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Abstract

This thesis is concerned with state estimation in partially observed diffusion processes with

discrete time observations. This problem can be solved exactly in a Bayesian framework, up

to a set of generally intractable stochastic partial differential equations. Numerous approximate

inference methods exist to tackle the problem in a practical way. This thesis introduces a novel

deterministic approach that can capture non normal properties of the exact Bayesian solution.

The variational approach to approximate inference has a natural formulation for partially

observed diffusion processes. In the variational framework, the exact Bayesian solution is the

optimal variational solution and, as a consequence, all variational approximations have a uni-

versal ordering in terms of optimality. The new approach generalises the current variational

Gaussian process approximation algorithm, and therefore provides a method for obtaining super

optimal algorithms in relation to the current state-of-the-art variational methods.

Every diffusion process is composed of a drift component and a diffusion component. To

obtain a variational formulation, the diffusion component must be fixed. Subsequently, the exact

Bayesian solution and all variational approximations are characterised by their drift component.

To use a particular class of drift, the variational formulation requires a closed form for the

family of marginal densities generated by diffusion processes with drift components from the

aforementioned class. This requirement in general cannot be met. In this thesis, it is shown how

this coupling can be weakened, allowing for more flexible relations between the variational drift

and the variational approximations of the marginal densities of the true posterior process. Based

on this revelation, a selection of novel variational drift components are proposed.
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Chapter 1

Introduction

1.1 Purpose and contributions of the thesis

The purpose of this thesis is to improve upon existing variational approximate inference methods

for state-estimation in partially observed diffusion processes with discrete time observations.

The emphasis is on continuous-discrete state space models with nonlinear drift functions and

measurement models, in which the state estimation problem cannot be solved using classical

linear methods. The mathematical approach is probabilistic and the state estimation problem

is formulated in terms of Bayesian inference. All algorithms are considered in the context of

machine learning. This requires a much wider scope than is usually considered for this type

of problem, subsuming the more specialised filtering and smoothing algorithms. This is done

because many nonlinear smoothing algorithms tackle the state estimation problem by simply

adapting procedures that work in the linear case. Effective state estimation in nonlinear models

requires a more flexible algorithmic framework, and while many of the ideas in machine learn-

ing were seeded in the filtering and smoothing community, progress in other fields of machine

learning has created a rich toolbox of approximate inference methods applicable to the problem

studied here.

The posterior in any nonlinear model is non normal. Despite this, many deterministic

approximate inference methods are implemented as normal approximations. Machine learning

algorithms such as expectation propagation (Minka, 2001), assumed density filtering (Opper,

1998), assume density smoothing (Särkkä & Hartikainen, 2010a), and variational free energy

methods (Archambeau & Opper, 2011) are all applied to temporal state estimation problems us-

ing normal densities as the approximating class. This generally false assumption is then exagger-

ated further by introducing normal based integral approximations such as statistical linearisation

(Roberts & Spanos, 2003), unscented transforms (Julier & Uhlmann, 2004), quadrature methods

(Särkkä & Hartikainen, 2010b) and cubature methods (Arasaratnam & Haykin, 2009). While

there are many benefits to choosing normal approximations, this does not escape the fact that

all nonlinear partially observed diffusion processes will have posteriors with marginal densities

1



Chapter 1. Introduction 2

better approximated by more general classes of probability densities. While arbitrary approx-

imating densities can be fitted using the samples in stochastic approximate inference methods,

the purpose of this thesis is to give some indication of how to do this in the deterministic setting.

At the core of the thesis is the understanding that the true Bayesian solution should be

used to guide any approximation. The Fokker-Planck (Risken, 1996) or Kolmogorov forward

equation (Kolmogorov, 1931) is the fundamental stochastic partial differential equation that cou-

ples the drift of a diffusion process to its corresponding measure. Conversion of a continuous

time system to a numerically tractable discrete time system requires the Fokker-Planck equation

to produce a sequence of transition probabilities that characterise the propagation of beliefs be-

tween disjoint times on the grid. In general this equation is intractable, and learning algorithms

must approximate the transition densities and perform inference on a simplified version of the

prior. Certain stochastic methods attempt to reduce the impact of approximating the transi-

tion density by using high order numerical approximations (Murray & Storkey, 2011, Restrepo,

2008). While some deterministic methods derive continuous time formulations by taking the

time step of the discretisation to zero (Särkkä, 2007, Särkkä & Sarmavouri, 2011). It is only the

variational methods studied here that have the ability to integrate the Fokker-Planck equation

explicitly into the formulation of solutions.

1.1.1 Contributions

The contributions of the thesis are summarised as follows:

• Generalised variational smoothing:

The variational Gaussian process approximation for partially observed diffusion processes

with discrete time observations is extended to any family of densities parameterised by a

finite set of moments. This allows for variational approximations to capture higher order

moments of the true posterior process.

• Projected variational smoothing:

The strict constraints of generalised variational smoothing are relaxed through the intro-

duction of a projected version of the Fokker-Planck equation with a novel proof in terms

of the continuous time limit of an assumed density filter. This allows for more flexible

types of variational drift to be introduced.

• Variational drifts with additive control:

Based on the new framework, a novel form of variational drift is proposed that plays upon

the optimal control and estimation duality. It is shown how the variational GP approxi-

mation can be interpreted in this framework. The hope is to strengthen the link between

approximate estimation and approximate control.

• Variational gradient systems:
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Based on the new framework, a novel form of variational drift is proposed that focuses on

the equilibrium points of the Fokker-Planck equation. It is shown how gradient systems

can be used to build well behaved vector fields that guide the marginal densities of the

variational approximation. The new type of drift encompasses a large number of models

encountered in applications.

• Variational skew-GP smoothing:

A method is proposed for capturing skewness in filtering and variational smoothing. It

is shown how the class of skew-normal distributions can be adapted to the task of ap-

proximate inference. Many of the auxiliary and prerequisite steps required for variational

skew-GP smoothing are dealt with.

• Variational GP learning:

The variational GP algorithm is considered in the context of other temporal GP learn-

ing machine. The formal relations between variational GP smoothing and GP regres-

sion, kernel regression, and assumed Gaussian smoothing are identified. Improvements to

the current gradient method used to implement the variational GP method are proposed.

These improvements utilise the Hessian of the free-energy, which has yet to be used in

variational GP smoothing.

Work not included in this thesis comprises of active and dormant collaborations in optimal bandit

control (Grunewalder et al., 2010), statistical learning theory for variational approximations

(Archambeau et al., 2009), a first-author conference publication on PAC-Bayesian theory for

density estimation (Higgs & Shawe-Taylor, 2010), and a first-author workshop publication on

multiple kernel learning for system identification (Higgs & Shawe-Taylor., 2010). Rather than

try and combine these disparate topics, the decision was made to write a complete, contained and

(hopefully) enjoyable to read thesis. Current and future paper proposals based on the contents

of this thesis are discussed at the close.

1.1.2 Scope of thesis

The thesis approaches inference in nonlinear state-space models from a machine learning per-

spective. While alternative methodologies for inference in state-space models are considered,

all of the algorithms in the thesis fall into a specific class. To show this, figure 1.1 illustrates

a highly simplified map of machine learning algorithms. The two main variables (in orange)

are the type of the model and the unknown variables in the model to be learned. Hierarchal

dynamic models (HDMs) (Friston, 2008a) consists of hierarchies of static and dynamic inter-

acting layers of probabilistic models up to any depth required. Here only the shallow dynamic

subclass of state-space models are considered. The variables of the Bayesian model are split

into states and parameters. This distinction can blur somewhat, especially when parameters are

incorporated the set of unknowns as additional states and learned in tandem with the other latent
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Hierarchal dynamic
model (HDM) type.

Static
model

Dynamic
model

Bayesian
learning problem

specification. Unknown
parameters

Unknown
states

Unsupervised
factor analysis

and sparse coding.
(PCA,ICA)

Supervised
regression and
classification.

(SVM,GP)

Dynamical system
identification.

(DEM)

Filtering and
smoothing.
(EKF,UKF)

Thesis

FIGURE 1.3: Simplified map of machine learning algorithms. Combinations of the two main
variables (in orange) lead to different machine learning problems (in red). Abbreviations
are as follows: Principle component analysis (PCA), Independent component analysis (ICA),
Support-vector machine (SVM), Gaussian processes (GP), Dynamic Expectation Maximisation

(DEM), Extended Kalman filter (EKF), Unscented Kalman filter (UKF).

FIGURE 1.1: Simplified map of machine learning algorithms. Different combinations of the
two main variables (in orange) lead to different machine learning problems (in red). Abbrevi-
ations are as follows: Principle component analysis (PCA), Independent component analysis
(ICA), Support-vector machine (SVM), Gaussian processes (GP), Dynamic Expectation Max-

imisation (DEM), Extended Kalman filter (EKF), Unscented Kalman filter (UKF).

variables. For now, states can be thought of as variables that undergo mappings or evolve over

time. Parameters can be thought of as properties of these mappings. How the problem specifics

(type of model and set of unknown variables) are combined, leads to a highly simplified taxon-

omy of machine learning algorithms. When states and parameters are unknown, the problem is

considered unsupervised. In a static setting, examples of unsupervised learning algorithms are

dimensionality reduction, cluster analysis, and independent component analysis (Ghahramani,

2004). In a dynamic setting unsupervised algorithms can be collectively considered as system
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identification algorithms, and require dynamic states and parameters to be learned in tandem.

Static models with unknown parameters lead to traditional supervised and neural-network al-

gorithms that focus on regression and classification problems. Dynamic models with unknown

states lead to the traditional filtering and smoothing algorithms. Thus the thesis considers algo-

rithms that would be at home in the lower left region of the figure. The learning problem is how

to infer hidden or latent states, given a state-space model with known parameters. This leads to

smoothing algorithms, most of which are easily extended to parameter estimation and system

identification. The algorithm abbreviations in the brackets in figure 1.1 are common examples

of algorithms used to tackle the statistical learning problems on high. They are not exclusive

and the list is not exhaustive. Indeed, it will be discussed later on in the thesis how many of the

Gaussian Process regression algorithms can be (and frequently have been) applied to temporal

smoothing problems.

1.1.3 Outline of thesis

The thesis begins with a short discussion of the applications of optimal smoothing and its origins

in the filtering and smoothing community. This is followed by a discussion of general approx-

imate inference and its specialisation to the smoothing problem. These topics are covered in

sections 1.2 and 1.3, respectively.

In chapter 2 the model is specified in complete detail, collating the required components

from Bayesian inference and stochastic processes and introducing notation. In subsection 2.5

an overview of machine learning approximate inference methods is given, with each approach

discussed in the context of state space models. The purpose is to expose the current state-of-art

algorithms in implementable form, and to expose the place of variational methods in this mix.

The exposition also gives an inclination of what it means to be a continuous time algorithm with

regards to the temporal state-estimation problem.

In chapter 3 the variational GP smoothing framework of Archambeau & Opper (2011) is

generalised to any family of densities parameterised by a finite set of moments. First the optimal

solution in a variational formulation is shown to be equivalent to the exact Bayesian solution.

It is then shown how suboptimal variational approximations can be constructed by restricting

the variational drift and corresponding marginal densities to a tractable class. This allows the

drift-marginal relations to be captured through simple moment equations, which leads to a gen-

eral variational smoothing algorithm that subsumes the GP algorithm of Archambeau & Opper

(2011). The generalised framework requires an explicit form for the drift of a diffusion process

and the corresponding set of marginal densities, which are generally intractable. Section 3.4

introduces a projection method that enables intractable marginal densities to be projected onto a

tractable class. The traditional formulation of this projection requires some in-depth differential

geometry, and in subsection 3.5 a novel proof is given that combines the proof of the Fokker-

Planck equation with the derivation of the discrete time assumed density filter (Opper, 1998).
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Subsection 3.6 discusses how the projection method can be incorporated into the general varia-

tional smoothing framework to enable the use of more relaxed relations between the variational

drift and the variational approximation of the marginal densities of the true posterior process.

In chapter 4 the generalised framework and its projective relaxation is used to propose

some novel drift functions for use in the variational smoothing algorithm. Subsection 4.1 out-

lines the basics of the stochastic optimal control problem and considers its relation to the vari-

ational formulation of exact inference. Subsection 4.1.2 discusses the connection between the

variational smoothing algorithm and variational optimal controls and the variational GP algo-

rithm is interpreted in the language of optimal control. Subsection (4.2) discusses gradient sys-

tems and their time-varying extensions and how they can be used in the variational framework.

Subsection 4.3 considers the practical aspects of capturing and tracking higher order moments.

Subsection 4.3.1 reviews the skew-normal density and how it could be used in filtering and

variational smoothing.

In chapter 5, attention moves back to the optimal Gaussian variational smoothing solution.

The first part of the chapter, section 5.3.1 places the optimal Gaussian variational solution in the

context of other temporal Gaussian process algorithms, highlighting the connections between

the stationary kernels common to spatial methods in machine learning, related reproducing ker-

nel type methods and recent assumed density smoothing methods. In section 5.4, important

implementation details are discussed. A review of the conjugate gradient methods used for

learning the variational parameters of the optimal Gaussian smoothing algorithm is given, and

an analysis of the Hessian of the free-energy of the Gaussian approximation suggests improve-

ments that can be made. Dealing with intractable expectations is discussed, and how these can

be extended higher order moments and more general marginal densities.

The final chapter of the thesis reviews the key points of the thesis and the many unsolved

problems and directions of future work. Section 6.1 discusses machine learning algorithms

with continuous time formulations and some alternative variational approaches from other fields

such as neuroscience and geophysics. Paper proposals and future work are discussed and final

thoughts are given.

1.2 Optimal smoothing

Optimal smoothing is interpreted in probability theory as the conditioning of time varying ran-

dom states on a set of noisy observations. Importantly, the one time marginal densities that

follow from optimal smoothing are functions of all the data available in a fixed time window.

This is in contrast to optimal filtering, which considers one time marginal densities condition

only on data from earlier times. Some applications of optimal smoothing are given below.
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1.2.1 Applications of optimal smoothing

• Functional Magnetic Resonance Imaging measures hemodynamic responses, which rep-

resent changes in blood flow and blood oxygenation that follow neuronal activation. The

interaction between neuronal activity and observations rests on a well known electro/bio-

physical process (Riera et al., 2004). Smoothing methods (Havlicek et al., 2011, Murray

& Storkey, 2011) allow the model to be inverted to generate estimates on the hidden states

of neuronal activity.

• Weather prediction involves the numerical modelling of complex ocean and climate dy-

namics. While forecasting is an obvious problem in this setting, hindcasting and smooth-

ing methods (Eyink et al., 2004, Miller et al., 1999) are used to solve the inverse problem

for complex nonlinear quasi-geostrophic systems.

• Stochastic optimal control has applications in areas of biology (Joshi, 2002) and robotics

(Theodorou et al., 2010), among many others. Particular stochastic optimal control prob-

lems can be phrased as continuous time optimal smoothing problems, allowing for a large

amount of approximate inference smoothing algorithms to be transferred to problems of

optimal control.

1.2.2 Non normality in general models

The main property of the above applications, is the nonlinearity of the underlying dynamics.

Classical nonlinear approximation methods, such as the extended Kalman filter, have been

shown to fail on such tasks (Miller et al., 1999). When observations are few and far between the

nonlinear dynamics of the prior quickly leads to conditional densities that are far from Gaussian.

Shown in figure 1.2 (a) is a plot of the time-evolution of the posterior of the double-well system

with a noise-free observation at time zero. The double-well system has become the benchmark

example in nonlinear data assimilation (Archambeau et al., 2007a, Eyink et al., 2004, Miller

et al., 1999). The time-slice plots in 1.2 (b) give an idea of how the shape of the posterior

changes over time as it converges towards the bimodal equilibrium distribution of the double-

well system. For times directly after the observation the posterior is essentially Gaussian, but

this quickly changes as the posterior begins to take on a skewed and then bimodal form as

probability mass flows into the adjacent well. If accurate representation of the posterior is the

primary goal, then Gaussian approximations are only sufficient for systems with high frequency

observations and low observation noise. For more general systems, more general approximating

classes are required. While arbitrary moments can be captured using the samples in stochastic

methods, the main foci of this thesis is how to do this in the deterministic setting.
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FIGURE 1.2: Plots of time-evolution of posterior density (a), and one-time-slice marginal den-
sities at a selection of times (b). The posterior is built from the double-well steady-state prior

and a noise-free observation at x(0) = 1.

1.3 Practical learning methods

The action of assimilating data into prior beliefs is most naturally formulated in the language

of Bayesian inference. Recent efforts in Bayesian analysis have been focused on algorithmic

implementation. The need to construct a practical learning algorithm affects the criteria of what

we consider optimal, and while approximate inference is often necessary in learning due to

intractable integrals, it is also often desired for improved computational complexity. In nonlinear

models, the only way to solve the Bayesian inference problem is by approximation, and therefore

all progress over the past few decades has been in providing efficient alternative methods to exact

inference. These methods are designed to both capture the data and to preserve the relevant

properties of the prior. For the particular case of state-space models, exact solutions for the

state posterior were finalised in the 1960-70’s (Leondes et al., 1970, Striebel, 1965), but their

intractability in the general case was known even then.
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1.3.1 Approximate inference methods

Approximate inference can be naively divided into stochastic and deterministic methods (see fig-

ure 1.3). Stochastic methods utilise the generative model to draw samples from the intractable

Probabilistic model

Bayesian inference Exact inference

Approximate inferenceStochastic methods

Deterministic methods Expectation propagation

Variational methods

Hybrid methods

FIGURE 1.3: Simplified hierarchy for practical Bayesian inference.

posterior and their validity relies upon statistical guarantees for the convergence of empirical

estimations. In contrast, deterministic methods look to approximate the intractable posterior

with a distribution from a simpler more tractable model. This leads naturally to a well defined

criteria of optimality by considering a dissimilarity measure between the posterior and the ap-

proximation. While the primary focus of the thesis is on deterministic methods, namely how

can the state-of-the-art be improved in accuracy and efficiency, stochastic or Monte Carlo meth-

ods still feature strongly. The natural synergy of Monte Carlo methods with generative mod-

els likens them to the methods used for generating synthetic data. They are an important part

of hybrid algorithms, allowing many restrictive assumptions to be relaxed. Additionally, with

enough samples Monte Carlo methods can be considered a computationally expensive bench-

mark against which to compare competing deterministic methods. In the discrete-time setting,

various deterministic approximation methods have been developed to deal with the intractable
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integrals that follow from a recursive Bayesian analysis in discrete time state-space models. All

of these recursive discrete time methods are essentially nonlinear extensions of the classical

Kalman filter (Kalman, 1960). They utilises the probabilistic structure of the model, dealing

with nonlinear mappings by transferring only the most relevant statistics of the current belief.

They are sequential moment matching methods and at the turn of the millennia seeded the more

general framework known as expectation propagation (Heskes & Zoeter, 2002, Minka, 1999,

2001), which quickly became popular in machine learning due to its simplicity and generality.

An alternative framework for deterministic approximate inference, with its origins in statistical

physics, considers the classical expectation-maximisation algorithm of Dempster et al. (1977)

as a computationally tractable way to minimise a free-energy functional bounding the relative

entropy between the posterior and an approximation (Neal & Hinton, 1998). The framework al-

lows hidden states and unknown parameters to be learned in tandem in a principled fashion, and

many learning schemes are subsumed by the variational free-energy approach. The appeal of

formulating approximate inference as an optimisation problem has also made variational meth-

ods hugely popular throughout machine learning and its related fields (Jaakkola, 2000, Jordan

et al., 1999a).

1.3.2 Learning in continuous time

Many real world systems are naturally modelled in continuous time. Unfortunately the default

solution in many areas of machine learning is to apply a first order approximation to the prior

model. This enables well established discrete-time algorithms to be applied “out-of-the-box”,

but can lead to implicit errors, possible computational costs, and a lack of descriptive power

with regards to jumps and transitions. While the current world of digital computers forces us

to discretise time at some point in the computational implementation of any continuous-time

inference procedure, the guiding principle in numerical analysis and its applications is to avoid

discretisation until the last possible moment (Stuart, 2010). This is reflected in Bayesian infer-

ence by the desire to use higher order discretisation schemes for continuous-time models. In

spite of this, the use of continuous-time models in Bayesian inference is severely underdevel-

oped. In sampling-based approximate inference methods, linear discretisation of the prior is

often the first step, and only recently have “continuous-time” sampling-based methods matured

into useable algorithms (Murray & Storkey, 2011). These algorithms allow particles to be prop-

agated through time using faster and more accurate numerical stochastic-integration schemes

with variable time scales. In deterministic approximate inference, continuous-time solutions are

desirable for similar reasons. The moments of posterior approximations inherit deterministic

differential properties of the prior. This allows posterior models to be learned, and posterior

solutions to be generated at will using the huge resource of deterministic numerical methods.

Due to the classical path-integral formulation in physics (Feynman & Hibbs, 1965), variational

inference methods have a natural formulation in continuous-time and these continuous-time
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free-energy formulations have become popular in machine learning (Archambeau et al., 2007a,

Archambeau & Opper, 2011, Archambeau et al., 2007b), neuroscience (Friston, 2008a,b, Fris-

ton et al., 2008) and the more general (but geophysically motivated) field of data assimilation

(Eyink, 2000, Eyink et al., 2004). The continuous-time analogue for moment matching methods

is not so obvious, and is considered at the close in section 6.1.

Any stochastic-process related investigation aimed at researchers and practitioners in ma-

chine learning has a chamber of measure theory and infinite dimensional analysis bubbling under

the surface. A fully rigorous exposition is generally avoided for shear readability and the ap-

proach here follows a balance between rigour and readability seen in many common physics,

neuroscience and machine learning papers. For example there is no notational distinction be-

tween random variables and their realisations (commonly denoted by upper case X and lower

case x, respectively). At times though, certain rigour is required. The use of “white-noise”

(common in physics) is avoided, and stochastic differential equations (SDE)’s are expressed in

Itô or Stratonovich form (Øksendal, 2003). This is important, not only because it is the correct

way to express an SDE, but because many of the results in the continuous-time setting are sensi-

tive to how the equations of motion are defined. These mathematical technicalities are as much

a part of the model as the parts describing the high level behaviours that fit our intuitions.



Chapter 2

Background

2.1 Introduction

This section covers the basics of approximate Bayesian inference methods in machine learning,

with directed attention to nonlinear state-space models. The fundamental inference problem is

outlined in section 2.2 with a short discussion on the technicalities of dealing with infinite di-

mensional latent variables. Section (2.2.2) discusses some fundamental mathematical properties

of the state-space model and the underdetermined nature of solutions. The ideas are illustrated

by example using Brownian motion, the driving force in all the models considered in this the-

sis. Section 2.3 specifies the model in detail. All of the required notation is introduced and

many auxiliary results underlying the properties of the model are discussed. General results for

stochastic processes are taken from Øksendal (2003) and Kuo (2006). Results more focused

on the Fokker-planck equation are taken from Risken (1996) and Kuo (2006). Section (2.3.4)

introduces the required tools to describe general diffusion models. The section explains how

partially observed diffusion processes can be solved exactly in a Bayesian framework, up to a

set of (generally intractable) stochastic partial-differential equations. Section 2.5 discusses ap-

proximate inference methods in machine learning. The section gives an overview of recursive

Monte Carlo, expectation propagation, assumed density methods, Hybrid Monte Carlo and vari-

ational methods specialised to inference in state-space models. The chapter finishes with a short

discussion of finite dimensional exponential families.

2.2 Latent model inversions

Consider a simple generative model p(Y|X)p(X), where X is hidden and Y is observed and

both are Lebesgue measurable. There are various reasons why one may want to use hidden

variables: maybe to compress the description of the data by methods such as dimensionality

reduction, or to allow complex distributions to be expressed in terms of more tractable joint

distributions over extended parameter spaces (Bishop, 1999). The role of latent variable models

in this thesis is to encode complex prior information, and to enable the assimilation of data into

12
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these prior beliefs. Under Bayes’ rule the generative model can be inverted to give a posterior

distribution

p(X|Y) =
p(Y|X)p(X)

p(Y)
(2.1)

over the hidden variables X given the observable Y. While equation (2.1) has no obvious tempo-

ral attributes, it is the cornerstone of learning with time-series data. Under suitable assumptions,

inference over hidden states can be restricted to isolated time-windows or individual instances

of time. Earlier inferences are encapsulated in time dependent priors and equation (2.1) enables

data points to be assimilated into current beliefs. To do this, the probabilistic dependencies need

to be given concrete forms. A common representation of the conditional probability p(Y|X) is

through an observation model

Y = H(X) + η (2.2)

where H : X �→ Y is a nonlinear observation operator and η is a zero-mean random variable

with probability density φ. This type of model forms the core of Bayesian inverse problems

(Stuart, 2010). While a rigorous representation of the system would include ‘η’ in the generative

model, such auxiliary variables are omitted to ease notation. Now assume X inhabits a general

measurable space, and let Pprior and Ppost denote probability measures relating to the laws of

p(X) and p(X|Y) respectively. The prior measure, posterior measure, and likelihood function

φ
�
Y − H(X)

�
are all related according to Bayes’ rule through the Radon-Nikodym derivative

dPpost

dPprior
(X) ∝ φ

�
Y − H(X)

�
. (2.3)

While equations (2.1) and (2.3) are essentially the same, the use of abstract measures in (2.3) is

key. Many real world systems are described by models with hidden states indexed by continuous-

valued variables. Representation of beliefs and learning in these models requires the delicate

handling of probability measures on infinite dimensional spaces. While such models bring unri-

valled descriptive power, they come with many technical issues and computational complexities.

The intuitive appeal of sample paths evolving through state-space can be deceiving of the tough

work required to perform practical inference in continuous-time.

2.2.1 Learning from time-series

In this thesis the observable Y is given by an ordered set {yi ∈ Rdy , ti ∈ T } for some ascend-

ing finite subset T ⊂ [0, T ], referred to as a time-series. The observation operator H is given

by H(x) = {h(x(ti), ti), ti ∈ T } for some map h : Rdx × R+ → Rdy . In this description

the indices of times in T are used to match1 the outputs of H to the appropriate observations.

The formulation allows for missing observations and is referred to as continuous-discrete, cor-

responding to the continuous-time nature of the hidden states and the discrete-time nature of the
1There is a more formal way of defining H in both these settings using a projection of the hidden state onto the

observation times. This requires additional technical detail without much pedagogical gain.
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observations. It is also possible for Y to be infinite dimensional, e.g. defined by a continuous-

time map y(t). This is very common in traditional filtering problems (Øksendal, 2003), but

requires some more involved mathematics and is not relevant to the setting here.

The type of learning studied here is distinct from the more common category of super-

vised learning. These differences can be easily seen by considering the observation model in

(2.2). This is in effect the simplest form of model consisting of “causes” X, “effects” Y, and an

operator H between the two. In the batch setting of supervised learning, X and Y correspond

to a set of causes X = (x1, . . . ,xn) and effects Y = (y1, . . . ,yn) and the observation operator

H is given by H(X) = (h(x1), . . . ,h(xn)) for some map h : x �→ y. (traditional) supervised

learning assumes the n examples {(xi,yi)}ni=1 are drawn from a joint distribution p(X,Y), and

the task is to utilise the information in the training sample, and a prior on h or its parameters,

to learn a posterior over the mapping h. An obvious example of supervised learning that fits

this model is regression. In contrast to this, in the latent-model-inversion problem considered

here only the set {yi}
n
i=1 is observed. Samples are not assumed i.i.d. and the unobserved causes

X can occupy any space the model requires. The approach borders on unsupervised learning,

depending on how much of the model is fixed. For the case when h is assumed known, as is

common in many filtering and tracking applications, learning methods try to estimate the hidden

states X. When h is unknown, learning is a dual estimation problem over states X and the map-

ping h. This leads to an important distinction between the identification of a model’s parameters

and estimation of its hidden states.

2.2.2 Data assimilation

The type of learning considered in the atmospheric and oceanographic sciences, geoscience and

neuroscience, deals with assimilating data into complex models. The name “data assimilation”

emphasises the model’s dominance over the data, and a key problem when dealing with such

models is the underdetermined nature of solutions. This is due to the sometimes behemothic

difference between the dimensions of the hidden and observable variables. This problem is

nowhere more apparent than in continuous-discrete state space models, where infinite dimen-

sional hidden variables are pinned down by only a few observations. The problem of underdeter-

mined solutions plagues many complex inverse problems, but its properties are easily captured

in a simple example.

2.2.2.1 Simple Brownian motion

Let {x(t)}t∈[0,T ] denote a R-valued stochastic process evolving according to dxt =
√
σdwt,

where dwt is the standard Wiener process in R (i.e. Brownian motion) scaled by
√
σ > 0.

Assume the initial condition x(0) = 0. This simplified model represents a vanilla version of

the problems studied in this thesis. It allows us to consider some fundamental mathematical

properties of the model without being clouded by the more sophisticated nonlinear inference
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FIGURE 2.1: Plot of Gaussian posterior approximation for brownian motion with initial con-
dition x(0) = 0 and a noise-free observation x(0.6) = 1. x-axis represents time t ∈ [0, 1]. The
mean µ+(t) in (2.6) is plotted in black, the confidence region {y|(y − µ+(t))2 ≤ κ+(t, t)} is

shaded in grey.

machinery. For this example there is no notion of drift, the prior model encodes the belief that

x(t) moves under Brownian motion with covariance function k(τ, t) = σmin{τ, t} and mean

ν = 0. Consider an observation model y = x(s)+η, for some s ∈ [0, T ] and η ∼ N (0, r). Thus

we are considering just one observation in the interval [0, T ]. Letting µ(t) and κ(s, t) denote

the posterior mean and covariance function, respectively, using theorem A.2 (appendix A.3.1) it

holds that

µ(t) :=
yk(s, t)

k(s, s) + r
, κ(s, t) := k(t, τ)−

k(s, t)k(τ, s)

k(s, s) + r
. (2.4)

Taking the small noise limit, the solution reduces to a Gaussian measure with mean µ+(·) and

covariance function κ+(·, ·) given by

µ+(·) := lim
r→0

µ(·) =
yk(s, ·)

k(s, s)
, κ+(·, ·) := lim

r→0
κ(·, ·) = k(·, ·)−

k(s, ·)k(·, s)

k(s, s)
. (2.5)

Inserting k(τ, t) = σmin{τ, t}, for any t ∈ [0, T ], it holds that

µ+(t) = y
min{t, s}

s
, κ+(t, t) = σt− σ

(min{t, s})2

s
. (2.6)

A particular case of µ+(t) and κ+(t, t) is plotted in figure 2.1. The key property of this example

is the continuum of hidden states not directly connected to the data. A posterior on a infinite

dimensional space is being constrained by a finite dimensional observation, and the underlying

problem is severely underdetermined. Draws from the posterior need to be constrained outside

of the data space. This puts significant weight on the importance of the prior. The above exam-

ple considered a linear observation model h(x) = θx, but many real-world observation models

are nonlinear, e.g. the well known cubic sensor problem with h(x) = θx+ x3, (Steinberg et al.,
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1988). Such nonlinear observation models introduce ambiguity into the inference process. The

considered example was also univariate, whereas many real world systems are highly multidi-

mensional, with some geophysical applications having state-space dimensions in the millions

(van Leeuwen, 2010). This is why the prior is so important in continuous-time systems and why

it becomes more and more important as the frequency of observations decreases or the level of

observation noise increases.

2.3 Stochastic processes

The chosen prior model in this thesis is a diffusion process. Subsumed by the class of Markov

processes, diffusion processes have additional desirable qualities. This section outlines the ba-

sics of the theory of diffusion processes described in terms of Itô stochastic differential equa-

tions. It is important to fully characterise the properties of the diffusion process to prepare

them for use in variational calculus. Some of the standard results in the literature for Markov

processes are reiterated here for reference in later sections.

2.3.1 Stochastic differential equations

Given a deterministic initial condition x0 and a vector-valued function f(x, t), the differential

equation dx
dt (t) = f(x, t) can be considered short hand notation for the integral equation x(t) =

x0 +
� t
0 f(x, t). This integral equation describes the time evolution of a deterministic system

with state-vector x(t). To inject stochasticity into the system, the Wiener process wt taking

values in Rdx is used, and how, where, and when this stochasticity is injected is controlled by a

matrix-valued function Q(x, t). For any random vector initial condition ξ with
�
||ξ||2

�
< ∞,

such a system is described by a stochastic integral equation

xt = ξ +

� t

0
f(xs, s)ds+

� t

0
Q(xs, s)dws, t ∈ [0, T ], (2.7)

which will often be written in short hand notation as a stochastic differential equation

dxt = f(xt, t)dt+Q(xt, t)dwt, x0 = ξ. (2.8)

The following theorem characterises some simple constraints that can be placed on f(xt, t) and

Q(xt, t) so that the resulting process xt from equation (2.7) is continuous and unique. These

are desirable qualities to avoid explosive behaviour and ambiguity that can hinder inference.

Theorem 2.1. Let f(x, t) and Q(x, t) denote vector-valued and matrix-valued functions, re-

spectively, measurable on Rdx × [0, T ]. Assume there exists a constant K > 0 such that, for all

t ∈ [0, T ] and x, z ∈ Rdx:
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1. (Lipschitz condition)

||Q(x, t)−Q(z, t)||F ≤ K||x− z||2, ||f(x, t)− f(z, t)||2 ≤ K||x− z||2; (2.9)

2. (Linear growth condition)

||Q(x, t)||2F ≤ K(1 + ||x||
2), ||f(x, t)||2 ≤ K(1 + ||x||

2). (2.10)

Then for any measurable random vector ξ with �||ξ||2� < ∞, the stochastic integral equation

xt = ξ +

� t

0
f(xs, s)ds+

� t

0
Q(xs, s)dws, t ∈ [0, T ], (2.11)

has a unique continuous solution.

