neurospheres (Figure 34g,h). This was the first indication that, as seen in vivo, Fbw7-

deficiency leads to stem cell accumulation also in vitro. 
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Figure 33 Loss of Fbw7 does not affect proliferation in vitro. 
(a) Immunocytochemistry for phosphorylated histone H3 (pH3; red) on Fbxw7f/f and 
Fbxw7ΔN neurosphere sections. DNA (blue) is counterstained with DAPI. Arrowheads 
denote pH3-positive cells. Scale bars: 50 µm. (b) FACS histograms showing 
carboxyfluorescein diacetate succinimidyl ester (CFSE) intensity in Fbxw7f/f and 
Fbxw7ΔN neurosphere cultures 1 (d1), 3 (d3), 5 (d5) and 7 (d7) days after CFSE 
staining. u, unstained control. (c) Graph showing the loss of CFSE intensity (in %) over 
time (in days). (d) Histogram showing cell division rates of Fbxw7f/f and Fbxw7ΔN 
neurosphere cells based on the loss of CFSE intensity. Error bars, s.e.m.  
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Figure 34 Increased apoptosis, unaffected gliogenesis and increased stem cell 
marker expression in Fbxw7ΔN neurospheres. 
(a) DAB staining for TUNEL (TdT-mediated dUTP-biotin nick end labeling)-positive 
cells (arrowheads) on Fbxw7f/f and Fbxw7ΔN neurosphere sections. Cells are 
counterstained with haematoxylin. Scale bars, 100 µm. (b) Histogram showing the 
percentage of TUNEL-positive cells in Fbxw7f/f and Fbxw7ΔN neurosphere cultures;       
n = 3. (c,e) DAB staining for (c) S100 and (e) NG2 on Fbxw7f/f and Fbxw7ΔN 
neurosphere sections. Red arrowheads denote positive cells. Cells are counterstained 
with haematoxylin. Scale bars: 50 µm. (d,f) Quantification of (d) S100-positive and     
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(f) NG2-positive cells in Fbxw7f/f and Fbxw7ΔN neurospheres. n = 3.                              
(g) Immunocytochemistry for Nestin (green) and Musashi 1 (Msi1; red) on Fbxw7f/f and 
Fbxw7ΔN neurosphere sections. DNA (blue) is counterstained with DAPI. Scale bars, 
100 µm. (e) Quantification of Msi1-positive cells per neurosphere in Fbxw7f/f and 
Fbxw7ΔN neurosphere cultures; n = 3.  
Error bars, s.e.m.; n.s., not significant, **P ≤ 0.01; ***P ≤ 0.001 (unpaired t-test). 
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3.1.8 Fbw7-deficiency blocks stem cell differentiation into neurons in 

vitro 
To further study the role of Fbw7 in neural differentiation, wt and mutant neurospheres 

were cultured under differentiation conditions by withdrawal of growth factors and 

addition of a neural stem cell differentiation supplement (Stem Cell Technologies). 

Consequently, in wt neurosphere differentiation cultures, neurosphere cells became 

adherent, spread away from the neurospheres and differentiated into neurons, astrocytes 

and oligodendrocytes. By light microscopy and Hoechst DNA staining, I observed that 

many neurospheres in Fbw7-mutant differentiation cultures maintained the 

undifferentiated neurosphere-shape (Figure 35a,b). However, also in mutant cultures, 

some neurosphere cells were able to spread which made it possible to investigate the 

differentiation fate of these cells. After 5 days under differentiation conditions, the 

majority of cells have lost expression of the NSC/NPC marker Nestin and the radial glia 

stem cell marker RC2 in wt cultures (Figure 35c,d). On the contrary, a significantly 

higher percentage of neurosphere cells in Fbw7-mutant differentiation cultures retained 

stem cell marker expression after 5 days under differentiation conditions. Similarly, the 

expression of further radial glia markers BLBP and Vimentin were markedly elevated in 

Fbw7-mutant differentiation cultures (Figure 36a). Notably, also the number of cells 

positive for CD133 (Prominin 1), a marker for early neural stem cells, was increased in 

the absence of Fbw7 (Figure 36b). The next question to arise was whether the retention 

of stem cell marker expression after 5 days under differentiation conditions represents a 

block or only a delay in neural stem cell differentiation? To test this, I performed 

stainings for the NSC/NPC marker Nestin on neurosphere cultures after prolonged time 

(11 days) under differentiation conditions. As a result, Nestin reactivity was still 
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substantially increased in Fbw7 mutant cultures indicating that Fbw7-deficiency leads 

to a genuine block in neural stem cell differentiation (Figure 36c). 

To investigate the differentiation potential of cells which had lost stem cell marker 

expression in mutant cultures, I performed immunofluorescence stainings for markers 

of neurons, astrocytes and oligodendrocytes. Notably, Fbw7-deficient neurospheres 

maintained multipotentiality since they were able to differentiate into Map2-positive 

neurons, Connexin-43-positive astrocytes and O4-positive oligodendrocytes        

(Figure 37). However, whereas the number of astrocytes and oligodendrocytes was not 

significantly altered, the number of Map2-positive neurons was significantly decreased 

in Fbw7-mutant differentiation cultures (Figure 38a-c). This confirmed the in vivo-

observation that Fbw7-deficiency impairs neural stem cell differentiation into neurons 

but has no significant effect on neural stem cell differentiation into astro- and 

oligodendroglia.  

To confirm that the stem cell differentiation defect also occurs in a culture of more 

homogenous and more immature neural stem cells, wt and Fbw7 mutant adherent NSC 

cultures were analysed. As seen in neurosphere cultures, Fbw7-deficient adherent NSCs 

also retained the expression of the NSC/NPC marker Nestin after 5 days under 

differentiation conditions indicative of a stem cell differentiation defect (Figure 39). 

In conclusion, loss of Fbw7 results in increased neuronal progenitor apoptosis and in 

turn decreased numbers of neurons in vitro and in vivo. Furthermore, Fbw7-deficient 

neural stem cells exhibit a defect in differentiating into neurons which in addition 

contributes to the reduced neuronal numbers detected in the developing brain of 

Fbxw7ΔN mice. 
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Figure 35 Loss of Fbw7 leads to retention of stem cell markers in vitro. 
(a) Phase contrast pictures of Fbxw7f/f and Fbxw7ΔN neurosphere cultures under 
differentiation conditions. (b) Stainings for DNA (blue) with Hoechst 33342 on Fbxw7f/f 
and Fbxw7ΔN neurosphere cultures after 5 d of differentiation. Scale bars: 50 µm.         
(c) Immunocytochemistry for RC2 (green) and Nestin (red) on Fbxw7f/f and Fbxw7ΔN 
neurosphere cultures after 5 d under differentiation conditions. White squares mark 
areas shown in high magnification in panels on the right. DNA (blue) was 
counterstained with Hoechst 33342. Scale bars, 50 µm. (d) Quantification of 
RC2/Nestin-double positive cells in Fbxw7f/f and Fbxw7ΔN neurosphere cultures after      
5 d under differentiation conditions. Error bars, s.e.m.; *P ≤ 0.05 (unpaired t-test).  
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Figure 36 Absence of Fbw7 blocks differentiation in vitro. 
(a,b) Immunocytochemistry for (a) Vimentin (green) and BLBP (red) and (b) CD133 
(green) on Fbxw7f/f and Fbxw7ΔN neurosphere cultures after 5 d under differentiation 
conditions. White squares mark areas shown in high magnification in panels on the 
right. DNA (blue) is counterstained with Hoechst 33342. Scale bars: 100 µm.               
(c) Immunocytochemistry for Nestin (green) on Fbxw7f/f and Fbxw7ΔN neurosphere 
cultures after 11 d of differentiation. White squares mark areas shown in high 
magnification in panels on the right. DNA (blue) is counterstained with Hoechst 33342. 
Scale bars: 100 µm. 
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Figure 37 Absence of Fbw7 does not affect multipotentiality of neurospheres 
Immunocytochemistry for Map2 (green), O4 (red) and Connexin 43 (Cx43; magenta) 
on Fbxw7f/f and Fbxw7ΔN neurosphere cultures after 5 d of differentiation. DNA (blue) 
is counterstained with Hoechst 33342. Scale bars: 50 µm. 
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Figure 38 Loss of Fbw7 impairs neurogenesis in vitro. 
(a,b) Immunocytochemistry for (a) Map2 (green) and Connexin 43 (Cx43; red) and     
(b) O4 on Fbxw7f/f and Fbxw7ΔN neurosphere cultures after 5 d under differentiation 
conditions. White squares mark areas shown in high magnification in panels on the 
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right. DNA (blue) is counterstained with Hoechst 33342. Scale bars, 50 µm.                 
(c) Quantification of Map2-, Cx43- and O4-positive cells in Fbxw7f/f and Fbxw7ΔN 
neurosphere cultures after 5 d under differentiation conditions. Error bars, s.e.m.; n.s., 
not significant; *P ≤ 0.05 (unpaired t-test). 
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Figure 39 Loss of Fbw7 leads to a block in differentiation also in adherent NSC 
cultures. 
(a) Phase contrast pictures of Fbxw7f/f and Fbxw7ΔN adherent NSC cultures under 
growth conditions. Scale bars: 50 µm. (b,c) Immunocytochemistry for Nestin (green) on 
Fbxw7f/f and Fbxw7ΔN adherent NSC cultures (b) under growth conditions and (c) after 
5 d under differentiation conditions. DNA (blue) was counterstained with Hoechst 
33342. Scale bars: 50 µm. (d) Quantification of Nestin-positive cells in Fbxw7f/f and 
Fbxw7ΔN adherent NSC cultures after 5 d under differentiation conditions. n = 3. Error 
bars, s.e.m.; *P ≤ 0.05 (unpaired t-test). 
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3.1.9 Discussion: The function of Fbw7 in brain development 

3.1.9.1  Fbw7 in neuronal differentiation 

Immunohistochemical analysis of stem cell, progenitor and neuronal markers in the 

brain revealed that the number of stem cells is highly increased whereas the number of 

neuronal progenitors and differentiated neurons is significantly reduced in the absence 

of Fbw7 (Figures 27-30). Expression of the radial glia stem cell markers BLBP, 

GLAST and Nestin was greatly increased in the E18.5 Fbxw7ΔN cortical and tectal 

ventricular zones. Also the number of more immature Musashi 1-positive stem cells 

was found to be elevated in the mutant brain. This was confirmed in vitro where 

Fbxw7ΔN neurospheres exhibited an increase in Musashi-1 and CD133-positive early 

neural stem cells (Figures 34 and 36). This suggested that Fbw7 already plays a role in 

the differentiation of early neuroepithelial stem cells. However, the main population of 

cells accumulating in the Fbw7-knockout brain were radial glia stem cells (RGCs), 

which are the main subset of neural stem cells at later stages of embryonic development 

(Figure 27). Apart from the greatly augmented levels of RGCs in the cortical and tectal 

ventricular zones, ectopic expression of RGC markers was also detectable in the cortical 

subventricular zone, intermediate zone and cortical plate and in the tectal mantle layer.  

On the contrary, the expression of markers for neuronal progenitors, such as Tbr2 and 

Doublecortin, and for differentiated neurons, such as NeuN, Tbr1, Ctip2 and Brn2, was 

significantly decreased in the Fbxw7ΔN cortex (Figures 29 and 30). In addition to the 

already reduced cellularity detected in areas of differentiated cells, the decrease in the 

percentage of cells positive for markers of differentiated neurons accounts for a total 

loss of more than 50% of mature neurons in the Fbxw7ΔN cortex. Furthermore, since 

markers of various cortical layer neurons were reduced, it seems that lack of Fbw7 
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affects neurogenesis in general and is not solely responsible for the differentiation of 

specific neurons. In vitro-experiments on neurosphere and adherent NSC cultures 

confirmed the defect in stem cell differentiation into neurons and the accumulation of 

cells expressing radial glia stem cell markers (Figures 35-39). Additionally, data on 

Nestin-expression in Fbxw7ΔN neurosphere cultures showed that even at prolonged time 

under differentiation conditions, Fbxw7ΔN neurosphere cells do not undergo 

differentiation. Thus, the absence of Fbw7 results not only in a delay but in a genuine 

block of stem cell differentiation. It is likely that the significant lack of mature neurons 

in the Fbxw7ΔN brain contributes to the perinatal lethality of Fbw7-knockout mice. 

 

3.1.9.2 Fbw7 in glial differentiation 

In contrast to neurogenesis, glia differentiation was not affected by the absence of 

Fbw7. The number of S100-positive astrocytes and NG2-positive oligodendrocytes was 

not changed in the Fbxw7ΔN E18.5 cortex (Figure 31). This was confirmed by in vitro-

results showing that the percentage of Connexin-43-positive astrocytes and O4-positive 

oligodendrocytes generated in wt and Fbxw7ΔN neurosphere differentiation cultures is 

similar (Figure 38). Thus, Fbw7 seems to be essential for neural stem cell 

differentiation into neurons but not for neural stem cell differentiation into glia cells. 

Interestingly, the overall structure of the brain is not altered in Fbxw7ΔN mouse 

embryos. The thickness of the Fbxw7ΔN cortex is similar to the thickness of the wt 

cortex (Figure 23). Radial glia cells have been reported to be crucial for the structural 

integrity of the nervous system by forming the basal and apical barriers (Hatakeyama et 

al., 2004). Considering that the development of radial glia cells and differentiated glia, 
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as well as the cortical layering was not impaired in the absence of Fbw7, it seems that 

the general loss of mature neurons was not sufficient to perturb the overall brain 

structure.  

 

3.1.9.3 Fbw7 in neural apoptosis  
Whilst I could not detect a difference in the level of proliferation in vivo and in vitro in 

the absence of Fbw7, the number of apoptotic cells was significantly increased in the 

Fbxw7ΔN brain and in Fbxw7ΔN neurospheres (Figures 25,26,33 and 34). Thus, Fbw7 is 

not only required for differentiation during brain development, but also for preventing 

inappropriate cell death. Consequently, upon Fbw7 deletion, increased progenitor 

apoptosis in combination with defective stem cell differentiation leads to reduced 

numbers of differentiated cells. A peak in active Caspase-3-positive apoptotic cells was 

detectable in areas of progenitors at E14.5 in the cortex and at E16.5 in the tectum of 

Fbxw7ΔN mice. Physiological programmed cell death is an important mechanism of 

specification in the developing brain and has been shown to be necessary for the 

generation of functional neuronal networks (Huang and Reichardt, 2001, Rabinowicz et 

al., 1996, Rakic and Zecevic, 2000). Furthermore, apoptosis is required for the 

clearance of cells exhibiting faulty differentiation (Buss and Oppenheim, 2004). Thus, 

Fbw7 could have two roles in programmed cell death during brain development. On the 

one hand, Fbw7 could inhibit physiological apoptosis of neural cells that successfully 

integrate into the neuronal network. On the other hand, Fbw7 could support the survival 

of neural cells that have undergone a molecularly correct differentiation programme. 

