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ABSTRACT

Mild to moderate equine asthma is prevalent in goatehorses, particularly early in their
training period. Although the precise aetiopath@genremains undetermined, it is possible
that the susceptibility of this population mightghareflect an exercise-associated immune
derangement at the level of the airway. We perfarangenome-wide basal gene expression
scan on alveolar macrophages (AMs) isolated froam@&irdbred racehorses prior to and after
commencement of competition race training withewto identifying any exercise-
associated gene expression modulation consistémfuvictional alterations which might
reflect training-associated immunological derangam®icroarray technology was used to
analyse the basal gene expression profiles of baateeolar fluid-derived AMs, harvested
from six systemically healthy Standardbred raced®ior to (TO) and following (T1) entry
into training. Additionally, AM LPS-induced TNE-and IL-10 release at TO and T1 was
assessed. Although the data revealed significéet-iorse heterogeneity in relation to the
magnitude of individual gene expression at eack{ooint, within each horse, several
inflammatory related genes (e.g. chemokine ligamdsrferons and NFKB) declined in
expression from TO to T1. Entry into training diotsignificantly alter AM LPS-induced
TNF-a or IL-10 release. The data support a direct efbéttaining on AM basal gene
expression, particularly with respect to immunexedi genes. The pattern of training-
associated differential gene expression may indicglaitive downregulation of
inflammatory-related genes, consistent with an imasuwppressive effect of training and an

increased susceptibility to opportunistic pathogens

Keywords. immunity; racehorse; lungs; transcriptomics; noéray; alveolar macrophage

1. Introduction
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Mild to moderate equine asthma (previously ternméidimmatory airway disease) is a
chronic airway inflammatory disease, charactert®gdhronic coughing, increased mucus
production, inflammatory cell infiltration of therevays and poor performance [1, 2]. Based
upon the diversity of inflammatory cell populaticansd the disparity in both the direction and
degree of airway T-helper cell polarisation asseciavith the syndrome [1, 3-6], it is likely
that different causative and predisposing factorgribute to varying degrees in different
horse populations. Evidence exists of an assoaoidtatween bacterial isolation from the
trachea and the presence of mucus, an importdation in disease definition [7-12]. This
association, when considered along with the appaeeluction in disease risk with
increasing time in training may support an infeai@etiology with the subsequent
development of immunity [7, 13]. However, the irserssociation with time in training
remains even after adjustment for bacterial detacpotentially supporting alternative
aetiopathogenic mechanisms [14]. Adaptation ofrthate immune response to repetitive
airborne challenge with non-infectious agents, aagthat recognised in organic dust
induced respiratory disease in man [15, 16], calgd potentially result in a similar inverse
association with time in training. Despite such diyy@ses, the influence of training on

immune function in horses has received compairlgtiitde attention [17, 18].

Despite a clear association between high intesigycise in humans and symptoms of
respiratory infection, infectious causes are gdhyeidentified in only 35-45% of cases
exhibiting symptoms [19-21]. Several immunologidatangements are associated with
intense exercise, including effects on cell mignatand margination, mucosal IgA secretion,
cellular function and cell surface receptor expaesf22-25]. Although most studies on
innate immune cells in humans and animals haveskton circulating monocytes, [19, 22,

26-28], exercise also elicits alterations in alee@hacrophages (AM). In humans [29], mice



71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

[30-32] and horses [33], intense exercise redudddVi1C-Il expression [31], antigen
presentation capacity [30], phagocytic propert&3 pnd impaired responses to various

stimuli [23, 32].

Previous studies have used microarray technologyestigate the effect of intense exercise
on global gene expression of peripheral blood mytesd34, 35]. In addition, recent RNA-
sequencing has also identified a number of noveadliciate regulators [36]. Although such
work has provided valuable information on exercrs#iced alterations in immunity, it offers
limited insight into exercise- and/or training-asisted changes in resident macrophage
function and related tissue level immune respof&ls Previous equine studies have
investigated the effect of intense exercise orfuhetional properties of harvested AMs [33,
37, 38], revealing an impairment of phagocytic cdyaand an increase in oxidative burst
activity [33, 38]. More recently, using qPCR, Fs&didtet al (2014) reported the
downregulation oTLR3 mRNA expression in both AMs and monocytes in respdo
training, without normalisation during the recovesriod, as well as an exercise-associated
reduction in the level of viral-inducédNF andIFNg expression in AMs [39]. In the present
study, we aimed to extend these observations byiexag the gene expression profiles of

AMs in Standardbred horses before and after entoytraining.

