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1. Introduction

The theory of Kashiwara’s crystal bases [18,19] has been shown to have deep connections with numerous 
areas of geometry and combinatorics, well-beyond its origin in representation theory and mathematical 
physics. A crystal basis is a particularly nice basis for certain representations of a quantum group Uq(g) in 
the limit q → 0, or crystal limit. In particular, for a symmetrizable Kac–Moody algebra g, the integrable 
highest weight modules V (λ), so λ is a dominant integral weight, were shown by Kashiwara to admit crystal 
bases B(λ). Moreover, Kashiwara has shown that the lower half of the quantum group U−

q (g) admits a 
crystal basis B(∞).

Roughly speaking, the algebraic action of Uq(g) gets transformed into a combinatorial action on the bases 
in the q → 0 limit. While Kashiwara’s grand loop argument showed the existence of the crystal bases B(λ), 
it did not give an explicit (combinatorial) description. Thus the problem was to determine a combinatorial 
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model for B(λ). This was first done for g of type An, Bn, Cn, and Dn in [23] and G2 in [17] by using 
tableaux. A uniform model (for all symmetrizable types) for crystals using piecewise-linear paths in the 
weight space was constructed in [31,32], which is now known as the Littelmann path model. A special case 
of the Littelmann path model includes Lakshmibai–Seshadri (LS) paths [25], where Stembridge [49] showed 
they satisfy a combinatorial interpretation of the Weyl character formula.

Both of these models arose from examining a particular aspect of the representation theory of g and the 
related combinatorics or geometry. There are numerous (but not necessarily uniform) models for B(λ) that 
have been constructed from geometric objects such as quiver varieties [24,41,46] and MV polytopes [1,12,
33,50]. Another uniform model for crystals came from the study of (t-analogs of) q-characters [22,34–36], 
which is now known as Nakajima monomials. Additionally, some models for crystals have also arisen from 
mathematical physics, in particular, solvable lattice models [14,15] (the Kyoto path model) and Kirillov–
Reshetikhin modules [42–45,47,48] (the rigged configuration model).

Many of these models are known to have extensions to B(∞). Some authors have used the direct limit 
construction of Kashiwara [21] to extend a particular crystal model for B(λ) to B(∞). Examples include 
the tableaux model [2,6,7] and rigged configurations [42–45], where the model reflects the naturality of the 
inclusion of B(λ) → B(μ) for λ ≤ μ. For instance, the (marginally) large tableaux model can be considered as 
the closure of the tableau with an infinite number of columns of height r with entries [1, 2, . . . , h]T for all 1 ≤
j ≤ n in types An, Bn, Cn, and Dn+1. In contrast, other authors have used other characterizations of B(∞)
to construct their extensions, such as the polyhedral realization [38] (which has a B(λ) version [8–10,37]), 
(modified) Nakajima monomials [16], and Littelmann paths [30]. For example, the polyhedral realization 
is constructed using repeated iterations of the Kashiwara embedding ψi : B(∞) → Bi ⊗ B(∞), where Bi

is the crystal of an infinite i-string. The Nakajima monomials were shown to be isomorphic to B(∞) by 
considering the decomposition to rank 2, but they can be seen as encoding the polyhedral realization for a 
specific sequence of embeddings.

The model we will be focusing on is a discrete version of the Littelmann path model known as the 
alcove path model that was given for B(λ) in [28,29]. The alcove path model in finite types is related to 
LS galleries and Mirković–Vilonen (MV) cycles [4] and the equivariant K-theory of the generalized flag 
variety [28]. Moreover, the alcove path model can be described in terms of certain saturated chains in the 
(strong) Bruhat poset. While the Littelmann path model came first, it is perhaps more proper to consider 
the Littelmann path model as the continuous limit of the alcove path model. Moreover, the alcove path 
model carries with it more information, specifically the order in which the hyperplanes are crossed, allowing 
a non-recursive description of the elements in full generality.

The primary goal of this paper is to construct a model for B(∞) using the alcove path model. Our 
approach is to use the direct limit construction of Kashiwara restricted to {B(kρ)}∞k=0,3 where the inclusions 
ψkρ,k′ρ : B(kρ) → B(k′ρ), for k′ ≥ k, are easy to compute. In order to do so, we define the concatenation of 
a λ-chain and a μ-chain (see Definition 2.5). We then complete our proof by using the fact that for every 
b ∈ B(∞), there exists a k � 1 such that b and fib, for all i, is not in the kernel of the natural projection 
onto B(kρ). As a result, we obtain a simple description of B(kρ) inside of B(∞) in the alcove path model, 
but describing the inclusion of a generic B(λ) remains open. Next, the continuous limit of the alcove path 
model for B(λ) to the Littelmann path model for B(−λ) is given explicitly by [29, Thm. 9.4] as a “dual” 
crystal isomorphism �λ. We extend �λ to an explicit crystal isomorphism between the alcove path model 
and Littelmann path model for B(∞).

One of the strengths of the alcove path model for B(λ) is that the elements in the crystal are given 
non-recursively; in particular, they are not constructed by applying the crystal operators to the highest 
weight element. We retain the notion of an admissible sequence when we consider B(∞). Thus, the check 
whether an element is in B(∞) is a matter of checking if the foldings in an alcove path correspond to a 

3 We omit the weight shifting crystals T−kρ for simplicity of our exposition in the introduction.
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saturated chain in the Bruhat order. Hence, we obtain the first model for B(∞) that has a non-recursive 
description of its elements in all symmetrizable types. Previously, if the model had a non-recursive definition, 
it was either type-specific (for example [2,6,12,13]) or described as the closure under the crystal operators 
(for example [16,30,42,44]).

In order to construct the continuous limit of the alcove path model for B(∞) in analogy to [28, Thm. 9.4], 
we need to construct a Littelmann path model for the contragredient dual of B(∞). We note that we can 
construct the contragredient dual crystal explicitly in terms of (finite length) Littelmann paths by reversing 
a path and changing the starting point. Using this as a base, we construct a new model that no longer starts 
at the origin, unlike the usual Littelmann path model (or the natural model for B(−∞) as the direct limit 
of {B(−kρ)}∞k=0), but, roughly speaking, “at infinity.” We show that the map described by [28] extends to 
the B(∞) case and is a dual isomorphism between the two models. Moreover, in an effort to avoid using 
the dual Littelmann path model, we are led to construct a dual alcove path model that is essentially given 
by reversing the alcove path, mimicking the contragredient dual construction on Littelmann paths (see 
Theorem 5.4). We then show that dual alcove path model is dual isomorphic to the usual Littelmann path 
model.

This paper is organized as follows. In Section 2, we give the necessary background on crystals and the 
alcove path model. In Section 3, we describe our alcove path model for B(∞). In Section 4, we prove our 
main results. In Section 5, we construct an isomorphism between our model and the (dual) Littelmann path 
model.

2. Background

In this section, we give a background on general crystals, the crystal B(∞), and the alcove path model.

