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Abstract

Quantitative  susceptibility  mapping  (QSM)  reveals  pathological  changes  in  widespread  diseases  such  as  Parkinson’s  dis-
ease, Multiple  Sclerosis,  or  hepatic  iron  overload.  QSM  requires  multiple  processing  steps  after  the  acquisition  of  magnetic
resonance imaging  (MRI)  phase  measurements  such  as  unwrapping,  background  field  removal  and  the  solution  of  an
ill-posed field-to-source-inversion.  Current  techniques  utilize  iterative  optimization  procedures  to  solve  the  inversion  and
background field  correction,  which  are  computationally  expensive  and  lead  to  suboptimal  or  over-regularized  solutions
requiring a careful  choice  of  parameters  that  make  a  clinical  application  of  QSM  challenging.  We  have  previously  demon-
strated that  a  deep  convolutional  neural  network  can  invert  the  magnetic  dipole  kernel  with  a  very  efficient  feed  forward
multiplication not  requiring  iterative  optimization  or  the  choice  of  regularization  parameters.  In  this  work,  we  extended
this approach  to  remove  background  fields  in  QSM.  The  prototype  method,  called  SHARQnet,  was  trained  on  simulated
background fields  and  tested  on  3  T and  7  T  brain  datasets.  We  show  that  SHARQnet  outperforms  current  background  field
removal procedures  and  generalizes  to  a  wide  range  of  input  data  without  requiring  any  parameter  adjustments.  In  sum-
mary, we  demonstrate  that  the  solution  of  ill-posed  problems  in  QSM  can  be  achieved  by  learning  the  underlying  physics
causing the  artifacts  and  removing  them  in  an  efficient  and  reliable  manner  and  thereby  will  help  to  bring  QSM  towards
clinical applications.
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1 Introduction
Quantitative susceptibility mapping (QSM) is a post-

properties, predominantly myelin [3], iron [4] and calcium
[5]. QSM has been used to study normal aging [6], Hunting-
ton’s Disease [7], Multiple Sclerosis [8], Alzheimer’s Disease
processing technique that extracts magnetic susceptibility
from the phase of magnetic resonance imaging (MRI)
signal [1,2] and provides information about biological tissue
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[9] and Parkinson’s Disease [10] and allows unambiguous
visualization [11] and differentiation of micro-bleeds from
microcalcifications [12].
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Obtaining a quantitative susceptibility map requires an MRI
sequence where the signal phase is sensitive to local magnetic
field changes, such as a gradient-recalled-echo sequence [13]
or gradient-echo-based echo-planar imaging [14,15]. This raw
signal phase is first unwrapped, and the background field,
magnetic field changes from regions outside the object of
interest, have to be removed before the measured field per-
turbation can be related to the underlying tissue magnetic
susceptibility distribution by solving an ill-posed inverse prob-
lem [1].

The background field in QSM is caused by magnetic field
changes outside the object of interest, such as susceptibility
gradients due to tissue-air interfaces [16] or B0 inhomo-
geneities due to imperfect shimming. These external fields
are often orders of magnitude stronger and overlap with local
tissue field changes. A variety of methods have been pro-
posed to remove background fields in QSM by exploiting the
underlying physical principle that the background phase either
satisfies the Laplace equation inside the object of interest or
that the background phase is caused by sources outside the
object of interest. This means that the internal tissue-related
fields can be modeled as non-harmonic components, whereas
background fields can be modeled as harmonic components
of the total field perturbation. A recent review [17] classi-
fied background field corrections based on their assumptions
in (1) methods assuming no sources close to boundaries, (2)
methods assuming no harmonic internal and boundary fields,
and (3) methods that do not employ an explicit boundary
assumption, but minimize an objective function based on a
norm.

One example for satisfying the Laplace equation inside
the object of interest, assuming no sources close to bound-
aries, is sophisticated harmonic artifact reduction for phase
data (SHARP) [16]. It solves Poisson’s equation utilizing the
spherical mean value theorem [18] and requires the definition
of a spherical kernel radius and a regularization parameter.
The SHARP method was later extended to V-SHARP, utiliz-
ing spheres with multiple radii that decrease the size of the
kernel towards the brain boundary to reduce artifacts at the
edges and thereby extend the usable region of interest [19].
The most recent SHARP scheme utilizes a high-pass filter
to define the regularization parameters more robustly [20],
allowing the use of the same regularization values for different
imaging parameters.