2. Materials and M ethods

2.1 Horses, sample collection and sample time-points

Six Standardbred racehorses (2 males and 4 fenaglesange 3-6 years), from a racing yard
under the care of the Nantes Veterinary Schooligdilinic (Oniris), were included in this
study. The Veterinary Ethical Review Committeelsd College of Veterinary Medicine at

Nantes approved all protocols involving animal ({&@&andard welfare procedures were



95 followed and informed owner consent was obtainedrfclusion on the study. Prior to
96 sample collection, the absence of clinical abnortrealwas confirmed by two of the authors

97 (AC, MD), both equine veterinary medicine spectalis

98 Bronchoalveolar lavage fluid (BALF) sampleswere collected at two different time-

99 points: prior to (T0) and following (T1) entry into the training program. All samples
100 were collected between 0600h and 0700h, prior to feeding and > 24h since the previous
101 training session. The standard training programme consisted of an initial three week
102 period of light work (jogging), followed by an increasein work intensity which included
103 two days per week of continuous aer obic exer ciseto a point whereby the blood lactate
104  concentration reached 3-4mmol/L. Details of the sampling time pointsfor each animal
105 used inthestudy areincluded in Supplementary data 1. Briefly, in 3 horses, T1 samples
106 wereobtained following a 1.5 week period of jogging from the commencement of entry
107 intothetraining programme; namely, mid-way through theinitial period of light work.
108 Intheremaining 3 horses, T1 sampleswere obtained following a 7 week period within a
109 standardised full training program; namely, 4 weeks following completion of theinitial
110 3 weekslight work and commencement of the intense aerobic exer cise (see above).

111 BALF was collected, a differential cell count perfeed and BALF-derived cells isolated and
112 cryopreserved as previously described [40, 41]sk®mwere considered free from mild to
113 moderate equine asthma based on the differentlabti®s not exceeding the following cut
114  off values: neutrophils - 10%; mast cells - 5%;iroghils - 2% [42, 43].

115

116 2.2 Cdl culture

117 Cells were seeded in duplicate (1%&6lls/mL) in petri dishes in complete medium: (RPMI

118 1640 medium supplemented with GlutaMAX™-| (InvitesglLtd, Paisley, UK supplement,
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penicillin/streptomycir{invitrogen Ltd, Paisley, UK) and 10% heat-inactecaHorse Serum
(HS, cat no: H113&%igma-Aldrich, Dorset, UK) and incubated af@G7and 5% CQ
overnight. The following day, non-adherent cellsevemoved and fresh complete medium
was added before adherent cells were stimulatdd MAS (100ng/mL) fronsalmonella
enterica serotype Minnesota Re 595 ( L9764, Sigma-Aldriabrset, UK). Supernatant from
the plates was collected prior to and 6 h followlifiS stimulation. Following overnight
culture and removal of non-adherent cells, mora 8@ of adherent cells were identified

morphologically as macrophages.

2.3 TNFa and IL10 assay

To assess AM LPS responsiveness, culture supetridtitio. and IL10 concentration was
measured by ELISA before and 6h following LPS statian at both time-points (TO, T1),
using the DuoSet ELISA K{R&D systems, Minneapolis) according to manufaatare

instructions. Optical density was read (Multisk&6/Thermo Scientific, Wilmington, NC,

USA) at 540 nm and data analysed using Ascent aoétw

2.4 RNA extraction

RNA was extracted using 1mL RNA-Bee according tomuafacturer’s instructions and RNA
concentration and purity measured using ND-1000odeop (Thermo Scientific,
Wilmington, NC, USA) spectrophotometer. RNA intégrvas confirmed with RNA 6000
Nano AssayAgilent Technologies, Waldbronn, Germany); an RiN#egrity number (RIN)

