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ABSTRACT
The human genome can reveal sensitive information and is poten-
tially re-identifiable, which raises privacy and security concerns
about sharing such data on wide scales. In this work, we propose
a preventive approach for privacy-preserving sharing of genomic
data in decentralized networks for Genome-wide association studies
(GWASs), which have been widely used in discovering the associ-
ation between genotypes and phenotypes. The key components
of this work are: a decentralized secure network, with a privacy-
preserving sharing protocol, and a gene fragmentation framework
that is trainable in an end-to-end manner. Our experiments on
real datasets show the effectiveness of our privacy-preserving ap-
proaches as well as significant improvements in efficiency when
compared with recent, related algorithms.
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1 INTRODUCTION
The 21st Century has so far witnessed an incredible genetic data
explosion[18, 26], with the development of faster, and more efficient
next generation sequencing technologies. As a result of this massive
data availability, Genome-Wide Association Studies (GWAS), which
is an experimental design used to detect associations between ge-
netic variants and traits in samples from populations, are gaining

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5940-5/19/02. . . $15.00
https://doi.org/10.1145/3289600.3290983

popularity as they answer critical questions like the relative role of
genes and the environment in disease risk, assist in risk prediction
(enabling preventative and personalized medicine), and investigate
natural selection and population differences. [33]

One key thing for GWASs is the sample size, they need lots of
people (at least thousands of people) to share their data to confirm
the differences with statistical confidence. However, genetic infor-
mation has become among the most sensitive information about
an individual - their personal traits, health problems, predisposi-
tions to diseases, life expectancy, familial relationships, etc. can
all be potentially contained in it. Therefore, people have funda-
mental interests in having control over their data. Though sharing
sequencing data sets without identities (remove the individual’s
name) has become a common practice in GWASs, unfortunately,
advances in genomics have made re-identification an increasing
concern [9], thereby undermining simple anonymization as an ap-
proach. Already, studies [16, 24, 29] have pointed to techniques for
discovering the identities (Surname, 3D face, etc.) of people from
a seemingly anonymous database, relying on publicly accessible
Internet resources. It suggests that, with further advances, access
to full genomes will lead to re-identification of individuals, and
unprotected disclosure of such information will put individual’s
privacy at risk. As a result, more and more people are reluctant, or
will be reluctant to share their data as they become better informed
of data privacy issues. Thus, there is an urgent need to develop tech-
nologies for privacy-preserving sharing genomic data on a large
scale to satisfy demands for GWASs.

This problem is non-trivial and challenging due to the following
factors:

• Re-distribution problem: By its nature, data is very easy
to copy and spread. For example, if we share a private video,
we have technologies that only allows authorized persons or
machines to open it, but what if someone record it by a cam-
era andmake re-distributions? Though we have technologies
like watermark to detect the infringement of copyright, how-
ever, detection–as an after-the-event approach, is not enough
for sensitive data. Once genomic data has been redistributed
without authorization, there is no way to ensure comprehen-
sive retrieval of all of the unauthorized copies. Therefore,
methods for preventing unauthorized redistribution from
the outset are required.
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• The problem of trade-off between privacy and utility:
As already noted, on the other side of the demand by patients
and consumers, is the demand of researchers and companies
wanting access to and analyze the genomic data. Therefore,
we need methods to provide high level of privacy, includ-
ing solving re-identification problem, and at the same time,
won’t affect the use of the data.

• Scalability problem: Genomic data is relatively large. A
human genome, right off the genome sequencer, could be
up to 200GB, and even if stored in the most efficient for-
mat - a variant file, that only keeps the genomic difference
among individuals, is usually around 100MB to 200MB. Even
at this size there are still very significant communication and
economic costs in terms of network bandwidth consump-
tions once the data of hundreds of millions (and potentially
billions) of people are included.

In this paper, we propose methods to tackle these challenges: we
introduce a decentralized secure network, with a Privacy-Preserving
Sharing (PPS) protocol, and a gene fragmentation framework that
is trainable in an end-to-end manner.