2.1. Crystals

Let g be a symmetrizable Kac–Moody algebra with index set I, generalized Cartan matrix A = (Aij)i,j∈I , 
weight lattice P , root lattice Q, fundamental weights {Λi | i ∈ I}, simple roots {αi | i ∈ I}, simple coroots 
{α∨

i | i ∈ I}, and Weyl group W . Let Uq(g) be the corresponding Drinfel’d–Jimbo quantum group [3,
11]. Let h∗

R
:= R ⊗Z P and hR := R ⊗Z P∨ be the corresponding dual space, where P∨ is the coweight 

lattice. We also denote the canonical pairing 〈·, ·〉 : h∗
R
× hR → R given by 

〈
αi, α

∨
j

〉
= Aij . Let Φ+ denote 

positive roots, P+ denote the dominant weights, and ρ =
∑

i∈I Λi. For a root α, the corresponding coroot 
is α∨ := 2φ(α)/〈α, φ(α)〉, where φ : h∗

R
→ hR is the R-linear isomorphism given by φ(αi) = diα

∨
i , where 

D = (di)i∈I is the diagonal matrix symmetrizing A.
An abstract Uq(g)-crystal is a nonempty set B together with maps

ei, fi : B → B � {0}, εi, ϕi : B → Z � {−∞}, wt: B → P,

which satisfy the properties

1. ϕi(b) = εi(b) + 〈wt(b), α∨
i 〉 for all i ∈ I,

2. if b ∈ B satisfies eib �= 0, then
(a) εi(eib) = εi(b) − 1,
(b) ϕi(eib) = ϕi(b) + 1,
(c) wt(eib) = wt(b) + αi,

3. if b ∈ B satisfies fib �= 0, then
(a) εi(fib) = εi(b) + 1,
(b) ϕi(fib) = ϕi(b) − 1,
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(c) wt(fib) = wt(b) − αi,
4. fib = b′ if and only if b = eib

′ for b, b′ ∈ B and i ∈ I,
5. if ϕi(b) = −∞ for b ∈ B, then eib = fib = 0.

The maps ei and fi, for i ∈ I, are called the crystal operators or Kashiwara operators. We refer the reader 
to [5,19] for details.

We call an abstract Uq(g)-crystal upper regular if

εi(b) = max{k ∈ Z≥0 | eki b �= 0}

for all b ∈ B. Likewise, an abstract Uq(g)-crystal is lower regular if

ϕi(b) = max{k ∈ Z≥0 | fk
i b �= 0}

for all b ∈ B. When B is both upper regular and lower regular, then we say B is regular . For B a regular 
crystal, we can express an entire i-string through an element b ∈ B diagrammatically by

e
εi(b)
i b

i−−−−→ · · · i−−−−→ e2
i b

i−−−−→ eib
i−−−−→ b

i−−−−→ fib
i−−−−→ f2

i b
i−−−−→ · · · i−−−−→ f

ϕi(b)
i b.

An abstract Uq(g)-crystal is called highest weight if there exists an element u ∈ B such that eiu = 0
for all i ∈ I and there exists a finite sequence (i1, i2, . . . , i�) such that b = fi1fi2 · · · fi�u for all b ∈ B. The 
element u is called the highest weight element.

Let B1 and B2 be two abstract Uq(g)-crystals. A crystal morphism ψ : B1 → B2 is a map B1 � {0} →
B2 � {0} such that

1. ψ(0) = 0;
2. if b ∈ B1 and ψ(b) ∈ B2, then wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), and ϕi(ψ(b)) = ϕi(b);
3. for b ∈ B1, we have ψ(eib) = eiψ(b) provided ψ(eib) �= 0 and eiψ(b) �= 0;
4. for b ∈ B1, we have ψ(fib) = fiψ(b) provided ψ(fib) �= 0 and fiψ(b) �= 0.

A morphism ψ is called strict if ψ commutes with ei and fi for all i ∈ I. Moreover, a morphism ψ : B1 → B2

is called an embedding or isomorphism if the induced map B1 � {0} → B2 � {0} is injective or bijective, 
respectively. If there exists an isomorphism between B1 and B2, say they are isomorphic and write B1 ∼= B2.

The tensor product B2 ⊗ B1 is the crystal whose set is the Cartesian product B2 × B1 and the crystal 
structure given by

ei(b2 ⊗ b1) =
{
eib2 ⊗ b1 if εi(b2) > ϕi(b1),
b2 ⊗ eib1 if εi(b2) ≤ ϕi(b1),

fi(b2 ⊗ b1) =
{
fib2 ⊗ b1 if εi(b2) ≥ ϕi(b1),
b2 ⊗ fib1 if εi(b2) < ϕi(b1),

εi(b2 ⊗ b1) = max
(
εi(b1), εi(b2) − 〈α∨

i ,wt(b1)〉
)
,

ϕi(b2 ⊗ b1) = max
(
ϕi(b2), ϕi(b1) + 〈α∨

i ,wt(b2)〉
)
,

wt(b2 ⊗ b1) = wt(b2) + wt(b1).

Remark 2.1. Our convention for tensor products is opposite the convention given by Kashiwara in [19].
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We say an abstract Uq(g)-crystal is simply a Uq(g)-crystal if it is crystal isomorphic to the crystal basis 
of a Uq(g)-module.

The highest weight Uq(g)-module V (λ) for λ ∈ P+ has a crystal basis [18,19]. The corresponding (ab-
stract) Uq(g)-crystal is denoted by B(λ), and we denote the highest weight element by uλ. Moreover, the 
negative half of the quantum group U−

q (g) admits a crystal basis denoted by B(∞), and we denote the 
highest weight element by u∞. Note that B(λ) is a regular Uq(g)-crystal, but B(∞) is only upper regular.

Consider a directed system of abstract Uq(g)-crystals {Bj}j∈J with crystal morphisms ψk,j : Bj → Bk for 
j ≤ k (with ψj,j being the identity map on Bj) such that ψk,jψj,i = ψk,i for i ≤ j ≤ k. Let 
B = lim−−→j∈J

Bj

be the direct limit of this system, and let ψ(j) : Bj → 
B. Then Kashiwara showed in [21] that 
B has a crystal 
structure induced from the crystals {Bj}j∈J ; in other words, direct limits exist in the category of abstract 
Uq(g)-crystals. Specifically, for 
b ∈ 
B and i ∈ I, define ei
b to be ψ(j)(eibj) if there exists bj ∈ Bj such that 
ψ(j)(bj) = 
b and ei(bj) �= 0, otherwise set ei
b = 0. Note that this definition does not depend on the choice 
of bj . The definition of fi
b is similar. Moreover, the functions wt, εi, and ϕi on Bj extend to functions on 

B.

Definition 2.2. For a weight λ, let Tλ = {tλ} be the abstract Uq(g)-crystal with operations defined by

eitλ = fitλ = 0, εi(tλ) = ϕi(tλ) = −∞, wt(tλ) = λ,

for any i ∈ I.

Consider an abstract Uq(g)-crystal B, then the tensor product Tλ ⊗ B has the same crystal graph as B
(but the weight, εi, and ϕi have changed). Next, we recall from [21] that the map

ψλ+μ,λ : T−λ ⊗B(λ) ↪−→ T−λ−μ ⊗B(λ + μ)

which sends t−λ ⊗ uλ �→ t−λ−μ ⊗ uλ+μ is a crystal embedding, and this morphism commutes with ei for 
each i ∈ I. Moreover, for any λ, μ, ξ ∈ P+, the diagram

T−λ ⊗B(λ) T−λ−μ ⊗B(λ + μ)

T−λ−μ−ξ ⊗B(λ + μ + ξ)

ψλ+μ,λ

ψλ+μ+ξ,λ

ψλ+μ+ξ,λ+μ

(2.1)

commutes. Furthermore, if we order P+ by μ ≤ λ if and only if 〈λ− μ, α∨
i 〉 ≥ 0 for all i ∈ I, the set 

{T−λ ⊗B(λ)}λ∈P+ is a directed system.

