
Accepted Manuscript

Title: Loss of human arylamine N-acetyltransferase I regulates
mitochondrial function by inhibition of the pyruvate
dehydrogenase complex

Authors: Lili Wang, Rodney F. Minchin, Patricia J. Essebier,
Neville J. Butcher

PII: S1357-2725(19)30054-8
DOI: https://doi.org/10.1016/j.biocel.2019.03.002
Reference: BC 5509

To appear in: The International Journal of Biochemistry & Cell Biology

Received date: 9 January 2019
Revised date: 27 February 2019
Accepted date: 1 March 2019

Please cite this article as: Wang L, Minchin RF, Essebier PJ, Butcher NJ, Loss of
human arylamine N-acetyltransferase I regulates mitochondrial function by inhibition
of the pyruvate dehydrogenase complex, International Journal of Biochemistry and
Cell Biology (2019), https://doi.org/10.1016/j.biocel.2019.03.002

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/189939071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.biocel.2019.03.002
https://doi.org/10.1016/j.biocel.2019.03.002


1 

 

 

Loss of human arylamine N-acetyltransferase I regulates 

mitochondrial function by inhibition of the pyruvate 

dehydrogenase complex 
 

Lili Wang, Rodney F. Minchin, Patricia J. Essebier and Neville J. Butcher 

 

Molecular and Cellular Pharmacology Laboratory, School of Biomedical Sciences, The 

University of Queensland, St Lucia, Brisbane, Australia 4072 

 

Correspondence:  

R. F. Minchin 

School of Biomedical Sciences, 

University of Queensland, 

St Lucia, Brisbane, 4072 

Queensland, Australia 

Email: r.minchin@uq.edu.au 

 

ABSTRACT 

Human arylamine N-acetyltransferase 1 (NAT1) has been widely reported to affect cancer cell 

growth and survival and recent studies suggest it may alter cell metabolism. In this study, the 

effects of NAT1 deletion on mitochondrial function was examined in 2 human cell lines, breast 

carcinoma MDA-MB-231 and colon carcinoma HT-29 cells. Using a Seahorse XFe96 Flux 

Analyzer, NAT1 deletion was shown to decrease oxidative phosphorylation with a significant 

loss in respiratory reserve capacity in both cell lines.  There also was a decrease in glycolysis 

without a change in glucose uptake. The changes in mitochondrial function was due to a 

decrease in pyruvate dehydrogenase activity, which could be reversed with the pyruvate 

dehydrogenase kinase inhibitor dichloroacetate.  In the MDA-MB-231 and HT-29 cells, 

pyruvate dehydrogenase activity was attenuated either by an increase in phosphorylation or a 

decrease in total protein expression. These results may help explain some of the cellular events 

that have been reported recently in cell and animal models of NAT1 deficiency. 

 

 

Abbreviations: NAT1, Arylamine N-acetyltransferase 1; NAT2, Arylamine N-

acetyltransferase 2; AcCoA, acetylcoenzyme A; ROS, reactive oxygen species; OCR, oxygen 

consumption rate; ECAR, extracellular acidification rate; 2-NBDG, 2-(N-(7-Nitrobenz-2-oxa-

1,3-diazol-4-yl)Amino)-2-deoxyglucose; GFP, green fluorescent protein gene; PDH-

E1Pyruvate dehydrogenase-E1; PDHK, pyruvate dehydrogenase kinase; DCA, 

dichloroacetate 
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1.  INTRODUCTION 

 

Arylamine N-acetyltransferase 1 (NAT1, EC 2.3.1.5) is a cytosolic enzyme that catalyses the 

acetylation of small molecule arylamines, hydrazines and sulphonamides (Hein, 2002). Found 

in most cells in the body, NAT1 expression is regulated at the transcriptional and post-

transcriptional levels (Butcher et al., 2007; Butcher et al., 2008).  A detailed evolutionary study 

of mammalian arylamine N-acetyltransferases supports the notion that NAT1 has evolved 

through strong negative selection to conserve functionality over time (Sabbagh et al., 2013). 