Consequently, Fbw7 expression does not only allow neural stem cells to differentiate 

but it also protects neuronal progenitors from undergoing apoptosis and is therefore a 
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safeguard for the survival of correctly integrating and differentiating cells in the 

developing brain. 
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Chapter 4. Results 
 

4.1 Fbw7 antagonises Notch and JNK/c-Jun signalling to allow 

stem cell differentiation and progenitor survival in the brain 
 

4.1.1 Loss of Fbw7 leads to increased levels of its substrates Notch and 
c-Jun in neurosphere cells 

After describing the effects of Fbw7-deficiency on neurogenesis and brain 

development, I wanted to find out which target proteins of the E3 ubiquitin ligase Fbw7 

are involved in the observed phenotypes.  

The Fbxw7 locus encodes three Fbw7 isoforms Fbw7α, β and γ which are generated by 

alternative splicing of the first exon. By qRT-PCR, it was shown that Fbw7α is the 

predominantly expressed isoform in neurosphere cells, whereas Fbw7β was expressed 

to a lower extent and Fbw7γ was not detectable (Figure 40). Similarly, Fbw7α and β 

expression were found in total brain RNA, although Fbw7β was the most abundant 

isoform in this case, and no Fbw7γ expression was detected in the brain in agreement 

with previous publications (Nateri et al., 2004, Strohmaier et al., 2001). Notably, other 

organs showed different Fbw7 isoform expression patterns (Figure 40).   

Next, I performed immunoblotting for Fbw7 and the bona fide Fbw7-substrates 

phospho-c-Jun (p-c-Jun), Notch intracellular domain 1 (NICD1), phospho-c-Myc        

(p-c-Myc) and phospho-cyclin E (p-cyclin E) on protein extracts from wt and Fbw7-

deficient neurosphere cells. Western blot analysis confirmed that neurosphere cells in 

Fbxw7ΔN cultures lack Fbw7 (Figure 41a). The most abundant Fbw7 isoform Fbw7α 
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was detected at 110 kDa. Although Fbw7α has a predicted size of 80kDa, it has been 

previously reported that Fbw7α runs aberrantly on SDS gels at 110 kDa (Strohmaier et 

al., 2001). Furthermore, absence of Fbw7 resulted in significantly increased protein 

levels of the Fbw7-substrates p-c-Jun and NICD1 whereas levels of the other Fbw7 

target proteins p-c-Myc and p-cyclin E were not substantially altered (Figure 41a). 

Notably, also unphosphorylated c-Jun levels were increased which is probably due to 

the fact that c-Jun autoregulates its expression in a positive feedback mechanism (Angel 

et al., 1988b). Similar results on Fbw7 and its substrate expression levels were obtained 

by Western blot analysis on protein extracts from adherent NSC cultures (Figure 41b).  
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Figure 40 Fbxw7 isoform expression 
Quantitative real-time PCR analysis showing the relative abundance of Fbxw7 isoforms 
α, β and γ in Fbxw7f/f neurospheres, adult brain, skeletal muscle and liver normalised to 
Gapdh (Glyceraldehyde-3-phosphate dehydrogenase) expression. Expression of 
Fbxw7α is set to 1. Error bars represent the standard deviation (s.d.). 
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Figure 41 Loss of Fbw7 leads to increased c-Jun and Notch levels 
(a) Western blot analysis of Fbw7 (α: 110 kDa), c-Jun (c-Jun: 39 kDa, p-c-Jun:            
42 kDa), activated Notch1 (NICD1, 80 kDa), Thr58- and Ser62-phosphorylated c-Myc 
(p-c-Myc, 70 kDa), Thr395-phosphorylated cyclin E (p-Cyclin E, 55 kDa) and β-Actin 
(42 kDa) on protein lysates from Fbxw7f/f and Fbxw7ΔN neurospheres. (b) Western blot 
analysis of Fbw7, serine 73 phosphorylated c-Jun (p-c-Jun), activated Notch1 (NICD1), 
Thr58- and Ser62-phosphorylated c-Myc (p-c-Myc), Thr395-phosphorylated cyclin E 
(p-Cyclin E) and β-Actin on protein lysates from Fbxw7f/f and Fbxw7ΔN adherent NSC 
cultures. 
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4.1.2 Attenuation of c-Jun levels rescues cell number and progenitor 

apoptosis 
After detecting increased p-c-Jun protein levels in neurosphere cells, I went on to 

examine p-c-Jun levels in the Fbxw7ΔN brain. Immunofluorescence staining revealed 

that p-c-Jun levels were also elevated in vivo (Figure 42a). Interestingly, p-c-Jun was 

mainly increased in the tectal ML which harbours progenitors and differentiated cells. 

On the contrary, there was no increase detectable in the stem cell compartment, the VZ. 

To rescue p-c-Jun levels, I deleted one Jun allele in the Fbxw7ΔN background by 

crossing in Junf/f mice (Fbxw7ΔN; JunΔN/+). Indeed, immunofluorescence staining showed 

that this significantly attenuated p-c-Jun levels, even though p-c-Jun was still slightly 

increased in the Fbxw7ΔN; JunΔN/+ brain in comparison to wt levels (Figure 42a).  

p-c-Jun has previously been reported to play a role in neuronal apoptosis (reviewed in 

Raivich and Behrens, 2006). Thus, I analysed the Fbw7; c-Jun double-mutant mice to 

see whether downregulation of p-c-Jun in the Fbw7-knockout background can rescue 

cell number and progenitor apoptosis in neurosphere cells and the developing brain. 

Histological analysis of H&E stainings revealed that in fact, the cellularity in the tectal 

ML was significantly increased in the E18.5 Fbxw7ΔN; JunΔN/+ brain in comparison to 

the E18.5 Fbxw7ΔN brain (Figure 42b,c). On the contrary, attenuation of p-c-Jun levels 

had no effect on the number of stem cells in the tectal VZ which was similarly increased 

in Fbxw7ΔN; JunΔN/+ mice in comparison to Fbxw7ΔN mice. This indicates that p-c-Jun 

plays a crucial role in the regulation of progenitors and differentiated cells by Fbw7. 

However, p-c-Jun is not involved in the observed stem cell accumulation in Fbxw7ΔN 

mice. This was confirmed by in vitro-data which showed that similar to what was seen 

in Fbxw7ΔN neurosphere differentiation cultures, also in Fbxw7ΔN; JunΔN/+ neurosphere 
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differentiation cultures, the number of cells expressing the NSC/NPC marker Nestin 

was highly increased after 5 days under differentiation conditions (Figure 43a). 

However, under growth conditions, neural cells isolated from E14.5 Fbxw7ΔN; JunΔN/+ 

mouse embryos showed a significantly higher ability to generate neurospheres in 

comparison to Fbxw7ΔN neurosphere cultures (Figure 43b). This indicates that 

downregulation of c-Jun can rescue neurosphere formation. This would predict that 

attenuation of c-Jun levels can also prevent increased progenitor apoptosis which was 

identified to be responsible for the decreased cell number. Indeed, Fbxw7ΔN; JunΔN/+ 

neurospheres harboured a significantly lower number of TUNEL-positive apoptotic 

cells in comparison to Fbxw7ΔN neurospheres (Figure 43c).   

To study the role of Fbw7 and its substrate p-c-Jun in neural progenitor apoptosis 

further, I performed qRT-PCR for genes involved in c-Jun function in apoptosis. Pro-

apoptotic members of the Bcl2-family of genes have been shown to be upregulated after 

JNK/c-Jun signalling activation (Bossy-Wetzel et al., 1997, Whitfield et al., 2001, Ma et 

al., 2007). By qRT-PCR, I confirmed that no Fbxw7 expression was detectable in 

Fbxw7ΔN and Fbxw7ΔN; JunΔN/+ neurosphere cells (Figure 43d). As a consequence of    

c-Jun autoregulation, Jun expression itself was increased in Fbxw7ΔN neurosphere cells. 

Furthermore, the pro-apoptotic Bcl2-family member genes Bcl2l11 [Bcl2-like 11 

(apoptosis facilitator); Bim] and Bad (BCL2-associated agonist of cell death) were 

upregulated whereas expression levels of the anti-apoptotic Bcl2 gene were not elevated 

in the absence of Fbw7 (Figure 43d). This indicates that increased progenitor apoptosis 

in the absence of Fbw7 is mediated via elevated p-c-Jun levels and in turn increased 

expression of pro-apoptotic members of the Bcl2-family of genes. Interestingly, 

attenuation of c-Jun levels in the Fbxw7ΔN; JunΔN/+ neurospheres led to downregulation 
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of the pro-apoptotic genes Bcl2l11 (Bim) and Bad which explains molecularly how 

downregulation of c-Jun rescues the increased progenitor apoptosis detected in the 

absence of Fbw7 (Figure 43d). Since neurosphere cells with highest Jun, Bcl2l11 (Bim) 

and Bad levels are expected to undergo apoptosis and consequently are cleared from 

neurosphere cultures during passaging, the qRT-PCR analysis might even underestimate 

the increase in Jun, Bcl2l11 (Bim) and Bad expression. 

In summary, the E3 ubiquitin ligase Fbw7 degrades c-Jun during neural development to 

allow neural progenitors to survive. In the absence of Fbw7, high p-c-Jun levels induce 

apoptosis via pro-apoptotic members of the Bcl2-family of genes. By regulating neural 

progenitor apoptosis during brain development, Fbw7 is a key switch to control neural 

cell number in the brain.  
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Figure 42 Fbw7 controls cell number in the brain via c-Jun 
(a) Immunohistochemistry for Ser73-phosphorylated c-Jun (p-c-Jun; red) on 
representative sections of Fbxw7f/f, Fbxw7ΔN and Fbxw7ΔN; JunΔN/+ E18.5 tectum. DNA 
(blue) is counterstained with DAPI. Scale bars, 50 µm. (b) H&E staining of comparable 
regions of the Fbxw7f/f, Fbxw7ΔN and Fbxw7ΔN; JunΔN/+ E18.5 midbrain. Rectangles 
mark the area of the tectum shown below in high magnification. Scale bars: 200 µm.  
(c) Histogram showing the relative quantity of cells in the VZ and the ML of Fbxw7f/f  
(n = 5), Fbxw7ΔN (n = 5) and Fbxw7ΔN; JunΔN/+ (n = 3) E18.5 tectum. Cell numbers in 
the Fbxw7f/f E18.5 tectum are normalized to 1 (100%).  
Error bars, s.e.m.; n.s., not significant; *P ≤ 0.05; ***P ≤ 0.001 (unpaired t-test). ML: 
mantle layer, VZ: ventricular zone. 
 

 



Chapter 4. Results 

 214 

 

Figure 43 Negative regulation of c-Jun by Fbw7 controls neural cell viability. 
(a) Histogram showing the percentage of Nestin-positive cells in Fbxw7f/f (n = 8), 
Fbxw7ΔN (n = 11) and Fbxw7ΔN; JunΔN/+ (n = 2) neurosphere cultures after 5 d of 
differentiation. (b) Histogram showing the relative quantity of neurospheres in Fbxw7f/f 
(n = 4), Fbxw7ΔN (n = 4) and Fbxw7ΔN; JunΔN/+ (n = 2) neurosphere cultures after            
2 weeks under growth conditions. Neurosphere numbers in Fbxw7f/f neurosphere 
cultures are normalized to 1 (100%). (c) Histogram showing the percentage of TUNEL-
positive cells in Fbxw7f/f (n = 3), Fbxw7ΔN (n = 3) and Fbxw7ΔN; JunΔN/+ (n = 2) 
neurosphere cultures. (d) Quantitative real-time PCR analysis of Fbxw7, Jun, Bad, 
Bcl2l11 and Bcl2 transcripts in Fbxw7f/f, Fbxw7ΔN and Fbxw7ΔN; JunΔN/+ neurosphere 
cells. The data are normalised to Gapdh and represented as fold change relative to RNA 
levels in Fbxw7f/f neurosphere cells, which are set to 1.  
Error bars, s.e.m.; n.s., not significant; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001 (unpaired   
t-test). 
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4.1.3 Attenuation of Notch levels rescues neural stem cell differentiation 

Since downregulation of c-Jun levels did not rescue neural stem cell differentiation, I 

examined whether the increase in Notch levels detected in Fbw7 mutant neurosphere 

cells is involved in this phenotype. Notch1 has previously been reported to play an 

essential role in the maintenance of radial glia stem cells (reviewed in Yoon and 

Gaiano, 2005, Louvi and Artavanis-Tsakonas, 2006). As seen in vitro, NICD1 levels 

were also highly elevated in the E18.5 Fbxw7ΔN brain (Figure 44a). Similar to the 

genetic rescue experiments using Fbxw7ΔN; JunΔN/+ mice, I deleted one Notch1 allele in 

the Fbxw7ΔN background by crossing in Notch1∆/+ mice. Indeed, E18.5 Fbxw7ΔN; 

Notch1Δ/+ brains showed significantly reduced levels of NICD1, although there was still 

a slight increase in NICD1 levels detectable in comparison to the E18.5 wt brain 

(Figure 44a). To investigate whether downregulation of Notch can rescue the stem cell 

differentiation defect caused by Fbw7 deficiency, I compared the E18.5 Fbxw7ΔN; 

Notch1Δ/+ brain with the Fbxw7ΔN brain. As seen before, Nestin reactivity was highly 

increased in the E18.5 Fbxw7ΔN brain in comparison to the wt E18.5 brain (Figure 44b). 

Attenuation of Notch1 levels however led to markedly reduced levels of Nestin in the 

E18.5 Fbxw7ΔN; Notch1Δ/+ brain in comparison to the E18.5 Fbxw7ΔN brain. 

Furthermore, downregulation of Notch partially rescued the increased number of cells 

expressing the radial glia stem cell marker BLBP in the E18.5 cortex (Figure 44c,d). 

