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Abstract

Interfacial gas enrichment (IGE) of dissolved gases in water is shown to govern the strong 

attraction between solid hydrophobic surfaces of an atomic force microscopy (AFM) 

colloidal probe and a solid substrate. However, the role of IGE in controlling the attraction 

between fluid-fluid interfaces of foam films and emulsion films is difficult to establish by 

AFM techniques due to the extremely fast coalescence. Here, we applied droplet-based 

microfluidics to capture the fast coalescence event under the creeping flow condition and 

quantify the effect of IGE on the drainage and stability of water films between coalescing oil 

droplets. The amount of dissolved gases is controlled by partially degassing the oil phase. 

When the amount of dissolved gases (oxygen) in oil decreases (from 7.89 mg/L to 4.59 

mg/L), the average drainage time of coalescence significantly increases (from 19 ms to 50 

ms). Our theoretical quantification of the coalescence by incorporating IGE into the 

multilayer van der Waals attraction theory confirms the acceleration of film drainage 

dynamics by the van der Waals attractive force generated by IGE. The thickness of the IGE 

layer decreases from 5.5 nm to 4.9 nm when the amount of dissolved gas decreases from 7.89 

mg/L to 4.59 mg/L. All these results establish the universal role of dissolved gases in 

governing the strong attraction between particulate hydrophobic interfaces.

Keywords: water film, dissolved gases, IGE, van der Waals force

Nomenclature

A Hamaker function (J) y Dimensionless thickness (-)
c Speed of light (m/s) y0 Dimensionless thickness at time zero (-)
C Number concentration of z:z salt ions (-) z Valency of ions (-)
Ca Capillary number (-)
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2

d IGE thickness (m) εm Dielectric function of water (-) 
e Charge of an electron (C) εj Dielectric function of material j (-)
h Thickness (m) κ Debye constant (m-1)
hi Initial film thickness to offset zero drainage 

time (m)
 Disjoining pressure due to surface forces 

(Pa)
h0 Thickness at time zero (m)

vdW van der Waals disjoining pressure (Pa)

i Imaginary number (-)
EDL Electrical double layer disjoining pressure 

(Pa)

I Ionic strength (mol/L) µ Water dynamic viscosity (Pa s)
kB Boltzmann constant (m2 kg s-2 K-1)


Mean of Gaussian fit (s)

n Dimensionless index used in Eq. (2) (-) ρ Dimensionless radial coordinate (-)
p Dimensionless excess pressure in the film 

relative to the bulk (-)
σ Equilibrium interfacial tension (N m-1)

P Excess pressure in the film relative to the 
bulk (Pa) 

Standard deviation of Gaussian fit (s)

q Parameter defined by Eq. (6) (-) τ Dimensionless time (-)
r Radial coordinate in Eqs. (8) and (9) (m) τ0 Dimensionless time constant (-)
R Effective radius of droplet (m) ω Matsubara frequency (Hz)
sj Retardation coefficient defined by Eq. (5) (-)

jk Diamagnetic reflection coefficient 
between materials j and k (-)

t Time (s)
jk

Dielectric reflection coefficient between 
materials j and k (-)

t0 Time constant (s)  Dimensionless number in Eq. (16)
T Absolut temperature (K) ψs Film surface potential (V)
T1 Moment of droplet contact (s)  Dimensionless disjoining pressure (Pa)
T2 Moment of water film rupture (s) h Planck constant divided by 2π (m2 kg s-1)
V Velocity constant (m/s)


Diamagnetic reflection coefficients of a 
photon passing through the water film and 
IGEs from one droplet to another (-)

x Integration dummy in Eq. (2) (-)


Dielectric reflection coefficients of a 
photon passing through the water film and 
IGEs from one droplet to another (-)

xn Lower limit of the integral in Eq. (2) (-)

INTRODUCTION

Hydrophobic interactions are ubiquitous in water-based systems in our daily activities, 

from salad dressing and cleaning action of shampoos and detergents to phenomena related to 
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3

industrial practices, such as attachment of hydrophobic particles to air bubbles in froth 

flotation and protein folding for biotechnology. However, the origin of hydrophobic 

interactions has remained controversial for more than 30 years. The complexity of the 

hydrophobic interaction originates from a number of concomitant mechanisms. Despite 

contentious experimental validation, several mechanisms have been proposed. The 

mechanisms reported in the literature include the entropic origin, resulting from the 

rearrangement of water structure near the hydrophobic surfaces,1-4 the nanobubble bridging 

capillary forces,5-7 the cavitation (separation-induced phase transition),8-17 the hydrodynamic 

origin,18 and electrostatic origin.19-20 A brief review of direct force measurements between 

hydrophobic surfaces in aqueous solutions has also been reported.4 This review concluded 

that only the short-range hydrophobic attraction (<100 Å) represents the true hydrophobic 

interaction.

