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1 Introduction

In recent years there has been considerable interest in entanglement entropy and its holo-

graphic realisation, following the proposal of [1] that entanglement entropy can be com-

puted from the area of a bulk minimal surface cohomologous to a boundary entangling

region. This proposal was proved for spherical entangling regions in [2] and arguments

supporting the Ryu-Takayanagi prescription based on generalised entropy were given in [3].

Entanglement entropy has been computed in a wide range of holographic systems, see the

review [4].

The focus of this paper is on the computation of holographic entanglement entropy in

top-down brane probe systems, which are widely used in phenomenological applications of

holography. Entanglement entropy is a new computable for such systems and, following

the pioneering works of [5, 6], can act as an order parameter for confinement and other

phase transitions.

A top-down brane probe system is expressed in terms of a ten-dimensional supergravity

background and a brane embedding into this background. The Ryu-Takayanagi prescrip-

tion is however based on extremal surfaces in the reduced Einstein (d + 1)-dimensional

metric, where d is the dimension of the dual field theory. One of the main results of this

paper is a systematic method to compute the holographic entanglement entropy for any

top-down brane probe system, using the method of Kaluza-Klein holography [7] to extract

the lower-dimensional Einstein metric. This method reproduces earlier results of [8–11] but

allows entanglement entropy to be computed for any brane system with arbitrary world-

volume fluxes. (Earlier results for massless flavors at finite density can be found in [12].)

We illustrate our methodology using the example of the D3-D7 system at finite mass and

density. We compute the holographic entanglement entropy for massive flavors, with ar-

bitrary mass and various entangling region geometries, and use our new methodology to

address the case of finite density.

Brane systems provide a new testing ground for the dependence of entanglement en-

tropy on the field theory and on the shape of entangling region, topics of considerable

current interest, see for example [13–18]. In particular, one can explore the structure of

universal logarithmic terms; these are well-understood for conformal field theories (see

e.g. [19, 20]) and recent papers have explored the behaviour of entanglement entropy under

relevant perturbations using conformal perturbation theory [21–26]. It was shown in [23]

that for a CFT deformed by a relevant operator

I → I + λ

∫
ddxO (1.1)

there is a new logarithmic divergence in the entanglement entropy of the half space

δS = Nλ2 (d− 2)

4(d− 1)

π
d+2
2

Γ(d+2
2 )
A log

(
εUV

εIR

)
(1.2)

when ∆ = (d+2)/2 with A the area of the dividing surface and N the normalisation of the

two point function of the operator O. Here εUV and εIR correspond to UV and IR cutoffs

respectively.
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In section 6 we prove (1.2) by analysing the volume divergences of the holographic

entanglement entropy and show that (as postulated in [23]) such a divergence occurs for an

entangling surface with arbitrary geometry. We also show explicitly that (1.2) agrees with

the logarithmic terms in the entanglement entropy for the D3-D7 system at finite mass,

using the results of [27] to determine the holographic two point function normalisation. As

well as matching the universal terms in the entanglement entropy, we explain the origin of

finite terms in the entanglement entropy for massive flavor systems, in terms of the effective

IR description of the system in terms of a CFT deformed by irrelevant operators.

There is a growing literature connecting quantum entanglement with the global struc-

ture of the bulk spacetime, see in particular [28, 29]. In [30] a relation between the area of

generic (non-minimal) surfaces and entanglement was proposed and this idea was sharp-

ened with the introduction of differential entropy [31–36]. We verify that the differential

entropy in the D3-D7 system indeed computes the area of a hole in the reduced Einstein

metric; the agreement is somewhat subtle since the depth of the hole is itself corrected by

the presence of the probe branes.

In section 8 we discuss the implications of the fact that the entanglement and differen-

tial entropy are related to the reduced Einstein metric, rather than the ten-dimensional met-

ric: even if entanglement allows us to reconstruct the reduced Einstein metric completely,

this information does not suffice to reconstruct the ten-dimensional geometry. Moreover,

the causal structure in ten dimensions only agrees with that of the reduced Einstein metric

in special cases (e.g. product metrics); the global structure is qualitatively different between

five and ten dimensions even for well-understood examples such as the Coulomb branch of

N = 4 SYM. Reconstruction of the full ten-dimensional geometry would therefore seem to

require a generalized notion of entanglement in the dual field theory.

The plan of the paper is as follows. In section 2 we briefly review the relevant features

of the D3-D7 system. In sections 3 and 4 we compute the entanglement entropy for slab,

half space and spherical entangling regions for the massive D3-D7 system. In section 5 we

present a general method to compute the entanglement entropy in any brane probe system

using Kaluza-Klein holography and illustrate our method with the D3-D7 system at finite

mass and density. We discuss the field theory interpretation of our results in section 6 and

give a holographic proof of (1.2) for generic entangling regions. In section 7 we show that

the differential entropy computes the area of a hole in the Einstein metric and we discuss

the meaning of entanglement and differential entropy for top-down solutions in section 8,

illustrating our discussions with Coulomb branch geometries. We conclude in section 9 and

various technical results relevant to section 5 are contained in appendix A.

2 Massive flavors

In this paper we will explore entanglement entropy for massive brane systems, focussing

for the most part on the specific example of the D3-D7 brane system. Consider Nc D3-

branes and Nf � Nc parallel coincident D7-branes. As discussed in the early days of the

AdS/CFT correspondence [37, 38] the decoupling limit gives rise to N = 4 SYM coupled to

Nf massless flavors; the resulting field theory is an N = 2 SCFT. Taking the background
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AdS5 × S5 metric to be of unit radius:

ds2 =
1

z2

(
dz2 + dxµdxµ

)
+ dθ2 + sin2 θdΩ2

3 + cos2 θdφ2 (2.1)

the embedding of a probe D7-brane corresponding to a massless flavor is described by φ

constant and θ = π/2, i.e. the probe D7-brane wraps AdS5 × S3.

Suppose one separates the D7-branes from the stack of D3-branes; the resulting open

strings are massive and the field theory in the decoupling limit corresponds to N = 4 SYM

coupled to Nf massive flavors [39] (we discuss the massive deformation of the N = 2 SCFT

further in section 6). The corresponding D7-brane embedding in AdS5 × S5 is described

by φ being constant and the angle θ depending on the radial coordinate z as

sin2 θ = (1−m2z2), (2.2)

where m corresponds to the flavor mass, or equivalently the separation of the D7 and D3

branes. Note that the probe brane wraps the equator of the S5 as z → 0 and smoothly

caps off at a finite value of z = 1/m, controlled by the flavor mass.

The D3-D7 brane system can be used to model mesons holographically. Considerable

work has been done on generalizations of the probe brane embeddings to finite temperature

and finite density, see the review [40] and on the backreaction of the flavor branes onto the

geometry [41–43]. In particular, note that interesting meson melting phase transitions are

observed at finite temperature and density, see for example [44, 45]. Backreacting massive

flavors is non-trivial even at zero temperature and density, since the flavors break the global

symmetry to SO(4) and the resulting ten-dimensional metric is therefore of cohomogeneity

three. Smearing the branes over the compact space reduces the cohomogeneity of the metric

but this is obscure from the field theory perspective as it corresponds to an averaging over

different field theories.

In this work we will calculate the entanglement entropy and the differential entropy

for the massive flavor system at zero temperature and zero density, and match our results

with field theory results based on conformal perturbation theory. We will also present

a method to compute the entanglement entropy for any probe brane system (with or

without worldvolume gauge fields) and illustrate this method with the case of massive

flavors at finite density. The method is equally applicable at finite temperature, although

at finite temperature the entanglement entropy will include both thermal and quantum

contribution; matching with field theory results is considerably harder as few results for

finite temperature exist. It would however be interesting to explore the finite temperature

results in the context of melting phase transitions.

3 Entanglement entropy for slabs

In this section we compute the entanglement entropy for a slab on the boundary (see

figures 1 and 2), working to leading order in the ratio of the number of flavors to

colors, Nf/Nc.

Let us begin by reviewing the computation of entanglement entropy for a slab in AdS5.

We define a slab region on the boundary of width ∆x = l by x ∈ [0, l], and take as an

– 4 –
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∆x
L2 L2

Figure 1. Illustration of a slab boundary region: ∆x = l is the width of the region, and L2 is the

regularized area of its boundary faces.

embedding ansatz z = z(x) on a t = 0 hypersurface. Defining the regularised lengths of the

other spatial directions as L, it is then easy to show that the Ryu-Takayanagi entanglement

entropy functional [1] for the embedding surface is:

S =
L2

4GN

∫ l

0
dx

√
1 + z′2

z3
, (3.1)

where GN is the Newton constant. Since we chose the AdS5 to have unit radius, the

Newton constant is dimensionless and can be related to the number of colors Nc as

1

8πGN
=
N2
c

4π2
. (3.2)

The Lagrangian is independent of x explicitly and hence the associated Hamiltonian is a

constant of motion. Rearranging the expression for this constant of motion one easily finds:

z′ =

√
z̃6 − z6

z3
(3.3)

where z̃ is clearly the turning point of the solution since z′(z̃) = 0. The entanglement en-

tropy is then obtained by substituting this solution into the entropy functional, resulting in

S =
L2z̃3

2GN

∫ z̃

ε

dz

z3
√
z̃6 − z6

. (3.4)

Here we have included a factor of two, from the two halves of the entangling surface, i.e.

0 < x < l/2 and l/2 < x < l. It is useful to define the dimensionless parameter s ≡ z/z̃ so

that z ∈ [ε, z̃]→ s ∈ [a, 1] where a ≡ ε/z̃ is also dimensionless. We obtain, for example:

dx

dz
=

s3

√
1− s6

. (3.5)
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z = 0

z̃

∆x

Figure 2. The minimal surface for a slab boundary region — the boundary is at z = 0 and z = z̃

is the turning point of the surface.

Note that the entanglement entropy is thereby manifestly dimensionless

S =
L2

2z̃2GN

∫ 1

a

ds

s3
√

1− s6
(3.6)

=
L2

2z̃2GN

(√
πΓ(−1

3)

6Γ(1
6)

+
1

2a2 2F1

(
−1/3, 1/2, 2/3, a6

)
)

;

=
L2

2GN

(
1

2ε2
+

√
πΓ(−1

3)

6Γ(1
6)z̃2

)
,

where in the latter equation we retain only terms which are finite or divergent as the

cutoff ε→ 0.

It is simple to find the induced metric of the entangling surface and its associated stress

tensor. The induced metric is given by γmin
ab = ∂aX

µ∂bX
νgµν where a, b = (s, y, w) run

over the surface indices and µ, ν run over all AdS5 indices. The induced metric is therefore

γmin
ab =

(
1

s2(1− s6)
,

1

s2z̃2
,

1

s2z̃2

)
. (3.7)

We note for further use that √
γmin =

1

z̃2s3
√

1− s6
. (3.8)

Differentiating the action functional, the stress tensor for the surface is given by:

Tµνmin ≡
2√
γmin

δ
√
γmin

δgµν
(3.9)

which evaluates to:

Tµνmin = γmin ab∂aX
µ∂bX

ν (3.10)

after using the chain rule. It is then a simple matter to calculate these components,

resulting in:

Tµνmin =
(
s2(1− s6)z̃2, 0, s8z̃2, s2z̃2, s2z̃2

)
(3.11)
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which we will make use of below. Note also that the relation between the width of the

slab, l, and the turning point of the minimal surface is

l = 2

∫ z̃

0

z3dz

(z̃6 − z6)
1
2

= 2z̃

∫ 1

0

s3ds

(1− s6)
1
2

=
2
√
πΓ(2

3)

Γ(1
6)

z̃. (3.12)

3.1 Flavor contribution

Now let us compute the change in the entanglement entropy caused by the presence of Nf

flavors branes, with Nf � Nc. A priori, to compute this change one would expect that

one needs to compute the backreaction of the branes to linear order in Nf/Nc and then

extract from the backreacted geometry the change in the five-dimensional Einstein metric

and hence the change in the area of the minimal surface. As mentioned earlier, it is hard

to compute the backreacted ten-dimensional geometry because of the high cohomogeneity

of the problem; smeared solutions are known and entanglement entropy was computed for

these smeared solutions in [46].

It is important to note however that entanglement entropy is defined in terms of the

five-dimensional Einstein metric, not the ten-dimensional (Einstein-frame) metric. One

does not in general obtain the correct answer for the entanglement entropy by computing

the area of a minimal surface in the ten-dimensional metric, see section 5. Note that [46]

used the ten-dimensional metric rather than the five-dimensional Einstein metric.

Computing the full ten-dimensional backreaction without smearing and extracting the

effective five-dimensional Einstein metric is intractable for general probe brane systems.

Several methods have therefore been developed to extract the entanglement entropy from

the probe brane embedding, see [8–11]. The methods of [8, 10, 11] are particularly applica-

ble to spherical entangling regions, for which the CHM map [2] may be exploited. In this

section our discussion will follow that of [9], which is applicable to all entangling region

geometries.

On general grounds the change in the entanglement entropy for any perturbation in

the five-dimensional Einstein metric is

δS =
1

4GN

∫
d3x
√
γmin

1

2
Tµνminh

E
µν (3.13)

where hEµν is the perturbation in the five-dimensional Einstein metric, Tµνmin is the energy

momentum tensor of the minimal (entangling) surface in the background and the integral is

over the original entangling surface. Therefore one can compute the entanglement entropy

provided one can extract the change in the five-dimensional Einstein metric. For general

brane embeddings the computation of the perturbation in the five-dimensional Einstein

metric is subtle; in section 5 we present a method to compute the Einstein metric for all

types of brane embeddings.

It was observed in [9] that the perturbation in the five-dimensional Einstein metric is

straightforward to compute whenever the brane embedding has an induced worldvolume

metric which is diagonal (a product of a non-compact part and a compact part which is

embedded in the sphere part of the background geometry) and the non-compact part of

– 7 –
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the metric has no dependence on the sphere coordinates. In such a case the linearised

backreaction on the metric for probe branes can be computed [10] as:

hEµν =
1

z2
diag (f(z),−h(z), h(z), h(z), h(z)) (3.14)

where the metric perturbation is sourced by the effective brane energy momentum tensor

T eff
µν i.e.

