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Make no little plans 

 
Make no little plans. They have no magic to stir men's blood and probably themselves will not be realized. 
Make big plans; aim high in hope and work, remembering that a noble, logical diagram once recorded 
will never die, but long after we are gone will be a living thing, asserting itself with ever-growing insistency. 
Think big. 

 

Daniel Burnham. (1846-1912)
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Stimulation Genomics: Probing the effects of Genetic Variation on Human 

Cortical Plasticity and its Clinical Implications 

Abstract 

The studies presented in this thesis employ neurophysiological outcome 

measures and the application of artificially induced cortical stimulation plasticity 

paradigms to study the effects of human genetic variation on human cortical 

neuroplasticity.  

The introductory chapter includes a review of illustrative models of 

neuroplasticity. I also cover the principles, physiology and pharmacology of 

TMS and rTMS. With this background, I set out the scope and principles of such 

an approach applied to the study of human genetic variation, and define the 

field of Stimulation Genomics. I set out the case for such an approach, 

highlighting previous studies that have employed neurophysiological outcome 

measures and the application of artificially induced cortical stimulation plasticity 

paradigms to study the effects of disease-causing human genetic mutations.  In 

the subsequent introductory chapters I have focused on the rationale of 

selecting the Brain Derived Neurotrophic Factor polymorphism Rs6265  (BDNF 

Val66 Met) as the candidate polymorphism for our studies, covering the 

molecular biology and physiological roles of this highly conserved protein, and 

with a particular focus on its diverse roles in neuroplasticity. 

The 1st experiment presented here used established rTMS and TDCS 

paradigms to probe the effects of the BDNF Val66Met SNP on cortical plasticity 

and metaplasticity. The results generated from this study, and particularly the 

results suggesting an effect on metaplasticity, formed the basis for the studies in 
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patients.  We investigated the influence of this SNP on the rate of onset of 

Levodopa-Induced Dyskinesia (LID) in patients with Parkinson's disease and on 

the penetrance of DYT1 Dystonia. The final experiment presented here was 

designed to confirm the effects of the BDNF Val66Met polymorphism on the 

iTBS paradigm, and quantify its effects alongside other variables thought to 

influence the response to rTMS paradigms. This study also provides some 

crucial insights into the iTBS paradigm itself. 
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1.1 Neuroplasticity 
 

The electro-chemical synapse is designed to serve the dual purpose of both an 

adaptable communication system and an information storage system. 

Numerous small coherent synaptic modifications produce the distributed 

memory that underlies learning. Perhaps no single discovery has quite captured 

the attention of neuroscientists as that of the synaptic modification phenomenon 

of Long Term Potentiation (LTP) in 1973(Bliss and Lomo, 1973). The discovery 

of LTP (and subsequently Long Term Depression (LTD)) in the hippocampus, 

an organ with the an accepted role in memory and earning, provided the 

catalyst for research into how the brain could adapt to experience at the level of 

the synapse - the broad based church of neuroplasticity.  As evidence builds for 

both adaptive (like in learning, memory or recovery after head injury) or 

maladaptive (like in Dystonia or LID) neuroplasticity, interest in the field has 

spread from physiologists in labs to neurologists at the bedside.  

 

1.1.1  Illustrative Concepts and Models of 

Neuroplasticity. 

 The Hebb Learning Rule 

In 1949, Donald Hebb produced a theory of synaptic modification: 

When axon in cell A is near enough to excite cell B and repeatedly and 

persistently takes part in firing it, some growth or metabolic process takes place 

in one or both cells such that Aʼs efficacy in firing B, is increased. 
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The hebbian model of the synapse can be visualized mathematically. 

If we imagine a simple synapse between neuron A (presynaptic) and neuron B 

(postsynaptic), and x as the strength of the presynaptic input, the postsynaptic 

output y is give by the equation: 

y=w.x, where w is synaptic weight or efficacy. 

 

Hebbsʼs theory for a synaptic basis for memory inspired the characterization of 

Long Term Potentiation (LTP) (Bliss and Lomo, 1973).  Bliss and Lomo 

stimulated the perforant path and recorded extra cellular field potential before 

and after short volleys of high frequency stimuli. They found that the size of the 

field potentials increased, indicating an increase in synaptic efficacy.  

 

The Hebb rule was borne out by initial studies producing LTP, but suffers from 2 

main problems: 1) that repeated inputs force the neuron to the maximum 

values, predicting runaway excitability and 2) it did not provide for a synaptic 

basis for weakening connections when presynaptic input was poorly co-

ordinated with post synaptic firing. Several attempts to overcome these key 

defect of the Hebbian model of the synapse followed, notably Gunther Stentʼs 

suggestion (Stent, 1973) that connections would weaken when a presynaptic 

neuron is active at the same time as the post synaptic neuron is inactive (a 

precursor to the Spike Timing Dependent Plasticity model) and Nas and 

Cooperʼs (Nass and Cooper, 1975) suggestion that the modification of synaptic 

strength would end when the response of the postsynaptic cell reached a 

maximum value. This can be visualized as a sigmoid function of the Hebbian 
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equation (y=σ (w.x)). However, the next major theoretical advance came in the 

shape of the BCM theory. 

 

The BCM model. 

 

The BCM model built on an earlier theory by Cooper et al. (Cooper et al., 1979), 

the CLO theory, which suggested the concept of a modification threshold for 

each synapse. If the postsynaptic cell response was greater than the 

modification threshold synaptic strength increased; if the postsynaptic cell 

response was lower than the modification threshold synaptic strength 

decreased. The major conceptual flaw with the CLO theory was the level at 

which the modification threshold needed to be set. Set too high, most patterns 

of input would produce decreased activity driving the cell response to zero. Set 

too low, most patterns of input would produce increased cell activity and the cell 

would lose specificity. 

To circumvent this artificiality Bienenstock, Cooper and Munro (BCM) proposed 

in 1982 that the value of the modification threshold should vary as a nonlinear 

function of the average output of the postsynaptic neuron over a fixed time 

(Bienenstock et al., 1982). The equation can be visualized as: 

w(t)= ɸ(y,θm)x 

Where w(t) is the change in synaptic strength and x  represents pre synaptic 

activity. ɸ is a function of the postsynaptic output (y) and θm, the modification 

threshold, which is itself a function of the history of activity of the cell.  
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The BCM theory inspired the search for experimental evidence of Long Term 

Depression (LTD), particularly by researchers looking to explain the effects of 

monocular deprivation in the visual cortex. Finally, in 1991 Mark Bear et al. 

showed that prolonged stimulation at low frequency (0.5-3 Hz) and low intensity 

(below that required to produce population spikes) produced a decrease in 

synaptic efficacy (Clothiaux et al., 1991). 

  

The three key postulates of the BCM theory now have experimental backing. 

They are: 

 

I. The change in synaptic weights, w(t), is proportional to the presynaptic 

activity. This postulates synapse specificity for LTP and LTD, shown by 

Dudek and Bear (Dudek and Bear, 1992). 

 

II. w(t) is proportional to a function ɸ of the postsynaptic activity y. For low 

values of y, w(t) decreases (<0) and for large values of y w(t) increases 

(>0). In other words, the level of postsynaptic response relative to the 

modification threshold determines the polarity of modification. The 

modification threshold θm denotes the crossing over point between w(t)<0 

and w(t)>0.  Experimental evidence for postulate 2 has come from both 

hippocampal and cortical studies and from several independent groups 

(Dudek and Bear, 1992) (Brocher et al., 1992) (Mulkey and Malenka, 1992) 

(Kirkwood and Bear, 1994) (Mayford et al., 1995)). 
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III. The modification threshold θm is an increasing function of the history of 

postsynaptic activity. This was shown initially by Yang and Faber (Xian-Da 

Yang and Faber, 1990), that the recent history of synaptic activation 

determined the magnitude of synaptic modification. A more direct 

demonstration of the sliding threshold was provided in the elegant 

experiments of Kirkwood et al. (Kirkwood et al., 1996). By studying LTP and 

LTD in layer III of visual cortex slice preparations from dark reared and 

control rats, they demonstrated that θm was lower in light deprived rats 

compared to control rats in the visual cortex but not in the hippocampus 

(control site). 

 

The sliding threshold also gives an elegant explanation for homeostatic 

plasticity and introduced the concept of the ease of inducing plastic change (the 

plasticity of plasticity or metaplasticity (Abraham and Bear, 1996)).  

 

1.1.2  Studying LTP/LTD. 

 

The first established evidence for the molecular basis of how a nervous system 

can display neuroplasticity and adapt its motor behavior was found in the 

invertebrate sea-slug, Aplysia californica, by Eric Kandel and his group in 1969 

(Kandel et al., 1969) (Castellucci et al., 1970) (Kupfermann et al., 1970; Pinsker 

et al., 1973) and subsequently with the characterization of long-term 

potentiation (LTP) in the mammalian hippocampus 1973 by Bliss and Lømo, 
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providing a molecular mechanism for neuroplasticity that obeys Hebbian 

principles (Bliss and Lomo, 1973). 

A long-lasting increase in synaptic efficacy long-term synaptic potentiation (LTP) 

can be produced in slices using either: 

1) High-frequency stimulation (HFS) of presynaptic afferents (Bliss and 

Lomo, 1973). 

2) By pairing presynaptic stimulation with postsynaptic depolarization 

(Markram et al., 1997).  

A long-lasting decrease in the strength of synaptic transmission, long-term 

synaptic depression (LTD), is produced by low- frequency stimulation (LFS) of 

presynaptic afferents. The typical protocol for inducing LTD involves prolonged 

repetitive synaptic stimulation at 0.5–5 Hz. A robust change usually requires 

many stimuli (e.g., 900) (Dudek and Bear, 1992). 

 

Prior to reviewing the putative molecular mediators of memory, it is important to 

consider certain lacunae of our current understanding of LTP/LTD.  

1) The terms Long, Potentiation and Depression are rather non-committal - and 

have remained so for good reasons; several different flavors of LTP with distinct 

properties have been identified, and it increasingly accepted that LTP is not a 

unitary phenomena but a process that may vary in the details from one cell type 

to the next, one region of the brain to the next and with development. Even at a 

single synapse, LTP produced by different patterns of stimulation may not be 

the same (Kang et al., 1997). 
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2) The cellular locus of LTP/LTD is still under debate. Although this might seem 

like the first question that needed to be answered, there is a glut of evidence for 

each of the PreSynaptic, PostSynaptic and Both camps.  

3) It has been difficult to separate the mediators necessary for these processes 

from the modulators that influence it. 

4) LTP and LTP are experimental phenomena- experiential modification of 

synapses to encode memory are very likely to be mechanistically similar but not 

identical to these experimental phenomena.  

Two mechanistically distinct forms of LTP have been reported: 

-NMDAR dependent LTP: NMDAR- dependent form of LTP requires synaptic 

activation of NMDARs during postsynaptic depolarization, with influx of Ca2+ 

through the NMDAR channel and a rise in Ca2+ activating calcium/calmodulin-

dependent protein kinase II (CaMKII) within the dendritic spine being the initial 

step. The subsequent intra-cellular cascade bridging LTP induction and 

expression is complex, and may have several distinct pathways. NMDAR 

dependent LTP expression however mostly requires increasing the number of 

AMPARs in the plasma membrane at synapses via activity-dependent changes 

in AMPAR trafficking (Bredt and Nicoll, 2003) (Malinow and Malenka, 2002) 

(Song and Huganir, 2002) and modification of the biophysical properties of 

AMPARs themselves via their direct phosphorylation (Benke et al., 1998) (Lee 

et al., 2003) (Malenka and Nicoll, 1999).  

-Mossy Fiber LTP: This mechanistically distinct form of LTP coexists in the 

hippocampus at the synapses between the axons of dentate gyrus granule cells 

(i.e. mossy fibers) and the proximal apical dendrites of CA3 pyramidal cells 

(Nicoll and Malenka, 1995). Mechanistically similar forms of LTP have also been 
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observed at corticothalamic synapses (Castro-Alamancos and Calcagnotto, 

1999) and cerebellar parallel fiber synapses (Salin et al., 1996). Mossy fiber 

LTP appears to involve a PKA-dependent, long-lasting modulation of the 

presynaptic release machinery leading to an increased probability of transmitter 

release. Like NMDAR-dependent LTP, it is likely mossy fiber LTP plays multiple 

functional roles and is known to be dendritic protein synthesis dependent. 

Unlike NMDAR-dependent LTP, the triggering of mossy fiber LTP does not 

require activation of NMDARs (Harris and Cotman, 1986). 

 

Three mechanistically distinct forms of long-term depression (LTD) have been 

reported.  

 ⁃NMDAR dependent LTD requires protein phosphatase activity. NMDA receptor 

subtypes (the NR2B subtype) and the rate and size of the calcium influx may 

mediate the induction of LTD over NMDAR dependent LTP, with subsequent 

dephosphorylation of postsynaptic PKC and PKA substrates serving as part of 

the postsynaptic cascade. Ultimately, internalization and dephosphorylation of 

AMPAR is required for the expression of NMDAR dependent LTD. 

-mGluR dependent LTD : this form of LTD is best characterized in the cerebellar 

parallel fiber to Purkinje cell synapse, when co-stimulated with climbing fiber 

input. The evidence points to postsynaptic Group 1 mGluR activation leading to 

endocytosis of AMPARS through PKC mediated phosphorylation (Linden et al, 

1991) (Wang and Linden, 2000). 

eCB dependent LTD - this form of LTD is expressed widely- in the cortex 

(Sjostrom et al.,2003), striatum (Gerdeman et al., 2002) and hippocampus 

(Chevaleyre and Castillo, 2003). eCB dependent LTD requires postsynaptic 
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release of endo-cannabinoids acting on presynaptic CB1 receptors. The 

conditions for postsynaptic release of endo-cannabinoids appear to be different 

in the striatum (requiring post synaptic mGluR activation (Sung et al., 2001) ) 

and in the cortex (requiring presynaptic NMDAR activation (Sjostrom et al., 

2003)).  

 

1.1.3  Human cortical plasticity 

 

The study of neuroplasticity in awake human cortex has a shorter history, 

starting after the development of transcranial magnetic stimulation (Barker et al., 

1985). Principles and protocols from the study of LTP and LTD in slices have 

informed and inspired the development of several TMS paradigms that enable 

us to probe neuroplasticity in the awake human cortex and this is discussed in 

the following chapter. 
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1.2  Transcranial Magnetic Stimulation 
 

 

1.2.1  Principles 

 

TMS (Barker et al., 1985) utilizes the principle of electromagnetic induction; by 

passing a rapidly varying electrical current through a coil of wound copper wire 

placed against the scalp, a rapidly varying magnetic field is produced, which 

can painlessly cross the scalp to induce a focal electrical current on the surface 

of the brain. Over the motor cortex, this focal electrical field elicits a Motor 

Evoked Potential (MEP) by depolarizing pyramidal neurons, and this MEP can 

be recorded using a EMG montage over a peripheral muscle. 

 

Transcranial magnetic stimulation, when delivered as a single stimulus, 

produces a synchronous discharge of cortical interneurons and cortical 

pyramidal neurons. The result of this can only be easily detected if the stimulus 

is located in the primary motor cortex (M1) or the primary visual cortex (V1). 

When placed over the primary motor cortex, the discharges travel down the 

corticospinal tract and epidural electrodes in the cervical cord can detect several 

waves termed I-waves. 

