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Abstract 

Wireless sensor networks have gained significant traction in environmental signal monitoring 

and analysis. For a battery powered system, the lifetime of the system typically depends on 

the frequency at which environmental phenomena are monitored. If energy harvesting is 

added to provide indefinite lifetime, then the size and cost of the energy harvesting hardware 

is similarly affected by the sampling frequency.  Typically, each data sample requires the node 

to wake up from a low-energy sleep mode.  If sampling rates are reduced, then the node duty 

cycle can be reduced, and energy can be saved. This is particularly true when the measured 

quantity has slow dynamics, such as temperature. Using empirical datasets collected from 

environmental monitoring sensor networks, this work performs time series analyses of 

measured temperature time series.  Unlike previous works which have concentrated on 

suppressing the transmission of some data samples by time-series analysis but still 

maintaining high sampling rates, this work investigates reducing the sampling rate (and sensor 

wake up rate) and looks at the effects on accuracy.  Results show that the sampling period of 

the sensor can be increased up to one hour while still allowing intermediate and future states 

to be estimated with interpolation RMSE less than 0.2C and forecasting RMSE less than 1C. 

Depending on the desired spatio-temporal resolution, the number of sensor nodes to be 

deployed will vary. Selecting an optimal number, position and sampling rate for an array of 

sensor nodes in environmental monitoring is a challenging question. Most of the current 

solutions are either theoretical or simulation-based where the problems are tackled using 

random field theory, computational geometry or computer simulation, limiting their 

specificity to a given sensor deployment. Using an empirical dataset from a mine 

rehabilitation monitoring sensor network, this work proposes a data-driven approach where 

co-integrated time series analysis is used to select the number of sensors from a short-term 

deployment of a larger set of potential node positions. Analyses conducted on temperature 

time series show 75% of sensors are co-integrated. Using only 25% of the original nodes can 

generate a complete dataset within a 0.5C average error bound for the estimated temperature 

from neighbours’ measurements compared to the measured temperature at each position. Our 

data-driven approach to sensor position selection is applicable for spatiotemporal monitoring 

of spatially correlated environmental parameters to minimize deployment cost without 

compromising data resolution.  
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Chapter 1 Introduction 

Environmental phenomena are dynamic processes that operate and cycle naturally around us. 

Air temperature, pressure, humidity, soil moisture are a few examples. Understanding the 

complete spatiotemporal behaviour of these processes is very important to pinpoint how they 

are evolving in space and time and impacting the surrounding ecosystem.  One example of such 

monitoring is the Springbrook rainforest monitoring system in South-East Queensland where 

various environmental parameters are being observed to discover the impact of environmental 

phenomena on rainforest biodiversity [1].   

Understanding the detailed spatiotemporal behaviour of environmental phenomena requires 

development of an effective observation system.  Historically, weather stations have been one 

widely used environmental monitoring system. Weather stations have a wide range of high 

precision environmental sensors and capture good quality of environmental data. Being 

spatially sparse, weather stations only capture large-scale environmental variations. However, 

meteorological parameters such as surface temperature, wind speed, and humidity can vary at 

very small spatiotemporal scales  [2, 3].  

Recently wireless sensor networks (WSNs) have begun being used to observe environmental 

phenomena at varying spatiotemporal scales. As their costs reduce, WSNs can economically 

be deployed for comprehensive environmental sensing and monitoring [4]. Sensor networks 

have been used in various environmental observation including personal environment 

monitoring [5], building environment monitoring [6, 7], city centre heat monitoring [3], soil 

moisture measurements [8], volcano monitoring [9], ocean exploration [10], harsh mountain 

environment monitoring [11, 12]  and many more which are listed in several review papers 

[13-15]. In most of the application scenarios listed, sensor networks are deployed with fixed 

positions. Mobile nodes, on the other hand, move around the area to be monitored. Small 

numbers of them may cover the larger area, failed nodes can be replaced by moving working 

nodes and nodes can change their location in a flexible manner [16]. This thesis deals primarily 

with static nodes, and how best to choose their spatial positions and their sampling frequency.  
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This research work considers some techniques to improve the configuration of wireless sensor 

networks to sense and monitor spatiotemporal environmental processes.  For this work, just 

one environmental parameter – air temperature – is considered.   

In particular, the thesis addresses two problems. 

The first issue is how frequently sensor nodes should be sampled to give good temporal 

resolution.  Because sensor nodes are typically powered by batteries, often with solar cell 

energy harvesting, they are energy limited.  Nodes sleep, and then periodically wake, sense, 

record and transmit their data.  The sensing frequency has a direct effect on the sensor energy 

use.  If data is sensed less frequently, then intermediate values of temperature can be estimated.  

This investigation develops a methodology for deciding the best sampling period which 

maintains good accuracy for interpolated points.  For the particular deployment scenario, this 

technique shows that reasonable accuracy (Root Mean Square Error (RMSE) of 0.2ºC) can be 

maintained while increasing the sampling period from once every 5 minutes to once every 60 

minutes. 

The second issue is how many sensors are needed, and where they should be placed spatially.  

Again in the spatial domain, temperature can be estimated by using the information from 

nearby locations to estimate temperature at a position without a sensor.  This investigation 

develops a technique which starts with a dense deployment of sensors and uses statistical 

correlations between sensors to identify a minimum set of sensors which maintains good 

accuracy. For the particular deployment scenario, this technique shows that reasonable 

accuracy (RMSE of 0.5ºC) can be maintained with only 25% (3 out of 12) sensors. 

The two investigations have been reported in two journal papers, [17, 18] which form the body 

of this thesis, and each of which contain some relevant background and literature review. 

The organization of the thesis is as follows. Chapter 2 presents some broader background and 

literature review.  Chapter 3 is a reformatted version of paper [17].  Chapter 4 is a reformatted 

version of paper [18]. Chapter 5 presents the conclusion sections of the two papers and some 

directions for future work. 
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Chapter 2  
Background, Literature 

Review, and Research 

Questions 

2.1.  Background for the research 

This section provides some background information about spatiotemporal environmental 

sensing and estimating. In the approach taken in this thesis, environmental phenomena are 

considered to be non-deterministic processes and they are normally modelled as random 

processes. This research follows similar approaches in the literature on environmental 

monitoring and models environmental phenomena as random processes [19-21]. This research 

models spatiotemporal variability and utilizes spatiotemporal estimation techniques to estimate 

environmental phenomena at unobserved locations and times.  

2.1.1.  Mathematical formulation of the stochastic random process  

Consider a finite space and a time domain D  and T where 
dD R and

1T R , with 2d   for 

a planar measurement field, and d=3 if a three-dimensional sensing volume is considered. A 

monitored phenomenon is modelled as a stochastic random process Z  that can be characterized 

as a collection of random variables ( )Z(u, t)RV  varying in space and time, i.e., D   andT .  

The domain D T can have an infinite size. Complete characterization requires observation of 

the phenomena at each spatiotemporal point. Any realistic sampling strategy, however, samples 

a few realizations of the random process Z  as a sequence of z( , )i iu t  and those sparse 

observations are used to model the statistical behaviour of the phenomenon across the domain

D T .   

This research considers deployment of wireless sensor networks to sample the environmental 

phenomena.  Deploying sensor network covering the whole spatiotemporal domain D T  may 

require dense sensor deployment. This research investigates how to characterize the 

spatiotemporal process Z  at desired spatiotemporal scales.  
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An observation obtained from a sensor network is a realization of the random variable

( )Z(u, t)RV  at that particular point in space and time. Complete characterization of the random 

process Z  requires the cumulative distribution function (CDF) of all possible random variable

( )Z(u, t)RV , i.e., ( , ; ) Prob{Z(u, t) z}, z,(u, t) D TF u t z      .  

2.1.1.1.  Stationary assumption of random process 

Because fully characterizing phenomena requires an infinite collection of realizations of 

random variables ( )Z(u, t)RV , stochastic modelling of environmental phenomena often makes 

the assumption of the process being stationary.  A process is called stationary in the 

spatiotemporal domain if its behaviour remains statistically consistent in space and time.  There 

are basically two forms of stationarity, strict and weak sense stationary. If the behaviour of the 

process remains consistent at any order then it is called strict sense stationary. However, 

behaviours of the process up to second order are considered sufficient for its characterization. 

That is why much of the research modelling environmental processes assumes second order 

stationary of the process [22]. Second order stationary process specifies:  

1. Mean of the random variables ( )Z(u, t)RV  remains the same, i.e. 

{Z(u, t))} m (u, t) D TE       

2. Second order moment i.e., covariance among random variables depends only on the 

spatiotemporal distance in  D T , i.e. ' '{[ ( , ) ][ ( , ) ]} ( , )zE z u t m z u t m C h     

In the case of a variable like temperature, the average temperature is clearly not constant across 

a sensing region, so the raw temperature variable will not be second order stationary.  Instead, 

as will be shown later in chapter 3, it is necessary to transform the data to make it stationary to 

be able to use some common modelling techniques. 

2.1.2.  Spatiotemporal variability modelling  

Variability modelling characterizes the spatiotemporal structural behaviour of the 

environmental phenomenon.  Characterising the variability structure from observed 

spatiotemporal locations allows us to estimate spatiotemporal observations at unobserved 

locations[23].   

Variability of the observed phenomenon is first captured using a sample variogram:   

𝛾̃ =
1

2𝑁(ℎ, 𝜏)
∑ (Z(𝑢𝑖, 𝜏𝑖) − Z(𝑢𝑗 , 𝜏𝑗))

2
𝑛

(𝑖,𝑗)∈(ℎ,𝜏)

 (2-1) 
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where (u, ) ( , ) : (u ) ;( )i j i jN i j u h         

The sample variogram, 𝛾̃ is then fitted to some standard variogram models. Some standard 

variogram models are linear, spherical, Gaussian and Matern.   

2.1.3.  Environmental estimation  

Environmental estimation techniques are used in order to estimate the value of environmental 

phenomenon at unobserved locations. There are two types of estimation techniques in 

spatiotemporal estimation: deterministic and stochastic [24].  Deterministic estimation 

techniques use some parameters and estimate the spatiotemporal value at an unobserved 

location as a deterministic value. Stochastic estimation techniques use the statistical behaviour 

of the available observations to estimate the value at unobserved locations.  

If there are n  observations near an unobserved location𝑧̃, any linear deterministic or stochastic 

estimation approach calculates the value at 𝑧̃ weighting each of the nearby observations based 

on their specific weighting methods.  

𝑧̃ = ∑ 𝑤𝑖𝑧𝑖

𝑛

𝑖=1

 (2-2) 

Weight iw  depends on the estimation approach that is used, as described subsequently.  

2.1.3.1.  Simple averaging  

Simple averaging is one possible approach to estimate environmental phenomena at 

unobserved locations. It basically uses observations from nearby sample points and estimates 

values at unobserved locations. It does not consider variability, neither does it consider 

weighting neighbouring nodes differently.  

If there are n  observations near an unobserved location 𝑧̃ simple averaging estimates the value 

of 𝑧̃ weighting each of the nearby observations equally.  

𝑧̃ = ∑ 𝑤𝑖𝑧𝑖 , 𝑤𝑖 =  
1

𝑛

𝑛

𝑖=1

 (2-3) 
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2.1.3.2.  Inverse distance weighting  

Inverse distance weighting (IDW) is a deterministic estimation method. It estimates 

environmental phenomenon at unobserved locations giving higher weights to nearby 

observations compared to observations that are farther away [25]. This technique is simple and 

computationally very efficient. However, it does not incorporate variability of the phenomenon 

in the region and so sometimes it has high estimation error.  

If there are n  observations near an unobserved location 𝑧̃, inverse distance weighting estimates 

the value at z  weighting each of the nearby observations by their distance.  

𝑧̃ = ∑ 𝑤𝑖𝑧𝑖, 𝑤𝑖 =  
1

𝑑𝑝

𝑛

𝑖=1

 (2-4) 

 

Weight iw  depends on the Euclidean distance d  between the location to be estimated and 

nearby observation i. The relative weight of the neighbouring observation also depends on the 

power p in the weighting factor. Selecting higher values of p emphasises the closest 

neighbouring points. p can either be selected based on previous experience (e.g. p=1 is a 

common choice) or else the best value of p can be estimated based on detailed analysis of the 

sensor data. 

2.1.3.3.  Kriging  

Kriging is a stochastic estimation approach. It is unbiased linear estimator and minimizes 

estimation variance [23].  