Gµν(hE) = 8πGNT
eff
µν . (3.15)

This effective stress energy tensor is obtained by reducing the brane action over the

three-sphere:

I = −T7

∫

AdS5

d5σ

∫

S3

d3σ
√−γ = −T7

∫

AdS5

d5σ(2π2)(1−m2z2)
3
2
√−γ(s), (3.16)

where γαβ is the worldvolume metric for the brane.1 The worldvolume metric is diagonal

for the given embedding and therefore the determinant factorises, allowing the integral over

the three-sphere to be evaluated. The resulting effective action then depends only on the

non-compact part of the worldvolume metric γ(s)µν , but note that the effective tension of

this brane is z dependent. Varying this effective action with respect to the non-compact

part of the background metric results in the effective energy momentum tensor

(T eff)µν = 2π2T7(1−m2z2)γµνs . (3.17)

Note that this method for computing the effective source term for the five-dimensional

Einstein metric relies on the fact that the worldvolume brane metric is a direct product of

non-compact and compact parts. The method is also not applicable for brane embeddings

in which worldvolume gauge fields are non-zero or worldvolume fields source other super-

gravity fields as well as the metric. In section 5 we will discuss a more generally applicable

method for computing the entanglement entropy contributions from probe branes which

does not rely on a diagonal worldvolume metric.

Substituting (3.17) into (3.15) gives the following equation:

f(z) + zh′(z) ≡ f̃(z) =
t0
12

(1−m2z2)2 . (3.18)

Here t0 is the backreaction parameter, proportional to the number of flavors Nf :

t0 = 16πGNTo; To = 2π2T7 (3.19)

where T7 is the tension of a D7-brane. Only the gauge invariant combination f̃(z) is

determined by the Einstein equations. However, continuity of the metric and of the extrinsic

curvature at z = 1/m requires that h(z) satisfies h(1/m) = h′(1/m) = 0.

Substituting the metric perturbation and the minimal surface stress energy tensor

into (3.13) thus gives

δS =
1

4GN

∫
dsdwdy

1

2z̃2s3
√

1− s6

(
f(z̃s)(1− s6) + h(z̃s)(s6 + 2)

)
(3.20)

1Note that we denote the worldvolume metric for the brane as γ and the induced metric on the entangling

surface as γmin.
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1
m

∆x

z̃

D7-brane
(
z < 1

m

)

AdS Region
(
z > 1

m

)

z = 0

Figure 3. The relationship between the original minimal surface and the D7-probe embedding —

when z̃ < 1/m the entire minimal surface lies within the probe brane embedding.

where this integral is over the original entangling surface with coordinates (s, w, y). Defin-

ing α ≡ L2/(4GN z̃
2) for convenience (where we have computed the trivial y, w-integrals to

give the factor L2 and taken into account the factor of two arising from the two halves of

the entangling surface), and unpacking f(z̃s) we find:

δS = α

∫
ds

(√
1− s6

s3
f̃(z̃s)−

√
1− s6

s2
z̃h′(z̃s) +

(s6 + 2)

s3
√

1− s6
h(z̃s)

)
. (3.21)

Integrating the second term by parts, the bulk contribution cancels the third term and one

is left with a boundary contribution:

δS = α



∫ b

a
ds

√
1− s6

s3
f̃(z̃s)−

[
h(z̃s)

√
1− s6

s2

]s=b

s=a


 (3.22)

where a = ε/z̃ and b = 1, 1/µ for µ < 1, µ > 1 respectively. Here µ ≡ mz̃ is the dimension-

sless mass parameter. This latter distinction occurs because, although the integral runs

over the original entangling surface which has z ∈ [ε, z̃], the integral in fact only receives

a non-zero contribution when hEµν 6= 0, i.e. for z < 1/m. When z̃ < 1/m (i.e. µ < 1),

the entire entangling surface lies within the brane embedding, and the upper limit is thus

z = z̃ or s = 1. When z̃ > 1/m (i.e. µ > 1) however, the upper limit will depend on the

mass and be given by z = 1/m i.e. s = 1/µ (see figure 3).

For both cases, the boundary term at s = b actually vanishes. The expression within

square brackets trivially vanishes at s = 1 for the case µ < 1, and it vanishes for µ ≥ 1

using the continuity condition h(1/m) = 0. The expression for both cases is thus given by:

δS = α

(∫ b

a
ds

√
1− s6

s3
f̃(z̃s) + h(ε)

√
1− a6

a2

)
(3.23)

with b depending on the case as mentioned above. Expanding for f̃ this becomes

δS =
t0α

12

(∫ b

a
ds

√
1− s6

s3
(1− µ2s2)2 + h(ε)

√
1− a6

a2

)
. (3.24)
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Note that the entanglement entropy depends explicitly on the gauge fixing for the metric

perturbation. One choice of scheme would be to set f(z) = 0, corresponding to Fefferman-

Graham coordinates while a second natural choice of scheme is to fix h(z) such that the

cutoff is unchanged to linear order and one then obtains the relation:

h(ε) =
t0
12

(
1− 2

3
m2ε2 +

1

5
m4ε4

)
+O(t20) . (3.25)

For this gauge choice one obtains

δS =
t0L

2

48GN

(
1

z̃2

∫ b

a
ds

√
1− s6

s3
(1− µ2s2)2 +

(
1

ε2
− 2m2

3
+O(ε2)

))
;

=
t0L

2

48GN

(
1

z̃2

∫ b

a
ds

√
1− s6

s3
(1− µ2s2)2

)
+ δSgauge(m, ε), (3.26)

where we note that the gauge dependent contribution δSgauge is independent of the turning

point z̃, since h(0) is finite. We will discuss this point further below. In what follows we

will retain the gauge dependence explicitly, rather than fixing a gauge, and show that this

gauge dependence drops out of universal terms.

In computing the integral we first specialise to the case of small mass so b = 1. Per-

forming the integral directly over the range s ∈ [a, 1] and expanding the answer in a gives

the following up to O(a):

∫ 1

a
ds

√
1−s6

s3
(1−µ2s2)2 =

1

2a2
+

2

3
µ2 +

√
π

12

Γ(−1/3)

Γ(7/6)
+µ4

√
π

12

Γ(1/3)

Γ(11/6)
−2

3
µ2log2+2µ2loga .

(3.27)

The result thus becomes:

δS =
t0L

2

48GN

(
1

2ε2
+

2

3
m2 +

√
π

12z̃2

Γ(−1/3)

Γ(7/6)
+m4z̃2

√
π

12

Γ(1/3)

Γ(11/6)
+

2

3
m2log(ε3/2z̃3)

)

+ δSgauge(m, ε). (3.28)

We next consider the case of large mass so b = 1/µ. The result is given in terms of

generalised hypergeometric functions:

∫ 1/µ

a
ds

√
1− s6

s3
(1− µ2s2)2 =

1

2a2
+

1

6µ4 3F2

(
{1/2, 1, 1}, {2, 2}, 1/µ6

)
(3.29)

− µ2

2
2F1

(
−1/2,−1/3, 2/3, 1/µ6

)

+
µ2

2
2F1

(
−1/2, 1/3, 4/3, 1/µ6

)
+ 2µ2log(µa) +O(a2) .

Expanding for large mass one then obtains

δS =
t0L

2

48GN

(
1

2ε2
+ 2m2log(mε)− 1

48m4z̃6
+O

(
ε2

z̃2

)
+O

(
1

m10z̃12

))
+ δSgauge(m, ε).

(3.30)

Note that the power and log-divergent terms agree for µ ≤ 1 and µ ≥ 1.
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l

×z̃
×
zt

Figure 4. Illustration of the change in the turning point of the minimal surface — z̃ is the turning

point of the original minimal surface (i.e. the one that is actually used to compute the flavor

contribution to the entanglement entropy (3.13)), whereas zt is the turning point of the minimal

surface in the backreacted geometry.

We can immediately obtain the change in the entanglement entropy for the half space

from the z̃ →∞ limit of the above expression. In this case the entangling surface extends

throughout the bulk and has no turning point. The contribution to the entanglement

entropy from the brane is then

δS =
t0L

2

48GN

(
1

4ε2
+m2log(mε)

)
. (3.31)

Note that the divergent terms differ from (3.30) by an overall factor of two, since the

entangling surface in the field theory no longer has two disconnected parts. We will discuss

the field theory computation of (3.31) in section 6.

3.2 Changes in turning point and entanglement surface

The perturbed entangling surface has a turning point for which the relation between the

turning point and the width of the slab ∆x = l is changed relative to (3.11). The equation

for the perturbed entangling surface is obtained analogously to (3.3) and given by

(z′)2 =

(
z̃6

z6
− 1

)
+ h(z)

(
4z̃6

z6
− 1

)
− f(z)

(
z̃6

z6
− 1

)
, (3.32)

for some constant z̃, and where f(z) and h(z) are the metric perturbations discussed

previously. The width of the slab is then given by

l

2
=

∫ z̃

0

z3dz

(z̃6 − z6)
1
2

+
1

2

∫ 1
m

0
z3dz

(f + zh′)

(z̃6 − z6)
1
2

− 1

2

[
z4h

(z̃6 − z6)
1
2

] 1
m

0

, (3.33)

where the upper limits of integration are explained as follows: for µ ≥ 1, the surface ends

in the region in which the perturbations f(z) and h(z) vanish; from (3.32) the turning

point therefore remains at z = z̃, and we continue to use the definition µ ≡ mz̃.

The boundary term in (3.33) vanishes since h(1/m) = 0 and h(0) is finite and therefore

the relation between the turning point and the slab width depends only on the gauge
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invariant combination of metric perturbations. Substituting this combination using (3.18)

one hence obtains

l

2
= z̃

(√
πΓ(2

3)

Γ(1
6)

+
t0
24

∫ µ−1

0
dss3 (1− µ2s2)2

(1− s6)
1
2

)
, (3.34)

where note that µ = mz̃ depends on z̃ implicitly. The integral can be computed resulting in

∫ µ−1

0
dss3 (1− µ2s2)2

(1− s6)
1
2

=
1

24µ4

(
16µ3(−µ3 +

√
µ6 − 1) + 6 2F1

(
1

2
,

2

3
,
5

3
,

1

µ6

)
(3.35)

+3 2F1

(
1

2
,

4

3
,

7

3
,

1

µ6

))

and expanding for µ� 1 one finds

l

2
= z̃

(√
πΓ(2

3)

Γ(1
6)

+
t0

576m4z̃4

)
. (3.36)

For the small mass case the situation is more complicated, since from equation (3.32)

we find that the turning point of the surface is itself changed (see figure 4). Let the

perturbed turning point be

zt = z̃ + t0δz̃. (3.37)

The latter is computed by setting z′ = 0 in (3.32), resulting in

t0δz̃ =
1

2
z̃h(z̃). (3.38)

Note that the shift in the turning point depends on the metric perturbation h(z) explicitly,

rather than the gauge independent combination.

The relation between l and zt is now calculated using the relation (3.32) which can be

rewritten as

z3z′ =
(
(1 + h(z̃))(z6

t − z6)− f(z)(z6
t − z6) +H(z)(4z̃6 − z6)

) 1
2 , (3.39)

where we define

h(z) = H(z) + h(z̃), (3.40)

with H(z̃) by construction being zero. In relation (3.39) we implicitly work to first order

in t0, which in particular implies that z̃ can be replaced by zt in terms multiplying f(z)

and H(z), which are already of order t0. Therefore

l

2
=

1

(1 + h(z̃))
1
2

∫ zt

0

z3dz

(z6
t − z6)

1
2

+
1

2

∫ zt

0
z3dz

(f + zH ′)

(z6
t − z6)

1
2

− 1

2

[
z4H

(z̃6 − z6)
1
2

]zt

0

. (3.41)

The boundary term vanishes at z = 0 and the contribution at z = zt is zero since H(zt) = 0

to order t0. Since h′(z) = H ′(z) the combination appearing in the second integral is the

gauge invariant combination as before and therefore

l

2
= zt

(
1− 1

2
h(z̃)

)∫ 1

0

s3ds

(1− s6)
1
2

+
zt
24
t0

∫ 1

0
ds
s3(1− µ2s2)2

(1− s6)
1
2

, (3.42)
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where now µ ≡ mzt. Computing the integrals we obtain

l = zt

(
1− 1

2
h(z̃)

)
2
√
πΓ(2

3)

Γ(1
6)

(3.43)

+
t0zt
12

(√
πΓ(2

3)

Γ(1
6)
− 2µ2

3
+
µ4√πΓ(4

3)

6Γ(11
6 )

)
.

Note that h(z̃) = h(zt) at this order.

Even though we only needed the original entangling surface to compute the entangle-

ment entropy above, these changes to the turning point are important to keep track of

when comparing the differential entropy to the gravitational entropy of the corresponding

hole in the bulk, as we will discuss in section 7.

3.3 Finite contributions

To understand the infra-red behaviour of the entanglement entropy it is often useful to

isolate the finite contributions.

A dimensionless, cut-off independent quantity was defined in [47, 48] by differentiating

with respect to the mass as

Sm = m4 ∂2S

∂(m2)2
; (3.44)

note that this expression is valid for four-dimensional quantum field theories, with different

expressions being proposed in lower dimensions. Implicitly, ε and z̃ (or equivalently l) are

held fixed. A priori, since the gauge dependent terms depend on the mass it is not obvious

that this quantity will be independent of the gauge. However, on general grounds the gauge

dependent terms must make the form

δSgauge = a−2
L2

ε2
+ a0m

2L2 +O(ε2) (3.45)

with a−2 and a0 dimensionless coefficients. This form follows from the fact that the en-

tanglement entropy is extensive, i.e. it is proportional to the area of each slab L2, and

the underlying theory is conformal. This implies that the only finite terms in the scheme

dependent part of the entanglement entropy must be proportional to m2L2, since m is the

only other cutoff independent scale in the problem. Since neither a−2 nor a0 contribute

to (3.44), the quantity computed by (3.44) is indeed independent of the gauge.