Dissolved gases have shown a significant effect on the strong attraction between 

hydrophobic surfaces. Except for the extensively documented effect of bridging nanobubbles 

and cavitation on the long-range attractive forces, a recent study found the interfacial gas 

enrichment (IGE) of dissolved gases significantly contributes to the short-range attractive 

forces between solid hydrophobic surfaces of an atomic force microscopy (AFM) probe and a 

hydrophobic solid substrate.21 The existence of IGE is also examined by molecular dynamics 

simulation22 and experimentally confirmed by the reduced water density at hydrophobic 

surfaces in the presence of dissolved gases observed via direct non-invasive neutron 

reflectivity measurements.23 In addition, the intrinsic structure of water next to the oil phase 

has been proved to be similar to the bare water-vapor interface using molecular dynamics 

simulations of realistic models of alkanes and water.24 However, the role of IGE in 

controlling the attraction between fluid-fluid interfaces of foam films and emulsion films is 

difficult to establish by AFM techniques due to the extremely fast coalescence.

Experimental techniques with high-precision measurements at different length scales 

can provide temporal and spatial information on interactions between fluid-fluid interfaces 

and are crucial to quantitative analysis using theoretical models. Experimental studies on 

interactions between fluid-fluid interfaces include the measurements of (i) film thickness 

variations with time by thin liquid film micro-interferometry25-26, (ii) time-dependent forces 
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by AFM21, and (iii) coalescence time by bubble pair method.27 The measurements of (i) 

provide the variations of the local thickness (< 0.5 µm) with time and with position but are 

limited by many uncertainties due to the contamination, evaporation, and thermal or 

mechanical fluctuations from the environment. The measurements of (ii) provide valuable 

data of surface forces for comparison with theory but the procedures are tedious. The 

measurements of (iii) provide the lifetime of a liquid film. Recently, microfluidic method 

equipped with high-speed camera imaging shows its advantages over other techniques 

because of the faster and more efficient measurements of coalescence process.28 The small 

scale and confinement of microfluidics channels minimizes evaporation, thermal or 

mechanical fluctuations from environment and possible contamination. The well-controlled 

generation and transport of micro-droplets provide an ideal (direct) observation of the 

well-controlled coalescence process under the creeping flow condition matching excellently 

the modelling approximation.

In this paper, we exploit microfluidics equipped with high speed camera imaging to 

measure the drainage time of film rupture (coalescence time) with hundreds of coalescence 

events for systems with two different amounts of dissolved gases. The confinement in a 

microchannel ensures a well-controlled transport of micro-droplets and film drainage process 

for quantitative analysis via theoretical models. We elucidate the effect of IGE on 

coalescence dynamics between two oil droplets by applying the advanced theory on the van 

der Waals interaction in the presence of IGE. 

MATERIALS AND METHODS

Deionized (DI) water was obtained from a centralized distillation tap where the 

conductivity was 1.6 10-4 S/m at 20°C measured using a conductivity meter (HI5521-02, 

Hanna Instruments). The oil used was squalene (98%, S3626 Sigma-Aldrich, USA), which is 

a highly unsaturated hydrocarbon (C30H50) and contains large amounts of dissolved gases 

(concentration of air soluble in oil is about 10 times higher than that in water).26 Squalene 

was used as purchased. The dynamic viscosity and equilibrium interfacial tension of the 

unpurified squalene against water at 20 °C were  = 0.012 Pa.s and  = 0.0153 N/m, 
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5

respectively.29 The amount of dissolved gases was manipulated by gassing or degassing the 

oil. The oil was exposed to clean air over night for gassing and dissolved oxygen was 

measured to indicate the dissolved gas content. The oil was saturated with air by exposure to 

open-air for 12 hours in a small glass dish. Under these conditions it was very unlikely that 

any squalene oxidation occurred given that oxidation of squalene only starts after 8 days at 62 