If there are n  observations near an unobserved location, 𝑧̃, kriging estimates the value at 𝑧̃ 

weighting each of the nearby observations by their spatiotemporal variability.   

𝑧̃ = ∑ 𝑤𝑖𝑧𝑖, 𝑤𝑖 = 𝐶𝑜𝑣(𝑧, 𝑧′)−1𝐶𝑜𝑣(𝑧, 𝑧̃)

𝑛

𝑖=1

 (2-5) 

Factor 𝐶𝑜𝑣(𝑧, 𝑧′)−1 represents the inverse of the covariance among all the available 

spatiotemporal samples, and 𝐶𝑜𝑣(𝑧, 𝑧̃) is the covariance between all sample locations and the 

location where the estimation is to be performed.   
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2.1.3.4.  Regression Kernels 

The above approaches all estimate an unknown value as a linear combination of other known 

values in the neighbourhood of the unknown value.  A more generalized approach, called 

regression kernels, allows a value to be estimated as a more complex function of the 

neighbouring values [26].  

First a kernel function, such as a zero-mean gaussian is chosen, where the value of the kernel 

decreases with the distance, di, between the location of the unknown value and the 

observation zi, at a rate determined by a scaling constant : 

                               𝑘𝑖 = 𝑒
−𝑑𝑖

2

2𝜎2                                                                         (2-6) 

Then each neighbouring observation is weighted by the value of the kernel function 

(normalised by the sum of all the kernel function values in the summation): 

𝑧̃ = ∑ 𝑤𝑖𝑧𝑖, 𝑤𝑖 =  
𝑘𝑖

∑ 𝑘𝑗

𝑛

𝑖=1

                                                 (2-7) 

 

2.1.3.5.  Estimation error 

In spatiotemporal estimation problems, estimation error performance is commonly measured 

using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and estimation error 

variance [24]. 

Sensors are not perfect.  The reading from a temperature sensor is affected by the inherent 

sensor accuracy, its resolution including digital quantisation, compensation for effects of other 

variables (such as humidity, pressure or wind) and its calibration history.  In this work, we are 

not aiming to determine the error between the estimated temperature and the actual 

temperature.  Instead, we are aiming to measure the difference between the reading from a 

sensor at that position, and a reading estimated from nearby temporal or spatial readings.  This 

is what we call estimation error. 

2.1.3.6.  Data Sources 

The data used in Chapter 3 is from real spatiotemporal data traces obtained from Springbrook 

sensor network situated in southeast Queensland. The network is described in detail in Chapter 
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3.   The data in chapter 4 is based on sensor data from the Meandu mine site rehabilitation and 

that data is described in more detail in that chapter. 

2.2.  Literature Review  

Environmental monitoring has a long history. As mentioned in [19], the Australian Bureau of 

Meteorology has been monitoring climatic variables such as temperature, pressure, solar 

radiation and rainfall since 1957. However, only 4600 monitoring stations are installed to cover 

the whole of Australia as manufacturing and operating costs of weather stations are very high 

[19]. They are observing environmental parameters at a spatial separation of more than ten 

kilometres. Research, however, shows that  meteorological parameters fluctuate at a very small 

spatiotemporal scales [2, 3]. As mentioned in [3], less than 100 metres distance in a city sees 

different temperature measurements. Such variations can have heat-related effects on the 

people living or working around the environment. Similar effects of small-scale temperature 

variations in plant and animal growth may be observed in rainforest environments [1].  Thus, 

such sparse monitoring system is inadequate to capture small-scale spatiotemporal behaviour 

of environmental phenomena.     

Recent development in the field of sensor technology has enabled a new possibility for 

environmental sensing and monitoring[4].  Wirelessly communicating groups of sensor nodes 

are being deployed for in-situ sensing and monitoring of a wide range of environmental 

phenomena. Cost of the deployment can be high if the spatial area to be covered is large. If 

nodes fail during observation, parts of the area remain uncovered. Also, adding and removing 

nodes during operation may not be possible.  

Mobile sensor networks are also an area of growing interest. As nodes move around the area 

of deployment a smaller number of mobile nodes may be sufficient to cover larger spatial 

regions.  Also, development of various mobile communication platforms, such as smart phones 

and any other portable mobile devices, and the inclusion of various sensors on them has created 

opportunities for opportunistic sensing of the environment [27]. Sensors can be carried by any 

mobile entity such as people moving around or animal such as flying fox.  

Considering the flexibility provided by a mobile sensor network, researchers have started 

deploying mobile sensor network in environmental sensing and monitoring.  In [28] authors 

have developed an environmental pollution monitoring vehicular sensor network. Mobile 

Environmental Sensor System across GRID Environments (MESSAGE) [29, 30] was a large 

project deployed in the United Kingdom and Europe where static and mobile sensor networks 
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were deployed in environmental sensing and modelling. In [31], authors from UCLA have 

developed a system called Personal Environmental Impact Report (PEIR) that senses 

environmental parameters exploiting location tagged data observed using mobile phones to 

estimate personalized environmental exposure and its impact. CitiSense, an air quality 

monitoring platform has been developed in [32] envisioning a “citizen infrastructure” to 

monitor pollution and environmental conditions where users get exposed in their daily life. 

Mobile Air Quality Monitoring Network (MAQUMON) has been proposed in [33] that can 

provide real-time air quality information to the public using it Sensor Map visualization 

interface. In [34, 35] authors have proposed participatory pollution monitoring using smart 

phones and discussed their real-time experiments conducted in Zurich Switzerland. In the 

HazeWatch project at The University of New South Wales,[36] researchers monitored 

environmental pollutant concentration in Sydney area with the help of sensor mounted in 

vehicles. In[37], researchers from CSIRO used small and low-cost Autonomous Underwater 

Vehicles  (AUV) to record spatial data between fixed sensors deployed on the surface of the 

water and the sea bed. 

The purpose of sensor networks is to observe environmental phenomena covering as much as 

possible spatial and temporal domains. However, covering whole spatiotemporal regions can 

be difficult. As a solution, researchers have employed various spatiotemporal estimation 

techniques. Spatiotemporal estimations help researchers estimate measurements of observed 

phenomena at desired spatiotemporal scales. This section reviews some wireless sensor 

network based spatiotemporal estimation techniques, their focus, results obtained and their 

relationship to this research proposal. In [23, 38-40], the authors have used a kriging based 

estimation technique in coverage hole reduction. Sparse data obtained from sensor nodes are 

spatially interpolated to other locations. In [41] theoretical work on spatiotemporal estimation 

of sensor networks is explored merely suggesting spatiotemporal characteristics can be 

exploited in reducing sensor network energy consumption. In [39], the author proposed to use 

mobile nodes in spatiotemporal estimation and proposed a recursive estimation approach. In 

[22], authors proposed to use mobile sensor networks with spatiotemporal kriging. 

Spatiotemporal estimation of environmental phenomena was performed in [42]. A 

decentralized data fusion approach was proposed in [43] to explore road networks.  This 

research also aspires to estimate sensor observations at unobserved locations and times.  

One significant difference from many other projects is that this work is validating results with 

real-time environmental dataset compared to simulation and theoretical based approach. This 
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ground truth verification with real platform deployment provides strong evidence of the 

usefulness of the new techniques that will be developed.   

From our literature survey, we observe that many of the sensor network based environmental 

monitoring projects focused their research on network, MAC and physical layer related 

networking challenges. As shown in detail in the comparison table below, most of the research 

works have deployed a limited number of nodes; covered limited spatial region and sampled 

the environment for a short period of time. This research has demonstrated that sensor networks 

can be deployed for environmental sensing and monitoring, but not necessarily how they can 

be best deployed.  

A number of approaches have been proposed in the literature for determining the best 

sampling interval for time series.   Alippi et al [44] summarise different adaptive sampling 

techniques.  In many cases, these methods compare the sample with a model and do not 

transmit data if the data fits the model.  However, the node still needs to wake to take the test 

sample. 

Harb et al [45] compare three techniques to optimally set the sampling interval for an 

industrial process monitoring application.  One method uses statistical analysis of data 

variances to estimate a good sampling interval, another method is based on set-similarity 

functions which can use past history to inform future readings, and the third technique uses 

distance-functions to estimate when estimates are stale and new readings are needed.  

There has similarly been substantial research into determining the optimal spatial resolution 

required for sensing.  Statistical techniques like those proposed by Marceau [46] look at the 

spatial frequency at which various phenomena change, and then use Nyquist sampling 

approaches to decide upon the optimal sampling interval. 

Budi et al [47] have very recently proposed using a mobile platform to explore an area prior to 

sensor deployment, and using those readings to design an optimal sensor placement.  Jin et al 

[48] also propose a robot-based sensing system for indoor air quality, and investigate 

techniques for interpolating spatio-temporal values from sparse robot readings. 

The current state of the works related to spatiotemporal estimation using wireless sensor 

networks has been reviewed briefly above. Much of the current work on spatiotemporal 

estimations are limited in answering questions related to the comprehensive spatiotemporal 

estimation of environmental phenomena. We observe that many questions related to wireless 
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sensor network based spatiotemporal modelling of environmental are still open, such as the 

following. How effectively is the sensor network capturing the spatiotemporal behaviour of 

environmental phenomena compared to reality? What approaches can be used to estimate 

spatiotemporal dataset at uncovered spatiotemporal locations? How many static nodes would 

be enough to cover certain regions and capture fine-grained spatiotemporal behaviours?  

In short how effective sensor network can be in fine-grained spatiotemporal sensing and 

monitoring of environmental phenomena still has significant research gaps. 

Table 2-1 on the following pages summarize aspects of some previously reported 

environmental sensing projects. 
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Table 2-1.  Summary of some typical projects involved in environmental sensing and monitoring using wireless sensor network and their environmental analysis 

Project name Year Observed 

phenomena 

sensor nodes 

(static/mobile) 

Spatiotemporal 

Coverage area 

(analysis) 

Estimation 

at all 

locations  

Ground truth 

evaluation 

Error 

analysis 

Abbreviations used:   NP = Not performed;   NS = Not specified 

VSN Singapore 

[28] 

 

2009 Environmental 

pollution 

Single mobile  node 

(car) 

Selected routes for 

experimental 

period 

NP  NP  NP 

Citisense 

San Diego [32] 

2012 Environmental 

pollution 

16 smartphones for 

two weeks 

Selected paths that 

trial users visited 

NP NP  NP.  

MESSAGE[29] 

UK 

2008 Air pollution  Mobile and static 

sensors  

Certain traffic 

routes  

NP NP NP 

Sensorscope [11] 

Switzerland 

2007 High Swiss 

Alps 

environmental 

monitoring 

23 sensors deployed 

for a month and half 

only a small area  NP  NP  NP 

N-SMART[49] 2008 Air pollution  6 taxis, 4 personal, 

two weeks 

experiment 

Taxi ways 

covering some 

NP  NP NP  
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parts of Accra, 

Ghana 

MAQM 

USA[50] 

2008 CO, O3, NO2 Sensor mounted cars 

( no exact numbers 

and duration are 

provided  

Covered the road 

network of the 

Nashville,  

NP NP NP  

MoDisNet [51] 

London 

2008 Air pollution 12 Static and, 6 

mobile sensor nodes   

Covered some 

sections of London  

NP NP NP  

UScan 

Tokyo [3] 

2010 Temperature , 

vibration, 

illumination 

200 sensor nodes 

deployed for 2 

months (1800 

nodes/Km2) 

Small section of 

tokyo    

NP NP  NP 

Tungurahva 

Equador [9] 

 Earthquake  16 nodes, sampling at 

100 Hz, deployed for 

19 days  

Coverage of 3 KM 

area  

NP NP No 

variability, 

uncertainty 

and error 

analysis 

MEM 

Taiwan [52] 

2011 Pollution 9 sensor nodes for 

April 22  to May 3 

2011, sampling at 

every 2 minutes 

Points where 

sensors are 

deployed 

NP NP NP  
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PermaSense 

Switzerland [12] 

2007 sensor nodes 

monitoring 

permafrost 

10 sensor nodes for 

months  

Only fixed points 

are observed  

NP  NP  NP  

Haze Watch 

Sydney[36] 

2012 Environmental 

pollution 

Sensor mounted in 

Cars 

Covered only 

certain sections of 

the roads in 

Sydney  

 IDW, 

Kriging at 

Map  

Compared result 

with Government 

installed fixed 

stations  

NP 

Commonsense 

India[53] 

2005-

2006 

Rain fall, 

temperature, 

pressure, soil 

moisture 

10 nodes, sampling at 

every 5 minutes 

Indian Institute of 

Science campus 

area 

NP  Observations  are 

compared with 

measurements 

from  fixed 

stations 

NP   

Wannengrat 

Switzerland[54] 

2009 snow 

monitoring 

sensors 

7 sensors   Covers only 

deployed area 

NP No ground truth 

verification 

NP  

Opensense 

Switzerland [35] 

2010 Air pollution  NS tram ways and the 

region covered by 

the fixed sensor 

NP Sensors are 

calibrated with 

high quality fixed 

station based 

observations 

NP  
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PEIR 

USA[29] 

2009 Air pollution 30 users for 6 months Roads and specific 

locations  

NP publicly available 

meteorological 

services are used  

NP  

Participatory air 

pollution 

monitoring 

ETH Zurich [32] 

2012 Air quality (O3) 

measurement 

system 

(GasMobile ) 

 

Several bikes are 

used for two months  

Only bicycle paths 

are covered  

NP Uses static 

stations to 

improve sensor 

calibration 

Analyse 

effect of 

mobility on 

the accuracy 

of the sensor.  