Theorem 2.3 ([21]). We have

B(∞) = lim−−→
λ∈P+

T−λ ⊗B(λ).

From Theorem 2.3, we have that for any λ ∈ P+, there exists a natural projection pλ : B(∞) → T−λ⊗B(λ)
and inclusion iλ : T−λ ⊗B(λ) → B(∞) such that pλ ◦ iλ is the identity on T−λ ⊗B(λ).

We can also form the contragredient dual crystal B∨ of B as follows. Let B∨ = {b∨ | b ∈ B}, and define 
the crystal structure on B∨ by
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fi(b∨) = (eib)∨, ei(b∨) = (fib)∨

ϕi(b∨) = εi(b), εi(b∨) = ϕi(b),

wt(b∨) = −wt(b),

for all b ∈ B. Note that (B∨)∨ is canonically isomorphic to B. We say the B is dual isomorphic to C if 
there exists a crystal isomorphism Ψ: B → C∨ and the canonically induced bijection Ψ∨ : B → C is a dual 
crystal isomorphism. Explicitly, a dual crystal isomorphism satisfies

fi
(
Ψ∨(b)

)
= Ψ∨(eib), ei

(
Ψ∨(b)

)
= Ψ∨(fib),

ϕi

(
Ψ∨(b)

)
= εi(b), εi

(
Ψ∨(b)

)
= ϕi(b),

wt
(
Ψ∨(b)

)
= −wt(b),

for all b ∈ B.

2.2. Alcove path model

Consider a sequence Γ = (βk | βk ∈ Φ+)k∈K such that a root α occurs 〈λ, α∨〉 times for some totally 
ordered indexing set K = {k1 < k2 < · · · < km} (with possibly m = ∞). Equate Γ with a total ordering on 
the set

Rλ := {(α, h) | α ∈ Φ+, 0 ≤ h < 〈λ, α∨〉}

by (β, h) being the h-th occurrence of β in Γ. Note that K is countable since Rλ is a countable disjoint 
union of finite sets. In other words, to obtain Γ from a totally ordered Rλ, ignore the second index from the 
tuples (β, k). For each k ∈ K and δ ∈ Φ+, define NΓ

k (δ) := |{k′ < k | βk′ = δ}|. A sequence Γ = (βk)k∈K is 
called a λ-chain if it corresponds to a total ordering on Rλ and for any α, β, γ ∈ Φ+ such that α �= β and 
γ∨ = α∨ + pβ∨, for some p ∈ Z, then

NΓ
k (γ) = NΓ

k (α) + pNΓ
k (β) (2.2)

for all k ∈ K such that β = βk.

Remark 2.4. We can recover the total order on Rλ from Γ by βk �→
(
βk, NΓ

k (βk)
)
, and we will also refer to 

this order, viewed as a sequence, as a λ-chain.

Given α ∈ Φ+ and h ∈ Z, let

Hα,h := {λ ∈ h∗
R
| 〈λ, α∨〉 = h} . (2.3)

Let sα,h denote the reflection in h∗
R

across Hα,h, and denote sα := sα,0.
In the case of finite root systems, i.e. when |Φ| < ∞, the hyperplanes Hα,h divide the real vector space 

h∗
R

into open connected components, called alcoves, and we have the following geometric interpretation of 
a λ-chain. Let A◦ = {μ ∈ h∗

R
| 0 < 〈μ, α∨

i 〉 < 1 for all i ∈ I} denote the fundamental alcove, and let 
Aλ = A◦ + λ be the translation of A◦ by λ. Fix some λ ∈ P+. For a pair of adjacent alcoves A and B, 
i.e., their closures have non-empty intersection, we write A α−−−−−→ B if the common wall of A and B is 
orthogonal to the root α ∈ Φ and α points in the direction from A to B. If |Rλ| = m < ∞, we can equate 
a λ-chain with an alcove path of shortest length from A◦ to A−λ by
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A◦ = A0
−β1−−−−−→ A1

−β2−−−−−→ · · · −βm−−−−−→ Am = A−λ.

The common wall between Ai−1 and Ai is H−β,h, where (β, h) =
(
βi, NΓ

i (βi)
)
. In the sequel, we will give 

the alcove paths for m < ∞ to aid the intuition for the general case that we are considering.

Definition 2.5. Let Γ = (βk)k∈K and Γ′ = (β′
k′)k′∈K′ be a λ-chain and a λ′-chain respectively. Let Γ ∗ Γ′

denote the concatenated sequence (β∗
k∗)k∗∈K
K′ , where

β∗
k∗ =

{
βk∗ if k∗ ∈ K,

β′
k∗ if k∗ ∈ K′,

and the ordering on K�K′ is given by the total orders on K and K′ and defining K < K′. We denote Γp as 
Γ concatenated with itself p times, and we consider the indexing set to be K × {1, . . . , p}.

Proposition 2.6. The concatenation Γ ∗ Γ′ is a (λ + λ′)-chain.

Proof. It is clear that Γ ∗ Γ′ gives a total ordering on Rλ+λ′ . Note that Equation (2.2) is satisfied for 
k ∈ K because NΓ

k (δ) = NΓ∗Γ′

k (δ) for all δ ∈ Φ+ and k ∈ K and because Γ is a λ-chain. Similarly, we have 
NΓ∗Γ′

k′ (α) = 〈λ, α∨〉 + NΓ′

k′ (α) for all k′ ∈ K′ and α ∈ Φ+ since K < k′ and Γ is a λ-chain. Likewise, if for 
γ∨ = α∨ + pβ∨, then Equation (2.2) is satisfied for all k′ ∈ K′ because

NΓ′

k′ (γ) = NΓ′

k′ (α) + pNΓ′

k′ (β),

NΓ′

k′ (γ) = NΓ′

k′ (α) + pNΓ′

k′ (β) + 〈λ, α∨ + pβ∨ − γ∨〉 ,
〈λ, γ∨〉 + NΓ′

k′ (γ) = 〈λ, α∨〉 + NΓ′

k′ (α) + p
(
〈λ, β∨〉 + NΓ′

k′ (β)
)
,

NΓ∗Γ′

k′ (γ) = NΓ∗Γ′

k′ (α) + pNΓ∗Γ′

k′ (β),

where the first equality holds because Γ′ is a λ′-chain. �
Remark 2.7. We note that being a finite λ-chain means it is a minimal length alcove path to A−λ [28,29]. 
Therefore, for two finite chains, their concatenation is a minimal length alcove path to A−λ−μ.

Fix a total order on the set of simple roots α1 ≺ α2 ≺ · · · ≺ αn. We recall the definition of a particular 
λ-chain from [29, Prop. 4.2] called the lex λ-chain and denoted by Γλ. We define the lex total ordering on 
Rλ as follows. For each (β, h) ∈ Rλ, let β∨ = c1α

∨
1 + · · · + crα

∨
n , and define the vector

vβ,h := 1
〈λ, β∨〉 (h, c1, . . . , cn)

in Qn+1. Then define (β, h) < (β′, h′) if and only if vβ,h < vβ′,h′ in the lexicographic order on Qn+1, which 
defines a total order on Rλ. That is to say, if the k-th element of Rλ with respect to this order is (β, h), 
then set βk = β, and �k = h.