°C under continuous air flow.30 The oil was placed into a vacuum chamber for two hours to 

degas. Vacuum was supplied using a centralized vacuum system. A dissolved oxygen probe 

(Pro20 Dissolved Oxygen Instrument, YSI, USA) with a polarography sensor was used to 

measure the dissolved oxygen concentrations in gassed and degassed oils. As the contact 

between oil and air was inevitable during the measurements, only partial removal of 

dissolved gases was achieved. The dissolved oxygen concentrations for the gassed and 

partially degassed oils were 7.89 ± 0.01 mg/L and 4.59 ± 0.01 mg/L, respectively. To 

minimize the fluctuation of dissolved gas content, the oil sample was insulated by the 

gas-tight glass syringe and microfluidic channels against the open air during the 

measurements.

Figure 1. A microfluidic device for examining the effect of IGE on droplet coalescence: (a) Schematic diagram 

of a flow-focusing microfluidic device. (b) Micrograph of oil (gassed) droplet generation with a total water flow 

rate 200 µL/h and oil flow rate 10 µL/h. 
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6

A soft lithography technique was used to fabricate the microfluidic device in poly 

dimethylsiloxane (PDMS).31 PDMS devices were irreversibly bonded to a glass slide using 

the air plasma. The widths of main channels and orifice were 100 and 50 µm, respectively 

(Figure 1). The height of the microchannel was about 30 µm. Flow rates of water and oil 

were adjusted to 200 and 10 µL/h, respectively. Droplet generation was performed with 

optimal wetting conditions. Sequential layer-by-layer polyelectrolyte deposition, by 

poly(allylamine hydrochloride), (98%, Sigma-Aldrich, USA) and poly(sodium 

4-styrenesulfonate), (98%, Sigma-Aldrich, USA) was exploited to create stable hydrophilic 

surfaces in PDMS microfluidic devices.32 A final washing step was performed with deionized 

water to remove all trace of contaminations in the micro-channels. Details of the surface 

modification have been reported in our recent publication.28 It is noted that the oxygen 

permeability of a surface-modified PDMS substrate significantly differs from that of the 

original PDMS.33-35 The oxygen transfer barriers at the water/PDMS interfaces can be 

reduced 250-fold after a 5 min plasma treatment compared with those at the original 

water/PDMS interface.35 Furthermore, the layer-by-layer polyelectrolyte deposition on 

micro-channel wall can add additional diffusive resistance to the gas transfer from the 

ambient air owing to the lowered permeability of the composite layer. Water and oil were 

loaded in gas-tight glass syringes and delivered into the microfluidic device via a syringe 

pump (SPM 100 S-FLUIDPUMP, Singapore). A high-speed camera (Micro 3, Vision 

Research) mounted on an inverted microscope (Nikon Ti-E, Japan) was used to record the 

droplet coalescence images. Droplets were generated using the flow-focusing configuration 

shown in Figure 1. The frequencies of droplet generation were 16 ± 1 Hz. The average 

diameters of droplets were 72.2 ± 0.8 µm. The subsequent droplet collision and coalescence 

were observed at the expansion.

Figure 2 illustrates the quantification of coalescence time from videos. Videos of 

droplet coalescence were recorded at a frame rate of 13,000 frames per second (fps) and 

subsequently processed with ImageJ (V1.48, NIH, USA). One hundred coalescence events 

were recorded for each system to obtain the distribution of the coalescence time. At the 

before-contact interaction, the two droplets were still far away and approached with each 

other with an approximate constant velocity. When the central film thickness between the 
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7

droplet surfaces fell below a certain value (~7 µm), the relative approach velocity started 

decaying exponentially. When the droplets touched with each other, as seen on the video 

frames, the contact interaction started. Typically, the first touching occurred at a central film 

thickness of  which is the resolution of the camera system employed. At these 1 μmh 

large thicknesses, the before-contact interaction was not affected by intermolecular forces 

such as those of the van der Waals interaction and the electrical double-layer interaction. At 

the contact interaction, the hydrodynamic resistance in the presence of the intervening liquid 

film increased significantly and the film slowly drained under the influence of the capillary 

and intermolecular forces. The contact interaction normally ended with the film rupture, 

which quickly merged the droplets into one larger droplet as seen on the video frames.