 

 An interesting property of I-waves is that they occur at a fairly regular ~1.5-ms 

interval apart and it is unclear if the different I-waves (I1, I2, I3, and so forth) 

represent distinct populations of excitatory interneurons or the repetitive 

discharges of the same population of excitatory interneurons. A valuable 
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property of all these interneurons is that they have different thresholds of 

activation: inhibitory interneurons have the lowest activation threshold, followed 

by excitatory interneurons, then the cortical pyramidal neurons (Ilic et al., 2002). 

The activation threshold also changes depending on the activity of the 

underlying cortex; for example, excitatory interneurons have a lower threshold 

when the primary motor cortex is actively performing a task. This allows for 

experimental parameters to be manipulated so that a TMS pulse depolarizes 

only subsets of cortical neurons. The activation threshold (resting motor 

threshold, RMT) is increased by membrane-stabilizing drugs like lamotrigine but 

unaffected by GABA-ergic drugs (Ziemann et al., 1996a; Ziemann et al., 1996b), 

suggesting it represents resting membrane excitability of the pyramidal neurons. 

 

Apart from the ubiquitous motor-evoked potential (MEP) measurement, paired-

pulse TMS paradigms provide another avenue of measuring cortical physiology. 

In these paradigms, a conditioning stimulus modulates the amplitude of the 

MEP of a subsequent stimulus. By varying the interstimulus interval, the 

intensity of the conditioning stimulus, and even the type of the stimulus, various 

intracortical and corticocortical circuits can be studied. The most established 

measure is the short-interval intracortical inhibition (SICI) occurring when a 

subthreshold conditioning stimulus is delivered 1 to 5 ms before the test 

stimulus, resulting in inhibition of the MEP amplitude. SICI is mediated by GABA 

through GABAA receptors ((Ziemann et al., 1996b);(Di Lazzaro et al., 2006)) 

and appears to regulate plasticity (Teo et al., 2009). Other measures include 

intracortical facilitation (ICF), long-interval intracortical inhibition (LICI), short-

interval afferent inhibition (SAI), long-interval afferent inhibition (LAI), and 
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interhemispheric inhibition (IHI) and appear to be modulated by different 

neurotransmitter systems and may perform different cortical functions. 

 

1.2.2  Practice dependent plasticity 

 

Normal human behavior is also associated with changes that mirror 

modifications produced by artificially induced plasticity: repeated motor practice 

increases MEP amplitude (Lotze et al., 2003) and alters motor representation in 

the primary motor cortex (Classen et al., 1998). This mirroring allows the study 

of the link between plasticity and motor learning with parallel experiments 

undertaking behavioral measurements and/ or physiological measurements 

(e.g., TMS measurements) before and after an intervention, which may be 

physiologically induced (e.g., practice). 

 

1.2.3  Artificially Induced plasticity 

 

When TMS is delivered repetitively (i.e., repetitive TMS or rTMS), an effect is 

produced on that outlasts the period of stimulation, and this can be harnessed 

to artificially induce cortical changes that are in many ways similar to those after 

motor practice. 

  

The standard protocol for inducing depotentiation in animals uses long trains of 

low frequency stimulation (1 to 2 Hz for several minutes) whereas LTP is often 

induced using brief and repeated trains of high frequency stimulation (>50 Hz). 
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Such synaptic phenomena are probably reproducible in humans, because it is 

possible to deliver repetitive TMS (rTMS) of various frequencies. When TMS is 

delivered repetitively (i.e., rTMS), an effect is produced that outlasts the period 

of stimulation.  

 

1.2.4  Paradigms for Artificially Induced plasticity 

 

High frequency stimulation produces an increase in MEP amplitude, but low 

frequency stimulation produces a decrease in MEP amplitude, reflecting long-

lasting changes in the excitability of the primary motor cortex (Pascual-Leone et 

al., 1998). rTMS protocols using patterned stimulation have been developed 

more recently: theta burst stimulation (continuous TBS, intermittent TBS) 

(Huang et al., 2005), I-wave interval rTMS (iTMS) (Cash et al., 2009), and 

quadripulse rTMS (QPS) (Hamada and Ugawa, 2010). These patterned forms 

of stimulation use principles from tissue models and Hebbian models of 

plasticity so that much lower intensities or shorter periods of stimulation are 

necessary to produce the change in MEP amplitude.  

 

Theta Burst Stimulation (TBS) 

In 1988, Hess and Donoghue showed that electrical stimulation patterns based 

on the pattern of theta burst firing seen in the hippocampus of rats during 

exploratory behavior, were very effective in producing LTP. This pattern of high 

frequency bursts of neuronal firing occurring at 4-6Hz (the theta frequency in 
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EEG terminology), is thought to represent the physiological pattern of synaptic 

plasticity.  

Designed to mimic this physiological activity in hippocampal cells, Human Theta 

Burst Stimulation (Huang et al., 2005) consists of repeating bursts of stimuli. 

Each burst consists of 3 stimuli (at low intensity) repeating at 50 Hz; the bursts 

are repeated at 5 Hz. The nature of the after-effects differs according to the 

stimulation pattern. A continuous train of 100 bursts (300 stimuli), named cTBS, 

when given over the primary motor cortex (M1) produces a NMDAR dependent 

LTD-like effect, suppressing corticospinal excitability for several minutes 

afterward.  An intermittent pattern (iTBS), delivering a 2 second train repeated 

every 10 seconds for 20 repetitions (600 stimuli), produces a NMDAR 

dependent LTP-like effect, enhancing corticospinal excitability for several 

minutes afterward (Huang et al., 2007). Continuous theta-burst produces this 

decrease in the excitability of cortical circuits at the level of the cortex, and may 

act preferentially on interneurons producing the I1 wave (Di Lazzaro et al., 

2005). 

However, if subjects actively contracted during TBS, then effects of TBS were 

abolished (Huang et al., 2008). Contraction immediately after TBS enhanced 

the facilitatory effect of iTBS and reversed the inhibitory effect of cTBS into 

facilitation (Huang et al., 2008). Gentner et al. investigated these phenomena 

further, and showed that if the stimulation intensity was calculated using RMT 

rather than AMT, and thereby omitting the period of contraction (for experienced 

investigators 1-1.5 minutes) required for the assessment of AMT, the effect of 

cTBS on MEP amplitude was excitatory (Gentner et al., 2008b). The authors 

concluded that the inhibitory effects of cTBS shown by Huang et al. was a 
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metaplastic phenomenon, In many ways, these findings actually show that TBS 

induced changes in the brain are mediated at the synapse, by similar rules to 

that observed in experimental slices. 

 

Paired- Associative Stimulation (PAS)  

The pairing presynaptic stimulation with postsynaptic depolarization (Markram 

et al., 1997) to produce LTP in slices has inspired another type of artificially 

induced plasticity paradigm- paired- associative stimulation (PAS). PAS 

repeatedly pairs an afferent somatosensory input (an electrical stimulus in the 

periphery) with a TMS stimulus over the primary motor cortex at a specific time 

interval (Stefan et al., 2000). This induction protocol demonstrates Hebbian like 

spike-timing specificity with increases in MEP amplitude when the afferent pulse 

arrives in the primary motor cortex at the moment that the TMS pulse is 

delivered(Stefan et al., 2000). The peripheral stimulus is given approximately at 

the N20 latency of the somatosensory evoked potential (e.g. ISI of 

approximately 25 ms) to achieve this. MEP amplitude decreases when the 

afferent pulse arrives in the primary motor cortex before the TMS pulse is 

delivered (when shorter interstimulus intervals (e.g. ISI of approximately 10 ms) 

were used) (Wolters et al., 2003). Plasticity induced by paired stimulation 

evolved rapidly (within 30 min), was persistent (duration up to 60 min reported) 

and was topographically specific. N-methyl-d-aspartate (NMDA) receptor 

antagonist has been shown to block PAS-induced plastic changes (Stefan et al., 

2002). This appears to be analogous to tissue models of spike-timing 

dependent plasticity.  
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However, the PAS protocol defined by Stefan et al., applied 90 paired stimuli, at 

0.05 Hz over 30 minutes. This duration of significantly reduced the convenience 

of this protocol. Quartarone et al. (Quartarone et al., 2006a) showed that sub-

motor threshold 5 Hz rENS of the right median nerve synchronized with sub-

motor threshold 5 Hz rTMS of the left M1 at a constant interval for 2 min (ʻrapid 

rate PASʼ) could produce similar results. Most experimental protocols using 

PAS apply a rate of 0.25 Hz, which producing effects indistinguishable from the 

original paradigm. Motor learning, which alone results in an increase in MEP 

amplitude, prevents the subsequent induction of associative LTP- like plasticity 

with PAS (ISI N20) but enhanced LTD-like plasticity PAS (ISI<N20) at this rate 

(Ziemann et al., 2004). This implies that, like similar experiments in cortical 

slices, motor practice saturates synaptic connections and occludes subsequent 

effects of excitatory PAS at the synapse. The effects of PAS are reported to be 

affected by age of subject (Tecchio et al., 2008), attention to stimulation (Stefan 

et al., 2004) and sedentary lifestyle (Cirillo et al., 2009). Also, while PAS 

certainly involves long-term potentiation (LTP)-like mechanism in cortical 

synapses, changes in spinal excitability after PAS have been reported (Meunier 

et al., 2007), suggestive of parallel modifications in both cortical and spinal 

excitability. 

 

Transcranial direct current stimulation (tDCS) 

Transcranial direct current stimulation (tDCS) presents a different method to 

other rTMS paradigms (Nitsche and Paulus, 2000); TDCS involves continuous 

administration of weak currents of 1 mA through a pair of surface electrodes 

attached to the scalp. TDCS polarity refers to the electrode placed over the area 
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targeted for stimulation. For anodal TDCS, the anode was placed over the target 

area, whereas the cathode was over the target area during cathodal TDCS. The 

weak depolarizing current of anodal tDCS may shift the resting membrane 

potential of postsynaptic neurons such that postsynaptic neurons require less 

synaptic inputs to produce an action potential, thereby biasing the induction of 

LTP. The converse applies with the hyperpolarizing current of cathodal tDCS. 

Mechanistically this appears to be different from other artificial induction 

protocols. The weak currents simply bias the firing rates of neurons rather than 

directly inducing action potentials. However, the net result on cortical excitability 

appears superficially similar, with anodal tDCS produces enhancement of MEPs 

and cathodal tDCS producing inhibition of MEPs. Anodal stimulation of the 

primary motor cortex resulted in improved performance of a serial reaction time 

task (Nitsche et al., 2003b). Like other protocols, the after-effects may be 

NMDA receptor dependent (Nitsche et al., 2003a). However, the extensive 

spatial and temporal effects of tDCS need to be taken into account when tDCS 

is used to modify brain function (Lang et al., 2005).  

 

In an elegant experiment, Siebner et al. interleaved repetitive transcranial 

magnetic stimulation (rTMS) with transcranial direct current stimulation (TDCS) 

to probe homeostatic plasticity in the motor cortex (Siebner et al., 2004). 

Excitatory preconditioning with anodal TDCS caused a subsequent period of 1 

Hz rTMS (which on its own would produce inhibition of MEP amplitude) to 

reduce corticospinal excitability to below baseline levels. Conversely, inhibitory 

preconditioning with cathodal TDCS resulted in 1 Hz rTMS increasing 

corticospinal excitability. 
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1.2.5  Physiology and pharmacology of rTMS. 

  

Changes in MEP amplitude may reflect either change in membrane excitability 

of either pyramidal or excitatory interneurons or change in the synaptic efficacy 

between neurons. 

Any change in MEP is likely to reflect a process upstream from the pyramidal 

neurons, because the stimulation intensity of newer rTMS induction protocols is 

below the activation threshold of the cortical pyramidal neuron and rTMS pulses 

have only sufficient intensity to directly depolarize inhibitory interneurons and 

excitatory interneurons. This is supported by epidural recordings performed by 

Di Lazzaro and colleagues inasmuch as artificial induction with rTMS, I-wave 

rTMS, theta burst rTMS, tDCS, and PAS produce changes in the I-waves  (Di 

Lazzaro et al., 2002) (Di Lazzaro et al., 2005) (Di Lazzaro et al., 2006b) (Di 

Lazzaro et al., 2006a) (Di Lazzaro et al., 2007) (Di Lazzaro et al., 2008) (Di 

Lazzaro et al., 2009) with some preferential effect on later I-waves (although 

continuous theta burst rTMS preferentially affected the early I-waves). 

 

Some artificially induced plasticity paradigms also affect inhibitory interneurons 

that synapse onto I-wave interneurons (Peinemann et al., 2000), and the effects 

of some plasticity paradigms appear to be specific to certain populations of 

inhibitory interneurons (McAllister et al., 2009) (Russmann et al., 2009). The 

mechanism of this enhanced inhibitory activity remains unclear: it may be 

related to increased membrane excitability of these inhibitory interneurons or 
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changes in the GABA-ergic synaptic efficacy. Inhibitory interneurons also play a 

role in regulating the expression of artificially induced plasticity; enhancing the 

activity of GABA-ergic interneurons involved in SICI limit expression of artificially 

induced plasticity (Teo et al., 2009) ,  but decreasing the activity of GABA-ergic 

interneurons by peripheral de- afferentiation enhances the expression of 

artificially induced plasticity (Ziemann et al., 1998b). 

 

 

Table 1-1: Comparison of Artificially Induced Plasticity with LTP/LTD 

 

 

 

The most convincing evidence that rTMS and all other artificial protocols involve 

long-term synaptic plasticity is that certain drugs block the rTMS effects. This 

Similarities with LTP/ LTD Reference 

1) Blocking NMDA receptors blocks changes in MEP 
amplitude (NMDA-dependent)  

(Liebetanz and others  2002a; 
Stefan and others  2002a; Ziemann 
and others  2001) 

1) Repetitive transcranial magnetic stimulation increases or 
decreases MEP amplitude depending on frequency of 
stimulation (frequency-dependent)  

(Pascual-Leone and others 1994; 
Chen and others  1997) 
 

1) Precise timing of stimuli can produce changes in MEP 
amplitude in paired-associative stimulation (spike-timing 
dependent)  

(Wolters and others  2003) 
 

1) The changes in MEP amplitude have a degree of 
somatotopy in paired-associative stimulation (Hebbian 
plasticity)  

(Stefan and others  2000) 

1) Consecutive sessions of PAS produces an effect similar 
to the BCM rule and metaplasticity  

(Muller and others  2007) 

1) The effect of BDNF polymorphisms in human plasticity  (Cheeran and others  2008) 

Differences with LTP/ LTD 

1) The changes in MEP in some induction protocols do not always occur immediately after 
induction 

1) High degree of inter-subject and intra-subject variability 
1) Changes in the excitability of corticospinal neurons, rather than just the synaptic efficacy of 

excitatory interneurons synapsing onto corticospinal neurons, can also produce changes in 
MEP amplitude. 
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implies that rTMS artificially induced plasticity is dependent on specific 

neurotransmitters. For instance, the glutamatergic NMDA antagonist 

dextromethorphan (Ziemann et al., 1998a) and GABA-receptor agonists are 

both able to alter cortical plasticity induced by high frequency rTMS (Ziemann et 

al., 1996b). In addition, NMDA partial agonist D-cycloserine modulates the 

effects of theta burst rTMS and tDCS (Nitsche et al., 2004) (Teo et al., 2007). 