Most SDE models used in applications in general will meet the requirements in theorem

(2.1). Though it is simple to construct examples that do not by defining functions f(x, t) such

that the deterministic equation x(t) = x0 +
� t
0 f(x, t) is not unique or well defined at some

t ∈ [0, T ].

2.3.2 Markov processes

Definition 2.2. Any Rdx-valued stochastic process {xt}t∈[0,T ], is said to satisfy the Markov

property if for any 0 ≤ t0 < t1 < · · · tk < t ≤ T , the equality

P (xt ∈ B|xt0 . . .xtk) = P (xt ∈ B|xtk) (2.12)

holds for all Borel sets B ⊆ Rdx . Any stochastic process {xt}t∈[0,T ], is said to be a Markov

process if it satisfies the Markov property.

For a realisation x
� of xs, s < t, P (xt ∈ B|xs = x

�) defines a probability measure on

the σ-algebra B of Borel subsets of Rdx such that

P (xt ∈ B|xs)

�

B
p(x, t;x�, s)dx (2.13)

for all Borel sets B ∈ B. The quantity p(x, t;x�, s) is referred to as the transition density.

Although, in general, insufficient for the specification of the probability law of the process, the

forms p(xt), p(xt1 , . . . ,xtk), and p(xt|xs) will be used to denote the marginal, joint marginal,

and transition densities, respectively, as is common in the filtering literature (Jazwinski, 1970,

Maybeck, 1979). The marginal p(xt) = (x, t) is considered a function of time t and a realisation

x of xt, and similarly for the joint density p(xt1 , . . . ,xtk). Importantly, from the definition of a
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Markov process {xt}t∈[0,T ], for any 0 < t1 < · · · tk ≤ T , it holds that

p(x0,xt1 , . . . ,xtk) = p(x0)
k�

i=1

p(xti |xti−1). (2.14)

For any 0 ≤ t1 < t2 < t3 ≤ T , the transition densities p(xt|xs) satisfy the Chapman-

Kolmogorov equation

p(xt3 |xt1) =

�
p(xt3 |xt2)p(xt2 |xt1)dxt2 . (2.15)

In summary, the key property of a Markov process is the independence of its future from

its past given the present. This type of conditional structure is natural for the temporal models

considered here. While higher order models with dependencies that stretch beyond the present

are discussed at certain points, they are not in the scope of the core content of the thesis. The

decomposition of the joint distribution in equation (2.14), and the propagation step in equation

(2.15), form two of the key components of a recursive Bayesian approach to inference in Markov

processes. importantly, the unique continuous solution to the stochastic integral equation in

theorem 2.1 is a Markov process (Kuo, 2006, Theorem 10.6.2). Therefore the above Markov

methods provide the required tools for performing inference and other probabilistic operations in

models defined using stochastic differential equations that meet the requirements of the theorem.

2.3.3 Diffusion processes

Diffusion process models are used universally to describe many continuous-time systems en-

countered in computational neuroscience (Feng, 2004), financial mathematics (Kabanov et al.,

2006), physics and chemistry (van Kampen, 2007), biology (Wilkinson, 2006), image process-

ing and computer vision (Weickert, 2001). For any Rdx-valued vector x, let x(i) denote its ith

component, and let ||x||2 denote the squared norm of x ∈ Rdx . The notation � ↓ 0 implies �

tends to zero from above, and is used when it is important that � remains positive.

Definition 2.3. Any Rdx-valued Markov process {xt}t∈[0,T ], is said to be a diffusion process if

its transition density p(z, t;x, s) satisfies the following conditions for any t ∈ [0, T ], x ∈ Rdx:

0 = lim
�↓0

1

�

�

||x−z||2≥c
p(z, t+ �;x, s)dz, ∀c > 0 (2.16)

g(i)(x, t) = lim
�↓0

1

�

�

Rdx

(z(i) − x(i))p(z, t+ �;x, s)dz (2.17)

D(ij)(x, t) = lim
�↓0

1

�

�

Rdx

(z(i) − x(i))(z(j) − x(j))p(z, t+ �;x, s)dz. (2.18)

The limits g(i)(x, t) and D(ij)(x, t) must exist for the definition to hold. Condition (2.16)

ensures that the stochastic process xt does not have instantaneous jumps. It implies the transition

density reduces to the Dirac function δ(z − x) as � ↓ 0. The integrals in conditions (2.17) and
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(2.18) are in fact defined for all Borel set in Rdx . It is easy to show the limits g(i)(x, t) and

D(ij)(x, t) are independent of the size of each Borel set, and therefore defined as above.

Definition 2.4. The vector g(x, t) =
�
g(i)(x, t)

�
i∈Ndx

and the matrix D(x, t) =
�
D(ij)(x, t)

�
i,j∈Ndx

define the drift and the diffusion matrix, respectively, of the diffusion process xt.

An alternative formulation for g(x, t) and D(x, t), which will be utilised later, is given

by

g(x, t) = lim
�↓0

1

�

�
xt+� − x

�
(2.19)

D(x, t) = lim
�↓0

1

�

�
(xt+� − x)(xt+� − x)T

�
. (2.20)

Thus, we can loosely consider g(x, t) and D(x, t), respectively, as the rate of change of the

mean and the covariance of xt at position x and time t. It follows directly from equation (2.20)

that D(x, t) is a positive definite matrix for all x and t. Using definition 2.3 the following

theorem holds.

Theorem 2.5. Let f(x, t) and Q(x, t) be functions specified in theorem 2.1. Assume that f(x, t)

and Q(x, t) are continuous on Rdx × [0, T ]. Then the solution xt given by equation (2.11) is a

diffusion process with drift g(x, t) = f(x, t) and diffusion matrix D(x, t) = Q(x, t)QT(x, t).

This theorem provides a sound method for constructing diffusion process priors in Itô

SDE form, by simply ensuring that g(x, t) and
√
D(x, t) meet the conditions of theorem 2.1

and are continuous on Rdx × [0, T ], where
√
A denotes the square root of positive definite

matrix A. While various applications will not meet this criterion, all prior processes in the thesis

from this point on are assumed to meet these continuity conditions as well as the Lipschitz and

linear growth conditions in theorem 2.1. The same assumption cannot be made for the drift

of the posterior. For low values of observation noise, the posterior drift will have to make

abrupt changes to represent observations that are close in time but spatial distant. It is therefore

important to fully characterise the properties of a vector valued function g(x, t) such that it

defines the drift of a diffusion process xt.

2.3.4 Fokker-Planck equation

The Fokker-Planck equation provides us with a means for obtaining marginal and transition

densities p(xt) and p(xt|xs), t > s, respectively, from a diffusion process in Itô SDE form.

Many stochastic models in science are described through the use of Itô SDEs. The Fokker-

Planck or Kolmogorov forward equation is the necessary tool for converting these models into

forms that are compatible with probabilistic inference. While this cannot always be done in

closed form, the Fokker-Planck equation generates a vector field over the space of probabilities

that can direct us towards solutions and, most importantly, can be integrated into a variational
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formulation of inference. Consider the following Itô SDE

dxt = g(xt, t)dt+
√
D(xt, t)dwt, t ∈ [0, T ], (2.21)

where g(x, t) and D(x, t) are continuous functions of x and t, satisfy the Lipschitz and growth

conditions in theorem 2.1, and D(x, t) is positive definite. It follows that
√
D(xt, t) also sat-

isfies the conditions in theorem 2.1 and equation (2.21) has a unique continuous solution. It

is a Markov process, and therefore characterised by the density function p(xt) = p(x, t) for

all t ∈ [0, T ] and the transition probability density function p(xt|xs) = p(x, t;x�, s) for all

t > s ∈ [0, T ]. The assumption of continuity makes equation (2.21) a diffusion process and its

transition densities p(xt|xs), t > s can be characterised in the following way. Assuming p(x, t)

is differentiable in t, let ∂t denote the time derivative operator

∂t[p(x, t)] =
∂p(x, t)

∂t
. (2.22)

Assuming g(x, t), p(x, t), and D(x, t) are once differentiable in x and p(x, t) and D(x, t) are

twice differentiable in x, let
→
Kg denote the partial-differential Fokker-Planck operator

→
Kg[p(x, t)] = −∇

T
�
p(x, t)g(x, t)

�
+

1

2
tr
��

∇∇
T
��
D(x, t)p(x, t)

��
(2.23)

where ∇ is the vector differential operator. The two operators defined in (2.22) and (2.23)

can be coupled together to describe the interplay between temporal and spatial variations of the

densities p(x, t) and p(x, t;x�, s). Indeed, under the above assumptions, p(x, t) and p(x, t;x�, s)

satisfy the Fokker-Planck equations (Jazwinski, 1970)

�
∂t −

→
Kg

�
[p(x, t)] = 0 (2.24)

�
∂t −

→
Kg

�
[p(x, t;x�, s)] = 0. (2.25)

Equations (2.24) and (2.25) describe how p(x, t) and p(x, t;x�, s) evolve over time given initial

conditions p(x0) and δ(x− x
�) respectively. The first is deterministic. The second is stochastic

due to its dependency on the value x
� taken by xs. Computing p(xt|x0) using equation (2.25)

and propagating p(x0) through p(xt|x0) using marginalisation, also produces p(xt). It is simple

to convert a continuous-time model to a discrete-time one using equation (2.25), allowing for

the use of recursive Bayesian methods to perform inference and assimilate data. Unfortunately,

Kolmogorov’s forward equation is solvable in only a few simple cases. Thus, even before the

assimilation of data has been considered, there are significant computational issues in capturing

the probabilistic quantities of a continuous-time model. Despite not having a closed form, it is

important to characterise when the Fokker-Planck equation has a well defined solution.
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Theorem 2.6. Let g(x, t) and D(x, t) be continuous in t and x, and let g(x, t), D(x, t),

gx(x, t), Dx(x, t), and Dxx(x, t) satisfy the Lipschitz and linear growth conditions in theo-

rem 2.1. Then equation (2.25) has a unique solution satisfying the initial condition δ(x− x
�).

2.3.4.1 Kolmogorov backward equation

Another important operator is the adjoint of the Fokker-Planck, or Kolmogorov backward, op-

erator
←
Kg. For any twice differentiable function φ(x),

←
Kg[φ(x)] := g

T(x, t)∇[φ(x)] +
1

2
tr
�
D(x, t)

�
∇∇

T
�
[φ(x)]

�
. (2.26)

Note that equation (2.23) can also be defined for functions that are simply functions of x and

not dependent on t. Importantly, the transition density p(x�, s;x, t), for s > t, satisfies the

Kolmogorov backward equation

�
∂t +

←
Kg

�
[p(x�, s;x, t)] = 0. (2.27)

Equation (2.25) describes the evolution of the transition density with respect to the future vari-

ables with the past variables fixed. Equation (2.27) describes the evolution of the transition

density with respect to the past variables with the future variables fixed.

2.4 Partially observed diffusion processes

2.4.1 Latent Markov process

Consider a prior Markov process {xt}t∈[0,T ], a finite set of observation times T ⊂ [0, T ], and

an observation model {p(y|x, ti)}ti∈T . When {xt}t∈[0,T ] is a diffusion process this model de-

scribes a partially observed diffusion process. While the observations can be continuous in time,

only discrete time observations are considered here. The optimal smoothing problem equates

to estimating the conditional probabilities {p(xt|Y)}t∈[0,T ]. This can be done by decomposing

p(xt|Y) into the product of two independent filters. First let us define the two following sets,

Y≤t = {yi|ti ≤ t} (2.28)

Y>t = {yi|ti > t}. (2.29)

The joint density p(xt,Y) can be decomposed in two different ways, given by

p(xt,Y) = p(xt|Y)p(Y>t|Y≤t)p(Y≤t) (2.30)

p(xt,Y) = p(Y>t|xt,Y≤t)p(xt|Y≤t)p(Y≤t). (2.31)
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Combining equations (2.30) and (2.31), and using the fact that Y>t is independent of Y≤t given

xt, yields

p(xt|Y) =
p(Y>t|xt)p(xt|Y≤t)

p(Y>t|Y≤t)
. (2.32)

This is the symmetric form of the smoothing density p(xt|Y). The quantity p(xt|Y≤t) is re-

ferred to as the optimal filter; the probability of xt given the past data Y≤t up to time t, and the

quantity p(Y>t|xt) is referred to as the likelihood; the probability of the future data Y>t after

time t given xt. If p(xt|Y≤t) and p(Y>t|xt) are known, then p(Y>t|Y≤t) can be computed

simply by marginalisation,

p(Y>t|Y≤t) =

�
p(Y>t|xt)p(xt|Y≤t)dxt, (2.33)

and the optimal smoothing problem is complete, with p(xt|Y) given by equation (2.32). The in-

dependence of p(xt|Y≤t) and p(Y>t|xt) from future and past observations, respectively, allows

them to be computed in a simple sequential fashion. When {xt}t∈[0,T ] is a diffusion process,

this is done through the use of the Kolmogorov forward and backward equations.

2.4.2 Forward filter

Let {xt}t∈[0,T ] denote a partially observed diffusion process with drift f(x, t) and diffusion

matrix D(x, t) satisfying the conditions in theorem 2.6. Let pF (x, t) ≡ p(xt|Y≤t) denote the

optimal filter density, generated by conditioning xt on Y≤t, with initial condition pF (x, 0) =

p(x0). Let t−i denote a time infinitesimally close to ti and assume |T | = m. Finding pF (x, t) is

referred to as the optimal filtering problem. The optimal filtering problem is solved as follows:

1. For i = 1, . . . ,m, repeat:

(a) Prediction: In the interval [ti−1, t
−
i ), solve the initial value problem

∂q(x, t)

∂t
=

→
Kf [q(x, t)], q(x, ti−1) = pF (x, ti−1). (2.34)

Define pF (x, t) = q(x, t) for all t ∈ [ti−1, t
−
i ).

(b) Update: At the observation time ti, use Bayes’ rule to compute

pF (x, ti) =
p(yi|x, ti)pF (x, t

−
i )

p(yi|Y<ti)
. (2.35)

Step (b) is often referred to as the forward jump condition. In theory, the above algorithm

generates an optimal filter pF (x, t) for all times t ∈ [0, T ].
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2.4.3 Information filter

Let {xt}t∈[0,T ] denote a partially observed diffusion process with drift f(x, t) and diffusion

matrix D(x, t) satisfying the conditions in theorem 2.6. Let us define ψ(x, t) such that

ψ(x, t) :=
p(xt|Y)

pF (x, t)
=

p(Y>t|xt)

p(Y>t|Y≤t)
. (2.36)

We see that ψ(x, t) is composed of the likelihood p(Y>t|xt) and the normalisation constant

p(Y>t|Y≤t). One of the benefits of this definition is the resulting end condition ψ(x, T ) = 1,

which is independent of pF (x, T ). Using equations (2.36) and (2.35), and the fact that p(xt|Y)

is differentiable in t, yields

ψ(x, t−i )
(2.36)
=

p(xti |Y)

pF (x, t
−
i )

(2.35)
=

p(yi|x, ti)p(xti |Y)

p(yi|Y<ti)pF (x, ti)
(2.36)
=

p(yi|x, ti)ψ(x, ti)

p(yi|Y<ti)
. (2.37)

Thus ψ(x, t) satisfies a backward jump condition in analogy to equation (2.35). We also have

the following proposition:

Proposition 2.7. Between observations times, ψ(x, t) satisfies the backward Kolmogorov equa-

tion �
∂t +

←
Kg

�
[ψ(x, t)] = 0. (2.38)

Proof. Given the discrete time nature of the observations, for any time t such that ti−1 < t < ti,

and for any time step δt > 0 such that t+ δt < ti, it holds that

ψ(x, t) =
p(Y>t|x, t)

p(Y>t|Y≤t)
=

p(Y>t+δt|x, t)

p(Y>t+δt|Y≤t+δt)
(2.39)

=

�
dx� p(Y>t+δt|x

�, t+ δt)

p(Y>t+δt|Y≤t+δt)
p(x�, t+ δt;x, t) (2.40)

=

�
dx�ψ(x�, t+ δt)p(x�, t+ δt;x, t), (2.41)

where p(x�, t + δt;x, t) = p(x�
t+δt|xt) denotes the transition density. Applying the operator

(∂t+
←
Kg) to the (x, t) variables on both sides of equation (2.41), moving the differentials inside

the integral, and noting that p(x�, t+δt;x, t) satisfies the backward Kolmogorov equation (2.27)

with respect to (x, t), yields

�
∂t +

←
Kg

�
[ψ(x, t)] =

�
dx�ψ(x�, t+ δt)

�
∂t +

←
Kg

�
[p(x�, t+ δt;x, t)] = 0. (2.42)

Therefore ψ(x, t) also satisfies the backward Kolmogorov equation.

Finding ψ(x, t) will be referred to as the information filter problem, in analogy to the dis-

crete time problem (Briers et al., 2010). Recall the end condition ψ(x, T ) = 1. The information

filter is computed as follows:
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1. For i = m, . . . , 1, repeat:

(a) Retrodiction: In the interval [ti, t−i+1), solve the end value problem

∂q(x, t)

∂t
= −

←
Kf [q(x, t)], q(x, t−i+1) = ψ(x, t−i+1). (2.43)

Define ψ(x, t) = q(x, t) for all t ∈ [ti−1, t
−
i ).

(b) Downdate: At the observation time ti, compute

ψ(x, t−i ) =
p(yi|x, ti)ψ(x, ti)

p(yi|Y<ti)
. (2.44)

Equation (2.43) is integrated backwards in time from t−i+1 to ti. In theory, the above algorithm

generates an information filter ψ(x, t) for all times t ∈ [0, T ].

2.4.4 Posterior drift filter

After computing the optimal filter pF (x, t) in section 2.4.2 and the information filter ψ(x, t)

in section 2.4.3, the smoothing density ps(x, t) = p(xt|Y) is given simply by ps(x, t) =

pF (x, t)ψ(x, t). We have the following important result.

Theorem 2.8. The smoothing density ps(x, t) = p(xt|Y) satisfies the Fokker-Planck equation

∂ps
∂t

=
→
Kg[ps], g(x, t) = f(x, t) +D(x, t)∇ lnψ(x, t). (2.45)

Thus, exact inference boils down to computing computing the information filter ψ(x, t)

backwards in time using the steps in section 2.4.3 and computing the smoothing density ps(x, t)

forward in time by solving the Kolmogorov forward equation in (2.45) with drift g(x, t). This

backward-forward algorithm is an alternative to the symmetric approach of the previous section.

Proof. It holds that

∂ps
∂t

=
∂pF
∂t

ψ − pF
∂ψ

∂dt
(2.46)

=
→
Kf [pF ]ψ − pF

←
Kf [ψ] (2.47)

=
�
1
2tr

�
(∇∇

T)(DpF )
�
−∇

T(pF f)
�
ψ − pF

�
1
2tr

�
D(∇∇

T)ψ
�
+ f

T
∇ψ

�
(2.48)

= −∇
T(psf) +

1
2

�
tr
�
ψ(∇∇

T)(pFD)
�
− tr

�
pFD(∇∇

T)ψ
��

(2.49)

= −∇
T(psf) +

1
2

�
tr
�
ψ(∇∇

T)(pFD)
�
+ 2∇T

DpF∇ψ

+tr
�
pFD(∇∇

T)ψ
��

−

�
∇

T
DpF∇ψ + tr

�
pFD(∇∇

T)ψ
��

(2.50)

= −∇
T(psf) +

1
2tr

�
(∇∇

T)(Dps)
�
−∇

T
DpF∇ψ (2.51)

= −∇
T(ps(f +D∇ lnψ)) + 1

2tr
�
(∇∇

T)(Dps)
�

(2.52)

=
→
Kg[ps] (2.53)
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where

g(x, t) = f(x, t) +D(x, t)∇ lnψ(x, t). (2.54)

The posterior drift g(x, t) in equation (2.45) is a very important quantity. It highlights

how exact and approximate inference can be phrased as learning a posterior drift, as opposed to

learning the explicit measure. It has very close connections to control theory, and the idea of

posterior drift permeates all throughout the thesis. The approach to exact inference described

in theorem (2.8) makes perfect sense in the control setting; the posterior inherits the diffusive

nature of the prior and the likelihood backwards pass collects all the information required to

guide diffusions towards the data. It would be very important to characterise when equation

(2.45) has well defined unique solutions. It is likely that nonlinear observation operators will

introduce ambiguity and generate solutions that are not unique.

2.5 Approximate inference

While it is possible, in theory, to perform the backward-forward or two-filter approaches to

exact inference and obtain a continuous time solution, this is generally not viable in practice. It

is possible to solve the filtering and smoothing problems discussed in section 2.4 up to a finite

set of times, by discretising time and converting the continuous time problem to a discrete time

one. Indeed, let 0 = t0 < · · · < tN = T and δi = ti+1 − ti denote a discretisation of time,

and define xi = x(ti), X = (x0, . . . ,xN ) and Y = {yi, i ∈ I ⊆ [0 : N ]}. Consider the latent

Markov model with joint distribution

p(X,Y) = p(x0)
N�

i=1

p(xi|xi−1)
�

j∈I
p(yj |xj). (2.55)

A visual representation of the probabilistic structure of this model is shown in figure 2.2. To

convert the continuous-time problem into a discrete-time problem, only the transition densities

p(xi|xi−1) need to be found. While this can be done exactly using equation (2.25), this equation

is solvable in only a small number of cases. For this reason, the standard approach in many

inference schemes is to apply a first-order Euler-Maruyama discretisation (Kloeden & Platen,

1992) to (2.21),

ti+1 = ti + δi (2.56)

xi+1 = xi + g(xi, i)δi +
�
δiD(xi, i)ξi (2.57)
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x1 x11 x12 · · · x1e x2

�
{p(xjl+1 |xjl)}

ej
l=0

�n

j=1

x1 x2 · · · xn {p(x1)} ∪ {p(xj+1|xj)}
n−1
j=1

y1 y2 yn {p(yi|xi)}ni=1

FIGURE 2.2: Hidden Markov model with intermediary hidden states. The figure consists of
(from left to right): the corresponding Bayesian network; the probabilities needed to complete
the model quantitatively for each corresponding (horizontal) level of hierarchy. The dashed
arrows corresponds to a “zoom” into the upper network, showing the intermediary hidden-

states lying between x1 and x2.

where ξi is a Gaussian distributed random variable with zero-mean and variance δi for i =

0, . . . , N − 1. This approximation leads to a transition density of the form

p(xi+1|xi) ∝
ϕ
��

δiD(xi, i)
�− 1

2
�
xi+1 − xi − δig(xi, i)

��

|δiD(xi, i)|
1
2

(2.58)

where ϕ(x) = (2π)−dx/2 exp(−xTx
2 ). The posterior p(X|Y) can be decomposed (Briers et al.,

2004) into

p(X|Y) = p(x0|Y)
N�

j=1

p(xj+1|xj ,Y) (2.59)

where {p(xj+1|xj ,Y)}Ni=1 and p(x0|Y) can be considered a set of posterior transition densi-

ties and a posterior initial condition, respectively. In analogy to the continuous-time setting,

algorithms that attempt to learn the set of conditional densities {p(xi|Y)}ni=1 are referred to

as smoothing algorithms and algorithms that attempt to learn the set of conditional densities

{p(xi|Y≤i)}ni=1, are referred to as filtering algorithms, where Y≤i := (y1, . . . ,yi). With p(x0)

defining an initial density, the problem of discrete-time filtering reduces to the simple forward

algorithm 1. Once the filtering densities have been obtained, letting p(xN |Y) define the end

1 Algorithm: forward algorithm
2 for i = 1, . . . , N do
3 Marginalisation step; p(xi|Y≤i) =

�
p(xi|xi−1)p(xi−1|Y≤i−1)dxi−1.

4 if i ∈ I then do
5 Conditioning step; p(xi|Y≤i) =

1
p(Yi|Y≤i−1)

p(Yi|xi)p(xi|Y≤i−1).

Algorithm 1: Forward algorithm for discrete-time state-space models or first-order hidden
Markov models.

condition, the discrete-time smoothing densities can be built iteratively using the backward algo-

rithm 2. There is no conditioning on data points because the empirical information has already

been incorporated into beliefs in the forward sweep. The backward sweep simply passes the
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1 Algorithm: backward algorithm
2 for i = N − 1, . . . , 0 do
3 Marginalisation step; p(xi|Y) =

�
p(xi|xi+1,Y)p(xi+1|Y)dxi−1.

Algorithm 2: Backward algorithm for discrete-time state-space models. Requires the
forward algorithm to compute the backward transition p(xi|xi+1,Y).

information in the data points back to all the hidden states occurring before the time of each

observation. This is done in the backward algorithm through the use of the transition density

p(xi|xi+1,Y) given by

p(xi|xi+1,Y) =
p(xi|Y≤i)p(xi+1|xi)

p(xi+1|Y≤i)
. (2.60)

In analogy to the continuous-time setting, exact filtering requires one forward sweep of the

data. Exact smoothing algorithms on the other hand require one forward and one backward

sweep. For the general case, the marginalisation and conditioning steps in both algorithms

require approximation. This leads to a multitude of recursive approximate inference schemes

that deal with these sequential updates in a local fashion.

2.5.1 Recursive Monte Carlo

General particle-filters are recursive Monte Carlo methods that transform the recursive estima-

tion problem into a stochastic system of interacting particles. Assuming p(xi|Y≤i) is approx-

imated by a set of particles {x(j)
i }nj=1, the bootstrap filter (Gordon et al., 1993) propagates the

current particle set forward in time to construct a new set {x(j)
i+1}

n
j=1 according to

x
(j)
i+1 = x

(j)
i + g(x(j)

i , i)δi +D(x(j)
i , i)ξ(j)i (2.61)

for j = 1, . . . , n. The new set {x(j)
i+1}

n
j=1 then constitutes an empirical approximation of the

propagated density p(xi+1|Y≤i). The same method is used in the regularised particle filter

(Doucet et al., 2001) and the auxiliary particle filter (Pitt & Shephard, 1999), but with additional

resampling and lookahead components, respectively. Accompanying the particles is a set of

weights {wj
i }

n
j=1 which allow the importance of each particle, under the data, to be controlled

using Bayes rule. On the backward pass, these weights ignore the data points and are updated

using the backward transition function p(xj |xj+1,Y) in (2.60), which requires a closed form for

the forward transition density p(xi+1|xi). For the discretisation scheme in (2.57) a conditionally

Gaussian closed form for p(xi+1|xi) is given in (2.58), but this forces the smoothing method to

use a first-order linear approximation. A more general approximation scheme is given by

ti+1 = ti + δi (2.62)

xi+1 = xi +RK(g(xi, i),D(xi, i), ξi, δi) (2.63)



Chapter 2. Background 28

where RK(·, ·, ·, ·) can be one of many stochastic Runge-Kutta step-functions (Murray & Storkey,

2011). These general schemes involve nonlinear maps of the noise variable ξi, and therefore in

most cases do not admit a closed form for p(xi+1|xi). By mapping realisations of x
(j)
i and

ξi through the Runge-Kutta step-function it is still possible to propagate samples x(j)
i �→ x

(j)
i+1

forward in time under this scheme, so the above filtering methods work in this setting, but the re-

weighting procedure in the backward pass for smoothing is not possible without a closed form

for p(xi+1|xi). Therefore most smoothing methods cannot be used in conjunction with higher

order numerical integration schemes. This is remedied in the work of Murray & Storkey (2011),

by using of a proposal that includes the transition density and cancels it out from the correspond-

ing update equations. There is a distinction between discrete-time and continuous-time methods

in the context of particle filtering and smoothing, where discrete-time methods are forced to use

linear numerical integration schemes such as (2.57) and continuous-time methods have the lux-

ury of higher-order nonlinear schemes. The label “continuous-time method” is due to the fact

that the algorithmic solutions (i.e. the paths of the particles) can be considered continuous-time

processes, to the extent that they can be realised by any desired stochastic numerical-integration

scheme. The benefit of this is that higher order schemes facilitate the use of larger and adaptive

time-step-sizes while maintaining accuracy, leading to improved computational efficiency.

2.5.2 Assumed density smoothing

When the drift f(x, t) and observation operator h(x, t) are linear, all densities involved in the

filtering and smoothing problems are Gaussian. The forward algorithm then equates to the clas-

sical discrete-time Kalman filter of Kalman (1960), and the backward algorithm equates the

Rauch-Tung-Striebel smoother of Rauch et al. (1965). These follow from the fundamental rules

for marginalising and conditioning Gaussian distributions. See also Kschischang et al. (2001)

for a more general message passing characterisation. When f(x, t) and h(x, t) are nonlinear,

the required marginal beliefs have either no closed-form, or the descriptions of the beliefs grow

so quickly over time as to become computationally intractable. An idea, originating in Kushner

(1967), is to project the marginal beliefs back onto a tractable family after each stage of infer-

ence. For the forward algorithm, the resulting algorithm is referred to as the assumed density fil-

ter (ADF), or the Gaussian filter for the particular case of the Gaussian family (Maybeck, 1979).

These methods attempt to retain as much of the structure of the Kalman filtering and smoothing

algorithms as possible, often to a fault. The most recent formulations focus on the assumed-

Gaussian setting (Ito, 2000, Särkkä & Hartikainen, 2010a) and examine efficient methods for

approximating the intractable integrals involved in the projection step. Once the projection step

is dealt with, the rules for marginalisation and conditioning Gaussians are all applicable. While

this simple formulation makes ADF and assumed density smoothing (ADS) appealing, they are

inherently restricted to one forward and one backward pass of the data. This is adequate when

inference is exact, but when inference is approximate, multiple forward and backward iterations
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are required (Heskes & Zoeter, 2002). Recent work from Särkkä (2007, 2010), Särkkä & Sar-

mavouri (2011) has shown how continuous-time limits can be taken of ADF and ADS solutions

to the discretised problem, with approximate transition probability (2.58). This has lead to a

highly stable and fast assumed Gaussian smoothing algorithm and, in a way, counteracts the

approximation error from using a first-order linear discretisation. The method leads to a set of

backward differential equations (DE) for the mean and covariance of the Gaussian approxima-

tion, which can then be solved using any applicable DE solver. While experiments show that

ADS is not good at representing nonlinearities, such as transitions between stable equilibrium

points, it shows good results in approximately linear regions. In many systems, trajectories

commonly inhabit such regions.

2.5.3 Expectation propagation

Expectation propagation (Minka, 2001) is a popular technique in approximate inference and

easily adapted to the discrete-time smoothing problem. This is the setting considered in Heskes

& Zoeter (2002), Yu et al. (2007, 2006), Zoeter & Heskes (2005). Let τi(xi,xi−1) denote the

site function

τi(xi,xi−1) :=






p(xi|xi−1)p(yi|xi) i ∈ I

p(xi|xi−1) i /∈ I

p(x0) i = 0.

(2.64)

Then the joint distribution in equation (2.55) can be written

p(X,Y) =
N�

i=0

τi(xi,xi−1). (2.65)

The primary aim of EP is to approximate the marginals of the smoothing density p(X|Y) and

its normalisation constant Z :=
�
p(Y|X)p(X)dX. It provides a very general smoothing al-

gorithm that isn’t constrained to one forward and backward pass. Under any message passing

scheme (Heskes & Zoeter, 2002), a fully factorised EP approximation q(X) will equate to the

product of N + 1 forward and backward messages α̂i and β̂i, such that

q(X) =
N�

i=0

qi(xi) =
N�

i=0

1

Zi
α̂i(xi)β̂i(xi). (2.66)

Iterating through the i’s in any order desired, the EP updates are given in algorithm 3. The

scheduling method generally used for smoothing consists of a forward pass - updating the α̂i’s

while keeping the β̂i’s fixed, and a backward pass - updating the β̂i’s while keeping the α̂i’s

fixed. The ∼ symbol indicates the updates may or may not occur. The projection step consists

of minimising a distance measure D(p, q), usually the relative entropy between p and q, over a

tractable class Q. It simplifies to a moment matching condition qi(xi,xi−1)
MM
↔ p̃i(xi,xi−1)

when Q is an exponential family. The main problem in EP-based smoothing is dealing with the
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1 Algorithm: Chain-EP algorithm
2 repeat
3 Choose; i ∈ NN

4 Build; p̃i(xi,xi−1) =
1
Z̃i
α̂i−1(xi−1)ti(xi,xi−1)β̂i(xi)

5 Project; qi(xi,xi−1) = argminq∈QD(p̃i, q)

6 ∼ Update; α̂new
i (xi) = Zi

�
qi(xi,xi−1)dxi−1

β̂i(xi)

7 ∼ Update; β̂new
i−1 (xi−1) = Zi−1

�
qi(xi,xi−1)dxi

α̂i−1(xi−1)

8 until covergence
Algorithm 3: General EP algorithm for linear Markov chain.

projection step, or moment matching for exponential families, in analogous fashion to the main

problem in assumed density smoothing. This is remedied through various numerical approxima-

tions in the references given at the start of the section. EP-smoothing and ADF are in fact very

closely related, intersecting if only one pass of EP is considered. But while ADF and ADS are

restricted to one forward and one backward pass, EP allows for multiple passes which do not,

necessarily, have to respect the temporal ordering of the data. This is due to EP’s symmetrical

representation of the smoothing density as the product of forward and backward messages.

2.5.4 Hybrid Monte-Carlo

Using the first-order Euler-Maruyama scheme in (2.57), the joint distribution in equation (2.55)

can be written

p(X,Y) ∝ exp
�
−H(X,Y)

�
, (2.67)

where H = U0 +Hdyn +Hobs is a discretised Hamiltonian such that

U0 = − log p(x0) (2.68)

Hdyn =
N−1�

i=0

δt

2

�
xi+1 − xi

δt
− f(xi, i)

�T

D
−1(xi, i)

�
xi+1 − xi

δt
− f(xi, i)

�
(2.69)

Hobs =
�

i∈I

1

2

�
h(xi, i)− yi

�T
R

−1(xi, i)
�
h(xi, i)− yi

�
. (2.70)

While the Hamiltonian is in fact just the regularised log-likelihood of the data under the Euler-

Maruyama approximation, the Hamiltonian approach recasts the joint distribution as a statistical

mechanical system (Alexander et al., 2005). The dynamic component Hobs is related to the

(discretised) path-integral formulation of the marginal densities given in (Risken, 1996, Section

4.4.2). This global formulation, as opposed to the local formulation of recursive estimation,

leads to two main approaches for approximate inference, both rooted in statistical mechanics.