This indicated that attenuation of Notch1 in the absence of Fbw7 can prevent stem cell 

accumulation in the brain. 

To confirm these results in vitro, I analysed neurospheres generated from neural cells 

from the E14.5 Fbxw7f/f, Fbxw7ΔN and Fbxw7ΔN; Notch1Δ/+ brain. As described before, 

Fbw7 deficiency resulted in stem cell accumulation in neurosphere cultures after 5 days 
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under differentiation condition (Figure 45). Both pharmacological inhibition of Notch 

signalling as well as genetic attenuation of Notch levels was able to rescue stem cell 

differentiation in the Fbxw7ΔN background. Treatment of Fbw7 mutant neurosphere 

cultures with N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester 

(DAPT), which prevents Notch cleavage and activation by inhibition of γ-secretase, led 

to a significant downregulation of Nestin-positive cells in Fbxw7ΔN neurosphere cultures 

(Figure 45a,b). Similarly, specific genetic attenuation of Notch1 levels resulted in a 

decrease of Nestin-positive cells in Fbxw7ΔN; Notch1Δ/+ neurosphere differentiation 

cultures in comparison to Fbxw7ΔN differentiation cultures (Figure 45c,d).  

To study this further on a molecular level, I performed qRT-PCR analysis for bona fide 

Notch target genes Hes1, Hes5 and Hey1 on cDNA from Fbxw7f/f ± DAPT, Fbxw7ΔN ± 

DAPT, Fbxw7f/f; Notch1Δ/+ and Fbxw7ΔN; Notch1Δ/+ neurosphere cells (Figure 46). 

DAPT treatment significantly reduced Hes5 and Hey1 levels which were highly 

upregulated in Fbxw7ΔN neurospheres whereas Hes1 expression was not substantially 

altered (Figure 46a). Similarly, attenuation of Notch1 levels in Fbxw7ΔN; Notch1Δ/+ 

neurospheres markedly reduced the elevated Hes5 and Hey1 levels in the Fbxw7ΔN 

background while having no significant effect on Hes1 (Figure 46b). This indicates that 

Fbw7 is responsible for Notch degradation during neural differentiation. In the absence 

of Fbw7, increased Notch levels maintain the radial glia stem cell state via its 

downstream targets Hes5 and Hey1. Notably, similar results were observed in adherent 

NSCs where the c-Jun target gene Jun itself and the Notch target gene Hes5 were 

upregulated in the Fbxw7ΔN background (Figure 46c). 
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After showing that attenuation of Notch signalling can decrease the elevated number of 

stem cells in the absence of Fbw7, I wanted to find out whether neuronal differentiation 

is also rescued by downregulation of Notch. Indeed, immunohistochemistry on the 

E18.5 Fbxw7f/f, Fbxw7ΔN and Fbxw7ΔN; Notch1Δ/+ cortex revealed that attenuation of 

Notch results in a significantly increased number of cells expressing the neuronal 

marker NeuN (Figure 47a,b). Similarly, the number of Map2-positive neurons were 

significantly increased in Fbxw7ΔN; Notch1Δ/+ neurosphere differentiation cultures in 

comparison to Fbxw7ΔN differentiation cultures (Figure 47c,d). This indicates, that 

downregulation of Notch can rescue neurogenesis in the Fbxw7ΔN background. Thus, 

Fbw7 antagonises Notch to allow radial glia stem cells to differentiate into neurons. 
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Figure 44 Fbw7 controls stem cell differentiation by antagonising Notch 
(a) Immunohistochemistry for activated Notch1 (NICD1; red) on representative 
sections of the Fbxw7f/f, Fbxw7ΔN and Fbxw7ΔN; Notch1Δ/+ E18.5 cortex. DNA (blue) is 
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counterstained with DAPI. Scale bars, 50 µm. (b,c) DAB staining for (b) Nestin and   
(c) BLBP on the Fbxw7f/f, Fbxw7ΔN and Fbxw7ΔN; Notch1Δ/+ E18.5 cortex. Cells are 
counterstained with haematoxylin. Scale bars, 50 µm. (d) Quantification of BLBP-
positive cells in the IZ and the CP of the Fbxw7f/f, Fbxw7ΔN and Fbxw7ΔN; Notch1Δ/+ 
E18.5 cortex. n = 3. 
Error bars, s.e.m.; **P ≤ 0.01; ***P ≤ 0.001 (unpaired t-test). CP: cortical plate, IZ: 
intermediate zone, SVZ: subventricular zone, VZ: ventricular zone. 
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Figure 45 Inhibition of Notch signalling alleviates the block in stem cell 
differentiation in vitro. 
(a) Immunocytochemistry for Nestin (green) on Fbxw7f/f and Fbxw7ΔN neurosphere 
cultures after 5 d under differentiation conditions treated with DMSO (control) or 1 µM 



Chapter 4. Results 

 221 

DAPT. White squares mark areas shown in high magnification in panels on the right. 
DNA (blue) is counterstained with Hoechst 33342. Scale bars, 100 µm. (b) Histogram 
showing the percentage of Nestin-positive cells in Fbxw7f/f and Fbxw7ΔN neurosphere 
cultures after 5 d under differentiation conditions treated with DMSO (control) or 1 µM 
DAPT. n = 5. (c) Immunocytochemistry for Nestin (green) on Fbxw7f/f, Fbxw7f/f; 
Notch1Δ/+, Fbxw7ΔN and Fbxw7ΔN; Notch1Δ/+ neurosphere cultures after 5 d under 
differentiation conditions. White squares mark areas shown in high magnification in 
panels on the right. DNA (blue) is counterstained with Hoechst 33342. Scale bars,       
50 µm. (d) Histogram showing the percentage of Nestin-positive cells in Fbxw7f/f, 
Fbxw7f/f; Notch1Δ/+, Fbxw7ΔN and Fbxw7ΔN; Notch1Δ/+ neurosphere cultures after 5 d 
under differentiation conditions. n = 3. Error bars, s.e.m.; n.s., not significant;              
*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001 (unpaired t-test). 
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Figure 46 Fbw7 controls stem cell differentiation via Notch targets Hes5 and Hey1 
(a) Quantitative real-time PCR analysis of Hes5, Hey1 and Hes1 transcripts in Fbxw7f/f 
and Fbxw7ΔN neurospheres treated with DMSO (control) or 1 µM DAPT. The data are 
normalised to Gapdh and represented as fold change over RNA levels in Fbxw7f/f + 
DMSO neurospheres, which is set to 1. (b) Quantitative real-time PCR analysis of 
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Hes5, Hey1 and Hes1 transcripts in Fbxw7f/f, Fbxw7f/f; Notch1Δ/+, Fbxw7ΔN and 
Fbxw7ΔN; Notch1Δ/+ neurospheres. The data are normalized to Gapdh and represented as 
fold change relative to RNA levels in Fbxw7f/f neurospheres, which is set to 1.              
(c) Quantitative real-time PCR analysis of Fbxw7, Jun and Hes5 transcripts in cells 
from Fbxw7f/f and Fbxw7ΔN adherent NSC cultures. The data are normalised to Gapdh 
and represented as fold change over RNA levels in Fbxw7f/f adherent NSCs, which is set 
to 1. Error bars, s.e.m. 
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Figure 47 Notch downregulation in the Fbxw7ΔN background rescues neuronal 
numbers 
(a) DAB staining for NeuN on the E18.5 Fbxw7f/f, Fbxw7ΔN and Fbxw7ΔN; Notch1Δ/+ 
cortex. Cells are counterstained with haematoxylin. Scale bars: 50 µm.                         
(b) Quantification of NeuN-positive cells in the IZ and the CP of the E18.5 Fbxw7f/f, 
Fbxw7ΔN and Fbxw7ΔN; Notch1Δ/+ cortex (n = 3). (c) Immunocytochemistry for Map2 
(green) on Fbxw7f/f, Fbxw7ΔN and Fbxw7ΔN; Notch1Δ/+ neurosphere cultures after 5 d 
under differentiation conditions. White squares mark areas shown in high magnification 
in panels on the right. DNA (blue) is counterstained with Hoechst 33342. Scale bars:   
50 µm. (d) Histogram showing the percentage of Map2-positive cells in Fbxw7f/f            
(n = 3), Fbxw7ΔN (n = 4) and Fbxw7ΔN; Notch1Δ/+ (n = 5) neurosphere cultures after 5 d 
under differentiation conditions. 
Error bars, s.e.m.; *P ≤ 0.05; **P ≤ 0.01 (unpaired t-test). CP: cortical plate, IZ: 
intermediate zone, SVZ: subventricular zone, VZ: ventricular zone. 
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4.1.4 Discussion: Fbw7 controls c-Jun and Notch levels in the developing 

brain 

4.1.4.1 Fbw7 and c-Jun in neuronal progenitor apoptosis 

Whereas the levels of the prominent Fbw7-substrates c-Myc and cyclin E were not 

altered in Fbxw7ΔN neural cells, Notch and c-Jun were highly upregulated in the absence 

of Fbw7 (Figure 41).  

JNK/c-Jun signalling has been reported to be involved in neuronal apoptosis both 

during development and after excitotoxic stress (reviewed in Raivich and Behrens, 

2006). Factors antagonising pro-apoptotic JNK/c-Jun action in the brain have not been 

fully described. I could show that Fbw7-deficiency resulted in increased neuronal 

progenitor apoptosis in vivo and in vitro which was accompanied by increased levels of 

phosphorylated c-Jun. Genetic deletion of one Jun allele significantly downregulated 

the elevated p-c-Jun levels in the Fbw7-knockout background (Figure 42). Attenuation 

of JNK/c-Jun signalling was able to reduce the elevated number of apoptotic 

progenitors indicating that the increased progenitor apoptosis observed in the absence of 

Fbw7 is c-Jun dependent. It has been described that transcriptional regulation of pro-

apoptotic members of the Bcl2-family of proteins by c-Jun is involved in c-Jun function 

in neuronal apoptosis (Bossy-Wetzel et al., 1997, Ma et al., 2007, Whitfield et al., 

2001). As a consequence of increased c-Jun levels in the absence of Fbw7, mRNA 

levels of the pro-apoptotic Bcl2-family members Bad and Bcl2l11 (Bim) were markedly 

increased, whereas the expression of the anti-apoptotic member Bcl2 was not changed. 

Furthermore, attenuation of c-Jun levels by genetic deletion of one Jun allele was able 

to reduce the increased levels of the pro-apoptotic genes Bad and Bcl2l11 (Bim). 
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Taken together, Fbw7 antagonises JNK/c-Jun signalling during neural development to 

protect neuronal progenitors from undergoing apoptosis. Interestingly, JNK activity has 

been shown to be very high in the brain, but it is not only involved in apoptosis but also 

in neuronal migration and the maintenance of cytoskeletal integrity (Chang et al., 2003, 

Wang et al., 2007). Thus, Fbw7 could act as a survival factor antagonising pro-

apoptotic JNK signalling via c-Jun whereas c-Jun-independent JNK activity is required 

for migration and cytoskeletal integrity of neural cells. This might explain why in the 

absence of Fbw7, cortical layering and neuronal migration is normal.  

 

4.1.4.2 Fbw7 and Notch in neural stem cell differentiation 
Notch levels were highly elevated in the absence of Fbw7 and Notch signalling has 

been reported to be involved in radial glia stem cell maintenance (Hitoshi et al., 2002), 

thus making it a possible target involved in the stem cell differentiation defect observed 

in the Fbxw7ΔN brain. Indeed, genetic downregulation of Notch by deletion of one 

Notch1 allele in the Fbw7-knockout background rescued stem cell differentiation in 

vivo and in vitro (Figures 44 and 45). Attenuation of Notch levels reduced the elevated 

number of stem cells and increased the percentage of cells expressing markers of mature 

neurons. Also pharmacological inhibition of Notch activation by the γ-secretase 

inhibitor DAPT, which acts upstream of the Fbw7-NICD interaction can revert the 

accumulation of neural stem cells in the absence of Fbw7 (Figure 45). Considering that 

Fbw7 also targets Presenilin, which is an essential part of the γ-secretase complex, this 

result suggests that apart from impaired NICD-degradation, also enhanced Notch 

cleavage might contribute to Notch signalling hyperactivation in the absence of Fbw7. 
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Furthermore, the rescue by DAPT treatment indicates that other E3 ubiquitin ligases 

which target the Notch intracellular domain (NICD) such as the Itch/NEDD4/Su(dx) 

family contribute to NICD degradation. However, deletion of these E3 ubiquitin ligases 

have been described to only result in mild phenotypes (Lai, 2002, Qiu et al., 2000, 

Sakata et al., 2004). Thus, I could show that during brain development, Fbw7 is the 

crucial E3 ubiquitin ligase for Notch degradation, a process pivotal for neurogenesis. 

Downstream of increased NICD levels, the Notch target genes Hes5 and Hey1 were 

upregulated in the absence of Fbw7, whereas Hes1 levels were not substantially altered 

(Figure 46). Hes1 and Hes5 are prominent Notch targets which have been reported to 

mediate Notch signalling in the brain (Ohtsuka et al., 1999). Attenuation of Notch 

signalling in Notch1-, Rbpj-, Delta1- and Hes1 single mutants as well as in Hes1 and 

Hes5 double mutants has been reported to result in precocious neuronal differentiation 

(Corbin et al., 2008, Yoon and Gaiano, 2005). However, deletion of Notch1 and Rbpj 

only lead to a decrease in Hes5 but not in Hes1 levels (de la Pompa et al., 1997, Yoon 

and Gaiano, 2005). Moreover, DAPT-treatment of neural progenitors results in a much 

stronger decrease in Hes5 levels compared to Hes1 levels (Nelson et al., 2007), which is 

consistent with my qRT-PCR results on cDNA from neurosphere cultures (Figure 46). 