First, we introduce a decentralized secure network, with a PPS
protocol to solve the re-distribution problem. The main idea is
we split the original gene sequencing data into fragments, and
these fragments are stored/analyzed by different storage/analysis
service providers in a decentralized network.When applying GWAS
analysis, every analysis service provider separately processes a
small piece of genomic data, by parallel in-memory computing, and
reports its single point result. The complete analysis result then
will be achieved by a report node. Therefore, there is few possibility
for re-distribution because none of the nodes have access to the
complete original data of any individual.

In addition, we propose a gene sequence fragmentation frame-
work to minimize re-identification risk in each analysis node, at
the same time, won’t affect the use of the data in GWASs analysis.

Also, the fragmentation of the data not only safeguards the vital
interests of the individuals who have contributed their data, but it
simultaneously contributes to solving the scalability problems by
making data packets smaller.

Figure 11 shows the full life cycle of the privacy-preserving shar-
ing process: Through the fragmentation algorithm, gene sequence
pieces are encrypted and distributed throughout the decentralized
secure network, and by the PPS protocol, GWAS analysis can be
achieved.

Our contributions can be summarized as follows:
• We propose a decentralized secure network, with a Privacy-
Preserving Sharing (PPS) protocol to enable sharing genomic
data on a large scale. It is a preventive method to solve
the data re-distribution and re-identification problem and
ethically satisfies people’s fundamental interests in their
data.

• To the best of our knowledge, we are the first to propose a
gene fragmentation framework that is trainable in an end-
to-end manner for privacy-preserving sharing of genomic
data. Our method solves the problem of trade-off between

1∗: The GWASs report image credit: A GWAS of 14,000 cases of seven common diseases
and 3,000 shared controls [8].

Figure 1: Life cycle in Decentralized Ownership Ecosystem

privacy and utility, and can be used to facilitate the use of it
for research and commercialization.

• We solve the scalability problem by the privacy-preserving
sharing protocol, providing not only decentralized storage,
but also decentralized analysis.

• We run experiments on real datasets showing the efficiency
and effectiveness of our algorithms compared with state-of-
the-art algorithm.

The rest of this paper is organized as follows. Section 2 briefly
reviews privacy-preserving sharing techniques. In Section 3 and 4
we present our methods. In Section 5 we run experiments on real
datasets, and some concluding remarks are given in Section 6.

2 RELATEDWORK
There are existing privacy-preserving sharing techniques to deal
with the privacy problem, which are divided into the following
categories:

Secure multiparty computation (SMC). SMC allows two or
more entities, each of which has some private data, to execute a
computation on these private inputs without revealing the input
to each other or disclosing it to a third party [35]. It enables the
outsourcing of computationally intensive steps in the analysis with-
out revealing any private information to others [1, 6, 21]. Several
works have been proposed for multiple data owners (e.g., two or
more medical institutions) to analyze genomic data jointly without
disclosing their own data. For example, one study tested a secret
sharing scheme based on distributed storage to generate GWAS
summary statistics [23]. In addition, a privacy-preserving statistical
analysis environment called ’Sharemind’ was proposed to support
a complete data analysis process where data are collected from
various sources, and statistically analyzed between independent
biobanks [3]. Another protocol was proposed to provide genomic
diagnoses while preserving participant privacy [20]. However, most
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SMC methods only considered two-party scenarios. Extending a
solution to allow for more than two parties may generate consider-
able scalability issues. Another threat for SMC is that computing
parties collude to reveal private inputs.

Homomorphic Encryption. It allows computation on cipher-
texts, generating an encrypted result which, when decrypted, matches
the result of operations performed on the plaintext. In a recent
study, a homomorphic exact logistic regression mode was intro-
duced to facilitate secure rare variants analysis in GWASs [34]. In
addition, a tool called ’SAFETY’ was proposed recently, which can
securely perform GWAS on federated genomic datasets using ho-
momorphic encryption and secure hardware component of Intel
Software Guard Extensions (Intel SGX) 2 to ensure high efficiency
and privacy at the same time [27]. Another cryptographic protocol
proposed a privacy-preserving solution for paternity tests, person-
alized medicine, and genetic compatibility tests [2, 5]. Then, in
their follow-up work, a smart-phone-based implementation was
presented for one version of this algorithm [11]. Existing homomor-
phic encryption techniques can be categorized as fully homomor-
phic cryptosystems and Partially Homomorphic Encryption. Fully
homomorphic support arbitrary computation on ciphertexts but
less efficient which result in a solution that is impractical [13, 32].
Partially Homomorphic Encryption is specified by a limited number
of accumulated operations [4, 14].