This observation, along with its wide distribution in the body, suggests NAT1 has a role in 

addition to xenobiotic metabolism. The only known endogenous substrate for NAT1 is the 

folate catabolite p-aminobenzoylglutamate, but the physiological importance of p-

aminobenzoylglutamate acetylation in vivo has been questioned (Witham et al., 2013). There 

is emerging evidence that NAT1 expression is associated with changes in cell growth and 

survival, cell morphology, and various intracellular metabolic pathways (Carlisle et al., 2016; 

Stepp et al., 2018; Tiang et al., 2011; Tiang et al., 2010, 2015; Witham et al., 2013; Witham et 

al., 2017).  

 

In addition to NAT1, humans express a second arylamine N-acetyltransferase (NAT2), the 

result of a gene duplication on chromosome 8.  NAT2 levels are highest in the liver and 

gastrointestinal tract where it is important in the metabolism of drugs and other xenobiotics 

(Hein, 2002).  Recently, single nucleotide polymorphisms in the NAT2 gene, which result in a 

slow acetylator phenotype, were shown to be associated with insulin resistance (Knowles et 

al., 2015). Moreover, deletion of the murine homolog of human NAT2 (Nat1) recapitulated the 

insulin resistance phenotype (Camporez et al., 2017), increased mitochondrial dysfunction and 

the production of reactive oxygen species (ROS) (Chennamsetty et al., 2016).  Nat1 

knockdown in 3T3-L1 cells with sh-RNA decreased both basal respiration as well as reserve 

respiratory capacity. A similar finding was reported for hepatocytes isolated from Nat1 null 

mice (Camporez et al., 2017), suggesting that human NAT2 (or mouse Nat1) is important for 

mitochondrial function. Previously, we reported that deletion of NAT1 in various human cells 

including MDA-MB-231 cells, using CRISPR/Cas9 technology decreased oxidative 

phosphorylation (Lichter et al., 2017). Moreover, in human HT-29 cells, glucose utilisation 

decreased and ROS production increased following NAT1 deletion (Wang et al., 2018).  These 

studies suggested that NAT1 affected mitochondrial function in a similar manner to that seen 

following Nat1 knockdown in mice.  However, a recent study using human breast MDA-MB-

231 cells reported that deletion of NAT1 increased reserve respiratory capacity and glycolytic 

reserve (Carlisle et al., 2018).  To better understand the effects of NAT1 on cell metabolism, 

glucose-mediated oxygen consumption and glycolysis were compared in 2 independent cell 

models following deletion of the NAT1 gene.  The results show mitochondrial changes that 

may explain the link between arylamine N-acetyltransferase expression and mitochondrial 

function.  
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2.  MATERIALS AND METHODS 

2.1 Cell lines and tissue culture 

Human cancer cell lines MDA-MB-231 (breast adenocarcinoma) and HT-29 (colon 

adenocarcinoma) were obtained from the American Type Culture Collection (ATCC, 

Manassas, VA) and cultured in RPMI 1640 medium (Thermo Fisher Scientific, Carlsbad, CA) 

supplemented with 10% fetal bovine serum (Hyclone; In Vitro Technologies, VIC, Australia), 

100 units/ml penicillin/streptomycin and 2 mM L-glutamine in a humidified 5% CO2 

atmosphere at 37 °C. The HT-29 CRISPR/Cas9 NAT1 knockout cell line has been described 

previously (Wang et al., 2018). The MDA-MB-231 NAT1 knockout cell line was generated by 

disrupting the NAT1 gene using a human NAT1 gene knockout CRISPR/Cas9 kit (Origene 

Technologies, Rockville, MD; KN221042). NAT1 knockout was verified by PCR of genomic 

DNA, lack of NAT1 acetylation activity and Western blot for NAT1 protein, as previously 

described (Wang et al., 2018). 

 

2.2 Mitochondrial bioenergetics 

Basal oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were 

measured using a Seahorse XFe96 Flux Analyzer (Seahorse Bioscience, Billerica, MA) as 

described in the manufacturer’s instructions. Cells were seeded at 2 × 104 cells per well in 96-

well plates and a sensor cartridge was hydrated in Seahorse XF Calibrant (Seahorse Bioscience)  

at 37°C in a non-CO2 incubator on the day prior to assay.  On the day of assay, the growth 

medium was changed to Seahorse XF assay medium (Seahorse Bioscience; pH 7.4) and the 

plate was incubated for 1 h at 37°C in a non-CO2 incubator. Basal OCR was first measured, 

followed by sequential injections of oligomycin (1 μM), carbonyl cyanide 4‐trifluoromethoxy‐

phenylhydrazone (FCCP; 0.5 μM) and antimycin A/rotenone (1 μM). ECAR was measured 

following sequential injections of glucose (10 mM), oligomycin (1 µM) and 2-deoxy-D-

glucose (50 mM). Measurements were standardized to cell number in each well.  