Let rj = sβj
and r̂j = sβj ,−�j . We consider a set of folding positions J = {j1 < j2 < · · · < jp} ⊆ K, and 

call J admissible if we have

ι(J) := 1 � rj1 � rj1rj2 � · · ·� rj1rj2 · · · rjp =: τ(J), (2.4)

where w � w′ denotes a cover relation in Bruhat order. In other words, J is admissible if it corresponds to 
a path in the Bruhat graph of W . Let A(Γλ) denote the set of all J ⊆ K such that J is admissible. We 
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also write A(λ) := A(Γλ). We will identify the integers jk of an admissible set with the corresponding jk-th 
element in the λ-chain; in other words, we identify {j1 < · · · < jp} = {(βj1 , �j1) < · · · < (βjp , �jp)}.

Now we recall the crystal structure on A(λ) from [29]. First, the weight function wt: A(λ) → P is defined 
as

wt(J) = −r̂j1 · · · r̂jp(−λ). (2.5)

Next consider some J ∈ A(λ) and define Γλ(J) = (γk)k∈K, where

γk = rj1rj2 · · · rjt(βk) (2.6)

with t = max{a | ja < k}. Next, we describe the crystal operators. Our description is in terms of Γλ(J) and 
is equivalent to those given in [29], where it is shown that crystal operators give admissible sequences. We 
show this connection in Appendix B. Fix some i ∈ I, and we define the sets

Iαi
= {k | γk = ±αi}, (2.7a)

Iαi
\ J = {d1 < d2 < · · · < dq}. (2.7b)

Consider the word on the alphabet {+, −} given by

sgn(γd1) sgn(γd2) · · · sgn(γdq
), (2.8)

where sgn(γ) is the sign of γ. Cancel −+ pairs in this word until none remain, and we call this the reduced 
i-signature. If there is no + in the reduced i-signature, then define

fiJ =
{
J \ {min(J ∩ Iαi

)} if 〈ι(J)(ρ), α∨
i 〉 < 0,

0 otherwise.
(2.9a)

Otherwise, let a be the index corresponding to the rightmost + in the reduced i-signature. Let A = {j ∈
J ∩ Iαi

| j > a}, and define

fiJ =
{
J ∪ {a} if A = ∅,
(J \ {minA}) ∪ {a} otherwise.

(2.9b)

Remark 2.8. Since ι(J) = 1, we have 〈ι(J)(ρ), α∨
i 〉 > 0. Hence, in this case there is no + in the reduced 

i-signature, and so fiJ will be 0. The reason for defining fi this way is to simplify the construction of crystal 
operators in the dual model in Section 2.5.

The definition for ei is similar. If no − exists in the reduced i-signature, then define

ei(J) =
{
J \ {max(J ∩ Iαi

)} if 〈τ(J)(ρ), α∨
i 〉 < 0,

0 otherwise.
(2.10a)

Otherwise, let a be the index corresponding to the leftmost − in the reduced i-signature. Let A = {j ∈
J ∩ Iαi

| j < a}, and define

eiJ =
{
J ∪ {a} if A = ∅,
(J \ {maxA}) ∪ {a} otherwise.

(2.10b)
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Fig. 1. The action of a few crystal operators on A(ρ) (above) and A(2ρ) (below) in type A2 starting with ∅ on the left.

Remark 2.9. If the reduced i-signature contains the symbol −, then it can be shown that A �= ∅. The case 
A = ∅ is included in Equation (2.10b) to simplify construction of crystal operators in the dual model in 
Section 2.5.

For any λ-chain Γ, we define εi and ϕi by requiring that A(Γ) is a regular crystal.

Theorem 2.10 ([29]). Fix some λ ∈ P+. Then, we have

A(λ) ∼= B(λ).

2.3. Littelmann path model

Let π1, π2 : [0, 1] → h∗
R
, and define an equivalence relation ∼ by saying π1 ∼ π2 if there exists a piecewise-

linear, nondecreasing, surjective, continuous function φ : [0, 1] → [0, 1] such that π1 = π2 ◦ φ. A path is an 
equivalence class [π] such that π(0) = 0. For ease of notation, we will simply write a path by π.

Let π1 and π2 be paths. Define the concatenation π = π1 ∗ π2 by

π(t) :=
{
π1(2t) 0 ≤ t ≤ 1/2,
π1(1) + π2(2t− 1) 1/2 < t ≤ 1.

Next, consider a path π. Define siπ as the path given by (siπ)(t) = si
(
π(t)

)
.

We now recall the crystal structure on the set of all paths from [31,32]. Fix some i ∈ I and path π. Define 
functions Hi,π : [0, 1] → R by

π(t) =
∑
i∈I

Hi,π(t)Λi,

and so Hi,π(t) = 〈π(t), α∨
i 〉. Let mi,π := min{Hi,π(t) | t ∈ [0, 1]} denote the minimal value of Hi,π.
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If −mi,π < 1, then define eiπ = 0, otherwise define eiπ as the path given by

(eiπ)(t) =

⎧⎪⎪⎨⎪⎪⎩
π(t) if t ≤ t0,

π(t0) + si
(
π(t) − π(t0)

)
if t0 < t ≤ t1,

π(t) + αi if t1 ≤ t,

where

t1 := min{t ∈ [0, 1] | Hi,π(t) = mi,π},

t0 := max{t ∈ [0, t1] | Hi,π(t′) ≥ mi,π + 1 for all t′ ∈ [0, t]}.

Next, if Hi,π(1) −mi,π < 1, then define fiπ = 0, otherwise define fiπ as the path given by

(fiπ)(t) =

⎧⎪⎪⎨⎪⎪⎩
π(t) if t ≤ t0,

π(t0) + si
(
π(t) − π(t0)

)
if t0 < t ≤ t1,

π(t) − αi if t1 ≤ t,

where

t0 := max{t ∈ [0, 1] | Hi,π(t) = mi,π},

t1 := min{t ∈ [t0, 1] | Hi,π(t′) ≥ mi,π + 1 for t′ ∈ [t, 1]}.

For the remaining crystal structure, we define

εi(π) = −mi,π,

ϕi(π) = Hi,π(1) −mi,π,

wt(π) = π(1).

Let Π(λ) denote the closure under the crystal operators of the path πλ(t) = tλ.

Theorem 2.11 ([20,31,32]). Let g be of symmetrizable type and λ ∈ P+. Then

Π(λ) ∼= B(λ).

Moreover, Π(λ) ⊗ Π(μ) is isomorphic to {ξ ∗ π | π ∈ Π(λ), ξ ∈ Π(μ)} by π ⊗ ξ �→ ξ ∗ π.

Remark 2.12. The reversal of the concatenation is due to our order of the tensor product. See Remark 2.1.

Furthermore, we note that the contragredient dual path π∨ is given explicitly by

π∨(t) = π(1 − t) − π(1). (2.11)

Moreover, we have (fiπ)∨ = ei(π∨). This gives the following proposition.

Proposition 2.13. We have Π(−λ) ∼= Π(λ)∨ given by π �→ π∨.
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For λ ∈ P+ and g of finite type, the lowest weight element of Π(λ) is precisely πw0λ, where w0 is the 
longest element of W . Hence, we have Π(−w0λ) = Π(λ)∨ as sets [31,32].

Now we recall the construction of B(∞) using the (modified) Littelmann paths from [30]. An extended 
path is an equivalence class π : [0, ∞) → h∗

R
, with the same equivalence relation ∼ above, that eventually 

results in the direction ρ; that is, there exists a T such that for all t > T , we have π′(t) = ρ, where π′ = dπ
dt .