Differential privacy. Differential Privacy [12, 19, 22, 28, 36] is
an emerging methodology for minimizing the chances of identify-
ing records of statistical databases while maximizing the accuracy
of queries by adding ’noise’. Several studies have explored the differ-
ential private release of common summary statistics of GWAS data
(such as the allele frequencies of cases and controls, χ2-statistic and
P values [31, 36]) or shifting the original locations of variants[22].
Recently, a study also introduced a computational framework for
performing GWASs that adapts principles of differential privacy,
and produced privacy-preserving GWAS results based on EIGEN-
STRAT and linear mixed model (LMM)-based statistics, both of
which correct for population stratification [28]. However, there
are some limitations in the approach: they are less accurate on
small databases, and privacy cannot be guaranteed in databases
with large levels of case ascertainment (that is, when the percent-
age of individuals with the disease in the study is larger than the
percentage in the background population).

In conclusion, current methods for protecting human genomic
datamainly focus on the collaborative studies betweenmulti-biobank
institutions. For example, when we apply techniques like differen-
tial privacy, we have to trust a party like ’data center’ that holds
the data. However, the public concerns are not only about the inter-
ests of the biobank institutions - it is about individual privacy and
control. Also, efficiency is another issue. Cryptographic solutions,
such as Homomorphic Encryption and SMC enable computing ex-
act answers of the protected data sets, but unfortunately, they are
uneconomical in practice because of significant computational and
communicational overhead.

3 PPS PROTOCOL
3.1 Secure sharing in Decentralized network
First, we introduce a decentralized network. We aim to create a
secure network for use in GWASs, which is resistant to malicious
hacking or other unauthorized uses, controllable and trackable
for individual. The key point of the network is: it is individuals
that take control over their data instead of any central institutions.
Therefore, we use a decentralized network instead of centralized
network, and its autonomous nature allows every individual to be
an independent peer in the network, while still being capable of
interacting with the other stakeholders. The first thing we should
consider is to guarantee the authenticity and nonrepudiation to all
activities (transactions) in the decentralized network. ’Blockchain’
technology is no doubt a good technical means to achieve the aim.
In addition, it also enables continuing functioning in the event of
component failures with no loss of data or integrity. It is a system
of openness, and global participation designed to bring benefits
to all stakeholders. (for decentralized networks, the best and most
comprehensive references can be found from[25, 30]).

We are not the first to use Blockchain to share genomic data.
There are existing systems, like Encrypgen2, Luna DNA3, Zenome4,
providing decentralized genomic data sharing platform. However,
they directly transfer encrypted data from givers to information
consumers like pharmaceuticals companies, hospitals, governments,
researchers, etc. , and then the information consumers decrypt the
data and apply analysis. As a result, information consumers can
get access to whole original data, which carries high risks of re-
distribution and re-identification.

Therefore, we introduce the PPS protocol to achieve the secu-
rity on data level. In the PPS protocol, we firstly introduce third
parties - Service Providers into the network. Service Providers are
individuals or companies providing infrastructures and services,
including storage and computing resources. The role of service
providers consists of Storage nodes, Analysis/Validator nodes, and
Report nodes.

Figure 2 illustrates the PPS protocol during storage and analysis
process. During the storage process (S-1 to S-2), we split the original
data into fragments (S-1), and these fragments are encrypted and
distributed to different ’Storage nodes’ with redundancy (S-2). Dur-
ing the analysis process (A-1 to A-8), when an analysis agreement
is signed between a Information Consumer and a data owner (A-1
and A-2), each of a plurality of network connected ’Analysis nodes’
is assigned an compiled analysis script which is uploaded by the
information consumer (A-3 and A-4), and separately retrieves a
small piece of encrypted genomic data from ’Storage nodes’ and
the corresponding encrypted share key from data owner(A-5 and
A-6), then decrypts and processes the data by parallel in-memory
computing, and reports its own single point result to a ’Report node’
(A-7). Then the ’Report node’ aggregates the results and achieves
a complete analysis report, then encrypts and sends the report to
Information consumers (A-8).