Springbrook[13] 2008 Environmental 

phenomena 

175 Sensors are 

deployed 

strategically 

measuring 

rainforest 

regeneration  

NP NP NP 

Airy Notes[50] 

Shinjuku Gyoen 

Garden, Japan 

2005 uPart sensor 

(temperature, 

light, 

movement) 

160 sensors, (May, 25 

to June 12 2005), 

sampling in every 10 

seconds 

Different regions, 

business area, 

border area, forest 

area, garden field.  

NP  NP NP 
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2.3.  Research Gaps and Research Questions 

In the previous section, some typical examples of environmental sensor networks were 

described.  The cost of a wireless sensor network deployment depends on at least two design 

decisions. 

Firstly, the energy requirements of the sensor nodes determine the size of energy storage 

(batteries) and energy harvesting (e.g. solar cell area).  Energy requirements grow with more 

frequent sampling of environmental parameters and the more frequent transmission of the 

results.  While the existing literature provides some statistical and heuristic methods for 

determining the sampling period based on the nature of the data time series, the availability of 

long-term real-world sensor data provides an opportunity to explore this question in more 

detail. 

Secondly, the cost of a deployment depends on the spatial density of the sensor nodes, i.e. how 

many sensor nodes are deployed.  Again, while the existing literature provides some methods 

for determining the spatial sampling interval based on the nature of the data, the availability of 

long-term real-world sensor data provides an opportunity to explore this question in more 

detail. 

This research investigates these two issues through a dense spatio-temporal deployment of 

sensors (i.e. many sensors recording parameters often) to develop data-driven methodologies 

for determining appropriate density of nodes, node locations, and node sensing duty cycles.  

Fairly standard time-series analysis techniques are used as the basis for these methodologies. 

This leads to two research questions: 

Research Question 1:   Based on time series analysis, can high-frequency sensor data be 

used to determine appropriate long-term sampling intervals for environment sensor data? 

Research question 1 is answered through the paper “Time Series Data Analysis of Wireless 

Sensor Network Measurements of Temperature” [17] which forms the basis for chapter 3.  

Chapter 3 presents the background, literature review, experimental methodology, results and 

Chapter 5 presents the conclusions for this research question. 

Research Question 2:   Based on time series analysis, can high spatial density temporary 

sensor deployments be used to determine appropriate long-term spatial density and sensor 

node locations for environment sensor data? 
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Research question 2 is answered through the paper “Time Series Analysis for Spatial Node 

Selection in Environment Monitoring Sensor Networks” [18] which forms the basis for chapter 

4.  Chapter 4 presents the background, literature review, experimental methodology, results 

and Chapter 5 presents the conclusions for this research question. 

  



 

18 

 

 

Chapter 3 incorporates the following paper, 

with the conclusions section as part of Chapter 5: 

S. Bhandari, N. Bergmann, R. Jurdak, and B. Kusy, “Time Series Data Analysis of 

Wireless Sensor Network Measurements of Temperature,” Sensors, vol. 17, no. 6, 

pp. 21, 2017. 

 

Contributor Statement of contribution 

Siddhartha Bhandari (Candidate) Conception and design (85%) 

Analysis and interpretation (85%) 

Drafting and production (80%) 

Neil Bergmann Conception and design (5%) 

Analysis and interpretation (5 %) 

Drafting and production (10%) 

Raja Jurdak Conception and design (5%) 

Analysis and interpretation (5 %) 

Drafting and production (5%) 

Brano Kusy Conception and design (5%) 

Analysis and interpretation (5 %) 

Drafting and production (5%) 
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Chapter 3 Temporal 

Interpolation 

3.1.  Introduction 

Wireless Sensor Networks (WSNs) allow dense spatiotemporal measurement of environmental 

phenomena such as temperature, humidity, solar radiation and rainfall [13] which in turn can 

be used to better understand local environmental conditions and processes. However, low-cost 

WSNs are also characterized by the resource-constrained nature of the WSN hardware. Limited 

available energy for data sensing, storage and transmission is a common constraint in WSNs 

in remote areas where mains power in unavailable or uneconomical to access. Sensor nodes 

are typically battery powered, where node lifetime is determined by battery lifetime. Indefinite 

operation can be achieved with energy harvesting using technologies such as solar cells, but 

energy efficiency is still a key factor in determining the cost of deployment since more energy 

use means larger and more expensive rechargeable batteries and solar cells. 

The spatial extent, spatial density and sensing frequency of the WSN nodes is partially 

determined by the scientific purpose of the deployment, but they will also be determined by 

the ability to model the processes which generate the environmental data in sufficient detail to 

be able to interpolate data values between sensed readings, both in time and space. If data can 

be accurately estimated between readings, then the frequency of making readings can be 

reduced, which in turn reduces the energy requirements and the deployment cost of the system, 

while increasing its lifetime. Previous work has not investigated the quantitative effects of 

reducing sampling frequency on the accuracy of both interpolated and predicted values. The 

optimal sampling interval will depend on the parameters being sensed, the environment in 

which they are sensed, the specific features of the sensors, and the scientific requirements for 

accuracy. This paper demonstrates the use of a data-driven method for determining sufficient 

sampling intervals through analysis of several specific sensor deployments. While we use 

temperature as a use case, many features of our approach are generalizable to other sensing 

modalities. 
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This paper first investigates the nature of temperature readings in a large scale WSN 

deployment in Springbrook, Australia [1]. Around 175 microclimate sensor nodes have been 

deployed for more than 5 years, and they have recorded temperature readings (as well as other 

environmental phenomena) every 5 min during this time. This provides a rich source of data 

for further analysis. For this paper, just one week of data has been explored, since there is a 

significant cost involved in data cleaning and checking prior to statistical analysis. The 

robustness of results would be improved if the analysis was applied to a larger portion of the 

data. 

In this paper, the temporal dynamics of the temperature recorded by the WSN is analyzed in 

detail, with a view to answering two questions. Firstly, if the interval between sensing events 

is increased, how accurately can temperature be interpolated between the sensor readings. 

Longer sensing intervals will reduce the consumed energy, and hence reduce deployment cost 

or extend deployment lifetime. Secondly, if real-time readings of temperature are needed, for 

how long can future values of temperature be accurately extrapolated without needing 

instantaneous data transmission. 

This paper addresses two research questions. Firstly, it analyzes the reduction in measurement 

accuracy if the sampling interval is extended with temperature interpolated between these 

values. Also different interpolation methods are compared.  

Secondly, we model the temperature phenomenon as a stochastic process and analyse it using 

a time series modelling framework [55], and use this analysis to determine how the short-term 

predictability of future temperature is affected by sampling interval, and extrapolation 

technique.  

The rest of the paper is organized as follows: Section 2 reviews the related literature. Section 3 

explains the data used, Section 4 examines the first research question about the effect of sampling 

interval on temperature measurement accuracy, Section 5 repeats the analysis for a different data 

set, Section 6 explains time series modelling as background for the second research question, 

Section 7 answers this research question about future temperature prediction, and Section 8 

concludes the paper. 

3.2.  Previous Work 

WSNs have the potential to revolutionize environmental sensing, providing high spatial and 

temporal resolution data [4]. Recent deployments include personal environment monitoring 
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[5], city monitoring [3], building monitoring [6], ocean exploration [10] and toxic gas 

monitoring[7].  

However, the nature of the measured phenomena is not always well understood. Environmental 

phenomena can vary at very small spatiotemporal scales [2, 3]. Exhaustive spatiotemporal 

study of the behaviors of such dynamic phenomena requires the deployment of an adequate 

number of sensor nodes and effective collection of data.  

In terms of temporal resolution, various ad hoc schemes have been proposed to optimize 

sampling frequency, e.g., in [8] soil moisture is sampled more frequently near rain events to give 

more useful data, however, such techniques have not considered the detailed statistical nature of 

the signals. 

Techniques have been proposed for spatially interpolating values within a sensor field [22, 23, 

56, 57] but these generally assume a smooth gradient across the sensor deployment area, and 

the techniques have not been well verified in real deployments. Most of the aforementioned 

references did not consider the statistical behavior of the environmental phenomena or they 

assume process stationarity [22]. Liu et al. [58] also investigate spatially clustering nodes and 

reducing sampling interval by having only one sample report from a cluster each sample 

interval. The same effect could be achieved by simply reducing each cluster to a single node. 

Also, their spatial redundancy techniques have not been tested on real data, only on synthesized 

data. 

Use of formal time series analysis in sensor networks has been reported by several researchers. 

Law et al. [59] use time-series modelling to decide the confidence levels for future samples, 

and skip the future readings if the values are likely to be accurate enough. However, this 

requires substantial processing, and adjusting time series models continuously for each new 

reduces the number of required samples by less than 50%. 

In [60], Le Borgne et al. use time series prediction for future estimation of samples, so that 

some data transmission can be suppressed. They present a useful algorithm for selecting a 

suitable time series, but savings are only achieved for data transmission. The sensors still need 

to sample data at the full rate. Miranda et al. [61] use autoregressive models to predict samples 

based on spatially nearby sensors, however, their work does not investigate how to decide upon 

the optimum sample rate. Liu et al. [62] also present a method for suppressing the transmission 

of data samples if the receiver is able to accurately forecast samples based on time series 

models. Sensors are still required to sample data regularly. This method does not allow 
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sampling intervals to be increased. Recently, Aderohunmu et al. [63] have also used similar 

time-series modelling for forecasting future sample values so that data transmission can be 

suppressed. Amidi [64] has used ARIMA modelling for the smoothing of noisy data and for 

interpolating missing data samples in a series, but again has not analysed the best sample rate 

to provide accurate data interpolation. 

Pardo et al. [65] investigate a neural network model for predicting the future temperature in an 

indoor environment for use with intelligent air-conditioning. Their neural network predictors 

perform considerably worse than Bayesian predictors (although the authors claim there is little 

practical difference), but their work does not investigate the effect of different sampling 

intervals. 

Liu et al. [58] propose on-sensor temporal compression of data by only transmitting a 

dynamically computed subset of data (with linear interpolation between these). This reduces 

the quantity of transmitted samples, but not the sampling interval of the sensors, and also 

increases the latency before receiving measurements.  

Tulone and Madden [66] propose a system called Probabilistic Adaptable Query (PAQ) system 

which develops an Auto Regressive (AR) time series model for every node for predicting future 

values. If the future predictions based on past transmitted values are below some threshold, 

then no new data is transmitted. Once this threshold is exceeded, new data is transmitted. Data 

still needs to be sampled at high temporal resolution, and there is no investigation of what the 

best sampling interval should be. They also propose round-robin scheduling on sensors in 

spatial clusters. 

In general, these previous works have used time series analysis to model the statistical behavior 

of the data. They have been used for outlier and anomaly detection, and for separating the 

underlying trends from noisy signals. They have been used for suppressing data transmissions 

when forecast values are close to the measured values. However, with such systems, there has 

been no reduction in the sampling interval, just in the transmitted data. Energy use consists of 

three main components. Firstly every time data needs to be sampled, the sensor node needs to 

wake up, wait for the sensor node and sensing transducer to stabilize, undertake any 

computational tasks (such as calibrating readings, or comparing against predicted estimates of 

values), and possibly transmitting data to the data sink. Previous work still requires the sensor 

to wake up, stabilize and compute at high sampling frequency. Even if the energy to wake up, 

stabilize and compute is relatively small compared to transmission costs, as would be the case 
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for a temperature sensor, reducing the sensing frequency, and hence the number of wake up 

times will have a direct impact on sensor lifetime. Substantially more energy can be saved in 

the sensor sampling interval can be extended without compromising the scientific usefulness 

of the collected data. Previous work has not used time series analysis to analyse the accuracy 

of both interpolated and extrapolated data values as the sampling period is varied. This analysis 

can help a sensor network designer to set a sampling rate that satisfies the required error limit 

whilst reducing energy consumption. 