Thus although changes in membrane excitability may be a factor in artificially 

induced plasticity, the role of NMDA receptors suggests a localization of the 

effect to the synapse. Other characteristics point at LTP/LTD as being the 

mechanism by which artificially induced plasticity occurs (Table 1). The caveats 

should also be noted, however, because there is no direct way of confirming 

that the molecular biology so well described in animal models of synaptic 

plasticity hold true for human models of artificially induced neuroplasticity. 
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Table 1-2: Effects of Interventional Neurostimulation Paradigms on Neurotransmitter Systems 
	
  

 

 

Acknowledgement-From (Cheeran et al., 2010), table authored by JTH Teo.
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Pharmacological modulation can be one such route, and painstaking 

pharmacological experiments have shown that artificially induced neuroplasticity 

protocols are differentially modulated by neuromodulator systems including 

dopaminergic, cholinergic, and nor-adrenergic systems just like in animal 

models of synaptic plasticity. This variance in their effect on different 

neurotransmitter systems (Table 1-2) probably reflects that the different 

induction protocols may be affecting different populations of interneurons and 

synapses, although the dependency of human neuroplasticity on the NMDA 

receptor and the dopaminergic system appears to be largely consistent across 

paradigms (Table 1-3) (Cheeran et al., 2010). 

 

Table 1-3: Summary of Effects of Interventional Neurostimulation Paradigms on Neurotransmitter 
Systems from Pharmacological Studies 
	
  

 

 

Another route for understanding the molecular pathways is likely to come from 

magnetic resonance spectroscopy (MRS), a noninvasive imaging technique that 

allows accurate quantification of a number of neurochemicals. The results from 

MRS studies give a quantification of the total amount of that neurochemical 

within the selected volume of interest and are usually presented as a ratio of the 

amplitude of the peak of interest to the amplitude of a reference peak that is not 

expected to change during stimulation. Presenting the results as a ratio 
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prevents false positive results because of changes in cell volume within the 

voxel, for example because of edema. 

 

A study using MRS to assess the physiological basis of TBS showed that 

inhibitory (continuous) TBS over the motor cortex leads to a significant increase 

in [GABA] within the stimulated area (Stagg et al., 2009b). It is not possible to 

definitively identify in which GABA pool this increase occurs, but previous 

studies have linked similar changes in [GABA] to changes in the rate of 

production of GABA within the presynaptic vesicles by GAD, the only synthetic 

enzyme for GABA in the human cortex (Floyer-Lea et al., 2006). GAD is the 

rate-limiting step for GABA metabolism within the presynaptic vesicles and its 

activity is dependent on neuronal activity (Patel et al., 2006). 

 

That a change in glutamate was not seen after cTBS in conjunction with this 

GABA increase most likely reflects the differing sensitivities of MRS and TMS as 

techniques. MRS is not sensitive to changes in receptor density or strength, but 

only in neurotransmitter concentration. That a change in [GABA] was identified 

presumably reflects the fact that LTD-like plasticity within the GABA-ergic 

interneurons is primarily dependent on presynaptic neuronal changes (Tsumoto, 

1990). 

 

However, another inhibitory transcranial stimulation paradigm, cathodal tDCS, 

which exerts very similar effects on cortical excitability as cTBS, has very 

different effects on cortical neurotransmitters (Stagg et al., 2009a). This 
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suggests that different stimulation paradigms differentially stimulate different 

interneuronal pools, with very similar neurophysiological outcomes. 

 

Although there are apparent contradictions in the results of MRS and TMS 

studies, these can be explained by the different sensitivities of the two 

techniques. As discussed above, MRS allows accurate quantification of the 

concentration of neurotransmitters primarily within presynaptic neurons, but 

gives no information concerning postsynaptic receptors. Conversely, TMS is 

sensitive to phasic changes at the synaptic receptors. 
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1.3 Stimulation genomics 
 

 

The corticospinal motor system controls distal limb movements requiring a high 

degree of skill and flexibility. Genetic factors can impact on the structure and 

function of the corticospinal system in three different ways: 

(i) Development: The influence of genes on the structure and function of 

corticospinal projections to the hand is strongest during development. Recent 

research has unraveled a machinery of regulatory genes that orchestrate the 

differentiation and connectivity of corticomotor projections (Dasen et al., 2005) 

(Kramer et al., 2006) (Dalla Torre di Sanguinetto et al., 2008). The regional 

expression of the relevant gene products critically depends on movement-

related activity within the maturing corticospinal circuits. This explains why 

motor experience and genetic factors critically interact during the maturation of 

the corticospinal system and the differentiation of motor representations 

subserving skilled limb movements (Martin et al., 2007). 

(ii) Neurodegeneration and aging: mutations in specific genes may trigger a 

progressive neurodegeneration of upper motor neurons in rare cases of familial 

amyotrophic lateral sclerosis (ALS) or in patients with hereditary spastic 

paraplegia (HSP). Genes that code for neurotrophic factors may also influence 

the potential of motor neurons to survive during normal aging (Sendtner et al., 

1994). 

(iii) Learning and skill acquisition: common variations in our genetic makeup 

may also influence function and structure of the corticospinal system beyond 
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maturation and aging. Even after its maturation, the corticospinal system has a 

substantial potential to undergo functional reorganization (Nudo, 2006) (Brown 

et al., 2007). This plasticity enables the acquisition and refinement of manual 

skills and mediates functional recovery in response to a focal or diffuse lesion. 

Neuronal substrates of reorganization include lasting changes in the efficacy of 

synaptic neurotransmission and formation of new synapses in cortical or spinal 

motor circuits, leading to a reconfiguration of cortical motor representations 

(Nudo et al., 1996). 

 

1.3.1  Genes and plasticity 

 

Mechanisms of synaptic plasticity have been studied extensively in the 

hippocampus, and have provided a good deal of insight into the complexity of 

the processes involved in long term potentiation and depression (LTP/LTD) of 

synaptic transmission. These involve changes in pre- synaptic release of 

transmitter, expression of postsynaptic receptors and even synaptic growth that 

occur over a variety of different time ranges from seconds to months or years. 

Sanes and Lichtman (Sanes and Lichtman, 1999) pointed out that 121 

molecules had been implicated in LTP and LTD. Their general areas of action 

are summarized in Table 1. Clearly, there is ample scope in principle for natural 

variations in the genetics of these processes to influence not only learning in 

health but also in recovery from damage. A number of novel approaches have 

produced results that are consistent with this idea and allow us for the first time 
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to open a window into the role of functional variations in genes coding for the 

molecular building blocks of neuroplasticity on motor function in humans. 

 

 

 

1.3.2  Application TMS techniques to study the effects 

of genetic mutations. 

 

Patients with specific genetic mutations and different diseases may present with 

abnormal patterns of cortical excitability when tested with artificially induced 

plasticity protocols. 

Fedi and others (Fedi et al., 2008) have utilized paired-pulse paradigms to study 

the effects of a missense mutation in the GABAA receptor, linked to inherited 

human generalized epilepsy, on intracortical excitability. Subjects affected by 

the GABARG2(R43Q) mutation showed reduced short-interval intracortical 

Table 1-4: Molecular mediators of motor plasticity 
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inhibition (SICI) compared to controls, but there was no effect of the mutation on 

RMT. These findings are as would be predicted from the neurochemical basis of 

these probes, SICI being GABAA mediated whereas RMT is mediated largely 

by voltage- gated Na+ and Ca2+ channels. The study is able to provide a 

physiological basis for the increased epileptogenic potential in carriers of this 

mutation. 

Similarly, Turner and others (Turner et al., 2005) utilized the ability of paired-

pulse techniques to assess GABAergic function in patients with the D90A SOD1 

mutation. Patients with this genetic mutation develop motor neuron disease 

(MND), but have a prolonged survival compared to patients with sporadic MND. 

Patients with sporadic MND have an increased cortical excitability compared to 

patients with the D90A SOD1 mutation. It is unclear if the increased cortical 

excitability may contribute to the excitotoxicity or the reduced survival in 

sporadic MND. 

 

1.3.3  Application of TMS techniques to study the 

effects of genetic mutations on neuroplasticity. 

	
  

A useful disease model to study neuroplasticity is dystonia; dystonia is a 

neurological movement disorder characterized by sustained involuntary muscle 

contraction causing twisting and repetitive movements or abnormal postures 

(Marsden and Sheehy, 1990). Neuroplasticity may be an underlying mechanism 

for this disorder inasmuch as adult-onset dystonias are often associated with 

excessive practice of particular movements in humans (task-specific dystonias) 
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and that dystonia can occur or worsen following trauma to the affected body 

part (e.g., (Jankovic, 2001)); this leads to the emerging consensus that 

excessive ability to undergo plastic change could drive the development of 

dystonia (Quartarone et al., 2006b). 

 

DYT1 dystonia, caused by a mutation (a single GAG deletion) in the DYT1 gene 

on chromosome 9q34, is the commonest cause of young-onset primary 

generalized dystonia. Only 30% of carriers of the DYT1 mutation develop 

dystonia; 70% never develop symptoms. Edwards and colleagues 

demonstrated that the responsiveness to the artificially induced neuroplasticity 

seems to be associated with whether or not patients with the DYT1 gene 

mutation develop clinical symptoms (Edwards et al., 2006). 

DYT1 gene carriers who have symptoms have a significantly longer response to 

artificially induced plasticity compared to normal subjects with MEPs still 

maximally suppressed at 35 min after conditioning. However, DYT1 gene 

carriers who have not developed the disease showed no significant change in 

MEP size at all at any time point after conditioning, significantly different in this 

respect from both normal and dystonic subjects. 

 

This study showed two key points: 1) patients with DYT1 gene and who 

expressed the disease were excessively responsive to artificially induced 

plasticity; and 2) asymptomatic DYT1 gene carriers appeared resistant to plastic 

changes. The authors of this study speculated that this resistance protects them 

against the development of clinical symptoms. Thus, susceptibility to artificially 

induced plasticity reflects an “endophenotype” of dystonia. The molecular 
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mechanisms of this resistance is unknown, although in light of the emerging 

knowledge of the neurochemical consequences of cTBS, one would need to 

question whether the changes observed are part of the pathology or were in fact 

the result of adaptive compensatory changes. 

 

1.3.4  Stimulation genomics 

 

We defined the field as the study of the effects of human genetic variation on 

cortical plasticity, by employing neurophysiological outcome measures and the 

application of artificially induced plasticity paradigms. 

 

Stimulation genomics focuses on the effects of common genetic variations on 

cortical plasticity in healthy human volunteers, providing clues as to their 

potential influence on subsequent brain disease.  

 

1.3.5  Candidate gene selection 

 

This approach involves assessing the association between a particular allele (or 

set of alleles) of a gene that may be involved in the disease or outcome (i.e., a 

candidate gene) and the disease or outcome itself. Candidate gene studies are 

better suited for detecting genes underlying common and more complex 

diseases where the risk associated with any given candidate gene is relatively 

small (Risch and Merikangas, 1996). 
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This approach requires: 

 

• Plausible role for candidate gene - the candidate gene selected must have a 

predefined role in the process being investigated; i.e. the physiological or 

pathophysiological role of the candidate gene must be known and the 

candidate gene must be influenced by the selected intervention(s). 

 

• A suitable SNP - the candidate gene must have identified genetic variants, 

ideally with previously known functional role, and where the minor allele is 

common enough to be found in sufficient numbers - a rare allele may require 

impractically large cohorts. 

 

Polymorphisms affecting the dopaminergic system (in DAT, COMT and 

Dopamine Receptors) would perhaps be the obvious targets for a pilot study, as 

repetitive transcranial magnetic stimulation (rTMS) of the human prefrontal 

cortex leads to striatal dopamine release. However, our attention was drawn to 

Brain Derived Neurotrophic Factor (BDNF), stored and released (like Dopamine) 

from Large Dense Core Vesicles. Chronic rTMS (like chronic ECT) (Bocchio-

Chiavetto et al., 2006) has been reported to increase serum BDNF levels in 

patients with depression (Zanardini et al., 2006), and animal studies of chronic 

rTMS show an up-regulation of BDNF mRNA (Muller et al., 2000). 
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1.4 Brain Derived Neurotrophic Factor 
 

1.4.1  Gene 

	
  

Maisonpierre et al. localized the BDNF gene to 11p13 (Maisonpierre et al., 

1991). Translation of BDNF is governed by complex regulatory mechanisms, to 

accommodate its varied and at times contrarian roles. Transcription of BDNF 

initiates from multiple promoters in response to distinct stimulation cues, with 

evidence of epigenetic influences on transcription (hippocampal epigenetic 

modification at the brain-derived neurotrophic factor gene induced by an 

enriched environment). The human BDNF gene, extending over 70 kb, contains 

11 exons and nine functional promoters, leading to a number of transcript 

variants. Particular transcript variants may predominate in particular brain 

areas.  Human BDNF contains two more exons than rodent BDNF. Another 

variation in the regulation of BDNF in rodents compared to humans is that 

noncoding antisense RNAs are transcribed from the human BDNF gene locus 

(Pruunsild et al., 2007). These antiBDNF transcripts could have an important 

role in the regulation of BDNF expression in human. 

 

1.4.2  Molecular biology. 

 

During development, BDNF protein expression is more abundant in the nervous 

system compared to other tissues and its levels are dramatically increased in 

the brain during postnatal development (Katoh-Semba et al., 1997). In the adult 
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nervous system, BDNF displays a widespread distribution pattern, with the 

highest levels of mRNA and protein in the hippocampus, amygdala, cerebral 

cortex, and hypothalamus (Ernfors et al., 1990). 

BDNF was initially thought to be responsible for neuronal proliferation, 

differentiation, and survival (Ip et al., 1993) through its uptake at nerve terminals 

and retrograde transport to the cell body. A more diverse role for BDNF 

emerged progressively from observations showing that it is also transported 

anterograde, is released upon activity dependent neuron depolarization, and 

triggers rapid intracellular signals in central neurons (Lohof et al., 1993) (Kang 

and Schuman, 1995) (Stoop and Poo, 1996). 

 

While most neurotrophins are secreted constitutively, BDNF secretion at central 

synapses is activity dependent (Castren et al., 1992) (Lu, 2003), possibly by 

virtue of a ‘sorting motif’ in the ‘pro’ region of its precursor molecule ProBDNF. 

This ‘sorting motif’ allows binding with sortilin, a protein that packages ProBDNF 

into Large Dense Core Vesicles for activity dependent secretion. In response to 

neuronal depolarisation, BDNF is released, predominantly as ProBDNF into the 

synaptic cleft. Cleavage of the ProBDNF into BDNF relies on extracellular 

proteases like Tissue Plasminogen Activator/ Plasmin and metalloproteases. 

The co-release of proteases and proBDNF is critical to the effects on synaptic 

connectivity. The emerging molecular biology of BDNF suggests that the intra-

synaptic ratio of BDNF to its secreted precursor form ProBDNF may influence 

the relative ease of producing increases or decreases in synaptic efficacy (Lu et 

al., 2005). Transcript variants can cause variations in the precursor to ProBDNF 
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(PreProBDNF), but it is not known if this impacts the functions of the ProBDNF 

‘sorting motif’. 