Define Π(∞) as the closure under the crystal operators of π∞(t) = tρ. For Π(∞), we need to modify the 
definition of weight and ϕi to be

wt(π) = π(T ) − Tρ,

ϕi(π) = εi(π) + 〈wt(π), α∨
i 〉 = −mi,π + Hi,π(T ) − T,

where T = min{t | π′(t̃) = ρ, ̃t ≥ t}, whereas εi(π) = −mi,π as for Π(λ). For the definition of the crystal 
operators, we replace the intervals [0, 1] with [0, ∞) and drop the condition for fiπ = 0 (alternatively, it is 
never satisfied because limt→∞ Hi,π(t) −mi,π = ∞).

Theorem 2.14 ([30]). Let g be of symmetrizable type. Then

Π(∞) ∼= B(∞).

2.4. Continuous limit

We recall the dual crystal isomorphism �λ : A(λ) → Π(−λ) from [29, Thm. 9.4].
Consider an admissible set J = {(ζ1, �1) < · · · < (ζp, �p)} ∈ A(λ). Let Rj = sζj and let tj = �j/ 

〈
λ, ζ∨j

〉
, 

and note that t1 ≤ t2 ≤ · · · ≤ tp. Next define the set

{0 = a0 < a1 < a2 < · · · < aq} := {0} ∪ {t1, . . . , tp},

which may be of smaller size due to repetition. For 0 ≤ d ≤ q, define μd := −R1 · · ·Rnd
(λ), where nd =

max{1 ≤ i ≤ p | ad = ti} and we consider μ0 = −λ if there is no i such that ti = ad. Now, we define �λ(J)
as the Littelmann path π : [0, 1] → hR given by

π(t) = (t− ad)μd +
d−1∑
m=0

(am+1 − am)μm, (2.12)

for ad ≤ t ≤ ad+1 and all 0 ≤ d ≤ q with aq+1 = 1.

Theorem 2.15 ([29]). Let g be of symmetrizable type. The map �λ : A(λ) → Π(−λ) is a dual crystal iso-
morphism.

Indeed, the map �λ is dual in the sense that the map �∨
λ : A(λ) → Π(−λ)∨ given by �∨

λ (J) := �λ(J)∨ is 
a crystal isomorphism. From Proposition 2.13, we can consider �∨

λ as a crystal isomorphism A(λ) ∼= Π(λ).
We can also roughly describe the map �λ geometrically as follows. Define F to be the set of alcoves that 

contain the origin, and we note that we can tile by Q translates of F (i.e., F is a fundamental domain with 
respect to translation by elements in Q). For example, in type A2, these are the 6 chambers that form a 
hexagon and are in bijection with elements of the Weyl group S3. We then construct the Littelmann path 
as a slight perturbation of the path corresponding to a folded alcove path and contracting each translate of 
F to its corresponding element in Q.
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2.5. Contragredient dual alcove paths

We recall an equivalent formulation of the alcove path model from [27].

Definition 2.16. A sequence Γ∨ = (βk∨)k∨∈K∨ with K∨ = {k∨m < · · · < k∨2 < k∨1 } (with possibly m = ∞) is 
a dual λ-chain if it corresponds to a total ordering on Rλ

4 and for any α, β, γ ∈ Φ+ such that α �= β and 
γ∨ = α∨ + pβ∨, for some p ∈ Z, then

ŇΓ∨

k∨ (γ) = ŇΓ∨

k∨ (α) + pŇΓ∨

k∨ (β), (2.13)

where ŇΓ∨

k (δ) := |{k′ > k | βk′ = δ}|, for all k ∈ K∨ such that β = βk.

For a λ-chain Γ = (βk)k∈K, the corresponding dual λ-chain is given by Γ∨ = (βk)k∈K∨ , where K∨ is K in 
the reverse order, which is also the “(−λ)-chain” (using the negative roots −βk). In terms of alcove paths 
(in the case of finite root systems), for the path

A◦ = A0
−β1−−−−−→ A1

−β2−−−−−→ · · · −βm−−−−−→ Am = A−λ,

the dual path is given by

A◦ = A′
m

βm−−−−−→ A′
m−1

βm−1−−−−−→ · · · β1−−−−−→ A′
0 = Aλ, (2.14)

where A′
i = Ai + λ. Here K = {1 < 2 < · · · < m} and K∨ = {m < m − 1 < · · · < 1}. Recall that the 

common wall between Ai−1 and Ai is H−βi,�i , where �i = NΓ
i (βi). The common wall between A′

i and A′
i−1

is Hβi,�̃i
, where �̃i = 〈λ, β∨

i 〉 − �i. Let r̂′i = sβi,�̃i
.

We reindex the dual λ-chain by the natural isomorphism K ↔ K∨ so that we can write Γ∨ = (βk)k∈K to 
simplify our notation. A subset J = {j1 < j2 < · · · < jp} ⊂ K is dual admissible if there exists some w ∈ W

with

w � wrj1 � wrj1rj2 � . . .� wrj1rj2 · · · rjp = 1,

cf. Equation (2.4). We set

τ(J) = rj1rj2 · · · rjp = w−1 , ι(J) = 1 .

As before we have Γ∨(J) = (γ1, γ2, . . . , γq), where

γk = wrj1rj2 · · · rjt(βk) = rjp · · · rjt+1(βk)

with t = max{a | ja ≤ k}. We also have

wt(J) = ι(J)r̂′j1 · · · r̂
′
jp(λ).

Remark 2.17. The sequence Γ∨(J) in this section can be obtained by reversing the sequence Γλ(J) from 
Section 2.2. This construction is analogous to taking the contragredient dual of the Littelmann path π∨, cf. 
Equation (2.11).

4 Note that the bijection is given by now reading right-to-left.



JID:JPAA AID:6089 /FLA [m3L; v1.252; Prn:26/02/2019; 8:23] P.13 (1-23)
A. Lubovsky, T. Scrimshaw / Journal of Pure and Applied Algebra ••• (••••) •••–••• 13
Let A∨(Γ) be defined as the set of subsets J ⊂ {1, . . . , m} which are dual admissible with respect 
to Γ∨. For brevity, we denote A∨(λ) := A∨(Γλ). In this case, we define crystal operators fi and ei by 
Equations (2.9) and (2.10) respectively, using the sets Iαi

and Iαi
\ J as defined in Equation (2.7), and the 

word

sgn(−γd1) sgn(−γd2) · · · sgn(−γdq
),

instead of Equation (2.8). Thus, we have the following.

Proposition 2.18. We have

A∨(Γ) ∼= A(Γ)∨,

where the crystal isomorphism is given by J �→ J .

Proposition 2.18 and Theorem 2.15 give us the following.

Corollary 2.19. Let g be of symmetrizable type. Then there exists a dual crystal isomorphism �∨
λ : A∨(λ) ∼=

Π(λ).

3. Infinite alcove paths

In this section, we construct the alcove path model for B(∞) that naturally arises from using alcove 
paths and dual alcove paths, which we will denote by A(∞) and A∨(∞), respectively. In the sequel, we will 
show that these are isomorphic to the direct limit of A(λ) and A∨(λ) as λ → ∞, respectively.

Roughly speaking, our construction for A(∞) is to concatenate an infinite number of ρ-chains (which 
is the same as the kρ-chain), but shifting them so that the final chamber is A◦. We do this because the 
folding occurs closest to the final chamber. In other words, we want to keep track of the final chamber of 
the kρ-path in the limit as k → ∞. For A∨(∞), the folding wants to occur near the initial chamber, so we 
can simply concatenate an infinite number of dual ρ-chains.