All transactions (T-1 to T-6) during the process will be recorded
to blockchain. T-1: Transactions between a data owner and the

2Engrypgen: https://encrypgen.com
3Luna DNA: https://www.lunadna.com
4Zenome: https://zenome.io
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Figure 2: The privacy-preserving sharing protocol

related storage nodes, recording which storage node stores which
data piece from whom. T-2: Transactions between (a) data owner(s)
and (an) information consumer(s), recording the analysis agree-
ment between them. T-3: Transactions between a report node and
an information consumer, recording the process of the informa-
tion consumer uploading the analysis script and the report node
returning the complete analysis report. T-4: Transactions between
a report node and analysis nodes, recording the process of the re-
port node assigning the analysis jobs to the analysis nodes and
the analysis nodes returning the single-point analysis result to the
report node. T-5: Transactions between a data owner and analysis
nodes, recording the process of transferring the encrypted share
keys. T-6: Transactions between storage nodes and analysis nodes,
recording the transferring of the encrypted data fragments from
storage nodes to analysis nodes.

The decision to add a transaction to the blockchain is made by
’Validators’ that assist in administering the system. The network
efficiency and workload balance are managed by system routers.
By this protocol, no node in the network is able to get access to the
whole original data except data owner him/herself. ’Analysis nodes’
in the network just provide their computing resources and applying
’double-blinded’ analysis: They neither know whose data they are
processing (the data they have are unidentifiable fragments) nor
what analysis they are applying (the analysis scripts are compiled,
they simply execute the computation). In addition, as all the trans-
action history is recorded in the blockchain - a digital ledger that is
transparent and immutable, hence it is possible to ensure an analy-
sis node will not always be assigned with data pieces from same
persons, and prevent data pieces from being collected/aggregated
by the analysis node as well as to reduce the risk of analysis nodes
colluding to reveal the private gene sequencing data.

The security regarding the prevention of overhearing through-
out the network is guaranteed by Public Key Infrastructure (PKI)
framework as shown in Figure 4. The key exchange procedure is:
Data pieces are encrypted by share keys (symmetric keys), and
the share keys are encrypted by gene owner’s public key. The en-
crypted data pieces and the encrypted share keys are stored in
’Storage nodes’. When applying analysis, ’Analysis nodes’ retrieve
the encrypted data pieces from ’Storage nodes’ (a), and data owner
retrieves the encrypted share keys from ’Storage nodes’(b). Then
the data owner decrypts the share keys using his/her private key (c),
then encrypts the share keys again by ’Analysis nodes’ public keys
(d) and transfers the encrypted share keys to ’Analysis nodes’(e).
After that, ’Analysis nodes’ decrypt the share keys using their pri-
vate keys, and decrypt the data piece using the share key (f) and
apply analysis (g).

3.2 Proof of Storage
In order to guarantee the data integrity, data owner is able to check
for proof that storage of their gene sequence pieces into various of
the data storage nodes has been effected. Figure 3 illustrates the
process of checking ’Proof of Storage’: the data owner computer
obtains ’Proof of Storage’ from the data storage nodes by arranging
for the nodes to return hashes of at least part of the stored data
of respective data owner computers upon request. The hashes are
determined by the respective data owner computers prior to storage
of the gene sequence pieces in the data storage hosts in order to
carry out the check subsequently (a). In the case the storage node
fails to provide the ’Proof of Storage’ (b), the data owner computers
will notify the smart contract controller (c), to find another available
storage node (d), and a new storage contract will be signed between
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Figure 3: Proof of Storage

the data owner and the new storage node (e), and the corresponding
data piece will be stored in the new storage node.

3.3 Consensus Protocol
There remain serious efficiency concerns with the technological
underpinnings of crypto economic consensus networks. For exam-
ple, the consensus mechanism most often used in existing systems,
proof of work, consumes a very large amount of electricity in order
to operate; the largest working blockchain using this mechanism,
Bitcoin, has been shown to consume as much electricity as the
entire country of Ireland.