Computing this quantity one finds that for µ ≤ 1

δSm =
t0L

2

48GN

(√
πΓ(1

3)

6Γ(11
6 )

m4z̃2

)
(3.46)

while for µ ≥ 1

δSm =
t0L

2

32GN

µ2

3z̃2 2F1[−1/2, 1/3, 4/3, 1/µ6] (3.47)

which can be expanded for µ� 1

δSm =
t0L

2

48GN

(
m2 − 1

8m4z̃6
+O

(
1

m10z̃12

))
. (3.48)
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For slab geometries an alternative method of defining a cut-off independent quantity

is (see for example [49–52])2

Sl = l
∂S

∂l
. (3.49)

This quantity is manifestly independent of the coordinate choice h(z), since δSgauge is

a local quantity, which is hence independent of the (non-local) slab width l, as we saw

explicitly below (3.26). For µ ≤ 1 this quantity evaluates to

δSl =
t0L

2

48GN

(
−
√
π

6z̃2

Γ(−1
3)

Γ(7
6)

+

√
πΓ(1

3)

6Γ(11
6 )

m4z̃2

)
(3.50)

while for µ� 1 one obtains

δSl =
t0L

2

48GN

(
1

8m4z̃6
+O

(
1

m10z̃12

))
. (3.51)

The limit µ � 1 probes the IR of the theory: for fixed m this corresponds to taking an

entangling surface which extends deep into the bulk. Therefore a finite quantity should in

this limit decouple from UV physics. Comparing (3.48) and (3.51), the first quantity does

not fulfil this criterion (as the term of order m2 derives from the logarithmic divergence)

whereas the latter quantity does. We will hence use (3.51) in section 6 when discussing the

IR physics.

3.4 Phase transitions

The flavor contributions to the entanglement entropy (3.28) and (3.29) match at mz̃ = 1,

i.e. when the turning point of the entangling surface is at the location where the met-

ric perturbation vanishes. This matching was guaranteed by the continuity of the metric

perturbation and its derivative at z = 1/m. There are however discontinuities in the

derivatives of the flavor contribution at mz̃ = 1, induced by the discontinuities of higher

derivatives of the metric perturbation at z = 1/m. In particular, there is a discontinu-

ity in the fourth derivative of the entanglement entropy with respect to the slab width

(at fixed mass): (
∂4S

∂l4

)

mz̃=1

. (3.52)

From the field theory perspective it is more natural to fix the mass (i.e. the theory) and

vary the slab width (i.e. the entangling region). However, if one instead looks at the

variation of the entanglement entropy with respect to the mass at fixed slab width, the

fourth derivative is also discontinuous:
(
∂4S

∂m4

)

mz̃=1

. (3.53)

Correspondingly the finite quantities δSm and δSl have discontinuities in their second and

third derivatives, respectively.

2Sl is always positive and decreasing in two dimensions and plays the role of a c-function.
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The discontinuity arises from the discontinuity in second derivatives of the metric at

z = 1/m. The fourth derivative of the entanglement entropy contains the terms:

(
∂4S

∂l4

)

z̃=1/m

∼ 1

8GN

(
∂z̃

∂l

)4

z̃=1/m

∂3

∂z̃3

(√
γTµνminh

E
µν(z̃)

)
z̃=1/m

. (3.54)

Note that the discontinuity does not arise at lower order in derivatives since the volume

element of the entangling surface vanishes at the turning point.

At first sight one might try to assign a physical interpretation to the discontinuity of

the entanglement entropy, i.e. a phase transition. However, the discontinuity is inherited

from the discontinuity in the metric derivatives and correspondingly in the curvature. This

discontinuity is likely to be an artefact of the probe approximation: in a fully back-reacted

solution for the D3 and D7 branes there should be no source terms in the energy momentum

tensor and hence no discontinuities in the curvature of the metric. In other words, one

would expect from gauge/gravity duality that the backreacted solution should solve the

type IIB equations with no sources. The metric and curvature should hence be continuous

and the metric for the back-reacted solution should be smoothened around z = 1/m, over

a radial coordinate range ∆z � 1/m.

It is interesting to note that at any finite density the brane probe extends throughout

the bulk and therefore there is no longer any discontinuity at finite z: as we show in

section 5 the backreacted solution is indeed smoothened around z = 1/m, over a small but

finite radial coordinate range.

4 Entanglement entropy for spherical regions

In this section we compute the entanglement entropy for the case of a spherical entangling

surface, extending the small mass results of [10] to generic mass. The methods of [8,

10, 11] are in principle applicable to spherical entangling regions but in practice the CHM

map [2] becomes intractable for finite mass, as the probe brane embedding in the hyperbolic

black hole is extremely complicated. Therefore again our discussion will follow closely the

method of [9].

Writing the boundary metric in spherical coordinates we have:

ds2 =
1

z2
(−dt2 + dr2 + r2dΩ2

2 + dz2) (4.1)

for the AdS5 metric. We define a ball on the boundary by r ≤ R and take as an embedding

ansatz z = z(r) at t = 0. The functional for the entangling surface is then:

S =
π

GN

∫ R

0
dr

√
1 + z′2

z3
r2, (4.2)

where we have done the trivial integral over the two-sphere. It is easy to show that the

resulting equations of motion are solved by the hemisphere r2 + z2 = R2, and the desired

extremal surface is thus a hemisphere in r and z of radius R that wraps the 2-sphere S2 —

this surface will be parametrised by {s,Ω2} where s is defined by z = Rs and r = R
√

1− s2

and Ω2 = (θ, φ).
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We can now compute the induced metric on this extremal surface using γmin
ab =

∂aX
µ∂bX

νgµν where now a, b = (s, θ, φ). One finds:

γmin
ab =

(
1

s2(1− s2)
,
(1− s2)

s2
gS2

)
(4.3)

where we note for further use that:

√
γmin =

√
1− s2

s3

√
gS2 . (4.4)

We can then compute the stress tensor of the surface and one finds (computing only the

diagonal components since this quantity will be contracted with hEµν which is diagonal):

Tµνmin =

(
s2R2(1− s2), 0, R2s4,

s2

1− s2
,

s2

1− s2
cosec2(θ)

)
. (4.5)

We are now in a position to compute the entanglement entropy, but we must first write

the metric backreaction in the coordinate system (z, t, r, θ, φ):

hEµν =
1

z2
diag (f(z), h(z), h(z), h(z)gS2) . (4.6)

The resulting entanglement entropy becomes

δS =
π

2GN

∫ b

a
ds

√
1− s2

s3

(
(s2 + 2)h(Rs)− (s2 − 1)f(Rs)

)
(4.7)

where a ≡ ε/R and b = 1, 1/µ for µ < 1, µ > 1 respectively as for the slab, where now

µ ≡ mR. Expanding out f(Rs) and again using partial integration on the h′(Rs) term as

in the slab case one obtains:

δS =
π

2GN

∫ b

a
ds

(1− s2)3/2

s3
f̃(Rs)− π

2GN

[
h(Rs)

(1− s2)3/2

s2

]b

a

(4.8)

again reducing the contribution of h(z) to a boundary term. The term at s = b vanishes

for both possible values of b for the same reasons as before, leading to:

δS =
t0π

24GN

∫ b

a
ds

(1− s2)3/2

s3

(
1− (µs)2

)2
+

π

2GN
h(ε)

1

a2

(
1− a2

)3/2
. (4.9)

Since h(ε) depends upon the gauge choice, we can rewrite this expression as in the previous

section as

δS =
t0π

24GN

∫ b

a
ds

(1− s2)3/2

s3

(
1− (µs)2

)2
+ δSgauge(ε, R,m). (4.10)

The gauge dependent contribution depends in this case on all three parameters: the cutoff ε,

the mass m and the radius of the spherical region R (note that in the previous expression the

mass dependence is contained implicitly in the metric function h(z)). Note the difference

relative to the case of the slab: since the dual theory is local, the gauge dependent terms

for the slab cannot depend on the slab width. The radius of the sphere however relates to
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the intrinsic curvature of the entangling region, which is a local quantity and therefore can

appear in the gauge dependent terms. In particular, since h(0) is finite, the non-vanishing

terms in δSgauge will be either quadratic in R or independent of R in any scheme.

Let us now consider the small and large mass cases separately. For µ ≤ 1 the contri-

bution from the s = b limit to the integral vanishes where b = 1. One therefore obtains

δS =
t0π

8GN

(
R2

6ε2
+

4µ2 + 3

6
log

ε

2R
+

1

4
+

8µ2

9
+
µ4

15

)
+ δSgauge(ε, R,m). (4.11)

Using the same regularisation scheme as before to fix h(ε) one obtains as in [10]:

δS =
t0π

8GN

(
R2

2ε2
+

4µ2 + 3

6
log

ε

2R
− 1

4
+

2µ2

3
+
µ4

15

)
, (4.12)

where

δSgauge(ε, R,m) =
πt0

24GN

(
R2

ε2
− 2

3
µ2 − 3

2
+ · · ·

)
. (4.13)

For µ ≥ 1 the extra contribution from the s = b limit of integration is given by:

t0π

24GN

(
−
√

1− 1

µ2

(
8

15
+

83µ2

30
+
µ4

5

)
+

1

2
(3 + 4µ2)log

(
µ+ µ

√
1− 1

µ2

))
. (4.14)

This vanishes at µ = 1 as we would expect by continuity. Thus the total contribution to

the entanglement entropy for µ ≥ 1 is given by:

δS =
t0π

8GN

(
R2

6ε2
+

4µ2 + 3

6
log

ε

2R
+

1

4
+

8µ2

9
+
µ4

15
(4.15)

− 1

3

√
1− 1

µ2

(
8

15
+

83µ2

30
+
µ4

5

)
+

1

6
(3 + 4µ2)log

(
µ+ µ

√
1− 1

µ2

))

+ δSgauge(ε, R,m).

For µ� 1 this expression asymptotes to

δS =
t0π

8GN

(
R2

6ε2
+

(
2µ2

3
+

1

2

)
log(mε)+

3

8
− 1

48µ2
+O

(
1

µ4

))
+δSgauge(ε, R,m). (4.16)

As for the slab, the expressions for the entanglement entropy match at µ = 1, i.e. when the

turning point of the entangling surface reaches z = 1/m. Derivatives of the entanglement

entropy with respect to R at fixed m or with respect to m at fixed R become discontin-

uous at µ = 1 because of the metric discontinuity. For spherical entangling surfaces the

discontinuity arises at fifth order i.e.
(
∂5S

∂R5

)

m=1/R

(4.17)

is discontinuous. The discontinuity again arises from the discontinuity in second derivatives

of the metric at z = 1/m, and is hence expected to be absent in a fully back-reacted solution

without sources. The fifth derivative of the entanglement entropy contains the terms:
(
∂4S

∂l4

)

z̃=1/m

∼ 1

8GN

∂4

∂z̃4

(√
γTµνminh

E
µν(z̃)

)
z̃=1/m

. (4.18)
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Note that the discontinuity does not arise at lower order in derivatives since the terms

contracted with the metric perturbation are zero when the turning point lies at z̃ = 1/m,

and their first derivative is also zero; see the form of the integrand in (4.8).

4.1 Finite contributions

For a spherical region one can define a finite quantity by differentiating with respect to the

mass, (3.44). For µ ≤ 1 this gives

δSm =
πt0

60GN
µ4. (4.19)

For µ� 1 one obtains

δSm = − πt0
8GN

(
µ2

3
− 1

4
− 1

24µ2
+O

(
1

µ4

))
. (4.20)

The quantity (3.49) is not finite for a spherical region and it is proposed to use

instead [53, 54]

SLM = R
∂

∂R

(
R
∂

∂R
− 2

)
S. (4.21)

Note that this quantity vanishes for all terms which are independent of R or quadratic in

R, which in particular guarantees that the gauge dependent terms drop out of SLM . For

µ ≤ 1 one obtains

δSLM =
πt0

8GN

(
1− 4

3
µ2 +

8

15
µ4

)
. (4.22)

For µ� 1 one obtains

δSLM =
πt0

48GNµ2
+ · · · , (4.23)

with all terms with higher order powers in µ cancelling.

As for the slab the limit µ� 1 probes the IR of the theory: for fixed m this corresponds

to taking an entangling surface which extends deep into the bulk. Therefore a finite quantity

should in this limit decouple from UV physics. Comparing (4.20) and (4.23), the first

quantity again does not fulfil this criterion (as the term of order m2 derives from the

logarithmic divergence) whereas the latter quantity does. We will hence use (4.23) in

section 6 when discussing the IR physics.

5 Entanglement entropy from Kaluza-Klein holography

In this section we describe a new method for computing the entanglement entropy of probe

brane systems using Kaluza-Klein holography [7]. This method is applicable to any probe

brane system, i.e. for any shape entangling region with any worldvolume gauge fields, and

can also be used for other systems such as Coulomb branch geometries.

The holographic entanglement entropy for any static asymptotically anti-de Sitter ge-

ometry is given by the Ryu-Takayanagi functional in terms of the area of a minimal surface

in the Einstein frame metric. Probe brane systems are however described by top down
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constructions. In other words, we first specify a ten-dimensional supergravity solution for

which a holographic interpretation is known, the usual examples being geometries which

are asymptotic to the products of anti-de Sitter and Sasaki-Einstein manifolds. The probe

system is then specified by the brane embedding into the ten-dimensional background and

the worldvolume fields on the brane. The backreaction onto the ten-dimensional supergrav-

ity solution is computed by viewing the D-brane action as sourcing the supergravity fields,

with the sources being localised on the brane embedding. Computation of the backreaction

therefore involves solving all of the ten-dimensional supergravity equations.