 

2.3 Glucose uptake assay 

Glucose uptake was quantified using 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-

deoxyglucose (2-NBDG; Cayman Chemical Company, Ann Arbor, MI), a fluorescent-labelled 

glucose analog. Briefly, cells were seeded in 96-well plates at 5 × 103 cells/well and allowed 

to adhere overnight. The medium was then changed to 100 μl glucose-free medium containing 

10 μM 2-NBDG for 1 hr at 37°C. After washing three times with ice-cold phosphate buffered 

saline (PBS), cells were lysed with 100 μl Passive Lysis Buffer (Promega, Madison, WI) for 

10 min at room temperature. The fluorescence of 2-NBDG was measured using a microplate 

reader (Ex 485 nm, Em 535 nm) and normalized to total protein. 

 

2.4 Western blotting 

Parent and NAT1 KO cells were seeded in 6-well plates at 6 × 105 cells/well and cultured for 

48 h. Some cells were treated with 10 mM DCA for the final 24 h of culture. Cells were then 

washed twice with ice-cold PBS and lysed directly in 1× Laemmli buffer containing protease 

and phosphatase inhibitor cocktail (Sigma-Aldrich). Proteins were separated by SDS-PAGE 

and transferred to nitrocellulose membranes. The blots were blocked with 5% bovine serum 
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albumin in Tris-buffered saline overnight at 4oC with rocking. Blots were then incubated with 

anti-pyruvate dehydrogenase E1-alpha subunit antibody (Abcam, Cambridge, UK; ab110330, 

1:1000), anti-pyruvate dehydrogenase E1-alpha subunit (phospho S293) antibody (Abcam, 

ab177461, 1:1000) and anti-alpha-tubulin antibody (Cell Signaling Technology, Danvers, MA; 

#3873, 1:2000) diluted in blocking buffer overnight at  4oC, followed by horseradish 

peroxidase-conjugated secondary antibodies (Jackson ImmunoResearch Laboratories, West 

Grove, PA) for 1 h at room temperature. Detection was by ECL using Westar ETA C2.0 

substrate (Cyanagen, Bologna, Italy) and a Kodak Image Station 4000s pro. 

 

2.5 Pyruvate dehydrogenase assay 

 

MDA-MB-231 and HT-29 cells were plated at a density of 0.6 × 106 cells per well in 6-well 

plates. After 24 hr, the cells were washed twice with ice-cold PBS and scraped into PBS 

containing protease and phosphatase inhibitors cocktails (Sigma-Aldrich). The cells were 

then disrupted on ice using a Branson Sonifier 250 (2 × 5 sec bursts, output = 4) and 

centrifuged at 1500 × g for 5 min at 4°C. Supernatants were assayed for .pyruvate 

dehydrogenase according to the method of Ke et al (Ke et al., 2014). Briefly, 40 µL of cell 

supernatant was incubated with 1 mM MgCl2, 0.2 mM thiamine pyrophosphate, 0.5 mM 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 6.5 mM phenazine methosulfate 

and 2 mM sodium pyruvate in PBS. The reaction was run for 3 hr at 37°C following which 

absorbance was measured at 266 nm. An extinction coefficient of 18.65 mM-1 cm-1 was used 

to calculate enzyme activity. 

 

2.5 Data analysis 

Data are presented as mean ± SEM. Statistical significance was determined by one-way 

ANOVA with p-values of 0.05 or less considered significant (GraphPad Software, San Diego, 

CA). Western blots were quantified by densitometry using ImageJ software.  

3. RESULTS 

NAT1 deletion in MDA-MB-231 and HT-29 cells was confirmed by the lack of enzyme 

activity and the absence of NAT1 mRNA in the knockout cells.  Sequencing was used to 

confirm insertion of the GFP gene in both NAT1 alleles in the MDA-MD-231 cells and the 

single NAT1 allele in the HT-29 cells (these cells carry a large deletion in one copy of 8p22). 