The observations in (2.67) are fixed (realised), therefore it can be considered a density on the

hidden states X = (x0, . . . ,xN ), and the Y notation can be dropped. When normalised with

respect to X, equation (2.67) equates to the posterior p(X|Y). In Hybrid Monte-Carlo (HMC),
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the Hamiltonian of a canonical distribution is used to generate samples, which are then either

accepted or rejected in a Metropolis-Hastings subloop. The algorithm generates a Markov chain

X
(k) → X

(k+1) using a fictitious deterministic system

dX

dτ
= P (2.71)

dP

dτ
= −∇XĤ(X,P) (2.72)

where P = (p0, . . . ,pN ) represent auxiliary momentum variables and Ĥ = Hpot +Hkin, such

that

Hpot = U0 +Hdyn +Hobs (2.73)

Hkin =
1

2

N�

i=0

p
T
i pi. (2.74)

The potential Hpot represents the Hamiltonian of any probabilistic model, but has been spe-

cialised here to the discretised state-space model in equation (2.67). The system at each step of

the Markov chain is initialised by setting X(τ = 0) = X
(k) and sampling P(τ = 0) from a

Gaussian distribution. The system is then integrated forward in time using one of a number of

numerical methods tailored for Hamiltonian type equations in (2.71) and (2.72) (see Neal (2010)

for more details). After a predefined amount of time Jδτ , the state X(τ = Jδτ) is proposed as

X
(k+1), and accepted with probability

min
�
1, exp

�
Ĥ

(k)
− Ĥ

(k+1)
��

(2.75)

where Ĥ(k) = Ĥ(X(k),P(k)) and Ĥ(k+1) = Ĥ(X(k+1),P(k+1)). After sufficient burning and

subsampling, the samples {X(k)}Mk=1 represent draws from the posterior p(X|Y), and provide

important properties such canonical invariance and ergodicity (Neal, 2010). The application

of HMC to state-space models has been performed in Alexander et al. (2005) and Shen et al.

(2010), though only to very simple models. The main problem with applying HMC is finding

good initial conditions for the Markov chain, and dealing with highly nonlinear Hamiltonian

functions. The formulation can be extended to higher order discretisation schemes than the

Euler-Maruyama method considered here (Restrepo, 2008). The HMC algorithm can then, in a

way, be considered a continuous-time algorithm, though a reduction in step size or the introduc-

tion of higher order schemes can affect the computationally complexity considerably. Special

considerations need to be made when applying the HMC algorithm to a continuous-time model.

The arbitrariness of the size of the discretisation step δt can result in a state vector X of arbi-

trarily large dimension. Therefore it helps to consider the algorithm in a infinite dimensional

setting (Stuart, 2010). This ensures, in the limit, the algorithm behaves in a reasonable way. The

use of a preconditioning matrix (Generalised Hybrid Monte Carlo) can reduce the correlation
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between the state vectors at different times, helping the HMc algorithm to be more efficient in

that state-space model setting (Alexander et al., 2005).

2.5.5 Variational methods

Variational methods in machine learning are based upon minimising the Kullback-Leibler diver-

gence or relative entropy between the approximation and the true posterior. In finite dimensions,

for an approximation q(X), the divergence between q(X) and the posterior p(X|Y) in equation

(2.1) is given by

KL[q(X)||p(X|Y)] =

�
q(X) log

�
q(X)

p(X|Y)

�
. (2.76)

Importantly, the Kullback-Leibler divergence is positive and zero if and only if q(X) = p(X|Y)

almost everywhere. Parametric variational methods equip q(X;θ) with a vector of parameters

and optimise over the set of parameterised densities. Due to the presence of p, the divergence

KL[q||p] can not be minimised directly, but using simple algebraic manipulations yields

− log p(Y) + KL[q(X)||p(X|Y)] ≤ F(q(X;θ)) (2.77)

where F(q(X;θ)) denotes the free-energy

F(q(X;θ)) = KL[q(X)||p(X)]−
�
log p(Y|X)

�
q(X)

. (2.78)

Here �x� denotes the expectation of a random variable x and �φ(x)�q(x) denotes the expec-

tation of φ(x) with respect to the density q. Given the KL divergence is positive and p(Y)

is constant with respect to q, minimising F(q(X;θ)) over q or θ is equivalent to minimising

KL[q(X)||p(X|Y)], and provides an upper bound on − log p(Y) which can be used for model

selection.

The variational approach of Archambeau et al. (2007a), Archambeau & Opper (2011)

assumes a prior drift f(x, t) is provided to the SDE in equation (2.21). The scheme then attempts

to learn an approximate drift g(x, t) in the presence of data. These two drift functions generate

SDEs that can be considered continuous-time limits of the Euler-Maruyama approximation in

equation (2.57). For an arbitrary time-step δt, the discretisations X = (x0, . . . ,xN ) fit naturally

into the variational framework. The Euler-Maruyama scheme can be used to generate a discrete-

time prior p(X) using the drift f(x, t) and a discrete-time approximation q(X) using the drift

g(x, t). The Kullback-Leibler divergence between p(X) and q(X) is then given by

KL[q(X)||p(X)] =
δt

2

N−1�

i=0

�
||g(xi, i)− f(x, i)||2D(xi,i)

�

qi
+KL[q0||p0] (2.79)

where qi(xi) and pi(xi) denote the marginals onto xi of q(X) and p(X), respectively. Let Pprior

and Q denote the limits of p and q as the time step tends to zero. Following the approach of
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Archambeau et al. (2007a), taking the limit δt → 0 in equation (2.79) yields

KL[Q||Pprior] =
1

2

� T

0
dt
�
||g(x, t)− f(x, t)||2D(x,t)

�

q(x,t)
+KL[q0||p0] (2.80)

where q(x, t) denotes the one-time marginal density of Q. Given the discrete-time nature of the

observations in the state-space model, the log likelihood of the data is given by

�
log p(Y|x(·))

�
Q
=

1

2

� T

0
dt

�

i

δ(t− ti)
�
log p(yi|x(ti))

�

q(x,t)
. (2.81)

The variational smoothing algorithm then looks to minimise the free-action

F(Q(x(·);g)) = KL[Q||Pprior]−
�
log p(Y|x(·))

�
Q

(2.82)

over g and Q. Importantly, this variational approach attempts to minimise the cumulated free-

energy over time. The free-action F(Q(x(·);g)) bounds the accumulated log-evidence of the

data, as opposed to bounding the log-evidence of the accumulated data as is done in many

standard variational machine learning methods Jordan et al. (1999b).

2.6 Discussion

This chapter has introduced state-space models in the form of partially observed diffusion pro-

cesses with discrete time observations, and the inference problem of assimilating data. Various

approaches to learning the latent states of the system have been considered in a machine learning

context. In most cases a Euler-Maruyama linear approximation is applied to the prior to deal

with the intractable Kolmogorov equations. The Euler-Maruyama linear approximation has been

shown to have undesirable qualities (Ozaki, 1993) and a good approximate inference scheme

should not be restricted to using it. Monte Carlo algorithms remedy this problem through the

use of higher order approximation schemes for the underlying SDE. This is done is a recursive

setting in Murray & Storkey (2011) and in a path-integral setting in Restrepo (2008), though both

methods are still in their infancy. With regards to deterministic methods, the assumed density

(AD) smoothing algorithm of Särkkä & Sarmavouri (2011) is presented in a continuous-time

form by taking the continuous time limit of solutions of a discrete-time AD algorithm applied

to the Euler-Maruyama approximation of the prior. This allows for higher-order numerical in-

tegration methods to be applied to the resulting ordinary differential equations (ODEs). This

algorithm is also in its infancy and it is not known if it can be extended beyond the Gaussian

setting. Also in the deterministic setting, current EP-smoothing methods are only applicable in

discrete-time, require a closed form for the transition density, and are also most commonly used

in Gaussian form. Archambeau et al. (2007a), Archambeau & Opper (2011) use the variational
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approach of section (2.5.5) to generate a solution set of continuous-time ODEs. While the algo-

rithm is formulated only for Gaussian approximations, it appears to be the strongest contender

out of all the deterministic methods for approximate inference for smoothing in state-space

models. This is due to various reasons:

• It has a natural formulation in continuous-time.

• It has a well defined objective function that allows for direct application of gradient meth-

ods and a well-defined notion of convergence.

• It fits seamlessly into a model selection and system identification framework.

As with all methods, the variational framework of Archambeau & Opper (2011) does not scale

well with the size of the state-dimension, though it appears faster than MCMC methods in most

situations (Shen et al., 2010). Its main weaknesses when compared to Monte Carlo methods are

as follows:

• It is currently restricted to Gaussian approximations and therefore does not have the de-

scriptive power of MC methods.

• Its implementation requires a significant amount of preparation and auxiliary functions

when compared to, essentially “black-box”, Monte Carlo methods.

It is apparent that there is an underdeveloped gap in the literature for non-Gaussian determin-

istic approximate inference. Due to the strengths and flexibility of the variational framework

described in section (2.5.5), it is natural to focus on extending this framework to handle non-

Gaussian approximations, as opposed to focusing on the alternative EP-smoothing and assumed

density smoothing frameworks whose weaknesses have been exposed.

Independently, both Gaussian mixture models and exponential families have universal

approximation abilities to any continuous density function (Mclachlan & Peel, 2000, Wain-

wright & Jordan, 2008, respectively). The Gaussian density sits at the intersection of both these

families; being a Gaussian mixture model with only one component and an exponential family

density with only linear and quadratic sufficient statistics. Therefore any progress made with the

trusty Gaussian is relevant to both the more general settings. Due to its infancy, there are still

at lot of unanswered questions concerning the optimal Gaussian solution of Archambeau et al.

(2007a), and strengthening its theory and implementation methods can only facilitate progress

in the more general setting.



Chapter 3

General framework

Contribution

• This chapter extends the variational state-space-model learning method to the general set-

ting, i.e. beyond the Gaussian case. The generalisation requires explicits form for the drift

in a stochastic differentiable equation and the corresponding one-time marginal densities,

which are generally not available. It is shown how this requirement can be weakened and

the marginal densities of the process can be projected down onto a tractable approximat-

ing class. This enables the use of more flexible relations between the variational drift and

the approximate marginals in the variational smoothing algorithm. The projection has a

natural moment-matching interpretation and this is used to derive a projected version of

the well known Fokker-Planck equation.

3.1 Introduction

The variational state-space model learning scheme derived in Archambeau et al. (2007a) - and

featuring in Archambeau et al. (2007b), Archambeau & Opper (2011), Vrettas et al. (2010), and

Shen et al. (2010) - relies upon the Gaussian assumption. For many nonlinear state-space models

it is desirable for approximations to capture higher order moments than those of the Gaussian.

This chapter discusses extending the variational approach of Archambeau et al. (2007a) to higher

order distributions characterised by their moments. The first part of the chapter generalises the

variational smoothing framework of Archambeau & Opper (2011). The chapter begins by con-

sidering the exact Bayesian solution as the optimal variational solution, and goes on to introduce

a generalised variational smoothing algorithm with weakened constraints. Rather than re-derive

the Gaussian case for the reader and then generalise, the section starts at the deep end; formulat-

ing the general case and using the Gaussian case as an example. The generalisation requires an

explicit form for the drift of a diffusion process and the corresponding marginal densities, which

are generally not available. While is relatively simple to define a tractable class of marginal

densities or to fix a particular form of drift, finding a tractable pairing can be highly non-trivial,

35
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accept in the linear case. Therefore the explicit drift-marginal pairing requirement would make

the generalised algorithm not easily usable in practice. For an arbitrary drift, marginal den-

sities can quickly propagate into computationally intractable regions of the space of probabil-

ity density functions. This propagation is dominated by the Fokker-Planck equation. Explicit

drift-marginal pairings, are pairs of drifts and marginal densities that satisfy the Fokker-Planck

equation. Luckily this requirement can be weakened and the marginal densities can be projected

down onto a tractable approximating class. This allows for a mismatch between the variational

drift and the approximate marginal densities in the variational smoothing algorithm, where the

approximate marginal densities are projections of the marginal densities generated by the varia-

tional drift. This projection has a natural moment-matching interpretation and section 3.5.2 uses

this to derive a projected version of the Fokker-Planck equation. While almost any drift can

have its marginal densities projected onto a tractable class, it is recommended that the approx-

imate pairings should be chosen to reduce the amount of information lost in the projection. In

summary, the variational smoothing framework of Archambeau & Opper (2011) is generalised

to general drift-marginal pairings. The strict requirement of an explicit drift-marginal pairing is

weakened by allowing marginal densities that drift into intractable regions to be projected back

onto a specified class. These projected marginal densities can be used as surrogates for comput-

ing marginal density expectations required in the variational smoothing algorithm by gradient

based optimisation methods.

3.2 Optimal smoothing

The variational framework subsumes exact inference, and the choice of a Gaussian approxi-

mation - or any other suboptimal approximation - corresponds to replacing general constraints

in the variational formulation with simplified moment constraints. The variational framework

relies upon the free-energy formulation of learning outlined below.

3.2.1 Free-energy of a partially observed diffusion process

Let Q and Pprior denote probability measures on the space of paths generated by (2.21) with

drifts g(x, t) and f(x, t) respectively. Let q(x, t) denote the one-time-slice marginal density of

Q at time t. Define

Esde(t) =
1

2

�
||g(x, t)− f(x, t)||2D(x,t)

�

q(x,t)
, (3.1)

where ||x||R denotes the Mahalanobis norm of x with respect to a positive-definite matrix R,

and �φ(x)�q(x) denotes the expectation of φ(x) with respect to a density q(x). From Archam-

beau et al. (2007a), the relative entropy KL[Q||Pprior] between Q and Pprior, is given by the

integral

KL[Q||Pprior] =

� T

0
Esde(t)dt. (3.2)
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Let Y = (yt1 , . . . ,ytm), m ∈ N, denote a set of observations where each yti ∈ Rdy is observed

at time ti ∈ [0, T ]. Define

Eobs(t) =
1

2

�

i

δ(t− ti)
�
||yi − h(x, ti)||

2
R(x,ti)

�

q(x,t)
(3.3)

where h : Rdx ×R+ → Rdy is a nonlinear observation mapping and R : Rdx ×R+ → Rdy×dy

is a positive-definite noise matrix. The expected negative-log-likelihood of the data, denoted

L(Q), is given by the integral

L(Q) =

� T

0
Eobs(t)dt. (3.4)

Posterior approximations in this framework are characterised by their drift function g and rep-

resented by the corresponding measure Q. The free-energy F(Q) of an approximation Q, is

defined as the sum of the relative entropy KL[Q||Pprior], where f denotes a prior-drift defined

before the data is observed, and the expected negative-log-likelihood of the data L(Q), such that

F(Q) = L(Q) + KL[Q||Pprior]. (3.5)

Given that Q is characterised by its drift g(x, t), it is reasonable to write the free-energy F(g)

simply as a function of g(x, t). Let Ppost denote the posterior-measure obtained through exact

Bayesian inference. As will be shown in the sequel, it holds that the global minimiser of the

free-energy F(Q) is equivalent to the true posterior Ppost. Furthermore, the one-time-slice

marginal densities generated by the optimising-drift of F(g) are equivalent to the conditional

(smoothing) densities p(xt|Y) for all t ∈ [0, T ]. Therefore the optimal Bayesian smoothing

solution is characterised by a diffusion process with a posterior-drift. The posterior drift retains

important properties of the prior f(x, t), whilst guiding paths towards the data. The balance

between prior and data depends strongly on the stochasticity of the system, characterised by

D(x, t) and R(x, t).

3.2.2 Variational formulation of exact inference

Outlined in this section is the variational approach to exact inference, taken from Archambeau

& Opper (2011) with a few minor adjustments. It makes explicit the incorporation of constraints

relating the variational drift and to the corresponding variational marginal densities. It is these

constraints that can be relaxed when constructing suboptimal variational approximations.

Let
→
Kg[·] and

←
Kg[·] denote, respectively, the Fokker-Planck forward operator and its ad-

joint

→
Kg[p(x, t)] = −∇

T
�
p(x, t)g(x, t)

�
+

1

2
tr
��

∇∇
T
��
D(x, t)p(x, t)

��
(3.6)

←
Kg[p(x, t)] = g

T(x, t)∇[p(x, t)] +
1

2
tr
�
D(x, t)

�
∇∇

T
�
[p(x, t)]

�
. (3.7)
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Any drift function g(x, t), arbitrary marginal density q(x, t), and dual variable ρ(x, t) satisfy

the action functional
� T

0
dt
��

∂t −
→
Kg

�
[q(x, t)]

�

ρ(x,t)
= −

� T

0
dt
��

∂t +
←
Kg

�
[ρ(x, t)]

�

q(x,t)
(3.8)

where all expectations are over x, and equality follows from
←
Kg[·] and

→
Kg[·] being dual-adjoint.

Note that ρ(x, t) might not be a probability density and, in which case, expectations under

ρ(x, t) are assumed to be finite integrals. Augmenting F(g) with (either of) (3.8), leads to the

Lagrange functional

L(g, ρ) = F(g)−

� T

0
dt
��

∂t −
→
Kg

�
[q(x, t)]

�

ρ(x,t)
. (3.9)

Performing independent variations (see appendix A.2) of q and g, and substituting ρ(x, t) =

− lnψ(x, t), leads to

U(x, t)ψ(x, t) =
�
∂t +

←
Kg

�
[ψ(x, t)] (3.10)

g(x, t) = f(x, t) +D(x, t)∇ lnψ(x, t) (3.11)

where

U(x, t) =
1

2

�

i

δ(t− ti)|||yi − h(x, ti)||
2
R(x,ti)

. (3.12)

Exact inference boils down to solving (3.10) backwards in time for ψ(x, t), with end condition

ψ(x, T ) = 1. The Dirac functions in u(x, t) lead naturally to jumps for ψ(x, t) at the obser-

vation times ti. Then the posterior drift given by g(x, t) = f(x, t) + D(x, t)∇ lnψ(x, t) is

used to solve (2.24) forwards in time to generate the smoothing densities q(x, t) = p(xt|Y)

for all t ∈ [0, T ]. This formulation matches the exact Bayesian solutions given in Eyink et al.

(2004) and Archambeau & Opper (2011), which are derived through direct differentiation of the

smoothing densities p(xt|Y) (section 2.4.4).

The free-energy F(g) is solely a function of g(x, t), but can only be written explicitly

if q(x, t) is introduced to handle expectations. Ignoring for the moment that q(x, t) is the pri-

mary object of interest, the density q(x, t) can be considered an auxiliary variable, introduced

to ease the optimisation problem of learning the optimal drift g(x, t). To perform independent

variations of q and g, requires the incorporation of the constraint (3.8) to couple the variables

together. It is this constraint that can be relaxed to allow for suboptimal variational approxima-

tions.
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3.3 Generalised approximate inference

In this section a general formulation for variational inference is presented to deal with minimis-

ing the free energy integral in equation (3.5). The approach is novel by making no assumptions

of linearity for the approximating drift and no assumption of Gaussianity for the approximating

distribution. It deals with general marginal densities characterised by their vector of sufficient

statistics and corresponding vector of moment parameters. This is done through the use of

generalised moment equations that weaken the constraints used in the exact formulation of the

previous section.

3.3.1 Optimal approximation

Let φ : Rdx → Rdγ denote any twice-differentiable mapping φ(x) = (φ1(x), . . . , φdγ (x)).

Starting from equation (2.24), using integration-by-parts it is simple to show that the drift func-

tion g(x, t) and the marginal density q(x, t) satisfy the relation

∂
�
φ(x)

�
q(x,t)

∂t
−

�
←
Kg[φ(x)]

�

q(x,t)

= 0, (3.13)

where the convention used for an operator A[·] applied to a vector valued mapping φ(x) is

A[φ(x)] =
�
A[φ1(x)], . . . ,A[φdγ (x)]

�T
. (3.14)

It should be obvious that equation (3.13) is a weaker constraint than (2.24), inasmuch that the

time and spatial variations of q(x, t) are coupled together only through projections of q(x, t)

onto the component functions of φ(x). When φ(x) defines the vector of sufficient statistics of

q(x, t) and γ(t) =
�
φ(x, t)

�
q(x,t)

defines its vector of (time-varying) moments, equation (3.13)

leads naturally to a set of moment equations

∂γ(t)

∂t
=

�
←
Kg[φ(x)]

�

q(x,t)

. (3.15)

Augmenting F(g) with the weaker constraint in (3.15) leads to a surrogate Lagrange functional

L̂(g,λ) = F(g)−

� T

0
dtλT(t)

�
∂γ(t)

∂t
−

�
←
Kg[φ(x)]

�

q(x,t)

�
(3.16)

where the dual variable λ(t) is a function of time and vector-valued to match the moment pa-

rameter γ(t). Assume that g(·, t) is parameterised by a finite dimensional1 vector πt. Taking
1 This is a reasonable assumption, given that any viable approximate drift g(x, t) will need to be representable

using finite computational memory.
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variations of (3.16) with respect to πt and γt leads to a set of explicit gradients

∇πtL̂(g,λ) = ∇πtEsde(t) + λT(t)∇πt

�
←
Kg[φ(x)]

�

q(x,t)

(3.17)

∇γt
L̂(g,λ) = ∇γt

Esde(t) +∇γt
Eobs(t) +

∂λ(t)

∂t
+∇γt

�
←
Kg[φ(x)]

�T

q(x,t)

λ(t). (3.18)

Setting (3.18) equal to zero and identifying the discrete time nature of Eobs(t), leads to an adjoint

equation
∂λ(t)

∂t
= −∇γt

Esde(t)−∇γt

�
←
Kg[φ(x)]

�T

q(x,t)

λ(t) (3.19)

with the jump conditions at the observations times ti ∈ T , given by

λ(ti) = λ(t+i )−∇γt
Eobs(ti), (3.20)

where t+ denotes a time infinitesimally close to (the right of) time t. Variational approximate-

inference therefore equates to finding the global minimum of the surrogate Lagrangian L̂(g,λ)

with respect to πt, such that equations (3.15), (3.19), and (3.20) are satisfied. In algorithmic

terms, a dynamic optimisation procedure is performed with gradient steps taken w.r.t. πt and

a sub-loop for solving equations (3.15), (3.19), and (3.20). The general variational smoothing

algorithm can then be written:

[1] Initialise: πt for all t ∈ [0, T ].

[2] Solve: (forwards) t ∈ [0, T ], γ(0) = γ0,

∂γ(t)

∂t
=

�
←
Kg[φ(x)]

�

q(x,t)

.

[3] Solve: (backwards) t ∈ [0, T ], λ(T ) = 0,

∂λ(t)

∂t
= −∇γt

Esde(t)−∇γt

�
←
Kg[φ(x)]

�T

q(x,t)

λ(t)

λ(t−i ) = λ(ti)−∇γt
Eobs(ti), ∀ti ∈ T .

[4] Gradient step: πt ← ρ(πt,∇πtL̂(g,λ)) for all t ∈ [0, T ], where

∇πtL̂(g,λ) = ∇πtEsde(t) + λT(t)∇πt

�
←
Kg[φ(x)]

�

q(x,t)

.

[5] Repeat: steps [2-4] until convergence, i.e. ∇πtL̂(g,λ) = 0.

Four main issues that need to be considered when implementing this algorithm are:
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1. The choice of gradient step ρ(πt,∇πtL̂(g,λ)), e.g. scaled-conjugate.

2. The choice of numerical integration method for solving the differential equations in steps

[1] and [2], e.g. Euler, higher-order Runge-Kutta.

3. The choice of numerical integration method used for computing the expectations involved

in steps [1] and [2], e.g. cubature methods, unscented transforms.

4. How to compute γ0 if it is not given a priori.

The above algorithm relies upon q(x, t) being fully characterised by the moment function

γt. If this was not the case then it would not be possible to perform any of the expectations, due

to a lack of sufficient information. If φ(x) is the sufficient statistic of q(x, t) this isn’t a problem,

but in the general case it is non-trivial to reconstruct a density from its moment parameter. A

case where it is simple is when q(x, t) is Gaussian.

3.3.2 Optimal Gaussian approximation

To construct a Gaussian approximation to the posterior and subsequently a Gaussian approxi-

mation to the smoothing density, requires the drift g(x, t) to be linear. It is in this case possible

to write

gL(x, t) = A(t)x(t) + b(t) (3.21)

for some A : R+ → Rdx×dx and b : R+ → Rdx . Here gL(·, t) is parameterised by At ∈

Rdx×dx and bt ∈ Rdx , and it is therefore possible to take gradients of the free-energy with

respect to At and bt at time t. Let qL(x, t) denote the one-time-slice Gaussian marginal density

generated using linear gL(x, t), let µ(t) and Σ(t) denote its mean and covariance, respectively.

Inserting qL(x, t) and gL(x, t) into (3.15) leads to the set of differential moment equations

∂µ(t)

∂t
= A(t)µ(t) + b(t) (3.22)

∂Σ(t)

∂t
= A(t)Σ(t) +Σ(t)AT(t) +

�
D(x, t)

�
qL(x,t)

. (3.23)

Identify γ(t) with vec(µ(t),Σ(t)) and λ(t) with vec(ν(t),Λ(t)) for some dual parameters

ν : R+ → Rdx and Λ : R+ → Rdx×dx . Inserting qL(x, t) and gL(x, t) and the corresponding

moment and dual parameters into equations (3.19) and (3.20) leads to the adjoint equations

∂ν(t)

∂t
= −∇µt

Esde(t)−A
T(t)ν(t) (3.24)

∂Λ(t)

∂t
= −∇ΣtEsde(t)−A

T(t)Λ(t)−Λ(t)AT(t) (3.25)
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and jump conditions at the observations times ti ∈ [0, T ], given by

ν(ti) = ν(t+i )−∇µt
Eobs(ti) (3.26)

Λ(ti) = Λ(t+i )−∇ΣtEobs(ti). (3.27)

Now identifying π(t) with vec(A(t),b(t)), and inserting qL(x, t) and gL(x, t) and the corre-

sponding moment and dual parameters into equation (3.17) leads to the gradient equations

∇AtL̂(g,λ) = ∇AtEsde(t) +Σ(t)ΛT(t) +Λ(t)Σ(t) + ν(t)µT(t) (3.28)

∇btL̂(g,λ) = ∇btEsde(t) + ν(t). (3.29)

Equations (3.24),(3.25),(3.26),(3.27),(3.28) and (3.29), completely determine the variational

Gaussian approximate smoothing algorithm derived in Archambeau et al. (2007b). Thus the

variational Gaussian-process smoothing algorithm is a natural specialisation of the more gen-

eral smoothing algorithm described in the first part of this section.

3.4 Projection filter

Consider the partial-differential equation in (3.13). For any twice differentiable map φ(x),

equation (3.13) describes the time-evolution of expectations of φ(x) under q(x, t), where q(x, t)

is the one-time marginal density generated by the SDE in equation (2.21) with drift function

g(x, t). Now assume that g(x, t) is of a form that the marginal density q(x, t) is intractable

for some, or all, of t ∈ [0, T ]. Under certain conditions on g(x, t) and D(x, t), the marginal

density q(·, t) can be constrained to lie in a well-behaved function space, such as L1(Rdx ;R).
But given the infinite degrees of freedom in such a space, it may not be possible to capture the

properties of q(·, t) in a finite description length. Given that q(·, t) is required for all t ∈ [0, T ],

the problem of representing the marginal densities for general continuous-time systems quickly

becomes infeasible, even under simplifying conditions.

The crux of the Projection filter (Brigo et al., 1999) is to obtain a finite-dimensional

projection of the marginal density q(·, t) onto a parameterised manifold lying in an ambient

space, such as L1(Rdx ;R). In this section of the thesis it is assumed that any observations have

already been assimilated into the drift g(x, t). It is the mathematical properties of the projection

that are of importance. While the machinery below might seem a little overzealous, it lays out

a principled geometric derivation of the projection map and its application to the Fokker-Planck

equation. An identical result can be achieved simply by replacing the expectations in (3.13)

with expectations under a simplified model with sufficient statistic φ(x). While this approach

leads to an (observation-free) version of the commonly used Assumed Density Filter (ADF) of

Kushner (1967), this algorithm is considered heuristic, even by its originator many years on

(Kushner, 2008). Therefore the reason for presenting the following formulation is, in some way,
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to expose the credibility of the projection map before applying it to the variational smoothing

problem. If the derivation is not to the readers tastes, then a novel derivation, requiring less

technical machinery, is provided in section 3.5.

3.4.1 Projection map

The current section outlines the correct method for projecting probability densities onto a finite-

dimensional manifold, while keeping the amount of formal differential-geometry to a minimum.

For more details see Brigo et al. (1995) and Brigo et al. (1999), or Berefelt et al. (2003) for a

nice overview.

For an open subset Θ ⊂ Rdθ , let S := {p(·,θ),θ ∈ Θ} denote a set of strictly-positive

Lebesgue measurable probability density functions in L1(Rdx ;R). Let θi denote the ith compo-

nent of θ. Assuming p(·,θ) to be smooth in θ, the Fréchet derivative ∂p(·,θ)
∂θi

maps vectors in Rdθ

to vectors in L1(Rdx ;R). If the set of vectors {∂p(·,θ)
∂θi

}i are linearly independent for all θ ∈ Θ,

then S is a submanifold of L1(Rdx ;R), with a tangent space TpS at each point p ∈ S spanned

by the coordinates {
∂
∂θi

}i. To turn S into a Riemannian manifold, a metric tensor Gp(·, ·) is

defined on the tangent space TpS such that

Gp(
∂pθ
∂θi

,
∂pθ
∂θj

) =

�
∂p(x,θ)

∂θi

∂p(x,θ)

∂θj

dx

p(x,θ)
. (3.30)

This integral is equivalent to the (i, j)th entry of the well known Fisher information matrix of

statistics. Define the matrix G(θ) with (i, j)th entry Gij(θ) := Gp(
∂pθ
∂θi

, ∂pθ∂θj
) and let Gij(θ)

denote the (i, j)th entry of the inverse G−1(θ). Even though the tensor Gp(u, v) is defined only

for vectors u, v ∈ TpS, the product

Ḡp(u, z) =

�
u(x)z(x)

dx

p(x,θ)
(3.31)

may exist for pairs of vectors u, z ∈ L1 such that u ∈ TpS and z does not. Let Ḡp denote the

tensor Gp with the second argument extended to all z ∈ L1 and its first argument still in TpS.

The extended domain Dp is a linear subspace of L1 characterised by

Dp := {z ∈ L1
|
z

pθ

∂pθ
∂θi

∈ L1
}. (3.32)

Then for any p ∈ S and any z ∈ Dp it is possible to define a projection Πθ : Dp → TpS such

that

Πθ(z) :=
dθ�

i,j=1

G
ij(θ)Ḡp(

∂pθ
∂θj

, z)
∂pθ
∂θi

. (3.33)

This is the map used to define the projection filter2.
2If equation (3.33) seems a little cryptic, then the reader should bare in mind a Euclidean version where the

ambient space Rn is spanned by the basis vectors {e1, . . . , en} and the subspace V = span{ei}i∈i defines a
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3.4.2 Projected Fokker-Planck equation

In this section the projected Fokker-Planck equation is derived for a parametric family of prob-

ability densities. The method is first discussed in the general setting and then, in the sequel,

specialised to the case of a minimal exponential family.

Let S := {p(·,θ),θ ∈ Θ} be a family of probability densities, for open subset Θ ⊂ Rdθ .

Let θ ∈ Θ be a function of time θ(t), such that θ(t) ∈ Θ for all t ∈ [0, T ]. Using the

(Stratonovich) chain rule, it holds that

∂pθ(t)
∂t

=
dθ�

i=1

∂θi(t)

∂t

∂pθ(t)
∂θi(t)

. (3.34)

If we impose the condition

→
Kg[pθ]

pθ

∂pθ
∂θi

∈ L1, i = 1, . . . , dθ, (3.35)

for all θ ∈ Θ and t ∈ [0, T ], then the projection Πθ can be applied directly to the function
→
Kg[pθ]. More precisely,

Πθ(t)

�→
Kg[pθ(t)]

�
=

dθ�

i,j=1

G
ij(θ(t))Ḡp(

∂pθ(t)
∂θj(t)

,
→
Kg[pθ(t)])

∂pθ(t)
∂θi(t)

(3.36)

=
dθ�

i,j=1

G
ij(θ(t))

�
∂pθ(t)
∂θj(t)

→
Kg[pθ(t)]

dx

pθ(t)

∂pθ(t)
∂θi(t)

(3.37)

where the dependency of pθ(t) on x is implicit. Observing equations (3.34) and (3.37), we see

that both are built on the set of coordinate vectors {∂pθ(t)
∂θi(t)

}i. Therefore changes in one can easily

be mapped to changes in the other simply by matching the coefficients in the local coordinates.