The outlined qualitative analysis of the before-contact and contact interaction between 

two droplets has allowed us to define the onset of coalescence at time  when the first 1t T

touching between the droplets was detected by observing the relative motion of droplets on 

the videos frame by frame. This determination of coalescence onset is limited by the optical 

resolution of the camera system employed which is , as shown in Figure 2. The 1 μmh 

onset usually happened between two sequential video frames, and hence the video frame rate 

(0.077 ms) is the temporal limit of our determination of the coalescence onset. Combining 

both the spatial and temporal resolutions, we can establish here that   

 Likewise, by observing the first merging of the two droplets  1 1μm   0.077 msT t h   

on videos frame by frame, we could also define the end of coalescence at time 

as shown in Figure 2. Knowing the start and end of the coalescence, the 2   0.077 msT t 

measured coalescence time, , was calculated by tc = T2 – T1. Since the temporal limit of ct

0.077 ms is significantly shorter than the coalescence time by three orders of magnitude, our 

determination of the first touching and merging between tow droplets from the video images 

is accurate and is acceptable. We will describe the details about our determination of model 

drainage time in the theoretical Section.
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8

 

Figure 2. Consecutive stages of interaction between coalescing droplets as probed by the shortest thickness 
between the droplet surfaces: i) the before-contact interaction (t<T1, blue circles), ii) the contact interaction with 

an intervening liquid film (T1 t<T2, black circles), and iii) the film rupture with merging of droplets (t = T2, 

green line). The transition between these stages was one imaging frame (0.077 ms). The coalescence time was 

the duration of the contact interaction, i.e., .2 1ct T T 

THEORY

Effect of IGEs on oil droplet interactions. The coalescence dynamics is governed by the film 

drainage and rupture processes. Since the film rupture is much faster than the film drainage 

the coalescence time is principally determined by the drainage process, which is our 

modelling focus. The film drainage process is determined by fluid dynamics, surface 

(intermolecular) forces and surface deformation. When the droplets are still far away from 

each other, the hydrodynamic interaction due to the motion of the fluid initially dominates the 

film drainage. As the droplets approach to a small thickness, the surface forces start to 

dominate and control the coalescence process. 
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9

Figure 3. A model system to account for the effect of IGE on the droplet coalescence via the van der Waals 

interaction (not to scale). The IGEs do not retard the electromagnetic waves as strongly as water, leading to a 

stronger van der Waals attraction. Indeed, the van der Waals attraction between surfaces in air is stronger than in 

water by an order of magnitude.

We consider the effect of IGE on the drainage and coalescence by applying the van der 

Waals interaction 21. The intrinsic gas layer (IGE) at water- hydrophobic interfaces has been 

observed by neutron reflectivity experiments23, 36, and analyzed by molecular dynamics 

simulation22. The creeping flow condition in micro-channels minimizes hydrodynamic 

disturbance on the stability of IGE. Therefore, the creeping flow around droplets at the 

drainage stage in the micro-channels is not expected to significantly disturb the stability of 

the thin IGE layers. It presents the main advantage of our experiments using the microfluidic 

device, which is the capable of producing micro-sized droplets, moving at extremely slow 

speed. Therefore, we assume IGE as a uniform gas layer. Figure 3 shows the IGEs with 

thickness, d, confined between the water film of thickness, h, and the oil droplets. Here, we 

consider different length scales of the oil droplet size (100 µm), the film thickness (1 µm) and 

IGE (1 nm), and apply local planar geometry approximation to the oil-IGE-water-IGE-oil 

interaction. The van der Waals pressure was calculated using the full dielectric spectra of 

water and squalene available in the literature37-38 (also given in the Supporting Information). 