To determine the effect of NAT1 deletion on mitochondrial function, OCR and ECAR 

were measured using a Seahorse XFe96 Flux Analyzer.  In MDA-MB-231 cells, basal oxygen 

consumption, ATP-coupled oxygen consumption and reserve respiratory capacity decreased in 

the NAT1 knockout cells compared to parental cells (Fig. 1A & B, left panels). These results 

are consistent with a decrease in glucose flux through the mitochondria following NAT1 

deletion. In the HT-29 cells, OCR was also decreased with the largest, and most significant, 

change seen in the reserve respiratory capacity (Fig. 1A & B, right panels).   

 In addition to oxidative phosphorylation, ATP requirements can be met by aerobic 

glycolysis where glucose is diverted to lactic acid instead of entering the TCA cycle. This is 

common in cells with mitochondrial dysfunction. Glycolysis was measured in each cell line by 

quantification of ECAR following the addition of glucose. In both MDA-MB-231 and HT-29 
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cells, glycolysis significantly decreased following NAT1 deletion (Fig. 2A & B).  However, 

no change was seen with the glycolytic reserve. 

To compare glucose metabolism via oxidative phosphorylation to that via glycolysis, a 

bioenergetics plot was constructed (Fig. 3A). In most cells, a decrease in one bioenergetics 

pathway is compensated by an increase in the other. However, following NAT1 deletion, there 

was a decrease in both oxidative phosphorylation and glycolysis indicating a shifted to a lower 

overall bioenergetic state.  These results suggest that NAT1 knockout cells do not utilize 

glucose for glycolysis or oxidative phosphorylation to the same extent as the parental cells. To 

determine whether this difference was due to a decrease in glucose uptake, the accumulation 

of the glucose transporter probe 2-NBDG was measured. However, there was no significant 

difference in glucose transport in either cell line following NAT1 deletion (Fig. 3B). Taken 

together, these results suggest that glucose flux in the knockout cells is diverted away from the 

glycolysis/oxidative phosphorylation pathway.  

The reserve respiratory capacity is essential for cell survival during mitochondrial 

stress. It is partly dependent on activity of the mitochondrial pyruvate dehydrogenase complex 

and a loss in activity can reduce or eliminate reserve respiratory capacity (Pfleger et al., 2015; 

Prabhu et al., 2015).  To determine whether deletion of NAT1 altered pyruvate dehydrogenase 

complex function, enzyme activity was measured in both parental and knockout MDA-MB-

231 and HT-29 cells (Fig. 4A & B).  For both cell lines, there was a significant decrease in 

activity following NAT1 deletion.  

Pyruvate dehydrogenase-E1 (PDH-E1) is an essential component of the pyruvate 

dehydrogenase complex and is regulated by reversible phosphorylation catalysed by pyruvate 

dehydrogenase kinase (PDHK). Phosphorylation of PDH-E1results in a decrease in activity 

of the pyruvate dehydrogenase complex.  When MDA-MB-231 and HT-29 knockout cells were 

treated with the PDHK inhibitor dichloroacetate (DCA), the changes seen in OCR were 

completely rescued (Fig. 4C & D) suggesting that NAT1 deletion may induce PDH-

E1phosphorylation. To test this, both total and phosphorylated PDH-E1were quantified in 

parental and NAT1 knockout cells (Fig 5A).  For the MDA-MD-231 cells, there was a 3-fold 

increase in phosphorylated PDH-E1 following NAT1 knockout.  DCA treatment of the NAT1 

deleted cells reversed this increase to levels seen in the parental cells (Fig 5B).  By contrast, 

total PDH-E1 decreased in the HT-29 NAT1 knockout cells.  When these cells were treated 

with DCA, PDH-E1 increased to levels similar to the parental cells (Fig 5C) showing that 

loss of PDH-E1 following NAT1 knockout was reversed by DCA treatment.  

 

4. DISCUSSION 

When NAT1 was deleted from MDA-MB-231 and HT-29 cells, there was a marked decrease 

in oxidative phosphorylation, which was associated with a decrease in PDH-E1 activity.  