In Fbxw7ΔN neural cells, elevated stem cell maintenance due to high Notch levels was 

mediated by increased Hes5 levels which could be rescued by genetic or 

pharmacological attenuation of Notch signalling. Another Fbw7-substrate c-Myc, which 

has been shown to be a direct Notch1 target in T-cell acute lymphoblastic leukaemia   

(T-ALL) (Weng et al., 2006), does not seem to be activated by Notch during brain 

development since no significant increase in c-Myc protein levels were detectable in the 

absence of Fbw7 (Figure 41). 
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Whereas the role of Notch in neural stem cell maintenance is well established, the role 

of Notch in neural stem cell proliferation is incompletely understood. Notch signalling 

has been implicated in both promoting neural stem cell self-renewal and inducing neural 

stem cell quiescence (reviewed in Pierfelice et al., 2011). At various time points of 

embryonic mouse development as well as in neurosphere cultures, I could not detect a 

difference in proliferation in the absence of Fbw7 (Figures 25 and 33). Interestingly, 

Gaiano et al. describe that NICD1-overexpression in cortical radial glia stem cells 

results in an accumulation of mainly quiescent radial glia stem cells (Gaiano et al., 

2000). This is consistent with my finding that, although stem cell numbers were 

increased, the level of proliferation was not elevated in the Fbxw7ΔN cortex. Thus, it 

seems that increased Notch levels in the absence of Fbw7 prevent radial glia stem cells 

from entering differentiation but they do not promote radial glia stem cell self-renewal. 

 

4.1.4.3 Fbw7 substrate-specificity 
Fbw7 seems to use distinct substrates to control various biological mechanisms in 

different tissues. As described before, Fbw7 regulates vascular development via Notch, 

controls haematopoietic stem cell quiescence and progenitor proliferation via c-Myc 

and cyclin E and is involved in intestinal progenitor proliferation and differentiation via 

c-Jun and Notch (Sancho et al., 2010, Thompson et al., 2008, Tsunematsu et al., 2004). 

By in situ hybridisation, I could show that Fbxw7 expression during brain development 

peaks around E14.5 in the ventricular zone and the subventricular zone of the cortex 

whereas there is only low expression detectable in areas of differentiated cells     

(Figure 27a). This is consistent with a role of Fbw7 in stem and progenitor cells during 

brain development.  
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A way of generating substrate-specificity for Fbw7 is tissue- and cell-type-specific 

expression of Fbxw7 isoforms α, β and γ. This is possible because all three isoforms 

have their own promoter which can be differentially regulated in distinct tissues and cell 

types (Figure 40; reviewed in Welcker and Clurman, 2008). Furthermore, all three 

isoforms are localised to different cellular compartments. Fbxw7α, which is 

ubiquitously expressed, is found in the nucleus, Fbxw7β, which is highly expressed in 

the brain, is localised to the cytoplasm and Fbxw7γ, which was detected in muscle tissue 

and the haematopoietic system is contained within nucleoli (reviewed in Welcker and 

Clurman, 2008). Interestingly, it has been reported that Fbxw7γ targets cyclin E and     

c-Myc (van Drogen et al., 2006, Welcker et al., 2004a). However, Fbxw7γ expression 

was neither detectable in neurosphere cells nor in the brain which might explain why 

Fbw7 does not regulate these substrates in this tissue (Figure 40). Fbxw7α and β are the 

most abundant isoforms in undifferentiated neurosphere cells and in the brain 

suggesting that these isoforms are mainly responsible for p-c-Jun and NICD 

degradation in neural stem cells and progenitors. Consistent with previous reports that 

the E3 ubiquitin ligase Fbw7 targets p-c-Jun and NICD for subsequent proteasomal 

degradation (Gupta-Rossi et al., 2001, Hubbard et al., 1997, Nateri et al., 2004, Oberg et 

al., 2001, Sundaram and Greenwald, 1993, Wei et al., 2005, Wu et al., 2001), the 

increased levels of p-c-Jun and NICD in Fbxw7ΔN neurospheres and the Fbw7-deficient 

brain are likely due to p-c-Jun and NICD stabilisation. One way to confirm this would 

be to assess protein turnover for example by cycloheximide chase experiments.   

Varying Fbw7 substrate-specificity might also explain the opposite biological effects of 

Fbw7 deletion in distinct tissues. Whereas loss of Fbw7 results in depletion of quiescent 

stem cells and increased progenitor proliferation in the haematopoietic system mediated 
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via c-Myc and cyclin E stabilisation (Thompson et al., 2008), loss of Fbw7 in the brain 

leads to accumulation of radial glia stem cells and increased progenitor apoptosis via 

elevated Notch and c-Jun levels (Hoeck et al., 2010). 
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Chapter 5. Results 
 

5.1 JNK/c-Jun signalling in the nervous system and 

development 
 

5.1.1 Targeting strategy for the generation of the Jun4A mouse 
To further study the role of the transcription factor c-Jun in the nervous system and 

development, I generated two transgenic mouse lines to be able to either inhibit (Jun4A 

mouse) or activate (ROSA26-LSL-JNKK2-JNK1 mouse) JNK/c-Jun signalling and 

function.  

In the Jun4A mouse, the Jun gene has the four main JNK-phosphorylation sites located 

in the N-terminal transactivation domain mutated to alanines: Ser63Ala, Ser73Ala, 

Thr91Ala, Thr93Ala. Consequently, c-Jun cannot be phosphorylated and activated by 

JNK and phospho-c-Jun (p-c-Jun) target gene expression is impaired.  

To generate the Jun4A mouse, I inserted a genomic 10 kb fragment containing the Jun 

locus from a bacterial artificial chromosome (BAC) into a minimal vector (Gene 

Bridges) via homologous recombination (Figure 48a). To achieve this, I amplified the 

minimal vector by PCR adding Jun locus homology regions and unique restriction sites 

for PmeI at the 5’ end and for MluI at the 3’ end of the minimal vector. After 

homologous recombination, correct insertion was verified by restriction digest. A 0.6 kb 

fragment containing the four N-terminal JNK-phosphorylation sites was then excised 

making use of the two unique RsrII and SfiI restriction sites which flank this region of 
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the Jun gene (Figure 48a). Next, I cloned a RsrII-SfiI fragment excised from a 

pMSCV-Jun4A vector into the targeting construct.  

As a consequence of the mutations at serine 63 and serine 73, two new SfoI/EheI 

restriction sites are introduced into the Jun gene. Indeed, SfoI/EheI test digest of the 

Jun4A targeting construct showed the fragment pattern expected after correct insertion 

of the 4A mutations (Figure 48b). To be able to identify correctly targeted ES cell 

clones for the subsequent blastocyst injection, a 1.6 kb neomycin-resistance cassette 

flanked by loxP-sites (neoR) was inserted into a unique AscI restriction site 0.2 kb 3’ of 

the Jun gene in the short homology arm of the targeting construct (Figures 48 and 49). 

By PCR, I added a AscI restriction site to the 5’- and the 3’-end of the neomycin-

resistance cassette and thus was able to clone it into the AscI site in the Jun4A targeting 

construct. Correct orientation of the inserted neomycin-resistance cassette was verified 

by EcoRI restriction digest since there is a single EcoRI restriction site at 5.4 kb in the 

Jun locus and a single EcoRI restriction site at 1.5 kb in the neomycin-resistance 

cassette. The presence of the mutations at the four JNK-phosphorylation sites in the 

Jun4A targeting construct was confirmed by DNA sequencing. 

After that, the targeting construct was linearised by restriction digest with XmnI which 

has a single restriction site at 0.4 kb in the minimal vector (Gene Bridges) and a single 

restriction site at 10.1 kb in the targeting construct (Figures 48 and 49). The resulting 

12.4 kb fragment contains a 8.5 kb homology region with the genomic Jun locus 

including the four mutations. Furthermore, it contains the 1.6 kb neoR-cassette and     

2.3 kb of the minimal vector. Only homologous recombination between the targeting 

construct and the genomic Jun locus occurring 5’ of the mutation sites and 3’ of the 
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neoR-cassette results in correctly targeted ES cell clones. As a positive control for 

genomic insertion, the minimal vector containing the Jun4A targeting construct was 

linearised by MluI (unique restriction site) restriction digest.  

Next, the 12.4 kb targeting construct and the positive control were electroporated into 

ES cells (strain 129) by the LRI Transgenic Service. I screened the ES cell clones for 

correct insertion by PCR with the forward primer sequence located in the neomycin-

resistance cassette and the reverse primer sequence located in the genomic Jun locus 

behind the XmnI restriction site which was used to linearise the Jun4A targeting 

construct (Figure 49). Random insertion of the entire positive control construct into the 

mouse genome always resulted in the amplification of a 1.7 kb fragment, because the 

positive construct contains both, the forward primer sequence in the neoR-cassette and 

the reverse primer sequence in the genomic Jun locus behind the XmnI restriction site. 

However, solely correct insertion of the Jun4A targeting construct specifically into the 

mouse genomic Jun locus results in a 1.7 kb PCR-product because the Jun4A targeting 

construct only contains the forward primer sequence in the neoR-cassette whereas the 

reverse primer sequence in the genomic Jun locus is outside of the Jun4A targeting 

construct. Out of 384 screened ES cell clones, 5 clones were identified to carry the 

correctly inserted Jun4A construct in the genomic Jun locus. One of these clones was 

injected into blastocysts from C57BL/6 mice by the LRI Transgenic Service to obtain 

chimeras. Jun4A/+ chimeras were confirmed to carry the mutations by amplification of 

the Jun 5’-end and restriction digest with SfoI/EheI (Figure 50a). Subsequently, 

Jun4A/4A mice were verified to carry the mutations by DNA sequencing (Figure 50b). 

Jun4A/+ chimeras were crossed to PGK-Cre mice ubiquitously expressing Cre 

recombinase to excise the neoR-cassette which is flanked by loxP-sites. I took 
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advantage of the remaining 50 bp loxP-site after excision of the neoR-cassette to design 

genotyping primers flanking this region (Figure 50c).  

 

 

Figure 48 Generation of the Jun4A targeting construct 
(a) Schematic representation of the Jun4A targeting construct in a minimal vector 
(Gene Bridges) carrying an ampicillin-resistance gene (ampR). After cloning of the Jun 
locus from a BAC into the minimal vector via homologous recombination, a RsrII-SfiI 
fragment carrying the four mutations (Ser63Ala, Ser73Ala, Thr91Ala, Thr93Ala) was 
inserted into the equivalent region of the Jun gene. For the identification of targeted ES 
cell clones, a neomycin-resistance cassette (neoR) was inserted into an AscI restriction 
site 0.2 kb 3’ of the Jun gene. The targeting construct was linearised by XmnI 
restriction digest. Red lines represent homology regions between the targeting construct 
and the minimal vector. ORI, origin of replication. Arrowheads indicate loxP-sites.    
(b) Correct insertion of the Jun4A RsrII-SfiI fragment leads to the addition of two 
SfoI/EheI restriction sites created by the mutations at Ser63 and Ser73. SfoI/EheI 
restriction digest of the Jun4A 5’-end amplified by PCR using primers indicated by 
arrows 3 and 4 in (a) results in a 140 bp, 70 bp and 30 bp (30 bp band not visible in the 
gel picture on the right) DNA band. 
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Figure 49 Targeting of the genomic Jun locus with the Jun4A construct 
Schematic representation of the Jun4A construct targeting the genomic Jun locus in ES 
cells via homologous recombination mediated by a long homology arm 5’ of the Jun 
gene and a short homology arm 3’ of the Jun gene. Successfully targeted ES cell clones 
were identified by screening PCR using a forward primer indicated by arrow 1 in the 
neomycin-resistance cassette (neoR) and a reverse primer indicated by arrow 2 in the 
genomic Jun locus 3’ of the targeting construct. To confirm the presence of the four 
mutations, DNA sequencing was performed using primers indicated by arrows 3 and 4 
flanking the Jun 5’-end. After Cre-mediated excision of the neoR-cassette, a 50 bp 
loxP-site remained in the Jun4A locus 0.2 kb 3’ of the Jun4A gene. For genotyping, 
primers indicated by arrows 5 and 6 flanking this region were used. Arrowheads 
indicate loxP-sites. 
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Figure 50 Verification and genotyping of Jun4A mice 
(a) DNA from Jun4A/+ chimeras showed the characteristic band pattern after PCR-
amplification using primers indicated by arrows 3 and 4 in Figure 48 and restriction 
digest with SfoI/EheI (240 bp, 140 bp, 70 bp and 30 bp) whereas SfoI/EheI restriction 
digest of amplified DNA from Jun+/+ mice only result in a 240 bp DNA fragment.       
(b) The presence of the four mutations Ser63Ala, Ser73Ala, Thr91Ala and Thr93Ala 
(green rectangles) in Jun4A/4A mice was confirmed by DNA sequencing using primers 
indicated by arrows 3 and 4 in Figure 48. (c) After excision of the neoR-cassette, 
genotyping PCR using primers indicated by arrows 5 and 6 in Figure 49 led to a 200 bp 
Jun wt (Jun+) band and due to the remaining 50 bp loxP-site a 250 bp Jun4A band.  
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5.1.2 Targeting strategy for the generation of the ROSA26-LSL-JNKK2-

JNK1 mouse 
As a counterpart of the Jun4A mouse, I generated the ROSA26-LSL-JNKK2-JNK1 

mouse which expresses constitutively active JNK1. To achieve constitutive activation 

of JNK/c-Jun signalling, I inserted an HA-tagged human JNKK2-JNK1 fusion construct 

into the mouse genome. JNKK2 (also known as MKK7) is an upstream kinase of JNK1. 

Transgenic expression of both proteins should lead to increased levels of active 

phospho-JNK1 (p-JNK1) which consequently phosphorylates and activates c-Jun.  

To guarantee controlled and efficient monosite insertion of the JNKK2-JNK1 construct 

into the ubiquitously expressed ROSA26 locus, I used the Gateway Entry system 

(Nyabi et al., 2009). Firstly, I excised the toxin-encoding ccdB gene from the 

pENTR1A vector (Invitrogen) by EcoR1 restriction digest (Figure 51). Secondly, a   

2.8 kb human cDNA JNKK2-JNK1 fusion construct was excised from a pBabe-

JNKK2-JNK1 vector by BamHI restriction digest (one BamHI site located 5’ and one 

BamHI site located 3’ of the construct) and inserted into the BamHI site of the 

pENTR1A-vector. Correct orientation of the inserted construct was confirmed by NotI 

restriction digest. Apart from the NotI restriction site in the pENTR1A multiple cloning 

site 3’ of the BamHI site, there is a NotI site at 0.8 kb in the human JNKK2 cDNA. 

Consequently, correct orientation of the JNKK2-JNK1 construct resulted in a 1.9 kb 

DNA fragment by NotI restriction digest. Furthermore, correct insertion was confirmed 

by DNA sequencing.  