Even after computing the backreacted ten-dimensional supergravity solution, one can-

not immediately compute the entanglement entropy, because the latter requires the five-

dimensional Einstein metric. For any supergravity solution which can be viewed as a

perturbation of anti-de Sitter cross a Sasaki-Einstein manifold the method of Kaluza-Klein

holography can however be used to extract the five-dimensional Einstein metric [7]. This

method implies that, if one only wishes to compute the entanglement entropy, it is not

actually necessary to compute all of the backreaction of the brane onto the ten-dimersional

supergravity fields: one only needs to know the backreaction for those field components

which contribute to the five-dimensional Einstein metric.

In the rest of the section we will describe the computation of the entanglement entropy

using the Kaluza-Klein holography approach for massive D7-branes in an AdS5×S5 back-

ground. At the end of the section we will discuss further applications and generalisations

of this method.

5.1 Kaluza-Klein holography

The backreaction of the D7-branes onto AdS5 × S5 results in a supergravity background

which can be expressed as a perturbation of AdS5×S5. Thus the metric can be expressed as

ds2 = (goMN + hMN )dxMdxN ; (5.1)

=
1

z2
(dz2 + dxµdxµ) + (dθ2 + sin2 θdΩ2

3 + cos2 θdφ2) + hMN (xm, θa)dx
MdxN ,

where we denote ten-dimensional indices as xM ; θa collectively denote the five sphere

coordinates and xm denote the five-dimensional coordinates, i.e. (z, xµ). Thus goMN is the

background AdS5 × S5 metric and hMN is the metric perturbation. The other type IIB

supergravity fields are the dilaton φ, the NS-NS three form field strength HMNP and the

RR field strengths FM , FMNP and FMNPQR. Only the self-dual five-form field strength

has a background profile:

FMNPQR = F oMNPQR + fMNPQR; (5.2)

F o =
1

z5
dz ∧ dt ∧ dw ∧ dx ∧ dy + sin3 θ cos θdθ ∧ dΩ3 ∧ dφ,

with fMNPQR being the perturbation of the five form field strength. Our normalisation

conventions are that the Einstein equations for type IIB supergravity are given by

RMN =
1

6
FMPQRSF

PQRS
N + · · · . (5.3)
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The Einstein equations are quadratic in the dilaton gradients and form field strengths.

Therefore, working to linearized order in the perturbations, the Einstein equation decouples

from the perturbations of φ, HMNP , FM and FMNP since the latter do not have profiles

in the AdS5 × S5 background. Similarly the only contributions to the five-form equation

of motion at linearised order are from the metric perturbations and the five-form field

strength perturbations.

The fluctuations can be expanded in S5 harmonics [55]:

hmn(x, y) =
∑

hI1mn(x)Y I1(y)

hma(x, y) =
∑(

BI5
(v)m(x)Y I5

a (y) +BI1
(s)m(x)DaY

I1(y)
)

h(ab)(x, y) =
∑(

φI14(t) (x)Y I14
(ab)(y) + φI5(v)(x)D(aY

I5
b) (y) + φI1(s)(x)D(aDb)Y

I1(y)
)

haa(x, y) =
∑

πI1(x)Y I1(y) (5.4)

and

fmnrst(x, y) =
∑

5D[mb
I1
nrst](x)Y I1(y)

famnrs(x, y) =
∑(

bI1mnrs(x)DaY
I1(y) + 4D[mb

I5
nrs](x)Y I5

a (y)
)

fabmnr(x, y) =
∑(

3D[mb
I10
nr](x)Y I10

[ab] (y)− 2bI5mnr(x)D[aY
I5
b] (y)

)

fabcmn(x, y) =
∑(

2D[mb
I5
n](x)εabc

deDdY
I5
e (y) + 3bI10mn(x)D[aY

I10
bc] (y)

)

fabcdm(x, y) =
∑(

Dmb
I1
(s)(x)εabcd

eDeY
I1(y) + (ΛI5 − 4)bI5m(x)εabcd

eY I5
e (y)

)

fabcde(x, y) =
∑

bI1(s)(x)ΛI1εabcdeY
I1(y) . (5.5)

Numerical constants in these expressions are inserted so as to match with the conventions

of [55]. Parentheses denote a symmetric traceless combination (i.e. A(ab) = 1/2(Aab +

Aba) − 1/5gabA
a
a). Y I1 , Y I5

a , Y I14
(ab) and Y I10

[ab] denote scalar, vector and tensor harmonics

whilst ΛI1 and ΛI5 are the eigenvalues of the scalar and vector harmonics under (minus)

the d’Alembertian. The subscripts t, v and s denote whether the field is associated with

tensor, vector or scalar harmonics respectively, whilst the superscript of the harmonic label

In derives from the number of components n of the harmonic.

Not all fluctuations are independent — some are diffeomorphic to each other or to

the background. This issue can be dealt with by imposing a gauge; for example, the de

Donder-Lorentz gauge fixing condition is

Dah(ab) = Daham = 0 (5.6)

which sets to zero the coefficients BI1
(s)m, φ

I5
(v), φ

I1
(s). A more elegant way of dealing with this

issue is to construct gauge invariant combinations of the fluctuations. Such gauge invariant

combinations of the fluctuations were constructed in [7], with the combinations reducing

to the de Donder-Lorentz gauge fluctuations on imposing this gauge.

In [7] the equations of motion satisfied by the fluctuations were constructed to

quadratic order in the fluctuations, and the relation between five-dimensional fields and
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ten-dimensional fields was also constructed up to quadratic order in the fluctuations. In

the current context we are only interested in the five-dimensional Einstein metric and

we work only to linear order in the fluctuations. We can therefore read off from [7, 55]

the relationship between the five-dimensional Einstein metric perturbation hEmn and the

ten-dimensional fields as

hEmn = h0
mn +

1

3
π0gomn, (5.7)

where the superscripts indicate that these are zero modes, i.e. associated with the trivial

constant scalar harmonic.

The type IIB supergravity equations lead to the linearized equation for the Einstein

metric

(LE + 4)hEmn = 0, (5.8)

where LE is the Einstein operator, defined as usual by

LEhEmn =
1

2

(
−�hEmn +DpDmh

Ep
n +DpDnh

Ep
m −DmDnh

Ep
p

)
. (5.9)

The five-dimensional equation of motion in turn follows from reducing the ten-dimensional

action

IIIB =
1

2κ2
10

∫
d10x

√
−det(gMN )

(
R(gMN )− 4

5!
FMNPQRF

MNQR + · · ·
)

(5.10)

over the five-sphere.3 This results in

I =
N2
c

2π2

∫
d5x
√
−det(gmn)

(
1

4
R(gmn) + · · ·

)
, (5.11)

where we use the relation

1

2κ2
10

VS5 =
π3

2κ2
10

=
1

2κ2
5

=
N2
c

8π2
, (5.12)

which is applicable when the AdS radius L is set to one. Thus the effective Newton constant

is given by
1

16πGN
=
N2
c

8π2
. (5.13)

For the probe brane system, the type IIB supergravity equations are solved with source

terms, from the D-brane action, which in turn implies that the linearized Einstein equations

in five dimensions are sourced. The complete ten-dimensional action is

I = IIIB + ID7 (5.14)

where

ID7 = −T7

∫
d10x

∫
d8σδ

(
xM −XM (σα)

)
e−φ
√
−det(gMN∂αXM∂βXN ) + · · ·. (5.15)

3Note that the 10d action must be supplemented with a self-duality constraint for the five form field

strength.
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Here σα denote the world-volume coordinates and the ellipses denote terms involving the

world-volume gauge fields and Wess-Zumino couplings. The latter do not contribute in the

case of the D7-brane embeddings under consideration here.

The source term results in a stress energy tensor [56]

TMN = −T7

∫
d8σ
√−γe−φ

(
γαβ∂αX

M∂βX
N
) δ
(
xM −XM (σα)

)
√
−det(gMN )

, (5.16)

where we denote the worldvolume induced metric as γαβ = gMN∂αX
M∂βX

N . The sourced

IIB equation is thus
(
RMN −

1

6
FMPQRSF

PQRS
N + · · ·

)
= κ2

10

(
TMN −

1

8
TgMN

)
≡ κ2

10T̄MN , (5.17)

with T = gMNTMN . The trace adjusted stress energy tensor can be expanded in S5

harmonics, using the same harmonic basis as for the metric:

T̄mn(x, y) =
∑

T̄ I1mn(x)Y I1(y) (5.18)

T̄ma(x, y) =
∑(

T̃ I5(v)m(x)Y I5
a (y) + T̃ I1(s)m(x)DaY

I1(y)
)

T̄(ab)(x, y) =
∑

T̄ I14(t) (x)Y I14
(ab)(y) + T̄ I5(v)(x)D(aY

I5
b) (y) + T̄ I1(s)(x)D(aDb)Y

I1(y)

T̄ aa (x, y) =
∑

T̃ I1(x)Y I1(y) .

The correction to the five-dimensional Einstein equation only depends on the following zero

modes (see appendix A):

(LE + 4)hEmn = κ2
10

(
T̄ 0
mn +

1

3
T̃ 0gomn

)
≡ t̄mn, (5.19)

where we have used the fact that the D7-brane embedding of interest does not source the

RR five-form field strength.

Given the D7-brane embedding, i.e. θ(z) = cos−1(mz), the ten-dimensional energy

momentum tensor source can be computed as

TMN = −T7TMNδ(θ − θ(z))δ(φ), (5.20)

with

Tzz =
1

z2
(1−m2z2)2; Tµν =

1

z2
(1−m2z2)ηµν ; (5.21)

TΩ3 = (1−m2z2)2gΩ3 ; Tφφ = 0;

Tθθ = m2z2(1−m2z2),

where note that T ≡ gMNTMN = 8(1 − m2z2). Here we denote the metric on the unit

three-sphere by gΩ3 . The energy momentum tensor source can be projected onto spherical

harmonics using Fourier decompositions of the delta functions:

δ(θ − θ(z)) =
2

π
+

∞∑

m=1

4

π
cos(mθ(z)) cos(mθ); (5.22)

δ(φ) =
1

2π
+

∞∑

m=1

1

π
cos(mφ).
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By projecting onto the zero mode, one can then immediately show that the ten-dimensional

energy momentum tensor source is such that

T̄ 0
zz = −T7

m2

π2
(1−m2z2); T̄ 0

µν = 0, (5.23)

with

T̄ 0 =
T7

π2
(1−m2z2)(m2z2 − 2), (5.24)

and hence using (5.19) we find that

t̄zz = − t0
3z2

(1−m4z4); t̄µν =
t0

6z2
(1−m2z2)(m2z2 − 2)ηµν , (5.25)

where as before

t0 = 16πGN (2π2T7). (5.26)

Given the five-dimensional stress tensor tmn = t̄mn − 1
2 t̄g

o
mn, it is straightforward to see

that the perturbation of the Einstein metric induced by this source is in agreement with

that given in (3.14) and (3.18).

5.2 Generalizations to other probe brane systems

For a general probe brane system, the complete ten-dimensional action is

I = IIIB + IDp (5.27)

where

IDp = −Tp
∫
d10x

∫
dp+1σδ

(
xM −XM (σα)

)
e−φ
√
−det(γαβ + Fαβ) (5.28)

+ Tp

∫
d10x

∫
δ
(
xM −XM (σα)

)
[
eF ∧

∑

q

Cq

]
,

with

γαβ = gMN∂αX
M∂βX

N ; (5.29)

Fαβ = BMN∂αX
M∂βX

N + Fαβ ;

Cα1···αq = CM1···M1∂α1X
M1 · · · ∂αqX

Mq .

We consider embedding a brane into a type IIB background which is either AdS5 × S5 or

AdS5 Schwarzschild × S5, so that the only background field profiles are for the metric and

the five-form. Following the arguments in the previous section, we therefore only need to

consider the equations for the metric and five-form perturbations, as the other perturbation

equations decouple.

The energy momentum tensor source is [56, 57]

TMN = −Tp
∫
dp+1σ

√
−Me−φ(Mαβ∂αX

M∂βX
N )
δ
(
xM −XM (σα)

)
√
−det(gMN )

, (5.30)
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where we define Mαβ = γαβ +Fαβ with Mαβ being its inverse. The source in the five form

equation of motion is

∂M
(√−gFMNPQR

)
= (5.31)

2κ2
10Tp

∫
dp+1σδ

(
xM −XM (σα)

)
εα1···αp+1Fα1α2 · · · ∂αp−2X

N∂αp−1X
P∂αpX

Q∂αp+1X
R .

Note that for a D7-brane this term only contributes if F ∧ F 6= 0. Therefore, provided

that F ∧ F = 0, the correction to the five-dimensional Einstein equation due to source

D7-branes still depends only on the stress energy tensor zero modes:

(LE + 4)hEmn = κ2
10

(
T̄ 0
mn +

1

3
T̄ 0gomn

)
≡ t̄mn. (5.32)

One can thus compute the perturbation to the five-dimensional Einstein metric by project-

ing the brane energy momentum source onto the appropriate combination of (spherical)

zero modes. It would be straightforward to relax the condition F ∧ F = 0 and obtain the

correction to the five-dimensional Einstein equation, taking into account the sources in the

RR field equations, but we will not analyse this case in detail here.

The analysis above immediately allows us to treat D7-branes at finite mass, density

(and temperature). The finite temperature background can be written as

ds2 = ρ2

[
−f

2

f̃
dt2 + f̃dx2

]
+
dρ2

ρ2
+ dΩ2

5; (5.33)

f(ρ) = 1− u4
0

ρ4
; f̃(ρ) = 1 +

u4
0

ρ4
,

with the temperature being T =
√

2u0/π. The D7-brane embeddings can be expressed in

terms of two scalar functions χ(ρ) and a(ρ):

θ(ρ) = cos−1(χ(ρ)); Fρt = ∂ρa(ρ) ≡ E(ρ), (5.34)

where the potential is At = a(ρ). These embeddings can be found numerically, see [44, 45].