In this work, no behavioral assumptions of the process are made and all analyses are validated 

with proper statistical tests. This analysis will allow insights into the required sampling 

intervals for long-term deployments with moderate accuracy requirements. 

It is worth noting that several papers, e.g., [58, 66], reduce sampling intervals by round-robin 

scheduling of nodes with a spatial cluster of highly correlated nodes. In this paper, only 

sampling within a single time series is investigated, although we expect to address spatial 

redundancy in our future work. 

3.3.  Temperature Data from Springbrook WSN Deployment 

This section describes one set of temperature data that used for this study and presents some 

simple empirical observations. Situated in southeast Queensland, the Springbrook WSN 

deployment consists of 175 sensor nodes, covering one square kilometre of area, monitoring 

temperature, pressure, humidity, wind, and several other environmental parameters with a 

sampling period of 5 min, and it has been operating since 2008[1]. 

An aerial photograph of the site is shown below in Figure 3-1.  The nodes used in Figure 3-2 

(nodes 2,3,4 and 5) are shown with blue circles and larger numbered labels beside them. The 

data from node 2 is used in subsequent data analysis. 
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Figure 3-1: Aerial photograph of Springbrook site 

 

Figure 3-2 (a) shows four days of data from four sensors in the deployment.   This shows that 

generally the temperature patterns are highly correlated between nearby sensors, since the values 

are largely superimposed. This means that interpolation and prediction results from one sensor 

node should be representative of results from all nodes in that deployment. However, the 

temporal pattern over the week does not always show a clear daily pattern. This shorter section 

has been shown (rather than the whole week that is used for subsequent analysis) to more 

clearly illustrate that temperatures are less highly correlated when temperature changes are 

rapid such as during the temperature changes on 26/1/2012, and more highly correlated on days 

with smaller changes, such as 24/1/2012. 

Figure 3-2 (b) shows the readings of one sensor over one week which shows that the 

temperature does not rise and fall smoothly over the course of a day but has a significant 

component of noise.  This data from node 2 will be used for subsequent analysis. 
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(a) 

 
(b) 

Figure 3- 2. (a) Four day time series plot of four nearby sensors. (b) One week of samples from one 

sensor (node 2). 
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Figure 3-3 shows a version of the signal, based on differences between consecutive signals, as 

given by Equation (3-1): 

Y’(t) = Y(t) − Y(t − 1) (3-1) 

 

 
Figure 3-3. One week of difference values. 

On first observation, this differenced signal does not have any clear structure, but appears 

largely random. Simple statistical analysis shows a mean close to zero and a standard deviation 

of 0.14 °C.  

3.4.  Accuracy versus Sampling Interval 

As mentioned earlier, energy can be saved and sensor lifetime extended if the interval between 

sensor readings is extended. In this first experiment, the sensing interval is extended from the 

existing 5 min intervals to intervals of 10 min, 15 min, 20 min, 30 min, 45 min, 60 min, 90 min 

and 120 min by selecting appropriately spaced samples from the 5-min data for one sensor over 

one week. Values at the intervening 5 min intervals are then interpolated, and the RMSE (root-

mean-square error) and MAE (mean absolute error) of the interpolated values are calculated. 

Two different interpolation algorithms are chosen. The first method uses linear interpolation 

between the sampled points, and the second method uses a cubic spline between the sample 

points. Table 3-1 shows the RMSE and MAE of interpolated values, and the 99th percentile 

absolute error when the various interpolation methods are applied to the one week sequence 

shown in Figure3- 2.  
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Table 3-1. Interpolation Error for Different Sampling Intervals (in °C). 

Sampling 

Interval (Mins) 

RMSE 

Linear 
MAE Linear RMSE Cubic MAE Cubic 99% Linear 99% Cubic 

10 0.0884 0.0528 0.0852 0.0519 0.3250 0.2893 

15 0.1097 0.0664 0.1088 0.0669 0.4000 0.4037 

20 0.1166 0.0755 0.1228 0.0793 0.4200 0.4496 

30 0.1527 0.0937 0.1531 0.0962 0.5800 0.5709 

45 0.1865 0.1152 0.1921 0.1190 0.6867 0.7410 

60 0.2224 0.1335 0.2330 0.1430 0.8425 0.8753 

90 0.2439 0.1566 0.2507 0.1629 0.9133 0.8774 

120 0.2646 0.1720 0.2893 0.1882 0.9425 1.0206 

240 0.3297 0.2161 0.3290 0.2215 1.2758 1.2189 

Figure 3-4 shows the growth of error with increasing sample intervals. The 95% confidence 

interval for the RMSE of linear interpolation is also shown in Figure 4, and the difference 

between linear and cubic interpolation is not significant within these confidence intervals. 

Except at smaller sampling intervals, cubic spline interpolation gives poorer results, and so 

linear interpolation is preferred. 

 
Figure 3-4. RMSE of linear and cubic interpolation showing 95% confidence interval of RMSE 

Linear. 

These results show that with linear interpolation, the MAE remains below the standard 

deviation of the difference signal (0.14 °C) in Figure 3 when the sampling interval is extended 

to 60 min. Alternatively, if the accuracy requirement was that 99% of interpolation errors have 

an absolute magnitude of less than 0.5 °C then the sampling interval can be extended to 20 min. 

It should be stressed that these results apply to this particular deployment. The general result, 

however, is that statistical analysis of sampled data over an initial deployment at relatively high 
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sampling rate can give insights into a lower long-term sampling rate which does not 

significantly sacrifice accuracy. 

3.5.  Repeating for Another Data Series 

The analysis above is repeated for another temperature data set using a different set of sensor 

hardware, a different physical location (a mine rehabilitation and revegetation site) and a 

different time of year (December 2013), again with samples every 5 min[67]. Figure 3-5 below 

shows four adjacent sensors over a one week period1, Figure 3-6 shows one signal, Node 5, in 

detail, which has a clear cyclic pattern. Figure 3-7 shows the differences between consecutive 

signals over 7 days. The signal appears mostly like a random noise signal, centred on zero. The 

variance of the noise is not constant, but also varies cyclically with higher variances in the 

middle of the day. The standard deviation of the temperature difference is around 0.3 °C. 

Table 3-2 repeats the analysis of how well linear interpolation and cubic spline interpolation 

can estimate intermediate temperatures if the sampling interval is reduced to 10 min, 15 min, 

20 min, 30 min, 60 min, 690 min, 120 min or 240 min. 

 
Figure 3-5. Adjacent sensor readings for a second experiment. 

                                                 
1 These nodes in Figure 3-5 are labelled 4,5,6,9 in the lower left corner of Figure 4-1 in the next chapter. 
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Figure 3-6. Detailed Readings for Node 5. 

 
Figure 3-7. Temperature Difference, Node 5 over 7 days. 
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Table 3-2. Interpolation Error (°C) for Different Sampling Intervals for Mine Data. 

Sampling 

Interval (Mins) 

RMSE 

Linear 
MAE Linear RMSE Cubic MAE Cubic 99% Linear 99% Cubic 

10 0.1746 0.0941 0.1751 0.0960 0.6740 0.6366 

15 0.2085 0.1164 0.2185 0.1211 0.7554 0.8286 

20 0.2342 0.1360 0.2487 0.1459 0.8862 0.9436 

30 0.2723 0.1588 0.2846 0.1693 1.0099 1.0027 

45 0.3664 0.2029 0.3694 0.2087 1.2578 1.3131 

60 0.4655 0.2498 0.4635 0.2493 1.5781 1.5309 

90 0.5837 0.3093 0.5762 0.3033 1.9658 1.8047 

120 0.6057 0.3836 0.5840 0.3663 2.1344 2.0859 

240 0.9780 0.6687 0.8121 0.5515 3.0073 2.7782 

Again linear interpolation gives better estimates at smaller sampling intervals up to 60 min. 

For sampling intervals over 60 min, there is a small advantage for cubic spline interpolation. 

The results also show that the sampling interval can be extended to about 60 min without the 

errors in the interpolated values exceeding 0.3 °C, which is the standard deviation of the 

difference signal between consecutive samples. 

3.6.  Time Series Analysis of Random Processes 

The next experiment involves forecasting future values of temperature based on past samples. 

Liu et al. [62]described a system for saving sensor transmission energy when real-time 

estimates of temperature are needed. Samples are taken at regular intervals, and at each interval 

both the sender and the receiver calculate an estimated value based on the past time series. If 

the actual sensed value at the transmitter is within an error margin (say 0.5 °C) then no data is 

sent, and the receiver uses the forecast estimate. Once the error exceeds the error limit, then 

the actual current value plus any recent past values needed for future forecasting are sent. Liu 

et al. show a reduction in transmitted data of 70% with a corresponding reduction in energy 

use. However, their work uses indoor temperature readings with a very smooth behavior. We 

are interested if such a forecasting approach also works in a much more variable outdoor 

environment. Forecasting of future values uses an ARIMA process model and the subsequent 

sections explain the theoretical background behind such forecasting before such techniques are 

applied to our data. 

3.6.1.  Time Series and Stochastic Process 

Due to the lack of complete knowledge of the complex underlying physical processes that 

generate local climate, environmental phenomena are in general modelled as stochastic 

processes [20]. A stochastic process varying in time is characterized by the sequence of a 

random variable. Any time sequenced realization of such a process is called a time series. Time 
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series analysis involves a range of investigations of the behavior of the observed stochastic 

process. Such analyses reveal structural behavior of the process that can be used to fit a suitable 

statistical model and understand short-term and long-term behaviour. Time series analysis is 

widely employed in areas such as signal processing, business processes and economic 

modelling, and there are many references which explain the concepts in detail [68-70]. 

Typically, in time series analysis, a process Y(t) is assumed to consist of several sub-

components: a trend, µ(t), a periodicity P(t), seasonality, P(t), and a random shock e(t), as 

shown in Equation (1). The trend component represents a deterministic tendency such as long-

term global warming; a periodicity represents regularly repeating behavior such as diurnal 

temperature variations; seasonality represents longer-term patterns such as summer and winter, 

and the random shock captures the effects of local short-term changes which are not explained 

by the longer term patterns: 

( ) ( ) ( ) ( ) ( )Y t t P t S t e t     (3-2) 

If the properties of a process vary with time, then it is difficult to predict future values from its 

observed time series Y(t) and such a process is called a non-stationary process. Most 

environmental phenomena fall in this category. In order to analyze a random process and 

perform state estimation, some sort of stationarity assumption needs to be made. In general, a 

second order stationarity assumption is made which assumes that the mean and the variance 

characteristics of the process do not change over time.  

3.6.2.  Time Series Model Development Strategy 

Time series model development involves estimating a process characterizing components 

mentioned in Equation (3-2) with several sequential steps as shown in Figure 3-8. This generic 

time-series analysis framework is also known as Box-Jenkins time series modelling[68]. 

Structural analyses study the sample autocorrelation function and examine the stationarity 

property of the process.  
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Structural analysis of the process

Model specification 

Parameter estimation

Model diagnostics  

Forecasting and analysis
 

Figure 3-8. Time series model development strategy. 

3.6.2.1.   Model Specification 

In general, the current state of any random process may depend on time, its past states, and 

some random shocks or a combination of these. Such dependencies of the observed series need 

to be extracted. Linear or nonlinear regression captures the trend component of the process. 

Dependencies with previous states can be captured by regression of the current state with the 

previous state and the effect of random shocks can be captured by involving noise components.  

There are many different possible time series modelling approaches, but the most general of 

these is the Auto Regressive, Integrated, Moving Average (ARIMA) model. Stationarity of 

time series can be determined from the analysis of sample autocorrelation function and by 

conducting an Augmented Dickey-Fuller (ADF) unit root test[68]. If the time series is found 

to be non-stationary, transformation of the series can be performed that makes the series 

stationary. Logarithmic and power transformation and series differencing are the most 

commonly used transformation approaches. If the difference is taken to make the time series 

stationary, then the model is an Integrated model (i.e., ARIMA rather than ARMA). The order 

of the differencing is represented by a parameter d. 