In collaboration with Lieven Haenebalcke and Dr Jody Haigh at Ghent University, 

Belgium, the JNKK2-JNK1 construct was inserted into a targeting vector via in vitro 

recombination. Since the JNKK2-JNK1 construct in the pENTR1A vector is flanked by 
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specific lambda phage integrase recognition sites (attL), the JNKK2-JNK1 construct 

can be efficiently transferred to a targeting vector carrying the corresponding 

heterotypic sites (attR) (Figure 52a). The targeting vector contains a 5’ homology 

region to the mouse ROSA26 genomic locus, a splice acceptor (SA) site, a PGK-neo-3 

x pA stop cassette flanked by loxP-sites (LSL), the JNKK2-JNK1 construct, an IRES-

eGFP reporter gene, a 3’ homology region to the mouse ROSA26 genomic sequence 

and a Diphteria Toxin A (DTA) selection cassette. It was electroporated into G4 F1 

hybrid ES cells and screening for positive clones with correct insertion was performed 

by PCR using a forward primer in the genomic ROSA26 locus 5’ of the targeting vector 

and a reverse primer in the 5’ region of the targeting vector (Figure 52). Correctly 

targeted clones showed a 1.3 kb band as a result of the screening PCR. Out of 96 tested 

ES cell clones, 5 were identified as carrying the correct insertion. This was confirmed 

by Southern Blot analysis, in which BamHI digest resulted in a 5.8 kb wt band and a 3 

kb mutant band (5’-probe), whereas KpnI digest showed a 37 kb wt band and a 8.8 kb 

mutant band (3’-probe) (Figure 52). One of the positive ES cell clones was injected 

into blastocysts from C57BL/6 mice performed by the LRI Transgenic Service. 

Genotyping of the chimeras was performed using primers to detect the eGFP reporter 

gene. 
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Figure 51 Insertion of the JNKK2-JNK1 fusion construct into the pENTR-vector 
The JNKK2-JNK1 fusion construct consisting of a 3xHA tag, the human JNKK2 
cDNA, (Gly-Gly)5 repeats and the human JNK1 cDNA was excised from a pBabe-
JNKK2-JNK1 vector by BamHI restriction digest. After removal of the ccdB toxin gene 
from the pENTR1A-vector by EcoRI digest, the JNKK2-JNK1 fusion construct was 
inserted into the BamHI-site located in the multiple cloning site of the pENTR1A-
vector. 
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Figure 52 Targeting of the genomic ROSA26 locus with the JNKK2-JNK1 vector 
(a) In the pEntry clone, the JNKK2-JNK1 construct is flanked by lambda phage 
integrase recognition sites (attL) and thus can be efficiently inserted into the targeting 
vector carrying the corresponding heterotypic sites (attR). The targeting construct 
consists of a 5’-ROSA26 homology arm, a splice acceptor (SA) site, a PGK-neo-STOP 
cassette flanked by loxP-sites (LSL), the JNKK2-JNK1 fusion construct, an IRES-eGFP 
reporter gene, a 3’-ROSA26 homology arm and a PGK-DTA selection cassette. 
Screening PCR was performed using a forward primer indicated by arrow 1 5’ of the 
targeting construct and a reverse primer indicated by arrow 2 in the 5’ region of the 
targeting construct. After Cre-mediated recombination, the LSL-cassette is excised and 
the JNKK2-JNK1 fusion construct is expressed in the genomic ROSA26 locus. For 
genotyping PCR, primers indicated by arrows 3 and 4 located in the eGFP reporter gene 
were used. Arrowheads indicate loxP-sites. (b) Southern Blot analysis performed by 
Lieven Haenebalcke resulted in a 5.8 kb wt band and a 3.0 kb mutant band after BamHI 
restriction digest [5’-probe indicated by black square in (a)] and a 37 kb wt band and a 
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8.8 kb mutant band after KpnI restriction digest [3’-probe indicated by orange square in 
(a)]. 
 
 

5.1.3 JNK signalling via c-Jun is dispensable for mouse development and 

gut regeneration 

Crossing two heterozygous Jun4A/+ mice revealed that Jun4A/4A mice are viable and are 

generated at normal Mendelian ratio. Jun4A/4A mice are fertile and they are 

indistinguishable from their wt littermates. Histological analysis of various tissues taken 

from Jun4A/4A mice such as the brain, liver, spleen, pancreas and lung showed no 

obvious structural differences (Figure 53). However, the villi in the small bowel 

seemed to be slightly smaller in length in the Jun4A/4A gut in comparison to the Jun+/+ 

gut (Figure 54a,b). Although this decrease did not reach statistical significance, this 

observation is consistent with previous data showing that activation of JNK/c-Jun 

signalling results in increased villi length due to increased proliferation in the gut 

(Sancho et al., 2009). Immunohistochemistry for p-c-Jun confirmed the absence of       

N-terminally phosphorylated c-Jun in the Jun4A/4A gut whereas in the Jun+/+ gut, p-c-Jun 

is expressed in immature cells in the crypt and in some enterocytes at the top of the 

villus (Figure 54c). I analysed numbers of proliferating cells in the gut of BrdU injected 

Jun+/+ and Jun4A/4A mice. Although not significantly, numbers of BrdU-positive 

proliferative cells were slightly decreased in the Jun4A/4A gut in comparison to the Jun+/+ 

gut (Figure 54d,e). The number of TUNEL-positive cells was similar in the Jun+/+ and 

the Jun4A/4A gut suggesting that JNK/c-Jun signalling is not involved in apoptosis in the 

gut (Figure 54f,g). Moreover, differentiation of intestinal cells was not affected by loss 

of N-terminally phosphorylated c-Jun since the percentage of Alcian-Blue 

(AB)/Periodic Acid-Schiff (PAS)-positive goblet cells, Chromogranin-positive 
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enteroendocrine cells and Lysozyme-positive paneth cells was not significantly 

different in the Jun4A/4A gut when compared to the Jun+/+ gut (Figure 55a-f). Also 

staining for alkaline phosphatase-positive enterocytes was similar in the Jun+/+ and 

Jun4A/4A gut (Figure 55g). 

Considering that p-c-Jun has been reported to positively regulate proliferation of 

intestinal cells but the number of proliferative cells in the Jun4A/4A gut was not 

significantly altered during physiological gut development, I investigated whether the 

JNK/c-Jun stress signalling pathway is necessary for gut regeneration. Therefore, 

Jun4A/4A mice and control mice were given drinking water containing dextran sodium 

sulfate (DSS) for one week to induce colitis in the large bowel. Next, mice were put 

back on normal drinking water to recover for three days and after that, the mice were 

sacrificed and analysed. Histologically, I could not detect an obvious difference in the 

regenerated guts from Jun+/+ and Jun4A/4A mice (Figure 56a). Furthermore, the 

percentage of BrdU-positive proliferative cells and the percentage of TUNEL-positive 

apoptotic cells was not significantly altered in the Jun+/+ and Jun4A/4A guts taken from 

DSS treated mice (Figure 56b-e). 

Taken together, these data suggest that c-Jun N-terminal phosphorylation is not 

necessary for physiological mouse development since Jun4A/4A mice show no significant 

phenotypes and are indistinguishable from Jun+/+ littermates. Furthermore, gut 

regeneration after induced colitis is not impaired in Jun4A/4A mice indicating that c-Jun 

N-terminal phosphorylation is not needed for recovery from this pathological condition.  
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Figure 53 Inhibition of JNK/c-Jun signalling does not affect physiological 
development 
(a-f) H&E staining on representative sections of the Jun+/+ and Jun4A/4A (a) cortex,      
(b) dentate gyrus, (c) liver, (d) spleen, (e) pancreas and (f) lung. Scale bars, in       
(a,b,e) 50 µm, in (c,d,f) 100 µm. 
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Figure 54 Absence of N-terminally phosphorylated c-Jun does not significantly 
alter gut development 
(a) H&E staining on representative sections of the Jun+/+ and Jun4A/4A small bowel.     
(b) Histogram showing the villi length in µm in the ileum of the small bowel of the 
Jun+/+ and Jun4A/4A gut. The length of at least 50 villi was measured per mouse. n = 3. 
(c,d,f) DAB-staining for (c) serine 63 phosphorylated c-Jun-, (d) BrdU- and                
(f) TUNEL-positive cells in the Jun+/+ and Jun4A/4A small bowel. Cells are 
counterstained with haematoxylin. Red arrowheads denote positive cells. (e,g) 
Quantification of (e) BrdU-positive cells per crypt and (g) TUNEL-positive cells per 
villus of the Jun+/+ and Jun4A/4A small bowel. Positive cells in 10 crypts or villi were 
counted per mouse. n = 3. 
Scale bars, 50 µm. Error bars, s.e.m.; n.s., not significant (unpaired t test).   
 
 
 
 



Chapter 5. Results 

 247 

 

 



Chapter 5. Results 

 248 

Figure 55 Inhibition of JNK/c-Jun signalling does not change differentiation in the 
gut 
(a,c,e,g) Immunohistochemistry for (a) AB/PAS-positive goblet cells,                          
(c) Chromogranin-positive enteroendocrine cells, (e) Lysozyme-positive paneth cells 
and (g) Alkaline phosphatase-positive enterocytes in the small bowel of the Jun+/+ and 
Jun4A/4A gut. Cells are counterstained with (a,c) haematoxylin, (e) DAPI and (g) nuclear 
fast red. (b,d,f) Quantification of (b) AB/PAS-positive, (d) Chromogranin-positive and 
(f) Lysozyme-positive cells (b,d) per villi and (e) per crypt. Positive cells in 10 villi or 
crypts were counted per mouse. n = 3. 
Scale bars, 50 µm. Error bars, s.e.m.; n.s., not significant (unpaired t test). 
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Figure 56 Absence of N-terminally phosphorylated c-Jun does not affect gut 
regeneration 
(a) H&E staining on representative sections of the untreated or DSS-treated Jun+/+ and 
Jun4A/4A large bowel. DSS-treated colons exhibited disorganisation of crypts and cell 
infiltration indicative of colitis. (b,d) DAB-staining for (b) BrdU-positive and             
(d) TUNEL positive cells in the crypts of the large bowel of DSS-treated Jun+/+ and 
Jun4A/4A mice. Cells are counterstained with haematoxylin. (c,e) Quantification of        
(c) BrdU- and (e) TUNEL-positive cells in the crypts of the large bowel of DSS-treated 
Jun+/+ (n = 4) and Jun4A/4A (n = 5) mice. 
Scale bars, 50 µm. Error bars, s.e.m.; n.s., not significant (unpaired t-test). 
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5.1.4 Increased JNK/c-Jun signalling does not significantly alter brain 

development but slightly improves nerve regeneration 
Having observed that inhibition of JNK/c-Jun signalling does not significantly impair 

mouse development, I went on to investigate whether enhanced JNK/c-Jun signalling 

affects development. Since my work as well as previous publications showed that        

p-c-Jun is involved in the apoptosis of neural cells (Chapter 3 and 4; Raivich and 

Behrens, 2006), I crossed the ROSA26-LSL-JNKK2-JNK1LSL/+ mice to Nestin-Cre 

transgenic mice providing tissue-specific expression of the JNKK2-JNK1 fusion protein 

in the nervous system. ROSA26-LSL-JNKK2-JNK1LSL/+; Nestin-Cre (LSL-JNKK2-

JNK1∆N/+) mice are viable and fertile and were generated at normal Mendelian ratio. 

Furthermore, LSL-JNKK2-JNK1∆N/+ mice showed no obvious phenotypes and were 

indistinguishable from wt (LSL-JNKK2-JNK1LSL/+) littermates. Histological analysis of 

the LSL-JNKK2-JNK1LSL/+ and LSL-JNKK2-JNK1∆N/+ brain showed no overall 

structural differences (Figure 57a). Immunohistochemistry for GFP confirmed the 

deletion of the Lox-STOP-Lox (LSL) cassette and reporter gene expression in the LSL-

JNKK2-JNK1∆N/+ brain (Figure 57b). Western Blot analysis exhibited expression of the 

HA-tagged JNKK2-JNK1 fusion protein at the expected molecular weight (~97 kDa) 

and a mild upregulation of p-c-Jun levels in the LSL-JNKK2-JNK1∆N/+ brain       

(Figure 57c,d). Since I was able to show that highly elevated p-c-Jun levels in the 

Fbw7-knockout background lead to increased neural progenitor apoptosis during brain 

development (Chapter 3 and 4), I examined the effects of p-c-Jun upregulation in the 

LSL-JNKK2-JNK1∆N/+ adult brain in areas of progenitors, i.e. the rostral migratory 

stream (RMS). Immunostaining for progenitor markers GFAP and Nestin in the adult 

brain revealed that although not significantly, the number of GFAP/Nestin-positive cells 

was slightly reduced in the LSL-JNKK2-JNK1∆N/+ RMS (Figure 58a,b). When 
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examining the number of active Caspase-3-positive apoptotic cells, I could hardly detect 

any active Caspase-3-positive cells in the LSL-JNKK2-JNK1LSL/+ as well as the LSL-

JNKK2-JNK1∆N/+ adult brain (Figure 58c). Also the number of BrdU-positive 

proliferative cells was similar in the LSL-JNKK2-JNK1∆N/+ adult brain in comparison 

to the LSL-JNKK2-JNK1LSL/+ brain (Figure 58d,e). Furthermore, the percentage of 

progenitors committed to the neuronal lineage (Doublecortin-positive) was not affected 

by the activation of JNK/c-Jun signalling whereas the percentage of astroglia 

progenitors (S100-positive) was slightly but not significantly decreased in the LSL-

JNKK2-JNK1∆N/+ adult brain (Figure 58f-i).  