Indeed, let us define the projected Fokker-Planck equation

∂pθ(t)
∂t

= Πθ(t)

�→
Kg[pθ(t)]

�
. (3.38)

Equating coefficients in the basis {∂pθ(t)
∂θi(t)

}i, leads to an evolution equation in the parameter space

Θ, given by
∂θ(t)

∂t
= G

−1(θ)

�
∂pθ(t)
∂θ(t)

→
Kg[pθ(t)]

dx

pθ(t)
(3.39)

where ∂θ(t)
∂t and ∂p(x,θ(t))

∂θ(t) ≡ ∇θ(t)p(x,θ(t)) are vectors in Rdθ and
→
Kg[pθ(t)] is a function in

L1.

submanifold for any i ⊆ Rn. In this case Gij = �ei, ej� = δij and a projection Π : Rn → V can be defined simply
by Π(z) =

�
i∈i�ei, z�ei.
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3.4.3 Exponential-family Fokker-Planck projection

Now let us specialise the above formulation to exponential families. Let φ : Rdx → Rdθ be a

twice differentiable vector of sufficient statistics and define

p(x,θ) = exp
�
θTφ(x)−A(θ)

�
, (3.40)

with log partition A(θ) and domain Θ = {θ ∈ Rdθ |A(θ) < ∞}. To interpret S := {p(·,θ),θ ∈

Θ} as a dθ-dimensional manifold, the components of φ must be linearly independent. Let

γ(t) = �φ(x)�p(x,θ(t)) denote the vector of mean parameters of p(x,θ(t)). Assuming the con-

dition in equation (3.35) holds, we have (see Brigo et al. (1999))

�
∂pθ(t)
∂θ(t)

→
Kg[pθ(t)]

dx

pθ(t)
=

�←
Kg[φ]

�
pθ(t)

. (3.41)

Inserting equation (3.41) into (3.39), and noting the relation dγ(t) = G(θ(t))dθ(t), the projec-

tion filter can be defined in moment form. In the following, let S := {p(·,θ),θ ∈ Θ} denote an

dθ-dimensional exponential family manifold and assume condition (3.35) holds.

Definition 3.1 (Projection filter). The (observation-free) Projection filter for the SDE in (2.21)

with drift function g(x, t), defines the set of marginal densities {p(x,θ(t)) ≡ p(x,γ(t)) ∈

S, t ∈ [0, T ]} such that γ(t) and θ(t) satisfy the differential equations

∂γ(t)

∂t
= G(θ(t))

∂θ(t)

∂t
=

�←
Kg[φ]

�
pθ(t)

. (3.42)

It is important to identify how equation (3.42) differs from equation (3.15). Equation

(3.15) follows directly from the the Fokker-Planck equation (2.24), and the marginal densities

in equation (3.15) are those directly generated by the SDE in equation (2.21) with drift function

g(x, t). In contrast, equation (3.42) is derived from the projection of the Fokker-Planck equation

onto the submanifold S. The Fokker-Planck equation defines a vector field on the space of

probabilities. Equation (3.42) projects this vector field onto the tangent space at each point of

S and lets θ(t) evolve under a map of the projected field back into Θ. The marginal densities

in (3.42) are the result of this projected action of inference and remain in S for all t ∈ [0, T ].

While this ensures that their evolution is guided by the drift g(x, t), it also ensures that they

remain tractable, inasmuch as having a finite dimensional representation. In the sequel, these

tractable marginals will provide a feasible domain for variational approximate inference, and

the projected moment equations in (3.42) will provide suitable moment constraints on such a

domain. For equation (3.42) to be complete, initial conditions γ(0) = γ0 and θ(0) = θ0 are

required. Assume an initial distribution p(x0) = p(x, 0) is provided with the SDE in equation

(2.21). As recommended in Brigo et al. (1999), it makes sense to define

γ0 =
�
φ(x)

�
p(x,0)

. (3.43)
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This is equivalent to minimising the relative entropy between p(x, 0) and p(x,θ0) over θ0 ∈ Θ.

This ensures that the projected density p(x,θ(t)) begins in S and remains in S when evolving

according to equation (3.42). The initial condition θ0 can be obtained from γ0 through the

backward-mapping in equation (A.8).

3.4.4 Original projection-filter

The projection-filter of (Brigo et al., 1999) in its original formulation was not designed just to

trace the moments of an intractable marginal density. It was also designed to assimilate data

and to approximate the filtering density p(xt|Y≤t). Let γ(t) denote the moment parameter of

a parameterised probability density pγ(t)(x) with corresponding sufficient statistic φ(x). Let

t− denote a time infinitesimally close to time t. In between observation times the parameter

γ(t) evolves according to equation (3.42) using a prior drift f(x, t), chosen a priori. At an

observation time ti, γ(t) is updated according to the equation

γ(ti) =

�
φ(x)p(yi|x)p(x,γt−i

)dx
�
p(yi|x)p(x,γt−i

)dx
(3.44)

which follows naturally from Bayes’ rule. The simplicity of the projection filter makes it a

very fast method for assimilating data. Importantly, it is defined in continuous-time and the

differential equations in the propagation step can be solved using any appropriate numerical

integration method. This projection filter takes a more common form (Maybeck, 1979) when

specialised to the Gaussian setting.

3.4.4.1 Gaussian projection-filter

Let µ(t) and Σ(t) denote the mean and covariance parameters of the one-slice marginal Gaus-

sian density q(x, t), and identify γ(t) with vec(µ(t),Σ(t)). The propagation step of the projection-

filter then leads directly to mean and covariance evolution equations

∂µ(t)

∂t
=

�
f(x, t)

�
p(x,γt)

(3.45)

∂Σ(t)

∂t
=

�
f(x, t)(x− µt)

T + (x− µt)f
T(x, t)

�
p(x,γt)

+
�
D

2(x, t)
�
p(x,γt)

. (3.46)

The observation model corresponding to the free-energy formulation of chapter (3) is given in

state-space form by

yi = h(xti , ti) +R(xti , ti)ηi, ti ∈ T , (3.47)

where h : Rdx×R+ → Rdy denotes a nonlinear observation mapping, R : Rdx×R+ → Rdy×dy

denotes a positive-definite noise matrix, and each ηi is Gaussian distributed with zero mean and

unit variance. It follows that p(yi|xti) is conditionally Gaussian, and the update step of the

projection-filter can be solved exactly using the rules for conditioning Gaussians, to give jump
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conditions

µ(ti) = µ(t−i ) +CiS
−1
i (yi − ȳi) (3.48)

Σ(ti) = Σ(t−i )−CiSiC
T
i (3.49)

where

ȳi =
�
h(x, ti)

�
p(x,t−i )

(3.50)

Si =
��

h(x, ti)− ȳi
��
h(x, ti)− ȳi

�T�

q(x,t−i )
+
�
R

2(x, t)
�
q(x,t−i )

(3.51)

Ci =
��

x− µ(t−i )
��
h(x, ti)− ȳi

�T�

q(x,t−i )
. (3.52)

These latter equations simply propagate the current density q(x, t−i ) through the nonlinear ob-

servation model. They contribute to a joint distribution, predicting where y is expected to be

based on q(x, t−i ), and then equations (3.48) and (3.49) simply condition the joint distribution

on the realisation of y. To implement the GP filter in the general setting, the expectations in

the above equations need to be approximated. When f(x, t) is differentiable, the expectations in

equation (3.46) can be simplified using the identity (appendix A.3.3)

�
f(x, t)(x− µt)

T
�
=

�
∇xf(x, t)

�
Σ(t). (3.53)

3.5 Assumed density filter

The derivation of the projection filter requires a large amount of technical differential-geometry.

This section shows how the projection filter can also be defined as the continuous time limit of

a simple forward algorithm applied to a linear discretisation of (2.21). First the proof of the

Fokker-Planck equation is given as of Jazwinski (1970) and Risken (1996). The proof helped

guide the novel derivation of the projection filter and is presented here for completeness, and to

show how only a simple projection step needs to be incorporated into the forward algorithm to

obtain the projection filter of the previous section.

3.5.1 Fokker-Planck revisited

Let p(x, t) denote the marginal density at time t over paths xt of (2.21). After some time step

δt, the marginal density p(x, t+ δt) is given by the Chapman-Kolmogorov equation

p(x, t+ δt) =

�
p(x, t+ δt|x�, t)p(x�, t)dx� (3.54)



Chapter 3. General framework 48

where the transition density p(x, t|x�, t�) may or may not have closed form. Alternatively, using

a first-order Taylor’s expansion of p(x, t+ δt) in terms of t, p(x, t+ δt) can be written

p(x, t+ δt) = p(x, t) +
∂p(x, t)

∂t
δt+ o(δt). (3.55)

For any function u(x), such that following integral exists, equation (3.55) leads to the relation

�
δt
∂p(x, t)

∂t
+ o(δt)

�

u(x)

=
�
p(x, t+ δt)− p(x, t)

�
u(x)

. (3.56)

Using equation (3.54), and using Fubini’s theorem to interchange the integrals, the right-hand-

side of (3.56) can be written

�
p(x, t+ δt)− p(x, t)

�
u(x)

=

��
u(x�)

�
p(x�,t+δt|x,t) − u(x)

�

p(x,t)

(3.57)

where the dummy variables x� and x have been exchanged in the inner expectation. Now assume

that u(x) is twice differentiable and vanishes at infinity. The first property allows us to use a

Taylor expansion of u(x�) around x, up to second-order terms. This allows the inner expectation

on the r.h.s. of (3.57) to be written

�
u(x�)

�
p(x�,t+δt|x,t) = u(x) +∇

T
xu(x)

�
δx

�
p(x�,t+δt|x,t)

+
1

2
tr
�
∇x∇

T
xu(x)

�
δxδxT

�
p(x�,t+δt|x,t)

�
+
�
o(δxδxT)

�
(3.58)

where δx := x
� − x denotes a realisation of xt+δt − xt. Now assume that δt is small enough

that (2.21) can be replaced with a first-order Euler approximation

x(t+ δt) = x(t) + δtg(x(t), t) +
�
δtD(x(t), t)ξt, (3.59)

where ξt =
� δt
0 dwt represents the system noise in the discretised model. From the Gaussian

properties of ξt, it holds that the expectations in equation (3.58) equate to

�
δx

�
p(x�,t+δt|x,t) = δtg(x(t), t) (3.60)

�
δxδxT

�
p(x�,t+δt|x,t) = δtD(x(t), t) + o(δt) (3.61)

�
o(δxδxT)

�
p(x�,t+δt|x,t) = o(δt). (3.62)

Inserting these into equation (3.58) leads to

�
u(x�)

�
p(x�,t+δt|x,t) = u(x) + δtgT(x(t), t)∇xu(x)

+δt
1

2
tr
�
D(x(t), t)∇x∇

T
xu(x)

�
+ o(δt) (3.63)

= u(x) + δt
←
Kg[u(x)] + o(δt). (3.64)
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Which, substituting back into (3.56), leads to the relation

�
δt
∂p(x, t)

∂t
+ o(δt)

�

u(x)

=

�
δt

←
Kg[u(x)] + o(δt)

�

p(x,t)

. (3.65)

Dividing through by δt, taking the limit δt → 0 gives

�
∂p(x, t)

∂t

�

u(x)

=

�
←
Kg[u(x)]

�

p(x,t)

. (3.66)

Performing integration by parts on the left hand side (using the dual-adjoint nature of
←
Kg and

→
Kg, and the fact that u(x) and p(x, t) both vanish at infinity) gives

��
∂t −

→
Kg

�
[p(x, t)]

�

u(x)

= 0. (3.67)

Since u(x) was arbitrary this proves (2.24).

3.5.2 Assumed density projection

In this section the projection filter of section (3.4) is derived from a different perspective. It is

motivated by the Bayesian approach to online learning of Opper (1998) and the more general

framework of Expectation Propagation Minka (2001). These algorithms were traditionally de-

signed for discrete-time variables, but by taking the limiting case, as in the exact inference prob-

lem of the previous section, one can obtain analogous (continuous-time) approximate inference

solutions. Importantly, the proof does not require the assumption of an canonical exponential

family.

Refer back to the Chapman-Kolmogorov equation given in (3.54). If equation (3.54)

is applied repeatedly, for general p(x, t + δt|x�, t), the marginal densities p(x, t) can quickly

become intractable. This means the marginals have either no closed form or one that is compu-

tationally inefficient to store. The idea of Assumed Density Filtering (ADF) is to assume that

p(x�, t) belongs to some tractable family of densities, and to project p(x, t+ δt) back onto this

family after the propagation step in (3.54). This leads to an approximate inference algorithm

that iterates between inference and projection, slowly moving along the discretised sequence of

times. A small time step is taken and the result is projected back onto the tractable family. In the

limit this results in an evolution equation for the vector of moment parameters analogous to the

projection filter of equation (3.42). More formally, Let φ(x) denote the sufficient statistic of a

family {q(x,γ(t)),γ(t) ∈ M}t∈[0,T ] with mean parameter γ(·). Assume q(x,γ(t)) is known.

The ADF algorithm first performs an update step:

p̂(x, t+ δt) =

�
p(x, t+ δt|x�, t)q(x�,γ(t))dx�. (3.68)
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It then performs a projection step:

γ(t+ δt) =

�
φ(x)p̂(x, t+ δt)dx. (3.69)

As mentioned previously, the projection step equates to minimising the relative entropy between

p̂(x, t + δt) and q(x,γ(t + δt)). The algorithm is initialised with γ(0) = �φ(x)�p(x,0) and

iterates through the update and projection steps to obtain marginal densities for all times on

the discretisation. If continuous-time solutions are required the discretisation step δt can be

made arbitrarily small. In this case, equation (2.21) can be replaced with the first-order Euler

approximation given in (3.59). For simplicity let φ(x) be real valued, the following argument

can be applied to each component of φ(x) individually. Assume φ(x) is twice differentiable.

Let us replace the arbitrary u(x) in the proof of the previous section with φ(x). Combing

the update and projection steps into one equation and using Fubini’s theorem to exchange the

integrals, we can write

γ(t+ δt) =

�
φ(x)

�
p(x, t+ δt|x�, t)q(x�,γ(t))dx�dx (3.70)

=

��
φ(x�)

�
p(x�,t+δt|x,t)

�

q(x,γ(t))

, (3.71)

where the dummy variables x
� and x have been exchanged. Applying a second-order Taylor

expansion to φ(x), the inner expectation in (3.71) equates to

�
φ(x�)

�
p(x�,t+δt|x,t) = φ(x) +∇

T
xφ(x)

�
δx

�
p(x�,t+δt|x,t)

+
1

2
tr
�
∇x∇

T
xφ(x)

�
δxδxT

�
p(x�,t+δt|x,t)

�
+
�
o(δxδxT)

�
(3.72)

where δx := x
� − x denotes a realisation of xt+δt − xt. Inserting equation (3.72) into equation

(3.71), and using the identities in equations (3.60), (3.61), and (3.62), leads to the relation

γ(t+ δt) =

�
φ(x) + δt

←
Kg[φ(x)] + o(δt)

�

q(x,γ(t))

(3.73)

= γ(t) +

�
δt

←
Kg[φ(x)]

�

q(x,γ(t))

+ o(δt). (3.74)

Rearranging, we obtain

γ(t+ δt)− γ(t)

δt
=

�
←
Kg[φ(x)]

�

q(x,γ(t))

+
o(δt)

δt
(3.75)

and in the limit δt → 0, this equation is equivalent to a one-dimensional version of the evolution

equation in (3.42). Given the above argument can be applied to each component of φ(x), the

proof is easily extended to obtain the full multivariate version of (3.42). This algorithm is also

initialised with γ0 =
�
φ(x)

�
p(x,0)

. It was not required to assume that the components of φ(x)
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vanish at infinity because integration-by-parts was not used.

3.6 Variational projection-smoother

In the variational formulation of chapter 3, the drift function g(x, t) was considered the primary

object and the marginal densities followed naturally from it, according to the Fokker-Planck

equation. This of course lead, for general g(x, t), to the problem of intractable marginal den-

sities, where marginal densities are in fact the desired output for most inference problems. In

this section the priority moves to obtaining tractable (approximate) marginal densities. This

can be done in one of two ways. The first approach simplifies the prior, such as linearising the

dynamics in the Extended Kalman filter (EKF). The second approach, the one followed here,

keeps the prior intact. Instead it weakens the constraints between the variational-drift and the

variational-marginals by coupling them through a projected Fokker-Planck equation. This al-

lows us to learn general drifts in tandem with approximate (tractable) marginals. This section

combines the projection filter formulated in the previous section with the variational machinery

of the general smoothing algorithm in chapter 3.

3.6.1 Surrogate-marginal free-energy approximation

For a vector of sufficient statistics φ : Rdx → Rdθ , let S = {p(·,γ),γ ∈ M} denote the

corresponding moment parameterised family of densities. Assume the true posterior in equation

(3.11) is known, but the resulting marginal densities are intractable. Then the projection filter

of section 3.4 provides a reasonable method for constructing approximate marginal-densities

in the set S. If the posterior drift g(x, t) in equation (3.11) is not known, then it needs to be

learned (at least approximately). This can be done in the variational framework by minimising

the free-energy in (3.5), but to compute the free-energy requires knowledge of the true marginal

densities of the SDE with drift g(x, t). As these are not available, it is reasonable to use the

surrogate marginal densities of the projection filter. For a fixed drift g(x, t), the free-energy

F(g) is approximated as follows:

1. Construct surrogate marginals {q̂(x,γ(t))}t∈[0,T ] using the projection filter solving the

moment evolution equation with γ(0) = γ0,

∂γ(t)

∂t
=

�←
Kg[φ(x)]

�
q̂(x,γ(t))

, t ∈ [0, T ]. (3.76)

2. Approximate the energy functions Esde(t) and Eobs(t) in equations (3.1) and (3.3), with

Êsde(γ(t)) =
1

2

�
||g(x, t)− f(x, t)||2D(x,t)

�

q̂(x,γ(t))
(3.77)

Êobs(γ(t)) =
1

2

�

i

δ(t− ti)
�
||yi − h(x, ti)||

2
R(x,ti)

�

q̂(x,γ(t))
. (3.78)
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These two approximations can be inserted directly into the generalised variational smoothing

algorithm of chapter 3. More precisely, define the free-energy approximation F̂(g,γ) such that

F̂(g,γ) =

� T

0
Êobs(γ(t)) + Êsde(γ(t))dt. (3.79)

Assume that g(·, t) is parameterised by some finite dimensional π(t). Then an approximate

Lagrangian L̂(π,γ,λ) can be constructed such that

L̂(π,γ,λ) = F̂(g,γ)−

� T

0
dtλT(t)

�
∂γ(t)

∂t
−

�
←
Kg[φ(x)]

�

q̂(x,γ(t))

�
. (3.80)

The difference between this Lagrangian and the one in equation (3.16) is the use of the energy

approximations in equations (3.77) and (3.78), instead of the exact ones in equations (3.1) and

(3.3), and the use of the projected Fokker-Planck constraints in equation (3.76), instead of the

full one in equation (3.15). Taking variations of (3.80) with respect to πt and γt leads to es-

sentially the same algorithm as in (3.3.1), but all expectations are now w.r.t. the projection filter

q̂(x,γ(t)) instead of the true marginal density.

3.7 Discussion

In this chapter the variational Gaussian framework of Archambeau et al. (2007a) was extended

to handle general drift functions and marginal densities parameterised by their moment vec-

tors. The algorithm can, in principle, accommodate higher-order exponential families or mixture

models. One key problem with this is the requirement of a drift function and marginal density

pair, g(x, t) and q(x, t), that can be coupled together according to equation (2.24). If this is

possible, it must also be computationally feasible to compute the moments of q(x, t) and to

rebuild q(x, t) from its moments. In the general case, matching marginal densities to drifts and

vice-versa is a non-trivial task. Though recent theoretical progress has been made for exponen-

tial families (Brigo, 2000) and mixture models (Brigo et al., 2003). A lot of the difficulty in the

continuous-discrete setting is not with the assimilation of data, but with capturing and describing

the densities involved, whether they be true posterior smoothing densities or approximations. As

the approximations become more and more complex, computational issues quickly converge in

terms of difficulty to the issues faced when dealing with the true posterior. In the second half

of the chapter is was shown how the strict requirement of an explicit drift-marginal pair can be

relaxed. This is through the use of a projected Fokker-Planck which can be derived simply as

the limit of an assumed density smoothing algorithm. These types of limiting proofs are not nec-

essarily the most rigorous of approaches, hence the development of more principled stochastic

analysis approaches to the proof of the Fokker-Planck equation (Øksendal, 2003), and the dif-

ferential geometric proof of the projection filter in section 3.4.2. But they are generally easier to

interpret intuitively than proofs that work completely in an infinite dimensional setting. Despite
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the improved flexibility that the projection method brings, it is conjectured that the family of

approximate drifts and family of surrogate marginals should be chosen wisely. If the projection

filter provides a poor approximation of the marginals, then the free-energy approximation may

be far from the true. This in turn could lead to highly erroneous posterior-drift approximations

and free-energy values.



Chapter 4

Variational drift approximations

Contribution

• This chapter makes use of the generalised framework and its projective relaxation to

propose novel drift functions for use in the variational smoothing algorithm. The drift

functions fall into two classes, approximate additive controls and time-varying gradient

systems. The approximate additive controls play upon the duality between the optimal

smoothing solution and the optimal paths generated in optimal-control. It is shown how

VPGA can be interpreted in the setting of optimal control. The second part of the chapter

introduces an alternative form of drift that focuses on regions around equilibrium points

of the Fokker-Planck equation. Both new classes of drift can be combined with the projec-

tion filter of chapter 3 to keep marginal densities in a tractable class. The final part of the

chapter considers the practical aspects of capturing and tracking higher order moments. A

specific class of skew density is proposed and the tractability of representing and learning

skewness in filtering and smoothing is considered.

4.1 Prior drifts with additive control

The formulation of the projection-filter weakens the restriction of requiring of an explicitly

defined drift-marginal pair. This section introduces a novel posterior-drift approximation com-

bining the general variational framework of chapter 3 with the projection-filter in chapter (3.4).

It does this by augmenting the prior drift with an additive posterior control and replacing the

moment constraints in chapter 3 by the weaker projected Fokker-Planck constraints in chapter

(3.4). The marginal densities are therefore constrained to evolve under the projected Fokker-

Planck equation and can lie in a parameterised family we choose. The additive control guides

paths towards the data, and it is shown how the optimal Gaussian smoothing algorithm of Ar-

chambeau & Opper (2011) in fact does exactly this, implicitly, through its variational parameters

and Lagrange multipliers. Indeed, the variational parameters have explicit forms that results in

moment equations that match those of the projection filter but with additive controls in the form

54
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FIGURE 4.1: Illustration of optimal control problem for motor control. The optimal path is the
velocity component x1(t) in black and the optimal control is the input force u(t) in blue.

of additive Lagrange multipliers learned on a backward pass. This section first discuss some

basic optimal control theory. It then formulates the variational smoothing problem in a similar

light.

4.1.1 Stochastic optimal control

A control is a sequence of actions with future consequences. Optimal control theory is a math-

ematical formulation for using controls to achieve a specified goal. A simple deterministic

example is shown in figure (4.1), in which the accelerator (blue) must be used to keep the speed

of the car (black) as close as possible to the target speed (dashed red) with some cost on accel-

eration. The example consists of a path x(t) = (x1(t), x2(t)) ∈ Rdx and a control u(t) ∈ R
evolving over time with linear dynamics ẋ1 = x2, ẋ2 = u and initial condition x(0) = (0, 0)T,

and, importantly, a cost function

C(u) =

� T

0
(x1 − z)2 + u2dt (4.1)

with target z(t). The optimal control problem is to minimise the cost C(u) over u whilst sat-

isfying the dynamics of the system. While the above example can be solved exactly, the opti-

mal control problem is intractable in the general setting where dynamics can be nonlinear and

stochastic. The following exposé of the general setting is adapted from Kappen (2011). Here

only finite-horizon control problems are considered, without end-conditions and with control

independent diffusions. More precisely, in the general setting the dynamics are determined by

an SDE

dxt = f(x,u, t)dt+
√
D(x, t)dwt, (4.2)
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for some control u(t) taking values in Rdu , and a cost function

C(u) =

�� T

0
dtE(x,u, t)

�
(4.3)

where the expectation is over all paths for some given initial condition. The optimal cost-to-go,

J(x, t), satisfies the Stochastic Hamilton-Jacobi-Bellman (HJB) Equation

− ∂tJ(x, t) = min
u

�
E(x,u, t) +

←
Kf(x,u,t)[J(x, t)]

�
, (4.4)

where
←
Kf(x,u,t)[·] is given by

←
Kf(x,u,t)[φ(x)] = f

T(x,u, t)∇[φ(x)] +
1

2
tr
�
D(x, t)

�
∇∇

T
�
[φ(x)]

�
. (4.5)

Now assume that f(x,u, t) is additive-linear in u, i.e.

f(x,u, t) = f(x, t) + u, (4.6)

and assume the energy E(x,u, t) is quadratic in u, i.e.

E(x,u, t) = V (x, t) +
1

2
u
T
D

−1(x, t)u. (4.7)

The system dynamics and cost are arbitrarily complex, but the control dynamics and cost are

linear and quadratic respectively. This is the special case considered in Kappen (2005a,b) where

a path integral formulation is possible. For this case, the HJB equation reduces to

− ∂tJ(x, t) = min
u

�
V (x, t) +

1

2
u
T
D

−1(x, t)u+
←
Kf(x,t)+u[J(x, t)]

�
. (4.8)

This quadratic form can be minimised w.r.t. u to give

u(x, t) = −D(x, t)∇xJ(x, t). (4.9)

This defines the optimal control for each x and t. Inserting u(x, t) back into the the HJB

equation gives

− ∂tJ(x, t) = V (x, t)−
1

2
∇

T
xJ(x, t)D(x, t)∇xJ(x, t) +

←
Kf(x,t)[J(x, t)]. (4.10)

Substituting J(x, t) = − logψ(x, t) yields

V (x, t)ψ(x, t) =
�
∂t +

←
Kf

�
[ψ(x, t)]. (4.11)
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The particular control problem, i.e. finite horizon and no end conditions, and some of the vari-

ables used, i.e. D−1
t for the quadratic cost, were chosen retrospectively, but this doesn’t detract

from the fact that equation (4.11) is equivalent to equation (3.10) for V (x, t) = U(x, t), and

equations (4.9) and (4.6) are, together, equivalent to equation (3.11). Connections between es-

timation and optimal control have received recent attention in Kappen et al. (2009), Kappen

(2011), Todorov (2008). From the above exposé, I would conjecture that optimal control is

a more general framework that subsumes estimation. Both can be formulated in a variational

framework and cost functions are generalisations of free-energies. The appeal of this “duality”

for us, is that any progress made with the general variational algorithm of chapter (3) is likely to

be transferable to problems in optimal control. Note that the variational algorithms are not ap-

plicable in control problems with state constraints because the true posterior has smaller support

than the approximation (Mensink et al., 2010).

4.1.2 Additive drift control

To strengthen the connection between estimation and control is illuminative to make the argu-

ment in reverse. The posterior drift given in equation (3.11) derived from exact inference can be

written in an additive control form

g(x, y) = f(x, t) + u(x, t) (4.12)

where u : Rdx ×R+ → Rdc defines a control vector. Let Q denote the measure over paths (with

respect to the Wiener measure) generated according to the SDE in equation (2.21) with drift

g(x, t) given by equation (4.12). Let q(x, t) denote the marginals of Q at time t. The relative

entropy KL[Q||Pprior] in equation (3.2) is then the integral of a free-energy function Esde(t) in

equation (3.1) given by

Esde(t) =
1

2

�
||u(x, t)||2D(x,t)

�

q(x,t)
. (4.13)

Thus, the prior drift f(x, t) has been removed from the free-energy and the resulting KL term is

simply a quadratic form of the control vector u(x, t). Inserting this into the exact Lagrangian in

equation (3.9) with U(x, t) = V (x, t), and taking independent variations w.r.t. q and u leads,

as expected, to the solution u(x, t) = D(x, t)∇ lnψ(x, t). While estimation can be considered

a special case of optimal control when inference is exact. This does not mean the same relation

holds for approximate inference and approximate control. In exact inference, both schemes

attempt to learn a “posterior” drift using a cost function that weights paths generated by equation

(2.21) using the corresponding drift. In the approximate inference setting, we can assume that

both schemes attempt to learn an approximate drift. For us, this means it is possible to approach

approximate inference in a control setting by simply augmenting the prior drift f(x, t) with

a suboptimal control û(x, t) which may be, for example, linear in x. This would result in a

free-energy that is quadratic in û(x, t). It appears that this is fundamentally different from the
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variational framework in chapter (3), in that the variational drift g(x, t) = f(x, t) + û(x, t)

contains the prior. This would cause significant problems in the general framework of chapter

(3) because we would expect the variational drift to produce marginal densities with intractable

forms. These problems can be remedied through the use of the projected Fokker-Planck equation

in section (3.6.1). The control û(x, t) can be used to keep the marginal densities close to a

tractable manifold and guide them towards the data. Though this approximation scheme appears

different from the VGPA algorithm of section (3.3.2). It can be shown how the VGPA algorithm

takes this exact form. Let us assume that D(x, t) = D(t). In the variational GP setting of

Archambeau & Opper (2011) and section (3.3.2), assuming state independent diffusions and

certain positive-definiteness and drift constraints are satisfied, the variational parameters A(t)

and b(t) can be written in explicit forms

A(t) =
�
∇xf

T(x, t)
�
q(x,t)

− 2D(t)Λ(t) (4.14)

b(t) =
�
f(x, t)

�
q(x,t)

−A(t)µ(t)−D(t)ν(t) (4.15)

where q(x, t) denote the marginal densities of the corresponding Gaussian process and ν(t) and

Λ(t) denote the Lagrange multipliers corresponding to the moments constraints in equations

(3.22) and (3.23). Inserting equations (4.14) and (4.15) back into equations (3.22) and (3.23)

yields

µ̇(t) =
�
f(x, t)

�
qt
−D(t)ν(t) (4.16)

Σ̇(t) =
�
∇xf

T(x, t)
�
qt
Σ(t) +Σ(t)

�
∇xf

T(x, t)
�
qt
+D(t)− 4D(t)Λ(t)Σ(t).(4.17)

These are exactly the GP projection-filter equations in section 3.4.4.1, but with additional con-

trols uµ(t) := D(t)ν(t) and uΣ(t) := 4D(t)Λ(t)Σ(t). In the VGPA algorithm, the variational

parameters account for the constraints and the observations. In this new light they act as con-

trols, both guiding the mean towards the data and updating the covariance, and ensuring the

approximate marginal densities remain on the Gaussian manifold. In figure 4.2 a simple toy

example shows how the VGPA algorithm can be applied directly to a control problem adapted

from the double-well inference problem. A target z(t) flips between one of two states {±1},

and an aim x(t) can move and be calibrated to the accuracy of a double-well equilibrium distri-

bution with a peak around each of the two possible states. As the target appears, the aim must

move as close to the target as possible in a mean-squared sense. The position of the target z(t)

can only be detected at intermittent time intervals, as would be the case with a digital sensor.

This problem cannot be solved exactly using optimal-control theory because of the nonlinear

dynamics of the double well, but it can be solved approximately by the VGPA algorithm. In

the example, the aim (black) wrongly guesses the initial state of the target. The control (blue),

which in the VGPA algorithm is the negation of the Lagrange multiplier ν(t), corrects this by

taking a highly negative initial value; forcing the aim across to the other well. The “squiggles”
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FIGURE 4.2: Plot of double-well target-practice. Target z(t) (dashed red), mean path µ(t)
(black), confidence region (shaded), and Lagrange multiplier ν(t) (blue).

in ν(t) in between the sensor measurements are due to the mean value of the aim trying to revert

to the mean value of the double-well equilibrium distribution. The control ν(t) stops this when

the target is detected, keeping the aim on the correct state until the target is about to jump to

the alternative state and ν(t) compensates. It is not a “real-time” control problem, because the

control ν(t) anticipates the movement of the target, but it is an optimal Gaussian solution to the

control problem in a free-energy sense.

4.1.3 Motion equations

In the example in the previous section, the control ν(t) lay in the “velocity” space of the system.

This is a general feature of the Lagrange multipliers ν(t) and Σ(t) in equations (4.16) and

(4.17), where they occupy the same space as µ̇(t) and Σ̇(t). In many control problems with

a physical interpretation, the control lies in the “acceleration” space of the system where they

can act as external forces. Assuming still the form D(x, t) = D(t), systems with Wiener

fluctuations acting as forces, can be represented through SDEs of the form

dxt = dvtdt (4.18)

dvt = f(xt,vt, t)dt+
√
D(t)dwt, (4.19)

where xt is a position vector, vt a velocity vector, and dwt the standard Wiener process in Rdv .

Paths xt are now once differentiable, in contrast to the nowhere-differentiable paths of vt. This

formulation matches a noisy, nonlinear version of the motor control problem in figure 4.1, as

well as animal locomotion models (Collins & Stewart, 1993) and other Dynamic Movement

Primitives (DMPs) for human and robot motion (Schaal, 2006). The lack of system noise in

the deterministic relation between dx and dv means that a free-energy approach is not directly

applicable. This does not pose a problem, because we are not attempting to approximate this
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relation. Indeed, for an approximating process Q with drift g(xt,vt, t), dxt = dvtdt, the

relative entropy between the prior process Pprior with drift f(xt,vt, t) and the approximation Q

is simply

KL[Q||Pprior] =
1

2

� T

0
dt
�
||g(x,v, t)− f(x,v, t)||2D(t)

�

q(x,v,t)
, (4.20)

where q(x,v, t) denotes the approximating marginal density at time t (appendix A.3.4). While

higher-order fluctuations such as “jerk” can be incorporated in a similar fashion, the dimension

will increase with every new generalised motion. A bi-product of the introduction of the higher

order motions is the smoothing effect on the motion of the position variable xt. Indeed, the

classical approach to incorporating coloured noise into state-space models and filters uses a

similar method (Anderson & Moore, 1979). Explicit examples of this are presented in section

5.3.1. Continuing the idea of “duality”, we could conjecture a direct link between solutions to

optimal-control control problems involving higher-order derivatives of motion and inference in

estimation problems involving time-correlated noise.