 

Mature BDNF binds to Trk (neurotrophin) receptors	
  (Lohof et al., 1993), single 

transmembrane catalytic receptors with intracellular tyrosine kinase activity, on 

the postsynaptic membrane. There are four members of the Trk family; TrkA, 

TrkB and TrkC and a related p75NTR receptor. Each family member binds 

different neurotrophins with varying affinities. TrkB has highest affinity for BDNF 

and is inherently involved in the actions of BDNF neuronal plasticity, longterm 

potentiation and apoptosis of CNS neurons. p75NTR binds neurotrophin 

precursors like ProBDNF with high affinity and retains low affinity to the mature 

cleaved forms. ProBDNF binding to p75NTR may promote LTD	
  (Woo et al., 

2005) or apoptosis. Trk receptors are coupled to the Ras, Cdc42/ Rac/ RhoG, 

MAPK, PI 3-K and PLC gamma signalling pathways. p75NTR lacks tyrosine 

kinase activity and signals via NF-kappaB activation. 

 

1.4.3  Roles in synaptic plasticity. 

 

During development:  

Maturation of the visual cortex is influenced by visual experience during an early 

postnatal period. Huang et al. (Huang et al., 1999) examined the maturation and 

plasticity of the visual cortex in transgenic mice in which the postnatal rise of 

BDNF was accelerated. In these mice, the maturation of GABAergic innervation 
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and inhibition was accelerated and age-dependent decline of cortical long-term 

potentiation induced by white matter stimulation occurred earlier. The transgenic 

mice also showed an earlier termination of the critical period for ocular 

dominance plasticity. The authors proposed that BDNF promotes the maturation 

of cortical inhibition during early postnatal life, thereby regulating the critical 

period for visual cortical plasticity. Guillin et al. (Guillin et al., 2001) used lesions 

and gene-targeted mice lacking BDNF to show that BDNF from dopamine 

neurons is responsible for inducing normal expression of the dopamine D3 

receptor in nucleus accumbens both during development and in adulthood. 

 

Modulating synaptic signaling: 

Brain-derived neurotrophic factor (BDNF) is known to play a role in long-term 

potentiation (LTP), in the hippocampus (Patterson et al., 1992) (Kang and 

Schuman, 1995). Also, LTP in the hippocampus is reported to be impaired in 

BDNF knockout mice (Korte et al., 1995). Akaneya et al. (Akaneya et al., 1997) 

studied the effects of BDNF application on LTP induced by tetanic burst 

stimulation of layer IV in visual cortical slices prepared from young rats and 

confirmed potentiated field potentials and EPSCs that outlasted the BDNF 

application. Moreover, the actions of BDNF were blocked by preincubation of 

slices with TrkB-IgG fusion protein, a BDNF scavenger, or co-application of 

K252a, an inhibitor for receptor tyrosine kinases. TrkB-IgG or K252a itself 

completely blocked LTP, suggesting that endogenous BDNF or another TrkB 

ligand plays a role in LTP in the developing visual cortex. 
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BDNF appears to have a crucial role in the homeostatic regulation of cortical 

excitability, by selectively modifying excitation and inhibition within cortical 

networks (Desai et al., 1999) (Rutherford et al., 1998). In cell cultures of rat 

sympathetic neurons innervating cardiac myocytes, Yang et al. (Yang et al., 

2002) showed that BDNF rapidly (within 15 minutes) shifted the 

neurotransmitter release properties of the neurons from excitatory to inhibitory 

cholinergic transmission in response to neural stimulation via the presynaptic 

p75 neurotrophin receptor.  

 

1.4.4  Physiology of the BDNF Val66Met variation 

 

In humans the 5-prime ‘pro’ region of BDNF, critical for intracellular trafficking 

and activity dependent secretion, shows a single nucleotide polymorphism 

(SNP) - BDNF Val66Met (rs6265).  

	
  	
  

Egan et al. (2003) (Egan et al., 2003) examined the effects of this SNP in 

humans.  The met 66 allele was associated with poorer episodic memory, 

abnormal hippocampal activation assayed with functional magnetic resonance 

imaging (fMRI), and lower hippocampal N-acetyl aspartate, (a putative marker 

of neuronal integrity and synaptic abundance) assayed with MRI spectroscopy. 

Neurons transfected with met66-BDNF-GFP showed lower depolarization-

induced secretion, while constitutive secretion was unchanged. met 66-BDNF -

GFP did not localize to secretory granules or synapses. These results 
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demonstrated a role for BDNF and its V66M polymorphism in human memory 

and hippocampal function and suggested that V66M exerts these effects by 

impacting intracellular trafficking and activity-dependent secretion of BDNF.  

 

Several other studies have reported an association between BDNF genotype 

and episodic memory, hippocampal activation during fMRI and hippocampal 

volume (Hariri et al., 2003) (Hashimoto et al., 2008) (Pezawas et al., 2004). This 

effect was independent of age, IQ, number of voxels, hippocampal volume or 

gray matter content in the voxels of interest. 

 

1.4.5  Effects of the BDNF Val66Met SNP on practice 

dependent plasticity. 

 

In a pioneering study, Kleim et al. (Kleim et al., 2006) asked whether the val-to-

methionine substitution at codon 66 (val66met) of the BDNF gene would also 

influence the process of motor learning. They used TMS to probe learning-

induced increases in excitability of the hand area of M1. Participants performed 

a 30 min training protocol that focused on ballistic movements of the index 

finger. Training consisted of blocks of a finger tapping and a pinch grip task. 

Both tasks were repeated twice in an alternating order. Each training block 

lasted 5 min. In the finger tapping task, subjects were asked to press the 1 and 

3 key on a keyboard with the right index finger as fast as possible. In the pinch 

grip task, participants had to press the pad of a pinch grip gauge with the right 



 

 48 

index finger every 5 s in order to reach a force of at least 5 kg. Before and after 

the training period, Kleim et al. used neuro-navigated single-pulse TMS to map 

the cortical area from which MEPs could be elicited in the first dorsal 

interosseous muscle of the practicing hand. Single-pulse TMS over the motor 

hot spot also was employed to characterize the input–output relationship 

between the intensity of stimulation and the size of the MEP (i.e. the stimulus–

response curve) before and after training. 

There were no significant differences in the motor performance of each group 

before and after the training. However, TMS data suggested that despite this, 

there was a difference in the effect of training on the function of the corticospinal 

system. Individuals with the val66val genotype showed the expected larger 

volume of the cortical motor map and a homogeneous increase in MEP 

amplitude across all intensities used to test the input–output curve. There was 

also a substantial shift in the center of gravity (COG) of the cortical map with a 

mean shift of approximately 2 cm. Conversely, individuals carrying one or two 

met alleles did not show a consistent change in map volume and tended to 

show a relative decrease in MEP amplitude after training, especially at low 

stimulus intensities. The shift in the COG was also less prominent (<1.0 cm) 

compared to the val66val carriers. 

Although these results are highly suggestive of a functional role of BDNF 

polymorphisms in mechanisms of motor learning, there are a number of caveats 

that should be addressed in future studies. First, it should be noted that the 

post-training shift of the COG in the val66val group (mean shift of approximately 

2 cm) was much larger than found in previous TMS studies and therefore may 
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not be repeatable in a study with larger numbers of subjects. For example, in 

stroke patients, Liepert et al. (Liepert et al., 2000) have also found shifts in the 

COG but the magnitude was well below 1 cm. Second, the tasks used are motor 

practice tasks (pinch grip) with a low skill acquisition component, thus limiting 

the inferences to effects on motor adaptation rather than more complex tasks 

such as sequence learning. Finally, it is unclear to what extent the reported 

excitability changes are caused by changes in the efficacy of synaptic 

connections in the cortex or to changes in neuronal excitability at the spinal 

level. 

 

Despite these caveats, the pioneering study by Kleim et al. (2006) provided 

preliminary evidence that the val66met SNP affects activity driven changes in 

corticospinal circuits. This was only demonstrated with TMS and would have 

been missed by merely relying on behavioral measurements because the 

genotype dependent difference in training-induced corticospinal excitability 

changes did not translate into altered performance in simple motor tasks. 
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2  Methods 
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2.1 BDNF genotyping technique 
 

Genotyping was carried out twice with known positive controls. In GenBank 

sequences and the public SNP database (http://www.ncbi.nlm.nih.gov/), we 

identified a common coding variant in the BDNF gene, a G→A polymorphism 

responsible for a Val66Met change. Whole blood was taken into EDTA tubes 

and DNA was extracted using a standard phenol–chloroform method and 

checked for quality and concentration using a spectrophotometer. Part of exon 2 

of the BDNF gene was amplified using the polymerase chain reaction (PCR) 

and primers (SBDNF1-AAA GAA GCA AAC ATC CGA GGA CAA G; SBDNF2-

ATT CCT CCA GCA GAA AGA GAA GAG G) resulting in a 274base pair (bp) 

PCR product. A Perkin Elmer 9700 thermal cycler was used for DNA 

amplification. Amplification reactions were performed in a total volume of 25μl, 

containing approximately 50 ng of genomic template, 1 μm of each primer, 200 

μm deoxyribonucleotide triphosphate (dNTP), 10× buffer inclusive of 2.5 mM 

magnesium chloride and 1 U of Taq polymerase. The PCR cycling conditions 

consisted of an initial denaturation for 10min at 94◦C, followed by touchdown 

program of 25 cycles of 94◦C for 30 s, 60◦C for 30 s and 72◦C for 45 s. After 

each cycle the annealing temperature was reduced by 0.4◦ C down to 50◦ C. 

There were then 12 cycles of 94◦C for 30s, 50◦C for 30s and 72◦C for 45 s and 

a final extension at 72◦C for 10 min. The PCR was checked for success on a 

2% agarose gel. The PCR product was then digested with the restriction 

enzyme Hsp92II. The reaction consisted of 10 μl of PCR product, 2 μl buffer, 1 

μl Hsp92II, 0.2 μl bovine serum albumin and 6.8 μl of water. In the presence of 
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the G allele, Hsp92II digestion produced two products, 57 and 217 bp, whereas 

the A allele produced three products, 57, 77 and 140 bp. The presence of a 

second Hsp92II site served as a restriction digest control, identifying incomplete 

digests for repeat analysis. Polymerase chain reaction products were 

electrophoresed on a 2% agarose gel and visualized using a transilluminator 

and ethidium bromide staining. All participants were successfully genotyped. 

 

 

2.2 Transcranial magnetic stimulation 
methods 

 

We employed a variety of rTMS methods to test synaptic plasticity in healthy 

human subjects.  

 

The primary motor cortex of the dominant hemisphere was stimulated in all 

experiments. 

Figure-of-eight coils with outer diameter of 70 mm (Magstim Co., Whitland, 

Dyfeld, UK) were used for the experiments. According to the guidelines of the 

International Federation of Clinical Neurophysiology, we defined the resting 

motor threshold (RMT) as the minimum stimulation intensity over the motor hot-

spot, which can elicit a MEP of no less than 50 μV in 5 out of 10 trials. AMT was 

calculated with the biphasic stimulator prior to the TBS session.  AMT was 

defined as the minimum single pulse intensity that produced an MEP of at least 

0.2mV on more than 5 out of 10 trials, while the subjects were maintaining a 
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background contraction of 15% of their maximum power. The motor hot-spot 

was defined as the location where TMS consistently produced the largest MEP 

size at 120% RMT in the target muscle. The coils were held at an angle of 45 

deg away from the mid-sagittal line with the handle pointing backwards.  

 

EMGs were recorded via Ag–AgCl electrodes placed over the target muscle(s) 

of the dominant hand using a belly tendon montage.   

 

The change in corticospinal excitability produced by each intervention was 

assessed by measuring the amplitude of the MEP response to a standard test 

pulse that remained constant throughout the experiment. In each subject the 

intensity of this pulse was individually adjusted at the start of the experiment to 

produce a stable MEP (of 0.5–1 mV) with the subject at rest. In all cases, the 

effects are quantified by examining changes in the amplitude of EMG responses 

evoked by standard single TMS pulses (Motor Evoked Potential (MEP)) before 

and at various time-points after rTMS.  

 

Signals were filtered (30 Hz to 2 kHz) and amplified (Digitimer 360, Digitimer 

Ltd, Welwyn Garden City, Herts, UK) and then stored on computer via a Power 

1401 data acquisition interface (Cambridge Electronic Design Ltd,Cambridge, 

UK). Analysis was carried out using Signal Software (Cambridge Electronic 

Design). 
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2.2.1  Theta burst stimulation (TBS). 

	
  

The established conditioning intensity for TBS is 80% of the active motor 

threshold (AMT) (Huang et al., 2005).  AMT was calculated with the biphasic 

stimulator prior to the TBS session.  TBS was applied over the motor cortex hot-

spot as described by Huang et al. (2005). Each burst consisted of three stimuli 

(80% AMT) given at 50 Hz. Continuous TBS (cTBS), which usually suppresses 

corticospinal excitability, was delivered as a sequence of 100 bursts (300 

stimuli) given at a rate of 5 Hz (total duration of 20 s); intermittent TBS (iTBS) 

involved giving a 2s train repeated every 10s for 20 repetitions (600 stimuli). 

 

2.2.2  Transcranial Direct Current Stimulation (TDCS) 

preconditioned 1 Hz Stimulation 

	
  

TCDS Stimulation (Nitsche and Paulus, 2000) was delivered using a battery-

driven DC stimulator (Schneider Electronic, Germany) via two conductive –

rubber electrodes, placed in saline soaked sponges (5x7 cm), positioned over 

the primary motor cortex (the TMS hotspot for FDI was used) and above the 

contralateral eyebrow. A constant current flow of 1mA was applied for 10 min. 

The current is always ramped up/ down slowly in the first and last 10 seconds of 

stimulation. The after effects depend on the polarity used; we used the cathodal 

polarity (cathode over the FDI TMS hot-spot), which produces an inhibitory 

effect if applied for 15 minutes.  

1 Hz rTMS delivered at intensities at or above RMT suppresses corticospinal 

excitability. The duration of the after-effects depends on the total number of 
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pulses given. In this study, 1Hz rTMS was delivered for 15 minutes (900 pulses) 

at subthreshold intensity (85% RMT) 10 minutes after the end of TDCS. RMT 

was assessed with the biphasic stimulation using the same criteria as above.  

 

2.2.3  Paired Associative Stimulation 

	
  

PAS involves pairing electrical stimulation of the median nerve at the wrist with 

single pulse TMS of the hand area of motor cortex. Our protocol applied 200 

electrical stimuli to the median nerve of the dominant hand at the wrist paired 

with a single TMS pulse over the hot spot of the APB muscle hand area of the 

contralateral hemisphere at a rate of 0.25 Hz. TMS was delivered through a 

Magstim 200 magnetic stimulator (Magstim Company, UK). The TMS pulses 

were applied at the same stimulus intensity as the test stimulus (stimulator 

intensity adjusted to achieve 1mV MEP in the APB). Electrical stimulation was 

applied through a bipolar electrode (cathode proximal), using square wave 

pulses (0.2 ms duration). Intensity was adjusted to three times the perceptual 

threshold. The threshold for visible motor twitch was also recorded. The 

interstimulus interval between peripheral and TMS stimulus was 25 ms. 

Subjects were instructed to look at their stimulated hand and count the 

peripheral electrical stimuli they perceived to control for attention. After 200 

pairings applied at a rate of 0.25 Hz, where the electrical stimuli precedes the 

TMS pulses by 25ms, MEPs in median nerve innervated hand muscles increase 

in size consistent with an LTP-like mechanism (Quartarone et al., 2006a). 