The main feature is that at any finite density, i.e. whenever the asymptotic form of the

potential is

At = µ− d̃

ρ2
+ · · · (5.35)

with non-zero charge density d̃, the embeddings do not close off at finite radius. At finite

temperature the embeddings have a spike which extends into the horizon, while at zero

temperature this spike passes through the Poincaré horizon. In other words, asymptotically

as ρ → ∞, the brane wraps the equator θ = π/2 of the five sphere but there is a spike,

θ → 0 as ρ → u0. In the zero temperature limit, the spike solution becomes analytic

for ρ→ 0:

E(ρ) ≈ E ; θ(ρ) ≈ θ1ρ, (5.36)

with E and θ1 constant.
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Focussing on the zero temperature limit for simplicity, the effective source stress energy

tensor of (5.32) is given in terms of θ(ρ) and E(ρ) by

t̄ρρ = −t0
sin3 θ

2ρ2(1 + ρ2θ̇2 − E2)
1
2

(
−2

3
− 4ρ2θ̇2

3
+ E2

)
; (5.37)

t̄tt = t0
ρ2 sin3 θ

2(1 + ρ2θ̇2 − E2)
1
2

(
−2

3
− ρ2θ̇2

3
+ E2

)
;

t̄ij = −t0
ρ2 sin3 θ

2(1 + ρ2θ̇2 − E2)
1
2

(
−2

3
− ρ2θ̇2

3

)
δij .

Here θ̇ denotes ∂ρθ(ρ). To compare with the previous sections we change coordinates to

z = 1/ρ, and use the five-dimensional stress tensor tmn = t̄mn − 1
2 t̄g

o
mn:

tzz = −t0
sin3 θ

2z2(1 + z2θ2
z − E2)

1
2

; (5.38)

ttt = t0
z2 sin3 θ

2(1 + z2θ2
z − E2)

1
2

(
1 + z2θ2

z

)
;

tij = −t0
z2 sin3 θ

2(1 + z2θ2
z − E2)

1
2

(
1 + z2θ2

z − E2
)
δij ,

where θz = ∂zθ.

The metric perturbation induced by such sources can then be expressed as

δ(ds2) =
f(z)

z2
dz2 − g(z)

z2
dt2 +

h(z)

z2
dxidxi. (5.39)

As previously the gauge invariant combination is

f̃(z) = f(z) + zh′(z) (5.40)

and there are now two independent Einstein equations:

−f̃ − 1

4
z(g′ − h′) =

1

6
z2tzz; (5.41)

3

2
z(h′ − g′) +

1

2
z2(g′′ − h′′) = z2(ttt + ti),

where we define tij = tiδij . These equations can be integrated to give

f̃(z) = −1

6
z2tzz −

1

2
z4

∫
dz

z3
(ttt + ti) ; (5.42)

(g(z)− h(z)) = 2

∫ z

dz̃z̃3

∫ z̃ dw

w3
(ttt(w) + ti(w)) .

These equations can be solved analytically as z → 0 and z → ∞. The near boundary

expansions of the fields χ and E are

χ = mz + cz3 + · · · (5.43)

E = 2d̃z3 + · · · ,
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where m is the quark mass, c determines the quark condensate and d̃ is the density. The

corresponding asymptotic expansions of the gauge invariant metric perturbations are

f̃(z) =
t0
12

(
1− 2m2z2 +O

(
m4z4,mcz4

)
+ · · ·

)
; (5.44)

(g(z)− h(z)) =
t0
3
d̃z6 + · · · .

Note that in fixing a Fefferman-Graham gauge as z → 0 one needs to take into account the

shift in the AdS radius. The Fefferman-Graham gauge is obtained by choosing

f(z) =
t0
12
, (5.45)

which then implies that

zh′(z) =
t0
6

(
−m2z2 +O

(
m4z4,mcz4

)
+ · · ·

)
, (5.46)

and hence

h(z) =
t0
12

(
1−m2z2 +O

(
m4z4,mcz4

)
+ · · ·

)
, (5.47)

where the integration constant is fixed by the AdS radius.

In the opposite limit of z →∞ we can use the spike solution (5.36) to show that

f̃(z) =
t0θ

3
1

4z3(1− E2)
1
2

(
1

3
+
E2

7

)
; (5.48)

(g(z)− h(z)) = − t0θ
3
1E2

42z3(1− E2)
1
2

,

and hence the metric perturbations are bounded in the deep interior.

The effect of the metric perturbation (5.39) on the entanglement entropy is expressed

in exactly the same way as in previous sections, since g(z) does not enter the entanglement

entropy. Thus for a slab, following (3.22), the brane contribution to the entanglement

entropy is

δS =
L2

4GN z̃2



∫ b

a
ds

√
1− s6

s3
f̃(z̃s)−

[
h(z̃s)

√
1− s6

s2

]s=b

s=a


 (5.49)

where z̃ is the turning point of the original minimal surface and a = ε/z̃. At zero density

f̃(z) is zero for z ≥ 1/m and continuity of the metric and its derivatives requires h(1/m) =

h′(1/m) = 0. At any finite density f̃(z) is non-zero at finite z and there is no need to

impose that the function h(z) vanishes at a finite value of z. In the finite density case the

integration is therefore over the entire entangling surface, i.e. the upper limit b = 1 and

δS =
L2

4GN z̃2

(∫ 1

a
ds

√
1− s6

s3
f̃(z̃s) +

[
h(ε)

√
1− a6

a2

])
, (5.50)

since the other boundary term vanishes at s = 1.

Note that δS has no discontinuities in its derivatives with respect to mass or to the

width of the slab at finite density since f̃(z) has no discontinuities in its derivatives at
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finite density. This provides another reason for viewing as unphysical the discontinuities

discussed earlier.

It is useful to define the difference between the entanglement entropy at finite density

and that at zero density, for the same mass:

δS − δSd̃=0 =
L2

4GN z̃2

(∫ 1

a
ds

√
1− s6

s3
δf̃(z̃s) +

[
δh(ε)

√
1− a6

a2

])
, (5.51)

where

δf̃(z) = f̃(z)− t0
12

(1−m2z2)2; (5.52)

δh(z) = h(z)− h(z)d̃=0,

where we have used the analytic expression for f̃(z) at zero density. From the asymptotic

expansions (5.44), we can infer that the asymptotic expansion of δf̃ is

δf̃(z) = t0O(mcz4) + · · · . (5.53)

We can also always choose a gauge such that

δh(z) = t0O(z4) + · · · ; (5.54)

this simply corresponds to matching the gauge asymptotically at zero and finite density.

Substituting into (5.51) the difference between the entanglement entropy at finite density

and that at zero density is UV finite4 and only the integrated term contributes:

δS − δSd̃=0 =
L2

4GN z̃2

∫ 1

a
ds

√
1− s6

s3
δf̃(z̃s). (5.55)

Note however that this quantity does have discontinuities in its derivatives at z̃ = 1/m,

since the zero density quantity has such discontinuities.

5.3 Numerical calculation of the entanglement entropy at finite density

We now consider in detail the embeddings in (5.34) with the aim to explicitily carry out

the computation of the flavor entanglement entropy in the case of finite density. We follow

the analysis in [44, 45], though unlike the latter we focus on the zero temperature case.

The background, instead of (5.33), is therefore AdS5 × S5

ds2 = ρ2[−dt2 + dx2
3] +

dρ2

ρ2
+ dθ2 + sin2θdΩ2

3 + cos2θdφ2 (5.56)

and the probe D7-brane extends in {t, x3, ρ,Ω3}. We consider an embedding θ(ρ), and

in addition we introduce a U(1) gauge field At(ρ) on the worldvolume of the D7-brane in

4Earlier discussions of the UV finiteness of terms in the entanglement entropy induced by a chemical

potential may be found in [58–60].
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order to study the gauge theory at finite density and chemical potential. The DBI action

for this probe brane then evaluates to

ID7 = −T7

∫
d8σ

ρ3

4
(1− χ2)

√
1− χ2 + ρ2(∂ρχ)2 − 2(1− χ2)F 2

ρt (5.57)

where χ(ρ) ≡ cos [θ(ρ)] and Fρt(ρ) = ∂ρAt(ρ) is the electric field. The equation of motion

for the gauge field has solutions with asymptotics given by (5.35), and since ID7 does not

depend explicitly on At, there is a constant of motion d ≡ δID7/δFρt.

For solving the resulting equations of motion it is useful to eliminate the gauge field

At from the action by performing a Legendre transform with respect to d. The equation

of motion for χ can then be obtained from the Legendre transformed action ĨD7 as

∂ρ


 ρ5(1− χ2)χ̇√

1− χ2 + ρ2χ̇2

√
1 +

8d̃2

ρ6(1− χ2)3


 = (5.58)

− ρ3χ√
1− χ2 + ρ2χ̇2

√
1 +

8d̃2

ρ6(1− χ2)3

[
3(1− χ2) + 2ρ2χ̇2 − 24d̃2 1− χ2 + ρ2χ̇2

ρ6(1− χ2)3 + 8d̃2

]

where χ̇ ≡ ∂ρχ and d̃ ≡ d/TD7. It is straightforward to show that asymptotically solutions

to this equation take the form given in (5.43).

We solve (5.58) numerically for a given d̃ with regular boundary conditions imposed

in the deep interior. Recalling that χ = cos θ the spike solution is such that χ(0) → 1.

However, since χ̇(ρ) = − sin θθ̇, χ̇(0) = 0 and is independent of the value of θ̇(0). Therefore

we instead set boundary conditions at ρ = ρ0 � 1:

χ(ρ0) = 1− 1

2
δ2; χ̇(ρ0) = −α, (5.59)

with α > 0 and δ2 � 1. These boundary conditions correspond to

θ(ρ0) = δ; θ̇(ρ0) =
α

δ
. (5.60)

Such conditions are consistent with the spike solution θ = θ1ρ+ · · · in (5.36) provided that

α ∼ δ2/ρ0; if the latter condition is satisfied the solutions can be smoothly continued to

ρ = 0. These boundary conditions differ from those used in [44, 45] due to the fact that we

work at zero temperature. Note that the quark mass can be extracted from the embedding

using limρ→∞(ρχ) due to (5.43).

The equations of motion for the gauge field are then given by Hamilton’s equations

with ĨD7 as Hamiltonian, which reproduce the fact that d̃ is a constant, together with the

equation

∂ρAt = 2d̃

√
1− χ2 + ρ2χ̇2

√
(1− χ2)

[
ρ6(1− χ2)3 + 8d̃2

] . (5.61)

This equation can be integrated to give

At(ρ) = 2d̃

∫ ρ

0
dρ′

√
1− χ2 + ρ′2χ̇2

√
(1− χ2)

[
ρ′6(1− χ2)3 + 8d̃2

] (5.62)
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Figure 5. Plots of δf̃(z) for various values of d̃ and m. In all cases δf̃(z) asymptotes to zero as

z →∞.

where we have set At(ρ)→ 0 as ρ→ 0. The chemical potential µ is then given by At(∞) in

the previous expression. Once the embedding χ(ρ) has been found above, one can compute

Fρt ≡ ∂ρAt and µ from (5.61) and (5.62) respectively. Note that the parameter d̃ indeed

characterises the density since

lim
ρ→∞

(ρ3∂ρAt) = 2d̃, (5.63)

in agreement with (5.35).

To compute the entanglement entropy one must change coordinates as in the previous

section. At zero temperature the coordinate transformation is trivial and simply amounts

to setting z = 1/ρ whilst leaving the other coordinates unchanged. One can then compute

the five-dimensional stress tensor components in (5.38), and thus the gauge-invariant metric

perturbation f̃(z) as defined by (5.42). We plot δf̃(z), as defined in (5.52), in figure 5 for

various values of d̃ and m, the latter being fixed by the choice of both d̃ and χ′(0). The

same general features are observed for all values of the parameters; δf̃(z) peaks around

z = 1/m and has a long spike slowly asymptoting to zero as z →∞. Although one might

expect intuitively that the thickness of this spike is determined by the ratio d̃/m (with a

larger ratio leading to a thicker spike), the results indicate that it is in fact the magnitude of

χ′(0) that determine this thickness, with a larger value of χ′(0) corresponding to a thicker

spike (and a larger magnitude of δf̃(z) overall).

It is a simple matter to compute the background subtracted entanglement entropy

using (5.55): the result for d̃ = 200, m = 200 is shown in figure 6. The graph shows

the entanglement entropy as a function of the depth of the entangling surface z̃, which is

proportional to the slab width l. It follows from (5.53) that the subtracted entanglement

entropy increases quadratically with z̃ for z̃ � 1; if δf = λz4 then

δS − δSd̃=0 =
L2λ

48GN

√
πΓ(1/3)

Γ(11/6)
z̃2. (5.64)

The metric perturbation δf reaches a maximum around z ∼ 1/m and is very small for

z > 1/m, and therefore the entanglement entropy of surfaces which extend to turning

points z̃ � 1/m saturates.
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Figure 6. Plot of the background subtracted entanglement entropy for d̃ = 200, m = 200 as the

width of the slab is increased. The entanglement entropy increases quadratically until the depth

of the entangling surface is 1/m and then slowly saturates to a constant value as the width of the

slab is increased further.

The D3-D7 system has a rich structure of phase transitions as the chemical potential,

temperature and magnetic field are varied, see [61, 62]. It would be interesting to use

entanglement entropy to explore these phase transitions, extending the above results. Note

that the entanglement entropy for massless flavors at finite density was discussed in [12];

our method would give the same results for massless flavors, and it would be interesting to

explore how the entanglement entropy changes as one increases the ratio of density to mass.

6 Field theory interpretation

The D3-D7 system is dual to N = 4 SYM coupled to N = 2 massive hypermultiplets.