3.1. The crystal A(∞)

We first give a combinatorial interpretation for A(∞) and then a geometric one. Fix some ρ-chain 
Γ = (βk)k∈K . We define the ∞-chain of Γ as · · · ∗ Γ ∗ Γ, which in terms of alcove paths is

· · · −βm−1−−−−−→ A−m−1
−βm−−−−−→ A−m

−β1−−−−−→ · · · −βm−1−−−−−→ A−1
−βm−−−−−→ A0 = A◦.

Then A(∞) is the set of all admissible sequences with respect to the above ∞-chain of Γ. As before, an 
admissible sequence is a finite set. If the common wall between Ai−1 and Ai is H−βi,h, then h < 0 since the 
∞-chain stays in the dominant chamber. Hence if we write the folding positions as {(ζ1, �1), . . . , (ζp, �p)}, 
then we have �k < 0 for all k.

Geometrically, we start with ∅ denoting the infinite alcove path ending at the dominant alcove A◦ and 
indefinitely repeating backwards along the ρ-chain. All subsequent elements in A(∞) are foldings of this 
alcove path. In particular, it will not necessarily end in the dominant alcove. See Fig. 2 for an example.

We define fi and ei by Equations (2.9) and (2.10), respectively, εi by specifying A(∞) is an upper 
regular crystal, and wt by Equation (2.5) with λ = 0. Thus, we can define ϕi by Condition (1) of an 
abstract Uq(g)-crystal.
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Fig. 2. The action of a few crystal operators on A(∞) in type A2 starting with ∅ on the left.

Fig. 3. The first four levels of A(∞) of type A2.

Lemma 3.1. The set A(∞) is an abstract Uq(g)-crystal with the crystal structure given above.

Proof. First note that any reduced i-signature is of the form · · · + + − − · · · −, where there are at most 
εi(J) number of −’s. Thus, the crystal operators ei and fi are well-defined. Next, note that ∅ is the highest 
weight element of A(∞), and we have

εi(∅) = ϕi(∅) = 〈α∨
i ,wt(∅)〉 = 0

for all i ∈ I. Thus it is sufficient to show that Conditions (3) and (4) hold as it is clear ϕi(J) > −∞ for all 
J ∈ A(∞). However, these follow from similar arguments as given in [29, Sec. 7]. �

Example 3.2. We give fi4fi3fi2fi1∅, where i1, i2, i3, i4 ∈ {1, 2}, for type A2 in Fig. 3.
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Fig. 4. The action of a few crystal operators on A∨(∞) in type A2 starting with ∅ on the left.

3.2. The dual crystal A∨(∞)

The construction of A∨(∞) will be similar to the construction done in Section 2.5.
For a fixed dual ρ-chain Γ∨ = (βk)k∈K, we define the dual ∞-chain of Γ as Γ∨ ∗ Γ∨ ∗ · · · , which in terms 

of alcove paths is

A◦ = A0
β1−−−−−→ A1

β2−−−−−→ · · · βm−−−−−→ Am
β1−−−−−→ Am+1

β2−−−−−→ · · · .

Note that we have reindexed Γ∨ here compared to dual ρ-chain given in Section 2.5. We can also define 
crystal operators on A∨(∞) as in Section 2.5.

Proposition 3.3. We have a crystal isomorphism

A∨(∞) ∼= A(∞)∨

given by J �→ J .

Proof. Similar to the proof of Proposition 2.18. �
Unlike for the model A(∞), the alcove paths for A∨(∞) will always end in an (closed) alcove that contains 

the origin (i.e., it will start in an alcove of the fundamental domain with respect to the action of Q). For 
an example, see Fig. 4.

4. Main results

Let λ, μ ∈ P+. We embed A(λ) into A(μ + λ) as follows. Recall that there is a unique component 
B(μ + λ) ⊆ B(μ) ⊗ B(λ) and that B(λ) embeds into B(μ + λ) ⊆ B(μ) ⊗ B(λ) by b �→ uμ ⊗ b. Using this 
idea and that concatenation corresponds to tensor products in terms of Littelmann paths, we consider the 
(μ + λ)-chain Δ = Γμ ∗ Γλ. We define an embedding of A(λ) into A(Δ) (which is conjecturally isomorphic 
to A(λ + μ), see [29, Conj. 9.8]) by a μ-shift. More precisely, let {(ζ1, �1), . . . , (ζp, �p)} = J ∈ A(λ), and 
define Sμ : A(λ) → T−μ ⊗A(Δ) by

Sμ(J) := t−μ ⊗
(
(ζ1, 〈μ, ζ∨1 〉 + �1), . . . , (ζp,

〈
μ, ζ∨p

〉
+ �p)

)
. (4.1)
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Observe that Sμ is a crystal embedding since Sμ(∅) = ∅ and if fiJ �= 0, then fi either adds a folding position 
to J or moves a folding position. This operation depends entirely on the folded λ-chain and acts on the 
highest level possible. Therefore, it is not affected by the shift. In other words, we have Sμ(fiJ) = fiSμ(J). 
Similar statements hold for ei.

Remark 4.1. The admissible A(Δ) does not directly correspond to the concatenation of admissible sequences 
in A(μ) ⊗ A(λ). See Example Appendix A.1. However, if λ + μ = kλ for some k ∈ Q≥0 (i.e., λ and μ are 
scalar multiples of some other dominant weight ν), then Δ = Γkλ and A(Δ) = A(kλ).

Lemma 4.2. Fix some λ ∈ P+. Suppose μ ∈ P is such that μ + λ = kλ for some k ∈ Q≥0. The map 
Sμ : A(λ) → T−μ ⊗A(λ + μ) given by Equation (4.1), where Sμ(J) = 0 if the result is not admissible, is a 
crystal morphism. Moreover, if k ≥ 1, then Sμ is a crystal embedding, and if k ≤ 1, then Sμ is a surjection.

Proof. From our assumptions, there exists some ν ∈ P+ such that Γμ+λ = Γmμ+λ
ν and Γλ = Γmλ

ν for some 
integers mμ+λ and mλ. Note that k = mμ+λ/mλ. If mλ ≤ mμ+λ, then similar to the discussion above, the 
crystal operators act only on the λ-chain part of the (μ + λ)-chain. Furthermore, it is straightforward to 
see that every admissible sequence in A(λ) is admissible in A(λ + μ). Likewise, if mλ ≥ mμ+λ, then the 
crystal operators act only on the (μ + λ)-chain part of the λ-chain and A(λ + μ) ⊆ A(λ). Thus, the claim 
follows. �

For an example of Lemma 4.2, compare the top and bottom examples of Fig. 1.
Next, for k ≥ 0, define Sin

−kρ : T−kρ ⊗A(kρ) → A(∞) by

Sin
−kρ(t−kρ ⊗ J) =

(
(ζ1, �1 − k 〈ρ, ζ∨1 〉), . . . ,

(
ζp, �p − k

〈
ρ, ζ∨p

〉))
and Spr

kρ : A(∞) → T−kρ ⊗A(kρ) by

Spr
kρ(J) = t−kρ ⊗

(
(ζ1, �1 + k 〈ρ, ζ∨1 〉), . . . ,

(
ζp, �p + k

〈
ρ, ζ∨p

〉))
if the result is admissible and Spr

kρ(J) = 0 otherwise.

Example 4.3. We consider the map Spr
4ρ : A(∞) → T−4ρ ⊗A(4ρ) in type A2 given by

(αa, j) �→ t−4ρ ⊗ (αa, j + 4) (a ∈ {1, 2}),
(α1 + α2, �) �→ t−4ρ ⊗ (α1 + α2, � + 8).