Spread of excitability to ulnar nerve innervated hand muscles occurs to a limited 

extent in normal subjects and is reported to occur more prominently in patients 
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with focal hand dystonia (Quartarone et al., 2003). Several studies have 

demonstrated that MEP facilitation induced by PAS is greater when subjects 

were tested at 8oʼclock in the evening than at 8 oʼclock in the morning, possibly 

due to diurnal variations in the levels of neuromodulators like cortisol (Sale et 

al., 2008). To minimize daytime-dependent changes, in the present experiments 

PAS was always delivered between 11:00 and 15:00 h.
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3  Effects of the BDNF 
Val66Met SNP on 
artificially induced 
plasticity 
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3.1 Introduction 
 

In this pilot study (Cheeran et al., 2008a) we employed a number of non-

invasive TMS techniques that directly test the excitability and plasticity of 

neuronal circuits in human motor cortex. Even in healthy subjects, the 

response to these protocols is highly variable between different individuals. A 

number of factors have already been described that contribute to this variation 

such as the prior history of brain activation (Gentner et al., 2008a) (Huang et 

al., 2008), the subjectʼs age (Muller-Dahlhaus et al., 2008), the time of day 

(Sale et al., 2008), and the menstrual cycle (Inghilleri et al., 2004).  Here we 

ask whether genetic factors like the BDNF Val66Met SNP might also influence 

these measures. 

 

3.2 Ethical approval 
 

The UCL/UCLH Regional Ethics Committee approved all experimental 

procedures.  

Sixty-one volunteers were recruited after informed consent was obtained. 

Subjects recruited did not have any chronic illnesses requiring treatment. 

Epilepsy and chronic or recent use of prescription medication (like 

antidepressants, analgesics, etc.) other than the oral contraceptive pill were 

specifically excluded. 
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3.3 Recruitment of subjects 
 

Subjects were genotyped after informed consent was obtained, using the 

previously described method and primers. 

All subjects carrying a ʻMetʼ allele were invited for all experiments and 

recruited into the non-Val/Val group. Only two Met allele homozygotes were 

identified and only one volunteered for experiments 1a, 2 and 3. Subjects 

homozygous for the ʻValʼ allele, matched for age, sex and ethnicity (see Table 

3-1), were then recruited into the ʻVal/Valʼ group. Female volunteers were not 

matched for phase of menstrual cycle, but since the timing of the experiments 

was random, this would be unlikely to bias the results in any significant way. 

In total, 18 subjects (9 in each group) took part in experiments 1a, 1b and 3. 

Sixteen subjects (8 in each group) took part in experiment 2. Investigators 

blinded to the subjectʼs genotype collected electrophysiological measures. 

Experiments were conducted at least 1 week apart. 

 

3.4 Transcranial magnetic stimulation 
methods 

 

One subject in each group in experiments 1a, 2 and 3 was left handed and 

therefore the right hemisphere was stimulated in these two subjects in these 

experiments. A monophasic Magstim 200 was used to define the motor hot-

spot and to assess MEP size.  A second coil was connected to a biphasic 
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stimulator, a Super Rapid Magstim package (Magstim Co., UK), and was 

used to deliver rTMS. (see Table 3-2B for mean baseline MEP amplitudes for 

each experiment). 

 

For experiments 1 and 2, EMGs were recorded via Ag–AgCl electrodes 

placed over the first dorsal interosseous (FDI) of the dominant hand using a 

belly tendon montage. For experiment 3, EMGs were recorded via Ag–AgCl 

electrodes placed over the abductor pollicis brevis (APB) and the abductor 

digiti minimi (ADM) of the dominant hand using a belly tendon montage.  

 

For the TBS experiments twenty baseline MEPs were collected and averaged 

at baseline. Then, after cTBS (experiment 1a) and iTBS (experiment 1b) over 

the same hot-spot, 20 MEPs were recorded at 1–5, 6–8, 9–11, 12–15 and 16–

24 min after TBS and averaged.  

 

In a second set of experiments, we examined the role of the polymorphism in 

the control of synaptic plasticity. To study homeostatic plasticity, 10 min of 

cathodal transcranial direct current stimulation (TDCS) was given initially to 

reduce motor cortical excitability; it was then followed by a short period of sub-

threshold 1 Hz rTMS. For this TDCS experiment (experiment 2), 20 MEPs 

were collected and averaged at baseline as for experiment 1(time-point T0). 

Subjects then received 10 min of priming with cathodal TDCS, followed by 15 

min of sub-threshold 1 Hz rTMS (both to the hand area of the motor cortex). 
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MEPs were recorded immediately after TDCS (time-point T1), immediately 

after rTMS (time-point T2) and at 10 min after rTMS (time-point T3), and then 

averaged. Sub-threshold 1 Hz rTMS alone is insufficient to induce any after-

effects, but when pre-conditioned by cathodal TDCS it generates facilitation of 

the motor cortex, producing a homeostatic-like effect (Siebner et al. 2004) that 

has been shown to be impaired in patients with focal dystonia (Quartarone et 

al. 2005). 

 

PAS (Stefan et al. 2000; Quartarone et al. 2006) was delivered using pairs of 

median nerve electrical and single pulse TMS over the abductor pollicis brevis 

(APB) hot-spot at an inter-stimulus interval of 25ms. MEPs were recorded 

from the median-innervated APB and the ulnar-innervated abductor digiti 

minimi (ADM) muscles at baseline (T0) and at 1 min (T1), 15 min (T2), 30 min 

(T3), 45 min (T4) and 60 min (T5) after PAS, and then averaged. Note that the 

test stimulus was optimized for APB. 

 

3.5 Data analysis 
 

Data were analyzed using SPSS for Windows version 11.0 on log transformed 

peak–peak amplitudes of the mean MEPs of each subject. Note that graphs 

show untransformed data. Repeated measures ANOVA with within subject 

factor of TIME (before/after intervention) and between subjects factor of 

GENOTYPE (Val/Val/non-Val/Val) was used to compare variables before and 
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after each experimental intervention. Dose effect analysis (i.e. Val/Val versus 

Val/Met versus Met/Met) was not done as only a single Met allele homozygote 

participated in the study (and in 3 of 4 experiments only). Post hoc paired t 

tests were applied when necessary. In all figures, error bars refer to the 

standard error. 

 

3.6 Results 
Table 3-1: Demographics of volunteers included in experiments 

 

 

Table 3-2: Stimulation intensity (expressed as percentage of maximum stimulator output) and 
baseline MEP amplitudes (mV) 
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3.6.1  Induction of LTP/LTD-like change 

 
 
Figure 3-1: Effect of BDNF Val66Met polymorphism on cortical excitability in response to cTBS 
(top row) and iTBS (bottom row) 
	
  

	
  

	
  

In the first set of experiments we tested whether the Val/Met polymorphism in 

the BDNF gene would affect the response to human theta burst stimulation. 

The data from all individual time points are plotted in Fig.3-1A and B for the 

inhibitory cTBS and excitatory iTBS interventions, respectively. Since there 

was no difference in the post-TBS values at any time point in either group, 

these were averaged and the mean pre/post data are shown in the 

corresponding Fig.3-1C and D. Two-way ANOVA of the log transformed data 

revealed a significant TIME∗GENOTYPE interaction for both cTBS (F 1,16 = 

16.08; P = 0.001) and iTBS (F 1,16 = 8.59; P=0.01). This was due to the fact 

that there was a significant decrease in MEPs after cTBS in the Val/Val 

individuals (P=0.0002; paired ttest) but not in the non-Val/Val group. Similarly, 
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there was a significant increase in MEPs after iTBS in the Val/Val individuals 

(P=0.003; paired ttest) but not in the non-Val/Val group. 

 

3.6.2  Control of homeostatic plasticity 

	
  

 
Figure 3-2: Effect of BDNF Val66Met polymorphism on cortical excitability in response to 
cathodal TDCS preconditioning followed by sub-threshold 1 Hz rTMS 
	
  

	
  

 

In a second set of experiments, we examined the role of the polymorphism in 

the control of synaptic plasticity. Analysis was performed using a mixed 

ANOVA design on the log transformed data with GENOTYPE as between-

subjects factor (levels Val/Val and non-Val/Val) and TIME as within-subject 

factor; levels for factor TIME were baseline (T0), T1, T2 and T3. Figure 3-2 

shows that subjects in the Val/Val group showed the expected pattern of 

effects: cathodal TDCS initially suppressed corticospinal excitability and this 
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was followed by facilitation after 1Hz rTMS. Subjects in the non-Val/Val group 

showed the same suppression after TDCS but no further effect after 1Hz 

rTMS. ANOVA showed a significant GENOTYPE×TIME interaction (F 3,42 = 

4.44, P = 0.009). Pair-wise comparisons revealed significantly higher MEP 

amplitudes after 1 Hz (T3) (t test: P = 0.025) in the Val/Val group compared to 

the non-Val/Val group. 

 

3.6.3  Spread of LTP-like excitability 

	
  

Figure 3-3: Effect of BDNF Val66Met polymorphism on cortical excitability in response to paired 
associative stimulation in the target (homotypic) abductor pollicis brevis (top row) and 
(heterotopic) ulnar-innervated abductor digiti minimi (bottom row) 
	
  

	
  

 

In the final experiment, we explored the spread of LTP-like excitability using 

the paired associative stimulation protocol (experiment 3). Figure 3A and B 



 

 66 

plots the mean data at each individual time point for the APB and ADM 

muscles, respectively. Since there was no difference in any of the post-PAS 

values these were averaged together to form the summary pre/post 

comparisons in Fig. 3-3C and D. Three-way ANOVA on the log transformed 

data with within subject factors of MUSCLE (APB, ADM) and TIME (Pre, 

Post), and between subject factor of GENOTYPE revealed a significant 

TIME∗ GENOTYPE interaction (F 1,16 = 4.41; P = 0.05) as well as a 

significant main effect of MUSCLE (F 1,16 = 8.39; P = 0.011). Post hoc paired 

t tests showed that interaction was due to the fact that in Val/Val subjects, 

PAS produced a significant increase of the MEPs in ADM (P = 0.01) and a 

borderline significant increase in APB (P = 0.07). There were no 

significant effects in non-Val/Val individuals. The effect of MUSCLE was due 

to the fact that the MEPs were larger overall in the APB than the ADM. 

 

3.7 Discussion 
 

The present data show that the response of healthy subjects to three different 

plasticity-inducing protocols in motor cortex is associated with the 

polymorphism of the BDNF gene that they carry. The implication is that 

genetic variation in the normal population can produce significant differences 

in the after-effects of rTMS protocols. If this conclusion is valid in more 

physiological conditions, then the same variations may influence behavioural 

learning as well as recovery from brain damage. 
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Experiment 1 examined the after-effect of an inhibitory (cTBS) and an 

excitatory (iTBS) rTMS protocol on corticospinal excitability. In non-genotyped 

healthy controls, cTBS suppresses MEPs for 30 min or so whereas iTBS 

facilitates them. The present results show that the after-effects of both iTBS 

and cTBS are reduced or absent in subjects carrying the ʻMetʼ allele of the 

BDNF gene. This was not related to any initial differences in thresholds or 

MEP size in the two groups, and presumably indicates that ʻMetʼ carriers are 

less susceptible to the effects of TBS than the Val66Val individuals. 

 

There are several possible reasons for the difference in response between the 

groups. The most likely is that it is more difficult to induce plasticity of neural 

circuits in the non-Val/Val individuals. However, the present experiments do 

not address the question of whether this difference arises because non-

Val/Val individuals lack any response to TBS, or because they have a 

different input–output relationship between the intensity of stimulation and the 

duration/depth of the after-effects. Further experiments with a range of TBS 

intensities would be needed to address this. A rather different possibility is 

raised by the report of Gentner et al. (Gentner et al., 2008a) in which they 

pointed out that the after-effects of cTBS are extremely sensitive to the past 

history of motor cortex activation (ʻrapid metaplasticityʼ). Although there was 

no difference in the amount of voluntary movement prior to stimulation in the 

two groups, it is possible that subjects differ in their sensitivity to prior 

activation and this could account for the apparently different response to TBS 
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protocols. Despite the exact mechanism, we conclude that the after-effects of 

TBS protocols are affected by genetic variation in the normal population. 

 

In experiment 2 we selected a ʻmetaplasticʼ conditioning protocol that 

employed 10 min cathodal TDCS to prime the response to presentation of 900 

sub-threshold TMS pulses at 1 Hz. In a non-genotyped population of healthy 

subjects, MEPs are suppressed by the TDCS. This then transforms a 

subsequent period of 1 Hz rTMS, which on its own has no effect on 

corticospinal excitability, into facilitation. In the present experiments, cathodal 

TDCS produced the same amount of LTD-like suppression of corticospinal 

activity in all subjects, although there was a tendency for a smaller effect in 

the ʻMetʼ carriers. More impressive, however, was a lack of the expected 

homeostatic effect of this stimulation on subsequent 1 Hz rTMS in the same 

subjects: the Val/Val subjects showed the expected reversal of corticospinal 

excitability towards facilitation, whereas MEPs remained suppressed in the 

non-Val/Val individuals. 

 

Given the rather small number of subjects studied we cannot say with 

certainty that subsequent work will never reveal a difference in the response 

to TDCS. Nevertheless if the conclusion holds it would be consistent with the 

idea that TDCS and rTMS act on different neural circuits, which are 

differentially responsive to the BDNF polymorphism (Lang et al., 2005). The 

lack of any pre-conditioning effect on the response to a subsequent period of 
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1 Hz rTMS in the non-Val/Val group could be due to a number of reasons. For 

example, the duration of the ʻmetaplastic windowʼ following TDCS could be 

shorter in ʻMetʼ carriers, so that if we could have applied TMS more quickly 

after stopping TDCS, or if we had prolonged the duration of TDCS to increase 

the duration of the ʻmetaplastic windowʼ, we may have seen a smaller 

difference between the groups. Another possibility is that ʻMetʼ carriers have 

an increased sensitivity to 1 Hz rTMS compared with Val/Val subjects. This 

could make it more difficult to reverse into facilitation than in Val/Val group. 

However, this seems unlikely in view of the generally reduced level of plastic 

changes we observe in the non-Val/Val individuals. 

 

If the group differences reflect a true reduction in metaplastic interactions, 

then the results may relate to those in experiment 1. As noted above, one 

possible explanation of the lack of response to TBS protocols in non-Val/Val 

subjects is a lack of ʻrapid metaplasticityʼ in motor cortex, where the prior level 

of activation preceding the TBS protocols determines the duration and 

direction of the after-effects on MEP amplitude. 

 

Experiment 3 probed the effects of paired associative stimulation of median 

nerve and motor cortex on MEPs on the median nerve innervated APB 

muscle and the ulnar innervated ADM muscle. Using an interstimulus interval 

of 25 ms in non-genotyped healthy controls, this leads to a variable 0 to 

>100% facilitation of MEPs in the APB lasting 30–60 min after the end of PAS. 
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Effects in the ADM are also variable: Stefan et al. (Stefan et al., 2000) 

originally reported that there was no significant difference in the facilitation of 

APB and ADM, but others have suggested that effects in ADM are generally 

smaller than in APB, consistent with a topographic specificity of PAS. In the 

present experiments, non-Val/Val subjects had no significant response to PAS 

in either muscle, whereas Val/Val individuals responded with an increase that 

was significant in ADM, and borderline in APB. Again, this suggests that 

individuals carrying the Met allele have a reduced response to LTP-like 

plasticity induction by rTMS protocols. 