4.2 Gradient systems

Gradients systems, with constant diffusions, provide particular drifts for which it is possible to

obtain explicit forms for the steady-state distribution under the Fokker-Planck equation. They

are well established in physics, control, and mathematics (Caughey & Ma, 1982, Fuller, 1969,

Prato, 2006). This section introduces an alternative form of drift that focuses on regions around

equilibrium points of the Fokker-Planck equation. Time-varying gradient systems are used to

build well behaved vector fields on the space of probabilities. These too can be combined with

the projection filter of the previous section to keep marginal densities in a tractable family. In

this section it is assumed that D(x, t) = �I for some � > 0, though the exposition is extendable

to any positive definite constant matrix D.

4.2.1 Steady-state potentials

In this section it is assumed that the drift g(x, t) = g(x) is time-invariant. Steady-steady

or equilibrium distributions form an integral part of any analysis involving the Fokker-Planck

equation. They constitute the equilibrium points of the Fokker-Planck equation and (equiva-

lently) form the ground-state eigenfunctions of the Fokker-Planck operator with zero eigenvalue.

More precisely, let p0(x) denote the probability density function that solves the Fokker-Planck

(ground-state) equation
→
Kg[p(x, t)] = 0 (4.21)

where, for some � > 0 and drift g(x),
→
Kg denotes the Fokker-Planck operator

→
Kg[p(x)] = −∇

T
�
p(x)g(x)

�
+ �

1

2
tr
��

∇∇
T
��
p(x)

��
. (4.22)
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The conditions p ≥ 0 and
�
pdx = 1 are assumed to be implicit. In most applications involving

gradient systems, the drift g(x) is given and the problem centres around finding the steady-state

p0(x). In this thesis a different situation presents itself. The variational algorithm learns drift

functions and marginal densities in tandem. It can either restrict the class of drift functions

(e.g. to be linear) or it can restrict the class of marginal densities (e.g. to be Gaussian). But no

matter which part of the model is restricted (drift or marginal), the other part of the model must

follow suit because the variational algorithm requires a drift-marginal pairing that is at least

close enough for the projection filter to be efficient. With this in mind, let us, unconventionally,

assume p0(x) is known and solve (4.21) for g(x). It is not difficult to show the solution, which

will be denoted g0(x), is given by

g0(x) = �
1

2
∇ log p0(x). (4.23)

Indeed, for completeness,

→
Kg0 [p0(x)] = −∇

T
�
p0(x)g0(x)

�
+ �

1

2
tr
��

∇∇
T
��
p0(x)

��
(4.24)

= −�
1

2
∇

T
�
p0(x)∇ log p0(x)

�
+ �

1

2
tr
��

∇∇
T
��
p0(x)

��
(4.25)

= −�
1

2
∇

T
�
∇p0(x)

�
+ �

1

2
tr
��

∇∇
T
��
p0(x)

��
(4.26)

= 0. (4.27)

For cleanliness, let us move the 1
2 into the constant �. Recapping the above, a drift-marginal

pairing (g0, p0) has been defined that satisfies the ground-state version of the Fokker-Planck

equation. For example, a quick way to construct a time-invariant linear model is to insert a

Gaussian potential into (4.23), i.e. to define a drift

g(x) := ∇ logNx(m,C) (4.28)

= −
1

2
∇||x−m||

2
C (4.29)

= −C
−1

x+C
−1

m (4.30)

= Ax+ b (4.31)

where A := −C
−1 and b := C

−1
m denote canonical drift-parameters. By definition, A is

negative definite and ẋ = g(x) defines a stable (deterministic) system.

4.2.2 Parameterised vector fields

Let S = {pγ(·),γ ∈ Ω} denote a parameterised family of densities for some Ω ⊂ Rn. Using

the set S, let us generate a set of drift functions G(S) := {gπ(·),π ∈ Ω} such that

gπ(·) := �∇x log pπ(·), ∀g ∈ G(S), � > 0. (4.32)
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In words, a set of drift functions G(S) has been created from a set of densities S such that each

pπ ∈ S is the equilibrium distribution of a drift gπ ∈ G(S), for some temperature parameter �.

Though it looks similar to the backward map between moment and dual parameters in equation

(A.8), it is important not to confuse the two. The derivative in (4.32) is with respect to x, and

both pπ(·) and gπ(·) are maps on x. The Fokker-Planck equation defines a vector field on

the space of probability density functions. Regions around the equilibrium points of the vector

field are of importance, in a similar way to finite dimensional differential analyses. Changing

π affects the flow of the vector field implied by the Fokker-Planck equation. But as long as π

remains in Ω, then gπ ∈ G(S) will always have an equilibrium distribution pπ ∈ S. The above

analysis is not sufficient to solve the drift-marginal pairing problem for the variational smoother.

This is because the presence of data will always result in a non stationary posterior distribution,

and thus any credible approximation should consist of a time-varying drift function to allow for

representation of the data.

4.2.3 Temporal-variant drifts

Assume an initial density p0(x) is given and let us project p0(x) onto S to give an initial density

pγ(0)(x) with parameter γ(0) ∈ Ω. From the previous section, we know the pair (gγ(0), pγ(0))

satisfy the functional
→
Kgγ(0)

[pγ(0)] = 0. (4.33)

Now assume that we are presented with a time-varying parameter π(t) such that π(t) ∈ Ω for

all t ∈ [0, T ] and π(0) = γ(0). Starting with initial condition p(x, 0) = pγ(0)(x), consider

solutions to the Fokker-Planck equation

�
∂t −

→
Kgπ(t)

�
[p(x, t)] = 0. (4.34)

Obviously the initial condition p(x, 0) = pγ(0)(x) lies in S, and for any future time t > 0 it

holds that gπ(t) has an equilibrium density in S. Therefore it is reasonable to assume that the

solution p(x, t) remains in S, or at least close to S, for all t ∈ [0, T ]. To make sure of this the

projected Fokker-Planck equation in section 3.4.2 can be used. Any solutions that drift off S

are instantly projected back on. If it helps, the reader can consider a finite dimensional analogy.

Consider the differential equation

dx

dt
= x(t)− π(t) (4.35)

where x(t) is a position vector and π(t) ∈ V is drift parameter lying in some subspace V for

all t ∈ [0, T ]. With the initial condition x(0) = π(0), the systems begins in equilibrium with

x(0) ∈ V . As time evolves, π(t) moves, but if π(t) remains in V then so does x(t). This is

because the velocity vector x(t) − π(t) lies in V for all t ∈ [0, T ]. For the more general case
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we do not have the luxury of a Euclidean subspace V , but instead a submanifold. The use of the

projection filter helps ensure that the solutions remain in the desired space.

This shows similarities to the ensemble method used in Friston (2008b). The difference

is that here the a drift is designed to generate a fixed form of marginal density and in Friston

(2008b) an arbitrary form of marginal density is used to guide an ensemble.

4.3 Tracking higher order moments

Let us return to the moment equation of (3.13). Using this equation it is possible to track the

evolution of any moment, or in fact the expectation of any twice differentiable function, under

the marginal density q(x, t), generated according to (2.21) with arbitrary drift g(x, t). Note that

the same result can be obtained using Itô’s lemma (Jazwinski, 1970, lemma 4.2). Computing

evolution equations for higher order moments can be quite intensive, so let us focus attention

on a necessary condition to obtain a positive result with regards to the main hypothesis of the

section - the ability to track properties of the third order moment or skewness. For any random

vector x let m1, m̄2, and m̄3 denote the first moment, the second central moment, and the third

central moment, respectively, given by

m1 := �x� (4.36)

m̄2 :=
�
(x−m1)(x−m1)

T
�

(4.37)

m̄(ijk)
3 :=

�
(x(i) −m(i)

1 )(x(j) −m(j)
1 )(x(k) −m(k)

1 )
�
, i, j, k ∈ Ndx . (4.38)

Element notation is used for the third central moment to avoid the need for tensor notation.

Now assume that the random vector x represents the position x(t) at time t of paths generated

according to (2.21). The following proposition is well known, but generally only computed up

to the first and second moment (Jazwinski, 1970, Maybeck, 1979).

Proposition 4.1. Let p(x, t) be the one-time marginal density generated according to SDE

(2.21) with drift g(x, t) and diffusion map D(x, t). Then the moments (m1(t), m̄2(t), m̄3(t))

of p(x, t) evolve according to

ṁ1(t) =
�
g(x, t)

�
p(x,t)

(4.39)

˙̄m2(t) =
�
g(x, t)

�
x−m1(t)

�T
+
�
x−m1(t)

�
g
T(x, t) +D

2(x, t)
�

p(x,t)
(4.40)

˙̄m(ijk)
3 (t) =

�

l∈{i,j,k}

�
g(l)(x, t)

�

n∈{i,j,k}/l

�
x(n) −m(n)

1 (t)
�
�

+
�

l∈{i,j,k}

�

n∈{i,j,k}/l
w∈{i,j,k}/{l,n}

�
D(nl)(x, t)

�
x(w)

−m(w)
1 (t)

��
, (4.41)
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for i, j, k ∈ Ndx , with initial conditions

m1(0) = �x�p(x,0) (4.42)

m̄2(0) =
��

x−m1(0)
��
x−m1(0)

�T�

p(x,0)
(4.43)

m̄(ijk)
3 (0) =

�
�

l∈{i,j,k}

�
x(l) −m(l)

1 (0)
�
�

p(x,0)

, i, j, k ∈ Ndx . (4.44)

The proof of this is given in appendix A.3.5. It is important to note that p(x, t) is the

true marginal density generated by g(x, t). So for general drifts, p(x, t) will be characterised

by higher order moments than the first three presented here, and this is merely a snap-shot

of the low order statistics of p(x, t). Most importantly, to compute the expectations in the

proposition requires knowing the full marginal density p(x, t). Luckily for us, the projection

filter approximation in section (3.5.2) allows us to simply replace p(x, t) with an approximation

q(x, t). This is also the heuristic, but effective, approach of assumed density filtering (Kushner,

1967). If we assume q(x, t) to be a normal density, which will be denoted qN (x|µ(t),Σ(t)),

then we can utilise the relations µ = m1 and Σ = m̄2, and obtain assumed Gaussian filtering

solutions in terms of evolution equations for µ(t) and Σ(t), identical to the projection filter

evolution equations in section 3.4.4.1. Projection onto the Gaussian manifold constrains m̄3 to

be a zero tensor for all time and likewise ˙̄m3. Therefore ˙̄m3 does not feature in the GP projection

filter evolution equations. The rest of the section considers how the evolution of the third order

cumulant can be used and incorporated into filtering and smoothing.

4.3.1 Multivariate skew-normal distribution

The skew normal distribution is an extension to the normal distribution that allows odd-ordered

moments and cumulants to be captured through a shape or skewness parameter. Its original

multivariate formulation, the one used here, was introduced in Azzalini & Valle (1996). It

consists of a normal (or Gaussian) distribution “reshaped” by the use of a cumulative-normal

distribution. More precisely, let us define the density

pSN (x|µ,Λ,γ) = 2φΛ(x− µ)Φ(γT(x− µ)) (4.45)

where

φΛ(x) = |2πΛ|
− 1

2 exp
�
−

1

2
||x||

2
Λ

�
(4.46)

and

Φ(x) = (2π)−
1
2

� x

∞
exp

�
−

y2

2

�
dy. (4.47)

The parameters (µ,Λ,γ) are referred to as the location, dispersion, and shape or skewness

parameter, respectively. Note the dimensions Λ ∈ Rdx×dx , µ ∈ Rdx and γ ∈ Rdx . Setting

γ = 0, it holds that Φ(0) = 1
2 , and the standard normal density pN (x|µ,Λ) is recovered. One
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of the appealing properties of the Gaussian density is the ease at which one can move between

parameters and moments. Indeed, in the Gaussian setting they are one in the same, with the

identities µ = m1 and Σ = m̄2 being used in the GP projections. For the skew-normal density,

things get slightly more involved. To use skew-normal densities in a filtering algorithm, it must

be possible to reconstruct the parameters of a skew-normal density from its set of finite-order

moments, in an analogous fashion to the way the Gaussian is characterised by m1 and m̄2. This

can be done through the use of the cumulant generating function (CGF). The CGF, KSN (z), for

the multivariate skew-normal density pSN (x|µ,Λ,γ) is given by

KSN (z) = µT
z+

1

2
z
T
Λz+ log

�
2Φ(δTz)

�
(4.48)

where the vector δ is given by

δ =
Λγ�

1 + γTΛγ
. (4.49)

This leads to a set of cumulants (shown in appendix A.3.8),

κ1 = µ+ (2/π)1/2δ (4.50)

κ2 = Λ− (2/π)δδT (4.51)

κ(ijk)3 = (2/π3)1/2(4− π)δiδjδk, i, j, k ∈ Ndx . (4.52)

Importantly, the first three cumulants of any distribution equate to the first moment, the sec-

ond central moment, and the third central moment, respectively, (Abramowitz & Stegun, 1964,

26.1.13). Thus, in an analogous fashion to the Gaussian relations µ = m1 and Σ = m̄2, we can

compute the parameters (µ,Λ,γ) of a skew-normal density pSN (x|µ,Λ,γ) from the moments

(m1, m̄2, m̄
diag
3 ) using the identities

δ = π1/2

�
m̄

diag
3

21/2(4− π)

�1/3

(4.53)

µ = m1 − (2/π)1/2δ, (4.54)

Λ = m̄2 + (2/π)δδT (4.55)

γ =
Λ

−1δ

(1− δTΛ−1δ)1/2
, (4.56)

where m̄
diag
3 denotes the diagonal of m̄3 and the cube-root in (4.53) is taken component-wise.

Note how equations (4.54)-(4.55) reduce to the Gaussian relations for δ = 0.

4.3.1.1 Why is skewness useful?

From an application perspective, the skew-normal distribution allows us to represent properties

of models that the Gaussian cannot. In nonlinear filtering and smoothing, beliefs can quickly be-

come non-Gaussian, as in the opening example in section 1.3, and additional descriptive power
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can enable complex posteriors to be captured more accurately. From a theoretical perspective,

the skew-normal distribution will always be more optimal than the Gaussian distribution, no

matter what criteria of optimality is used. This is seen simply through the relation

inf
µ,Λ,γ

Ω(pSN (x|µ,Λ,γ)) ≤ inf
µ,Λ

Ω(pSN (x|µ,Λ,0)) = inf
µ,Λ

Ω(pN (x|µ,Λ)) (4.57)

for any objective Ω. With regards to more complicated distributions the skew-normal distri-

bution retains some simplistic properties. The dimension of its parameter space is only larger

than that of the Gaussian by a linear order of magnitude in dx. This is very important for high

dimensional problems, where a general dx × dx × dx-dimensional skew-tensor makes mapping

forward and backward between parameters and cumulants computationally expensive. On a

similar note, it is identifiable, allowing us to move between unique parameters and unique dis-

tributions characterised by the first three cumulants. Skew-normal distributions are also closed

under linear transformations, which proves they are also closed under marginalisation. These

properties are very important for reshaping and propagating beliefs. Its cumulant generating

function and its entropy have tractable forms, though not quite as user friendly as the Gaussian.

Most importantly, through the use of the above properties, the skew-normal distribution can be

integrated into a variational framework in a nice and complete fashion (Ormerod, 2011). Despite

the above, not all the properties of the skew normal density are useful for filtering and smoothing.

Most importantly, they are not closed under conditioning. This prevents direct application of the

“project-condition” step in the discrete-time assumed density filter in section 2.5.2. Returning

to the general setting, certain approximations have been developed to remedy the conditioning

problem with generally small numerical discrepancies between the exact density and the approx-

imation (Azzalini & Capitanio, 1999). Also, conditioning is not used explicitly in variational

smoothing and it should be possible to emulate the updates in skew parameters through a set

of jump equations. While there may be more suitable skewed distributions, general exponential

family skewed distributions would involve difficult normalisation constants, and it can be shown

(L. M. Castro & Arellano-Valle, 2008) how most skew-normal extensions are equivalent to the

form given in (4.45).

4.3.2 Skewed filtering and smoothing

Assumed density filtering with Gaussian assumption has a long history dating back to Jazwinski

(1970), Maybeck (1979). Assumed density filtering with a skewed assumption does not have

much history at all. Julier (1998) discussed the issue of capturing skewness in filtering, with the

hope of applying the unscented transform (UT) to the problem. Improved UTs came out of this,

ones that better represent higher-order statistics, but no “higher-order filters” per say. In Naveau

et al. (2005) a skewed Kalman filter, utilising the properties of the skew-normal distribution,

was introduced. The dynamics involved are linear and restricted to ensure the filter retains a

skew-normal form. In short, there does not appear to be a general skew filter in the literature
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that can deal with nonlinear dynamics and observation models. It is believed that this is down

to a combination of several reasons. The first is that to represent skewness in a general setting

requires the tracking and storing of a very large three dimensional skew-tensor. This leads to

algorithms that do not scale well with dimension, as was noted in Julier (1998). The other reason

is that when moving beyond the Gaussian assumption the standard approach is to use Monte

Carlo methods such as the particle filters discussed in section 2.5.1. Particle filters can estimate

any order of cumulant from the particle set, though the accuracy of the estimate can seriously

degrade with the order of the cumulant. A third reason maybe that the Gaussian assumption is

sufficient for many applications. An approximation of the mean value, and a confidence region

provided by the covariance, will be enough to deal with most prediction problems. But this

doesn’t lessen the significance of the fact that the true filtering solution is the marginal density

conditioned on the data up to that time, and that this conditional density will not be Gaussian in

all nonlinear settings. While the Gaussian assumption may be sufficient for some applications, a

more involved assumption should produce filter approximations that can capture the true filtering

density more accurately in a nonlinear setting. Investigations into skewed smoothing is even less

present in the literature. The above discussion highlights several important points:

1. To produce efficient skew filters and smoothers, one needs to deal with the high-dimensional

skew-tensor required to represent third order cumulants.

2. For skew filters and smoothers to be used in practice, they must be at least as efficient as

“state-of-the-art” particle filters and smoothers and other Monte Carlo methods.

3. Skew filters and smoothers must come with a range of numerical approximation schemes

for computing expectations, as in the approximate Gaussian case.

4. Skew-normal filters and smoothers must be able to over come the lack of closure under

conditioning of the family skew normal densities.

The first point can be remedied, in part, by using the skew-normal formulation in Azzalini &

Valle (1996). The shape parameter γ can be computed from just the diagonal vector m̄diag
3 of

the third-order cumulant. This means we do not need to compute and store the whole third-order

cumulant, and only require its diagonal vector to rebuild a skew-normal density, given the first

and second-order cumulants as well. The second point has been tested somewhat in a varia-

tional context. In Ormerod (2011) a skew-normal variational approximation is tested against

MCMC methods on generalised linear mixed models (Zhao et al., 2006) and linear regression

with inhomogeneous noise. The skew-normal method is shown to be significantly faster than

the MCMC method, and no reason can be seen why the same result would not occur in the fil-

tering and smoothing setting. Indeed, approximate recursive filtering and smoothing algorithms

rely upon successive approximations, either through particle approximations or tractable pro-

jections. Therefore, it is conjectured that any differences witnessed in a static setting would be
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magnified when the approximation methods are transferred to temporal problems with repeated

approximations. For the third point, it appears that there is a relatively simple trick to make all

the numerical methods used in assumed Gaussian filtering applicable to the skew-normal setting

without too much additional computational cost. While the fourth point could cause significant

problems at some point, it should be possible to work around it in a variational context.

4.3.2.1 Skew-GP projection filter

Starting from equations (4.53)-(4.56) we immediately encounter a problem with our current

choice of parameterisation. Namely, if δ(t) is considered a function of time we encounter sig-

nificant problems for δ(t) ≈ 0. More precisely, from equation (4.53) we have

δ̇(i) =
c1 ˙̄m(iii)

3

3δ2
, i ∈ Ndx , (4.58)

using the constant c1 = π1/2(21/2(4 − π))−1/3. Equation (4.41) can be used to replace ˙̄m(iii)
3

with evolution equations in terms of the drift g(x, t) and diffusion D(x, t), but the resulting

equations would be highly unstable for δ close to zero. This problem can be remedied by keep-

ing the evolution equations in terms of the moments (m1, m̄2, m̄
diag
3 ) and re-parameterising

the choice of marginal density to be pSN (x|m1, m̄2, m̄
diag
3 ). As opposed to trying to rewrite

the evolution equations (4.39)-(4.41) in terms of the minimal sufficient parameters (µ,Λ, δ).

The explicit form for pSN (x|m1, m̄2, m̄
diag
3 ) can be obtained simply by inserting equations

(4.53)-(4.56) into definition (4.45). Replacing the expectations in equations (4.39)-(4.41) with

expectations w.r.t. a skew-normal approximation qSN (x|m1(t), m̄2(t), m̄
diag
3 (t)), yields

ṁ1(t) =
�
g(x, t)

�
qSN (x|m1(t),m̄2(t),m̄

diag
3 (t))

(4.59)

˙̄m2(t) =
�
Mg(x, t)

�

qSN (x|m1(t),m̄2(t),m̄
diag
3 (t))

(4.60)

˙̄mdiag
3 (t) =

�
W

diag
g (x, t)

�

qSN (x|m1(t),m̄2(t),m̄
diag
3 (t))

(4.61)

where, for shorthand,

Mg(x, t) = g(x, t)
�
x−m1(t)

�T
+
�
x−m1(t)

�
g
T(x, t) +D(x, t) (4.62)

W (iii)
g (x, t) = 3g(i)(x, t)

�
x(i) −m(i)

1 (t)
�2

+ 3D(ii)(x, t)
�
x(i) −m(i)

1 (t)
�
. (4.63)

In general, the expectations in equations (4.59)-(4.61) will have to be computed numerically.

This can be done simply by moving the skewness of the marginal density from the marginal

into the transformation. From the form of the skew-normal density, given in equation (4.45) as

the product of a normal density and a cumulative normal distribution, this results in a Gaussian

expectation of a skewed transformation, as opposed to a skew normal expectation of the original
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transformation. More precisely, for any function V (x) it holds that

�
V (x)

�
pSN (x;µ,Λ,d)

=
�
Ṽ (x;µ,d)

�
pN (x;µ,Λ)

(4.64)

where

Ṽ (x;µ,d) := 2V (x)Φ
�
d
T(x− µ)

�
. (4.65)

Therefore, taking a skew-normal expectation of V (x) is equivalent to taking a normal expecta-

tion of Ṽ (x;µ,d). Then any of the standard methods for approximating Gaussian expectations

(discussed in section 5.4.1) can be used. While the skew projection-filter equations in (4.59)-

(4.61) were designed for use in the variational smoothing algorithm of section 3.6, they can also

be used as a “original” assumed density filter and be used to assimilate data. The data can be

assimilated in approximately in a moment matching fashion inspired by EP. At an observation

time ti with observation model p(yi|x), define the (possibly intractable) density

p̃i(x) ∝ p(yi|x)qSN
�
x|m1(t

−
i ), m̄2(t

−
i ), m̄

diag
3 (t−i )

�
. (4.66)

Then the update equations for
�
m1(ti), m̄2(ti), m̄

diag
3 (ti)

�
are given by

m1(ti) =
�
x
�
p̃i(x)

(4.67)

m̄2(ti) =
��

x−m1(ti)
��
x−m1(ti)

�T�

p̃i(x)
(4.68)

m̄(iii)
3 (ti) =

�
(x(i) −m(i)

1 )3
�

p̃i(x)
, i ∈ Ndx . (4.69)

These equations could also be approximated using the previously proposed numerical method,

once for the normalisation constant in (4.66) and again for each of the moments in equations

(4.67)-(4.69).

4.3.3 Variational skew-GP smoothing

To use skew normal approximations for marginal densities in the variational algorithm of chapter

3, requires us to find a drift that generates skew-normal marginals. Using the gradient-system

theory of section 4.2 we can define a drift with skew-normal steady-states. With a skew-normal

initial state and time-varying drifts that evolve in the set of skew-normal gradient systems, the

marginal densities produces under the Kolmogorov forward equation (2.24) should remain the

class of skew-normal densities. If they do not, then the projection filter of section (3.6) can be

used to project them down onto the skew-normal manifold. For simplicity, let us assume the

diffusion matrix D(x, t) is the identity matrix times a positive constant �.
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4.3.3.1 Skew-normal gradient system

Let g(x) denote the drift defined by

g(x) = ∇x log pSN (x|b,−A
−1,d) (4.70)

= ∇x log φ−A−1(x− b) +∇x log Φ(d
T(x− b)) (4.71)

= A(x− b) +
φ(dT(x− b))

Φ(dT(x− b))
d. (4.72)

From section 4.2, we know the drift g(x) has a steady-state in the skew-normal family. This

form of drift has been studied in a more general setting with a view to finding steady-state

densities for the a class of nonlinear feedback systems and their use to stochastic optimal con-

trol (Liberzon & Brockett, 2000). It is clear that g(x) reduces to a standard linear drift in

equation (3.21) that generates Gaussian marginal densities for d = 0. Let us replace g(x, t)

with a time-dependent alternative, where the time dependency comes through the parameters

(A(t),b(t),d(t)). We are proposing to use g(x|A(t),b(t),d(t)) as a variational drift approxi-

mation, and qSN as a skew-normal marginal density approximation, in the variational smoothing

framework of chapter 3. This requires qSN to satisfy the moment equations (4.67)-(4.69) for

g(x, t) = g(x|A(t),b(t),d(t)). Inserting g(x, t) into equation (4.59) yields

ṁ1(t) =
�
g(x, t)

�
qSN (x,t)

(4.73)

= A(t)
�
m1(t)− b(t)

�
+ d(t)

�
φ̃
�
d
T(t)

�
x− b(t)

���

qSN (x,t)
(4.74)

where

φ̃(x) :=
φ(x)

Φ(x)
. (4.75)

We see for d = 0 how equation (4.74) reduces to the Gaussian mean evolution equation (3.22)

in the original variational Gaussian algorithm of section 3.3.2. The expectation in (4.74) is just a

one-dimensional integration problem and can therefore be approximated relatively easily using

the same ideas as in section 4.3.2.1. Though more involved, the other evolution equations can

be derived in a similar way.

4.4 Discussion

The connection between exact inference and optimal control is simple to show in a variational

formulation. The connection between variational approximate inference and suboptimal control

is not so obvious. In the first part of this chapter, section 4.1 showed how the mean and covari-

ance evolution equations of the VGPA algorithm of Archambeau et al. (2007a) can be derived

in the language of optimal control. In summary:
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• Using a linear drift approximation and exact Gaussian marginal constraints in the vari-

ational smoothing algorithm of section (3.3.2), is equivalent to equipping the prior drift

with an approximate additive control and projecting the marginal constraints onto the

Gaussian manifold.

In exact inference it is the Lagrange multiplier ρ(x, t) in equation (3.9) for the Fokker-Planck

equation constraint, corresponding to the optimal cost-to-go J(x, t), that becomes the additive

control. What we see from equations (4.16) and (4.17), is that in the variational GP approxima-

tion it is the Lagrange multipliers for the weakened moment constraints in equation (3.22) and

(3.23), the projected Fokker Planck constraints, that become the controls in the suboptimal vari-

ational GP approximation. This connection has not been made before. It should extend to more

general families and future work would look at extending the variational smoothing algorithm

to general control problems.

Gradient systems are common in many areas of physics, mathematics and engineering.

This is mainly due to the simple expression of there steady-state distributions. The usual prob-

lem we are confronted with when dealing with diffusion processes is that we are presented with

a drift function and diffusion matrix and the goal is find either the marginal densities at particu-

lar times of the equilibrium density of the system. In this chapter, in section 4.2 the situation is

reversed. In the variational smoothing algorithm it is simple to choose an approximating class

for the marginal densities of the smoothing posterior, but it is difficult to find a form of drift that

generates marginals in this class. Through the use of gradient systems, a range of well behaved

drift functions can be derived for which we know the steady states. Each drift can be used to

parameterise the Kolmogorov forward equation. The approximating drift must evolve over time

to be able to be able to approximate the nonstationary nature of the posterior that follows from

assimilating data. As the variational drift changes, so does the vector field over the space of

probability densities and the marginal densities flow towards the equilibrium density of the cor-

responding drift. The unknown drift and marginal densities can be coupled together using the

projected Fokker-Planck equation in the variational smoother and, in theory, they can be learned

in tandem.

The skew-normal density represents a simple deviation from normality, whilst retaining

many desirable properties. In section 4.3 it was shown how properties of the third order cumulant

can be tracked in the setting of diffusion processes. Using the ideas of the projection filter

in section 3.5.2, the evolution of an intractable posterior can be projected down onto its first

three moments. It is shown how the skew-normal density can be parameterised fully by its

first three moments, and this leads to it being a natural choice for non-Gaussian filtering and

smoothing in continuous time. The ability to use it in the projected Fokker-Planck equation,

make it possible to use it in the variational smoothing algorithm of chapter (3.3), or at least

the variational smoothing algorithm with projected constraints in section 3.6. The skew-normal

density leads naturally to a linear drift function with an additive skewness potential, and reduces
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to the linear case as the skewness of the drift lends to zero. The first moment equation in the

skew-normal variational smoother is derived in section 4.3.3.1 and future work will look at

completing these derivations.



Chapter 5

Optimal Gaussian smoothing

Contribution

• The variational GP algorithm is considered in the context of other temporal GP machine

learning algorithms. The formal relations between variational GP smoothing and GP re-

gression, kernel regression, and assumed Gaussian smoothing are identified. Additionally,

improvements to the gradients method used to implement the variational GP method are

proposed. These improvements utilise the Hessian of the free energy which has yet to be

used in variational GP smoothing.

5.1 Introduction

Independently, both Gaussian mixture models and exponential families have universal approx-

imation abilities to any continuous density function (Mclachlan & Peel, 2000, Wainwright &

Jordan, 2008, respectively). The Gaussian density sits at the intersection of both these families;

being a Gaussian mixture model with only one component and an exponential family density

with only linear and quadratic sufficient statistics. Therefore any progress made with the trusty

Gaussian is relevant to both the more general settings. Even with its downsides (e.g. its in-

ability to capture multi-modality) the humble Gaussian is a worthy choice of parametric model

for any investigation. All distributions are dominated by their first and second moments, and

when learning is based upon a single (partially observed) sample-path, the descriptive power of

a Gaussian is in many cases powerful enough to accurately track the position of such a path.

In this chapter, the variational GP algorithm is considered in the context of other GP

smoothing algorithms such as GP regression, kernel regression, and assumed Gaussian smooth-

ing. There are some key reasons for doing this. For linear temporal problems, i.e. one di-

mensional ordered input, kernel methods and simple stationary GP regression do not have the

capability to represent the complex a priori dynamics and observation models that can be dealt

with easily in a Kalman smoothing framework. Most kernel and GP regression methods do not

scale well with the number of observations because of the required inversion of a covariance

73
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matrix, though this can be reduced to the same complexity as a Kalman smoother if Markov as-

sumptions are made. While the variational GP algorithm reduces to Kalman smoothing when the

dynamics and observation model are linear, neither kernel methods, GP regression, or Kalman

smoothing have the capability to deal with nonlinear dynamics or observation models. Kernel

methods and GP regression can easily handle higher order noise correlations without having

to increase the dimension of the problem, as Kalman and variational GP smoothing methods

would. Kernel methods and GP regression can also easily handle high dimensional spatial in-

put. For algorithms analogous to Kalman and variational GP smoothing methods, i.e. under the

assumption of continuous and ordered input, this would require the definition and integration of

a high dimensional stochastic partial differential equation. This is not the Fokker-Planck equa-

tion, but an equation describing the interplay between the input spatial variables and the output.

Additionally, kernel methods can handle a range of loss functions beyond squared loss. These

types of generalised costs on paths would be required for a more general relation to optimal

control. If there is any hope of synergism, then the formal relations between all the methods

needs to made explicit. This is done, somewhat, in an finite dimensional setting in Steinke &

Schölkopf (2008). Here a similar approach is used, and extended, to discuss the key concepts

in the general setting. To make the investigation tractable, and so as not to confuse notation,

analysis is restricted to temporal problems.

The second part of the chapter looks at the recently proposed Assumed Gaussian smooth-

ing algorithm. While this algorithm is fast and highly stable, it is restricted to one forward and

backward pass of the data. Some deterministic analysis for the GP projection filter on the dou-

ble well problem is given, and the extension to the incorporation of more general deterministic

analysis from dynamical systems theory is discussed. The analysis goes some way to explaining

why the GP projection smoother does not well represent the transitions.

5.2 Kernels, covariance operators, and linear models

The connection between regularisation operators and reproducing kernels is well known (Smola

et al., 1998), as is the connection between reproducing kernels and Gaussian processes (Bertinet

& Agnan, 2004, van der Vaart & van Zanten, 2008). Recently, all the objects discussed in the

introduction of this section were considered under a unified framework (Steinke & Schölkopf,

2008) specialised to the finite dimensional setting, i.e. a finite discretisation of time. The fol-

lowing section builds upon this work, making certain extensions to the form of linear state space

model considered and trying to work in a more general setting as much as possible. The solution

of the variational GP algorithm is a linear state space model describing the evolution of a Gaus-

sian process. The hope is that the connections made will facilitate the transfer of ideas between

the variational GP method and standard GP and kernel regression.
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5.2.1 Regularisation operators

In Steinke & Schölkopf (2008) the abstract notion of a covariance operator is placed at the

centre of the unified theory, and all ideas such as GP’s and kernels bloom from the definition of

the covariance operator like leaves. A different approach is taken here. One of the leaves that

comes off the definition of the covariance operator is the notion of a regularisation operator, but

the map from covariance operator to regularisation operator is not unique. Thus, if we place the

covariance operator at the centre of the theory, there will exist ambiguity about which regulari-

sation operator we are working with. This abstract map can be seen in concrete form if one tries

to rebuild a linear state space model from a Gaussian process. The following general exposition

is brief. It is given to highlight the relations in the general (possibly infinite dimensional) set-

ting. We can afford this brevity because, in the following section, the variational GP solution is

considered in the discrete time setting, where a lot of the technical machinery can be ignored.