The key features of this field theory are as follows. The field content of N = 4 consists

of the gauge fields Aµ, scalars XA transforming in the fundamental of the R symmetry

group SO(6) and spinors λi transforming in the spinor representation of SO(6). The hy-

permultiplets consist of scalars χ and fermions η transforming in the bifundamental of the

SU(Nc) and SU(Nf ) gauge groups. In the massless case the addition of these hypermulti-

plets preserves an SO(4)× SO(2) subgroup of the R symmetry group of N = 4 SYM. The

hypermultiplets are coupled to the N = 4 SYM fields by potential terms of the form

I =

∫
d4xTrSU(Nc)TrSU(Nf )

(
XAχ†χXA

)
. (6.1)

Separating the branes by a distance m (in string units) corresponds to introducing a mass

term m for the hypermultiplets, which breaks the conformal invariance and breaks the R

symmetry group further to SO(4).

There are two distinct regimes of interest: the mass parameter m being small relative

to energy scales of interest, and the mass parameter being large compared to scales of

interest. In the former case the theory is clearly described in terms of a small mass per-

turbation of a conformal field theory, and we can use the underlying conformal invariance

to understand the entanglement entropy. Entanglement entropy for relevant perturbations

has been studied recently [23] and we will discuss the relation to our results below.
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In the opposite regime, of high mass, at energy scales much lower than m we can

integrate out the hypermultiplets, effectively setting χ ∼ 1
m . The potential term above

controls the leading deformation to the N = 4 SYM theory: at low energies the effective

description must be

I = ISYM +
1

m2

∫
d4xO6, (6.2)

where O6 is an operator of dimension six in the N = 4 SYM theory, i.e. it is an irrelevant

deformation of the SYM conformal field theory. The dimension six operator explicitly

breaks the R symmetry from SO(6) to SO(4) and is therefore charged with respect to the

SO(6) R symmetry of N = 4 SYM. The backreaction of this deformation on the stress

energy tensor, which is an R symmetry singlet, is necessarily quadratic in this deformation,

i.e. the stress energy tensor is only affected at order 1/m4. The behaviour of entanglement

entropy under irrelevant deformations has been less studied and we will explore this case

in more detail below.

6.1 Zero mass: marginal deformation of CFT

In the limit of zero mass, the brane contribution to the entanglement entropy of the slab is

δS =
t0L

2

48GN

(
3

2ε2
+

√
π

2z̃2

Γ(−1/3)

Γ(1/6)

)
, (6.3)

where implicitly we have fixed a gauge choice such that

h(z) =
t0
12
. (6.4)

Note that this expression is proportional to the entanglement entropy of a slab in AdS5:

S =
t0L

2

2GN

(
1

2ε2
+

√
π

6z̃2

Γ(−1/3)

Γ(1/6)

)
. (6.5)

The entanglement entropy of a spherical surface in AdS5 is

S =
π

GN

(
R2

2ε2
+

1

2
log(ε/εIR)− 1

4

)
. (6.6)

The brane contribution to the entanglement entropy for a spherical surface at zero mass is

δS =
t0π

8GN

(
R2

2ε2
+

1

2
log(ε/εIR)− 1

4

)
, (6.7)

which is again proportional to the AdS result.

This is to be expected, see also [9, 11]: suppose that the AdS radius is scaled as

LAdS → LAdS (1 + δAdS) (6.8)

with δAdS � 1. Since the bulk entangling surface is of dimension three, this implies that

S → S (1 + δAdS)
3
2 ≈ S

(
1 +

3

2
δAdS

)
. (6.9)
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In the case at hand, the effect of the brane is to shift the AdS radius as

δAdS =
t0
12
. (6.10)

The brane contribution to the entanglement entropy at zero mass is therefore precisely

δS =
3

2
δAdSS, (6.11)

explaining the results above.

6.2 Small mass: relevant deformation of CFT

In the small mass regime, the mass m is smaller than the energy scales of interest, so the

system can be viewed as a mass perturbation of an underlying CFT.

Half space. Let us consider first the case in which the size of the slab l → ∞, i.e. the

space is divided into two regions by a plane; the brane contribution to the entanglement

entropy is given in (3.31). In particular the logarithmic divergence is

δS =
t0L

2

48GN
m2log(mε) =

π

3
T0(m2L2) log(mε), (6.12)

where in the latter expression we use (3.19) i.e. T0 is the effective tension of the D7-brane,

reduced over the three sphere.

The mass deformation in the field theory is associated with the following slipping mode

of the D7-brane on the three sphere: letting the five sphere metric be

dΩ2
5 = dθ2 + sin2 θdΩ2

3 + cos2 θdφ2 (6.13)

then the slipping mode is associated with the angle θ, i.e. we retain only the following

terms in the D7-brane action

I = T0

∫
d5x
√
g sin3 θ

√
1 + gµν∂µθ∂νθ, (6.14)

where we have integrated over the three-sphere, because the mode of interest is an SO(4)

singlet and hence there is no dependence on the three sphere coordinates. The metric gµν
denotes the AdS5 metric and we work here in Euclidean signature as we need to compute

correlation functions. The resulting equation of motion for θ is

0 = �θ − 3 cot θ − 1

2

gµν∂µθ(g
ρσ∂ρθ∂σθ)

1 + gµν∂µθ∂νθ
(6.15)

where � is the Laplacian in the Euclidean AdS5 metric. Linearising this equation around

θ = π/2 gives

0 = �θ + 3θ, (6.16)

i.e. the scalar is dual to an operator of dimension three.

As we will discuss shortly, we are interested in computing the normalization of the two

point function of this operator, and it thus suffices to consider the solution to the linearized
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equation of motion (6.16). From [27], we can read off the operator one point function in

terms of the asymptotic expansion of the scalar field:

〈O3〉 = T0

(
−2θ(2) +

1

3
θ3

(0) +
R0

12
θ(0) + �(0)θ(0)

)
(6.17)

where

θ = z(θ(0) + θ(1)z + θ(2)z
2 + θ̃(2)z

2 log(z) + · · · ) . (6.18)

Here �(0) refers to the Laplacian in the boundary metric g(0) and R(0) is the scalar curvature

of this metric, which is zero in our case. Working in momentum space, the regular solution

to the linearized field equation (6.16) is

θ = θ(0)(k)(z2K1(kz)), (6.19)

with k the momentum and θ(0)(k) corresponding to the Fourier transform of the source.

One then expands (6.19) about z = 0 to identify the various terms in (6.18), for example

θ(2)(k) = θ(0)(k)

(
1

4
(−1 + 2γ)k2 +

1

2
k2log

(
k

2

))
(6.20)

where γ is the Euler constant. Functionally differentiating the one point function (6.17)

with respect to the source θ(0), and setting the source to zero, therefore gives

〈O3(k)O3(−k)〉 = T0k
2 log

(
k

2

)
+ · · · , (6.21)

where contact terms have been dropped. Fourier transforming back to position space gives

〈O3(x)O3(0)〉 =
4T0

π2
R
(

1

x6

)
, (6.22)

where R denotes differential renormalization, see [63].

In [23] it was shown that for a CFT deformed by a relevant operator

I → I + λ

∫
ddxO, (6.23)

the change in the entanglement entropy of the half space is

δS = Nλ2 (d− 2)

4(d− 1)

π
d+2
2

Γ(d+2
2 )
A log

(
εUV

εIR

)
, (6.24)

where εUV and εIR correspond to UV and IR cutoffs, respectively, A is the area of the

dividing surface whileN is the normalisation of the two point function of O, i.e. at separated

points

〈O(x)O(0)〉 =
N
x2∆

, (6.25)

with ∆ = (d+2)/2 the (relevant) operator dimension. Note that the entanglement entropy

is unchanged to first order in the perturbation λ.

In our case the normalisation is given in (6.22), λ = m and A = L2. Hence

δS =
πT0

3
m2L2 log

(
εUV

εIR

)
, (6.26)

which exactly agrees with (6.12), taking the IR cutoff to be εIR = 1/m.
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Sphere. For the spherical entangling region the logarithmically divergent terms are

δS =
t0π

8GN

(
2µ2

3
+

1

2

)
log(mε) = T0

(
4

3
(πmR)2 + π2

)
log(mε). (6.27)

The second of these terms was explained above. The first is proportional to the mass

deformation and can be expressed in the same form as (6.24), with

A = 4πR2; N =
4T0

π2
, (6.28)

setting the IR cutoff to be εIR = 1/m.

Slab. For a slab of finite width, the logarithmically divergent terms are precisely twice

those for the half space:

δS =
2πT0

3
m2L2 log

(
εUV

εIR

)
. (6.29)

Taking into account that the area of the entangling surface is in this case 2L2, we again

find exact agreement with (6.24).

At first sight it may seem surprising that the expression (6.24), which was derived

for the half space using the known modular Hamiltonian, is applicable to other entangling

geometries, with the entangling area replaced by the appropriate value. However, from the

field theory perspective, one could derive the result for the spherical region by conformal

transformations (the modular Hamiltonian is also known) and the divergent contributions

for a slab, being local, must necessarily give exactly twice the result for an infinite slab.

It was argued in [23] that the result should hold for any geometry, since any entangling

surface is locally flat; of course for a curved surface there are additional contributions to

the entanglement entropy beyond this universal contribution. The dilaton effective action

approach was also used in [64, 65] to derive the logarithmic divergences for any shape

entangling region, up to a universal coefficient computable from the dilaton effective action.

There is also a very simple holographic way to understand why the formula (6.24)

is applicable to the logarithmic divergences of any shape entangling surface, generalising

the work of [26, 66]. Deforming the conformal field theory by a relevant scalar operator

corresponds in the bulk to coupling gravity to a massive scalar Φ i.e. we consider

I =
1

16πGN

∫
dd+1x

(
R+ d(d+ 1)− 1

2
(∂Φ)2 − 1

2
M2Φ2 + · · ·

)
, (6.30)

where M2 = ∆(∆ − d), with ∆ < d the dimension of the dual operator. Here implicitly

we are working perturbatively in the scalar field so we include only quadratic terms in Φ

with the ellipses denoting higher order terms. The normalisation of the operator two point

function is [63, 67]

〈O(x)O(0)〉 =
(2∆− d)Γ(∆)

16πGNπ
d
2 Γ(d− ∆

2 )

1

x2∆
, (6.31)

for ∆ = d/2 + k with k an integer. In particular we can write

N =
Γ(d/2 + 1)

8πd/2+1GN
(6.32)

for ∆ = d/2 + 1.
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Working perturbatively around an AdSd+1 background, a scalar field profile

Φ = λzd−∆ (6.33)

corresponds to deforming the field theory by the dimension ∆ operator, with λ charac-

terising the deformation. At quadratic order in the source there is a backreaction on the

metric. Letting the metric perturbation be as before

δ(ds2) =
1

z2

(
f(z)dz2 + h(z)dxµdxµ

)
(6.34)

then the Einstein equation implies that the gauge invariant combination of these pertur-

bations is given by

f(z) + zh′(z) =
(∆− d)

2(d− 1)
λ2z2(4−∆). (6.35)

Working in Fefferman-Graham gauge we may set f(z) = 0 in which case

h(z) = − 1

4(d− 1)
λ2z2(d−∆) = −h0λ

2z2(d−∆). (6.36)

Now consider an entangling surface in the deformed metric. Let the induced metric for the

minimal surface be γab = ∂aXµ∂bXµgµν and fix a static gauge such that

Z = z; Xa = σa; Xi = Xi(z, σa) (6.37)

where asymptotically as z → 0

Xi(z, σa) = Xi(σa) + · · · . (6.38)

The entanglement entropy contains divergent terms from

S =
1

4GN

∫
dd−1x

√
γ ≈ 1

4GN

∫
dzdσa

√
γo

1

zd−1

(
1 + · · ·+ (d− 2)

2
h(z) + · · ·

)
(6.39)

where

γoab = ∂aX
i(σc)∂bX

j(σc)δij (6.40)

is the induced metric for the entangling surface on the boundary. Integrating over the

radial coordinate one finds the usual power law volume divergence

1

4GN (d− 2)εd−2

∫
dσa

√
γ0 =

A
4GN (d− 2)εd−2

, (6.41)

with z = ε being the UV cutoff and A being the volume of the entangling surface in the

boundary. From the relevant perturbation one obtains a logarithmic divergence whenever

∆ =
1

2
(d+ 2) (6.42)

where

δS =
A

8GN
(d− 2)λ2h0 log(ε/εIR). (6.43)
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Using the identity (6.32) we thence obtain

δS = NAλ2 (d− 2)πd/2+1

4(d− 1)Γ(d/2 + 1)
log(ε/εIR), (6.44)

which is exactly (6.24) but does not assume any geometry for the entangling surface. It

would be interesting to prove this result from the field theory; the modular Hamiltonian

for generic entangling surfaces is not known but the holographic result suggests that one

should be able to compute the logarithmic divergences without complete knowledge of the

modular Hamiltonian.

Note that this result has a straightforward generalisation to irrelevant deformations.

Deforming the conformal field theory by an irrelevant scalar operator corresponds in the

bulk to coupling gravity to a massive scalar Φ with M2 = ∆(∆ − d), with ∆ > d the

dimension of the dual operator. Following the same steps we see that the entanglement

entropy contains divergent terms from

S =
1

4GN

∫
dd−1x

√
γ ≈ 1

4GN

∫
dzdσa

√
γo

1

zd−1

(
1 +

(d− 2)

2
h(z) + · · ·

)
(6.45)

but since ∆ > d the metric perturbation h(z) always gives rise to additional UV divergences:

δS = − λ2(d− 2)

32GN (d− 1)(2∆− d− 2)

A
ε2∆−d−2

. (6.46)

Using the identity (6.32) we thence obtain

δS = −Nλ2 (d− 2)πd/2+1

4(d− 1)(2∆− d− 2)Γ(d/2 + 1)

A
ε2∆−d−2

, (6.47)

where N is the operator normalisation. As for the usual power law divergences, such terms

are not universal but nonetheless will be given an interpretation in the following section.

6.3 Large mass: irrelevant deformation of CFT

By large mass, we mean that the mass scale m is higher than the energy scales of interest.