Another method, assuming no harmonic internal and
boundary fields, removes the background field by solving the
Laplacian boundary value problem (LBV) [21]. Under sim-
ple boundary condition assumptions, this method removes the
background field while retaining data near the boundary. The
simple boundary condition assumptions work in most cases,
but can be problematic when the local field is very high near

the boundary (e.g. veins close to the brain surface).

One example in the third group is regularization enabled
SHARP (RESHARP) [22], which introduces a Tikhonov reg-
ularization at the deconvolution stage. Methods that are based
, et al. / Z Med Phys xxx (2018) xxx–xxx

on physical properties of dipole sources outside the object of
interest, such as projection onto dipole fields (PDF) [23,24],
also fall in this category because they fit a distribution of exter-
nal sources to the total field by projecting the field inside the
object onto the subspace spanned by all background sources.

In summary, the currently available background field cor-
rections perform well given that the regularization parameters
are carefully adjusted to a given dataset and the assumptions of
the boundary conditions are not violated. Most methods face
the limitation of a loss of information at the boundaries, which
can be partly mitigated by using varying kernel sizes [25] or by
extending field coverage exploiting the harmonic field proper-
ties [26]. A fundamental problem of most available methods
is that they require the definition of a mask, separating the
object of interest from the background. However, this mask
generation is non-trivial (especially in the abdomen or heart)
and leads to either the loss of areas close to boundary regions
or residual artifacts due to an incorrect boundary definition.
The need for carefully choosing regularization parameters and
defining a region of interest currently limit the wide clinical
application of QSM.

Deep convolutional neural networks have recently been
shown to enable an efficient solution of the ill-posed inversion
problem [27,28] without requiring computationally expen-
sive iterative optimization procedures or the explicit choice of
regularization parameters. We extended the previously intro-
duced framework DeepQSM [27] to remove background fields
by learning to predict realistic background fields from simu-
lated data. In this manuscript, we describe the simulation of
background fields used for training and compare the predic-
tions of our prototype method SHARQnet with established
background field removal procedures.

2 Methods

2.1  Training  data

For training SHARQnet, we simulated 1000 realistic back-
ground fields overlaid on top of a synthetic brain simulation
provided with the MEDI toolkit [29]. This was achieved
by randomly placing 2 or 3 ellipsoids of varying sizes out-
side the brain phantom and simulating the fields originating
from these ellipsoids by convolving them with the unit dipole
response. The external sources varied in susceptibility and
shape. Then, a brain mask was applied to the brain phantom
with the overlaid simulated background fields, and 100 differ-
ent crops (32 ×  32 ×  32) were randomly extracted (allowing
random overlap between patches) to yield the input data for
SHARQnet (Figure 1).

The training target was the synthetic background field,

which was achieved by subtracting the output of the network
from the input and computing the mean squared error with
respect to the brain phantom without background fields (for
training details see Figure 2).



ARTICLE IN PRESS
S. Bollmann, M.H. Kristensen, M.S. Larsen, et al. / Z Med Phys xxx (2018) xxx–xxx 3

Figure 1. Illustration of the training data generation for SHARQnet. 1000 different source configurations were simulated, convolved with
the dipole kernel and superimposed onto a synthetic brain model. 100 different examples of size 32 ×  32 ×  32 were randomly cropped from
each brain resulting in 100,000 examples used for training.

Figure 2. Network architecture of SHARQnet. The input image in this example has a dimension of 32 ×  32 ×  32 and is processed by two
convolutional and one max pooling layer at each level before the image is upsampled via transposed convolutional layers followed by two
convolutional layers. Finally, the output is processed via two adaptation layers with a kernel size of 1. The output of the network is then

etw
subtracted from the input, and the mean squared error is computed b
used for adjusting the training weights during back propagation.

2.2  Architecture  and  training
The fully convolutional neural network is based on Deep-
QSM [27], which is a modified version of an U-Net
architecture [30]. Due to memory constraints, we reduced
een this difference image and the ground truth image. The error is

the amount of feature maps compared to the original U-
Net (Figure 2). In addition to the DeepQSM architecture,

we utilized two adaptation layers with 128 and 64 filters
respectively and a kernel size of 1. The network expects
3D background field superimposed images as input and
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produces an equally sized predicted background field as
output.