Since the mild activation of JNK/c-Jun signalling in the LSL-JNKK2-JNK1∆N/+ brain 

did not significantly affect brain development, I investigated whether stress stimuli 

could lead to distinct JNK-dependent biological effects in the nervous system of mice 

with altered JNK/c-Jun signalling. c-Jun has previously been shown to be essential for 

nerve regeneration (Raivich et al., 2004). Thus, facial axotomy was performed on 

Jun+/+, Jun4A/4A, LSL-JNKK2-JNK1LSL/+ and LSL-JNKK2-JNK1∆N/+ mice. During this 

procedure, the facial nerve of the mouse is crushed unilaterally so that whisker 

movement is paralysed on one side. Wt mice re-innervate their whiskers within one 

month and thus regain whisker movement. The improvement in whisker mobility over 

time can be used as a measure for nerve regeneration. Indeed, although not 

significantly, nerve regeneration assessed by whisker movement test was slightly 

improved in LSL-JNKK2-JNK1∆N/+ mice whereas Jun4A/4A mice showed slightly 

impaired nerve regeneration 26 days after facial axotomy (Figure 59a,b). 
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Taken together, these data suggest that a mild activation of JNK/c-Jun signalling in the 

nervous system does not significantly alter brain development, but it might have the 

potential to improve nerve regeneration.  
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Figure 57 Expression of the JNKK2-JNK1 fusion protein in the brain leads to a 
mild increase in p-c-Jun levels 
(a) H&E staining on representative sections of the LSL-JNKK2-JNK1LSL/+ and LSL-
JNKK2-JNK1∆N/+ brain showing the hippocampus (Hc) and the dentate gyrus (DG) in 
panels at the top, cortex (Ctx), rostral migratory stream (RMS), subventricular zone 
(SVZ) and lateral ventricle (LV) in panels at the bottom. Scale bars, 50 µm.                
(b) Immunohistochemistry for GFP (green) on the LSL-JNKK2-JNK1LSL/+ and LSL-
JNKK2-JNK1∆N/+ RMS. DNA (blue) is counterstained with DAPI. Scale bars, 50 µm. 
(c,d) Western Blot analysis for (c) the HA-tagged JNKK2-JNK1 fusion protein          
(97 kDa) and β-Actin (42 kDa), (d) for serine 73 phosphorylated c-Jun (42 kDa) and    
β-Actin (42 kDa) on protein extracts from the LSL-JNKK2-JNK1LSL/+ and LSL-
JNKK2-JNK1∆N/+ brain.  
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Figure 58 Increased JNK/c-Jun signalling does not significantly alter brain 
development 
(a,c,d,f,h) Immunohistochemistry for (a) GFAP (red)/Nestin (green), (c) active Caspase 
3 (Casp3; arrowheads denote Casp3-positive cells), (d) BrdU, (f) Doublecortin (Dcx; 
red) and (h) S100 in the LSL-JNKK2-JNK1LSL/+ and LSL-JNKK2-JNK1∆N/+ RMS. 
Cells are counterstained with (a,f) DAPI and (c,d,h) haematoxylin.                       
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(b,e,g,i) Quantification of (b) GFAP/Nestin-, (e) BrdU-, (g) Dcx- and (i) S100-positive 
cells in the LSL-JNKK2-JNK1LSL/+ and LSL-JNKK2-JNK1∆N/+ RMS. In (b) LSL-
JNKK2-JNK1LSL/+ n = 4 and LSL-JNKK2-JNK1∆N/+ n = 5, in (e,g,i) n = 3 per genotype. 
Scale bars, 50 µm. Error bars, s.e.m.; n.s., not significant (unpaired t test).  
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Figure 59 Alterations in JNK/c-Jun signalling activity slightly affect nerve 
regeneration 
(a,b) Whisker movement was assessed in a double blind experiment independently by 
two researchers 7, 16 and 26 days after facial axotomy of (a) LSL-JNKK2-JNK1LSL/+   
(n = 10) and LSL-JNKK2-JNK1∆N/+ (n = 10) mice and (b) Jun+/+ (n = 9) and Jun4A/4A  
(n = 10) mice. Whisker movement was classified in 0.5 point steps from “0 = no 
movement” to “3.0 = normal movement” in comparison to the uninjured side. 
Error bars, s.e.m.; n.s., not significant (unpaired t test). 
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5.1.5 Inhibition of JNK/c-Jun signalling induces premature senescence in 

mouse embryonic fibroblasts 
Another cellular context in which JNK/c-Jun signalling has been described to play a 

major role is in fibroblasts. c-Jun-deficient mouse embryonic fibroblasts (MEFs) exhibit 

a severe proliferation defect and undergo premature senescence (Johnson et al., 1993). 

To investigate whether c-Jun function in MEF proliferation and senescence is JNK-

dependent, I isolated MEFs from Jun4A/4A mice. Immunostaining and immunoblotting 

for p-c-Jun revealed that no N-terminally phosphorylated c-Jun was detectable in 

untreated and anisomycin (JNK signalling activating agent) treated Jun4A/4A MEFs 

(Figure 60a,b). By light microscopy, I observed that at late passage (>p5), cell numbers 

were highly reduced in Jun4A/+ and Jun4A/4A MEF cultures in comparison to wt cultures. 

Furthermore, cells in Jun4A/+ and Jun4A/4A MEF cultures exhibited a flatter morphology 

similar to senescent fibroblasts (Figure 60c). Interestingly, this phenotype was not due 

to increased oxidative stress in cultures at atmospheric O2 because it also occurred when 

culturing Jun4A/4A MEFs at physiological oxygen levels (3% O2).  

To examine proliferation in the absence of N-terminally phosphorylated c-Jun, I 

performed growth curve analyses at early passage (p3) which revealed a mild reduction 

in proliferation in Jun4A/+ and Jun4A/4A cultures in comparison to wt cultures         

(Figure 61a). Furthermore, cell cycle analysis showed a slightly decreased number of 

cells progressing through the cell cycle in Jun4A/+ and Jun4A/4A MEF cultures in 

comparison to wt MEFs (Figure 61b,c). These data are consistent with previous data 

for c-JunAA/AA MEFs which have two (Ser63, Ser73) of the four main JNK-

phosphorylation sites mutated to alanine (Behrens et al., 1999). It has been described 

that c-JunAA/AA MEFs only exhibit a mild proliferation defect, much less severe than    
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c-Jun-deficient MEFs. The data from Jun4A/4A MEFs confirmed that c-Jun function in 

fibroblast proliferation is only partially JNK-dependent.  

To examine the decreased numbers of cells at later passages, I did growth curve 

analyses also at p7 (Figure 62a). At this stage, Jun4A/+ and Jun4A/4A MEFs cannot 

efficiently repopulate their cultures any longer in contrast to Jun+/+ MEFs. Furthermore, 

cell cycle analysis revealed that the vast majority of Jun4A/4A MEFs were stuck in G1 

phase at this stage and do no longer enter the cell cycle (Figure 62b,c). This indicated 

that they might have undergone premature senescence. Indeed, when I performed a      

β-galactosidase (β-gal) senescence assay on Jun4A/4A MEF cultures at late passage, the 

number of senescent cells was highly increased in the absence of N-terminally 

phosphorylated c-Jun, both at atmospheric O2 or physiological O2 (Figure 63a-d). 

Interestingly, heterozygous Jun4A/+ MEFs showed the same increase in premature 

senescence than homozygous Jun4A/4A MEFs at atmospheric O2 whereas at 

physiological O2, the increase in the number of senescent cells seemed to be inversely 

dosage-dependent on p-c-Jun levels (Figure 63a-d). The data from Jun4A/4A MEF 

cultures suggest that in contrast to its function in proliferation, c-Jun function in 

senescence is highly JNK-dependent. Since premature senescence was not observed in a 

previous study using c-JunAA/AA MEFs (Behrens et al., 1999), it might be that the two 

additionally mutated JNK-phosphorylation sites in Jun4A/4A MEFs play an important 

role in c-Jun function in senescence.  

Induction of p53 is the main event responsible for fibroblasts undergoing senescence 

(Atadja et al., 1995, Bond et al., 1996, Kulju and Lehman, 1995) and c-Jun has been 

implicated in the transcriptional repression of p53 (Schreiber et al., 1999). To 
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investigate how lack of N-terminally phosphorylated c-Jun triggers premature 

senescence molecularly, I did Western Blot analysis for p53. Surprisingly, p53 was 

downregulated in Jun4A/4A MEFs indicating that senescence in Jun4A/4A MEF cultures is 

p53-independent (Figure 64). 

Taken together, these data suggest that whereas c-Jun function in fibroblast proliferation 

is only partially JNK-dependent, c-Jun function in senescence is highly JNK-dependent. 

Interestingly, oxidative stress is seemingly not the main stimulus for the observed 

premature senescence in Jun4A/4A MEFs suggesting that an intrinsic mechanism 

triggered by lack of N-terminally phosphorylated c-Jun induces senescence. Strikingly, 

the observed senescence appears to be p53-independent.  

Oncogenic stress can induce senescence in tumour cells and thus limit tumour growth. 

The apparent absence of detrimental effects of lacking N-terminally phosphorylated     

c-Jun in development and regeneration in combination with its role in triggering p53-

independent senescence in fibroblasts makes the JNK/c-Jun signalling pathway an 

interesting target for cancer therapy.  
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Figure 60 Absence of N-terminally phosphorylated c-Jun results in decreased cell 
numbers in MEF cultures 
(a) Immunohistochemistry for serine 63 phosphorylated c-Jun (red) on untreated and 
anisomycin-treated (25 ng/ml, 12 h) Jun+/+, Jun4A/+ and Jun4A/4A MEF cultures. DNA 
(blue) is counterstained with DAPI. (b) Western blot analysis for serine 73 
phosphorylated c-Jun and β-Actin on protein extracts from Jun+/+, Jun4A/+ and Jun4A/4A 
MEF cultures. (c) Phase contrast pictures of Jun+/+, Jun4A/+ and Jun4A/4A MEF cultures 
at passage 7.  
Scale bars, 20 µm. 
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Figure 61 Inhibition of JNK/c-Jun signalling leads to a mild proliferation defect in 
MEF cultures at early passage 
(a) Growth curve analysis for three days on Jun+/+, Jun4A/+ and Jun4A/4A MEF cultures at 
passage 3. Initial number of plated cells: 0.04 x 106. n = 3. Error bars, s.e.m. (b) Cell 
cycle profiles of propidium iodide (PI) stained Jun+/+, Jun4A/+ and Jun4A/4A MEFs at 
passage 3. (c) Percentages of Jun+/+, Jun4A/+ and Jun4A/4A MEFs in G1-, S- and G2-
phase of the cell cycle at passage 3 based on the cell cycle profiles depicted in (b). 
Percentages were determined using the Watson Pragmatic algorithm and normalised to 
a total percentage of 100%.  
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Figure 62 Absence of N-terminally phosphorylated c-Jun blocks cell cycle 
progression of MEFs at late passage 
(a) Growth curve analysis for three days on Jun+/+, Jun4A/+ and Jun4A/4A MEF cultures at 
passage 7. Initial number of plated cells: 0.04 x 106. n = 3. Error bars, s.e.m. (b) Cell 
cycle profiles of propidium iodide (PI) stained Jun+/+, Jun4A/+ and Jun4A/4A MEFs at 
passage 7. (c) Percentages of Jun+/+, Jun4A/+ and Jun4A/4A MEFs in G1-, S- and G2-
phase of the cell cycle at passage 7 based on the cell cycle profiles depicted in (b). 
Percentages were determined using the Watson Pragmatic algorithm and normalised to 
a total percentage of 100%.   
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Figure 63 Inhibition of JNK/c-Jun signalling leads to premature senescence 
independent of oxygen levels 
(a,c) Phase contrast pictures of β-galactosidase (β-gal; blue)-positive senescent cells in 
Jun+/+, Jun4A/+ and Jun4A/4A MEF cultures at passage 7 at (a) atmospheric (~21%) and 
(c) at physiological O2 (3%). (b,d) Quantification of β-gal-positive senescent cells in 
Jun+/+, Jun4A/+ and Jun4A/4A MEF cultures at passage 7 (b) at atmospheric (~21%) and 
(d) at physiological O2 (3%). n = 3.  
Scale bars, 20 µm. Error bars, s.e.m.; n.s., not significant; *P ≤ 0.05 (unpaired t test).  
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Figure 64 Absence of N-terminally phosphorylated c-Jun leads to highly decreased 
p53 levels 
Western blot analysis for total p53 (53 kDa) and β-Actin (42 kDa) on protein extracts 
from Jun+/+, Jun4A/+ and Jun4A/4A MEFs at passage 5. 
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5.1.6 Discussion: The role of JNK/c-Jun signalling in development and 

pathology 

5.1.6.1 JNK/c-Jun signalling in the nervous system 

JNK signalling components show particularly high expression in the nervous system 

indicating that JNK signalling is of major importance in this tissue (reviewed in 

Haeusgen et al., 2009, Raivich and Behrens, 2006). Consequently, JNK1-/-; JNK2-/- 

double mutant mice die at E11.5 due to defects in neural tube closure, in part linked to 

abnormal programmed cell death during brain development. Interestingly, this 

phenotype was not recapitulated in c-Jun deficient mice, which die around E15.5 due to 

defects in hepatogenesis (Hilberg et al., 1993). This suggests that the role of JNK 

signalling in neural tube closure is either not mediated by c-Jun, or other JNK signalling 

targets can compensate for the loss of c-Jun. Furthermore, ablation of c-Jun 

phosphorylation by JNK at serine 63 and serine 73 as well as conditional deletion of    

c-Jun in the CNS does not lead to abnormal brain histology indicating that c-Jun is not 

required for brain development (Behrens et al., 1999, Raivich et al., 2004). Whereas the 

crucial role of p-c-Jun in stress-induced neuronal apoptosis has been described before, 

the importance of p-c-Jun degradation during brain development was unknown (Raivich 

and Behrens, 2006). I could show that elevated p-c-Jun levels as a consequence of Fbw7 

deletion results in increased progenitor apoptosis and reduced neuronal numbers in the 

developing brain (Hoeck et al., 2010).  

Consistent with previous data, ablation of c-Jun phosphorylation by JNK at the four 

main sites in Jun4A/4A mice did not affect brain development, as brain histology of 

Jun4A/4A mice was normal (Figure 53). Furthermore, mild activation of JNK/c-Jun 

signalling through expression of a JNKK2-JNK1 fusion protein under the control of the 
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endogenous ROSA26-promoter in LSL-JNKK2-JNK1ΔN/+ mice did not impair brain 

development. The moderate upregulation of p-c-Jun detected in the LSL-JNKK2-

JNK1ΔN/+ brain did not lead to significant structural or cellular abnormalities in the adult 

brain of these mice (Figures 57 and 58). There are several reasons which might explain 

why the LSL-JNKK2-JNK1ΔN/+ mice do not recapitulate the c-Jun-dependent Fbxw7ΔN 

phenotype. Considering the essential role of Fbw7 during brain development, it could 

be that p-c-Jun stabilisation in the Fbxw7ΔN brain led to a higher increase in p-c-Jun 

levels than that in LSL-JNKK2-JNK1ΔN/+ mice where the JNKK2-JNK1 fusion protein 

is expressed to moderate levels under the endogenous ROSA26 promoter. Furthermore, 

Fbw7, which is highly expressed in the developing brain, might be able to efficiently 

reduce p-c-Jun levels in the LSL-JNKK2-JNK1ΔN/+ brain during development. 