The Derjaguin approximation is used to calculate the interaction energy between curved 

interfaces from their planar counterparts.39-40 Based on these approximations, the (disjoining) 

pressure of the van der Waals attraction, ПvdW, between two oil droplets separated by the 

water film with IGEs, as illustrated in Figure 3, can be calculated using:

, (1)  36vdW
Ah
h

  
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10

where A is the Hamaker function of the thickness due to the effect of the speed of light 

propagating through the water film and IGEs (known as the retardation effect). Applying the 

generalized Hamaker-Lifshitz theory for the multilayer system 41 gives:

, (2)     
0

3 ' ln 1 1
2

n

x xB
n n

n x

k TA x i e i e dx 


 



        

where x is the dummy variable, kB is the Boltzmann constant, and T is the absolute 

temperature. The prime against the summation indicates that the zero-frequency (n = 0) term 

is divided by 2. The Matsubara (sampling, discrete equally spaced) frequencies are described 

by  where  is the Planck constant (divided by 2π), represents the 2 /n Bn k T  h h ni

imaginary frequencies. , where c is the speed of light and   2 /n n m nx h i c    m ni 

describes the dielectric susceptibility of a material m, which refers to the central material 

across which the layered structures interact (i.e. water phase for this study).  and   

describe the diamagnetic reflection coefficients and the dielectric reflection coefficients of a 

photon passing through the water film and IGEs from one droplet to another, respectively. 

We consider the formation of IGE (A) with thickness d next to the oil surface (O) acting 

across the water film (W) with thickness of h, and have the following expression: 

, (3)   
 

exp /
1 exp /

WA AO A
n

WA AO A

xds hq
i

xds hq


      
     

In Eq. (3),  and  are the diamagnetic reflection coefficients of a photon passing WA AO

across a single interface between two materials, and are given by:

, (4)j k
jk

j k

s s
s s


 



where the subscripts j, k refers to the two materials, and the retardation coefficients, sj, are 

defined by the following generic expression:

, (5)   2 1 /j j n m ns q i i     
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11

where  describes dielectric susceptibility of a material j, which refers to the  j ni 

particular material of each layer, i.e., oil or air for this study and the dielectric susceptibility 

of air, . The oil and water susceptibilities are given in the Supporting   1A ni  

Information (Figures S1 and S2). In Eq. (5), parameter q is defined as follows:

, (6)
 2 n m n

xcq
h i  



 in Eq.  can be calculated using Eq. (3) with symbol  being replaced by , which   

are the dielectric reflection coefficients of a photon passing across a single interface between 

the two materials, and is given by:

, (7)   
   

j j n k k n
jk

j j n k k n

s i s i
s i s i

   
   


 



The numerical calculation of Eq. (2) was performed using the Gauss-Laguerre 

quadrature.39 The computational results were obtained using the values of the zeros of the 

Laguerre polynomial and the respective weights of the 30th order Gauss-Laguerre quadrature. 

The computation of the outer summation included at least 3000 terms for satisfactory 

convergence and accuracy.
Incorporating IGE into droplet coalescence. The effect of IGE on the droplet coalescence 

through the film drainage process (Figure 4) is affected by the disjoining pressure . The  h

van der Waals pressure is a significant component of  as per the DLVO  h

(Derjaguin-Landau-Verwey-Overbeek) theory. Modelling of the film drainage process, , h
t




based on the lubrication approximation to the Stokes equation is well described in the 

literature,39 and the governing differential equations and initial/boundary conditions are 

summarized below. 
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12

Figure 4. Definition sketch for thin film between two droplets.

The film drainage rate between two droplets is given by:

, (8)31
12

h Prh
t r r r

     
   

where µ is the dynamic viscosity, r is the radial coordinate, and t is the film drainage time. 

The immobile (‘no-slip’) boundary condition of Eq. (8) has been shown to be consistent with 

AFM measurements of bubble pair interactions on the micro scale.42 It is noted that the 

inevitable trace impurities tend to arrest interfacial mobility43 and the mobile interface is 

difficult to achieve for drops and bubbles in the µm size range.44 The excess pressure, P, 

inside the film relative to the bulk is given by the augmented Young-Laplace equation:

, (9) 
 

 
2

2 /,
1 /

h rP h r r h
R r r h r

   
       
     

where σ is the interfacial tension between water and oil (no IGE) or between water and air 

(with IGE), and R is the droplet effective radius. Eqs. (8) and (9) can be converted into the 

following dimensionless forms:

, (10)31
12

y py
   

   
  