Definition 5.1 (Regularisation operator (Scholkopf & Smola, 2001)). A regularisation operator

R is defined as a linear map from a dot product space of functions into a dot product space.

Though this is quite a general definition, regularisation operators will almost always be a

linear combination of differential operators, for example

Rx = (∂2
t + w2)x. (5.1)

In this example, the equation Rx = 0 defines the dynamics, and x(t) the path of an undamped

harmonic oscillator. More generally, regularisation operators are used to encode properties

of an underlying system. Given some data (yi, ti)mi=1, it is simple to see how minimising the

functional

I(x) =
m�

i=1

ConvexLoss(yi, x(ti)) + λ||Rx||L2 , (5.2)

will prioritise solutions that meet the properties encoded in the equation Rx = 0. The set of

solutions Null(R) = {x|Rx = 0} is defined the null space of R. It would be nice if Null(R)

contained a unique solution, but generally Null(R) defines a subspace, e.g.

Null(∂t) = {x|x(t) = constant, ∀t}. (5.3)

Let R∗ denote the adjoint of R, e.g. �x,Rx��L2 = �R∗x, x��L2 , and let (R∗R)† denote the

Moore-Penrose pseudo inverse.

Definition 5.2 (Covariance operator). If (R∗R)† is linear, continuous, positive, self-adjoint and

finite trace, then (R∗R)† defines a covariance operator, and is denoted

C = (R∗
R)†. (5.4)
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The above definition is over-cautious. Linearity, positiveness, and self adjointness fol-

low by definition of R∗R. Continuity and finite trace follow from the pseudo inverse op-

eration, i.e. boundedness. There is no harm in including these properties in the definition

because together they define an abstract covariance operator, without the need for a regulari-

sation operator. For ease of exposition, let us now specialise to L2([0, T ]) with inner product

�x, x�L2 =
� T
0 x(t)x�(t)dt. The covariance operator C can be interpreted in concrete form

through the use of a symmetric positive definite kernel k(s, t) such that

Cx(·) =

�
k(·, t)x(t)dt. (5.5)

Let δt denote the evaluation operator centered at t such that, for all x ∈ L2 and t ∈ [0, T ],

�δt, x�L2 = x(t). (5.6)

Then it holds that

k(s, t) = �δs, Cδt�L2 . (5.7)

Using k(s, t) it is possible to define a Gaussian process {xt}t∈[0,T ] with mean µ(t) = �xt� and

covariance k(t, s) such that

�xt� =
�

i

αik(ti, t), αi ∈ R. (5.8)

�
(xt − �xt�)(xs − �xs�)

�
= k(t, s). (5.9)

Or to define a reproducing kernel Hilbert space (H, k) such that

H = {x|x =
�

i

αik(ti, t), αi ∈ R} (5.10)

where S denotes the completion of the set S. Importantly for the regularisation problem in (5.2),

(H, k) has an inner product define �·, ·�k such that

�x, x��k := �x, C−1x��L2 = �Rx,Rx��L2 , (5.11)

and also

�x, k(t, ·)�k = x(t) (5.12)

||x||k = ||Rx||L2 . (5.13)

Equation (5.12) is referred to as the reproducing property. Equation (5.13) is the fundamental

link between kernel methods and regularisation network, and goes some way to explaining why

kernel methods work. The completion in equation (5.10) is an abstract operation and, in fact,
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becomes a space of functions through the reproducing property (van der Vaart & van Zanten,

2008). The above outline hardly touches the surface of the theory underlying regularisation

operators R, Gaussian processes GP(µ, k), and reproducing kernels k(s, t). The point to take

away from this is the relation R → C → k. This is in contrast to the approach in Steinke &

Schölkopf (2008) and more like the one in Steinke & Schlkopf (2006). A differential equation

generates a regularisation operator, which leads to a covariance operator, which leads to the

common positive definite methods of machine learning. In Steinke & Schlkopf (2006) they

discuss learning the properties of a differential equation from noisy data through approaches

such as kernel learning (Argyriou et al., 2005). This seems an ill posed problem given the

non unique nature of the map from covariance operator back to regularisation operator, i.e.

R = (C
1
2 )†. A better posed problem might be to learn the kernel through methods that learn

dynamics of a (stochastic) differential operator, such as the Kalman filter or variational methods

covered here.

5.2.2 Linear state space models

This section puts the ideas of the previous section into concrete forms. The regularisation op-

erator is defined from a linear state space model. The exposition is made simple through a

discretisation of time. While the solutions of the variational GP algorithm are given in con-

tinuous time form, they have to discretised in implementation. This ensures that the following

ideas are applicable to the variation GP solutions. In contrast to Steinke & Schölkopf (2008),

here time varying models are considered. Consider a linear model described by the following

equations

dx(t) = A(t)x(t)dt+ b(t) +
√
D(t)dw(t), x0 ∼ N (m0,C0). (5.14)

It is well known that the mean function µ(t) and covariance function Σ(t, s) of the process

described by equation (5.14) can be written in integral form (appendix A.3.6)

µ(t) = e
� t
0 A(s)ds

m0 +

� t

0
e
� t
s A(u)du

b(s)ds (5.15)

Σ(s, t) = e
� s
0 A(u)du

C0e
� t
0 AT(u)du +

� t∧s

0
e
� s
u A(v)dv

D(u)e
� t
u AT(v)dvdu. (5.16)

Note, differentiating µ(t) and Σ(t, t) with respect to t generates the marginal density evolution

equations in (3.22) and (3.23). Equations (5.15) and (5.16) will not have a closed form due

to the time dependency of the drift and diffusion parameters. Therefore, we require numerical

integration to obtain µ(t) and Σ(t, s) restricted to a ascending finite grid of times T = {ti ∈

[0, T ]}. This can be done by defining a discrete time process {xi}i∈NN such that

xi+1 = Ã(i)xi + b̃(i) +
�
D̃(i)ξi, x0 ∼ N (m0,C0), (5.17)
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where ξi ∼ N (0, I) and

Ã(i) := e
� ti+1
ti

A(s)ds (5.18)

b̃(i) :=

� ti+1

ti

e
� ti+1
s A(u)du

b(s)ds (5.19)

D̃(i) :=

� ti+1

ti

�
e
� ti+1
s A(u)du

�
D(s)

�
e
� ti+1
s A(u)du

�T
ds. (5.20)

It can be shown that the mean and covariance of xi matches xt on the grid T . Define A(i : j) =

A(i)A(i− 1) · · ·A(j+1)A(j) for i ≥ j, and note (A(i : j))T = A
T(j : i). Then the discrete

time mean µ(i) and covariance Σ(i, j) can be written

µ(i) = Ã(i : 0)m0 +
i�

l=1

Ã(i : l)b̃(l) (5.21)

Σ(i, j) = Ã(i : 0)C0Ã
T(0 : j) +

i∧j�

l=1

Ã(i : l)D̃(l)ÃT(l : i). (5.22)

Alternatively, now that we have discretised the system we can deal with it as a finite dimensional

Gaussian process. For X = vec(x0, . . . ,xN−1), equation (5.17) can be written

ξ = R̃X− u (5.23)

where ξ = vec(ξ�0, ξ0, . . . , ξN−1), u = vec
�
C

− 1
2

0 m0, D̃
− 1

2
0 b̃0, . . . , D̃

− 1
2

N−1b̃N−1

�
, and R̃ de-

notes the difference operator

R̃ =





C
− 1

2
0

−D̃
− 1

2
0 Ã0 D̃

− 1
2

0

· · · · · ·

−D̃
− 1

2
N−1ÃN−1 D̃

− 1
2

N−1




. (5.24)

Then, it can be easily checked from equations (5.21) and (5.22) that

vec(µ) = R̃
−1

u (5.25)

Σ(i, j) =
�
R̃

T
R̃
�−1
block[i,j]

. (5.26)

in analogy to definition 5.2. So from equation (5.14) restricted to a finite grid T , we have

constructed a Gaussian process in equations (5.21) and (5.22), and a regularisation operator in

equation (5.24), and we know the two relate through equations (5.25) and (5.26). All that is left

is for us to build a function space. This is relatively simple in the discrete time setting. First, let

us define the covariance operator

C̃ =
�
R̃

T
R̃
�−1

. (5.27)



Chapter 5. Optimal Gaussian smoothing 79

Now let us define the vectors δi = ei ⊗ Idx such that, for any block matrix B,

δTi B = Bblock[i,:], Bδj = Bblock[:,j], δTi Bδj = Bblock[i,j]. (5.28)

The objects δi act as evaluation maps for finite dimensional spaces of vector valued functions, in

analogy to the evaluation maps δt. Let us define a positive definite matrix valued kernel function

K(i, j) = Σ(i, j) on T . It is simple to see from equation (5.26) that

K(i, ·) = δTi C̃, K(·, i) = C̃δi, K(i, j) = δTi C̃δj , (5.29)

in analogy to equation (5.7). Due to dealing with finite dimensional paths X ∈ RN×dx , any

innerproduct on the space of paths RN×dx defines an RKHS. Thus, we simply define �·, ·�K

such that

�X,X�
�K = X

T
C̃
−1

X = X
T
R̃

T
R̃X = ||R̃X||

2, (5.30)

in analogy to equation (5.11). From the relation Σ(i, j) = K(i, j) and the identities in (5.29), it

holds that

�X,K(·, i)�K = X
T
C̃
−1

K(·, i) = X
Tδi = xi (5.31)

�K(·, i),X�K = K(i, ·)C̃−1
X = δTi X = x

T
i , (5.32)

proving the reproducing property of K. So from the the linear state space model in equation

(5.14), we have defined a discrete time regularisation operator R̃, a Gaussian process GP(µ,Σ),

and reproducing kernel K. Interesting future directions would be to look at the possibility of

characterising the complexity of the solutions of the variational GP algorithm, using kernel ap-

proaches for studying function class complexity. Note that this would require additional material

to deal with the non stationary time varying nature of the kernel K(s, t). In the other direction,

there is the important point that the kernel K(s, t) encodes properties of the prior non linear

model. In the variational GP algorithm, the data has already been assimilated, so K(s, t) cannot

be used as a standard prior kernel. The use of non stationary kernel and covariance function in

machine learning is rare, and the use of nonlinear differential operators is non existent due to

the break down of the theory in section 5.2.1, most importantly that ||Rx|| would define a norm

in the general setting. Therefore, the variational GP algorithm and the kernel and covariance

interpretations above, suggest a possible, though at present computationally intensive, way to

incorporate non stationarity and nonlinearity into standard kernel methods.

5.2.3 Stationary linear model

In certain cases, zero-mean GPs in infinite dimensional spaces can be converted into explicit

state-space forms. Some of the content here is taken from Hartikainen & Särkkä (2010). The

most common types of covariance functions used in Gaussian processes learning include the
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class of Matérn kernels and the squared exponential kernel. The Matérn kernel is given by

k(σ,l,ν)Matern(τ) = σ2 2
1−ν

Γ(ν)

�√
2ν

l
τ

�ν

Kν

�√
2ν

l
τ

�
, (5.33)

where Kν is a modified Bessel function of second kind Abramowitz & Stegun (1964), Γ denotes

the Gamma function, and (σ, l, ν) are magnitude, length, and smoothness parameters, respec-

tively. Let us define λ =
√
2ν
l > 0, and let D(σ, λ, ν) denote the spectral density

D(σ, λ, ν) =
2σ2√πλ2νΓ(ν + 1

2)

Γ(ν)
. (5.34)

For ν = 1
2 , the GP GP(0, k

(σ,λ, 12 )
Matern), which will be referred to as a Matérn-1 GP, is generated

according to the steady-state of the SDE

dxt = −λxtdt+
�
D(σ, λ, 12)dwt. (5.35)

For ν = 3
2 , the GP GP(0, k

(σ,λ, 32 )
Matern), which will be referred to as a Matérn-3 GP, is generated

according to the steady-state of the SDE

dxt =

�
−2λ −λ2

1 0

�
xtdt+

�
1

0

��
D(σ, λ, 32)dwt, (5.36)

where xt = (x(0)t , x(1)t ) is a two dimensional state-vector. For ν = 5
2 , the GP GP(0, k

(σ,λ, 52 )
Matern),

which will be referred to as a Matérn-5 GP, is generated according to the steady-state of the

SDE

dxt =





−3λ −3λ2 −λ3

1 0 0

0 1 0



xtdt+





1

0

0




�
D(σ, λ, 52)dwt, (5.37)

where xt = (x(0)t , x(1)t , x(2)t ) is a three dimensional state-vector. New dimensions need to be

introduced to represent the higher-order noise correlations that follow from smoother covariance

functions, i.e. ν > 1
2 . The primary direction x(1) describes the position of paths. The new

dimensions can be thought of as generalised coordinates; controlling position, velocity, and

higher-order motions (x, x�, x��, · · · , x(k)) (Friston et al., 2008). As the smoothness parameter

is taken to infinity, ν → ∞, we obtain the squared exponential kernel,

k(σ,l)SE (τ) = σ2 exp

�
−

τ2

2l2

�
. (5.38)

A process with covariance function k(σ,l)SE is infinitely differentiable, meaning it cannot be rep-

resented by a finite-dimensional Markov process. This can be remedied by taking an arbitrarily

large finite-dimensional approximation, where it was shown in Hartikainen & Särkkä (2010)
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that dimension six appears to give reasonable approximation errors. The above exposition has

skipped the definition of abstract regularisation operators and covariance operators, and has

moved directly from covariance function to state space model. While the operations in this sec-

tion can be reversed to obtain the corresponding covariance function from the given Markov

process, the available state-space models that lead to closed-form covariance functions are few

and far between, when compared to the range of general Markov processes covered in the previ-

ous chapters. It is not known how easily the above methods can be extended to multidimensional

processes, therefore it is assumed the above methods are restricted to only one dimension. The

above methods constrain the linear dynamics and diffusions considerably and are also only ap-

plicable to time-invariant systems. To generate the corresponding RKHS, let us restrict attention

to the Matérn-1 GP. Consider the SDE in equation (5.35) with λ > 0 and D(σ, λ, 12) = D > 0

for some constant D. The corresponding process is (with rescaling) a Matérn-1 GP GP(0, k)

with covariance function k(s, t) = D
2λ exp(−λ|s − t|) (Rasmussen & Williams, 2005). If the

noise fluctuations are removed from equation (5.35) then we can define a differential x� = dx
dt

of x, and a space

X =
�
x ∈ L2

���||x� + λx||2L2 + 2λ|x(0)|2 < ∞

�
(5.39)

where || · ||L2 is the norm in L2([0, T ],R). The constraint on the initial condition has been

introduced to ensure all paths begin in R, but apart from this no other assumptions are made

on x(0). It is possible to show that X is a Reproducing kernel Hilbert space (RKHS) with

reproducing kernel

k(s, t) =
exp

�
− λ|s− t|

�

2λ
. (5.40)

Though this is a standard result (see Parzen (1961), Kailath (1971), and Bertinet & Agnan

(2004)), an exact proof could not be found and one is provided in appendix A.3.7. Equation

(5.40) is often referred to as the Laplace kernel, and is equivalent (with rescaling) to the co-

variance function of the Matérn-1 GP GP(0, k). The above formulation can be extended to

higher-order differential operators, i.e. ||
�

i λi∂
(i)
t x||2L2 , to obtain analogous versions of the

general Matérn kernels in section 5.2.3 (see Bertinet & Agnan (2004)). While we benefit a

lot from using a compact1 input space [0, T ], it prevents us from using the Fourier analysis ap-

proach of (Rasmussen & Williams, 2005, section 6.2.1) to move between kernels and differential

operators.

In summary, explicit connections between state space models, covariance functions, and

reproducing kernels can only be done in continuous time for a few specific state space models.

This prevents an explicit interpretation, in terms of GPs and function spaces, of the general

solutions of the variational GP algorithm in continuous time form. While this doesn’t pose too

much of a problem given the discretisation method of the previous section, it is desirable to have

results that do not depend on the graining of the discretisation. One possible future direction,
1i.e. closed and bounded (Kolmogorov & Fomin, 1975).
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is the idea of integrating the noise correlation capturing abilities of the above kernels into a

variational formulation. To integrate higher level noise correlations into the state space model

requires an increase in dimension, as discussed in section 4.1.3. It might be possible to use the

variational GP approximation at one level, and then collect all the higher level correlations into

an upper level and apply GP regression with a higher order Matérn kernel. At present though,

this is pure speculation. Another future investigation be would to formulate the above relations

in algorithmic terms. Kalman smoothing methods avoid explicit matrix inversion and therefore

are computationally superior for linear time invariant state space models. But to incorporate

higher order noise correlations requires integer multiplications of the dimension of the problem.

Thus there must be a point at which noise correlations become too much, and superiority returns

to kernel based methods.

5.3 Assumed Gaussian smoothing

The previous section dealt with relations between some important properties of the model. While

it was suggested that the analysis in section 5.2.2 could be applied to the variational GP approx-

imation, i.e. post learning, inference was not considered per say. This section considers the

two main alternative methods to the variational GP algorithm for providing GP posterior solu-

tions. The first approach in section (5.3.1) considers general GP regression as is seen in machine

learning. This method relies upon the general rule for conditioning a Gaussian measure. While

general covariance functions can be used, the method is a more general version of the one en-

countered in Rasmussen & Williams (2005). The method is phrased in the language of vector

valued functions, is restricted to temporal input (though almost all the workings hold for more

general inputs), and can handle general linear observation operators. Despite these differences,

it should still be considered the standard GP regression method of machine learning when com-

pared to other methods. The second approach is a continuous time smoothing algorithm that

subsumes many approximate smoothing methods. It is an assumed density smoothing algorithm

with Gaussian assumption, but a continuous time formulation only recently derived (Särkkä &

Sarmavouri, 2011). It subsumes all related extended and unscented continuous time smoothing

methods Särkkä (2010). Importantly, it is very fast and stable in experiment.

5.3.1 Temporal GP regression

Temporal Gaussian process models are characterised by a mean function µ(·) and covariance

function Σ(·, ·), and subsume the class of linear state-space models. Importantly, while they

can represent higher-order noise fluctuations than the ones generated by the Wiener process in

(2.21), they are not able to represent state-space models with nonlinear drifts. All GP inference

models can be phrased in the language of the Gaussian conditioning theorem A.2, and solved

using the conditioned Gaussian equations in (A.18). Let us restrict attention to the case of
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temporal GP models over paths x(·), with inputs t ∈ [0, T ] and output Rdx . Let us assume we

have a prior Gaussian process GP0(µ0,Σ0) over paths x(t), with vector valued mean µ0(t) and

matrix-valued covariance function Σ0(s, t). Let us assume we have a linear observation model

yi = H(ti)x(ti) + ν(ti) + ηi, i = 1, . . . ,m, (5.41)

where H(t) ∈ Rdy×dx and ν(t) ∈ Rdy are continuous-time functions, and ηi is an Rdy -valued

Gaussian random-variable with mean vector zero and variance matrix Ri. We can write the

observation-model generating the full dataset Y = vec(y1, . . . ,ym) in the form, corresponding

to equation (2.2),

Y =
m�

i=1

�δti ,Hx+ ν�L2 ⊗ ei + η, (5.42)

where �·, ·�L2 is the inner product in L2([0, T ];Rdy), δs(·) is the evaluation mapping centered

at s, ei is the ith standard basis in Rdy , ⊗ denotes the Kronecker product, and η is an Rm×dy -

valued Gaussian random-variable with mean-vector zero and block-diagonal variance-matrix R,

such that (R)block[i,i] = Ri. In a strict sense, the delta function δs is not part of L2. However,

the notation is widely used. It is simple to show that Y has mean µY ∈ RdY and covariance

ΣYY ∈ RdY×dY given by

µY =
m�

i=1

H(ti)µ0(ti) + ν(ti)⊗ ei (5.43)

ΣYY =
m�

i,j=1

H(ti)Σ0(ti, tj)H
T(tj)⊗ eie

T
j +R, (5.44)

or

�yi� = H(ti)µ0(ti) + ν(ti) (5.45)

�yiy
T
j � − �yi��yj�

T = H(ti)Σ0(ti, tj)H
T(tj) +Riδij , (5.46)

where δij denotes the Kronecker Delta. The cross-covariance Σx(·)Y is given by

Σx(·)Y =
m�

i=1

Σ0(·, ti)H
T(ti)⊗ e

T
i . (5.47)

Inserting these into theorem A.2, leads to a posterior Gaussian process GP(µ,Σ) mean µ(t)

and covariance Σ(s, t) given by

µ(t) = µ0(t) +Σx(t)YΣ
−1
YY(Y − µY) (5.48)

Σ(s, t) = Σ0(s, t)−Σx(s)YΣ
−1
YYΣYx(t). (5.49)
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As a specialisation of the above, consider the GP prior GP0(0, k) with zero mean and covariance

function k(s, t). Also, define dx = dy = 1, H(·) = 1, ν(·) = 0, and Ri = r > 0. Then it holds

that µY = 0, and ΣYY = K+ rIm, where K is the kernel matrix (K)ij = k(ti, tj), and Im is

the identity matrix in Rm×m. The cross-covariance becomes

Σx(·)Y =
m�

i=1

k(·, ti)⊗ e
T
i =: kT (·). (5.50)

The posterior mean and covariances in equations (5.48) and (5.49) then become

µ(t) = kT (t)
�
K+ rIm

�−1
Y (5.51)

Σ(s, t) = k(s, t)− kT (s)
�
K+ rIm

�−1
k
T
T (t), (5.52)

which together describe the standard univariate GP regression model (Rasmussen & Williams,

2005). The same formulation is easily done for the multidimensional case dx = dy > 1,

(Alvarez et al., 2011). For this case, the Matérn covariance functions in section 5.2.3 can be

used to construct the prior GP0(0, k
(σ,l,ν)
Matern). The problem with this general approach is the

requirement to invert the matrix ΣYY. If a Matérn kernel is used, then the inference problem

could be phrased as a Kalman smoothing problem using the prior state space models in section

(5.2.3), which can be solved without computing Σ
−1
YY explicitly. This is not obvious in the

above formulation. We see from section 5.2.3 that each kernel in this setting must choose a

drift parameter λ and stick to it for all time t ∈ [0, T ]. The method has no concept of the prior

dynamics in the variational model.

5.3.2 Gaussian projection-smoother

With the simplicity and speed of implementation of the GP projection filter in section 3.4.4.1,

it would be desirable to obtain a smoothing backward pass that retained some of the qualities

of the projection method. This can in fact be done, again by taking the continuous time limit

of a discrete time assumed density smoothing algorithm with Gaussian assumption. It leads

to a very fast and stable algorithm. Assume the Gaussian projection filter p(x,γt) of section

(3.4.4.1) has already been computed and let µ(t) and Σ(t) denote its mean and covariance. Let

µ̄(t) and Σ̄(t) denote the mean and covariance of a Gaussian smoothing density p(x, γ̄t), such

that γ̄t = vec(µ̄, Σ̄) solve (backwards in time)

∂µ̄t

∂t
=

�
f(x, t)

�
p(x,γt)

+
�
f(x, t)(x− µt)

T +D
2(x, t)

�
p(x,γt)

Σ
−1
t (µ̄t − µt) (5.53)

∂Σ̄t

∂t
=

�
f(x, t)(x− µt)

T +D(x, t)
�
p(x,γt)

Σ
−1
t Σ̄t

+Σ̄tΣ
−1
t

�
(x− µt)f

T(x, t) +D(x, t)
�
p(x,γt)

−
�
D(x, t)

�
p(x,γt)

. (5.54)
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This continuous-time smoother algorithm was originally formulated in Särkkä & Sarmavouri

(2011). An important point to note is how the expectations are w.r.t. the filter density p(x,γt)

and not the smoothing density p(x, γ̄t) as might be expected. It turns out that this property leads

to very good stability properties. In contrast, smoothing algorithms incorporating expectations

over a smoothing density derived from the exact Kolmogorov equations (Leondes et al., 1970)

exhibit highly unstable solutions (Särkkä & Sarmavouri, 2011). The method can incorporate

the prior dynamics, but is still restricted to one forward and backward pass. An interesting

generalisation would be to find a continuous time expectation propagation algorithm. This idea

is not that radical an idea, given how the projection filter is essentially the continuous time

limit of an assumed density filtering algorithm, and assumed density filtering seeded expectation

propagation (Minka, 2001). This topic is discussed in more detail in section 6.1.3.

5.3.3 Unimodal forward-backward approximations

This section provides evidence why Gaussian approximations with only one forward and back-

ward pass of the data are doomed to failure in highly non linear models with sparse observation

times. This in turn fuels the argument that multiple iterations such as in the variational GP

approximation, or EP-smoothing approximations are superior methods. The Assumed Gaus-

sian smoother of the previous section subsumes, extended, unscented, and other cubature or

quadrature based continuous time assumed Gaussian smoothing methods (Särkkä & Sarmavouri,

2011). In this section the exact expectations are computed for the double well problem with iden-

tity observation operator. This removes the need for additional numerical methods, and therefore

the results here apply to all the assumed Gaussian smoothing methods that use the previously

mentioned numerical approximations for computing Gaussian expectations. In figure 5.1 the

Gaussian projection filter (GPF) of section 3.4.4.1, the Gaussian projection smoother (GPS) of

section 5.3.2, and the variational GP smoother (VGPS) of section (3.3.2) are all applied to the

double well problem with a single transition between the wells. It is easily observed how the

GPF algorithm is not able to capture the transition. The GP filter subsumes extended Kalman

filtering (EKF), and this same result was seen using EKF on the double well problem in (Eyink

et al., 2004, Miller et al., 1999). What the results here show, is that this inability to capture

the transition is not down the linearisation approximation method used in EKF, it is due to the

simple one sweep form of the algorithm. In the plot it can be seen that the GPS algorithm better

captures the transition than the GPF due to its reconsideration of the data. It is also clear that

the VGPS algorithm captures the transition a lot better than the both GPS and GPF. This is due

to the repeated passes of the variational algorithm as it minimises the free energy. To extend the

GPS smoother to repeated passes, as opposed to its simple one forward and one backward pass,

then a suitable energy objective needs to be defined.
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FIGURE 5.1: Caption

5.3.3.1 Double-well Filter Transitions

The reason for the GPF not picking up the transition can be explained using deterministic anal-

ysis. Inserting f(x) = 4x(θ − x2) a D(x, t) = D into (3.45) and (3.46) gives a pair of coupled

nonlinear differential equations

µ̇ = 4µ(θ − µ2
− 3σ) (5.55)

σ̇ = 8(θ − 3(σ + µ2))σ +D (5.56)

with corresponding Jacobian

JGP
filter(µ, σ) =

�
4(θ − 3(µ+ σ)) −12µ

−48µσ 8(θ − 3(2σ + µ2))

�
. (5.57)

Necessary conditions for (5.55) and (5.56) to be in equilibrium are given by

µ = 0,±
√
θ − 3σ (5.58)

σ =
(θ − 3µ2)±

�
(3µ2 − θ)2 + 3D

2

6
. (5.59)
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Inserting µ = 0 into (5.59) gives σ� :=
θ+

�
θ2+ 3D

2

6 (using σ ≥ 0), and the Jacobian at this point

is given by

JGP
filter(0, σ

�) =



 2(θ −
�
θ2 + 3D

2 ) 0

0 −8
�
θ2 + 3D

2



 . (5.60)

Therefore (µ, σ) = (0, σ�) is a stable equilibrium for all time and all θ,D > 0. Inserting

µ = ±
√
θ − 3σ into (5.59) gives σ�� := θ ±

�
θ2 − 3D

4 . Thus (±
√
θ − 3s, σ��) is only an equi-

librium for D < 4θ2

3 . The above analysis can be seen visually in figures 5.2. For low diffusion
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FIGURE 5.2: Double-well mean-plots for projected forward equation for varying diffusion
rates.. Each plot contains trajectories starting from initial conditions in the interval m0 =

−1.5 : 0.05 : 1.5.

rates, the mean path is very sensitive to initial conditions around zero. When compared to fig-

ure 5.1, the inability of GPF to capture the transition makes perfect sense. The mean path of

GPF is simply following the underlying dynamics of the prior. Though softened, this problem

still permeates through to the smoothing pass. This validates the argument that deterministic

smoothing methods that rely upon the simple forward-backward algorithm of exact inference,

are dysfunctional. Forward and backward messages interact, just as in discrete time expectation

propagation (Heskes & Zoeter, 2002), and multiple passes are required. Note that stochastic

methods do not necessarily suffer from the same problem because they are not restricted to a

simplified class, such as unimodal densities. The above analysis also suggests some rich pick-

ings for future work. One of the appealing properties of deterministic approximate inference

methods in this setting, is the differential equation forms of solutions. This opens up a huge

resource of deterministic methods for analysing the solutions. Possible future work would ex-

amine which properties of the drift transfer to the variational solution. For polynomial drifts,

it is simple to write the solutions in terms of a coupled set of differential equations describing

the motion of the mean and covariance parameters over time. For a particular drift, this type
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of analysis could be used a priori to gauge if a Gaussian approximation is sufficient for the

problem.

5.3.4 Free energy comparisons

It is interesting to get an idea of how alternative GP methods perform in a free energy sense.

This can be done, at least approximately, by initialising the variational method with alternative

methods and observing how solutions behave as a iterations are made. The experiments in

this section produce three interesting conclusions. Firstly, it appears that the variational GP

method initialised with a highly naive method convergences to the the optimal GP solution just

as quickly as if initialised with a more involved method. Secondly, despite the global speed

of convergence, more involved initialisations appear to find near optimal solutions in linear

regions. For a large amount of the allocated time interval, paths lie within such regions around

equilibrium points. This suggests that it might be possible to used suboptimal methods, such as

GPS, to find near optimal solutions for the majority of the time interval, and then apply adaptive

variational methods just to nonlinear regions, identified by tracing the free energy as a function

of time. Thirdly, key to the free-energy formulation is the need for the approximating process

to be absolutely continuous with respect to the prior process. If the prior is a one dimensional

process driven by a Wiener process dwt, then only the Matérn-1 GP from the above processes

(with some rescaling) is absolutely continuous with respect to the prior. For the higher order

Matérn GPs, the state-space vector moves in dimensions the prior cannot, and therefore the free

energy for any Matérn GP with ν > 1
2 will be infinite. This property is experienced in the

experiments. A simple numerical solution is used to convert mean and covariances into state-

space form and reconstruct the corresponding linear drift approximately. While this map is not

unique, it is argued that any linear drift that satisfies the evolution of the mean and covariance is

sufficient. This allows a variety of GP initialisation methods to be tested. It could also allow for

a hybrid parameter estimation procedure, where suboptimal GP approximations are inserted into

the free-energy in a “plug-and-play” fashion. With only additional few iterations of an adaptive

variational GP method, this could lead to improved speed over previous naive initialisations.

5.3.4.1 Converting moment GPs to canonical form

Consider the Gaussian moment equations in (3.22) and (3.23). Equation (3.23) is close to being

a Lyapunov equation. With a little work, equations (3.22) and (3.23) can be written in terms of

A(t) and b(t), such that

b(t) = A(t)µ(t)− µ̇(t) (5.61)

vec
�
A(t)

�
=

��
Σ(t)⊗ I

�
+Tmm

�
Σ(t)⊗ I

��−1
vec

�
Σ̇(t)−D(t)

�
(5.62)
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where Tmm denotes the matrix such that vec(A) = Tmmvec(AT) for every possible form of A.

The idea is to learn an initial GP GP0(µ(0),Σ(0)) and insert µ(0) and Σ
(0) into equations (5.61)

and (5.62) to obtain initial parameter values A
(0) and b

(0) for use in the variational Gaussian

smoothing algorithm. While this may not be possible in the general setting, certain factors need

to be remembered. Firstly, any initial GP, GP0, will have been learned on a discretised grid. If

the GP0 was computed from its own state-space model, as is the case for the assumed Gaussian

smoother of section 5.3.2, then A
(0) and b

(0) will already be available in discrete-time form.

If the GP0 was not computed from an explicit state-space form, then it will still be possible to

approximate µ̇(t) and Σ̇(t) numerically for all time points on the discretised grid. While, this

might seem a bit ad hoc, it needs to be remembered that these initialisations do not need to be

exact, they just need to provide the variational smoothing algorithm with starting conditions that

are in regions that generate the desired type of GP on the first forward pass. Assuming all the

required objects in equations (5.61) and (5.62) are available, then equation (5.62) still requires

the inversion of an m2 ×m2 matrix where m is the dimension of the state space. Naively, this

computation is of the order O(d6x) which is far is too large for any multidimensional problems.

But given the form of the matrix to be inverted it is likely that this can be improved significantly.

An alternative is to constrain A(t) to be symmetric, remembering that A(0) just needs to be in

roughly a good region. The symmetry assumption ensures Tmm = Imm and the the problem

reduces to simply the inversion of Σ(t). One setting where the move from mean and covariance

parameters to linear drift parameters is exact is for univariate problems. For the univariate case,

there exist a lot of “of-the-shelf” GP algorithms that can be tested in the free-energy framework.

5.3.4.2 Experiments

In this section, initial values for A and b were constructed from the mean and covariance of

some common GP algorithms applied to the double well problem. Figure 5.3 shows the speed

of convergence in terms of iterations vs free action. The number of fails gives an indication

of the stability of the resulting initialisation. The method ADF2 is the Gaussian projection

smoother in section 5.3.2. The method ADF1 is the alternative smoothing approach given in

(Särkkä & Sarmavouri, 2011). It is interesting because it is derived directly from the Fokker

Planck equations. It is highly unstable, but when it works it shows good results. This suggests a

square root form of the algorithm might work well. All Matern kernels had parameters learned

using maximum likelihood. The Matern3 algorithm used a Matern type 3 kernel in standard GP

regression. It can be seen in figure 5.4 how the Matern3 initialisation struggles to converge and

eventually results in covariance instabilities and failure. This effect was even more extreme in

the Matern5 kernel and squared exponential kernel (not shown), with failed almost every time.