In particular, compare the elements of Fig. 3 with the corresponding element in Fig. 5.

Lemma 4.4. The maps Spr
kρ and Sin

−kρ are crystal surjections and embeddings, respectively.

Proof. This is similar argument the proof of Lemma 4.2. �
Lemma 4.5. The family {T−kρ ⊗ A(kρ)}∞k=0 forms a directed system with inclusion maps ψk′,k = S(k′−k)ρ, 
for all k′ > k. Moreover, the map

S : lim−−→
k∈Z≥0

T−kρ ⊗A(kρ) → A(∞)

given by Sin
−kρ ◦ ψ(k), where ψ(k) : lim−−→k∈Z≥0

A(kρ) → T−kρ ⊗ A(kρ) is the natural restriction, is a crystal 
isomorphism.
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Fig. 5. The first four levels of B(4ρ) of type A2.

Proof. First, {T−kρ⊗A(kρ)}∞k=0 is a directed system by Lemma 4.2 and clearly Skρ ◦Sk′ρ = S(k+k′)ρ. Next, 
we note that Lemma 4.4 implies that S is well-defined. For all J ∈ A(∞), we have Spr

kρ(J) ∈ T−kρ ⊗A(kρ)
for all k ≥ maxj∈J −�j , which is well-defined since J is a finite set. Hence, S is invertible, and the claim 
follows. �

We note that S does not give an equality between the direct limit and A(∞) as the direct limit is an 
quotient of alcove paths that start at the fundamental alcove and alcove paths in A(∞) do not have a 
well-defined starting point.

Theorem 4.6. Let g be of symmetrizable type. Then we have

A(∞) ∼= B(∞).

Proof. We will define a map Ψ: A(∞) → B(∞) as follows. Fix some b ∈ B(∞). Recall the natural projection 
pλ : B(∞) → T−λ ⊗B(λ) and inclusion iλ : T−λ ⊗B(λ) → B(∞) maps from Section 2.1. Let k be such that 
pkρ(b) �= 0. From Theorem 2.10, we have a (canonical5) isomorphism Φ: A(kρ) → B(kρ). Thus, we define 
Ψ(b) by the composition

A(∞)
Spr
−kρ−−−−−→ T−kρ ⊗A(kρ) Φ−−−−−→ T−kρ ⊗B(kρ) ikρ−−−−−→ B(∞).

Note that Lemma 4.4 and Lemma 4.5 states that this is independent of the choice of k and well-defined. 
Additionally, the (local) inverse of Ψ is given by the composition

B(∞) pkρ−−−−−→ T−kρ ⊗B(kρ) Φ−1

−−−−−→ T−kρ ⊗A(kρ)
Sin
kρ−−−−−→ A(∞).

Therefore, the map Ψ is an isomorphism as desired. �
5 Recall that B(λ) and B(∞) admit no non-trivial automorphisms.



JID:JPAA AID:6089 /FLA [m3L; v1.252; Prn:26/02/2019; 8:23] P.18 (1-23)
18 A. Lubovsky, T. Scrimshaw / Journal of Pure and Applied Algebra ••• (••••) •••–•••
Our construction, geometrically speaking, is to extend the alcove path in the anti-dominant chamber to 
infinity, but to shift the origin so that it is at the end of the path. Note that this differs from the construction 
of A∨(λ) in Section 2.5, where the direction of the path is also reversed.

Remark 4.7. If AijAji < 4 for all i �= j ∈ I (i.e., the restriction to any rank 2 Levi subalgebra is of finite 
type), then we could use the Yang–Baxter moves of [26] to construct the directed system {T−λ⊗A(λ)}λ∈P+ . 
However, it would be interesting to construct this for general symmetrizable types as it could allow one to 
determine the subset of A(∞) that corresponds to A(λ) and generalize the model for any ∞-chain of the 
lex ρ-chain.

We also have the following for the dual alcove path model.

Corollary 4.8. Let g be a symmetrizable Kac–Moody algebra. Then we have

A∨(∞) ∼= B(∞)∨.

Proof. This follows from Theorem 4.6 and Proposition 3.3. �
5. Continuous limit of infinite alcove paths

We will show that we can extend the dual crystal isomorphism �λ : A(λ) → Π(λ)∨ to a dual crystal 
isomorphism �∞ : A(∞) → Π(∞)∨. We first need to construct a model Π∨(∞) using somewhat different 
paths such that Π∨(∞) ∼= Π(∞)∨.

From Theorem 2.3 and the tensor product rule, for any sequence (aj ∈ I)Nj=1, there exists a K such that

fa1 · · · faN
u∞ �→ t−kρ ⊗ u∞ ⊗ (fa1 · · · faN

ukρ) ∈ T−kρ ⊗B(∞) ⊗B(kρ)

for all k > K. In terms of the Littelmann path model, there is some k such that

fa1 · · · faN
π∞ = (fa1 · · · faN

πkρ) ∗ π∞.

Define Π∨(∞) be the set of paths (up to ∼) ξ : (−∞, 0] → h∗
R

in the closure of ξ∞(t) = tρ under the 
crystal operators given in Section 2.3 except with mi,π = max{Hi,π(t) | t ∈ (−∞, 0]}, interchanging ei and 
fi, and wt(ξ) = −ξ(0). We can also make this construction geometrically by considering the paths as in the 
one-point compactification of hR and performing the usual path reversal and shifting the endpoint. Indeed, 
Π∨(∞) is a subset of all paths ξ : (−∞, 0] → hR such that there exists a T where ξ′(t) = ρ for all t ≤ T . 
However, unlike for paths with finite length and Π(∞), we have ξ(0) = 0 if and only if ξ = ξ∞. We also 
have the following analog of Proposition 2.13.

Proposition 5.1. We have Π∨(∞) ∼= Π(∞)∨, where the dual crystal isomorphism is given by

ξ∨(t) = ξ(−t) − ξ(0).

Proof. This follows immediately from the definition of ei and fi and that ξ∨∞ = π∞. �
Remark 5.2. The set Π∨(∞) should not be considered as Π(−∞) = lim−−→k∈Z≥0

Π(−kρ) as the latter consists 
of paths π : [0, ∞) → h∗

R
and must start at the origin. Additionally, note that Π(−∞) is isomorphic to 

Π(∞)∨ by Proposition 2.13 applied to the direct limit (or by restricting to [0, T ), where T is minimal such 
that π′(t) = ρ for all t > T and then appending π−∞(t) = −ρt). However, in order to obtain the continuous 
limit of A(∞), we require Π∨(∞) as we do not have a (fixed) starting point for alcove paths in A(∞).
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Fig. 6. The action of a few crystal operators on A(∞) with the corresponding path in Π∨(∞) under �∞ in type A2 starting with 
∅ and ξ∞ on the left.

Therefore, we define our desired dual crystal isomorphism �∞ as the following composition

A(∞) → T−kρ ⊗A(∞) ⊗A(kρ) → Π(−kρ) ⊗ Π∨(∞) ⊗ Tkρ → Π∨(∞)
J �→ t−kρ ⊗ ∅ ⊗ Skρ(J) �→ �−kρ

(
Skρ(J)

)
⊗ ξ∞ ⊗ tkρ �→ ξ∞ ∗�−kρ

(
Skρ(J)

)
for some k � 1 depending on the element J . Hence, by Theorem 2.15 we have the following.