   

and
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, (11)   1, 2
2

yp y y 
  

  
   

  

where , , , , , , and 1/4r Ca
R

  1/2hy Ca
R


Rp P



Ca t

R



 R


  1/20

0
hy Ca
R



. Here, h0 is the initial film thickness at the film center. The capillary number, 0 0
Ca t

R





, is defined using a velocity constant, V./Ca V 

At the beginning of film drainage, the two droplets are still far away from each other 

and their deformation is negligible. Therefore, their initial shape close to the axis can be 

approximated by a parabolic profile and described as follows:

(12)  2
0, 0y y    

In our numerical solution, we define the start of film drainage at t = 0 when the velocity 

of the droplet surface at the outer boundary of the water film starts to follow the initial 

condition:  at the (initial) film thickness of 7 m as described in the  0exp /h V t t
t


  



experimental Section. It is noted that the velocity constant, V, and the time constant, t0, can be 

accurately determined by fitting the experimental data, i.e., h vs t. An example of the 

experimental data and fitting details can be found in the Supporting Information (Figure S3). 

In terms of dimensionless variables, the dimensionless form of the initial condition can be 

described as follows:

, (13) 0exp /y  



  



where  is the dimensionless form of a time constant . The excess pressure in liquid film 0 0t

equals to zero, i.e.:

(14)( , , 0) 0p y   
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The boundary conditions at the axis of symmetry and film boundary are described as follows:

, , , (15)
0

0y

 

 
   0

0p

 

 
  

 , 0p y   

The computational domain for solving the drainage equation is now fully enclosed. 

Double-layer disjoining pressure. In addition to the van der Waals pressure, the total 

disjoining pressure, , in Eq. (9) also includes the double-layer disjoining pressure,  h

, as per the DLVO theory. It can be expressed as a function of water film thickness  EDL h

as follows:45

, (16)     2 2 232 tanh sech sinh exp
4 2 2 4

B
EDL

Ck T hh f f h   


                              

where ,  is the reduced surface potential    2cosh 0.332 0.779f      /s Bze k T 

for , ψs is the film surface potential, e is the charge of an electron, kB is the Boltzmann 7 

constant, T is the absolute temperature, C is the number concentration of z:z salt ions, and  

is the Debye constant. At 25°C,  where  is measured in nm-1and the ionic 3.288 I  

strength, I, is measured in mol/L. For DI water at unadjusted nature pH = 5.8, I = 2.5×10-6 

mol/L because of dissolved CO2 from the ambient atmosphere. We do not expect any 

significant change in the charge state of the oil-droplet surface as the quantity of gas is 

decreased, simply because of the non-ionic nature of the dissolved gas molecules. We only 

consider two different charging conditions equivalent to the special cases studied here, i.e., 1) 

water/squalene interface with a surface (zeta) potential of -27.5 mV 46 and 2) water/IGE (air) 

interface with a zeta potential of -65.0 mV 47. The first condition applies to the degassed 

system, i.e., IGE thickness = 0, and the second state applies to the non-degassed systems 

where IGE thickness  0.
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Numerical procedure. The partial differential equations for the film drainage as described by 

Eqs. (10) and (11) together with the initial and boundary equations, can be solved 

numerically by the method of lines with the spatial derivative being approximated using a 

finite difference scheme. This method yields a system of differential-algebraic equations of 

index 1, which can be solved by employing a standard numerical package such as ODE15s in 

Matlab. The boundary condition at infinity is applied at a significantly large distance 

(typically, at ρ = 15), beyond which the film thickness profile does not change significantly. 

The van der Waals pressure can be numerically calculated explicitly for different film 

thicknesses and IGE thicknesses, prior to solving the partial differential equation by the 

method of lines. The numerical data can then be interpolated to provide the van der Waals 

pressure needed for solving Eqs. (10) and (11). The interpolation procedure can significantly 

reduce the computational resources and time. 