In our proposed framework, if a gene sequence of one individual
is fragmented intom pieces, then the task management server will
assign jobs tom∗n analysis nodes, and every set of n analysis nodes
will get the same piece of data and run the same analysis script,
thus, they should achieve same single-point result. The system then
compares their results and regards the majority as the correct, and
the fastest analysis provider that produce the correct result wins the
chance to add a block. It means an analysis node is also a validator
(validators are like miners in bitcoin network). By this way, we
replace the process of solvingmeaningless puzzles in ’proof of work’
with the process of doing meaningful jobs, and also the correctness
of analysis results can be achieved, though the computation is
processed by untrusted nodes. The advantage of the protocol is we
don’t need to trust anyone in the network so that the network has
a potential for global-wide participants and more openness.

Hence, an ecosystem is established, and also an all-win mech-
anism is designed to bring benefits to all stakeholders. For data
owners, the privacy-preserving protocol are embedded in the net-
work, instead of relying on institutional human actors, the data
ownership for individuals is always guaranteed no matter how
many times the owner has shared his/her data to others. As it is
possible that more people would like to share their data, it will also
benefits information consumers and their scientific and economic
interests. For service providers, economic profits can be gained by
offering infrastructures or services.

4 DATA FRAGMENTATION ALGORITHM
As revealed in a previous study [16], male’s surname can be dis-
closed using only Short Tandem Repeats (STRs) which are just some
small repeating pieces on Y chromosome. Therefore, important data
pieces may still be in exposure and re-identification still can happen
if we don’t have a good fragmentation mechanism (for example,
just splitting the data randomly or by some simple and fixed formu-
las like equal divisions). Based the models of our framework, we
develop the data fragmentation algorithm. The algorithm aims to

minimize the re-identification risk from data pieces, at meanwhile,
to ensure GWASs analysis can be applied as usual.

The objective of the gene fragmentation framework is to find
the smartest fragmentation on single-nucleotide polymorphisms
(SNPs). A SNP is a variation in a single nucleotide that occurs at
a specific position in the genome. For example, at a specific base
position in the human genome, the C nucleotide may appear in
most individuals, but in a minority of individuals, the position is
occupied by an A. This means that there is a SNP at this specific
position, and the two possible nucleotide variations - C or A - are
said to be ’alleles’ for this position. Each data fragment is analyzed
in a separate analysis node. The smartest fragmentation will lower
the accuracy of re-identification in each analysis node, and makes
sure any fragments of data is unidentifiable.

4.1 Problem Definition
Let x = [P1, P2, ..., Pk ] be a sequence of SNPs of one person, Pl
denotes the genotype on the lth SNP (l ∈ {1, ...,k}), and there are
k SNPs for each person. Let X = {x1,x2, ...,xn } be the training
set consisting of n persons. Let M = {M1,M2, ...,MN } be a set of
Masks (N is the number of fragments), where Mi = [0, 1]k , s .t .,

MT
i Mj = 0 (∀i, j ∈ {1, ...,N }, i , j), and

N∑
i=1

Mi = [1]k .

Definition 4.1. Mask Operation ⊙ : By X ⊙ Mi (i ∈ {1, ...,N })
we apply amaskMi onX and produce a new set:X ′

i = {x ′i1,x
′
i2, ...,x

′
in }.

The genotype on the lth SNP: P̂l (l ∈ {1, ...,k}) inx ′i j (i ∈ {1, ...,N }, j ∈

{1, ...,n}) is generated by the following formula:

P̂l =

{
original genotype on the lth SNP, ifmi [l] = 1
unknown, ifmi [l] = 0

(1)

Definition 4.2. REID: By REID we mean a function that can be
any classification methods to learn a classifier Di from a dataset X ′

i
for the purpose of re-identification.

Our objective is to find a set ofM to maximally lower the overall
accuracy of D = {D1,D2, ...,DN }.