This is a very interesting point because it suggests that the initial A and b rebuilt from these GPs

transferred the information in the assumed noise. For all kernels apart from Matern1, the noise

assumption was wrong. In a rigorous formulation this would result in a infinite free energy.
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FIGURE 5.3: Figure (a) shows the path of the free-action of VPG smoothing algorithm ini-
tialised with different GP solutions. Results were averaged over 1000 repetitions of sampled
data from the double-well system. Figure (b) shows a zoom into the iteration interval [10, 35].

Figure (c) shows an example sample path and VGP smoothing solution after convergence.

In experiment it leads to highly unstable initialisations for the variational GP approximation.

Matern1 uses the right noise type and converged to the correct solution in most cases. The naive

method is the initialisation method used in Vrettas et al. (2010). It is a simple method that

chooses a constant value for A, and defines b using a spline fitted to the observations. The key

point is its unbiasedness. The Matern3 kernel finds a very precise solution, and it is difficult

for the variational algorithm to get out of the probably locally optimal region. By being very

unbiased, the naive method apears better at finding globally optimal solutions. Closer inspection

of the GPS solution shows how it is close to optimal from the go, in contrast to the naive method.

The only region that is finessed is the region around the nonlinear transition. A time plot of the

free energy is possible. This suggests an adaptive variational GP method that could be combined

with GPS. In the adaptive method, the algorithm would focus on regions of high free energy as a

function of time. GPS is close to optimal in linear regions around the equilibrium. An adaptive

variational GP method could then focus on just the nonlinear region and finesse near optimal

solutions in faster time.
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FIGURE 5.4: Plots of variational solution after 0, 10 and 30 iterations for different initialisation.
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5.4 Implementation

5.4.1 Unscented transform

This section focuses on approximating general transformations of random variables. The under-

lying principle is that it is better/easier to approximate the distribution of the random variable un-

der a nonlinear transformation than to approximate the transformation itself (Julier & Uhlmann,

2004) . While Monte Carlo methods allow approximations to be generated up to arbitrary ac-

curacy, the difficulty of the sampling process, random sampling errors, and the computational

burden of Monte Carlo methods make them often undesirable. Rather than drawing samples

randomly from the unmapped distribution, it makes sense to skilfully choose a few samples that

encode the core properties of the unmapped distribution. The Unscented transformation (UT)

(Julier & Uhlmann, 2004) can capture the statistics of the Gaussian exactly. This is done through

the use of a set of sigma points, whose size scales linearly with the dimension of the random

variable. More generally, assume a random variable x is given, and assume a nonlinear map

h(x) is given such that a random variable y is defined to be

y = h(x). (5.63)

The purpose of the unscented transform is to construct a approximation of the distribution of

y. A set of sigma points S = {(x(i), w(i))}
n
i=0 consists of a set of vectors and their associated

weights such that
�

iw(i) = 1, where parenthesis subscripts are used to distinguish the sigma

points from discrete-time paths. The sigma points are propagated through the nonlinear map

y(i) = h(x(i)), i = 0, 1, . . . , n. (5.64)

Then the first cumulant approximation, κ̂1, of y is a weighted average of the transformed points

κ̂1 =
n�

i=0

w(i)y(i), (5.65)

and the second cumulant approximation, κ̂2, of y is a weighted outer product

κ̂2 =
n�

i=0

w(i)(y(i) − κ̂1)(y(i) − κ̂1)
T. (5.66)

From κ̂1 and κ̂2 a Gaussian approximation of y can be built. It is simple to construct approxi-

mations of other functions, such as the diagonal elements of the third cumulant,

κ̂(jjj)3 =
n�

i=0

w(i)(y
(j)
(i) − κ̂(j)1 )3, j = 1, . . . , dy. (5.67)
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There are different ways to choose the optimal sigma points when the input distribution is Gaus-

sian. By moving the skewness in the skew normal density, from the density to the nonlinear

transformation, this ensures all the sigma point methods are applicable for approximating skew

normal expectations.

5.4.2 Gradient methods

An appealing quality of the variational free-energy approach, in terms of implementation, is

that established optimisation algorithms are immediately applicable to the free energy objective.

Most nonlinear optimisation problems make use of local quadratic approximations to control

step size and direction, improving efficiency over basic gradient-descent type methods. In the

recent work of Vrettas (2010), Vrettas et al. (2010), the variational approximation and an ef-

ficient suboptimal RBF approximation were implemented using a scaled conjugate gradient

(SCG) optimisation algorithm, adapted from the NetLab version (Nabney, 2002). It is based

upon the VGPA algorithm of Archambeau et al. (2007b) and shows improved speed and stabil-

ity over alternative methods. These alternative methods include the smoothing algorithm in Ar-

chambeau et al. (2007a) which uses explicit updates for the variation parameters A(t) and b(t),

and other boundary value problem methods. This section reviews the general SCG algorithm

and its motivations. The SCG algorithm and the simpler conjugate gradient (CG) optimisation

algorithm are then discussed in the setting of VGPA, and proposals are made for using explicit

Hessian conjugates.

5.4.2.1 Conjugated gradients optimisation methods

This section is built out of ideas from (Nabney, 2002, Chapter 2) and Shewchuk (1994). It

reviews the basics of gradient based optimisation and the particulars of conjugated and scaled-

conjugated gradients. The SCG algorithm shows marked improvements in efficiency over the

CG algorithm and quasi-newton methods for many Neural Network and statistical learning prob-

lems (Nabney, 2002). This also witnessed in application to the VGPA algorithm. Here we con-

sider a general objective f(π) with input vector π. While the variational parameter π notation

is used, note that what follows applies to general objective functions and search spaces. All the

optimisation methods considered are iterative techniques, in that each new point πnew is built

from the recursion

πnew = πi + αiδi, (5.68)

for some step length αi and step direction δi. To ease notation, let gi = ∇πif(πi) denote the

gradient vector of f at step i. Given a step direction δi, it makes sense to perform a line-search

in the direction δi, to find the optimal value for αi. This is done by solving the fixed point

equation (assuming f is locally convex)

∂f(πi+1)

∂α
= 0. (5.69)
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Applying the chain rule, we have

∂f(πi+1)

∂α
= g

T
i+1

∂πi+1

∂α
= g

T
i+1δi = 0. (5.70)

This implies the new gradient-vector gi+1 is orthogonal to the old search direction δi. In gra-

dient descent or steepest descent algorithms the step direction δi is set to be negative gradient

−gi. From equation (5.70), this choice leads to the relation δTi+1δi = 0, for consecutive step

directions δi−1 and δi. Therefore steepest descent algorithms zig-zag across the search space in

consecutively orthogonal directions. While equation (5.69) leads to an optimal choice for αi, the

resulting zig-zag behaviour is generally not the most efficient way to reach a local minimum. A

more efficient approach is to choose consecutive step-directions that are orthogonal under a lo-

cal quadratic approximation of the objective function. This encourages the algorithm to explore

the geometry of the objective using the curvature of the local space. Let Hi := ∇πiπT
i
f(πi)

denote the Hessian at step i. Then we are looking for consecutive, conjugate directions δi−1

and δi, such that

δTi Hiδi−1 = 0. (5.71)

The trick in the CG algorithm is to find the vector δi satisfying (5.71) without computing the

Hessian Hi. Given current position π and search direction δ, let α∗ denote the step length

minimising f(π + αδ). Then, remarkably, the update

δnew = γδ − gnew (5.72)

is conjugate to δ, where

gnew = ∇f(π + α∗δ) (5.73)

γ =
(gnew − g)Tgnew

gTg
. (5.74)

Equation (5.74) is referred to as the Polak-Ribiere formula. Equation (5.72) allows new, conju-

gate, directions to be computed without computing the Hessian Hj . The optimisation method

using this type of update is the conjugate gradient (CG) algorithm (Shewchuk, 1994). A highly

simplified version of the CG method in shown in algorithm 4. While there are additional ter-

mination and quality checks not shown in the code fragment, the core components of the CG

algorithm are present. The CG algorithm alternates between a position update involving a line

search, and a direction update involving the Polak-Ribiere formula. The main problem with

the CG algorithm is the additional computational cost and extra parameter definitions required

in the line search. This is avoided in the scaled conjugate method (SCG) of Mller (1993). It can

be shown that the optimal step length α∗ in line 6 of algorithm 4, is given by the formula

α∗ =
g
Tδ

δTHδ
. (5.75)
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1 Algorithm: CG-optimisation (simplified).
2 % Initialise variables;
3 π = π0; g = ∇f(π); δ = −g;
4 repeat
5 % Perform line search to update position;
6 α∗ = minα f(π + αδ);
7 πnew = π + α∗δ;
8 % Use Polak-Ribiere formula to update search direction;
9 gnew = ∇f(πnew);

10 γ = (gnew − g)Tgnew/gT
g;

11 δnew = γδ − gnew;
12 until covergence, i.e. gT

g = 0;
Algorithm 4: Simplified conjugate gradient algorithm.

The reason this is not used in the CG-algorithm is because it is assumed that the Hessian H

is either unavailable or costly to compute. In the SCG algorithm, the denominator in equation

(5.75) is approximated by

δTHδ ≈ δT
�
∇f(π + σ0

δ

||δ||2
)−∇f(π)

�
||δ||2
σ0

, (5.76)

for some small positive quantity σ0. To ensure the denominator in equation (5.75) is positive

definite, a ridge β||δ||2 is added at each step, where the value β changes with each iteration.

There is an additional comparison ratio check (Nabney, 2002) to ensure the approximation is

close to quadratic, and also all the rudimentary checks of the CG algorithm. Ignoring these, a

simplified SCG method is shown in algorithm 5. The core components is the approximation

of the quadratic form δTHδ, and the Polak-Ribiere update (as in CG). If a minimum has not

1 Algorithm: SCG-optimisation (simplified).
2 % Initialise variables;
3 π = π0; g = ∇f(π); δ = −g;
4 repeat
5 % Compute (approximate) optimal step length to update position;
6 ∆ ≈ δTHδ;
7 α∗ = g

Tδ/∆;
8 πnew = π + α∗δ;
9 % Use Polak-Ribiere formula to update search direction;

10 gnew = ∇f(πnew);
11 γ = (gnew − g)Tgnew/gT

g;
12 δnew = γδ − gnew;
13 until covergence, i.e. gT

g = 0;
Algorithm 5: Simplified scaled-conjugate gradient algorithm.

been reached in dπ iterations, where dπ denotes the dimension of the space in which π lies,

then the algorithm restarts at the current location π with step direction δ = −∇f(π). Note that
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alternative search-direction updates can be used in both algorithms and that they both avoid the

use of the Hessian.

5.4.2.2 Free-energy Hessians for VGPA

The gradients of the Lagrangian L̂ used in Archambeau et al. (2007b) are given in equations

(3.28) and (3.29). When the algorithm is implemented, the variables are defined on a discrete

time grid 0 = t0 < · · · < tN = T . The variational variables A(t) and b(t) can therefore be

considered as discrete time functions such that A : [0 : N ] → Rdx×dx and b : [0 : N ] → Rdx .

The gradients in equations (3.28) and (3.29) can thus be written

∇AiL̂ = ∇AiEsde(i) +Σ(i)ΛT(i) +Λ(i)Σ(i) + ν(i)µT(i) (5.77)

∇biL̂ = ∇biEsde(i) + ν(i). (5.78)

The Hessian H of the Lagrangian L̂ is a huge dxN(1+dx)×dxN(1+dx) dimensional matrix.

But note the explicit forms for the Esde gradients in (5.77) and (5.78), for state-independent

diffusion D(x, t) = Dt, are given by

∇AiEsde(i) = D
−1
i

�
A(i)−

�
∇xf

T(x, i)
��

Σ(i) +∇biEsde(i)µ
T(i) (5.79)

∇biEsde(i) = D
−1
i

�
A(i)µ(i) + b(i)−

�
f(x, i)

��
. (5.80)

Taking second-order derivatives of L̂, for all i �= j we obtain

∇Ai∇Aj L̂ = 0d2x×d2x
(5.81)

∇Ai∇bj L̂ = 0d2x×dx (5.82)

∇bT
i
∇bj L̂ = 0dx×dx . (5.83)

Therefore the majority of entries in the Hessian are in fact zero. The Hessian H can, thus, be

written as a block matrix composed of four diagonal blocks

H =

�
HAA HAb

HbA Hbb

�
, (5.84)

where

HAA := diag
�
(∇Ai∇Ai)

N
i=0

�
L̂ (5.85)

HAb := diag
�
(∇Ai∇bi)

N
i=0

�
L̂ (5.86)

Hbb := diag
�
(∇bi∇bi)

N
i=0

�
L̂ (5.87)
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with diagonal elements

∇Ai∇AiL̂ = D
−1
i ⊗

�
Σ(i) + µ(i)µT(i)

�
(5.88)

∇Ai∇biL̂ = D
−1
i ⊗ µ(i) (5.89)

∇bi∇biL̂ = D
−1
i . (5.90)

We know the Hessian of L̂ is positive definite because the free-energy is quadratic in A(i)

and b(i), and equations (5.88), (5.89), and (5.90) confirm this. Let δA(i) and δb(i) denote the

components of δ corresponding to A(i) and b(i) in the scaled conjugate gradient algorithm,

such that δA(i) is a matrix and δb(i) a vector. Then we have

δTHδ =
N�

i=0

tr
�
δTA(i)

�
Σi + µiµ

T
i

�
δA(i)D

−1
i

�
(5.91)

+2tr
�
δTA(i)µ

T
i δ

T
b(i)D

−1
i

�
+ δTb(i)D

−1
i δb(i). (5.92)

Thus the quadratic form involving the Hessian can be computed from objects already being used

in the VGPA algorithm. This suggests replacing the approximation in SCG with its true value.

The idea would also applicable to Newton’s method, replacing the need for a quasi-Newton

alternative. It might also be possible to introduce locally skew-normal approximations instead

of simply quadratic ones and to extend the SCG algorithm using the ideas of Minka (2000).

Future investigations will examine how well these all work in practice.

5.5 Discussion

This chapter has attempted to place the variational GP method in the context of other GP learning

methods and to consider alternative GP methods from a free energy perspective. An exact

Hessian update has also been proposed for gradient methods.

The connections between the variational GP algorithm and other algorithms were drawn

for several reasons. Firstly, general GP and kernel methods can easily capture higher order noise

correlations. For state space model methods to do this requires an increase in the dimension of

the problem. For example, to obtain the smoothing properties of the squared exponential would

require a state space model of infinite dimension. It would be beneficial for applications if there

was a way of adapting the state space model to integrate higher order noise correlations without

increasing dimension, maybe through the integration of more general linear GP methods. A

related investigation would work on the connection between general covariance functions and

linear time invariant state space models. While it is well known how regularisation operators can

be used to build covariance operators and how these lead to state space models and GPs, respec-

tively, the full algorithmic details of the connection have not been formalised. State space model

methods can be very fast for uncorrelated noise, taking full advantage of the independence of
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observations given the hidden states. Given the growth in dimension to capture more general

noise correlations, there must be a point at which the use of covariance functions and the kernel

matrix inversion becomes more beneficial than the use of the Kalman smoother. Another reason

for identifying the connections is the fact that kernel and GP methods can only be built from lin-

ear differential operators. The variational GP algorithm presents a possible way to incorporate

nonlinear information into GP and kernel methods. It is not known yet how beneficial this con-

nection would be, or whether or not the whole problem could be dealt with in the Variational GP

framework. To strengthen the connection further would require the extension of the variational

algorithm to spatio and spatio-temporal methods. While this would require a discretisation of

a high dimensional continuous input, it is possible that empirical input spaces such as nearest

neighbour graphs and differential operator approximations such as the graph Laplacian could be

used to avoid such computationally expensive grid like discretisations.



Chapter 6

Discussion and Outlook

6.1 Machine learning in continuous time

To perform temporal state estimation on a digital computer requires the discretisation of a finite-

length interval of time. While the graining of this discretisation can be made arbitrarily small,

this has significantly differing consequences for the performance of each algorithm. The tem-

poral state estimation problem has a unique structure, and applying established algorithms to

a discretisation of the model it not always effective. Ideally, each class of machine learning

algorithm will have an interpretation tailored to the requirements of state estimation in par-

tially observed diffusion processes. Traditional machine learning algorithms are designed for

finite dimensional states. When applied to state-space models restricted to a discretisation of

time, these finite dimensional algorithms require a closed form for the transition probabilities

of the discretised model. For general nonlinear state space models this is not possible, and the

transition probabilities can only be formalised as the solutions to a set of generally intractable

stochastic partial differential equations. Therefore the common approach to adapting a machine

learning algorithm to a continuous-discrete state estimation problem is to use linear approxi-

mations of the transition probabilities. This equates to a simplification of the prior, wasting

important information in the prior, as well as leading to numerical instabilities in implementa-

tion. Continuous-time algorithms in machine learning are algorithms that are not restricted to

first order linear approximations. These algorithms are realised in one of two ways, depending

on whether the approximate inference method is stochastic or deterministic. Stochastic approxi-

mate inference methods utilise higher order approximations of transition probabilities implicitly

through the use of higher order approximations of the underlying process. This enables more

prior information to be incorporated into the algorithm without increasing the granularity of the

discretisation. In contrast, deterministic approximate inference methods restrict themselves to

well behaved expectations, as opposed to non differentiable sample paths. Finite dimensional

deterministic methods can be applied to first order linear approximations of the model. The well

behaved nature of expectations allows the maximum step size of the time discretisation to be

99
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taken to zero, reducing the error of the first order approximation to a negligible level, and result-

ing in continuous-time formulations of the original finite dimensional algorithms. Continuous

time parameters characterising the deterministic approximate inference solution are presented in

the form of differential equations that are substantially easier to solve than the original stochas-

tic partial differential equation. An infinite dimensional formulation of an algorithm, if it exists,

characterises how the algorithm will perform as the step size tends to zero. While this requires

the delicate handling of probability measures on infinite dimensional spaces, it enables us to

choose parameters for the algorithm that are independent of dimension.

6.1.1 Path integral formulation

Rather than the linear discretisation used in section 2.5.4, the continuous-discrete posterior Ppost

can be written in continuous path integral form

dPpost

dW
(x) ∝ exp

�
−

� T

0

�
1

2
||f(x, t)||2D(x,t)dt− f

T(x, t)D(x, t)dx

�
− U(x, t)

�
(6.1)

where the second integral is an Itô stochastic integral and U(x, t) is given by equation (3.12).

Any algorithm designed to approximate Ppost can only do this on a discretised time grid of

size N . How the algorithm performs as a function of N is paramount to its consideration as a

continuous-time algorithm. A reason for poor performance in the limit N = ∞ can be down to

the fact that an algorithm does not have a natural formulation in infinite dimensions. In Beskos

et al. (2011) the Hybrid Monte-Carlo algorithm is extended to Hilbert spaces. This allows us to

work with the posterior given in (6.1), at least up to the stage of implementation. The core com-

ponents of the HMC algorithm, namely, the Hamiltonian flow, the numerical integrator, and the

accept/reject rule all have extensions to the continuous time setting. The benefit of all this, is

that it allows important parameters of the algorithm to be calibrated independently of N . Exper-

imental work in Beskos et al. (2011) has shown how the performance of the finite dimensional

HMC degrades as N → ∞, but the performance of the infinite dimensional version is indif-

ferent to N . The performance of the algorithm is measured using the acceptance probability of

new samples, being an indication of how well the algorithm is exploring the potential landscape.

The infinite dimensional algorithm obviously increases in computational complexity when im-

plemented on a time-discretisation of increasing size, but its consistent acceptance rate allows it

to more quickly acquire a predefined number of accepted samples. Having a formulation that is

well-defined in the continuous-time limit and the fact that the finite-dimensional HMC algorithm

can be implemented using higher-order SDE integrators (Restrepo, 2008), with the complexity

of the HMC algorithm commensurating with the complexity of the integrator, lets us conclude

that HMC, with the correct tuning, can be considered a continuous-time algorithm.
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6.1.2 Free action methods

Methods in this section receive special attention because they are the approximate inference

methods most closely related to the variational inference scheme considered here.

6.1.2.1 Variational filtering

Variational filtering (Friston, 2008b) is a free action approach that avoids using a fixed form

for the variational density. It assumes the sensor data is a continuous time observation process

{yt}t∈[0,T ] with observation model p(yt|xt). The focus is on estimation of the conditioned

marginal density of xt on yt. The free action is expressed in integral form

Avf (q) =

� T

0
dt
�
V (x, t) + log q(x, t)

�
q(x,t)

(6.2)

where V (x, t) = − log p(yt|xt)p(xt). This immediately presents a problem with interpreting

variational filtering in the context studied here. The marginal density p(xt) of the prior at time

t is needed in explicit form. We know this requires solution of the Fokker-Planck equation, and

so it is difficult to see how variational filtering can pose a computationally efficient approximate

inference method. Continuing with the formulation as in Friston (2008b), the free energy Fvf (q)

can be minimised with respect to q under the constraint
�
q(x, t)dx = 1, to give

q(x, t) =
1

Z
exp

�
− V (x, t)

�
, (6.3)

where Z ensures
�
q(x, t)dx = 1. Inserting V (x, t) into equation (6.3) takes us directly back to

q(x, t) =
p(yt|xt)p(xt)

p(yt)
. (6.4)

So the marginal density of the variational approximation in variational filtering is only condi-

tioned on the data at that particular instant of time. In Friston (2008b) generalised coordinates

are used to enforce dependencies between time separated variables and to support conditional

densities on paths. The most intuitive way to think of generalised coordinates is to assume the

state x(t) is deterministic and smooth. Then the differentials x�, x��, x���, . . . fully characterise

the path x(t). This obviously does not fit the approach used here. It is conjectured here that

these properties ensure that q(x, t) is, indeed, also conditioned on non adjacent data that is rea-

sonably close in time. Under the assumption of a continuous stream of sensor input, this should

ensure that the solution is an approximation of the smoothing solution in a local sense. The use

of generalised coordinates is another reason why it is difficult to interpret variational filtering in

the context studied here. In the ensemble approach used in Friston (2008b) the solution q(x, t) is

considered an ensemble density that flows on the variational manifold defined by V (x, t). While

the manifold is changing with time and the ensemble cannot settle to a steady state, a frame of

reference that moves with the manifolds topology is constructed such that the ensemble is in
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equilibrium. The same idea is used in section (4.2) for constructing well behaved time-varying

variational drifts. It is not possible for the scheme in Friston (2008b) to be represented in a fully

rigorous fashion. Instead, consider the following equation

dxt = µt + Vx(x, t) + dwt, s.t. Vx(µt, t) = 0, (6.5)

where Vx(x, t) := ∇xV (x, t). Using this to define the motion of the ensemble, equation (6.5)

is integrated forward in time multiple times and the resulting sample distribution is used to ap-

proximate q(x, t). The difference between equation (6.5) and equation (16b) of Friston (2008b)

is the use of generalised coordinates. While equation (6.5) looks similar to a Langevin algorithm

(Stramer & Tweedie, 1999), there are some distinct differences. Firstly, the potential V (x, t) is

time varying, therefore the corresponding densities are non stationary. This is a key difference

between using ensemble methods for static models and using them for temporal models. The

second difference between equation (6.5) and the Langevin algorithm, is the use of the mode

µt. The free-energy manifold is constantly changing with time and the use of µt is proposed

in Friston (2008b) to ensure the ensemble of particles clouds around the mode. To implement

the variational filter, time is discretised and the stochastic integration method of Ozaki (1993)

is used, but any stochastic integration scheme, of any order, could be used. Variational filtering

shows equivalent accuracy compared to DEM with Laplace approximation (see following sec-

tion) on a linear model, but is an order of magnitude slower. It shows competitive results with

particle filter. The key difference between variational filtering and the variational smoothing

framework formulated here is how in variational filtering the variational approximation is not

given a fixed form. The principle advantage of variational filtering over conventional methods is

that it is easily extended to more complex models than shallow state space models studied here.

6.1.2.2 DEM with Laplace approximation

The variational filtering method of the previous section can approximate conditionals on states

with any form. In contrast, DEM with Laplace approximation (Friston et al., 2008) assumes

a fixed Gaussian form for the ensemble q(x, t). The dynamic (D) part of DEM is, in fact, all

we are concerned with here, being the step that updates the approximation of the conditional

density on states. Assume the ensemble q(x, t) is a Gaussian with mean µt and covariance Σt.

Ignoring constants, the Laplace approximation of the free-action is given by

Alap(µt,Σt) =

� T

0
V (µt, t) +

1

2
tr
�
ΣtVxx(µt, t)

�
−

1

2
log |Σt|dt (6.6)

where Vxx(x, t) = ∇T
x∇xV (x, t). Though in (Friston et al., 2008), the quantity 1

2tr
�
ΣtVxx(µt, t)

�

only appears in the internal energy of the unknown parameters, through mean-field coupling and

does not appear in the free-action of the conditional. The covariance is set to the inverse Hes-

sian of the free energy evaluated at µt, i.e. Σt = V −1
xx (µt, t). The mean µt is then learned by
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integrating the equation

µ̇t = κVx(µt, t) (6.7)

forward in time, for some dampening constant κ > 0. This is done numerically using the

approach of Ozaki (1992). The main differences between the exposition given here and the

one in Friston et al. (2008) are: Firstly, equation (6.7) is done in generalised coordinates and

involves higher orders of motion of the mode µ�,µ��,µ���, . . .. It is still unclear if this is can be

translated into our framework, but it should involve introducing higher order derivatives of the

state variables and coupling them in the right way. Secondly, in Friston et al. (2008) equation

(6.6) is coupled with em internal free-actions involving unknown parameters. Importantly, states

(D), parameters (E), and hyper parameters (M), are learned iteratively in the DEM algorithm.

By reducing the algorithm to just the D step, as above, we are restricted to only one pass for the

mode which is essentially just a filter. In DEM, the additional uncertainty in the parameters and

hyper parameters and the additional D steps that follow from DEM give the algorithm the chance

to make multiple forward integrations of equation (6.7). This, the uncertainty in the parameters,

and the additional generalised coordinates, should result in the end solution µt being more of

a smoothing mode. In experiment, DEM is shown to outperform the extended Kalman filter

and have comparative performance with the particle filter on conditional density estimation in a

nonlinear convolution model (Friston et al., 2008). The argument in Friston et al. (2008) is that

the Kalman filter does not have access to generalised coordinates of motion like DEM, and does

not have a free-form density like particle filtering. This suggests that the generalised coordinates

remedy the fixed form nature of the Laplace approximation somewhat.

In summary of DEM and variational filtering, both methods propose interesting alterna-

tives to the free-action method studied in this thesis. They are application driven, with origins

rooted in neuroscience. Their neuroscience connections leads to interesting discussions about

the use of free-action in the brain (Friston et al., 2006). But their formulations often skip over

some very important issues from a mathematical perspective. It is felt they are needed to give

a full picture of current continuous-time free-action methods, but it is a struggle to integrate

their formulation into the one taken here. Future investigations will look at taking them back

to first principles and rebuilding the methods from an Itô calculus grounded machine learning

perspective.

6.1.2.3 Generalised filtering

An extension of variational filtering, generalised filtering (Friston et al., 2010) incorporates pos-

terior approximations of unknown parameters into the conditional density through slow moving

auxiliary dynamics. The idea of incorporating unknown parameters as slow moving states can

be done seamlessly in a hierarchal dynamic model. The are two problems with the approach to

generalised filtering taken in Friston et al. (2010), with regards to interpreting in the paradigm

taken here. The first is the use of generalised coordinates, as is discussed in the two previous
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section. The second is the form they choose for their approximation of the free action. Assume

the state variable xt is made of authentic states and unknown time varying parameters. As in

DEM (Friston et al., 2008), the Laplace assumption is made, such that the free energy (time

differential of free action), is approximated by by

F̂(µt,Σt, t) = V (µt, t) +
1

2
tr
�
ΣtVxx(µt, t)

�
−

1

2
log |Σt|. (6.8)

Optimising with respect to Σt yields, just as in the standard Laplace approximation, Σt =

V −1
xx (µt, t). Inserting this back into equation (6.8), leads to a free energy approximation that is

a function of (and only of) the conditional mean

F̂(µt, t) = V (µt, t) +
1

2
log |Vxx(µt, t)|. (6.9)

The idea is then to minimise F̂(µt, t) over µt. Generalised filtering showed marked improve-

ments over DEM on some particular models for detecting visual motion-dependent responses in

the brain (Friston et al., 2010), and more generally showed performance comparative to DEM.

While it is not known if this reasonable performance is down to the use of generalised coor-

dinates or the use of regularisation enforcing priors, it is conjectured here that there exists a

fundamental flaw with the use of equation (6.9) as an objective function. Without any additional

priors, the µt minimising F̂(µt, t) will always move to the inflection points of V (x, t). Recall-

ing that the inflection points of a function are point where the curvature is zero, we see that the

inclusion of log |Vxx(µt, t)| ensures that µt can achieve infinitely negative values of F̂(µt, t)

simply by moving towards inflection points. While this is bad on its own, it is made worse by

the fact that inflection points are generally the furthest points on a curve from the critical points

which general have high levels of curvature. This is simply seen through a static example. Let

V (x) be the energy function that follows from the assimilation of one observation with a linear

observation model into the double well steady state, given by

V (x) =
(x− y)2

2
+ bx2(x2 − 2θ). (6.10)

Differentiating twice yields

Vxx(x) = 1 + 4b(3µ2
− θ). (6.11)

Therefore the free energy approximation in equation (6.9) for this static example is given by

F̂(µ) =
(µ− y)2

2
+ bµ2(µ2

− 2θ) +
1

2
log |1 + 4b(3µ2

− θ)|. (6.12)

In figure 6.1 the free energy approximation F̂(µ) (red) is compared to the negative log likelihood

V (µ) (blue). In a standard post hoc Laplace approximation (Tierney & Kadane, 1986), V (µ)

would be minimised over µ and a Gaussian would be built at the global minimum. In contrast,
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FIGURE 6.1: Plot of F̂(µ) (red) and V (µ) (blue) for double well steady state prior with single
linear observation y = −1, θ = 1 and b = 1.

in the variational Laplace approach of Friston et al. (2010) the objective function F̂(µ) has

infinitely negative peaks at the inflection points of V (µ). While is not known how this effect

is avoided in generalised filtering, it is conjectured here that the objective function in equation

(6.9) is fundamentally flawed.

While the above expositions of variational filtering, DEM with Laplace assumption, and

generalised filtering have been quite critical, the methods have some very useful components

that should be considered in more detail. Firstly, the use of higher motions to capture time

correlations between non adjacent variables. In many real world dynamic systems, such as the

ones studied in neuroscience, the noise element in many cases results from interference with

other closely connected dynamical systems not included in the model. These noise processes

can certainly not always be considered to have independent increments, as with the Wiener

process. Secondly, the DEM structure of having a dynamic step for learning the conditional

density over states, an expectation step for learning static parameters, and a maximisation step

for learning hyper parameters is a natural extension of the standard EM algorithm (Ghahramani

& Roweis, 1999) to the triple estimation problem. There is no need to assume a Laplace, or

even Gaussian approximation in DEM, and the variational GP approximation and the higher

order approximations proposed in this thesis fit naturally into the DEM framework and are likely

to provide improved results over methods based on the Laplace assumption. Thirdly, the idea

of integrating unknown parameters as slowly moving states is an important point. This idea

has been implemented in a recent approach (Havlicek et al., 2011) used to model neuronal

responses in fMRI. It is a recursive assumed density smoothing approach which has been shown

to outperform DEM on a Lorenz attractor model with unknown parameters and initial states.

The multiple forward and backward iterations used by the variational GP smoothing algorithm

of Archambeau et al. (2007a) should show improvements over the one forward and backward
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pass approach of assumed density smoothing. Parameters required to be non zero can still be

learned with a Gaussian approximation through the use of log transformations.

6.1.3 Towards continuous-time EP

The one deterministic algorithm that doesn’t appear to have a natural formulation in continuous-

time, as yet, is Expectation Propagation. The variational framework of chapter (3), the projection

filter of chapter (3.4), and in some ways the assumed density smoother, all integrate the Fokker-

Planck equation into the workings of the algorithm. This equation is at the core of the exact

solution. Given a grid of times intersecting the observation times, a good EP-smoothing algo-

rithm would first compute p(xi|xi−1) for every i using the Kolmogorov equation (2.25) and then

apply the generic EP-smoothing algorithm 2.5.3. This would convert the continuous-time algo-

rithm to a form that EP can accept. But, or course, p(xi|xi−1) can generally not be computed

and stored for later use, which is why the variational and projection filter algorithms have to use

the Kolmogorov equations “on-the-fly”. The EP-smoothing algorithm of section 2.5.3 can be

given a definite temporal scheduling structure; updating forward messages while keeping back-

ward messages fixed, and vice-versa. We know that this symmetric message passing formulation

holds in continuous-time, and the variational algorithm utilises this with its path/control struc-

ture of a forward pass to update moments and a backward pass to update Lagrange multipliers. It

feels like it should be possible, and time has been spent trying, to obtain a continuous-time limit

formulation in the same way as was done for ADF, ADS and the projection smoother, especially

given how ADF seeded the EP algorithm. The projection smoother provides evolution equations

in moment and canonical form, something a continuous-time EP algorithm is likely to require

given how the discrete-time version can be formulated fully in terms of canonical parameters.

The exact continuous-time smoothing posterior ps(x, t) ∝ pF (x, t)ψ(x, t) is proportional to

the product of the filter pF (x, t) and the likelihood ψ(x, t), as in the the discrete-time setting.