At first sight it may seem odd that the amounts of PAS-induced facilitation in 

APB were less than those in ADM. However, if we had mixed the data from all 

subjects in the present experiments, as would have been the case in previous 

reports, we would have found a 20–30% mean increase in both muscles, 

which is within the range of values reported by others. It should also be noted 

that we carried out all the PAS examinations between 11:00 and 15:00 h in 

order to avoid daytime-related changes in levels of PAS that have been 

reported in early evening vs early morning comparisons (Sale et al., 2008). 

 

Since we examined only one homozygous Met/Met carrier, we were not able 

to make any analyses of ʻdoseʼ effect. However, in some other studies ((Egan 

et al., 2003)) Met/Met carriers had more pronounced differences compared 

with Val/Val or even Val/Met individuals, and we presume that the same may 

well be true of the measures we examined here. Kleim et al. (Kleim et al., 
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2006), however, did not demonstrate such an allele dose effect on motor map 

expansion after FDI exercise tasks. 

 

Many previous studies have pointed out the variability of individual responses 

to the newly developed TMS and TDCS protocols that probe synaptic 

plasticity in motor cortex. The present data suggest that genotype is one 

factor that can influence these effects, and it may therefore be useful to 

include this as a potential co-variate in analysis of the data, particularly in 

studies utilizing these protocols as a therapeutic intervention (for example in 

stroke rehabilitation or depression). In smaller studies utilizing rTMS as an 

experimental intervention, our results highlight the importance of ethnicity 

matching, as the prevalence of SNPs like BDNF Val66Met varies widely 

among different populations. 

 

Several neurological conditions such as dystonia (Edwards et al., 2006) 

(Quartarone et al., 2003) and phantom limb pain (Karl et al., 2001) have been 

proposed to involve abnormal plasticity at central synapses. Similarly, 

disorders of metaplasticity have been postulated to underlie susceptibility to L-

DOPA-induced dyskinesia in Parkinsonʼs disease (Picconi et al., 2003) 

(Linazasoro, 2005). The recovery of function after brain injury (e.g. stroke), is 

also thought to be modulated by the ability of synapses to undergo plastic 

change. The fact that this common polymorphism of the BDNF gene 

influences experimental protocols that are thought to induce synaptic plasticity 
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in the adult human brain suggests that this polymorphism could be a factor in 

the development of or recovery from certain neurological disorders. 
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4  Clinical Application: 
DYT1 Dystonia 
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4.1 Introduction 
 

The observations that Dystonia can occur after excessive practice of 

particular movements in humans (task specific dystonias) and that Dystonia 

can occur or worsen following trauma to the affected body part (e.g. 

(Jankovic, 2001)) has lead to the emerging consensus that excessive ability to 

undergo plastic change could drive the development of dystonia. 

 

DYT1 dystonia, caused by a mutation in the DYT1 gene on chromosome 9q34 

and the commonest cause of young-onset primary generalized dystonia 

(Bressman, 2004), is an excellent model within which to test this hypothesis. 

Only 30% of carriers of the DYT1 mutation develop dystonia; 70% never 

develop symptoms, and these individuals appear to be protected by a 

reduced potential for synaptic plasticity. Studies have recently demonstrated 

how the sensitivity of the neuroplasticity system, tested with TBS, seems to 

directly determine whether patients with the DYT1 gene mutation develop 

clinical symptoms or not (Edwards et al., 2006). As discussed earlier, we have 

found that a common polymorphism (BDNF Val66Met) in the gene coding for 

Brain Derived Neurotrophic Factor (BDNF) determines sensitivity to these 

very plasticity probes. The presence of a Met allele significantly reduces the 

responsiveness of the brain to these protocols.  
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We hypothesized that: 

1. That genetic polymorphisms that are functionally important in 

determining the sensitivity of the neuroplasticity system like BDNF Val66Met 

will be distributed differently in DYT1 mutation carriers with and without 

symptoms. 

2. That DYT1 carriers with symptoms will more often carry the alleles that 

confer increased sensitivity to undergo plastic changes (like the BDNF Val 

allele), with the opposite pattern seen in DYT1 carriers without symptoms.   

 

4.2 Methods 
 

Study participants and mode of recruitment: DYT1 mutation carriers were 

identified from an existing database of patients and relatives who have 

expressed a desire to participate in future studies. They were initially 

approached and recruited from the movement disorders clinics supervised by 

Prof K Bhatia at the National Hospital for Neurology. Inclusion criteria for 

patients (manifestors): (i) genetic analysis positive for the typical DYT1 gene 

mutation; (ii) onset of limb dystonia prior to the age of 25 years with or without 

subsequent progression. Inclusion criteria for carriers (non-manifestors): (i) 

genetic analysis positive for the typical DYT1 gene mutation; (ii) clinical 

absence of dystonia, (iii) Age over 30 (the age by which symptoms manifest in 

almost all patients).  
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We contacted 61 patients and carriers with the DYT1 mutation (45 

manifestors, 16 non manifestors) for informed consent. We obtained informed 

consent from 9 carriers (non-manifestors) and 28 patients (manifestors). 

Genotyping for BDNF val66met genotypes was performed by a 5ʼ 

exonuclease allelic discrimination Taqman assay on stored DNA. Pearsonʼs 

Chi square was used to compare the frequency of the polymorphisms 

between DYT1 mutation carriers with and without symptoms. 

 

4.3 Results 
 

The Pearsons Chi-Square test (2-sided, df=1) suggests a significant effect 

(p=0.044) of BDNF genotype on DYT1 penetrance. Polymorphisms that 

reduce the sensitivity of the neuroplasticity system, like the Met allele in BDNF 

Val66Met, may confer a protective effect on expression of dystonia.  

 
Table 4-1: DYT1 mutation carriers by genotype. 
	
  

Genotype Manifestor Non-Manifestor Total 

Val/Met 7 11 18 

Val/Val 2 17 19 

Total 9 28 37 

 
 

4.4 Discussion 
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Despite the small sample size in this study, the results summarized in table 2, 

taken together with the study of Edwards et al. suggest an intriguing 

explanation for reduced penetrance in DYT1. The results will need to be 

confirmed in a future study with more subjects. If these results were 

reproduced, it would provide the first genetic risk factor for the penetrance of 

DYT1. Moreover, other genetic variations that reduce the response to 

ʻplasticity probesʼ, may explain more of the risk for penetrance.  

 

Although this study was analyzed as a case control study, several (but not all) 

controls (non-manifestors) are related to cases (manifestors). However, a 

transmission disequilibrium test, which would add credence despite the small 

sample size, was not possible; relationships were not recorded in several 

cases and ethical constraints limited direct contact with non-manifestors. 

 

Other studies have subsequently explored this issue in cranio-cervical 

dystonia. Cramer et al. (Cramer et al., 2010) studied the prevalence of the 

BDNF genotype in 34 subjects with cervical dystonia, 54 age-matched healthy 

controls, and 53 subjects with Parkinson's disease (as a control group with 

another movement disorder). In this study subjects with cervical dystonia, the 

val66met polymorphism was approximately twice as prevalent when 

compared to either control group. Martino et al. (Martino et al., 2009) also 

explored the influence of the Val66Met SNP of the BDNF gene on the risk of 

cranial and cervical dystonia in a cohort of 156 Italian patients and 170 age- 

and gender-matched healthy control subjects drawn from the same 
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population, but found that the presence of the Met allele was not significantly 

associated with risk of developing cranio-cervical dystonia. This study was 

adequately powered to detect a 50% change in the risk of developing cranial-

cervical dystonia; but this also means that a risk less 50% (which is more 

likely) could be missed.
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5  Clinical Application: 
Levodopa-Induced 
Dyskinesia 
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5.1 Introduction 
 

Chronic dopaminergic treatment in Parkinsonʼs disease is complicated by the 

development of levodopa-induced dyskinesia (LID) in around 40% of patients 

after 4-6 years of levodopa therapy (Ahlskog and Muenter, 2001). However, 

some patients remain untroubled by LID even after 6 years of therapy with 

Levodopa. The reason for such variable susceptibility to this complication is 

unclear. Several risk factors have been established for the earlier onset of 

dyskinesias, which include younger age, greater disease severity at baseline 

and higher daily levodopa dose, but these factors do not explain all the 

variability observed in time to dyskinesia onset. 

 

Studies in rat models of PD have shown that plasticity of cortico-striatal 

synapses, measured as the ability to undergo long term potentiation or 

depression (LTP, LTD) is reduced or abolished by dopaminergic denervation 

following chemical lesions of the nigrostriatal tract. LTP is restored by chronic 

l-dopa therapy, but in some animals synaptic depotentiation (ʻforgettingʼ) is not 

restored and these then go on to develop dyskinesia (Picconi et al., 2003). 

Indirect evidence from human studies also is consistent with a role of synaptic 

plasticity in development of dyskinesias in susceptible individuals. Thus LTP-

like plasticity in motor cortex evaluated by transcranial magnetic stimulation is 

deficient in PD patients off medication and is restored by levodopa in non-

dyskinetic but not in dyskinetic patients (Morgante et al., 2006).  One 
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explanation for the variable susceptibility to LID is that exposure to l-dopa 

could have a much greater effect on someone with PD who carries a genetic 

vulnerability (based on a genetic influence on synaptic plasticity) to develop 

dyskinesias (Linazasoro, 2005). Thus both animal and human work is 

compatible with the idea that a genetically determined difference in the 

regulation of synaptic plasticity determines the susceptibility to develop LID. 

 

The neuromodulatory role of has been demonstrated in several settings, 

especially in the dopaminergic system and PD. BDNF synthesized by 

dopamine neuron is responsible for the appearance of the dopamine D3 

receptor during development and maintains its level of expression in adults 

(Guillin et al., 2001). New findings supporting this demonstrate that levodopa 

induces BDNF release from cortico-striatal fibers, which in turn enhances the 

expression of D3 receptors; and that this effect is associated with motor 

dyskinesias (see review by (Kostrzewa et al., 2005). Monkeys that are 

rendered parkinsonian with 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine 

and develop levodopa-induced dyskinesia show an overexpression of the D3 

receptor. Treatment with partial agonists to the D3 receptor can reduce 

dyskinesias in the MPTP monkey model. Again in unilaterally 6-OHDA-

lesioned rats, it appears that behavioural sensitization to levodopa is 

dependent on D3 receptor expression (Bordet et al., 1997). Thus there is 

experimental evidence to link 1) levodopa and BDNF release 2) BDNF and 

expression of the D3 receptor and 2) the D3 receptor and levodopa induced 

dyskinesia.  
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Our results (Cheeran et al., 2008b) show that homeostatic plasticity is 

reduced by the Met allele. Results from Picconi et al. (Picconi et al., 2003)) in 

rats and LTP induction in patients by PAS from Morgante et al., (Morgante et 

al., 2006)), as discussed earlier, implicated impaired homeostatic plasticity in 

levodopa induced dyskinesia. It was tempting to hypothesise that BDNF 

genotype could influence corticostriatal synaptic plasticity in PD patients, with 

carriers of val alleles able to potentiate and depotentiate corticostriatal 

synapses more effectively than met allele carriers, who thus develop a 

pathological storage of information that would normally be erased leading to 

the earlier development of abnormal motor patterns i.e dyskinesias.  

 

Taking into account its critical role in activity dependant modulation of 

synaptic plasticity and our results showing that the val66met polymorphism 

functionally influences this role, we hypothesized that this polymorphism could 

influence the time to develop dyskinesia in a large prospectively followed 

cohort of PD patients (Foltynie et al., 2009). 
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5.2 Methods 
 

We obtained access through collaboration to the clinical and DNA database of 

patients seen and assessed at the Cambridge Centre for Brain Repair in 

Cambridge, UK as part of an ongoing prospective study of Parkinson's 

disease.   Only patients meeting UKPDS Brain bank criteria for the diagnosis 

of PD were included in this study. All patients had provided written consent for 

genetic analysis of their DNA, extracted using standard techniques from their 

peripheral blood samples. Genotyping for BDNF val66met genotypes was 

performed by a 5ʼ exonuclease allelic discrimination Taqman assay. All 

patients were assessed with the Unified Parkinson's Disease Rating Scale 

(which incorporates dyskinesia assessment). Patientsʼ medications were not 

adjusted as part of attendance at this clinic. To maximise the accuracy of 

recording the presence/ absence and date of onset of dyskinesias, only 

patients who were free of dyskinesias at the time of their first assessment 

were included in the study. Doses of dopaminergic medication were noted at 

the first patient assessment and converted to equivalent levodopa doses with 

a previously used formula. Equivalent levodopa dose= (levodopa (x1.2 if 

COMT inhibitor) (x1.2 if 10mg selegiline OR x1.1 if 5mg selegiline)) + 

(pramipexole x400) + (ropinirole x40) + (cabergoline x160) + (pergolide x 200) 

+ (bromocriptine x 10) + (lisuride x 160), all doses in mg. This allows a 

comparison between patients on different dopaminergic regimes and takes 

account of the risk of dyskinesia that exists from both levodopa and to a 

lesser extent from dopamine agonist use. All patients were UK Caucasians 
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apart from one Afro-Caribbean individual, 2 Asian-Indian individuals and one 

individual who was half Caucasian and half Asian-Indian. 

 

5.3 Results 
 

A survival analysis was performed with date of diagnosis used as baseline 

and censoring occurring at 1) onset of dyskinesia, or 2) latest date of follow up 

assessment if free from dyskinesia.  

Four hundred and twenty one patients were free from dyskinesia at their first 

assessment and had reliable data regarding date of PD onset. 358/421 were 

on dopaminergic treatment at the time of their first visit. Table 5-1 shows a 

description of these patients at the time of their first assessment divided 

according to their BDNF genotype (confirmed to be in Hardy-Weinberg 

equilibrium). Analysis of variance found no significant differences between 

BDNF genotypes in patients, with respect to age at diagnosis, duration of 

disease at first clinic attendance, UPDRS motor scores, whether or nor they 

were on dopaminergic treatment, mean equivalent levodopa dose, or duration 

of follow up in clinic. 

At the time of analysis, 52 patients had developed new onset of dyskinesia 

having been dyskinesia free when first assessed in the clinic, 25/260 val/val 

patients, 22/146 val/met patients, and 5/15 met/met patients. Figure 5-1 

shows Kaplan-Meier curves for the development of dyskinesia for each BDNF 

genotype from PD onset. Calculating scaled residuals confirms that the 
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proportional hazards assumption is met, and univariate Cox regression 

analysis produces a hazard ratio of developing dyskinesia of 1.68 (95%CI 

1.08-2.61) for each additional met allele (p=0.02). Multivariate Cox regression 

analysis with adjustment for possible confounding variables -equivalent L-

dopa dose at baseline, age at diagnosis, gender, total UPDRS score at 

baseline, and duration of clinical follow up increases the hazard ratio for 

developing dyskinesia to 1.74 (95%CI 1.09-2.78)(p=0.021) for each additional 

met allele. Repeating the analysis with exclusion of patients who had not yet 

received L-dopa throughout their period of follow up (n=44 still on no 

dopaminergic treatment, n=49 still on dopamine agonists only), made no 

difference to the magnitude or significance of the univariate or multivariate 

hazard ratios observed.  

 

5.4 Discussion 
 

This study suggests that PD patients with BDNF met alleles are at risk of 

developing LID earlier in the course of their disease than val/val homozygotes. 