Theorem 5.3. Let g be of symmetrizable type. Then the map

�∞ : A(∞) → Π∨(∞)

defined above is a dual crystal isomorphism. Moreover, the dual crystal isomorphism is given explicitly by 
the same description as �λ given in Section 2.4.

See Fig. 6 for an example. We can also directly describe an isomorphism A(∞) ∼= Π(∞) by combining 
the results of Theorem 5.3 and Proposition 5.1. Furthermore, we have a dual version of Theorem 5.3.

Theorem 5.4. Let g be of symmetrizable type. Then the map

A∨(∞) → T−kρ ⊗A∨(∞) ⊗A∨(kρ) → T−kρ ⊗ Π(∞) ⊗ Π(kρ) → Π(∞),
J �→ t−kρ ⊗ ∅ ⊗ Skρ(J) �→ t−kρ ⊗ π∞ ⊗�∨

kρ

(
Skρ(J)

)
�→ �∨

kρ

(
Skρ(J)

)
∗ π∞,

where k � 1 depends on the element J , is a dual crystal isomorphism.

Proof. The proof is similar to Theorem 5.3, but using Proposition 2.13 in conjunction with Theo-
rem 2.15. �

See Fig. 7 for an example. Alternatively this follows from taking the contragredient dual at each step of 
�∞.
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Fig. 7. The action of a few crystal operators on A∨(∞) with the corresponding path in Π(∞) under the map of Theorem 5.3 in 
type A2 starting with ∅ and π∞ on the left.

Appendix A. Calculations using Sage

The crystal A(λ) (resp. A(∞)) has been implemented by the first (resp. second) author in Sage [40,39]. 
We conclude with examples.

We construct A(∞) in type A3 and compute the element b = f2f3f1f2f2f3f1f2∅:
sage: mg = A.highest_weight_vector ()
sage: b = mg.f_string ([2,1,3,2,2,1,3,2])
sage: b
(( alpha [2], -2), (alpha [2] + alpha [3], -2),
(alpha [1] + alpha [2], -2), (alpha [1] + alpha [2] + alpha [3], -2))

sage: b.weight ()
(-4, -4, 0, 0)

Next, we construct the projection onto A(2ρ) by computing SP
2ρ(b):

sage: b.projection ()
(( alpha [2], 0), (alpha [2] + alpha [3], 2),
(alpha [1] + alpha [2], 2), (alpha [1] + alpha [2] + alpha [3], 4))

sage: b.to_highest_weight ()
[(), [2, 1, 2, 1, 3, 2, 3, 2]]

Note that 〈(k1α1 + k2α2 + k3α3)∨, ρ〉 = k1 + k2 + k3. Therefore, compare the result to the corresponding 
elements in A(3ρ) and A(4ρ):

sage: A = crystals.AlcovePaths ([’A’ ,3], [3,3,3])
sage: mg = A.highest_weight_vector ()
sage: mg.f_string ([2,1,3,2,2,1,3,2])
(( alpha [2], 1), (alpha [2] + alpha [3], 4),
(alpha [1] + alpha [2], 4), (alpha [1] + alpha [2] + alpha [3], 7))

sage: A = crystals.AlcovePaths ([’A’ ,3], [4,4,4])
sage: mg = A.highest_weight_vector ()
sage: mg.f_string ([2,1,3,2,2,1,3,2])
(( alpha [2], 2), (alpha [2] + alpha [3], 6),
(alpha [1] + alpha [2], 6), (alpha [1] + alpha [2] + alpha [3], 10))

Example Appendix A.1. We give an example showing that simply concatenating the folding positions in 
A(Λ1) ⊗A(Λ1) is not equal to A(2Λ1) in type A3 (even though they are isomorphic).

sage: P = RootSystem ([’A’ ,3]). weight_lattice ()
sage: La = P.fundamental_weights ()
sage: C = crystals.AlcovePaths (2*La [1])
sage: D = crystals.AlcovePaths (La [1])
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sage: C.vertices ()
[[], [0], [3], [0, 1], [0, 4], [3, 4],
[0, 1, 2], [0, 1, 5], [0, 4, 5], [3, 4, 5]]

sage: D.vertices ()
[[], [0], [0, 1], [0, 1, 2]]

In particular, note that for the folding positions {0, 4, 5} ∈ A(2Λ1), if we consider this as a concatenation, 
then {1, 2} /∈ A(Λ1).

Appendix B. Alcove model: crystal operators

In this section we show that our description of crystal operators in Section 2.2 is equivalent to the one 
given in [29].

Let J = {j1 < j2 < · · · < jp}. Recall γk from Equation (2.6) and the set Iαi
from Equation (2.7a). Let

Iαi
= {i1 < i2 < · · · < iN} and Îαi

= Iαi
∪ {∞}.

Let γ∞ = rj1rj2 · · · rjp(ρ), and define

ςi :=
{

1 if i /∈ J,

−1 if i ∈ J.

Crystal operators are defined in terms of the piecewise linear function gαi
: [0, N + 1

2 ] → R given by

gαi
(0) = −1

2 ,
dgαi

dx
(x) =

⎧⎪⎪⎨⎪⎪⎩
sgn(γij ) if x ∈ (j − 1, j − 1

2 ), j = 1, . . . , N,

ςij sgn(γij ) if x ∈ (j − 1
2 , j), j = 1, . . . , N,

sgn(〈γ∞, α∨
i 〉) if x ∈ (N,N + 1

2 ).

The graph gαi
is used to define crystal operators in the alcove model. Let

σj :=
(
sgn(γij ), ςij sgn(γij )

)
,

σN+1 := sgn
(
〈γ∞, α∨

i 〉
)
,

where 1 ≤ j ≤ N . We note the following two conditions from [29]:

(C1) σj ∈ (1, 1), (1,−1), (−1,−1) for 1 ≤ j ≤ N ,
(C2) σj = (1, 1) implies σj+1 ∈ {(1, 1), (1, −1), 1}.

In the language of Section 2.2, we identify (1, 1) with the symbol + and (−1, −1) with the symbol −. We 
identify (1, −1) with the symbol ± and note that if σj = (1, −1), then ij ∈ J . Finally identify σN+1 = 1
with + and σN+1 = −1 with −. Condition (C1) says that we can describe gαi

as a word in the alphabet 
{+, −, ±}. Condition (C2) says that the transition from + to − must pass through ±.

We now recall the definition of fi. Let M be the maximum of gαi
. Let hJ

ij
= gαi

(j − 1
2 ) and hJ

∞ =
gαi

(N + 1
2 ). Let μ be the minimum index in Îαi

for which we have hJ
μ = M . Then μ ∈ J or μ = ∞. If 

M > 0, then μ has a predecessor k in Iαi
, with k /∈ J . Define

fiJ :=
{

(J \ {μ}) ∪ {k} if M > 0,
0 otherwise.
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We use the convention that J\ {∞} = J ∪ {∞} = J . Observe that after canceling out −+ terms as 
in Section 2.2 the rightmost remaining + corresponds to k and the ± (+ if μ = ∞) term immediately 
following corresponds to μ. This follows from conditions (C1) and (C2).

We now recall the definition of ei. If M > hJ
∞, let k be the maximum index in Iαi

for which we have 
hJ
k = M , then k ∈ J and k has a successor μ in Îαi

with μ /∈ J . Define

eiJ :=
{

(J \ {k}) ∪ {μ} if M > hJ
∞,

0 otherwise.

Here it is also the case by (C1) and (C2) that the left most −, which exists if M > hJ
∞, corresponds to μ

and the immediately preceding ± corresponds to k.
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