All in all, my data suggests that neither ablation of JNK/c-Jun signalling nor moderate 

activation of JNK/c-Jun signalling has a significant impact on brain development and 

the histology of the adult brain.  

 

5.1.6.2 JNK/c-Jun signalling in nerve regeneration   
Whilst being dispensable for the physiological development of the nervous system, 

JNK/c-Jun signalling has been shown to be important under certain pathological 

conditions. JNK/c-Jun signalling has been reported to mediate the detrimental effects of 

neuronal apoptosis after kainate-induced seizures, because JunAA/AA mice are protected 

from this excitotoxic stress-induced neuronal death (Behrens et al., 1999). Furthermore, 

loss of neurons in neurodegenerative diseases such as amyotrophic lateral sclerosis 

(ALS), Alzheimer’s dementia and Parkinson’s Disease has been linked to upregulation 
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of p-c-Jun levels (reviewed in Raivich, 2008). On the contrary, conditional deletion of 

c-Jun in the nervous system has shown that c-Jun is essential for nerve regeneration 

after facial nerve crush injury (Raivich et al., 2004). Absence of c-Jun led to atrophy of 

axotomised nerves due to reduced apoptosis and clearance of damaged neurons. Taken 

together, absence of N-terminal c-Jun phosphorylation at serine 63 and 73 protects mice 

from excitotoxic stress-induced loss of neurons, but c-Jun is essential for nerve 

regeneration.  

In order to uncouple the regenerative and detrimental c-Jun actions in the nervous 

system from each other, I analysed nerve regeneration after facial axotomy in Jun4A/4A 

mice. Although, nerve regeneration seemed to be delayed in Jun4A/4A mice, it was not 

significantly impaired unlike what was seen by Raivich et al. in JunΔN mice (Figure 59; 

(Raivich et al., 2004).  

All in all, whilst the detrimental c-Jun action in stress-induced neuronal apoptosis in the 

brain has been reported to be JNK-dependent, the positive c-Jun function in the removal 

of damaged motoneurons during nerve regeneration was only partially JNK-dependent. 

Furthermore, although not significantly, constitutively active JNK/c-Jun signalling in 

LSL-JNKK2-JNK1ΔN/+ mice was able to slightly improve nerve regeneration       

(Figure 59). These findings might be interesting for targeting JNK/c-Jun signalling in 

neurodegenerative diseases and after nerve injuries.  
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5.1.6.3 JNK/c-Jun signalling in the intestine 

Ablation of JNK-mediated c-Jun N-terminal phosphorylation at serine 63, serine 73, 

threonine 91 and threonine 93 did not affect mouse development, since Jun4A/4A mice 

were viable and fertile and did not show histological abnormalities in the brain, the 

liver, the lungs, the spleen and the pancreas (Figure 53). This is consistent with 

previous data showing that inactivating mutations at serine 63 and serine 73 does not 

impair embryogenesis (Behrens et al., 1999). However, activation of JNK signalling has 

recently been reported to increase progenitor proliferation and villus length in the 

intestine (Sancho et al., 2009). Thus, I investigated whether ablation of c-Jun                

N-terminal phosphorylation in Jun4A/4A mice has an effect on physiological gut 

development. Although the villus length in Jun4A/4A mice seemed to be slightly 

decreased, I could not detect a significant difference in proliferation, apoptosis and 

differentiation in the absence of c-Jun N-terminal phosphorylation (Figures 54 and 55). 

This indicates that whereas constitutive activation of JNK/c-Jun signalling leads to 

increased proliferation in the intestine, JNK/c-Jun signalling is not required for normal 

intestinal development.  

 

5.1.6.4 JNK/c-Jun signalling in gut regeneration 
Due to the increased progenitor proliferation after JNK signalling activation detected by 

Sancho et al. (Sancho et al., 2009) and the absence of proliferative defects in the 

Jun4A/4A gut under physiological conditions, I examined whether under pathological 

conditions, gut regeneration requires JNK/c-Jun signalling. Therefore, I induced colitis 

in wt and Jun4A/4A mice by addition of dextran sodium sulfate (DSS) salt to their 

drinking water and analysed gut regeneration after this treatment. I could not detect a 
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histological difference between wt and Jun4A/4A regenerated guts (Figure 56). 

Furthermore, the number of proliferative and apoptotic cells was similar in Jun4A/4A and 

control guts. This indicates that JNK/c-Jun signalling is dispensable for normal gut 

development as well as for regeneration after gut pathology. Considering that JNK 

signalling activation has been shown to promote gut tumour development (Sancho et al., 

2009), these findings might be interesting for the establishment of JNK/c-Jun signalling 

as a promising target for anti-cancer therapy in the gut with possibly insignificant side 

effects in this tissue.  

 

5.1.6.5 JNK/c-Jun signalling in fibroblasts  
c-Jun deficiency has been reported to result in severely impaired proliferation and 

premature senescence of mouse embryonic fibroblasts (MEFs) (Johnson et al., 1993). 

Ablation of c-Jun N-terminal phosphorylation by JNK at serine 63 and serine 73 in 

JunAA/AA mice only showed a mild defect in MEF proliferation (Behrens et al., 1999). 

Furthermore, Ras-induced transformation was inhibited in JunAA/AA MEFs (Behrens et 

al., 2000). These data suggests that c-Jun function in promoting transformation depends 

on c-Jun phosphorylation by JNK at serine 63 and serine 73, whereas c-Jun function in 

promoting proliferation is only partially dependent on these phosphorylations. The role 

of c-Jun N-terminal phosphorylation in senescence is unclear because it has been 

reported in two different studies that c-Jun function in preventing premature senescence 

is JNK-independent and JNK-dependent (Behrens et al., 1999, Wada et al., 2004). To 

further dissect the dependency of c-Jun actions on phosphorylation by JNK and to study 

the role of the importance of c-Jun phosphorylation at threonine 91 and threonine 93, I 

analysed Jun4A/4A MEFs in culture. Similar to JunAA/AA MEFs, but unlike c-Jun-
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deficient MEFs, Jun4A/4A MEFs only showed a mild proliferation defect at early passage 

(Figure 61; Behrens et al., 1999, Johnson et al., 1993). This confirmed that c-Jun 

function in MEF proliferation is only partially dependent on N-terminal 

phosphorylation by JNK. In contrast, similar to c-Jun deficient MEFs, a significantly 

increased amount of Jun4A/4A MEFs underwent premature senescence (Figures 62 and 

63; Johnson et al., 1993). In comparison to Behrens et al. who did not detect increased 

premature senescence in JunAA/AA MEF cultures, this indicated that c-Jun function in 

preventing senescence is JNK-dependent, particularly with respect to c-Jun 

phosphorylation by JNK at threonine 91 and threonine 93 (Behrens et al., 1999). In 

comparison to Wada et al. who suggested that premature senescence in Mkk7(Jnkk2)-/- 

and JunAA/AA MEF cultures is increased, my results confirm JNK-dependency of c-Jun 

action in premature senescence (Wada et al., 2004). Wada et al. detected a block in 

G2/M cell cycle progression of Mkk7-/- and JunAA/AA MEFs due to reduced levels of the 

c-Jun target cell cycle kinase Cdc2 (cell division control protein 2; also known as 

Cdk1). However, senescence is usually associated with accumulation of cells in G1 

which I could detect in Jun4A/4A MEF cultures (Figure 62; Sherwood et al., 1988). 

Thus, it seems that ablation of c-Jun phosphorylation in JunAA/AA and Jun4A/4A MEFs 

leads to different biological effects on the cell cycle. 

Interestingly, Jun4A/4A MEFs also underwent premature senescence when cultured at 

physiological oxygen levels suggesting that extrinsic oxidative stress is not the main 

reason for this phenotype. However, Wada et al. show that oxidative stress triggers 

G2/M block and senescence in Mkk7-/- MEFs (Wada et al., 2004). Instead, the G1 block 

and the premature senescence detected in Jun4A/4A MEF cultures might be due to an 

intrinsic mechanism triggered by absence of c-Jun N-terminal phosphorylation.  
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To study the increased senescence in Jun4A/4A MEF cultures molecularly, I examined 

protein levels of the main inducer of senescence, p53, which has been reported to be 

negatively regulated by c-Jun (Schreiber et al., 1999). Strikingly, p53 levels were 

drastically reduced in the absence of c-Jun N-terminal phosphorylation (Figure 64). 

From this result, two questions arose which will have to be addressed:  

1. If not via p53, how does absence of N-terminally phosphorylated c-Jun trigger 

senescence?  

2. How does c-Jun regulate p53?  

With regard to the first question, Wada et al. showed that Mkk7-/- MEFs undergo 

premature senescence due to decreased levels of the cell cycle kinase Cdc2 which is 

required for G2/M cell cycle progression (Wada et al., 2004). The authors reported that 

the Cdc2 gene is a direct transcriptional target of c-Jun and that p53 levels are not 

altered in Mkk7-/- MEFs. Since I could detect increased premature senescence due to a 

G1 arrest in Jun4A/4A MEFs, it is unlikely that reduced Cdc2 expression accounts for this 

phenotype. Apart from the c-Jun target p53, a second prominent inducer of senescence 

is the retinoblastoma (Rb) tumour suppressor. In contrast to reduced Cdc2 levels which 

lead to G2/M block, Rb induces G1 arrest (Shapiro et al., 2000). Interestingly, 

phosphorylation and consequently inactivation of Rb is mediated by the bona fide c-Jun 

transcriptional target cyclin D1 (Sellers and Kaelin, 1997). Thus, absence of c-Jun       

N-terminal phosphorylation in Jun4A/4A MEFs might result in decreased cyclin D1 

levels, Rb activation, G1 arrest and premature senescence. This hypothesis will need to 

be tested by qRT-PCR, immunoblotting, etc. in the future.  
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Secondly, how does c-Jun regulate p53? Schreiber et al. identified c-Jun as a negative 

regulator of p53 transcription in MEFs (Schreiber et al., 1999). Recent work by 

Aguilera et al. revealed that unphosphorylated but not phosphorylated c-Jun is recruited 

via Mbd3 (Methyl-CpG binding domain protein 3) to nucleosome remodelling and 

histone deacetylation (NuRD) complexes which repress transcription (Aguilera et al., 

2011). It is tempting to speculate that in the absence of N-terminal c-Jun 

phosphorylation, the unphosphorylated-c-Jun/Mbd3/NuRD complex represses p53 

transcription in Jun4A/4A MEFs, a hypothesis which will have to be tested by chromatin 

immunoprecipitation (ChIP) in the future. 

Taken together, my data on Jun4A/4A MEFs suggests that inhibition of c-Jun N-terminal 

phosphorylation by JNK at serine 63, serine 73, threonine 91 and threonine 93 triggers 

premature senescence which is independent of extrinsic oxidative stress. Furthermore, 

absence of c-Jun N-terminal phosphorylation leads to a drastic decrease in p53 levels, 

and premature senescence in Jun4A/4A MEFs is induced in a p53-independent manner. 

Considering that c-Jun N-terminal phosphorylation can promote tumourigenesis, these 

findings could prove to be interesting for targeting p53 null tumours in cancer therapy.  
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Chapter 6. Discussion 
 

6.1 Fbw7 and its substrates Notch and c-Jun in brain 

development 
Fbw7 function during mouse embryonic development is crucial around mid-gestation. 

Fbw7-knockout mice die at E10.5 due to vascular defects, accompanied by increased 

levels of the Fbw7-substrate Notch, and placental defects which are associated with 

high cyclin E levels in the extra-embryonic tissue (Tetzlaff et al., 2004, Tsunematsu et 

al., 2004). Furthermore, conditional deletion of Fbw7 in the haematopoietic system 

results in a loss of quiescent haematopoietic stem cells which is caused by increased    

c-Myc levels (Thompson et al., 2008). These data point towards a tissue-specific 

function of Fbw7 in the degradation of distinct substrates. Due to the embryonic 

lethality of Fbw7-knockout mice at E10.5, it had not been possible to examine Fbw7 

function in the developing brain yet, since brain development only starts around mid-

gestation. To address this, conditional Fbw7-knockout mice were generated in our 

laboratory which show tissue-specific deletion of Fbw7 in the nervous system (Fbxw7f/f; 

Nestin-Cre or Fbxw7ΔN).  

The fact that Fbxw7ΔN mice die perinatally was the first indication for an essential role 

of Fbw7 in the development of the nervous system. Histological analysis of E18.5 

Fbxw7ΔN mouse embryos revealed a significant reduction in cellularity in areas of 

differentiated cells throughout the brain, for example in the cerebellum, the thalamus, 

the midbrain tectum and the forebrain cortex (Figure 24). In contrast, cell numbers in 

areas harbouring stem cells were either unaffected, as seen in the cortical ventricular 

zone, or increased, as observed in the tectal ventricular zone. I could show that Fbw7 is 
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a key molecular switch antagonising Notch and JNK/c-Jun signalling during neural 

development. On the one hand, Fbw7 degrades phosphorylated c-Jun to prevent 

neuronal progenitors from undergoing apoptosis and to regulate neural cell numbers. On 

the other hand, Fbw7 degrades Notch to allow radial glia stem cells to undergo 

differentiation and to control neurogenesis. Loss of Fbw7 led to increased Notch levels 

in the developing brain which was responsible for the accumulation of radial glia stem 

cells and the differentiation defect of these cells. Cells progressing to a neuronal 

progenitor state despite high Notch levels underwent apoptosis which was mediated by 

high p-c-Jun levels, the other Fbw7 substrate upregulated in the Fbxw7ΔN brain. 