Further research is needed to confirm these results in additional populations 

of patients with PD. 

However, if the development of disabling dyskinesias is shown to be related to 

the presence of one or two met alleles, then this could have implications for 

the treatment of PD patients.  



 

 86 

It would be a considerable advance in the treatment of PD if it were possible 

to predict who was likely to develop dyskinesias before starting levodopa. This 

would: 

 1) Enable the earlier use of levodopa in patients with a low risk of developing 

dyskinesias, increasing their chance of good symptom control.  

2) Enable selection of patients at high-risk of developing dyskinesias for 

alternative treatments to oral levodopa. Several such treatments are currently 

restricted until late in the disease process according to current NICE 

guidelines.  
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Figure 5-1 Kaplan Meier curves to show duration from PD diagnosis (years) until first record of 
dyskinesia among BDNF val/val patient (1/1), val/met (1/2), and met/met patients (2/2). 
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Table 5-1: Demographics and statistical comparison of patients at time of their first assessment 
by genotype- all patients were free from dyskinesia at baseline. 
 
BDNF 

genotype 

N Age at 

diagnosis 

Median 

(Range) 

On Dopa 

meds  

Equivalent 

Levodopa 

dose-mg 

Mean (SD) 

Duration 

disease at 

first visit -

years 

Median 

(Range) 

UPDRS 

motor 

score at 

first visit 

Mean 

(SD) 

Duration 

of clinic 

follow up-

years 

 

Median 

(Range) 

Val/Val 260 

(153 male) 

65  

(31-89) 

217 

(83%) 

407  

(433) 

1.1 

(0-16.9) 

24.9 (14.1) 2.7 

(0-7.3) 

Val/Met 146  

(85 

male) 

64 

(41-91) 

127  

(87%) 

410  

(422) 

1.3  

(0-19) 

23.3 (13.6) 2.8 

(0-7.7) 

Met/Met 15 

(8 

 male) 

60 

(44-80) 

14 

(93%) 

355  

(354) 

0.5  

(0-15) 

22.7 

(14.4) 

2.95 

(0-7.2) 

	
  

χ2 / Anova χ2 =0.18 

p=0.91 

F=0.14, 

p=0.87 

χ2 =1.8 

p=0.42 

F=0.11 

p=0.88 

F=0.49 

p=0.62 

F=0.69 

p=0.50 

F=0.72 

p=0.49 
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6  Studying the role of 
BDNF Val 66 Met in 
the variability in 
response to rTMS
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6.1 Introduction 
 

The aim of the present study was to provide some information in a sample of 

115 young volunteers of the variation in response to a commonly used rTMS 

protocol, intermittent Theta Burst Stimulation (iTBS) (Huang et al., 2005). The 

analysis presented here was designed to address two questions of practical 

importance when interpreting single session studies of an rTMS protocol. 

These were: what proportion of individuals will have the expected response to 

the protocol; and is this proportion affected by time of testing (morning or 

afternoon between 9AM and 6PM) (Sale et al., 2008), sex (Inghilleri et al., 

2004), or genotype (the val88met polymorphism of the BDNF gene)? In 

addition, we took advantage of the relatively large numbers of individuals to 

perform a cluster analysis on the time course of the responses to iTBS to test 

whether it is possible to classify particular patterns of response that have 

similar time courses. 

 

6.2 Methods 
 

Research ethics committees in London and A Coruna approved the study. 

Subjects were recruited in 3 cohorts at a single site, each with a target of 50 

subjects. In total, 139 subjects were recruited. Each subject was allocated a 4 

digit alpha-numeric study ID to enable effective blinding. 
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Blood samples for DNA were obtained from 139 subjects. Genotyping for the 

BDNF Val66Met SNP (rs6265) was performed using commercially available 

primers and standard techniques described previously.  119 subjects attended 

for the TMS experiments, with each cohort being studied over a 6-week 

period. The study was completed over a 10-month period. 

 

115 subjects are included in the analysis presented here; 2 subjects with 

missing data points and 2 subjects with the BDNF Met66Met genotype (AA 

genotype) have been excluded. We excluded the first 2 subjects because 

missing data points adversely affect the categorical outcome variables 

(sustained response and futility) as well as affecting the clustering algorithm. 

The subjects with the BDNF AA genotype were excluded, as with just 2 

subjects, there are insufficient numbers in this group for meaningful analysis. 

 

All TMS experimental data was collected by 3 experienced investigators, and 

each experiment was done by a pair of investigators to minimize inter-

observer variation in technique (e.g. assessment of Active Motor Threshold 

(AMT, optimal site of stimulation, etc)). Within each pair, experimenters took it 

in turns to collect data or to observe data collection. Every recorded TMS 

variable (RMT, AMT, 1 mV stimulator intensity, etc.) required the agreement 

of experimenter and observer. The observer had the additional role of 

monitoring EMG traces online to delete traces with muscle activation, 
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attention, subject movement, etc. Subjects and experimenters were blinded to 

genotype. 

 

Experiments are done between 9 AM and 6 PM; as a result, fewer subjects 

were examined in the morning. The primary motor cortex of the dominant 

hemisphere was stimulated in all experiments.  Two figure-of-eight coils with 

outer diameter of 70 mm (Magstim Co., Whitland, Dyfeld, UK) were used for 

the experiments. A monophasic Magstim BiStim was used to define the motor 

hot-spot and to assess MEP size. A second coil was connected to a biphasic 

stimulator, a Super Rapid Magstim package (Magstim Co., UK), and was 

used to deliver rTMS. Active motor thresholds were obtained with both the 

BiStim and Super Rapid Magstim packages. 

 

As in the experiments presented previously, the effect of iTBS on corticospinal 

excitability was quantified by measuring the amplitude of MEPs evoked in the 

FDI by a constant-intensity TMS pulse given over the contralateral motor 

cortex. At the start of the experiment the intensity of this pulse was adjusted 

so that it evoked an MEP of about 1 mV peak-to-peak amplitude in each 

individual. Twelve such MEPs were collected and averaged at baseline. Theta 

burst stimulation (TBS) was applied over the motor cortex hot-spot as 

described by Huang et al. (Huang et al., 2005). 12 MEPs were recorded at 

fixed 3-minute intervals (minutes 3, 6, 9... 21).  

 



 

 93 

Here we analyze data describing the variability in response to rTMS (MEP 

amplitudes pre/post iTBS) and three previously described factors influencing 

the response to rTMS (BDNF genotype, Sex, Time of Day). Phase 2 of this 

study, which is ongoing, will attempt to predict the variability in response 

within an individual studied on two separate occasions. 

 

6.3 Analysis 
 

Data pre-processing and analysis was carried out using Signal Software 

(Cambridge Electronic Design) - the experimenter involved is blinded to 

demographic and genotype information during this process as data is coded 

by the study ID. Statistical analyses and cluster analyses were done using 

SAS JMP 8 ®. 

 

The primary outcome measure was the MEP amplitude response to iTBS 

post-stimulation, determined by averaging the MEP amplitudes obtained at all 

time-points over between minutes 3 and 21(Mean (Post- iTBS Min 3-21) MEP 

Amplitude) compared to the MEP amplitude at baseline, pre-iTBS (Mean 

(Baseline) MEP Amplitude).  Three previously reported between subjects 

factors (BDNF Genotype (Val/Val (GG) Vs. Val/Met (GA)), Sex, Time of Day 

(experiment done AM Vs. PM). 
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Two additional categorical variables were also constructed from the MEP 

amplitude measurements to answer specific questions likely to be useful for 

future studies employing TMS paradigms: 

 

6.3.1  Sustained Response 

Subjects were assigned a value of 1 if the mean MEP ratio to baseline from 3-

21 min iTBS was greater than 1 (i.e. they had a positive overall response). If 

the MEP ratio was ≤1, then they were assigned a value of 0. Effectively the 

proportion of subjects with a value of 1 is a measure of the expected number 

of responders in the population. We averaged over 3-21 min since this is a 

typical assessment duration or time during which the effects of iTBS might be 

combined with a second behavioral intervention. 
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This variable is designed to capture if the average response over 21 minutes post iTBS is the 
expected increase in MEP amplitude (signifying an effective increase in corticospinal excitability 
over 21 min post-iTBS). The sustained response categorical variable is calculated by normalizing 
the average of MEP amplitudes obtained at all time-points over between minutes 3 and 21(Mean 
(Post- iTBS Min 3-21) MEP Amplitude) to the pre-iTBS baseline MEP amplitude (Mean (Baseline) 
MEP Amplitude) (plotted in Figure 6A. A value of ≤1 signifies that there was no sustained 
increase in corticospinal excitability produced by iTBS-600, and is coded by State 0 in Fig 6B. A 
value >1 signifies a sustained increase in corticospinal excitability over 21 minutes following iTB 
600, independent of the degree of that increase, and is coded for by State 1 in Fig 6B.	
  

Figure 6-1: Understanding the Sustained Response categorical variable. 
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6.3.2  Futility  

This categorical variable was designed to capture if there was any 

experimentally or therapeutically useful window of increased corticospinal 

excitability produced by iTBS 600. We arbitrarily determined the ʻuseful 

windowʼ to be any 3 consecutive time-points. As the MEP amplitude 

measurements were taken 3 minutes apart following iTBS, this window is 

book-ended by measurements 6 minutes apart but signifies a 9-minute 

window of response. This variable is calculated by determining the maximum 

average MEP amplitude over any three consecutive time-points after iTBS for 

each subject (maximum value obtained in a 3 time-point moving average), 

and then normalizing it to baseline MEP amplitude for each subject. A value 

for this outcome measure of >1, signifies that there was some net positive 

modulation of corticospinal excitability over 3 consecutive time-points, at 

some point between 3-21 minutes after iTBS 600, independent of the degree 

of response and when that response occurred, coded for by State 1. A value 

of ≤1 is coded by State 0 and signifies that iTBS 600 did not increase 

corticospinal excitability for even a 6-9 minute window. 
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This categorical variable was designed to capture if there was any experimentally or 
therapeutically useful window of increased corticospinal excitability produced by iTBS 600. We 
arbitrarily determined the ‘useful window’ to be any 3 consecutive time-points. As the MEP 
amplitude measurements were taken 3 minutes apart following iTBS, this window is book-ended 
by measurements 6 minutes apart but signifies a 9 minute window of response. This variable is 
calculated by determining the maximum average MEP amplitude over any three consecutive 
time-points after iTBS for each subject (maximum value obtained in a 3 time-point moving 
average), and then normalizing it to baseline MEP amplitude for each subject. The values 
obtained are shown in Fig 7A. A value for this outcome measure of >1, signifies that there was 

Figure 6-2: Understanding the Futility categorical variable 
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some net positive modulation of corticospinal excitability when averaged over 3 consecutive 
time-points, at some point between 3-21 minutes after iTBS 600, and is coded for by State 1 in 
Figure 7B. It is independent of the degree of that response and when the response occurred. A 
value of ≤1 is coded by State 0 and signifies that iTBS 600 did not increase corticospinal 
excitability for even a 6-9 minute window.	
  

 

6.3.3  Hierarchical clustering 

Finally, we used Hierarchical clustering, an unsupervised multivariate 

technique of grouping rows that share similar values together, to determine if 

there are underlying patterns of response to iTBS. Effectively this tells us 

whether we should expect individuals to have a particular time course(s) of 

response to iTBS. MEP Amplitudes, normalized to baseline MEP amplitude, at 

minute 3,6,9,12,15,18 and 21 (8 levels) across 115 subjects was used. 

Hierarchical clustering is a process that starts with each point in its own 

cluster. At each step, the two clusters that are closest together are combined 

into a single cluster until there is only one cluster containing all the points. In 

Wardʼs minimum variance hierarchical clustering method, the distance 

between two clusters is the ANOVA sum of squares between the two clusters 

added up over all the variables. To determine the number of clusters in the 

data, a scree plot, that plots the distance that was bridged to join the clusters 

at each step, was done, showing a natural break (ʻelbowʼ) around 3-5 clusters 

where the distance jumps up suddenly. 

 

 

 



 

 99 

6.4 Results 
 

Demographics of the study sample are shown in Fig 6-3. The majority of the 

participants were young, between 18-21 years and approximately one quarter 

were female. 90% had not participated in any previous rTMS study. As 

expected from a typical European population in northern Spain, almost one 

third carried the less common val66met polymorphism of BDNF. Most of the 

evaluations were conducted in the afternoon. 
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Figure 6-3: Cohort Demographics.  
Distribution of subjects by Age, BDNF Val66Met Genotype, Sex and Time of Day. 
 

Figure 6-4: Mean values for RMT, AMT (bistim and rapid Magstim packages), Stimulator output for 1 mV 
baseline MEP  
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A scatter plot of all the data is shown in Fig 6-1: values greater than 1 indicate 

that a participant had mean increase in MEP over the 3-21 min post-iTBS. 

The majority of individuals had a positive response, indicating that iTBS 

increased MEPs over the period of testing. The mean effect was an increase 

in MEP amplitude to 113% baseline size.  

 

Table 6-1: Effect of iTBS 600 
Variable Mean Std Dev Number 

Baseline 1.075162 0.509124 115 

Post iTBS (3-21) 1.211133 0.748648    

 

 

 

 

 

 

 

 

 

n=115	
  

Figure 6-5: Testing factors previously known to affect the response to rTMS. 
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Three Separate 2 way repeated measures ANOVAs, combining the main 

factor of TIME (pre-iTBS versus the mean post-iTBS average from 3-21min) 

with one of the three independent factors of BDNF genotype (val66val or 

val66met), sex (M/F) and time of day (AM or PM) were performed. These 

revealed a significant TIME x Genotype (F (1,111)=8.6; p= 0.004) and Time x 

Sex interaction (F (1,111)=5.7; p=0.02). There were no significant effects of 

time of day. Post-hoc paired t-tests showed that there was a significant 

increase in MEP amplitude following iTBS600 for the group with the BDNF 

Val/Val (GG) genotype but no response for the Val/Met (GC) group. There 

was a slightly greater effect of iTBS in females, although there was a 

significant increase in MEP amplitude following iTBS600 for both male 

(p=0.01) and female (p=0.02) subjects (Fig 6-5). 

 

 

6.4.1  Sustained response to iTBS 

In the categorical analysis, individuals with a sustained effect of ≥1 were 

assigned a value of 1; the remainder were assigned a value of 0. The results 

grouped according to genotype, sex and time of day are shown in Fig 6-6. The 

combined analysis over all individuals is shown in the rightmost column. It 

indicates that just fewer than 40% of participants had no sustained response 

to iTBS. The rate of sustained response to iTBS by BDNF Genotype, Sex, and 

Time of Day was tested with 2 tailed Fisherʼs Exact tests; there was a 

significant effect of BDNF genotype  (p=0.012) indicating that individuals with 
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the val66met polymorphism were less likely to have a sustained response 

than those with the more common val66val polymorphism. No other effects 

were significant, indicating that presence of a sustained response was 

independent of time of day or of sex. 

 

 

 

6.4.2  “Futility” of response to iTBS 

The term “futility” refers to the inability of an intervention to achieve its 

objectives. For example, if iTBS is being employed to enhance the effect of 

physical therapy after stroke then we might consider that we need at least 

10min sustained positive interaction if we are to achieve any measureable 

effect. Thus we would consider that it would be futile to use iTBS if it failed to 

increase corticospinal excitability for 10min. In this analysis we assigned a 

categorical value of 1 to all individuals who had a mean post-iTBS increase in 

MEP ≥1 when averaged over 3 consecutive time points (i.e. for at least 9 min). 