The ARIMA model specification involves finding suitable autoregressive (AR) and moving 

average (MA) sub-components of the Integrated model. The model represented in Equation (3-

2) and can then be specified as in Equation (3-3):  

Yt  = μ + ∅1Yt−1+ ⋯ + ∅pYt−p + et − 𝜃1et−1 −  ⋯ − 𝜃qet−𝑞 (3-3)  

Parameters specify deterministic (µ), autoregressive (φ), moving average (θ), and error (e) 

components. p and q represent the orders of AR and MA components which are determined by 

analyzing sample autocorrelation and extended autocorrelation function of the time series. 

Overall, the time series is then modelled by an ARIMA (p, d, q) model. 
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3.6.2.2.  Parameter Estimation  

After specifying differencing to achieve stationarity and specifying the AR and MA orders, the 

next step is the estimation of the parameters involved in Equation (3-3). For most random 

processes, parameters φi and θi are estimated using a Least Square (LSE) or Maximum 

Likelihood (ML) estimator. These parameters can then be used to estimate future values of the 

series  

3.6.2.3.  Model Diagnostics  

Model specification deals with examining the goodness of the fit of the model parameters. 

Analysis of the residuals and over-parameterized models are two approaches used for 

validation. If residuals obtained after fitting a model fit a Gaussian noise distribution, then the 

model is considered to be valid. Over-parameterizing models involve internationally over-

fitting the model with higher orders of p and q. If the over-fitted model doesn’t show significant 

improvement in its residuals, the fitted model is considered to be valid.  

3.6.2.4.  Time Series Forecasting 

After fitting a suitable model, the future state of the time series can be forecast. These future 

values can themselves be used to estimate further future values of the series. The forecasting 

power of the time series model is based on how many future sample values can be estimated 

with some desired accuracy. 

3.7.  Forecasting Experiments 

As mentioned earlier, forecasting of future values can reduce the transmission energy for real-

time temperature modelling. Analysis of the mine site temperature data (from Figure 6 above) 

is undertaken to estimate the forecasting accuracy of future samples. 

The time series analysis in Section 3.6 uses standard methods to characterize the physical 

process. This section proposes a mechanism that uses the results of the time series analysis to 

identify the best sampling interval for a sensor deployment. We also observe what level of 

prediction improvement is gained by use of ARIMA models. 

Environmental time series are usually non-stationary and require data cleaning to deal with 

missing data due to energy failures or other causes. The non-stationary nature is addressed by 

applying differencing and checking that the difference signal is stationary, as described in 

Section 3.7.1. The data used here has been manually checked the series here have been cleaned 

of any missing or repeated data (which was less than 1% of the data samples). 
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3.7.1.  Structural Analysis of Time Series  

Data analyses in this paper are primarily done in R [71], specifically using the package 

developed in [72]. Microsoft Excel and MATLAB are used for some data formatting and data 

plotting. 

The chosen data series is the one-week sample series shown in Figure 6 above. Stationarity is 

checked by examining the one-week sample autocorrelation plot of the selected series, as 

shown in Figure 3-9. This autocorrelation plot has a clear structure which varies with the 

autocorrelation lag. Temperature patterns in one day are clearly correlated with the pattern the 

next day. This shows the clear presence of non-stationary (periodic) behavior in the series. 

After applying differencing, the time series in Figure 3-7 above was obtained. Figure 3-10 

shows the autocorrelation of the differenced signal. Compared to the sample autocorrelation of 

Figure 9, the differenced series has an autocorrelation function which still has some regular 

structure, but the magnitude of the autocorrelation is less than 0.2 for all lags. 

 
Figure 3-9. Sample autocorrelation of temperature in experimental data (5 min samples over 1 week). 
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Figure 3-10. Autocorrelation of the differenced sample series over 7 days. 

After applying one more round of differencing (a doubly differenced series) the autocorrelation 

in Figure 3-11 results which shows the double differences are uncorrelated. However, since 

single differencing gives the low autocorrelation values in Figure 3-10, the singly differenced 

signals will be used for further analysis. 

 
Figure 3-11. Autocorrelation of the doubly differenced sample series. 

3.7.2.  Model Order Selection  

As the series becomes stationary after differencing, an ARIMA model will be used for the time 

series model. As the average of the differenced series varies about zero, the expected value of 
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the deterministic trend can be considered to be zero. The next step is to determine the orders 

of AR and MA components for the most suitable model. The Akaike Information Criteria (AIC) 

are widely used criteria which trade off the increased accuracy of higher order models with the 

parsimonious use of fewer model components [21]. Using the “auto.arima” routine from the 

forecast package in R which tests many different models, AR and MA orders of the series are 

estimated for different sampling rates. Estimation of AR and MA orders for different sampling 

rates help us to examine how the time series model varies with different sampling rates of the 

deployed sensors. Table 3-3 shows the models with the best AIC score based on the first three 

days of data as shown in Figure 3-8 above, for different sampling rates (i.e., for subsampled 

subsets of the original data). These different sampling rates capture different realizations of the 

process and specify different orders for the ARIMA models, however, there is not any clear 

interpretation of how the ARIMA model order varies with the sampling rate, other than the fact 

that for this data set, 60 min sampling gives the simplest model.  

Table 3-3. AR and MA orders for different sampling rates. 

Sampling Rate (Minutes) Fitted Models 

5 ARIMA(3,1,1) 

10 ARIMA(2,1,2) 

15 ARIMA(1,1,3) 

20 ARIMA(1,1,3) 

30 ARIMA(2,1,1) 

60 ARIMA(1,1,0) 

120 ARIMA(3,1,1) 

Experiments on other data (such as the data shown in Figure 3-2, or on different subsets of the 

week in Figure 3-8) show that the best ARIMA model order is not very consistent between 

different deployments or different periods and would need to be revised regularly when used 

for prediction. Rechecking and updating the best predictive model order once a week for each 

different sensor (rather than using a single model order for all deployments) would allow 

seasonal changes in model order to be tracked. 

3.7.3.  Forecasting 

To test the forecasting ability of the time series models, the ARIMA models are used to forecast 

the remaining four days of data shown in Figure 3-6. In particular, the following procedure is 

used. For each sampling rate, the ARIMA model of the order shown in Table 3-3 is trained on 

three days of data, and then used to predict up to two hours forward from that point, e.g., for 5 

min sampling, 24 future points are estimated, for 30 min four future points are estimated, and 

for 120 min, one future point is estimated. Then the 3 day training window is moved forward 
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by 2 h, the models retrained, and the process repeated for the remainder of the four “testing” 

days of the sample. For sampling rates greater than 5 min, the future predictions at 5 min 

intervals are linearly interpolated between the future prediction points. For example, for 30 min 

sampling, the future prediction at 5 min is linearly interpolated between the last data point and 

the first predicted point. 

Additionally, two other prediction models are used based on the 5 min sampled data. The “zero 

difference” model uses the last data point in the undifferenced series as the predictor for the 

next two hours. This is the same as using the mean (zero) of the differenced series as the 

predictor of the next difference. The “same difference” model linearly extrapolates from the 

last two data points in the undifferenced series, which is the same as assuming that the next 

difference value is the same as the current difference value. 

The accuracy of the future predictions are measured by the RMSE of the predictions across the 

four days, and also the MAE of the predictions. Table 3-4 shows the results for RMSE and 

Table 3-5 shows the results for MAE. Figure 3-12 shows a plot of the RMSE for the different 

predictors versus the forecast time, where, for example, “ARIMA5” means the ARIMA model 

with 5 min sampling interval. 

Table 3-4. RMSE of Future Temperature Predictions in °C. 

Forecast Simple Models ARIMA Models Sampling Intervals (Minutes) 

Time 

(Mins) 

Zero 

Diff 

Same 

Diff 
5 10 15 20 30 60 120 

5 0.33 0.49 0.33 0.17 0.13 0.13 0.11 0.12 0.12 

10 0.48 0.78 0.45 0.45 0.38 0.39 0.35 0.34 0.34 

15 0.59 1.07 0.51 0.51 0.51 0.51 0.45 0.44 0.46 

20 0.62 1.36 0.53 0.54 0.54 0.63 0.54 0.54 0.57 

30 0.91 2.02 0.75 0.76 0.77 0.90 0.86 0.84 0.85 

60 1.56 4.05 1.07 1.07 1.06 1.29 1.17 1.39 1.33 

120 3.32 8.47 2.50 2.52 2.52 2.71 2.58 2.80 2.48 

Table 3- 5. MAE of Future Temperature Predictions in °C. 

Forecast Simple Models ARIMA Models Sampling Intervals (Minutes) 

Time 

(Mins) 

Zero 

Diff 

Same 

Diff 
5 10 15 20 30 60 120 

5 0.24 0.27 0.21 0.11 0.08 0.08 0.07 0.08 0.09 

10 0.35 0.49 0.32 0.32 0.26 0.26 0.23 0.21 0.22 

15 0.45 0.65 0.38 0.38 0.38 0.36 0.31 0.29 0.31 

20 0.52 0.87 0.42 0.42 0.42 0.46 0.40 0.37 0.43 

30 0.73 1.31 0.58 0.58 0.59 0.63 0.63 0.55 0.62 

60 1.27 2.60 0.82 0.82 0.81 0.85 0.82 0.90 0.96 

120 2.71 5.71 1.91 1.94 1.98 2.03 1.97 2.03 1.74 
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Figure 3-12. RMSE versus Prediction Horizon for Different Predictors. 

Because the different predictors are difficult to distinguish in Figure 12, Figure 13 shows an 

expanded close up of the prediction up to 60 min, with the poorly performing linear 

extrapolation (Same Difference) excluded. Figure 13 also shows the 95% confidence interval 

for the ARIMA60 results, showing that the differences between predictors are small compared 

to the confidence interval. 

 
Figure 3-13. Detail of RMSE versus Prediction Horizon for Different Predictors with 95% confidence 

interval for ARIMA60. 
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As can be seen from this data, the RMSE in forecasting increases as we forecast further in the 

future and it exceeds 1°C after about 60 min. This behavior can be explained by the sample 

autocorrelation function in Figure 3-8. The correlation between samples decreases steadily as 

the lag increases, and so, as predicted, the prediction error steadily increases. Another 

interesting observation from Figure 3-13 is that the forecasting error does not change 

significantly with sampling interval. The “Same Difference” or linear extrapolation method 

performs very poorly, and the “Zero Difference” method also performs worse than any of the 

ARIMA models. In this particular example, the ARIMA model prediction with 30 min 

sampling has the lowest error. The differences between the ARIMA models with different 

sampling intervals is small, and it is expected that the differences are artifacts of the particular 

data series. However, a clear message is that prediction accuracy does not depend on high-

frequency data sampling. 
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Chapter 4 Spatial Interpolation 

4.1.  Introduction 

Environmental phenomena such as temperature, pressure, humidity, and soil moisture are 

dynamic processes. Understanding the spatio-temporal behaviour of these processes is relevant 

for understanding the surrounding ecosystem’s state. Environmental phenomena, in general, 

vary at a small spatio-temporal scale [2, 3] that impact the local ecosystem. The microclimate 

(temperature, solar radiation and other phenomena at small scale) affects ecological changes in 

forests[73], soil characteristics in mine rehabilitation [67], and diseases in agriculture[74]. Thus 

it is crucial for many application scenarios to monitor environmental phenomena at high spatio-

temporal resolution. 

Understanding the spatio-temporal behaviour of the environmental phenomena requires the 

development of an effective monitoring system. In past decades, weather stations have been 

the widely used for monitoring. However, weather stations are spatially sparse, and they only 

capture coarse-grained environmental variations, which are not sufficient for monitoring 

variations in small-scale ecological processes. 

Recently, wireless sensor networks have been widely used in small-scale environmental 

monitoring as they can be economically deployed for fine-grained environmental sensing and 

monitoring. Example applications include city centre heat monitoring [3], air quality 

monitoring [5], building environment monitoring [6], soil moisture measurement [8], volcano 

monitoring [9], ocean exploration [10], and harsh mountain environment monitoring [11]. In 

most of these sensor network deployments, the number and positions of sensor nodes are 

selected based on intuition, domain knowledge, or cost constraints. There is currently a lack of 

an objective method for determining the best number of nodes and their spatial distribution. 