Inhibition of the pyruvate dehydrogenase complex limits pyruvate entry into the TCA cycle 

and lowers ATP generation.  A common response in cancer cells to a change in oxidative 

phosphorylation is metabolically switching to aerobic glycolysis, which can maintain ATP 

production.  However, this was not the case following NAT1 deletion in either cell line as 

glycolysis was also diminished. Since glucose uptake was not altered, these results suggest 
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glucose was shunted away from the glycolytic/oxidative phosphorylation pathways towards 

other pathways such as glycogenesis, the pentose phosphate pathway or the hexosamine 

synthesis pathway (Hay, 2016).  The mechanism for this remains to be determined. However, 

a recent metabolomics study using NAT1 deleted MDA-MB-231 cells identified changes in 

numerous polar metabolites, although most remain to be definitively identified (Carlisle et al., 

2016). Nevertheless, that study demonstrated marked changes in metabolism following NAT1 

deletion. 

The changes in mitochondrial function in the MDA-MB-231 and HT-29 cells are 

similar to those reported in murine cells following Nat1 knockout (Camporez et al., 2017; 

Chennamsetty et al., 2016).  Nat1 is the murine homolog of human NAT2, not NAT1, so the 

similarity in responses following gene deletion was unexpected.  These observations suggest 

that NAT1 and NAT2 may have common or redundant biological roles in regulating 

mitochondrial function.  Alternatively, since NAT1 and NAT2 are differentially expressed in 

vivo, they may have similar roles but in different tissues in the body.  Interestingly, when we 

quantified NAT2 expression in the MDA-MD-231 and HT-29 cells by qPCR following NAT1 

knockout, there was a 3.5 ± 0.6 and 2.0 ± 0.5 fold increase in mRNA compared to the parental 

cells, respectively (p < 0.01).  This suggests that expression of NAT1 and NAT2 are not 

completely independent, an observation supported by a positive association between the 

expression of the 2 genes in human breast cancer cells (Carlisle and Hein, 2018). 

The effect of NAT1 deletion on mitochondrial function in MDA-MB-231 cells has been 

reported elsewhere (Carlisle et al., 2018). However, unlike the data presented here, increases 

in reserve capacity and glycolytic reserve were seen.  The reasons for this variance between 

our study and that of Carlisle et al studies is not immediately obvious. There were differences 

in the gene deletion protocols that may have contributed to varying phenotypes. There may 

also be important differences associated with how the gene-deleted cells were selected and 

cultured. It will be important in the future to identify the molecular mechanisms for the 

difference in mitochondrial function reported here and by Carlisle et al (Carlisle et al., 2018).  

In HT-29 cells, mitochondrial function also decreased following NAT1 deletion due to 

an attenuated PDH activity. However, the mechanism involved a decrease in total PDH protein, 

not an increase in phosphorylation as seen in the MDA-MB-231 cells.  While there is much 

known about the regulation of PDH by PDHKs, very little is known about its stability. PDH is 

down-regulated in rat liver following treatment with -hydroxybutyrate (Sharma et al., 2005) 

and during the development of dilated cardiomyopathy (Missihoun et al., 2009).  Importantly, 

the protein is stabilized by DCA, both in vitro and in vivo.  This was also seen in the present 

study (Fig. 5C) and explains why DCA was able to rescue the changes in mitochondrial 

function following NAT1 deletion. 

Regardless of whether PDH activity was down-regulated by phosphorylation or by loss 

of total PDH protein, the metabolic outcomes were similar suggesting that the effect of NAT1 

deletion was to decrease metabolic capacity.  Many functional changes observed following 

NAT1 inhibition are cell-type dependent. For example, in HT-29 cells (Tiang et al., 2011) and 

MDA-MB-231 cells (Stepp et al., 2018), low NAT1 activity was associated with slower growth 

and inhibition of colony formation in soft agar. This is consistent with a lower metabolic 

capacity. By contrast, no changes were observed in HeLa cells (Witham et al., 2017).  In MDA-

MB-231 and MDA-MB-436 cells, knockdown of NAT1 with shRNA induced morphological 
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changes and decreased invasiveness. However, this was not seen in BT-549 cells (Tiang et al., 

2015).  Deletion of the NAT1 gene increased reactive oxygen (ROS) production and apoptosis, 

especially under nutrient stress, in HT-29 cells but not in HeLa cells (Wang et al., 2018).  