RESUTLS AND DISCUSSION

Experimental coalescence time vs dissolved oxygen concentration

Figure 5 shows the measured coalescence time distributions for oil droplets with two 

different amounts of dissolved oxygen (7.89 mg/L and 4.59 mg/L). The measured 

coalescence times were found to be in the range 15 - 23 ms for 7.89 mg/L of dissolved 

oxygen, and 44 - 57 ms for 4.59 mg/L of dissolved oxygen. The Gaussian fits gave the values 

of corresponding mean of coalescence time, , 18.71 and 50.24 ms, and standard deviation, 

, 1.78 and 3.12 ms, respectively. It can be seen that mean coalescence time was increased 

with decreased dissolved oxygen concentration. The film rupture is very fast (much faster 

than the film drainage), therefore the rupture (time) does not significantly contribute to the 

coalescence time. The origin of coalescence time distribution comes from different factors, 

such as droplet size variation, asymmetrical droplet deformation during collision depending 

on the shear flow and collision angle.48 A reported probability distribution of critical film 

thickness in a quiescent emulsion may contribute to the observed coalescence time 

distribution.49-50 
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Figure 5. Experimental coalescence time distributions vs dissolved oxygen concentration [DO], displaying 

significant impact of dissolved gases. 

Simulated film thickness vs time, radial position and presence of IGE layer

Figure 6 shows numerical model prediction of film profiles as a function of time for 

systems with 4.9 and 5.5 nm IGE, respectively. The fastest decrease in film thickness occurs 

at the film center (i.e., at r = 0 as shown in Figure 4). The simulation stops at T2 = 50 and 20 

ms, respectively. The termination of simulation is because the film thickness becomes 

negative (MatLab crashes as the Hamaker constant, A, does not exist when film thickness 

becomes negative) at the next time step, respectively, indicating the film rupture 

(coalescence) may occur between these two time steps. Typically, the certainty of our 

modelling results for dimensionless coalescence time is τ = 1 (0.03 ms).

To match our experimental determination of coalescence time, we also defined the 

onset of coalescence from our theoretical calculation at the model film thickness of 1 m, i.e., 

 as shown in Figure 6 and in the experimental determination of the coalescence  1T t h 
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onset. Our certainty analysis described at the end of this Section shows that indeed the 

theoretical onset of coalescence as defined at 1 m film thickness is accurate. It is because 

the film drainage process is slow and the time of film drainage is significantly longer than the 

model time step of 0.03 ms.

 

Figure 6. Computed temporal film profiles for coalescing systems with IGE = 4.9 and 5.5 nm, respectively. The 

coalescence time is calculated as follows: . The additional input parameters include 2 1ct T T 

, ,  and .    22.6 μmR  1 mPa s  7.25 mm/sV  0 1.02 mst 

It can be seen in Figure 6 that film drainage rate increases with increased IGE 

thickness. The model coalescence times ( ), 18 and 48 ms are close to measured 2 1ct T T 

values, 18.71 and 50.24 ms for 7.89 and 4.59 mg/L of dissolved oxygen, respectively. The 

computed coalescence time are consistent with the measured values in Figure 5, where the 

system with higher amount of dissolved oxygen (larger IGE thickness) has shorter 

coalescence time (faster film drainage dynamics). 

Figure 7 shows the effect of IGE thickness on film drainage dynamics and comparison 

of the computed coalescence times (drainage time from 1 µm film thickness until film 
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rupture) and the measured values. We assume that the film ruptures at 1 nm, where the 

thickness decreases sharply. Again, it can be seen that the film drainage rate increases with 

increased IGE thickness. When the system is totally degassed (IGE thickness = 0 nm), the 

film reaches to an equilibrium thickness of 30 nm. This result is consistent with previous 

studies on the enhanced emulsion stability by removing the dissolved gases.51 When the IGE 

thickness increases from 0 nm to 4 nm, the equilibrium thickness decreases from 30 nm to 7 

nm due to the increased capillary and van der Waals forces (Figure S4 in the Supporting 

Information). The complete degassing result in full droplet stability (perhaps, with unchanged 

or lower value of surface charge and electrical double layer repulsion). Therefore, the effect 

of dissolved gases on droplet stability is not due to the surface charge. Instead, the droplet 

stability depends on the effect of the interfacial gas layer on the van der Waals forces, which 

in turn changes the disjoining pressure and the film drainage kinetics. The film rupture occurs 

when the IGE thickness reaches to 4.8 nm, above which the coalescence time becomes highly 

sensitive to the IGE thickness. For example, the coalescence time decreases sharply from 62 

to 14 ms when the IGE thickness just increases from 4.8 nm to 6.0 nm. The computed 

coalescence times for systems with 5.5 and 4.9 nm IGE are closest to the measured values. 