4.2 Competition Model
We propose a competition model. In the model, D acts as a number
of adversaries that are trying to assign the correct identity labels
to training samples, whileM is to minimize the capacity of D. We
simultaneously train the two ’teams’, our purpose is no matter
how good of D for re-identification,M can find a smartest splitting
to generate X ′ = {X ′

1,X
′
2, ...,X

′
N } to maximally lower the overall

accuracy of D.
The overall objective function is as below:
M = argmaxM minD (REID(D1,X ′

1), ...,REID(DN ,X
′
N ))

s .t .

{
X ′
i = X ⊙ Mi

Di = argminD Loss(D,X ′
i )

(2)

The first condition indicates how to apply MaskMi into training
data X to generate X ′

i . The second condition indicates how to train
classifier Di to re-identify X ′

i .
Greedy strategy is used to achieve the optimization. In each

iteration, only one bit is swapped betweenM . The best bit which
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Figure 4: Sequential Diagram for key exchange process

can maximally lower the accuracy of D is selected for the next
iteration. The optimization process is shown in Algorithm 1.

Algorithm 1 The Fragmentation Algorithm
Input :X = {x1,x2, ...,xn }, x = [P1, P2, ..., Pk ]

Max Interations Inte
Output :M = {M1,M2, ...,MN }

Initialize :Randomly initialiseM
X = {X1, ...,XN }, where Xi = X ⊙ Mi
D = {D1, ...,DN }, where Di = argmaxD REID(D,Xi )

Index = 1
while Index < Inte do

Index = Index + 1
randomly pick up i , j, where i, j ∈ {1, ...,N }, i , j
if |Mi | >= |Mj | then

foreach l ∈ [1, ...,n] do
if Mi [l] = 1 then

M ′
i = Mi ,M ′

j = Mj
M ′
i [l] = 0,M ′

j [l] = 1
X ′
i = X⊙M′

i , X
′
j = X⊙M′

j
Di = argmaxD REID(D,X ′

i )

D j = argmaxD REID(D,X ′
j )

acc[l] = max(REID(Di ,X
′
i ),REID(D j ,X

′
j ))

end
end
l ′ = argminl acc[l]
Mi [l

′] = 0,Mj [l
′] = 1

end
end

5 EVALUATION
5.1 Proof of Concept
In this work, we provide a method for operating a data network
including secure data storage and secure data analysis.

Secure data storage comprises: provision of a data sequence
fragmentation software product installed on processing devices
of each of the data owners for producing gene sequence pieces;
facilitating storage of respective gene sequence pieces comprising
gene sequences of the owners from the owner processing devices
into the data storage nodes with storage redundancy; wherein
each of the gene sequence pieces are encrypted with keys of their
respective owners; whereby due to the storage redundancy and
the ’proof of storage’ mechanism, the gene sequences of respective
owners may be retrieved by the owners from the data storage nodes
in the event of loss of some of the data storage hosts.

Secure data analysis comprises: providing pieces of the gene
sequences by use of an electronic data network to each of a plurality
of network connected analysis providers wherein pieces provided
to any one of the analysis providers are insufficient for identifi-
cation of the corresponding data owner; operating a report node
to transmit assigned tasks across the data network to each of the
analysis nodes in respect of the gene pieces of each of the data
owners, and the assigned tasks being produced in response to anal-
ysis specifications are received from computers of the information
consumers; receiving analysis results from the analysis nodes for
the assigned tasks in respect of the gene sequence pieces of each
of the data owners and compiling respective reports therefrom;
and transmitting the reports across said network to the network
connected computers of the information consumers; wherein the in-
formation consumer computers receive neither the gene sequences
nor the gene sequence pieces. The gene sequence fragmentation
software includes instructions to fragment the gene sequence at
positions of the gene sequence that minimize re-identification from
the resulting pieces.