This implies in particular that m � 1/l, where l characterises the size of the entangling

region, i.e. the width of the slab or the radius of the sphere. Thus we are always working

in the regime µ � 1. The UV divergent contributions to the entanglement entropy have

already been explained above and here we are interested in explaining the leading finite

contributions for µ � 1. To decouple such contributions from the divergent terms, it is

useful to look at the differentiated quantities (3.51) and (4.23) (which we argued previously

do not receive contributions from UV divergent terms).

As stated above, for large mass, the effective IR description is in terms of an irrelevant

deformation of SYM. It is easy to understand the effects of such a deformation on the

entanglement entropy from the dual perspective. For a deformation by an operator of

dimension six with λ ∼ 1/m2 the change in the metric behaves as 1/(mz)4. The metric

perturbation can only be viewed as small relative to the background AdS5 metric when

(mz)4 � 1.
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Slab. Now it is straightforward to infer the effect of the irrelevant deformation on the

entanglement entropy of a slab. Since the latter scales extensively with the volume of the

slab, L2, and the metric is corrected at order 1/m4, the change in the entanglement entropy

goes as L2/m4. The underlying theory is conformal so the only scale in the problem is

the width of the slab l. Since the entanglement entropy is dimensionless the effect of the

massive modes is to change the entanglement entropy as

δS ∼ L2

m4l6
, (6.48)

which indeed agrees with the term found in (3.51).

We can infer this answer using (6.47), which in the case of ∆ = 6 and d = 4 gives

δS ∼ λ2A
ε6
. (6.49)

In the case at hand λ ∼ 1/m2. The description in terms of an irrelevant deformation of

SYM is only valid provided that we consider entangling surfaces for which l � 1/m. The

effective cutoff should therefore be ε ∼ l� 1/m and hence we reproduce the formula above.

Sphere. For a spherical entangling surface the leading contribution to the differentiated

entanglement entropy at large µ behaves as (4.23)

δS ∼ 1

m2R2
+O

(
1

m4R4

)
. (6.50)

Thus although there is a 1/m4 term (as above) this is not the leading contribution. A

simple way to understand the origin of this term is by exploiting the CHM map [2]. The

entanglement entropy for the spherical region is then computed by computing the entropy

in the mass deformed theory on a hyperbolic space. Since the fields are conformally coupled

the action contains the terms

I =
1

2

∫
d4x
√−g

(
(∂χ)2 +m2χ2 +

1

6
Rχ2

)
, (6.51)

where χ is a hypermultiplet scalar andR ∼ 1/R2 is the Ricci scalar. Now when we integrate

out the hypermultiplets we obtain additional terms in (6.2): setting χ ∼ 1/m we obtain a

contribution from the curvature coupling of order 1/(m2R2), which is in agreement with

the expression above.

6.4 Conformal perturbation theory at higher orders

The brane contributions to the entanglement entropy for the half space (3.31) consist of only

the divergent term arising from the shift in the AdS radius and the logarithmic divergence

discussed above. Since the logarithmic divergence is expressed entirely in terms of the

coefficient of the two point function for the dimension three (fermion mass) operator, this

contribution to the entanglement entropy is trivially not renormalized relative to the weak

coupling result: since the operator dimension is protected, there is such a contribution

regardless of the coupling. The result (3.31) only includes powers of m up to m2, which
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follows on dimensional grounds: the dimensionless entanglement entropy scales extensively

with the slab area L2 and therefore the only way that contributions at order m3 or higher

could arise in the entanglement entropy would be if the latter was IR divergent, i.e. the

contributions would have to scale as

δS ∼ L2mkΛk−2
IR (6.52)

where the IR cutoff ΛIR � 1 (relevant perturbations cannot introduce UV power law

divergences so an IR cutoff is the only possibility). However, the entanglement entropy is

an IR safe quantity and therefore no such dependence on an IR cutoff should arise.

From the perspective of conformal perturbation theory, it is not obvious that there are

not contributions to the entanglement entropy from higher order terms, i.e. terms of order

m3 or higher. The change in the entanglement entropy is in general expressed as [21–23]

δS = −m〈OK〉+
1

2
m2 (〈OKK〉 − 〈OO〉) +O(m3) (6.53)

where O is the deforming operator and K is the modular Hamiltonian. The first term

vanishes by conformal invariance and the second term gives the logarithmic divergence. By

the argument above, higher order terms (dependent on higher order correlation functions)

must vanish and it would be interesting to show this explicitly.

7 Differential entropy

Given the expression for the entanglement entropy of a slab, we now proceed to compute

the differential entropy. Following [31–36], the differential entropy should correspond to

the area of a surface in the backreacted geometry — see figure 7.

The differential entropy is defined as

E =
∞∑

k=1

[S(Ik)− S(Ik ∩ Ik+1)] (7.1)

where {Ik} is a set of intervals that partitions the boundary. We will cover the boundary

with n intersecting slabs — we take Ik to be a slab of width ∆x, and the intersection

Ik ∩ Ik+1 is thus a strip of width ∆x − Lx/n where Lx is the regularised length of the

x-direction. At the end we will take the limit n→∞.

For a slab in AdS5 there is a relation between the strip width ∆x, and the maximum

bulk depth of the associated extremal surface z̃, see (3.12). When the slab lies in the

perturbed geometry this relation is modified (see for example (3.36)), and therefore it is

useful to leave the relation implicit as

∆x = cz̃ = (c0 + c1t0 +O(t20))z̃ , (7.2)

with

c0 =
2
√
πΓ(2

3)

Γ(1
6)

; (7.3)
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z > 1
m

z̃

z < 1
m

z = 0

Figure 7. An illustration of the equivalence between the differential entropy of a boundary partition

and the area of a corresponding hole in the bulk. As the number of strips partitioning the boundary

tends to infinity, the turning points of the associated minimal surfaces (blue) form a smooth hole

in the bulk (red) whose area equals the differential entropy.

and c1 depends on whether µ is greater than or less than one. The differential entropy

takes the following form

E = lim
n→∞

n[S(∆x)− S(∆x− Lx/n)] (7.4)

where the overall factor of n arises from the fact that all slabs are of equal width. For

AdS5 this gives

E =
L2√πΓ(−1

3)

12Γ(1
6)GN

lim
n→∞

n

[
c2

(∆x)2
− c2

(∆x− Lx/n)2

]
(7.5)

and hence

E = −V
√
πΓ(−1

3)

6Γ(1
6)GN

c2

(∆x)3
, (7.6)

where V = L2Lx is the regularised three-volume. Using (7.3) this expression can be

rewritten as

E =
V

4GN

c3
0

(∆x)3
, (7.7)

and the latter is manifestly equal to the volume of the turning point surface (i.e. the hole)

divided by 4GN .

7.1 Large mass µ � 1

Proceeding to calculate the flavor contributions, we begin with the very large mass case.

The relevant expression for the entanglement entropy is (3.30). The two leading terms are

manifestly independent of z̃ and thus of ∆x which implies that the differential entropy

vanishes in this limit:

δE = lim
n→∞

n[δS(∆x)− δS(∆x− Lx/n)]→ 0. (7.8)
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The limit µ � 1 means z̃ � 1/m and thus the hole formed in the bulk is far away from

the probe brane (which ends at z = 1/m). In the large µ limit the leading contribution to

the differential entropy arises from the third term in (3.30) and hence

δE = − t0L
2

2304m4GN
lim
n→∞

n

[
c6

∆x6
− c6

(∆x− Lx/n)6

]
; (7.9)

=
t0V c

6
0

384m4(∆x)7GN
,

where c0 is defined by (7.3). Note that since the gauge dependent terms are independent

of ∆x they also automatically cancel in the differential entropy.

Now let us compare the differential entropy with the volume of a hole of radius z̃. Since

the backreaction on the AdS5 metric in this region is zero one might naively expect that

the change in the differential entropy is zero. However, this does not take into account the

fact that the relation between the turning point radius z̃ and the width of the boundary

slabs ∆x is modified (3.36). In other words, the gravitational entropy of the hole remains

Egrav =
V

4GN

1

z̃3
, (7.10)

since the metric is AdS5, but to express this quantity in terms of ∆x we need to use the

relation in (7.2) to first order in the perturbation, resulting in

Egrav =
V

4GN

(
c3

0

(∆x)3
+

3c2
0c1t0

(∆x)3

)
=

V c3
0

4GN (∆x)3
+

t0V c
6
0

384m4(∆x)7GN
, (7.11)

where we use

c1 =
1

288m4z̃4
=

c4
0

288m4(∆x)4
, (7.12)

where the latter equality is to order t0. The second term in (7.11) is in exact agreement

with the calculation of the perturbation in the differential entropy (7.9); we will see in

section 7.3 that this agreement holds for all µ > 1.

7.2 Small mass µ < 1

We proceed with the small mass case. Extracting from (3.28) the terms which depend on

z̃ one obtains

δS =
t0L

2

48GN

(√
π

12

Γ(−1/3)

Γ(7/6)

1

z̃2
+

√
π

12

Γ(1/3)

Γ(11/6)
m4z̃2 − 2m2logz̃ + · · ·

)
. (7.13)

From these terms in the entanglement entropy we can now proceed to compute the differ-

ential entropy using (7.4). Again it is clear that all divergent and gauge dependent terms

cancel from the differential entropy, since they are independent of ∆x. Noting that:

(∆x)2 − (∆x− Lx/n)2 = 2∆x
Lx
n

+O(1/n2) (7.14)

1

(∆x)2
− 1

(∆x− Lx/n)2
= − 2

∆x3

Lx
n

+O(1/n2) (7.15)

log
∆x− Lx/n

∆x
= − 1

∆x

Lx
n

+O(1/n2) (7.16)
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we obtain the perturbation in the differential entropy:

δE = − t0V

48GN

(
− 3c3

0

2∆x3
−m4

√
π

6

Γ(1/3)

Γ(11/6)

∆x

c2
0

+
2m2

∆x

)
, (7.17)

where c0 is as given in (7.3).

Now let us compare this expression with the gravitational entropy of a hole of radius zt:

Egrav =
V

4GN

1

z3
t

(
1 +

3

2
h(zt)

)
, (7.18)

where we take into account the metric perturbation relative to AdS5. In this case the

relation between zt and ∆ is given by

∆x = c0zt(1−
1

2
h(zt)) + c′1t0zt, (7.19)

where c0 is defined in (7.3) and

c′1 = − 1

24

(
−c0 +

4µ2

3
− µ4√πΓ(1

3)

9Γ(11
6 )

)
. (7.20)

Thus we note that the gauge dependent quantity h(zt) cancels from the entropy of the

hole, with

Egrav =
V

4GN

1

(∆x)3

(
c3

0 + 3c2
0c
′
1t0
)
, (7.21)

and moreover the change in gravitational entropy of the hole agrees exactly with the change

in the differential entropy (7.17).

7.3 µ > 1

We now proceed with the case µ > 1, without requiring µ� 1. The entanglement entropy

for µ > 1 is given by equations (3.29) and (3.30):

δS =
t0L

2

48Gz̃2

(
1

2a2
+

1

6µ4 3F2

(
{1/2, 1, 1}, {2, 2}, 1/µ6

)
− µ2

2
2F1

(
−1/2,−1/3, 2/3, 1/µ6

)

+
µ2

2
2F1

(
−1/2, 1/3, 4/3, 1/µ6

)
+ 2µ2log(µa)

)
+ δSscheme(m, ε) . (7.22)

Recalling that µ = mz̃ and a = ε/z̃, the divergent and log parts are independent of z̃ (and

thus ∆x) and so do not contribute to the differential entropy, nor do the gauge dependent

terms. Also recall that z̃ = ∆x/c, where throughout the following we can replace c → c0

to order t0 since δS already contains an overall factor of t0. We thus have:

δS=
t0L

2

48G

(
c6

6m4∆x6 3F2

(
{1/2, 1, 1}, {2, 2}, c6

m6∆x6

)
−m

2

2
2F1

(
−1/2,−1/3, 2/3,

c6

m6∆x6

)

+
m2

2
2F1

(
−1/2, 1/3, 4/3,

c6

m6∆x6

))
+ . . . (7.23)
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where the ellipses denote z̃-independent terms. We want to compute the differential

entropy:

δE = lim
n→∞

n[δS(∆x)− δS(∆x− Lx/n)] (7.24)

which requires the relations:

2F1

(
−1/2, 1/3, 4/3,

a

x6

)
− 2F1

(
−1/2, 1/3, 4/3,

a

(x− Lx/n)6

)
=

3aLx
4x7 2F1

(
1/2, 4/3, 7/3,

a

x6

) 1

n
+O(1/n2) (7.25)

2F1

(
−1/2,−1/3, 2/3,

a

x6

)
− 2F1

(
−1/2,−1/3, 2/3,

a

(x− Lx/n)6

)
=

− 3aLx
2x7 2F1

(
1/2, 2/3, 5/3,

a

x6

) 1

n
+O(1/n2) (7.26)

1

x6 3F2

(
{1/2, 1, 1}, {2, 2}, a

x6

)
− 1

(x− Lx/n)6 3F2

(
{1/2, 1, 1}, {2, 2}, a

(x− Lx/n)6

)
=

12Lx
ax

(
−1 +

√
1− a

x6

)
1

n
+O(1/n2) (7.27)

where here a/x6 < 1 since we are considering µ > 1. For the former two results we have

used the standard identity:

d

dz
2F1(a, b, c, x) =

ab

c
2F1(a+ 1, b+ 1, c+ 1, x) (7.28)

and for the latter result we have used the following relation:

3F2 ({1/2, 1, 1}, {2, 2}, x) =
4

x

(
log

(
1 +
√

1− x
2

)
−
√

1− x+ 1

)
(7.29)

where, again, here x < 1 since we are considering µ > 1. The differential entropy is then

calculated to be:

δE =
t0V

384G

c2
0

(∆x)3µ4

(
16µ6

(
−1+

√
1− 1

µ6

)
+62F1

(
1

2
,

2

3
,

5

3
,

1

µ6

)
+32F1

(
1

2
,

4

3
,

7

3
,

1

µ6

))

(7.30)

where recall V≡L2Lx, and we leave some ∆x-dependence implicit in µ for notational clarity.