Reported neutron reflectivity measurements revealed that the introduction of dissolved gases 

lead to the increase in IGE thickness 23, 36. Our results which show that 4.9 and 5.5 nm IGEs 

correspond to 4.59 and 7.89 mg/L dissolved oxygen would be consistent with the reported 

relationship between IGE thickness and dissolved gas concentration.
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Figure 7. Effect of IGE thickness on film thickness at the center as a function of the drainage time being offset 

to zero at the initial thickness of 1 m. The shaded areas show the two ranges of the measured coalescence time 

with the mean and (i.e., 99.7% of certainty).3

It is worth noting that due to our experimental resolution the initial film thickness at the 

beginning of coalescence is about 1 m, which is used in determining the coalescence time in 

our modelling, . It is critical to examine the effect of the initial film thickness 2 1ct T T 

used to offset the drainage time zero in the modelling. Table 1 shows the effect of possible 

initial film thickness to offset zero drainage time on computed coalescence times for systems 

with different IGE thicknesses. The change of coalescence time relative to the value at hi = 1 

µm is within 3% and 6% when the initial film thickness changes from 1 µm to 0.7 µm and to 

2.0 µm, respectively. The insignificant change in computed coalescence time justifies our 

choice of initial film thickness (1 µm) to offset zero drainage time in determining the 

coalescence time.
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Table 1. Effect of possible film thickness, , used to offset drainage time on the computed coalescence times h
for systems with different IGE thicknesses. Values in bracket indicate the change of coalescence time relative to 

the value at 1 μmh 

 (µm)h 0.7 1.0 2.0
tC_4.80 (ms)1 61.35 (-0.51%) 61.66 (0.00%) 62.42 (+1.22%)
tC_4.87 (ms) 56.48 (-0.55%) 56.80 (0.00%) 57.55 (+1.32%)
tC_4.90 (ms) 46.67 (-0.67%) 46.99 (0.00%) 47.74 (+1.60%)
tC_5.00 (ms) 29.04 (-1.07%) 29.36 (0.00%) 30.11 (+2.56%)
tC_5.40 (ms) 21.52 (-1.43%) 21.83 (0.00%) 22.58 (+3.44%)
tC_5.50 (ms) 17.09 (-1.80%) 17.41 (0.00%) 18.16 (+4.31%)
tC_6.00 (ms) 13.04 (-2.34%) 13.35 (0.00%) 14.10 (+5.62%)
1. The subscripts describe the IGE thickness in nm.

CONCLUSIONS 

Significant effect of interfacial gas enrichment (IGE) on the droplet coalescence was studied 

by microfluidics and solving film drainage equations. We observed a faster coalescence 

between two individual droplets in a microfluidic channel, where the oil is gassed. This 

observation led us to investigate the effect of IGEs on the coalescence dynamics using the 

DLVO approach. The IGEs do not retard the electromagnetic wave as strongly as water, 

leading to a stronger van der Waals attraction. The computed coalescence time show that the 

gassed systems have faster coalescence dynamics because of the stronger van der Waals and 

capillary forces. Both the measured and computed results show that the coalescence rate is 

proportional to the amount of dissolved gases (IGE thickness). In contrast, the coalescence 

can be prevented in the degassed systems. Our study provides an alternative approach to 

investigate the relationship between dissolved gases and “hydrophobic” interactions. 

Essentially, the “hydrophobic” interactions in the presence of dissolved gases are the 

enhanced DLVO interactions due to the formation of IGEs. In future work, in-situ degassing 

methods will be developed to achieve better control of dissolved gas concentrations.
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Documents: Dielectric spectra of water and squalene for calculating the Hamaker 

function (Figures S1 and S2); an example of fitting details (Figure S3); and variation of the 

Hamaker function vs thickness of film and IGE (Figure S4).

Videos (avi): The combined video compares the coalescence between two 

72.5-µm-diameter oil droplets in a gassed system (top), and coalescence between two oil 

droplets (73.0 µm diameter) in partially degassed system (bottom). The video was recorded at 

13,000 fps and played at 30 fps. 
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