SHARQnet was trained on 100,000 synthetic background
examples with a mini-batch size of 120 in a total training
time of 24 h on an NVIDIA Tesla K40 Accelerator Unit.
To optimize the weights of SHARQnet during training, the
’ADAM’ optimizer [31] was used with default parameters. To
avoid overfitting during training, the regularization technique
’dropout’ was used [32] to randomly turn off neurons during
training with a dropout rate of 15%. This dropout rate was cho-
sen, because commonly used higher rates of 50% increased
the training time considerably and we were able to simulate
large amounts of data and by this avoiding overfitting more
efficiently. We always started the training from scratch and did
not use pre-trained networks. The network expects input data
that are independent of echo time and field strength and this
normalization step has to be applied beforehand. Due to the
quantitative nature of the QSM problem, it is not necessary
to apply sophisticated normalization techniques as in the case
of image segmentation problems utilizing T1 or T2 weighted
data [33].

SHARQnet was implemented using Python 3.6 [31], Ten-
sorflow and Tensorboard v1.6 [35], Keras 2.2.4 [36], SciPy
1.1.0 [37], NumPy 1.15.0 [38], scikit-image 0.13.1 [39]
and Nibabel 2.3.0 [40]. Matplotlib 2.1.2 [41] was used for
visualizations and creating figures in this manuscript. The
source code of SHARQnet is available from the authors upon
request. Training was performed on the National Computa-
tional Infrastructure cluster Raijin.

Three experiments were performed to evaluate
SHARQnet’s ability to remove background fields. As a
comparison, we used three established background field
correction methods and we reconstructed the same datasets
using SHARP [16], RESHARP [22] and V-SHARP [19].

2.3  Performance  evaluation  1:  Synthetic  data

The first experiment aimed to test SHARQnet’s perfor-
mance on synthetic background fields similar to the training
data. The outputs of SHARQnet were compared to the ground
truth through the use of difference maps and numerical error
measures, such as the normalized root-mean-squared error
(RMSE), the structural similarity index (SSIM [42]), and the
high-frequency error norm (HFEN [43]).

2.4  Performance  evaluation  2:  QSM  reconstruction
challenge  data

In the second experiment, the goal was to remove the

background field from realistic single-orientation phase data.
SHARQnet had never been introduced to real background
fields during training, and therefore this experiment tests if
the simulated background fields characterize real background
, et al. / Z Med Phys xxx (2018) xxx–xxx

fields well enough to enable a correct removal. The single
transversal-orientated unwrapped phase image from the 2016
QSM reconstruction challenge was used. We chose this pub-
licly available dataset because it resembles a typical clinical
dataset and it enables everyone a comparison to their own in-
house algorithms. The data set serves as a common reference
for current and future algorithms and was acquired in vivo
from a healthy 30-year-old female, using a 3D gradient-echo
sequence at 3 T with 1.06 mm isotropic resolution, an echo
time of 25 ms, and a repetition time of 35 ms [44]. The run
time of SHARQnet is dependent on the input matrix size and
is on average 42s on an i7-4790 CPU for this 160 ×  160 ×  160
dataset. To demonstrate that the background field corrected
maps can be used in a QSM pipeline, we applied the Deep-
QSM [27] dipole inversion algorithm to the output of every
background field correction algorithm.

2.5  Performance  evaluation  3:  High-resolution  7  T
in vivo  data  with  and  without  brain  extraction

The third experiment tests if the background field can be
removed from a dataset acquired at ultra-high field at a variety
of echo times. In addition, we tested if SHARQnet can produce
background field corrections without brain masking. For this,
we obtained written informed consent from one participant (27
years, male) prior to in  vivo  scanning as approved by the local
human ethics committee on a 7 T whole-body research scanner
(Siemens Healthcare, Erlangen, Germany), with maximum
gradient strength of 70 mT/m and a slew rate of 200 T/m/s
using the 32-channel Rx head coil (Nova Medical, Wilm-
ington, MA, USA). Third-order shimming was employed to
improve the B0-field homogeneity.