The prototype that implements and proves the concept of the
protocol described in this work is available at: https://youtu.be/
OuVA1KF443k. Figure5 shows a snapshot of the interface of the
prototype.
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Figure 5: ’Decentralized Ownership Ecosystem’ Dashboard

Figure 6: Different privacy protection levels

5.2 Privacy Level
Next, we evaluate our data fragmentation algorithm. In the exper-
iments for the data fragmentation algorithm, the first thing we
should consider is to define a concrete objective for REID function.
We believe there are different privacy protection levels from high
to low (Figure 6): ’Ancestry’ is at a higher level, while ’Whole 3D
face’ is at a lower level. In this experiment, we choose a relatively
high level of privacy protection - Ancestry, which at the moment
is a primary driver in the re-identification models for DNA. The
reason of choosing ’ancestry’ as the concrete objective for REID
function is because we believe if we prevent the adversary team
from assigning correct ancestry labels to training samples, there
will be little to no possibility for them to re-identify individuals,
thus individuals’ privacy can be regarded as protected.

5.3 Datasets
The 1000 Genomes Project [7] is a public dataset. It provides a
comprehensive description of common human genetic variation by
applying whole-genome sequencing to a diverse set of individuals
from multiple populations. The 1000 Genomes Project use Variant
Call Format (VCF) files to store gene sequence variations. VCF files
contain information about positions in the genome and genotype
information on samples for each of positions. From the released
VCF files, we extract all the 62042 SNPs on Y-chromosome from
1233 male samples.

Individuals in the data set were sampled from 26 populations:
British in England and Scotland (GBR), Southern Han Chinese,
China (CHS), Puerto Rican in Puerto Rico (PUR), Colombian in
Medellin, Colombia (CLM), African Caribbean in Barbados (ACB),
etc,. In this paper, we aggregate the 26 populations into the fol-
lowing six continental ancestry groups: Africa, East Asia, Europe,
South Asia, Latin Americas, and South Americas.

Table 1: Accuracy of REID with respect to different entropy
levels

Entropy Selected SNPs Accuracy of REID Tradeoff Factor

> 0.1 5547 0.824 0.883
> 0.2 2536 0.816 0.921
> 0.3 1872 0.808 0.923
> 0.4 1608 0.76 0.876
> 0.5 1248 0.754 0.875
> 0.6 565 0.752 0.882
> 0.7 126 0.68 0.817

5.4 Feature Selection
Firstly, we want to have a strong REID (adversary) in the competi-
tion model. We select features from 62042 SNPs by different entropy
thresholds, by which we could remove irrelevant features without
incurring much loss of information- higher entropy, fewer features,
more information. The entropy for every feature is calculated by
the following equation:

Entropy H (Sl ) = −
∑

p(Sl ) logp(Sl ) (3)

where Sl = {p1,p2, ...,pn }, pi is the genotype of ith sample on the
lth SNP.

Then we use a three-layer FC network as REID, we define the
tradeoff factor between the accuracy of REID and the number of
training features [17]:

R =
∇S

∇A
(4)

, where S denotes the number of SNPs, and A denotes the accuracy
of REID.

From Table 1, we can see the entropy threshold of 0.3 gave us
the best tradeoff factor: a relatively strong REID as well as a good
feature space dimensionality reduction.

5.5 Effectiveness of privacy preserving
Next, we train the competition model based on the selected 1872
features. Theoretically, it is not guaranteed that a minimax game
will converge [15], however, the empirical experiment shows the
following effectiveness results of the competition model (Figure 7):
The dark grey line is the upper bound of REID’s capacity:0.808
(train with all selected SNPs). The light grey line is the lower
bound:0.167 (one out of six ancestry groups). We compare our
method (blue dash line, which denotes the maximum accuracy
value of D: max{D1, ...,DN }) with ’random fragmentation’ (or-
ange). We observed that when the number of fragments N was two,
our method only slightly reduced the capacity of REID, implying
the genetic ’signal’ for ancestry is very highly distributed through-
out the genome. However, with the growth of N , the difference
between our method and random fragmentation increased.

The boxplot shows the distribution of accuracy of D along the
number of N . We observed from this plot that when N increased to
64, the majority of accuracy values of D went down to a relatively
low level: around 0.25.
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Figure 7: Accuracy of adversarial REID over N

5.6 Utility for GWASs
GWASs have been widely used in discovering the association be-
tween genotypes and phenotypes. In GWASs, individuals are split
into case and control groups: one healthy control group and one
case group affected by a disease. All individuals in each group are
genotyped for the majority of common known SNPs. If one type of
the variant (one allele) is more frequent in people with the disease,
the variant is said to be associated with the disease. The associated
SNPs are then considered to mark a region of the human genome
that may influence the risk of disease. The allele count of each
measured SNP is evaluated to identify variants associated with the
trait in question.