The challenge is that the optimal node number and locations are dependent on the specific 

spatiotemporal processes in the monitored environment. The dynamics of these processes are 

not known a priori, which is, in fact, the motivation for monitoring the environment. Two of 

the sensor networks deployed by our research lab for rainforest monitoring [1, 13] and mine 

rehabilitation monitoring [67] are clear examples where the number of nodes that were 

deployed was not based on any evidence-based understanding of the number that would be 
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needed. The question of the optimal number and placement of sensor nodes needed for 

adequate environmental monitoring remains a challenge, and that is the topic that this paper 

addresses. 

In a real application scenario, it is important to know the optimal number of sensor nodes to be 

deployed and the best position to achieve the project’s scientific or business objectives. A large 

number of sensors incurs high deployment and operational costs. On the other hand, fewer 

sensors may fail to capture sufficient local details. The design goal should be to achieve the 

scientific objectives at the most economical cost. 

Strategies for determining the target number of deployment nodes vary from analytical to 

simulation-based approaches. Some of the strategies are theoretically-based where 

environmental phenomena are modelled as spatio-temporally correlated processes and suitable 

sampling strategies are developed, such as in [75] where Gaussian process modelling is used. 

In [76], Monte-Carlo simulation has been used to find the locations of nodes in space that 

produces the lowest spatial variability. In [42], a geometrical approach is used treating sensor 

deployment as an area coverage problem. Our approach balances theory with initial 

experimental evaluation of the sensor deployment area to ensure that the coverage is adequate 

for the specific deployment scenario. 

This work considers a practical application scenario, using the example of a mine rehabilitation 

monitoring program over an area of several square kilometres [4]. The objective is to monitor 

small-scale spatio-temporal variations using empirical data from a short-term, high-density 

deployment to optimize the deployment of a number of long-term sensor nodes. First, a larger 

number of static sensor nodes are deployed across the sensor area. The observations at each 

sensor location form a time series while observations at different locations form multiple time 

series. A time series analysis framework is then applied on each individual series as well as at 

the multiple series. Co-integration analysis is then used to determine the relationships between 

series. Co-integration provides information on which time series are most similar to each other. 

Similar time series are used to determine one location that can be used as an estimate for its 

co-integrated locations. Redundant sensors can be re-used elsewhere, or alternatively, initial 

deployments can be with a large number of low-cost, short lifetime sensors that are replaced 

by fewer yet more robust long-term sensors. Implementing our proposed co-integrated multiple 

time series analyses for temperature measurement in the mine rehabilitation scenario showed 

that 75% of the existing sensors are found to be co-integrated with the other 25%. In other 

words, similar temperature monitoring accuracy could be achieved with only 25% of the 
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existing deployment. The proposed approach is general enough that it can be utilized in any 

spatio-temporal monitoring application. 

The rest of the paper is organized as follows: Section 2 reviews previous work. Background 

information on the techniques used is described in Section 3. The analytical approach that is 

used and the algorithms developed for the approach are discussed in Section 4. Section 5 

presents analytical results from the particular mine rehabilitation sensor network. Section 6 

concludes the paper. 

4.2.  Previous Work 

In [73], authors have described the association between ecological processes and microclimate 

(temperature, solar radiation and other phenomena at small scale). Temperature variation up to 

8 °C within a small forest patch was reported and linked to ecological changes. The effect of 

small-scale climatological condition on the development of a fungal disease on a potato crop 

and forest canopy was observed in [77]. Variation of temperature within a small urban area has 

been reported in [3] while the microclimate effects on soil characteristics in mine rehabilitation 

were reported in our previous work [67]. In all scenarios, variations in the environmental 

phenomena at small scale are observed and linked to environmental changes, motivating the 

need for accurate understanding of local microclimate conditions in many scenarios. 

Environmental monitoring has a long history. As described in [19], The Australian Bureau of 

Meteorology has been monitoring climatic variables including temperature, pressure, sun 

radiation, and rainfall since 1957. However, only 4600 monitoring stations are installed to 

cover the whole 7.7 million square kilometres of Australia since the capital and operating costs 

of weather stations are very high [19]. Such a coarse-grained spatio-temporal environmental 

monitoring would not suffice for the small-scale environmental impact analyses needed in mine 

rehabilitation [67] or rain forest monitoring [1] scenarios. 

Significant research has been undertaken in the design of monitoring networks in sensor 

network applications. In general these works can be divided into three groups: mathematical, 

geometrical and simulation approaches. A selection is reviewed here.  

Environmental phenomena are modelled mathematically as a spatio-temporal random field 

where the monitoring network design problem becomes the problem of sampling the assumed 

random field. In [75], the phenomenon is modelled as a Gaussian process and sampling 

strategies are designed. In [75], the authors also deployed sensor nodes for some time to learn 

the parameters of the Gaussian process. 
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Another approach to designing a sampling strategy has been the geometry-based approach. 

Within a spatial region, various geometrical approaches are used to select the positions of the 

sensors. Voronoi tessellation, Delaunay triangulation, and cell declustering are some of the 

examples of these geometric arrangements [75]. In [42], Voronoi tessellation is used to 

optimize the node positions. The main issue with such approaches is the strong assumption 

regarding the nature of the process. Environmental phenomena will not have convenient 

geometrical regions of similarity. The limitation of such an approach in monitoring temperature 

is shown empirically in [75] where temperature variations among equidistant points are 

different. 

Other work by Chen et al. [78] also addresses geographic sensor node selection, although in 

their case they select a subset of nodes from a heterogeneous collection of web-connected 

sensors for a particular application using a web-services approach. In their case, geographical 

sensor selection is based on proximity and they do not provide a method for interpolating 

between sensor positions, which is the focus of this work. Wang et al. [79] have described a 

wide area technique for selecting the site of ground precipitation sensors to complement 

satellite observations. Their work is based on maximizing the geographical coverage of 

sensors, sensitive to local terrain conditions. Such techniques could be useful for determining 

the initial dense deployment of sensors and is complementary to our work which then identifies 

the best subset of those sensor locations. 

In the simulation approach, sensors are placed at selected points and simulated sample 

measurements are drawn from the expected sensor responses to check the quality of the 

measurement. In [76], Monte Carlo simulation is used to choose sensor locations. However, 

this requires the spatio-temporal variability of the data to be estimated before any 

measurements are made. 

Several studies have conducted time-series analysis in sensor networks [59-62]. Some works 

are based on simulation while others are based on real observed series. One common objective 

of all the studies has been to identify the nature of the time series from each sensor node and 

somehow use the knowledge to reduce communication among sensor nodes which is important 

in energy saving in resource constrained nodes. For example, in [62] sensor data is only 

transmitted when it cannot be accurately forecast by a time series model of past data. Most 

works are based on univariate analysis of measurements at one point. Our work considers the 

correlation of time series across space basing the analysis on multivariate or multiple time 

series. The main focus of our work is to explore co-integrated time series and exploit their 
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behaviour to optimize the number of sensors needed to monitor the desired environmental 

phenomena at the required accuracy. 

 

4.3.  Background Information 

This section briefly describes some background information required for this research. It 

includes information on time-series analysis and a technical specification of the environmental 

sensor network involved in this paper. Mathematical details are kept to a minimum, and readers 

are referred to [68] for further information. 

4.3.1 Theory of Time Series Analysis 

Time series analysis is a framework for analysing sequentially observed data in time. It 

involves analysing the temporal correlation of the observation which can be used for 

identification of the process model that generates the data. Identification of the model helps in 

generalizing the nature of the underlying process and estimating past and future values based 

on available observations. Environmental phenomena that are observed sequentially at regular 

sampling intervals are best suited for this analysis. Environmental phenomena which form time 

series include temperature (T), solar radiation (S), soil moisture (M), and rainfall (R). Each 

variable has an observation at each sampling instant (t). The series of sampling intervals can 

be numbered (t0, t1, ..., tn). The value of one variable at successive sampling instants forms a 

time series, e.g., (T0, T1, ..., Tn). 

 

4.3.1.1.  Univariate and Multivariate Time Series 

Univariate time series analysis is concerned with the study of a single time series. A series of 

temperature readings (Ti) measured at one sensor node is an example of a univariate time series. 

Most of the environmental phenomena are measured in many locations generating multivariate 

time series which are correlated among themselves. Multivariate time series analysis is the 

process of analysing more than one-time series at a time. Time series such as temperature (T0, 

T1, ..., Tn), solar radiation (S0, S1, ..., Sn), and soil moisture (SM0, SM1, ..., SMn) have 

relationships between them that can be analysed under multivariate time series analysis. 

Similarly, measurements of the same variable at different locations, e.g., temperature from 

different sensors, can be analysed using multivariate analysis. 
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4.3.1.2.  Stationary and Non-Stationary Time Series 

A time series is called a stationary if it exhibits a consistent temporal statistical pattern. Such 

time series are amenable to time series analysis. If the moments of the time series such as mean 

and variance do not change with time, the series is called stationary to the mean and the 

variance. (M0, M1, ..., Mn) is called stationary of order (1, 2, 3, ..., n) if moments (m1, m2, m3, 

..., mn) remain constant over time. For many applications, a time series is examined for second 

order stationarity. Second order stationarity is based on the assumption that the underlying 

phenomena are a Gaussian stochastic process for which first and second order moments (mean 

and variance) are sufficient to characterize it. A second-order stationary time series whose 

covariance is such that Cov(Xt1, Xt2) can be generalized by Cov(τ) where τ = (t1 − t2) is called 

weakly stationary. Any time series that doesn’t show regularity about its moments is called a 

non-stationary time series, and simple time-series analysis techniques cannot be used. 

Temperature (T0, T1, ..., Tn) measured at a particular location is a good example of a non-

stationary time series. Expected value, correlation, and variance all vary with time. Non-

stationarity can occur due to seasonal variation, unknown noise involved or due to the nature 

of the underlying phenomena. 

4.3.1.3.  Co-Integrated Time Series 

Time series are called co-integrated if they show some similarity amongst themselves. If two-

time series are co-integrated, even if they are non-stationary, one can be estimated using the 

other. Many studies on co-integrated non-stationary time series have been conducted in the 

field of econometrics where various quantitative and qualitative economical series are analyzed 

[80, 81]. Linear modelling can be performed among co-integrated series and ordinary least 

square estimation becomes the best unbiased estimation. Such estimation is mathematically 

tractable and statistically efficient. Most environmental phenomena are non-stationary in 

nature, so that linear estimation cannot be performed without the assumption of stationarity or 

some transformation. Assumptions may lead to invalid conclusions while some 

transformations render the data difficult to interpret in the transformed scale. If multiple time 

series exhibit co-integrated characteristics, no assumptions and transformation are needed. Co-

integration analysis that has been proposed in econometrics for economic time series modelling 

is adapted for environmental time series in this work. As co-integration analyses search for 

similarly behaving series, this can help to determine environmental series which are redundant, 

and so the sensors generating those redundant time series are not needed.  
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4.3.1.4.  Augmented Dicky-Fuller Test 

Before conducting any inferential analysis, the co-integrated nature of the time series needs to 

be validated. Researchers in [80, 81] provided a framework to validate whether time series are 

co-integrated. The Augmented Dicky-Fuller (ADF) test is a statistical procedure that tests the 

stationarity hypothesis of a univariate time series. Given a time series, the ADF test fits varying 

degrees of autoregressive (AR) models and provides statistics needed for acceptance or the 

rejection of an initial non-stationarity hypothesis. Equation (1) shows an AR(1) process: 

𝑦𝑖 = 𝑐 + 𝜌𝑦𝑖−1 +  𝜀 (4-1) 

where  is a Gaussian white noise process with zero mean, and c is a drift constant 

The process is non-stationary if || ≥ 1 and the process is stationary if || < 1. In the ADF test, 

non-stationarity is tested for higher degrees of order p using Equation (2) i.e., to check if the 

time series fits an AR(p) model: 

∆𝑦𝑖 = 𝜌𝑦𝑖−1 +  ∑ 𝑏𝑗∆𝑦𝑖−𝑗

𝑝−1

𝑗=1

+  𝜀 (4-2) 

where the difference operator ∆ is ∆yi−j = yi−j − yi−j−1  

The ADF test is available in the libraries of statistical computing platforms like R [82]. The 

Dickey-Fuller Test Statistic is a statistical measure that is used to confirm that the nodes are 

co-integrated. It should be less than a critical value determined by the number of observations, 

and the confidence of decision. The needed critical threshold value and related statistics for 

various orders of the process and the number of observations are tabulated in [80]. Table 4-1 

below, shows the values for different numbers of observations and different confidence levels 

for an order 1 process. For a confidence level of 99% and more than 100 observations, it is 

common practice to choose a critical value of the ADF test statistic of −3.5. 