We acquired a multiple-echo-time gradient-recalled-echo
(GRE) 3D whole-brain dataset: TR = 25 ms, TE = 4.4,
7.25, 10.2, 13.25, 16.4, 19.65, 23 ms, flip angle = 13◦,
FOV = 210 ×  181.5 ×  120 mm3, matrix = 280 ×  242 ×  160
(0.75 mm isotropic voxels), parallel imaging (GRAPPA,
acceleration factor = 2, 24 auto-calibration lines), monopolar
readout gradient, symmetric echo, 1116 Hz/Pixel, first echo
flow compensated, TA = 7.9 min.

To enable optimal coil combination using COMPOSER
[45], we acquired reference data using the prototype
PETRA ultra-short-TE sequence [46]: TR = 1.99 ms,
TE = 0.07 ms, flip angle = 2◦, FOV = 288 ×  288 × 288 mm3,
matrix = 288 × 288 ×  288 (1 mm isotropic voxels),
847 Hz/Pixel, and TA = 2 min.

The data was cropped to 224 ×  272 ×  160 pixels, and
a brain mask was generated using Oxford FMRIB Soft-
ware Library (FSL) Brain Extraction Tool (BET) [47] with

a fractional intensity threshold of 0.4 per individual echo.
Unwrapping was performed using STI Suite’s Laplacian
unwrapping algorithm [48]. All echoes were individually pro-
cessed with and without brain masking.
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Figure 3. Results of SHARQnet, SHARP, RESHARP and V-SHARP background field removal on synthetic data (top row) as well as the
ed 

ant

difference to the ground truth (bottom row). The input is a simulat
Compared to the SHARP-based methods, SHARQnet delivers subst

3 Results

3.1  Performance  evaluation  1:  Synthetic  data
Figure 3 shows the results of SHARQnet, SHARP,
RESHARP and V-SHARP on simulated background fields
background field superimposed onto the simulated brain phantom.
ially lower residual background fields.

overlaid onto a simulated brain. Although all methods are
capable of removing the background field, the comparison to
the ground truth reveals the consequences of the underlying

assumptions of each method. SHARP produces a relatively
flat image and suppresses a wide range of spatial frequencies
including fields generated from structures of interest inside the
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Table 1
Error metrics of outputs from SHARQnet, SHARP, RESHARP and V-SHARP for background field removal on a synthetic brain with
simulated background field: root mean square error (RMSE), high-frequency error norm (HFEN) and structural similarity index (SSIM)
enable the examination of an overall error, deviation in high-frequency components, and visual similarity respectively. SHARQnet performs
better than SHARP-based methods in all metrics used.

Method RMSE HFEN SSIM

SHARQnet 19.55 17.01 0.9875
SHARP 70.37 51.35 0.8353
RESHARP 41.97 29.60 0.8811
V-SHARP 47.01 34.37 0.8735
brain. Not unexpected given their shared concept, RESHARP
and V-SHARP show residuals with lower spatial frequencies.
However, all three methods show errors at the brain boundary,
which can be seen in the top part of the brain in the coronal
slices. SHARQnet in comparison shows substantially smaller
errors, manifested predominantly in high spatial-frequency
components. The numerical error measures (Table 1) affirm
the visual comparisons and indicate that SHARQnet performs
best.

3.2  Performance  evaluation  2:  QSM  reconstruction
challenge  data

The results of SHARQnet, SHARP, RESHARP and V-
SHARP on the 2016 QSM Reconstruction Challenge data
are shown in Figure 4. The yellow arrow highlights a region
where SHARQnet and SHARP remove the background field
visually correctly, but RESHARP and V-SHARP show a resid-
ual field. The red arrow highlights an area where SHARP
removes the background field, whereas SHARQnet maintains
more anatomical contrast from basal ganglia structures. It can
also be seen that SHARQnet delivers a lower susceptibility
for the superior sagittal sinus and straight sinus compared to
the other methods. The QSM reconstruction of the background
field corrected data is shown as well and it can be observed that
SHARQnet delivers a background field correction that allows
the computation of a susceptibility map of high fidelity.