Individuals who never achieved a mean increase for this duration were 

Figure 6-6: Sustained Response to iTBS 600 Mosaic Plot 
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assigned a value of 0. Fig 6-7 plots the data separated by genotype, sex and 

time of day. The combined analysis over all individuals is shown in the 

rightmost column. It indicates that approximately 25% of participants had no 

persisting response to iTBS. Rate of Futility of iTBS by BDNF Genotype, Sex, 

and Time of Day was tested with 2 tailed Fisherʼs Exact tests; there was a 

significant effect of BDNF genotype  (p=0.001) indicating that individuals with 

the val66met polymorphism were less likely to have a response than those 

with the more common val66val polymorphism.  

 

 

 

 

 

6.4.3  Time Course Analysis: Clustering 

This analysis tests whether the time course of the response to iTBS follows 

particular patterns in different subjects. The results are plotted in Fig 6-8. Fig 

5B colour codes the time course of response for all 115 individuals. The 

Figure 6-7: Futility Measure Mosaic Plot 
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numerical identifier of each person is shown at the bottom of the colour plots 

(Fig 6-8B). The column above each number consists of 8 rectangular 

rectangles that are coloured according to the normalized amplitude of the 

MEP at each time point studied. The bottom rectangle is black in all cases 

(=1). Green rectangles indicate an MEP ≤1; red rectangles a value of ›1; 

intensity of colour indicates increasing or decreasing values. Visual inspection 

suggests that there are 3 main groupings. There is a mainly red group on the 

right and a mainly green group on the left, with a mixed group in-between. 

This was borne out using Wardʼs hierarchical clustering and is indicated by 

the dendrogram of Fig 6-8A above. The mean time courses from the 3 main 

groups are plotted in Fig 6-8C. They consist of a group with a sustained large 

response, an intermediate group with a much smaller but still positive 

response characterized by a late increase in MEP amplitude similar to that 

originally reported (Huang et al., 2005), and a group with a negative response 

to iTBS. The categorical analysis of these groups according to genotype, sex 

and time of day is plotted in Fig 6-8D. The mean data (given in the narrow 

column on the extreme right) show that approximately one third of the 

population has a negative time course, whereas the remainder has a positive 

effect. Of these, the majority have the intermediate facilitation with a smaller 

proportion showing a much larger sustained effect. The Val/Met group 

contains an excess of the negative response type (chi sq= 12.2; p=0.0024) 

while females tended to have more of the sustained large response than 

males (chi Sq = 6.5, p=0.04). There was no effect of time of day.  
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At the bottom of figure 8B, the row of numbers lists every participant by the numeric portion of 
the alphanumeric study ID. The color map above this row plots the value of the data on a 
graduated color scale for each subject to provide a visual indicator on how the clustering 
process arrives at its conclusions. Each column in the color map codes an individual subject’s 
response to iTBS 600 across individual time-points from pre-iTBS Baseline MEP amplitude at 
the bottom to Minute 23 post iTBS at the top. A MEP amplitude equal to Baseline is coded 
black, an increasing MEP amplitude is coded by brighter shades of red and an inhibition of 
MEP’s is coded by brighter shades of green. The colour map does not follow the color scheme 
of the Fig 8A and Fig 8C. The clustering sequence itself is visualized with the help of the 
dendrogram, a tree diagram that lists each individual subject’s response to iTBS, shows which 
cluster the response pattern is in and when it entered the cluster (Fig 8A). The dendrogram is 
drawn to scale, showing the actual joining distance (based on the F-statistic) between each join 
point, and is the same scale used on the scree plot. Fig 8C is a time-series plot showing the 
mean MEP Amplitude for each cluster. Figures 8A, 8C and 8D share the same color scheme. 

8A.	
  

8B.	
  

8C.	
  

8D.	
  

Figure 6-8: Fig 6-8A - Dendrogram with 3 clusters, Fig 6-8B - Colour map, Fig 6-8C - Time-series plot of 3 clustered 
MEP response patterns to iTBS 600, normalized to baseline pre-iTBS MEP amplitude, Fig 6-8D - Mosaic plot of 
BDNF Genotype, Sex and Time of Day by Cluster. 
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6.5 Discussion 
 

This is the largest study to date of the variation between individuals in 

response to a standard “plasticity enhancing” TMS paradigm, iTBS. The 

results show that there is a wide variation in the effect on corticospinal 

excitability as measured by the MEP evoked by a standard single TMS pulse: 

in some individuals, MEPs double in size whereas in others, MEPs are 

reduced by half. On average, responses increase to 113% baseline, which is 

in line with other values published in the literature following the initial report of 

Huang et al. (Huang et al., 2005) (Talelli et al., 2007). 

 

6.5.1  Clinical implications of the results 

Since iTBS, like many other rTMS/TDCS protocols is being used in a number 

of therapeutic trials we analysed the data in terms of the proportion of 

individuals who would be expected to have a positive response in a typical 

trial by assuming that a positive therapeutic effect can be directly predicted by 

a positive response to iTBS. If therapeutic benefit requires a sustained 20 min 

response to iTBS, then 37% of individuals would fail to respond. This outcome 

measure is relevant to studies employing rTMS as a ʻvirtual lesionʼ in 

behavioral and connectivity studies, as they require a consistent response 

(either facilitation or inhibition of corticospinal excitability) over the post-rTMS 

period. Without a sustained excitatory response, the experimental blocks 

done at e.g. minute 5 may vary from that at minute 15. As shown in the color 
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map (fig 6-8B), the timing of the excitatory response can be very early or very 

late.  

 

However, there may be instances when a useful therapeutic response 

requires only that iTBS is effective for only 6-9 min. In this case a smaller 

proportion of approximately 25% would fail to respond. This outcome measure 

might be relevant for studies that employ rTMS as a therapeutic adjunct. Very 

often, iTBS or other protocols are added to standard physiotherapy, or robotic 

training, in stroke rehabilitation. In such circumstances it is reasonable to 

suppose that patients might benefit from a boost in corticospinal excitability 

and enhancement of therapy, even if it is only for 6-9 minutes. 

 

6.5.2  Implications of clustering analysis  

Hierarchical clustering analysis has not been used on rTMS data previously. 

Here it revealed 3 main clusters that define the typical time courses of 

response within the population (Fig 6-8C). Approximately one third of 

individuals that tended to group around the inhibitory response pattern 

(clustered response pattern 1), about 20% were grouped around an extreme 

facilitatory response (clustered response pattern 2) while the majority were 

similar to a more modest response pattern with an early and a late peak 

(clustered response pattern 3).  The latter is similar in time course, but lower 

in magnitude than the mean data in the original report of Huang et al (2005). 

Suppression of MEPs after iTBS has not been noted in the literature very 
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frequently, although it is evident in the responses of some individual subjects 

in the data of Talelli et al (Talelli et al., 2007).  

 

Fig 6-8D plots proportion of subjects in each cluster pattern by BDNF 

genotype, Sex and Time of Day. Fig 6-8D suggests that the results obtained 

in the 2 way repeated measures anova for BDNF genotype may be explained 

by the higher proportion of the inhibitory response pattern 1, and that the 

effect of sex in that analysis may explained by the proportion of response 

patterns 2 and 3. It is reassuring to note that there is little change in proportion 

of subjects falling into different response patterns with variation in the timing 

of the experiment.  

 

If the hierarchical clustering is done for 4 and 5 clusters (see figures in 

supplemental data), response pattern 2 decomposes into a progressively 

rising and early sustained response (see Fig 6-9) and followed by a split in 

response pattern 3 into an early (first peak at minute 3) and late (first peak at 

minute 9) bimodal response (see Fig 6-10), as reported by Huang et al. in the 

original paper on human Theta Burst Stimulation) (see supplemental data, Fig 

9). The clustered response patterns remain significantly different (main effect 

and cluster-time interaction) even at 5 clusters when tested with 2-way 

repeated measures Anova. The study is adequately powered to detect up to 7 

clusters. 
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Figure 6-10:  
Fig 6-9A. Dendrogram with 4 clusters. 
Fig 6-9B. Time-series plot of 4 clustered MEP response patterns to iTBS 600, normalized to baseline pre-iTBS 
MEP amplitude. 
 

Figure 6-9:  
Fig 6-10A. Dendrogram with 5 clusters. 
Fig 6-10B. Time-series plot of 4 clustered MEP response patterns to iTBS 600, normalized to baseline pre-iTBS 
MEP amplitude. 
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This study does not shed light on why these factors (BDNF genotype and 

Sex) influence the response to iTBS. With over 90% of subjects in this study 

never having participated in rTMS experiments before, it is necessary to 

explore the effects of novelty and anxiety on the response to iTBS, particularly 

with the reported effects of the BDNF Val66Met SNP on anxiety and 

depression. An extension of this study is designed to provide those insights. 

Another caveat is that, by design, this study does not address age as a 

variable that is likely to influence the variability in response. A much larger 

sample size is necessary to study the effects of age fully alongside other 

factors, and this was not feasible due to resource restrictions. One suggestion 

that has been raised is that iTBS may be affecting other parameters, other 

than corticospinal excitability as measured by MEP amplitude. However, as 

the paradigm (as are most rTMS paradigms), was defined by the effects on 

MEP amplitude, we do not feel this is a valid explanation.  

 

In summary, of the previously recognized variables affecting the response to 

rTMS paradigms, BDNF genotype and sex of subject show a significant 

interaction with time. The BDNF Val66Met polymorphism (rs6265) (GA 

genotype) alone shows higher rates of futility and lower rates of sustained 

facilitation of MEPs following iTBS 600. The response to rTMS paradigms like 

iTBS maybe more complex and variable than previously recognized, and it 

may account for the inconsistent results across rTMS studies.  
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7  Conclusions
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Following our initial study into the effects of the BDNF Val66Met SNP, Antal et 

al. retrospectively analyzed experimental data collected and identified 

subjects with the Val66Met allele. For iTBS (15 subjects, 5 heterozygotes), 

plasticity could be only induced in the Val66Val allele carriers. However, for 

facilitatory tDCS (24 subjects, 10 heterozygotes), as well as for inhibitory 

tDCS, (19 subjects, 8 heterozygotes), carriers of the Val66Met allele displayed 

enhanced plasticity.  

 

The conclusions of this study were not dissimilar to our own pilot study - ʻmetʼ 

allele carriers failed to respond to iTBS 600. However the final study 

presented here suggests that the effect of the met allele on the response to 

rTMS paradigms like iTBS maybe more complex than previously recognized. 

One explaination for the spectrum of responses to the same iTBS protocol 

would be consistent with the idea that TBS produces a mixture of inhibitory 

and excitatory effects. According to the model of Huang et al (Huang et al., 

2010), the proportion of each can be modulated by the pattern of TBS, being 

primarily facilitatory with iTBS and inhibitory with cTBS. Variation between 

individuals in the proportion of inhibition/facilitation for a given pattern of TBS 

could be one explanation of the variation in responses we observed here. 

Indeed, the high response group that was revealed in the hierarchical cluster 

analysis could represent individuals with a bias towards facilitatory effects of 

TBS whereas the negative responders in the same analysis would have a 

bias towards inhibitory effects. However another insight into why this common 
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SNP in a highly conserved polymath gene would influence the response to 

TMS paradigms may come from the work of Gentner et al (Gentner et al., 

2008a). 

 

The BCM equation states as its third postulate that the recent history of 

synaptic activity determines the crossover point (the modification threshold - 

⍬m) between weakening and strengthening of synaptic weight. When cTBS is 

preceded by a period of muscle contraction, the post synaptic activity would 

shift ⍬m to the right, and subsequent presynaptic input is more likely to be a 

weakening of synaptic weight resulting in a decrease in corticospinal 

excitability. Without the recent history of postsynaptic activity, the same 

presynaptic input is more likely to produce an excitatory response. 

 

The results obtained here can be explained if the met allele shifts ⍬m to the 

right. The response probability for a fixed presynaptic input to result in 

weakening of synaptic strength (and subsequent reduction in corticospinal 

excitability assessed by MEPʼs) would be higher, resulting in a greater 

proportion of met allele carriers having an inhibitory response to iTBS 600. 

Huber et al. investigated the effects of BDNF on long-term potentiation (LTP) 

and long-term depression (LTD) in visual cortex slices in rats (Huber et al., 

1998). The slices treated with BDNF showed no difference from control slices 

when a 'strong' tetanus was used (theta-burst stimulation) to elicit a maximal 

level of LTP but displayed significantly greater synaptic potentiation in 
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response to a 'weak' (20 Hz) tetanus. The BDNF-treated slices also showed 

significantly less LTD in response to a1 Hz tetanus. They concluded that 

BDNF alters the relationship between stimulation frequency and synaptic 

plasticity in the visual cortex, shifting the modification threshold to the left. The 

cellular phenomena corresponds best with shifts in modification threshold is 

synaptic scaling (Turrigiano, 2008) and BDNF was the first molecule 

implicated in synaptic scaling (Rutherford et al., 1998). Abidin et al. showed 

that chronic reduction in the expression of BDNF attenuates the efficiency of 

presynaptic glutamate release in response to repetitive stimulation and 

subequently impairs presynaptically evoked LTP in the visual cortex in BDNF 

heterozygous knockout BDNF(+/-) mice (Abidin et al., 2006). As the met allele 

reduces activity dependent synaptic release of BDNF, the suggestion that a 

rightward shift in the modification threshold in heterozygotes compared to 

val/val homozygotes has basis in studies of LTP/LTD induction in slices. 

 

Other factors, both intrinsic immutable factors like other genetic 

polymorphisms, sex of subject or variable factors like estrogen levels/ fatigue/ 

attention (Inghilleri et al., 2004)(Stefan et al., 2004) (Tecchio et al., 2008) may 

similarly affect the response to fixed presynaptic input by affecting ⍬m or 

postsynaptic depolarization. The net effects on ⍬m would determine the 

individual difference in response to an identically conducted rTMS experiment, 

resulting in the spectrum of responses reported here.  Immutable factors 

would account for a significant portion of inter-individual variation in the 
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response to rTMS. Mutable factors would determine the test-retest intra-

individual variability. 

  

Recognition of the variables that influence response to rTMS will enable us to 

better predict an individualʼs response to rTMS paradigms, and this in turn is 

necessary for the success, safety and replicability of studies employing rTMS 

paradigms. Missitzi et al.  (Missitzi et al., 2010) probed the heritability of 

corticospinal excitability changes induced by the paired-associative 

stimulation paradigm 32 healthy female twins (9 monozygotic and 7 dizygotic 

pairs). Intra-pair differences in the changes in MEP amplitudes measured at 

25-30 min post intervention were almost double for dizygotic twins (1.25) in 

comparison to monozygotic twins (0.64). The heritability estimate for brain 

plasticity was found to be 0.68. Recognizing and quantifying the role of 

immutable factors like genotype alone therefore will be a significant advance 

in our ability to predict the response to rTMS paradigms. The effects of 

mutable factors will need to be controlled for by adopting larger study sample 

sizes than has been the norm, and by establishing normative values for the 

commonly used TMS outcome measures. In conclusion, we propose that the 

experiments presented here make a strong case for the study of the effects of 

human genetic variation on cortical plasticity, employing neurophysiological 

outcome measures and the application of artificially induced plasticity 

paradigms. 
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