Table 4-1. Critical Values for Dickey-Fuller Test Statistic. 

Sample Size 99% Confidence Level 95% Confidence Level 

50 −3.58 −2.93 

100 −3.51 −2.89 

500 −3.44 −2.87 

Infinity −3.43 −2.86 
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4.3.2.  Mine Rehabilitation Monitoring Sensor Network 

This study uses environmental sensor network data obtained from the Meandu open cut coal 

mine situated in a remote location of Queensland, Australia [67]. The industrial site of the mine 

is fairly large and spread across several sections of the mine site. The mine was established in 

the 1980s. Mining activity involves removing overburden, then removing the coal, and then 

replacing the overburden. After the mining is completed in one section, the rehabilitation phase 

commences. Rehabilitation involves restoring the previous environment, i.e., regenerating soil 

and re-establishing plants (grass, shrubs, trees) back to the condition of the natural 

environment. Sensor networks are deployed in rehabilitation sites, as shown in Figure 4-1, to 

monitor microclimate in order to assist with the timing of operations such as planting, and 

watering. Air temperature, soil temperature at two levels of depth, solar radiation, soil moisture, 

rainfall are measured in each rehabilitation site. The coloured outlines on the map show areas 

where rehabilitation has begun in different years from before 2000 up to 2010. The numbered 

boxes show the locations of sensor nodes. 

 

Figure 4-1. Meandu mine rehabilitation site and sensor deployment. 

The sensor network designed by CSIRO has been deployed in several rehabilitation sections. In 

the current deployment, there are four sections, 12 sites and 24 transects in which 30 sensor 

platforms are deployed. For ground truth validation, several sophisticated weather stations are 

also deployed. Locations of the sensor nodes are selected based on the requirement of the 

rehabilitation monitoring. A custom sensor network platform using a 900 MHz IEEE 802.15.4 

compatible radio was designed. A collection tree-based data collection protocol is used to for 
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data communication from sensor to the gateway. The gateway station then forwards data to a 

centralized server using 3G connectivity. The server provides access to the data and further 

analysis. Technical details of the platform are given in [67]. 

4.3.3.  Limitations and Assumptions 

This paper represents a first exploration of using the time-series analysis method of co-

integration for improved placement of sensors in an environmental sensing scenario. There are 

many assumptions and restrictions to the applicability of this model, as follows. 

Firstly, the method is only applicable to sensing parameter fields that are spatially correlated, 

i.e., where values at locations that are close spatially tend to have similar values. Environmental 

parameters such as air temperature, humidity, wind speed and barometric pressure would be 

examples of such parameters. There are many parameters, especially in the built environment, 

which would not be amenable to such analysis, such as smart power meters in one street, or 

traffic density in nearby streets. Part of the analysis in the next section is to identify if time 

series data are suitable for this approach. 

Another assumption is that spatial correlations between sensor readings persist over the long 

term. An initial exploration of the estimation error over a whole year based on one week of 

training data is presented in Section 4.5.4.  

In some situations, dense sensor deployments may be intended to detect data anomalies, for 

example, a sudden increase in temperature due to an approaching forest fire. Again, since the 

approach here uses a few sensors to interpolate parameters at other locations, it will be less 

sensitive to local anomalies, and would not be suitable for such applications. 

This initial investigation uses temperature as the example environmental variable since it is 

easy to measure and changes relatively slowly. Our future work plans to extend this work to 

other sensors. 

4.4.  Proposed Analytical Methodology and Algorithms 

4.4.1.  Data Analytic Framework  

This section describes the analytical framework used for the analysis of the multivariate time 

series. Figure 4-2 shows the different steps involved in the analytical process.  
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Figure 4-2. Multivariate time series analysis framework. 

First, exploratory analysis of time series data looks for any significant inconsistencies. Spatially 

proximate sensors are plotted together for this. Outlier detection is performed including 

univariate and multivariate features. The detailed approach to performing outlier detection 

analysis is available in our previous work [67]. The next step is to identify the time series 

model. Stationary behavior of the series is analysed using an Augmented Dicky-Fuller test for 

each sensor. As expected, none of the periodic temperature time series are stationary. Co-

integration analysis is then performed for all possible pairs of sensors. The result of the co-

integration analysis is the confirmation or failure of the co-integration test of the pairs of the 

available sensors. After co-integration analysis, the Best Subset Node Selection step is 

performed that searches for the best possible subset of the sensor nodes that can estimate each 

of the time series. 

4.4.2.   Co-Integrated Series Selection Algorithm 

Firstly, a decision must be made about which set of nodes are sufficiently close in location to 

be considered as possible co-integrated nodes. This means identifying a local neighbourhood 

of nodes. For example, in the experiments we describe here, 12 nodes in the north-east corner 

of the mine site (numbered 201 to 212 in Figure 4-1 above) are selected. They are within 1 km 

of each other. It would be less likely that nodes in the south-west corner of the mine would be 

as closely correlated. Within this neighbourhood, all possible pairs of nodes are examined. 
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The co-integrated series selection algorithm searches for the best co-integrated node for each 

sensor node. This algorithm starts fitting a linear model on one node with all the other nodes. 

After fitting the model each residual series is then evaluated for stationarity using the Augmented 

Dicky Fuller test. At the end of the run, the algorithm generates the best co-integrated node for 

each  

sensor node.  

In the case where the most correlated node has a Dickey-Fuller test statistic which is above the 

critical value of −3.5, then it cannot be estimated accurately from other nodes, and that node 

would be one of the critical locations for a permanent sensor node. 

Algorithm 1: Co-integrated time series selection. 

1: TS ← sensor series 

2: for each time series i do 

3:   # fit a linear model with each other node j 

4:   lm[i][j] ← linear model TS(i, j)  

5:  resd[i][j] ← residual(lm[i][j]) 

6: end for 

7: for each residual i,j do 

8:   # run Dicky − Fuller test 

9:   DF [i][j] ← ADFtest(resd(i, j)) 

10: end for 

11: for each time series i do 

12:  ts ← maximum(abs(DF(i, j)))  

13:  Cointegrated[i] ← ts 

14: end for 

 

4.4.3.  Best Subset Sensor Nodes Selection Algorithm 

After validating that the observed time series are co-integrated, a best subset nodes selection 

algorithm searches for the best subset of nodes that can be used to estimate the value at each 

unobserved location. At each location, the proposed algorithm starts searching for the best 

linear combination of observations at other locations that can reproduce the observed value. It 

is possible to set the maximum number of nodes to be searched from 1 to N, where N is the 

total number of available nodes. If the maximum node to be selected is set to 1, the algorithm 

selects a single best node for the estimation. The searching involves all available series. A 

linear combination of temperature at a particular location is calculated based on Equation (4-

3): 

𝑌 = 𝛽𝑋 + 𝜀 (4-3) 
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where β = (β0, β1, ..., βN ) are corresponding linear weights and X is the matrix of variables with 

each column representing a single series.  

The least square cost function to minimize is given by (Y − βX)T(Y − βX) which when 

differentiated with (β0, β1, ..., βN ) provides the least squares unbiased estimation of the 

parameters as given by Equation (4-4): 

𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (4-4) 

In each iteration, the algorithm selects one more co-integrated series that has not been 

previously selected. The selection is based on the node whose addition to the subset most 

reduces the estimation error. After parameter estimation, the estimated value of this series 

based on the linear combination of other series can then be calculated for a test set (different 

from that used to select parameters) using parameters from Equation (4-4).  

In each iteration, the algorithm produces the training error for each series. Observing training 

errors, a suitable number of nodes can be selected which can generate all the series. This 

suitable number may be determined by operational requirements, e.g., one might have only 4 

permanent sensing stations for deployment, and wish to choose the best four locations. 

Alternatively, this number could be chosen by scientific requirements, such as needing a 

maximum of 0.5 °C RMSE error at all the estimated positions. Finally, the number could be 

chosen on a statistical basis, such as identifying when adding an additional node does not 

significantly reduce the RMSE of estimated readings (using something like the heuristic 

“elbow” criterion in a graph of RMSE versus the number of nodes). Pseudocode of the 

algorithm that selects the best subsets is given in Algorithm 2. 
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Algorithm 2: Best subset selection of M co-integrated nodes from N − 1 candidates for each of N 

nodes. 

1: # Search for the best subset of M sensors for each individual sensor, i 

2: M ← number of sensors in the subset 

3: for each sensor i do 

4:   searchspace ← set of all sensors minus sensor i 

5:   bestsubset[i] ← NULL 

6:   for j = 1 to M do  #add one more sensor to best subset for i 

7:.   lowest estimation error ← infinity 

8:   for each sensor k in searchspace 

9:    fit linear model to sensor i using (k + bestsubset[i]) 

10:    if estimation error from linear model < lowest estimation error 

11:     lowest estimation error ← estimation error from linear model 

12:     bestsensor ← k; 

13:    end if 

14:    end for 

15:   searchspace ← searchspace − bestsensor 

16:   bestsubset[i] ← bestsubset[i] + bestsensor 

17:    end for 

18: end for 

 

It is useful to estimate the computational complexity of Algorithm 1 and Algorithm 2. Both 

algorithms basically have the same structure, which is for every pair of nodes, find a least 

squares estimator for one node from the other, and then calculate the goodness of fit, either by 

calculating the Dickey-Fuller statistic or the estimation error. The parameters which affect 

which affect computational complexity are N, the number of nodes, M the size of the best 

subset, C = 2M, the number of parameters that have to be estimated in the linear model, and S, 

the number of samples. 

Equation (4) is the basis of fitting a linear model, and in terms of time complexity it consists 

of a matrix multiplication XTX which is O(C2S), a matrix multiplication XTY which is O(CS) a 

matrix inverse which is order (C3), and a final matrix multiply which is O(C2). The calculation 

of the error metric or statistic consists of estimating S values from C parameters, O(CS). For 

the case where M = 1 (using just one estimator node), and therefore C = 2 is a constant, the 

order of one linear fit is O(S). If this is repeated for every pair of nodes, the total complexity is 

O(N2S). The N2 term suggests that it may be infeasible to apply this method directly to 

thousands of nodes, instead these nodes should be divided into disjoint neighbourhoods of less 

than 100 nodes. For M > 1 (i.e., larger subsets of estimators), the complexity grows to 

O(N2M2S), and so for these experiments, we just use M = 1 to reduce the computation time.  
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4.5.  Analysis of Results 

This section provides results obtained from implementing the proposed algorithms on the 12 

sensors in a 1 km × 1 km area in the north-east of the Meandu mine site, as shown in Figure 4-

1. The average distance between neighbouring nodes is about 100 m. Three weeks of 

temperature time series starting from 1 January 2013 are used for the analyses. The first week 

of data is used to select three “permanent” nodes from the 12, and to train models to estimate 

the other nine. Then the temperature is estimated at the nine positions from the three 

“permanent” nodes for 10 days, and the estimated temperature compared to the actual 

temperature at those nine positions. Temperature is selected as a representative time series as 

it has been analysed in other works [2, 3, 75], and is known to be amenable to time series 

analysis. We hope to investigate other parameters in future work. 

4.5.1.   Univariate Analysis 

Figure 4-3a shows the multiple time series plot of 12 nearby sensors superimposed. It helps to 

evaluate obvious inconsistencies among the series which is not present in this case. Figure 4-

3b shows the temporal autocorrelation of temperature from one of the sensors. From the nature 

of the correlation, it is obvious that the series is non-stationary. Any series that possesses 

periodicity in their correlation are non-stationary. The Augmented Dicky-Fuller test is run for 

each time series to verify that its non-stationarity is of order 1. Also, the time series model 

identification utility available in R is used for model identification. Figure 4-3c shows that after 

first order differencing, the autocorrelation is reduced to small values for all lags, and so this 

differenced sequence is stationary and amenable to analysis. 

 

Figure 4-3. (a) Multiple time series plot for 12 nearby sensors; (b) Sample autocorrelation for a 

univariate temperature series; (c) Sample autocorrelation for differenced time series. Horizontal 

dashed lines indicate the +/−5% bounds normally used to identify stationarity in the ACF. 
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4.5.2.   Co-Integration Analysis 

After confirming that all series are first order non-stationary, co-integrated analysis is then 

performed for each node. The nodes are given ID’s ranging from node N1 to N12. Table 4-2 

shows the statistics of the ADF test value for each sensor node with the rest of the nodes.  

Table 4- 2. ADF-test for time series, Best Match bold, NN = Physically Nearest Neighbour. 