We now want to compute the corresponding change in the gravitational entropy of the

hole. As shown in section 7.1, the change in gravitational entropy of the hole is given by:

δEgrav =
V

4GN

3c2
0c1t0

∆x3
(7.31)

where c1 is defined by equation (7.2) and is given by equations (3.34)–(3.35):

c1 =
1

288µ4

(
16µ6

(
−1+

√
1− 1

µ6

)
+ 62F1

(
1

2
,
2

3
,
5

3
,

1

µ6

)
+ 32F1

(
1

2
,

4

3
,

7

3
,

1

µ6

))
. (7.32)

The equality of the differential entropy and the gravitational entropy of the hole is then

manifest.
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8 Entanglement and differential entropy for top-down solutions

The main focus of this work has been to develop a systematic method for computing the en-

tanglement entropy for top-down brane probe systems. Our method however immediately

generalises to any top-down solution which can be viewed as a perturbation of AdS5 × S5

(or indeed a perturbation of the finite temperature AdS5 Schwarzschild × S5): using the

Kaluza-Klein holography dictionary we can extract the effective five-dimensional Einstein

metric and thence compute the entanglement entropy.

It is worth noting that given a general asymptotically AdS5×S5 supergravity solution

one cannot extract the five-dimensional Einstein metric, except asymptotically around the

conformal boundary. Brane probe systems in which the perturbations relative to AdS5×S5

are small everywhere, and thus the Kaluza-Klein dictionary can be used to compute the

five-dimensional Einstein metric at all scales, are special cases. In general the Kaluza-Klein

dictionary becomes intractable when the metric perturbations relative to the AdS5 × S5

background are of order one, i.e. at some finite distance from the conformal boundary.

Another subset of ten-dimensional supergravity solutions can be expressed in terms

of the uplifts of five-dimensional gauged supergravity solutions, for which the Einstein

metric is known from the lower-dimensional theory. For example, specific cases of Coulomb

branch solutions are realised as solutions of N = 8 gauged supergravity in five dimensions;

generic Coulomb branch solutions are however not realised as lower-dimensional solutions.

The Coulomb branch examples also illustrate the fact that the causal structure of the

five-dimensional Einstein metric is generically not the same as that of the uplifted ten-

dimensional metric: the former can have naked timelike singularities which correspond to

harmless null horizons in the uplifted solutions. One could thus envisage a scenario where

the lower-dimensional metric had no entanglement shadows of the type discussed in [34]

but the uplifted solution had shadow regions which could not be probed by five-dimensional

fields at all.

The entanglement entropy is computed from the five-dimensional Einstein metric and

the differential entropy (built from entanglement entropy) therefore reconstructs areas of

holes in the five-dimensional Einstein metric. The ten-dimensional metric cannot be re-

constructed just from the five-dimensional Einstein metric: the uplift map requires all

the matter fields in the lower-dimensional theory. Therefore the standard entanglement

entropy and differential entropy cannot in principle reconstruct the ten-dimensional geom-

etry without additional information.

8.1 Coulomb branch examples

To illustrate the above discussions we consider a particular Coulomb branch solution dis-

cussed in [68, 69]. The Coulomb branch of N = 4 SYM corresponds to the spontaneous

breaking of the gauge symmetry by giving VEVs to the scalars — on the gravity side, these

solutions are represented by multi-centre D3-brane solutions. These flows break supercon-

formal invariance but preserve sixteen supercharges.

[69] studies particular Coulomb branch solutions which admit consistent truncations.

These flows are described in five-dimensional gauged supergravity by a single scalar field
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χ(r) where r is a radial coordinate for the 5-dimensional metric

ds2 = e2A(r)dxνdx
ν + dr2 (8.1)

where r→∞ corresponds to the conformal boundary. The BPS conditions can be written as

dχ

dr
=
g

2

∂W

∂χ

dA

dr
= −g

3
W (8.2)

where W (χ) is the superpotential and g is the gauged supergravity coupling constant. In

particular, we will be interested in the solution which, from the ten-dimensional point of

view, corresponds to the D3-branes being uniformly distributed on a disc of radius σ in

the transverse space, preserving SO(4) × SO(2) of the SO(6) symmetry in the conformal

AdS5 × S5 solution. In this case one has

W (χ) = −e
2√
6
χ − 1

2
e
− 4√

6
χ

(8.3)

A(χ) =
1

2
log

∣∣∣∣∣
e

2√
6
χ

1− e
√

6χ

∣∣∣∣∣+ log (σ) (8.4)

where we have as usual set the radius of curvature of AdS5 to be one.

Redefining the radial coordinate one can write the metric as

ds2 = λ2ρ2

(
dxνdx

ν +
dρ2

ρ4λ6

)
λ6 =

(
1 +

σ2

ρ2

)
, (8.5)

where ρ → ∞ at the conformal boundary and the metric is AdS5 for σ = 0. The uplifted

ten-dimensional metric is then expressed as

ds2
10 = ∆−2/3ds2 + ds2

K , (8.6)

where the warp factor ∆ depends on the sphere coordinates and ds2
K is a metric on a

warped sphere. Explicitly

∆−2/3 =
ζ

λ2
ζ =

(
1 +

σ2

ρ2
cos2 θ

)
; (8.7)

ds2
K =

1

ζ

(
ζ2dθ2 + cos2 θdΩ2

3 + λ6 sin2 θdφ2
)
.

The five-dimensional metric has a naked timelike singularity at ρ = 0 but the uplifted

geometry has a null horizon at ρ = 0.

The five-dimensional metric satisfies an a-theorem: the warp factor A(r) in (8.1) de-

creases monotonically as r decreases. Correspondingly the entanglement entropy and the

differential entropy monotonically decrease as the scale of the entangling region is increased.

Working for convenience in the coordinate system (8.5) the entanglement entropy of a slab is

S =
L2

4GN

∫ Λ

ρ0

dρ
ρ3(ρ2 + σ2)1/2

√
ρ4(ρ2 + σ2)− ρ4

0(ρ2
0 + σ2)

, (8.8)
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Figure 8. Plots of ρ0 and ∆S as functions of l for σ = 0.1. Both functions asymptote to zero as

l→∞.

where Λ is the UV cutoff and ρ0 is the turning point. The quantity

∆S = S − Λ2L2

2GN
(8.9)

is UV finite by construction. The relation between the width of the slab l and the turning

point is

l = 2ρ2
0(ρ2

0 + σ)1/2

∫ ∞

ρ0

dρ√
ρ2(ρ2 + σ2)(ρ4(ρ2 + σ2)− ρ4

0(ρ2
0 + σ2))

. (8.10)

The quantity ∆S(l) monotonically decreases as l is increased, see figure 8. We can express

the differential entropy associated with strips of width l as

E(l) = Lx
∂(∆S)

∂l
, (8.11)

and this quantity also decreases monotonically with l. This had to be true since (by

construction) E(l) can be expressed in terms of the warp factor in (8.1), which is known

to satisfy the a-theorem, see [68]. It is interesting to note that the differential entropy

is proportional to the finite entropy (3.49), which in turn is known to play the role of a

c-function in two spacetime dimensions. In any holographic background dual to a RG flow,

the differential entropy is by construction expressed in terms of the warp factor in (8.1),

which satisfies the a-theorem provided that appropriate energy conditions are imposed on

the bulk stress energy tensor [68], and therefore the differential entropy has the correct

property to correspond to an a-function (in any dimension).

Entanglement for Coulomb branch geometries has been discussed in earlier papers [70,

71] from a ten-dimensional perspective, i.e. minimal surfaces in the ten dimensional ge-

ometry were explored. As emphasised throughout this paper, the standard entanglement

entropy should be computed from the five-dimensional Einstein metric, which can only be

extracted near the boundary in the case of separated brane stacks discussed in [70, 71], since

no consistent truncation to five-dimensional supergravity exists (Kaluza-Klein holography

allows us to extract the Einstein metric near the conformal boundary, where the metric
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is close to AdS5 but deep in the interior the metric is not close to AdS5 and therefore

the method cannot be used there, see [7, 72]). Codimension two minimal surfaces in the

uplifted geometry (8.6) compute the generalized entanglement entropy defined in [70]. It

would be interesting to understand the field theory interpretation of this quantity better;

see recent discussions in [73].

9 Conclusions

One of the main results of this paper is a systematic method to compute the effective

lower-dimensional Einstein metric for top-down brane probe systems, using which one

can extract the entanglement entropy. We have illustrated this method with the case

of quarks at finite mass and density, at zero temperature. It would be interesting to

explore the finite temperature behaviour of the entanglement entropy and how it captures

the phase transitions found in [44, 45]. Our method is applicable to any brane probe

system and could for example be used to evaluate the entanglement entropy in models of

quantum Hall physics [74, 75] and in top-down models of the Kondo effect [76]. One could

also explore entanglement entropy in the presence of flavors for ABJM theory, see earlier

results in [77, 78].

The entanglement entropy calculated using the ten-dimensional metric is in general

expected to be qualitatively different to that computed using the lower-dimensional Einstein

metric.5 It is interesting to note however that the entanglement entropy computed using

the top down metric for smeared solutions such as [77] seems to give answers which agree

with F-theorem expectations. In such examples the ten-dimensional metric has a very

special form, in which all warp factors depend only on the radial coordinate, and thus

the lower-dimensional Einstein metric is simply related to the top down metric. It would

be interesting to understand the relationship between the metrics in more detail, and

to compare the entanglement entropy computed in [77] with what is obtained using the

method developed here.

The entanglement entropy is not the only interesting quantity which is computable

from the effective lower-dimensional Einstein metric: correlation functions involving only

the transverse traceless components of the field theory stress energy tensor can also be

computed from perturbations of the Einstein metric. Kaluza-Klein holography allows such

energy momentum tensor correlation functions to be accessed without computing the entire

backreaction in ten dimensions.

We were able to match the structure of all terms in the entanglement entropy for

finite mass quarks at zero density with field theory expectations, and the logarithmic di-

vergences were matched exactly. Few field theory results exist for entanglement entropy

at finite temperature and density; see the recent papers [79, 80] for discussions of specific

universal thermal corrections in conformal field theories. It would be interesting to explore

5As demonstrated in [7] and subsequent works on Kaluza-Klein holography, quantities computed using

the upstairs ten-dimensional metric qualitatively differ from those computed using the systematic Kaluza-

Klein holography approach of extracting the lower-dimensional Einstein metric, and other lower-dimensional

fields, directly dual to field theory operators.
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whether conformal perturbation techniques analogous to those of [23] can be used to ex-

tract universal terms at finite mass and density; just like the mass, the chemical potential

breaks conformal invariance even at zero temperature but can be treated in conformal per-

turbation theory. Results on entanglement entropy using conformal perturbation theory

in the context of higher spin theory can be found in [81–83].

In this work we have emphasised that the entanglement entropy and differential entropy

are associated with the lower-dimensional Einstein metric, rather than the ten-dimensional

metric, and that the latter can only be reconstructed given additional information. The

emergence and reconstruction of the compact part of the bulk geometry is a longstanding

puzzle. If entanglement can indeed be used to reconstruct the bulk spacetime, then there

must exist in the field theory a generalised measure of entanglement which captures the

compact part of the geometry. Attempts to define such a quantity were made in [70, 73]

and we will report elsewhere on extensions of these proposals.
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A Source terms in linear equations

In this appendix we discuss the derivation of (5.19) from (5.17) using the results for the

linearised field equations around an AdS5 × S5 background given in [55]. The components

of the Einstein equations in the non-compact directions are

1

2
(�x + �y + 2)Hmn + 3gomnH

p
p −

1

2
∇m∇pHnp −

1

2
∇n∇pHmp (A.1)

+
1

2
∇m∇nHp

p −
1

2
∇m∇ahna −

1

2
∇n∇ahma −

1

6
gomn(�x + �y)h

a
a

− 16

3
gomnh

a
a +

1

3
gomnε

pqrstfpqrst = κ2
10T̄mn.

Here ∇m and ∇a denote covariant derivatives while �x and �y denote the d’Alambertians;

Hnp = hnp + 1
3h

a
ag
o
mn.
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Projecting this equation onto the zeroth spherical harmonic results in

1

2
(�x + 2)hEmn + 3gomn(hE)pp −

1

2
∇m∇phEnp −

1

2
∇n∇phEmp (A.2)

+
1

2
∇m∇n(hE)pp −

1

6
gomn�xπ

0 − 16

3
gomnπ

0 +
1

3
gomnε

pqrst∂pb
0
pqrst = κ2

10T̄
0
mn,

where hEmn was defined in (5.7).

To obtain an equation for the Einstein metric perturbation hEmn we need to eliminate

π0 and b0pqrs. The trace of the Einstein equation over the five sphere gives

1

2

(
�x −

1

15
�y − 32

)
haa +

1

2
�yH

p
p −

1

2
∇a∇phap (A.3)

−∇a∇bh(ab) +
5

3
εabcdefabcde = κ2

10T̄
a
a .

Projecting this equation onto the zeroth spherical harmonic results in

1

2
(�x − 32)π0 = κ2

10T̃
0. (A.4)

The five-form self duality equation along the non-compact directions gives

5∂[mcnpqr] =
1

4!
ε abcde
mnpqr ∂acbcde +

1

2

(
Hp
p −

8

3
haa

)
εmnpqr (A.5)

which projected onto the zeroth spherical harmonics gives

5∂[mb
0
npqr] =

1

2

(
(hE)pp −

8

3
π0

)
εmnpqr . (A.6)

Inserting (A.4) and (A.6) into (A.2) then gives

(LE + 4)hEmn = κ2
10

(
T̄ 0
mn +

1

3
T̃ 0gomn

)
. (A.7)
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