The current study has identified diminished PDH activity as central to the changes in 

mitochondrial function following NAT1 deletion, a least in MDA-MB-231 and HT-29 cells. 

These results may help explain some of the cellular changes that have been reported recently 

in cell and animal models of NAT1 and NAT2 deficiency. For NAT2, there is a strong insulin 

resistance phenotype reported in humans carrying the slow acetylator allele (rs1208 “A”) 

(Knowles et al., 2015).  It will be important to determine whether these individuals have altered 

PDH activity in peripheral tissues.  If so, genotyping diabetic patients for NAT1 /or NAT2 

polymorphisms may identify a patient sub-population that could benefit from treatment with 

PDH activators, such as DCA  
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Figure Legends 

 

Fig 1. NAT1 deletion decreases oxidative phosphorylation. (A) Oxygen consumption rates (OCR) were 

measured in parental (open symbols) or NAT1 deleted (closed symbols) MDA-MB-231 and HT-29 

cells. Basal oxygen consumption (Basal), ATP-dependent respiration (ATP), maximum respiratory 

capacity (Max) and reserve respiratory capacity (Reserve) are shown on each graph. (B) Quantification 

of the different oxidative phosphorylation parameters in MDA-MB-231 and HT-29 parental (P) and 

NAT1 deleted (KO) cells. All data are the mean ± SEM (n = 4) normalized to cell number. Asterisks 

indicate significant differences by one-way ANOVA (p < 0.05). 

 
Fig 2. NAT1 deletion decreases glycolysis. (A) Extracellular acidification rates (ECAR) were measured 

in parental (open symbols) or NAT1 deleted (closed symbols) MDA-MB-231 and HT-29 cells. 

Glycolysis (Glyc), maximum glycolytic capacity (Max) and glycolytic reserve are shown on each graph. 

(B) Quantification of the different glycolysis parameters in MDA-MB-231 and HT-29 parental (P) and 

NAT1 deleted (KO) cells. All data are the mean ± SEM (n = 4) normalized to cell number. Asterisks 

indicate significant differences by one-way ANOVA (p < 0.05). 
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Fig 3.  (A) Bioenergetics plot for parental (blue symbols) and NAT1 deleted (red symbols) cells.  (B) 

Effect of NAT1 deletion on glucose uptake measured using 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-

yl)amino)-2-deoxyglucose (2-NBDG). Results are expressed as fluorescent units normalized to total 

cellular protein. All data are the mean ± SEM (n = 5). 
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Fig 4.  Effect of NAT1 deletion on pyruvate dehydrogenase complex. (A) Enzyme activity of the 

pyruvate dehydrogenase complex in parental (P) and knockout (KO) MDA-MD-231 cells. (B) Enzyme 

activity of the pyruvate dehydrogenase complex in parental and knockout HT-29 cells. (C and D) Effect 

of DCA on oxidative phosphorylation in MDA-MB-231 (C) and HT-29 (D) cells. The upper graphs 

show OCR in parental cells, NAT1 knockout cells and NAT1 knockout cells treated with 10 mM 

dichloroacetate (KO + DCA).  The lower graphs show quantification of reserve respiratory capacity for 

each of the cell lines.  Data are the mean ± SEM (n = 4). Asterisks indicate significant differences by 

one-way ANOVA (p < 0.05). 

ACCEPTED M
ANUSCRIP

T



13 

 

 
Fig 5. Effect of NAT1 deletion on pyruvate dehydrogenase expression. (A) Expression of PDH-E1 

and phosphorylated PDH-E1p-PDH-E1 in parental (P) and NAT1 knockout (KO) cells is shown 

for both MDA-MB-231 (MDA) and HT-29 cells. (B) The effect of 10 mM DCA on p-PDH-E1 levels 

in MDA-MB-231 cells. Quantification of the proteins relative to -tubulin is shown to the right.  (C) 
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The effect of 10 mM DCA on PDH-E1 levels in HT-29 cells. Quantification of the proteins relative 

to -tubulin is shown to the right.  All data are the mean ± SEM (n = 3). Asterisks indicate significant 

differences by one-way ANOVA (p < 0.05).  
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