3.3  Performance  evaluation  3:  High-resolution  7  T
in vivo  data  with  and  without  brain  extraction

Figure 5 and Figure 6 show SHARQnet’s results on a 7 T
multi-echo dataset. Figure 5 demonstrates that SHARQnet
is capable of removing the background field from an ultra-

high field dataset across multiple echo-times. Figure 6 shows
that SHARQnet even works without a brain mask defining
the object of interest and delivers realistic background field
corrections.
4 Discussion

In this work, we introduced SHARQnet, a deep convolu-
tional neural network that is capable of removing background
fields in QSM. We compared SHARQnet with three com-
monly used algorithms SHARP, RESHARP and V-SHARP
and found that it provides accurate background field correc-
tions across all tested applications.

When testing SHARQnet on synthetic background fields
we observed that it yields lower numerical error metrics than
the state-of-the-art methods. The difference maps (Figure 3)
facilitate interpreting the lower error metrics and indicate
that SHARQnet only shows residual errors close to high
susceptibility structures (e.g. the basal ganglia). Importantly,
SHARQnet works well close to the brain boundary, where it
shows substantially smaller errors in comparison to SHARP,
V-SHARP and RESHARP.

We also tested SHARQnet on real-world data where no
ground truth is available and found that SHARQnet produces
artifact-free results that appear visually correct. In this test
case, it is more difficult to evaluate the performance because
there is no ground truth. However, when combining with the
insights gained from the synthetic data, we found that SHARP
might regionally reduce the anatomical contrast too exces-
sively, potentially resulting in reduced magnetic susceptibility
estimates in e.g. iron-rich basal ganglia structures. Addition-
ally, the output of SHARQnet differs from the other methods
in the large vein depicted in Figure 4, and it is likely that
SHARQnet underestimates susceptibility in this structure. We
speculate that our training dataset might not have contained
enough structures with high susceptibility values and that the
network therefore partly removes the field associated with
veins. Future implementations should investigate this in more
detail.

We also demonstrated that SHARQnet generalizes to in  vivo
data acquired at ultra-high field at varying echo times. Further-
more, we show that SHARQnet does not necessarily need a

mask defining the object of interest like the competing algo-
rithms. If a further augmentation of the source simulation, e.g.
by adding sources close to the temporal lobe, can help to elim-
inate the residual fields in the temporal lobes (e.g. depicted in
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Figure 4. Results of the background field removal using SHARQnet, SHARP, RESHARP and V-SHARP on the 2016 QSM Reconstruction
Challenge data. The input is the unwrapped phase from the challenge. The yellow arrow highlights a region where SHARQnet and SHARP
remove the background field, but RESHARP and V-SHARP show a residual field. The red arrow points to a basal ganglia area where the
background field removal by SHARP might lead to an underestimation of susceptibility, whereas SHARQnet, RESHARP and V-SHARP
maintain anatomical contrast of those iron-rich structures. The second panel shows the result of the DeepQSM dipole inversion when the
respective background field corrected images are utilized as input.
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Figure 5. Results of SHARQnet on a 7 T multi-echo dataset. The individual echoes have been masked with an echo-time-specific mask.
SHARQnet is able to remove the background field in this dataset for every echo-time.
Figure 6), it might even be possible to omit the error-prone
brain masking step from the QSM pipeline. This would have
huge advantages in clinical applications as has already been
shown in QSM algorithms that can invert the total field [49,50]
and do not require brain masking.

The presented work is a proof-of-concept that has huge
potential to be improved further. First, the simulation of the
external background fields is relatively simple and could be
done in a more anatomically realistic way. The simple source
geometry currently used, could explain the residual fields
visible in the temporal lobes. For applications outside the
brain, such as QSM in the abdomen [51], it needs to be
tested if the current simulation approach already generalizes
to other organs of interest or if organ-specific simulations

should be utilized. More room for improvement can be found
in the network architecture and hyperparameters, because we
currently have not optimized these extensively. Preliminary
tests (not shown in this manuscript) indicate that smaller
architectures are capable of learning the background field
problem as well.

In conclusion, we present a novel background field removal
technique in QSM based on a deep convolutional neural
network. We show that the presented algorithm delivers
numerically and visually better results than state-of-the-art
methods, but does not require manual parameter tuning. Addi-
tionally, preliminary results indicate that our proposed method
might not necessarily require brain or organ masking, render-
ing it especially interesting for clinical applications outside
the brain.
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