Whereas neuronal differentiation is incompatible with high Notch levels, Notch seems 

to play a permissive role in glia differentiation (Cau and Blader, 2009), which explains 

why glia differentiation was not affected in the absence of Fbw7. The observation that 

radial glia cells were also localised ectopically might be explained by an intermediate 

state of these cells in which they have entered neuronal differentiation and show normal 

JNK signalling-mediated migration but maintain stem cell characteristics due to 

increased Notch levels. The more than 50% reduction in differentiated neurons in the 

Fbxw7ΔN brain could be responsible for the lack of suckling behaviour of new-born 

Fbxw7ΔN mice which has recently been reported as cause of death of these mice 

(Matsumoto et al., 2011). The fact that neither attenuation of c-Jun nor Notch alone was 

able to rescue perinatal lethality of Fbw7-deficient mice suggests that both, the p-c-Jun-

mediated progenitor apoptosis and the Notch-mediated stem cell differentiation defect 

contribute to the perinatal lethality of these mice. In future breedings, we would expect 

that genetic downregulation of both p-c-Jun and Notch can lead to the survival of 

Fbxw7ΔN mice. 
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6.2 Recent publications on Fbw7 function in the brain 
Shortly after our publication on Fbw7 function in neural stem cell differentiation and 

progenitor apoptosis by antagonising Notch and JNK/c-Jun signalling (Hoeck et al., 

2010), another group published results from CNS-specific conditional Fbw7-knockout 

mice (Matsumoto et al., 2011). Matsumoto et al. confirmed my results on Notch-

dependent neural stem cell accumulation and decreased numbers of differentiated cells 

in the Fbw7-knockout brain. However, Matsumoto et al. come to different conclusions 

in some crucial aspects.  

Firstly, the authors of this article report that they could not detect an upregulation of     

c-Jun in the absence of Fbw7. Remarkably, this claim is not supported by their own 

data, since there is a clear increase in c-Jun levels seen in their immunoblotting results 

on protein extracts from the Fbw7-mutant brain (Figure 3A in Matsumoto et al., 2011). 

Strikingly, c-Jun levels were highest in the Fbw7-knockout brain at E16.5 when we 

describe a peak in progenitor apoptosis (Hoeck et al., 2010). Furthermore, a recent 

paper by Jandke et al. reports highly upregulated p-c-Jun levels in progenitors in the 

cerebellum of mice with conditional inactivation of Fbw7 in the cerebellum (Jandke et 

al., 2011).  

Secondly, Matsumoto et al. report that they could not detect increased apoptosis in the 

absence of Fbw7. However, it is not mentioned how apoptosis was assessed and this 

assumption is not substantiated with any data (Matsumoto et al., 2011). Furthermore, 

they claim that there is an increase in the number of proliferative pH3-positive cells in 

the VZ and a decrease in the SVZ in the Fbw7-mutant brain. I have analysed the 

percentage of pH3 and Ki67-expressing cells at various time points during embryonic 
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brain development and could not detect a significant difference in proliferation. 

Furthermore, pH3 staining of neurosphere cells and a CFSE cell proliferation assay 

revealed that also in vitro, the number of proliferative cells and the proliferation rate is 

the same in wt and Fbw7-mutant cultures (Hoeck et al., 2010). This is in line with a 

previous publication reporting that NICD1-overexpression in radial glia stem cells in 

the VZ results in the accumulation of mainly quiescent radial glia stem cells in the 

cortex (Gaiano et al., 2000). The fact that I could not detect a difference in Ki67-

positive progenitors in the SVZ despite reduced progenitor numbers suggests that the  

p-c-Jun-mediated progenitor apoptosis only occurs after the proliferative stage and upon 

entry into neuronal differentiation of these cells which is incompatible with the 

observed increase in Notch levels. 

Thirdly, Matsumoto et al. report that absence of Fbw7 promotes differentiation of 

neural stem cells into astrocytes (Matsumoto et al., 2011). This assumption is solely 

based on immunostaining for the astroglia marker GFAP in vitro and in the P0.5 brain. 

The generation of differentiated glia cells only slowly starts at late-gestation (Qian et 

al., 2000). I could show that the number of S100-positive astrocytes and NG2-positive 

oligodendrocytes is similar in the wt and the Fbxw7ΔN brain (Figure 31). Also in in 

vitro-differentiation assays, absence of Fbw7 did not result in increased formation of 

Connexin-43-positive astrocytes and O4-positive oligodendrocytes (Figure 38). The 

marker Matsumoto et al. use to identify astroglia, GFAP, is postnatally not only a 

marker of astrocytes, but also of radial glia cells (reviewed in Pinto and Gotz, 2007). 

Also the morphology of the GFAP-positive cells they show at P0.5 resembles very 

much the morphology of radial glia cells (Figure 4E in Matsumoto et al., 2011). Thus, 

what Matsumoto et al. have confirmed with this data is just the accumulation of radial 
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glia stem cells, but they do not show a skewed differentiation into the astroglia lineage. 

It is noteworthy that whereas the role of Notch in neural stem cell maintenance is 

undisputed, Notch function in astrogenesis remains elusive. Whereas some studies come 

to the conclusion that Notch is not involved in the lineage decision between neurons and 

glia (Hitoshi et al., 2002, Nyfeler et al., 2005, Yoon et al., 2004), others have reported 

that Notch promotes astrocyte differentiation (Chambers et al., 2001, Ge et al., 2002, 

Grandbarbe et al., 2003). Recent publications suggest that the role of Notch in glia 

differentiation is rather permissive than instructive (reviewed in Cau and Blader, 2009). 

This model fits well with my data showing that increased Notch signalling in the 

absence of Fbw7 does not interfere with gliogenesis, but it does not actively promote 

glia differentiation.    

 

6.3 Future directions: Fbw7 in the nervous system 
After elucidating the role of Fbw7 in the developing brain, it will be interesting to 

investigate the function of Fbw7 in the adult brain. Due to the perinatal lethality of 

Fbxw7ΔN mice, I have crossed Fbxw7f/f mice to inducible Nestin-CreER transgenic mice 

which express Cre recombinase in the nervous system after tamoxifen administration. 

Together with other colleagues in the lab, I have established adult neurosphere cultures 

from cells isolated from the subventricular zone of the adult brain. It will be interesting 

to see whether Fbw7 deletion also leads to alterations in the subventricular zone and the 

dentate gyrus, which are the stem cell compartments of the adult brain, whether it will 

influence differentiation and apoptosis and which Fbw7-substrates will be affected. 
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Due to its potential role as a tumour suppressor in glioma (Hagedorn et al., 2007) and its 

newly discovered role in stem cell differentiation in the brain, it is worth investigating 

whether deletion of Fbw7 leads to the development of more stem-cell-like and more 

aggressive brain tumours. Therefore, I have crossed Fbxw7f/f mice with a brain tumour 

model mouse carrying deletions of the tumour suppressors pten and p53 which has 

recently been reported to result in brain tumour formation (Zheng et al., 2008). It will be 

interesting to see whether deletion of Fbw7 in the pten; p53 null background promotes 

development of glioblastoma, in which regions of the brain the tumours arise and if 

Fbw7-deficiency can promote maintenance of cancer stem cells. 

After establishing Fbw7 as a differentiation and survival factor of neural stem and 

progenitor cells, it would be worth investigating whether in regenerative medicine, 

increased levels of Fbw7 can make the in vitro-differentiation of stem cells into neurons 

more efficient. 

Moreover, due to the fact that c-Jun and Notch in Schwann cells are required for nerve 

regeneration after injury (Mirsky et al., 2008), a colleague in our laboratory is currently 

investigating whether deletion of Fbw7 specifically in Schwann cells can promote nerve 

regeneration after facial axotomy and spinal cord injury.  
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6.4 JNK/c-Jun signalling in physiology and pathology  
In physiological development, the absence of obvious phenotypes in JNK1-/-, JNK2-/- 

and JNK3-/- single mutant mice as well as in JNK1-/-; JNK3-/- and JNK2-/-; JNK3-/- 

double mutants suggests that loss of JNK1 or JNK2 can be compensated by each other 

and that either JNK1 or JNK2 can compensate for lack of JNK3 (Chang and Karin, 

2001, Dong et al., 1998, Kuan et al., 1999, Yang et al., 1998, Yang et al., 1997). Only 

JNK1-/-; JNK2-/- double mutants show embryonic lethality around mid-gestation due to 

impaired neural tube closure which was associated with abnormal apoptosis (Kuan et 

al., 1999). Deletion of the JNK target c-Jun has been shown to result in embryonic 

lethality around mid- and late-gestation due to severe defects in liver development 

(Hilberg et al., 1993). Interestingly, ablation of c-Jun N-terminal phosphorylation by 

JNK at serine 63 and serine 73 does not impair embryonic development but is required 

for Ras-induced transformation of mouse embryonic fibroblasts (MEFs) and protects 

neurons from undergoing apoptosis after kainate-induced seizures (Behrens et al., 2000, 

Behrens et al., 1999). Recent publications have suggested that apart from serine 63 and 

serine 73 phosphorylation, also c-Jun phosphorylation at threonine 91 and threonine 93 

by JNK is involved in the stress-induced augmentation of c-Jun transactivation function 

(Morton et al., 2003, Vinciguerra et al., 2008). The question arose whether JNK-

dependent c-Jun functions are dispensable in physiology but are important under 

pathological conditions? To study this, I have generated two mouse models to be able to 

either constitutively activate JNK/c-Jun signalling (ROSA26-LSL-JNKK2-JNK1) or to 

ablate JNK signalling via c-Jun (Jun4A; Ser63Ala, Ser73Ala, Thr91Ala, Thr93Ala). I 

could show that JNK-dependent c-Jun phosphorylation is not required for physiological 

mouse development and regenerative events after pathology, i.e. colitis and nerve injury 
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whereas JNK/c-Jun activation could slightly improve nerve regeneration. Furthermore, 

the prevention of cells to become senescent mediated by c-Jun seems to be highly JNK-

dependent. Interestingly, the levels of p53, the main inducer of senescence, were highly 

decreased in Jun4A/4A MEF cultures. c-Jun has been described as a transcriptional 

repressor of p53 (Schreiber et al., 1999). As a consequence of my results, it is tempting 

to speculate that c-Jun N-terminal phosphorylation by JNK is involved in p53 regulation 

and that unphosphorylated c-Jun can repress p53 transcription. Since senescence in the 

absence of p-c-Jun is p53-independent, it could be mediated by the alternative p16/Rb 

senescence pathway. Furthermore, extrinsic oxidative stress does not seem to be the 

main cause of senescence in Jun4A/4A MEF cultures which suggests that, in the absence 

of p-c-Jun, there might be an intrinsic mechanism that triggers senescence. Since 

tumour cell growth can be limited by senescence, these findings might be interesting for 

targeting JNK/c-Jun signalling in tumour therapy. 

   

6.5 Future directions: JNK/c-Jun signalling in tumourigenesis 
The absence of obvious detrimental effects by the loss of c-Jun N-terminal 

phosphorylation in Jun4A/4A mice supports the establishment of JNK/c-Jun signalling as 

a promising target for cancer therapy. Hyperactivation of the pathway has been shown 

to promote tumour growth in various tissues, for example in the intestine, the skin and 

the haematopoietic system (reviewed in Eferl and Wagner, 2003). Ras-induced skin 

tumourigenesis and c-Fos-induced osteosarcoma development have been reported to be 

impaired in JunAA/AA mice. Furthermore, JunAA/AA mice have been reported to show 

decreased tumourigenesis and prolonged survival in the APCmin intestinal tumour 
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model background (Nateri et al., 2005). To further study the role of c-Jun N-terminal 

phosphorylation in gut tumour development, Jun4A/4A mice are currently being crossed 

to two animal models of intestinal tumourigenesis (LSL-RasG12D; VillinCreERT and 

APCmin mice). It will be interesting to see whether ablation of c-Jun N-terminal 

phosphorylation by JNK at serine 63, serine 73, threonine 91 and threonine 93 in 

Jun4A/4A mice can impair intestinal tumour development to a greater extent than the 

JunAA/AA mice.  

The tumour suppressor p53 has been found to be mutated in more than 50% of human 

tumours and correlates with poor prognosis in many cancers (reviewed in Levine, 

1997). Jun4A/4A MEFs underwent premature senescence independent of p53. Thus, 

Jun4A/4A mice are being crossed to p53Δ/+ mice, which develop tumours in various 

tissues, to investigate whether lack of c-Jun N-terminal phosphorylation can inhibit 

tumour development induced by reduced p53 levels.  

It will be exciting to see whether upon oncogenic stress, lack of c-Jun N-terminal 

phosphorylation can induce senescence in tumour cells in a p53-independent manner 

and thus can limit tumour growth. 
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6.6 Concluding remarks 
In my PhD studies, I could show that the E3 ubiquitin ligase Fbw7 is a key regulator of 

neural stem cell differentiation and progenitor apoptosis during brain development. 

Fbw7 is essential for the degradation of the stem cell factor Notch to allow radial glia 

stem cells to enter the differentiation programme. Furthermore, Fbw7 negatively 

regulates pro-apoptotic c-Jun in the developing brain to prevent differentiating neuronal 

progenitors from undergoing apoptosis. Consequently, Fbw7 controls differentiation 

and neuronal number in the developing brain by Notch and c-Jun degradation      

(Figure 65). 

Furthermore, I could show that N-terminal c-Jun phosphorylation at the four main JNK-

phosphorylation sites (serine 63, serine 73, threonine 91 and threonine 93) is 

dispensable for mouse development. Moreover, lack of p-c-Jun does not significantly 

impair gut and nerve regeneration. Due to its role in tumourigenesis, JNK/c-Jun 

signalling has been suggested as a target for cancer therapy. I could show that loss of   

p-c-Jun induces premature senescence in mouse embryonic fibroblasts at physiological 

oxygen levels in a p53-independent manner (Figure 66). Hence, inhibition of         

JNK/c-Jun signalling might be a promising way to induce senescence in tumour cells 

independent of p53 and thus limit tumour growth with possibly limited side effects. 
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Figure 65 Fbw7 in neurogenesis 
Schematic representation of neuronal differentiation and Fbw7 function in antagonising 
Notch, which promotes radial glia stem cell maintenance, and c-Jun, which induces 
apoptosis in neuronal progenitors.  
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Figure 66 Dependency of c-Jun functions on Ser63/Ser73/Thr91/Thr93 
phosphorylation by JNK 
Schematic representation of c-Jun functions and their dependency on N-terminal 
phosphorylation of c-Jun at serine 63, serine 73, threonine 91 and threonine 93 by JNK. 
Green lines point towards actions promoted by JNK/c-Jun, red lines point towards 
actions inhibited by JNK/c-Jun. 
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