Therefore it is natural to assume that a continuous-time EP smoothing algorithm will derive an

approximation q(x, t) ∝ qα(x, t)qβ(x, t), where qα(x, t) and qβ(x, t) represent the informa-

tion coming from the left and right, respectively. In exponential form, the messages qα(x, t)

and qβ(x, t) can be written

qα(x, t) = exp
�
αT

t φ(x)
�

(6.13)

qβ(x, t) = exp
�
βT
t φ(x)

�
, (6.14)

where φ(x) is a common sufficient statistic and αt and βt are canonical parameters that evolve

over (continuous) time. The core characteristic of the EP-smoothing algorithm is its symmet-

rical form, therefore we want to try and obtain a continuous-time algorithm that emulates this.

The idea of a “posterior” drift is apparent in all the algorithms and the link with optimal con-

trol suggests that an approximate drift will accompany the algorithm, and will be of the form
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g(x,α,β, t) using the forward and backward messages as controls. It is not known if this will

be an additive control on the prior or not, but the exact form in equation (3.11) suggests it will.

Using the canonical form of the projection filter, given in equation (3.42), yields an evolution

equation

α̇t + β̇t = G
−1(αt + βt)

�←
Kg(x,α,β,t)[φ(x)]

�

q(x,αt,βt)
. (6.15)

Constraining β̇ = 0, as would be done in the forward pass of the discrete-time EP-smoothing

algorithm, equation (6.15) yields a differential equation (in canonical space) for the forward

message αt. This could be integrated forward in time, in between observations, assuming the

metric G(αt + βt) can be dealt with, e.g. in the Gaussian setting. The expectations on the

right-hand-side would be in moment form and would need to be mapped to canonical form

using the link function. At an observation time, αt can be updated using the standard approach

of EP. It is important to note that q(x,αt,βt) is not the marginal density generated by the

drift g(x,α,β, t). A backward pass for updating βt should involve the Kolmogorov forward

operator
→
Kg(x,α,β,t). Indeed, the true backward moment equations can be derived in terms

of the backward operator and the likelihood ψ(x, t) (appendix A.3.2). There does not exist a

backward projection filter in the literature (Brigo, 2011), but it should be possible to extend

the geometric argument of section 3.4.2 to a projected version of the backward Kolmogorov

equation. An alternative approach for the Gaussian EP setting, is to apply the Gaussian EP-

smoothing algorithm to a Euler-Maruyama approximation and to take the limit as the time-step

tends to zero. The conditionally Gaussian relations simplify many of the EP updates. Though

as yet this approach has proved inconclusive.

6.2 Future work and extensions

The main direction for future work is experimental evidence. The topic closest to experimental

implementation is the skew-GP smoother which simply requires the tracking of the diagonal

of the third order moment. The use of skew-normal approximations in variational smoothing

algorithm requires more preparation, which some difficult derivative-expectation relations that

need to be finalised. For additive control drifts, it was already shown how the variational GP

algorithm uses such a scheme. Future work will look at making this connection explicit, and also

applying the variational GP method to more commonly well known stochastic optimal control

problems.

6.2.1 Paper proposals

I currently see three future conference papers in the contents of this thesis.

• Generalised variational smoothing: Introduces the general variational smoothing frame-

work of chapter 3, introduces the additional projection-filter constraints of chapter 3.4,

introduces the gradient systems of chapter 4.
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• Variational skew GP smoothing: Briefly introduces all of the above, then focuses on the

skew-GP method of chapter 4.3.1, discusses the computations and results of the chapter

in detail.

• Variational GP for optimal control: Focuses on the variational GP method with a rigorous

exposition of its connection to approximate control. Discusses how the ideas can extended

to more general distributions.

6.2.2 Dealing with high dimensions

One of the main difficulties with inference in partially observed processes, is dealing with high-

dimensional hidden states. This is the spatial dimension of the state-space occupied by the state

at any particular time, not the infinite dimension of the path-space. There are various approaches

to dealing with these high dimensions, most of which can be borrowed from other problem set-

tings. As with all approximate inference implementation problems, high dimensions can be

dealt with in one of two ways, namely, adjusting the prior or adjusting the approximation. One

of the earliest approaches to dealing with high dimensions in diffusion processes reduces the

number of variables in the Fokker-Planck equation. The method proposed in (Risken, 1996,

Section 8.3) is referred to as adiabatic elimination of the fast variables. In short, the dynamics

of any system around an equilibrium will consist of variables with differing decay rates. The

“fast” variables decay down to small values quickly and therefore an approximate system can

ignore these variables and lower its dimension while still being able to represent the long term

behaviour of the system. This is equivalent to a centre manifold type reduction of a stochastic

system (Schumaker, 1987). To do this explicitly, i.e. reduce a stochastic system to its normal

form, is at worst impossible and at best requires a lot of work to deal with eigenspace transfor-

mations and the technicalities of mapping noise variables through nonlinear mappings. But an

approximate inference algorithm may not require such explicit formulations.

6.2.3 Hybrid methods

There is a current feeling that hybrid methods, combining sampling-based and deterministic

methods, are the way forward for approximate inference in nonlinear state-space models (Mur-

ray & Storkey, 2011, Shen et al., 2010). One proposal is to use the variational approximation

as the proposal distribution for a sampling-based method (Shen et al., 2010), but there are many

other possibilities. Identifying the strong points of each of the different approximate inference

methods is a key concern. Combining approximate inference methods and utilising these strong

points is a natural extension to the set of current disjoint approaches. Variational methods are

globally optimal, but as a result can lead to highly nonlinear optimisation problems. Therefore

it seems natural to initialise variational methods in some way using EP or Monte Carlo methods.

The hope would be to find global regions of low free-energy either quickly or accurately using

a suboptimal method, and then to finesse solutions using variational methods to seek regions of
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local optimality. It should also be possible to establish a pre-processing stage to deterministic

approximate inference where a principled analysis of the model is used to locate an appropriate

class of approximation for the desired balance of accuracy and efficiency.

6.3 Final word

In all of science, engineering and technology, researchers and practitioners are frequently con-

fronted with the problem of assimilating data into complex mathematical models encoding their

prior beliefs. A coherent mathematical and algorithmic framework for blending dynamic models

with time-series data has far reaching applications in fields such as neuroscience, climatology,

econometrics, robotics, and bioinformatics. In this thesis, the variational smoothing framework

of Archambeau & Opper (2011) was generalised to general drift-marginal pairings. The strict

requirement of an explicit drift-marginal pairing was weakened by allowing marginal densities

that drift into intractable regions to be projected back onto a specified class. These projected

marginal densities can be used as surrogates for computing marginal density expectations re-

quired in the variational smoothing algorithm by gradient based optimisation methods. The

approximate marginals were incorporated through continuous-time assumed-density type mo-

ment evolution constraints. Various novel variational approximations have been proposed, and

the connections of the method to optimal control, kernel methods, and GP methods have been

discussed. On the implementation side, a novel way for extending normal expectations of non-

linear transformations to skew normal expectations, and the use of the true Hessian in gradient

optimisations has been proposed.



Appendix A

Useful results

A.1 Finite-dimensional exponential families

Let x denote a random vector taking values in some space X . Let φ = (φ1, . . . , φM ) denote a

collection of M real-valued functions φi : X → R, known as sufficient statistics. For a given

vector of sufficient statistics φ, let θ denote an associated vector of canonical or exponential

parameters. For any realisation of x, let θTφ(x) denote the Euclidean inner product in RM

of the two vectors θ and φ(x). Using this notation, the exponential family associated with φ

consists of the following parameterised collection of density functions

p(x,θ) = exp
�
θTφ(x)−A(θ)

�
, (A.1)

where A denotes the log partition function

A(θ) = log

�

X
exp

�
θTφ(x)

�
dx. (A.2)

It is assumed that X is Lebesgue measurable (Dudley, 1993) with volume dx. It is also as-

sumed A(θ) is finite, and therefore p(x,θ) is properly normalised. This occurs for all canonical

parameters θ belonging to the set

Ω := {θ ∈ RM
|A(θ) < +∞}. (A.3)

For more general domains and base measures ν(dx), and for additional source material, see

Wainwright & Jordan (2008). Any exponential family has an alternative parameterisation in

terms of a vector of mean parameters. More generally, for any density p(x), the vector of mean

parameters γ associated with the vector of statistics φ(x) is defined by

γ =
�
φ(x)

�
p
=

�
φ(x)p(x)dx. (A.4)

110
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For any vector of statistics φ(x), let M denote the set of realisable mean parameters

M := {γ ∈ RM
|∃ p s.t.

�
φ(x)

�
p
= γ}. (A.5)

The set M is not restricted to exponential family densities with φ(x) as their vector of sufficient

statistic. The set M is always a convex subset of RM .

A.1.1 Forward and backward mappings

For any exponential family density with vector of sufficient statistics φ(x), there exists a forward

mapping from the vector of canonical parameters θ ∈ Ω to the vector of mean parameters

γ ∈ M, and a backward mapping from the vector of mean parameters γ ∈ M to the vector

of canonical parameters θ ∈ Ω. Computation of either mapping can be extremely difficult and

computationally intensive, especially in high dimensions. Let A∗ denote the conjugate function

of A, defined by

A∗(γ) = sup
θ∈Ω

{�γ,θ� −A(θ)}. (A.6)

Both A(θ) and A∗(γ) are convex, and strictly convex if φ(x) is minimal. Therefore A and A∗

are conjugate dual, and A can be written

A(θ) = sup
γ∈M

{�θ,γ� −A∗(γ)}. (A.7)

Equations (A.6) and (A.7) lead to the following result: For any exponential family density with

vector of sufficient statistics φ(x), the vector of canonical parameters θ ∈ Ω an the vector of

mean parameters γ ∈ M are related according to the dual matching conditions

γ(θ) = ∇θA(θ), θ(γ) = ∇γA
∗(γ). (A.8)

In general, A(θ) and A∗(γ) do not have explicit forms and the Legendre pair θ and γ need

to be found in tandem using approximate inference. Assume that γ lies in the interior of M

and let θ(γ) denote its dual under the matching condition in (A.8), then A∗(γ) is given by a

negative-entropy function

A∗(γ) = −H(p(x,θ(γ)) :=

�

X
p(x,θ(γ)) log p(x,θ(γ))dx. (A.9)

This is not the standard definition of entropy because it is an extended real-valued function

of γ, rather than a functional of the density p(x). To compute A∗(γ) requires a sequence of

mappings γ �→ θ(γ) �→ p(x,θ(γ)) �→ A∗(γ), see (Wainwright & Jordan, 2008, Section 3)

for more details. For ease-of-use later, the forward and backward mappings will be written in
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compact form as an invertible link function ω : Ω → M, such that

ω(θ) = ∇θA(θ) (A.10)

ω−1(γ) = ∇γA
∗(γ). (A.11)

While it is relatively easy to construct an exponential family density with canonical pa-

rameter θ ∈ Ω, it can be difficult or even impossible to compute its log partition function A(θ).

The mean parameters γ(θ) ∈ M are also often the quantities of interest, with low order mo-

ments of densities playing important roles in predictive learning problems. While no assumption

has been made about these densities being Bayesian posteriors, realisations of data are easily

absorbed into canonical parameters and sufficient statistics, and all of the above ideas are appli-

cable to exponential family Bayesian posteriors. Captured in equation (A.7) is the understanding

that both A(θ) and γ(θ) can be found in tandem using a variational scheme. Additionally, phras-

ing inference as an optimisation problem provides a principled criteria of the sub-optimality of

approximations. The importance of exponential families to learning in state-space models is

how the canonical parameters and sufficient statistics allow for a natural partition of the approx-

imating model into time-varying parameters and spatial statistics. By equipping θ(t) with time

dependencies, approximating densities can be tracked as they travel throughout the exponential

family manifold, tied done to a particular family by the use of a time-invariant sufficient statistic

φ(x).

A.2 Fréchet derivative

To derive the exact continuous-discrete Bayesian smoothing solution in a variational formula-

tion requires us to handle optimisation problems over infinite dimensional spaces. This type of

problem is more inline with the traditional calculus of variations approach in mechanics (Fomin

& Gelfand, 1963). The contents of this section is taken from (Fomin & Gelfand, 1963) and

Cheney (2001). We require a normed linear space. An exact definition can be found in any

classical real analysis book, e.g. Kolmogorov & Fomin (1975) or Folland (1984). The proper-

ties that are important to us are, if E is a normed linear space, then E has a norm || · ||, a zero

element 0 ∈ E , and it is possible to define linear functionals on such as space.

Definition A.1. Let F : Ω → R be a functional on an open set Ω in a normed linear space E .

For f ∈ Ω, assume there exists a bounded linear map A : E → R such that

lim
h→0

|F (f + h)− F (f)−A(h)|

||h||
= 0. (A.12)

Then F is said to be (Fréchet) differentiable at f . Furthermore, A is called the derivative of F

at f and is denoted F �(f).
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It turns out that we will only require functionals quadratic and linear in their arguments,

therefore the following examples focus on these two cases.

Example A.1 (Abstract, bounded linear functional). Let F be a bounded linear functional on

E . Then F �(f) = F (·) follows from the relation

|F (f + h)− F (f)−A(h)| = |F (h)−A(h)| = 0. (A.13)

Example A.2 (Hilbert, bounded linear functional). Let E = H denote a Hilbert space with inner

product �·, ·� : H×H → R. For any q ∈ H, define Fq(·) = �q, ·�. From the Riesz representation

theorem (Folland, 1984), any linear functional A(·) on H can be written Ag(·) = �g, ·� for some

g ∈ H. Then F �(f) = Fq(·) follows from the relation

|Fq(f + h)− Fq(f)−Ag(h)| = |�q − g, h�| = 0. (A.14)

Example A.3 (Quadratic form). Let E = H denote a Hilbert space with inner product �·, ·� :

H×H → R. For a bounded linear operator L : H → H, define FL(·) = �·, L·�. Then for any

f ∈ H, it holds that F �(f) = AL,f (·) where

AL,f (h) = �L∗f + Lf, h�. (A.15)

Example A.4 (Maximum entropy). Let V (x, t) denote the energy of a spatio-temporal system.

Let q(x, t) denote the variational marginal density at time t. Let λ ∈ L2([0, T ]) denote the La-

grange multiplier for the constraint
�
q(x, t)dx = 1 for all t ∈ [0, T ]. Then the corresponding

Maximum entropy Lagrangian L(q, λ) for q ∈ L2(Rdx × [0, T ]) is given by

L(q, λ) =

� T

0

��
V (x, t) + log q(x, t) + λ(t)

�
q(x,t)

− λ(t)
�
dt, (A.16)

where it is assumed that −�log q�q < ∞. Equating ∂qL(q, λ) = 0 yields

q(x, t) = exp
�
− V (x, t) + 1 + λ(t)

�
(A.17)

where λ(t) is chosen so that
�
q(x, t)dx = 1 for all t ∈ [0, T ].

A.3 Supplementary proofs

A.3.1 Posterior Wiener process

Though the focus of this thesis in on general nonlinear relations, some fundamental properties

of the model are captured by considering general linear relations. The humble Gaussian appears

all throughout this thesis in different forms - from static univariate Gaussians, to discrete-time

jointly Gaussian filters, to Gaussian measures over continuous-time sample paths. Inference
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in all these settings follows the same simple rule for conditioning a Gaussian random variable,

given below in its most general form (Prato & Zabczyk, 1992).

Theorem A.2. Let H = H1 ⊕H2 denote a separable Hilbert space. Let (u1, u2) ∈ H1 ⊕H2

denote an H-valued Gaussian random variable with mean m = (m1,m2) and covariance

operator C ∈ (H1⊕H2)⊗ (H1⊕H2), such that Cij =
�
(ui−mi)⊗ (uj −mj)

�
for i, j = 1, 2.

Then the conditional distribution of u1 given u2 is Gaussian with mean m� and covariance

operator C� given by

m� = m1 + C12C
−1
22 (u2 −m2), C

� = C11 − C12C
−1
22 C21. (A.18)

The generality of theorem A.2 allows almost all linear inference problems to be dealt

with in a universal fashion. For the example in section 2.2.2.1, assume x(·) is a random variable

taking values in the space of square integrable functions L2([0, T ]). The corresponding prior

covariance operator Λ ∈ L2([0, T ])⊗ L2([0, T ]) is defined using the integral equation

�φ,Λϕ�L2 = �Λφ, ϕ�L2 =

� �
k(τ, t)φ(τ)ϕ(t)dτdt (A.19)

for any φ, ϕ ∈ L2([0, T ]). The observation model can be written in general form

y = �x, δs�L2 + η (A.20)

where �·, ·�L2 is the inner product in L2([0, T ]) and δs(·) is the evaluation mapping centered

at s. Tailoring the model to theorem A.2, the example consists of a joint Gaussian measure

over (x, y) ∈ L2([0, T ]) ⊕ R with mean function m ∈ L2([0, T ]) ⊕ R and covariance operator

C ∈ (L2([0, T ])⊕ R)⊗ (L2([0, T ])⊕ R) given by

m = (0, 0), �(φ, a), C(ϕ, b)�L2⊕R =

�
�φ,Λϕ�L2 �Λδs, ϕ�L2

�φ,Λδs�L2 ab(�Λδs, δs�L2 + r)

�
(A.21)

for any (φ, a), (ϕ, b) ∈ L2([0, T ]) ⊕ R. Inserting these equations into theorem (A.2) leads di-

rectly to a posterior N (µ,Σ) with mean µ ∈ L2([0, T ]) and covariance operator Σ ∈ L2([0, T ])⊗

L2([0, T ]) given by

µ =
yΛδs

�Λδs, δs�L2 + r
, �φ,Σϕ�L2 = �φ,Λϕ�L2 −

�Λδs, ϕ�L2�φ,Λδs�L2

�Λδs, δs�L2 + r
. (A.22)

The posterior mean and covariance can be projected onto a particular time t ∈ [0, T ] to give a

mean and variance value for the hidden state x(t). Indeed, for any t, τ ∈ [0, T ] it holds that

µ(t) := �µ, δs�L2 =
yk(s, t)

k(s, s) + r
, κ(t, τ) := �δt,Σδτ �L2 = k(t, τ)−

k(s, t)k(τ, s)

k(s, s) + r
.

(A.23)
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A.3.2 Backward Kolmogorov moment equations

For any twice-differentiable scalar function φ(x), the integral �φ(x)�ψ(x,t) satisfies the differ-

ential equation
∂�φ(x)�ψ(x,t)

∂t
= −

�→
Kg[φ(x)]

�

ψ(x,t)
(A.24)

where
→
Kg is the forward operator defined in (2.23). This follows directly from the backward

equation and integration by parts.

Proof. Assuming differentiability, we have

∂�φ(x)�ψ(x,t)
∂t

=

�
φ(x)

∂ψ(x, t)

∂t
dx (A.25)

= −

�
φ(x)

←
K[ψ(x, t)]dx (A.26)

= −

�
ψ(x, t)

→
K[φ(x)]dx. (A.27)

Therefore it is possible to obtain propagation and update equations for any finite moment

of ψ(x, t), while (A.24) requires full knowledge of all other moments.

A.3.3 Gaussian expectation-derivative relations

Lemma A.3. For any two univariate-normal random variables z and x, with respective means

m and n, and any smooth function f : R → R, it holds that

�zf(x)� = m�f(z)�+Cov(z, x)∂n�f(x)�. (A.28)

Lemma A.3. The characteristic function of a d-dimensional multivariate normal random vector

z = (z1, . . . , zd) with mean m ∈ Rd and covariance S ∈ Rd×d is given by

φ(ω) := exp
�
(−1)1/2ω��

m−
1
2Sω

��
. (A.29)

For {ik ∈ {1, . . . d}}Nk=1, N ∈ N, it holds that

�zi1 · · · ziN � = (−1)−N/2∂ωi1
· · · ∂ωiN

φ(ω)
���
ω=0

. (A.30)
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Define Ci(ω) := ∂ωiφ(ω) = (−1)1/2mi −
�d

j=1 ωjSj,i, and let ψk : C → C be the function

such that ∂k
ωi
φ(ω) = ψk

�
Ci(ω)

�
φ(ω). From (A.30) we have

�zki � = (−1)−N/2ψk

�
Ci(0)

�
φ(0) (A.31)

= (−1)−N/2ψk

�
(−1)1/2mi

�
(A.32)

⇒ ∂mi�z
k
i � = (−1)−N/2∂miψk

�
(−1)1/2mi

�
(A.33)

= (−1)−
N−1

2 ψ�
k

�
(−1)1/2mi

�
. (A.34)

Therefore, inserting (A.32) and (A.34)

�zjz
k
i � = (−1)−

N+1
2 ∂ωjψk

�
Ci(ω)

�
φ(ω)

���
ω=0

(A.35)

= (−1)−
N+1

2

�
Cj(ω)ψk

�
Ci(ω)

�
− Si,jψ

�
k

�
Ci(ω)

��
φ(ω)

���
ω=0

(A.36)

= (−1)−
N+1

2

�
(−1)1/2mjψk

�
(−1)1/2mi

�
− Si,jψ

�
k

�
(−1)1/2mi

��
(A.37)

= mj�z
k
i �+ Si,j∂mi�z

k
i �. (A.38)

Taking the Taylor series of f(x) around 0, we have

�zjf(zi)� =
∞�

k=1

ai�zjz
k
i � (A.39)

=
∞�

k=1

ai
�
mj�z

k
i �+ Si,j∂mi�z

k
i �
�

(A.40)

= mj�f(zi)�+ Si,j∂mi�f(zi)�. (A.41)

Using the fact that ∂n�f(x)� = �∂xf(x)� and applying the lemma to each dimension

individually, we obtain

�fT(x)x� = �fT(x)µ�+ �∇xf(x)�Σ. (A.42)

A.3.4 Free-energy for second-order motions

Define z = (x,v). For 0 = t0 < t1 < · · · < tK = T , tk+1 − tk = ∆t, let z(0:K) =

(z(0), z(1), . . . , z(K)) be the discrete time path with z
(k) = z(tk) and let z(0) be known. Using

the Markov property

p(z(1:K)) =
K−1�

k=0

p(x(k+1)
|z

(k))p(v(k+1)
|z

(k))

q(z(1:K)) =
K−1�

k=0

q(x(k+1)
|z

(k))q(v(k+1)
|z

(k))
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where, for δ(·) the indicator function at the origin,

p(x(k+1)
|z

(k)) = δ(x(k) + v
(k)∆t− x

(k+1))

p(v(k+1)
|z

(k)) = N (v(k+1)
|v

(k) + f(tk, z
(k))∆t,Σ∆t)

and

q(x(k+1)
|z

(k)) = δ(x(k) + v
(k)∆t− x

(k+1))

q(v(k+1)
|z

(k)) = N (v(k+1)
|v

(k) + g(tk, z
(k))∆t,Σ∆t).

The relative entropy �KL for the discretised problem is given by

�KL := KL[q(z(1:K))||p(z(1:K))]

=
K−1�

k=0

��
ln

q(x(k+1)|z(k))

p(x(k+1)|z(k))� �� �
=0

+ ln
q(v(k+1)|z(k))

p(v(k+1)|z(k))

�

q(z(k+1)|z(k))

�

q(z(k))

=
∆t

2

K−1�

k=0

�
||f(tk, z

(k))− g(tk, z
(k)))||2Σ

�
q(z(k))

.

The claim follows by taking the limit as ∆t → 0.

A.3.5 Third-order moment evolution equations

Proof of (4.39), (4.40), and (4.41). To ease notation, define g := g(x, t) and D := D(x, t).

Inserting φ(x) = x(i) into (3.13) gives

ṁ(i)
1 =

�←
Kg

�
x(i)

��

qt
(A.43)

=
�
g
T
∇x(i) + 1

2tr
�
D(∇∇

T)x(i)
��

qt
(A.44)

=
�
g(i)

�
qt
. (A.45)

Performing (A.45) for each i ∈ Ndx gives (4.39). Inserting φ(x) =
�
x(i) −m(i)

1

��
x(i) −m(i)

1

�

into (3.13) gives

˙̄m(ij)
2 =

�←
Kg

��
x(i) −m(i)

1

��
x(i) −m(i)

1

���

qt
(A.46)

=
�
g
T
��

x(j) −m(j)
1

�
ei +

�
x(i) −m(i)

1

�
ej

�
+ 1

2tr
�
D(eje

T
i + eie

T
j )
��

qt
(A.47)

=
�
g(i)

�
x(j) −m(j)

1

�
+ g(j)

�
x(i) −m(i)

1

�
+D(ij)

�

qt
, (A.48)



Chapter 6. Discussion and Outlook 118

where we have used

∇
�
x(i) −m(i)

1

��
x(j) −m(j)

1

�
=

�
x(j) −m(j)

1

�
ei +

�
x(i) −m(i)

1

�
ej (A.49)

(∇∇
T)
�
x(i) −m(i)

1

��
x(j) −m(j)

1

�
= eje

T
i + eie

T
j . (A.50)

Performing (A.48) for each (i, j) ∈ Ndx×Ndx gives (4.40). Finally, inserting φ(x) =
�

l∈{i,j,k}
�
x(l)−

m(l)
1

�
into (3.13) gives

˙̄m(iii)
3 =

�←
Kg

� �

l∈{i,j,k}

�
x(l) −m(l)

1

���

qt
(A.51)

=
�

l∈{i,j,k}

�
g(l)

�

n∈{i,j,k}/l

�
x(n) −m(n)

1

�
�

+
�

l∈{i,j,k}

�

n∈{i,j,k}/l
w∈{i,j,k}/{l,n}

�
D(nl)

�
x(w)

−m(w)
1

��
(A.52)

where we have used

∇φ(x) = ∇

�

l∈{i,j,k}

�
x(l) −m(l)

1

�
(A.53)

=
�

l∈{i,j,k}

�

n∈{i,j,k}/l

�
x(n) −m(n)

1

�
el (A.54)

and

∇∇φ(x) = ∇

�

l∈{i,j,k}

�

n∈{i,j,k}/l

�
x(n) −m(n)

1

�
el (A.55)

=
�

l∈{i,j,k}

�

n∈{i,j,k}/l
w∈{i,j,k}/{l,n}

�
x(w)

−m(w)
1

�
ene

T
l . (A.56)

A.3.6 Deriving GPs from linear state-space models

Consider the process {xt}t∈T whose law is described by the linear SDE in equation (5.14).

Using Itô’s formula, the explicit form for xt is given by

xt = e
� t
0 A(s)ds

x0 +

� t

0
e
� t
s A(u)du

b(s)ds+

� t

0
e
� t
s A(u)du

√
Dsdws. (A.57)

Therefore

µ(t) := �xt� = e
� t
0 A(s)dsµ0 +

� t

0
e
� t
s A(u)du

b(s)ds. (A.58)
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Also

Σ(s, t) :=
�
(xs − µs)(xt − µt)

T
�

(A.59)

=

��
e
� s
0 A(u)du(x0 − µ0) +

� s

0
e
� s
u A(v)dv

√
Dudwu

�

×

�
e
� t
0 A(u)du(x0 − µ0) +

� t

0
e
� t
u A(v)dv

√
Dudwu

�T
�

(A.60)

= e
� s
0 A(u)du

Σ0e
� t
0 AT(u)du +

� t∧s

0
e
� s
u A(v)dv

Due
� t
u AT(v)dvdu, (A.61)

where the second term in (A.61) is derived using a variation of the Itô isometry (Øksendal,

2003).

A.3.7 Reproducing kernel of first-order Sobolev space

By definition, x ∈ X if and only if x�+λx ∈ L2([0, T ],R) and x(0) ∈ R. Therefore X inherits

a natural bilinear form �·, ·�λ : X × X → R, from the L2 inner product �·, ·�L2 and the scalar

product on R, given by

�x, y�λ = �x� + λx, y� + λy�L2 + 2λx(0)y(0). (A.62)

The covariance function in equation (5.40) is non-differentiable, so we restate it in twice-

differentiable piecewise form

k(t, s) =

�
lt(s) =

1
2λe

−λ(t−s) for s ∈ [0, t]

ut(s) =
1
2λe

−λ(s−t) for t ∈ [t, T ].
(A.63)

Using integration-by-parts twice on [0, t] and [t, T ], for any x ∈ X , assuming k(t, ·) ∈ X , it

holds that

�x, k(t, ·)�λ =

� t

0
x(s)(λ2lt(s)− l��t (s))ds+ [x(s)(λlt(s) + l�t(s))]

t
0 + 2λx(0)lt(0)

+

� T

t
x(s)(λ2ut(s)− u��t (s))ds+ [x(s)(λut(s) + u�t(s))]

T
t . (A.64)

Inserting definitions (A.63) into (A.64), and evaluating the right-hand-side of (A.64), we obtain

�x, k(t, ·)�λ = x(t), which is the desired reproducing property. Note that �·, ·�λ is symmetric,

and �k(t, ·), k(t, ·)�λ = k(t, t) is finite so the assumption k(x, ·) ∈ X was correct. It can

additionally be shown that (X , k) is a unique RKHS (Aronszajn, 1950) by noting that (5.40) is

positive-definite for λ > 0. Interestingly, note the reproducing property did not require positive-

definiteness (see Canu et al. (2002) for a discussion).
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A.3.8 Cumulants of skew-normal distribution

For any random variable x, let K(z) denote its cumulant generating function (CGF) given by

K(z) = log
�
exp(xT

z)
�
. (A.65)

Let κ1, κ2, and κ3 denote the corresponding first three cumulants, given by

κ1 := ∇zK(0) (A.66)

κ2 := ∇zzTK(0) (A.67)

κ(ijk)3 := ∂zizjzkK(0), i, j, k ∈ Ndx . (A.68)

The cumulant generating function K(z) of the skew-normal distribution in (ref) is given by

K(z) = µT
z+

1

2
z
T
Λz+ ζ(δTz) (A.69)

where ζ(x) = log
�
2Φ(x)

�
and δ is given by (ref). To take derivatives of K(z), and therefore

find the cumulants, requires us to take derivatives of ζ(δTz) w.r.t. z. These are given by

∇zζ(δ
T
z) = ζ �(δTz)δ (A.70)

∇zzζ(δ
T
z) = ζ ��(δTz)δδT (A.71)

∂zizjzkζ(δ
T
z) = ζ ���(δTz)δiδjδk. (A.72)

These need to be evaluated at t = 0, therefore we require the following identities (Azzalini &

Capitanio, 1999)

ζ �(0) = (2/π)1/2 (A.73)

ζ ��(0) = (2/π) (A.74)

ζ ���(0) = (2/π3)1/2(4− π). (A.75)

Putting it all together, we obtain

κ1 := ∇zK(0) = µ+ (2/π)1/2δ (A.76)

κ2 := ∇zzK(0) = Λ− (2/π)δδT (A.77)

κ(ijk)3 := ∂zizjzkK(0) = (2/π3)1/2(4− π)δiδjδk. (A.78)
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A.4 Likelihood analysis of double well

The negative log likelihood is given by

�F(µ; b, θ, y) =
(µ− y)2

2
+ bµ2(µ2

− 2θ). (A.79)

Therefore finding the critical points of �F(µ; b, θ, y) is equivalent to finding the zeros of the cubic

equation

µ3 +Aµ+B = 0 (A.80)

where A = ( 1
4b − θ) and B = −y

4b . Using standard rules for cubic equations (Abramowitz &

Stegun, 1964), equation (A.80) has (three) real roots if and only if 4A3 + 27B2 ≤ 0. This is

equivalent to the identity

|y| ≤ 8b

�
(θ − 1

4b)
3

27
. (A.81)

For (A.81) to hold, it must already hold that (θ − 1
4b) ≥ 0 and therefore θ ≥

1�
4r , where b = �

r

has been re-substituted momentarily for the benefit of discussion. Interpreting this qualitatively,

consider the case when θ < 1�
4r , and thus �F(µ; b, θ, y) has only one minima (due to global stabil-

ity). There are two possible explanations why this type of behaviour occurs. If the observation

noise r is small when compared to � and θ, then it is possible that θ < 1�
4r . For this case the

post hoc Laplace posterior is not able to “see” the minima of the prior potential U(x) because

the bandwidth of the likelihood function is too tight. The same situation occurs if � is large

when compared θ and r, and thus θ < 1�
4r . In this case the diffusion rate (temperature) of the

prior is too high and, because of the level of noise in the system, it is impossible for the Laplace

approximation to distinguish between the two minima of the prior potential U(x). This type of

behaviour can be seen in figure (..). Note that identity (A.81) is equivalent

− 1 ≤
y

8b

�
27

(θ − 1
4b)

3
≤ 1. (A.82)

this is important because, for the case θ ≥
1
4b , equation (A.82) allows the global minimiser

µ∗(b, θ, y) of �F(µ; b, θ, y) to be expressed in closed trigonometric form. Indeed, for the case

θ ≥
1
4b , the minimiser µ∗(b, θ, y) is given by

µ∗(b, θ, y) =






2

�
θ− 1

4b
3 cos

�
2π
3 − φ(b, θ, y)

�
if 0 ≥ y

2

�
θ− 1

4b
3 cos

�
2π
3 + φ(b, θ, y)

�
if 0 ≤ y

(A.83)

where

φ(b, θ, y) =
1

3
cos−1

�
y

8b

�
27

(θ − 1
4b)

3

�
. (A.84)
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�F has first and second order derivatives given by

�Fµ = (µ− y) + 4bµ(µ2
− θ) (A.85)

�Fµµ = 1 + 4b(3µ2
− θ). (A.86)

Setting �Fµµ = 0 shows two inflection points exist in the graph of �F(µ), and their positions are

independent of y. Indeed, the inflection points are given by

µ = ±

�
1
3(θ −

1�
4r ) (A.87)

It follows that these inflection points only exist for θ > 1�
4r . Now assume that θ > 1

4b ,

and therefore two inflection points and importantly three minima exist in the graph of �F(µ).

Looking at �Fµµ(µ) more closely shows

�Fµµ(µ) ≤ 0 for |µ| ≤
�

1
3(θ −

1
4b),

�Fµµ(µ) > 0 for |µ| >
�

1
3(θ −

1
4b).

(A.88)

Therefore there exists one maxima inside the ball of radius ρ =
�

1
3(θ −

1
4b) and two minima

outside the ball of radius ρ.
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