Table 2: Contingency table for the standard χ2 test

Group Allele A Allele B

Cases a c
Controls b d

Table 2 depicts the 2 ∗ 2 contingency table for allele counts in
case and control groups, where an allele is counted twice if it is
homozygous. The test statistic for the standard χ2 test is expressed
as

T1 =
(a + b + c + d)(bc − ad)2

(a + b)(a + c)(b + d)(c + d)
(5)

and the test statistic for equiproportionality of the allele A in both
groups is

T2 =
2(b + d)(bc − ad)2

b(a + c)2d
(6)

These tests are accurate if theHardy-Weinberg equilibrium condi-
tion is satisfied for a particular SNP, whereas the Cochran-Armitage
test for trend can be used without this assumption.

For a marker with two alleles A and B, each individual in a
case-control study is genotyped with one of three genotypes, AA,
AB and BB (indexed by i = 0, 1, 2, respectively). The distribution
of genotype counts can be put in a 2 ∗ 3 contingency table based
on each subject’s genotype and disease status as shown in Table

3. Let (x0,x1,x2) = (0, c, 1) where the coefficient c can assume
any value. Under the null hypothesis of no genetic association, the
following test statistic is distributed asymptotically as a chi-square
distribution with one degree of freedom:

Z 2(c) =
r × s

n
·

[∑2
k=0 xk ×

( rk
r −

sk
s
) ]2[(∑2

k=0 x
2
k ×

nk
n

)
−

(∑2
k=0 xk ×

nk
n

)2] (7)

Table 3: Contingency table for the Cochran-Armitage test
for trend

Group Allele AA Allele AB Allele BB Total

Cases r0 r1 r2 r
Controls s0 s1 s2 s
Total n0 n1 n2 n

In our protocol, the analysis nodes execute computation on data
pieces, therefore, it naturally supports the allele count based analy-
sis, and return exactly the same outputs as computing on original
data.

5.7 Efficiency Performance
We compare the efficiency results with core algorithms for GWAS
which are implemented in the state-of-art secure multiparty com-
putation (SMC) platform SHAREMIND [3] (version 2018.03). In
a decentralized network, computation power can be provided by
individuals, so we intentionally choose a desktop (with 8 GB RAM
and one 2.8 GHz Intel Core i5), instead of powerful servers, to imple-
ment both of the methods. Each of the data piece has 750 measured
SNPs.

As shown in Figure 8, for 270 samples, SHAREMIND took around
43 seconds, and the execution time increased linearly over the num-
ber of samples. In comparison, our methods showed significantly
better performance results: took around 0.72 second for 270 sam-
ples, and stayed nearly constant when the number of samples was
growing.

In addition, the computational overhead of SMC grows with
the number of players: a perfectly secure protocol which allows
n players is with a computational overhead of O(n logn) [10]. In
comparison, our protocol allows analysis nodes execute computa-
tion on original data pieces in a non-interactive way, therefore, the
computational overhead is independent of the number of players,
achieving the performance of O(1).

6 CONCLUSION
We propose a method which consist of a decentralized network,
with the PPS protocol and the data fragmentation algorithm to
enable the privacy-preserving sharing of genomic data for GWASs.
The advantages of our approach are: 1. We provide a preventive
method to solve the data re-distribution problem that ethically sat-
isfies people’s fundamental interests in their data. 2. Our method
provide high level of privacy - prevent data re-identification prob-
lem, at the same time, GWASs analysis can be applied as usual. 3.
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Figure 8: Execution time (s) over the number of samples

We solve the scalability problem by the fragmentation mechanism,
providing not only decentralized storage, but also decentralized
analysis. By constructing an ecosystem of gene fragmentation, we
achieve a secure framework for privacy-preserving sharing ge-
nomic data and a system of openness, decentralization, and global
participation designed to bring benefits to all stakeholders.
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