 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 

N1 - −43.26 −35.17 −25.90 −28.06 −24.65 −30.53 −29.79 −3.90 −30.20 −3.55 −7.86 

N2 −43.26 - −45.02 −28.53 −29.82 −26.89 −31 −30.33 −3.53 −27.60 −3.64 −7.02 

N3 −35.18 −45.01 - −25.36 −24.35 −25.21 −25.92 −25.08 −3.82 −26.42 −3.55 −6.58 

N4 −26.07 −28.71 −25.19 - −25.59 −29.65 −43.97 −42.87 −3.82 −29.49 −3.54 6.48 

N5 −28.16 −29.91 −24.26 −25.67 - −22.60 −24.43 −25.65 −3.91 −20.41 −3.57 −6.63 

N6 −24.73 −26.96 −25.12 −29.75 −22.61 - −30.01 −29.86 −3.84 −22.45 −3.56 −6.69 

N7 −30.53 −31.13 −25.79 −43.92 −24.40 −30.92 - −49.12 −3.83 −22.78 −3.57 −6.57 

N8 −29.96 −30.48 −24.96 −42.05 −25.60 −29.90 −49.09 - −3.87 −22.45 −3.56 −6.68 

N9 −3.90 −3.93 −3.19 −3.16 −3.40 −3.31 −3.26 −3.37 - −3.52 −5.16 −3.88 

N10 −30.10 −27.49 −26.51 −20.69 −20.54 −22.59 −22.97 −22.29 −3.79 - −3.57 −6.68 

N11 −3.55 −3.55 −3.68 −3.74 −3.94 −3.98 −3.97 −3.02 −5.13 −3.44 - −4.48 

N12 −7.86 −7.07 −6.82 −6.77 −6.93 −7.01 −6.87 −7.02 −3.49 −7.25 −3.68 - 

NN N2 N4 N4 N2 N6 N5 N8 N7 N10 N9 N8 N10 

Best N2 N3 N2 N7 N2 N7 N8 N7 N11 N1 N9 N1 

In order for a series to be co-integrated with another, the test statistic should be less than the 

ADF test threshold which is normally set to −3.5, as described earlier in Section 4.3.1.4. It can 

be seen that almost all ADF test statistics are less than the critical value which means all series 

are statistically co-integrated. More negative values of the test statistic indicate a higher co-

integration between series. Almost all series have a high degree of co-integration with all other 

series, with the test statistic for most pairs in Table4- 2 significantly more negative than the 

−3.5 threshold. The exceptions are nodes 9 and 11 with a test statistic close to the threshold 

when paired with other series. Among the co-integrated series, some are highly co-integrated 

with a single series. Node N1, N3, and N5 are highly co-integrated with N2. Similarly, N4, N6, 

and N8 are most co-integrated with N7. N9 and N11 are less co-integrated with other nodes, 

but they are co-integrated with each other. Also, N10 and N12 are co-integrated with N1 which 

in turn is co-integrated with N2. Note that the most co-integrated node is rarely the physically 

Nearest Neighbour node, shown in the NN row in the table. 

This co-integration result shows that three sensor nodes, namely N2, N7, and N11, are co-

integrated with all of the rest of the nodes. This indicates that using these three co-integrated 

series, the remaining series should be able to be accurately estimated by using a linear 

estimator. 
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4.5.3.  Estimation of Observation at Co-Integrated Nodes 

This section analyses results about how co-integrated series can be used for the estimation of 

the temperature value. The best subset selection algorithm is used to search for the best subset 

of nodes among co-integrated nodes. The maximum subset to be selected is set to 1 to evaluate 

how useful the most co-integrated node is for the estimation of temperature at other sensor 

nodes.  

For each node, the most co-integrated node from Table 4-2 is selected as the estimator. 

Temperature is then estimated during a separate 10 day test period using the linear model 

learned during the training phase and mean test error is recorded. 

We then also analyse how the estimation varies if other nodes are selected instead of the most-

co-integrated node. The RMSE is recorded for each of the other nodes used as an estimator. 

Figure 4 shows how the root mean squared error (RMSE) varies when different nodes are used 

for estimation – the order of nodes on the x-axis is from best to worst, left to right. The least 

RMSE for estimation of node N1 in Figure 4-4a is with the most co-integrated node N2 with 

an RMSE of 0.26 °C.  

Based on the ordering given by RMSE, the quality order (best to worst) of estimators is N2, 

N5, N3, N7, N10, N8, N12, N4, N6, N11, N9. It is worth noting that this is different to an 

ordering based on the ADF test statistic as shown in Table 2, where the most co-integrated 

nodes for N1 are (in order) N2, N3, N7, N10, N8, N5, N4, N6, N12, N9, N11. The ADF test 

statistic, as shown in Table 2, gives a measure of the confidence that two nodes are co-

integrated, rather than a direct measure of the quality of prediction. So, we recommend using 

Algorithm 1, based on the ADF, to establish where nearby series are sufficiently co-integrated 

for this method to be valid, and then use algorithm 2 based on RMSE to actually select the best 

estimator nodes. 

We repeat the analysis at node 4, which is most co-integrated with node 7 as shown in Figure 

4-4b. From this figure, it can be seen that RMSE for node 4 is small with mostly co-integrated 

nodes 7, 8, 5 and 6 while estimation error is higher with node 11 which is less co-integrated. 

In the case of node 9, the lowest RMSE is obtained with node 11 as shown in Figure 4-4c.  
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(a) Node 1 (b) Node 4 

 
(c) Node 9 

Figure 4-4. Root Mean-squared estimation error for co-integrated series at (a) Node 1, and (b) Node 

4, and (c) Node 9, using all other nodes as estimators. 

If the RMSE error threshold for temperature measurement in all nodes were set to 0.5 °C, nodes 

2, 7 and 11 would be sufficient to estimate all other nodes within the required accuracy. So the 

number of deployed nodes could be reduced by 75%. 

Figure 4-5a shows both the original measured temperature at node N1, and the temperature 

estimated from using co-integrated node N2 over the 10-day test set. Figure 4-5b shows the 

detail of these two-time series for the first 3 h, as well as the original measured temperature at 

N2, and it is clear that a linear estimator is significantly better than simply using N2 directly as 

an estimate. Figure 6a shows the original measured temperature at N4 and the estimated 

temperature from its most co-integrated node N7, while Figure 6b shows the original and 

estimated temperature at node N9. In all cases, the linear estimates from co-integrated nodes 

give good approximations to the actual measured temperatures.  
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(a) (b) 

Figure 4-5. Estimation of temperature at node N1 using most co-integrated node N2 (a) over 10 days; 

(b) detail over first three hours, including the co-integrated baseline used for estimation. 

  
(a) N4 estimated from N7 (b) N9 estimated from N11 

Figure 4-6. Estimation of temperature nodes N4 and N7. 

4.5.4.  Discussion 

While we have demonstrated the proposed approach on temperature time series, the approach 

is broadly applicable for determining the minimal set of sensor nodes for monitoring a given 

area. Since the sensor fields for each area will have unique spatiotemporal dynamics, our 

approach requires an initial dense deployment of sensor nodes for a short period. Once enough 

data is collected, we can determine nodes that are highly co-integrated and select the minimal 

set of nodes that can capture the sensor processes accurately. The deployment can then be 

reduced to include only the minimal set of nodes, thereby minimizing the monetary cost and 

network scale, along with its associated bandwidth overheads. 

Several issues remain for future work. Firstly, how densely should the initial nodes be 

deployed? This obviously depends on the nature of the parameter being measured and its spatial 

variability. For this experiment, we have used temperature sensors that have been deployed at 

approximately 100m intervals, and we have shown that 75% of sensors can be estimated by 

spatial interpolation. Our suggestion would, therefore, be to deploy sensors at approximately 

four times the density of the expected final deployment, with the expectation that 75% are 

unnecessary, but the remaining 25% will be placed at better positions. This is clearly an area 

for more future investigation. 
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Figure 4-7. RMSE (moving average over 1 month) of prediction error using linear parameters from 

one week of training data in January. 

A second question is whether the co-integrated prediction is reliable into the future, given that 

the test data in Figures 5 and 6 is immediately after the training data. Figure 4-7 shows how 

the RMSE changes over the course of the next year, using estimation parameters from just one 

week of training data. The monthly moving average RMSE error peaks at about 1 °C in the 

opposite season (winter in July versus training data during summer in January). This suggests 

that the RMSE error in the opposite season may be twice that close to the training data. If the 

deployment is planned to be very long term, this suggests temporary deployments that includes 

summer and winter periods may be useful to get better prediction accuracy. Again, this is a 

fruitful area for further research. Another area for further research is the use of non-linear 

models, including more complex machine-learning estimators which could include the season 

as a prediction input. 
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Chapter 5 Conclusions and 

Future Work 

5.1.  Conclusions on Temporal Interpolation 

In chapter 3, univariate time series analysis is performed on an environmental sensor array 

deployed for monitoring outdoor environmental temperatures. Statistical properties of the 

phenomenon are observed and a suitable time series model is fitted. After parameter estimation, 

evaluation of the forecasting error of the future temperature is performed with varying sampling 

period of the sensor. Interpolation between subsampled series is also performed, and linear 

interpolation is preferred to more complex cubic spline interpolation. Temperature can be 

interpolated with an RMSE accuracy of less than 0.2 °C while extending the sampling interval 

to 60 min. For prediction, an RMSE in prediction of less than 1 °C is possible if the sampling 

interval is extended to around 60 min. 

Altogether, this detailed analysis shows that frequent temperature sampling (every 5 min) 

provides limited additional information over-sampling at intervals up to 60 min. Such a down-

sampling can be helpful in extending the energy-limited lifetime of the sensor and reducing the 

data storage requirements.  

This analysis has shown that it is not possible to state the best sampling interval for all 

deployments based on experiments from one deployment. Instead, determination of the best 

sampling intervals would need to be done on a case-by-case basis after some initial high-

frequency sampling. Then detailed data analysis using the methods described above can be 

used to determine a suitable sampling interval for that particular deployment. Subsequent work 

described in Chapter 4 work moved from the required temporal resolution to look at the 

required spatial resolution for measuring sensor data across a geographical area. 

5.2.  Conclusions on Spatial Interpolation 

The work in Chapter 4 has proposed a time series-based analytical approach to develop 

sampling node selection in environmental sensor networks. Co-integration is found to be a 

useful tool to investigate temporal variation of the monitored phenomena. From the analyses 
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conducted with temperature series in a mine rehabilitation scenario, a significant number of 

sensing nodes are found to be redundant. Co-integrated nodes are shown to be capable of 

estimating observations at their co-integrated neighbour without exceeding a small error 

threshold. Such an approach of finding the best co-integrated nodes and using them to estimate 

observations for the rest of the nodes can be useful for developing a long-term environmental 

monitoring strategy.  

To monitor a large spatial area, monitoring can begin with a large number of short-deployment 

sensors and analysing their co-integrated nature. Where sets of nodes are found to be co-

integrated, redundant sensing positions can be removed. Permanent sensors are needed only in 

the positions of the non-redundant nodes. Alternatively, a small set of nodes can be densely 

deployed in one part of the area, the best positions can be chosen, then the unused nodes would 

be moved to another section of the area and this can be continued until the whole spatial region 

is covered. However, while this approach would provide local optima for sensor positions for 

each neighbourhood, it is more difficult to guarantee an optimum deployment over a large area. 

One suggestion would be to start at the centre of the deployment area, and then gradually move 

outwards. The pool of candidate nodes could include all the already committed permanent 

nodes from previous areas in the pool of potential co-integrated nodes. The best algorithm for 

extending this technique to cover a larger area would be an interesting topic for future work.  

Currently, this work only focuses on static sensor nodes. Future work could include using 

mobile nodes to map the co-integrated regions of the sensing field prior to permanent node 

deployment. 

5.3.  Future Directions 

So far this work has only examined the measurement of temperature.  It would be useful to 

extend this work to other parameters, such as incident radiation, rainfall, soil moisture 

content, and humidity. 

One currently suggested method for the dense deployment of nodes which is used to “train” 

the spatiotemporal interpolation, is to deploy a large number of low-cost, low-lifetime nodes 

to decide the position of the long-term nodes.  Another option would be to use mobile sensors 

to make many measurements across the sensing area, perhaps over several weeks.  This also 

has the advantage that the field could be recalibrated in the opposite season, since, as shown 

in chapter 4, errors are largest about 6 months away from the initial training. 
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