>7 was considered appropriate for microarray amalys

2.5 Microarray analysis
Microarrayg Affymetrix, Santa Clara, CA) were processed byribdrgh Genomics as

previously described [44]. Briefly, total RNA (50ngas amplified by the Nugen Pico SL kit
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(Agilent, the Netherlands). Two and a half micragsaof the cDNA produced were biotin
labelled using the Nugen Encore labelling kit. Bidabelled transcripts were prepared for
hybridisation following the Nugen protocol for Gefgan hybridisation (Affymetrix, Santa
Clara, CA), using the Affymetrix Gene Titan Hybddtion Wash and Stain Kit for WT

Array Plates (PN 901622). The samples were hylattie Equine Gene 1.0 ST Array Strips
from Affymetrix, including 30,559 probe sets, eacterrogating a specific transcript of a
gene, using the appropriate Hyb-Wash Scan protwwbkthe Gene Titan Hyb-Wash Stain Kit
for the reagents (Affymetrix, Santa Clara, CA). Hmeays used were oligonucleotide
microarrays that consisted of probes corresponidirexons along the whole length of each

transcript (25 probes per probe set representtranacript).

Analysis performed by Partek Genomic Suite 6.6verfe. A two way ANOVA (with time-
point: fixed effect; horse ID: random effect) wasfprmed to identify differentially
expressed genes within the group of horses bettireesampling time-points. Consistent
with cut-off values widely used in microarray datalysis, fold changes of >2 and a p value

of 0.05 were applied.

A network analysis of expression data was performegloLayoutExpress " [45], whereby
pairwise Pearson correlation coefficients werewdated and a threshold o£r0.9 chosen for
transcript to transcript comparisons across theyaamples. The resulting network graph
consists of nodes, representing transcripts, agdsdepresenting correlations between the
expression patterns of the transcripts above tteshiold. The Markov cluster algorithm
(MCL) was used with an inflation value of 2.2 [46]identify groups of tightly co-expressed
genes. Clusters are numbered according to the nushb@nscripts they contain (i.e. Cluster
1 has the greatest number of transcripts). Trgptscnith dynamic range less than 1.5 were

removed from analysis. Only clusters showing cdastsup or downregulation of genes
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across all samples in the group were analysed.cArsgers resulting from aberrant

expression in a single horse were excluded.

2.6 Functional annotation

DAVID (Database for Annotation, Visualisation, aimtegrated Discovery) 6.7 software, was
used to determine the biological processes of émegjincluded in the gene lists. The
enrichment score of the DAVID package is a modifiegher exact p value calculated by the
software. The higher the enrichment score, the raoriehed the cluster. An enrichment

score of >1 reflects over-expression of the fumalaategory.

3. Results

3.1 Cédll recovery and populations

Harvested cell viability exceeded 80%. Total cellists [200{23)/ul for TO and 25543)/ul

for T1] did not significantly differ between timesmts. There was no statistical difference in
BALF differential cell ratiosig. 1) between time-points and a degree of inter-horse
heterogeneity was evident regarding training assedialterations in BALF neutrophil,
eosinophil and mast cell ratios. With the exceptibhorse 5, neutrophil ratios remained
relatively unaltered. With the exception of horeand 5, the eosinophil ratios remained low.
With respect to BALF mast cell ratios, horses 2 arsthowed a mild training associated

increase and Horse 1 showed a marked training iassdcecrease.

3.2 The effect of race training on AM basal and LPS-induced TNFa and IL10 production
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AM basal TNFe production remained low at both TO and T1. LP&slation resulted in a
significant increase in 6h AM TNFproduction at both TO and TEig. 2). LPS stimulation

failed to induce detectable AM IL10 production @her TO or T1 @ata not shown).

3.3 Transcriptomic analysis of equine AMs before and during the training period

RNA extraction of adhered cells prior to and durtting training period yielded an average of
1.7pg of RNA /18 cells (+ 0.5). Selection of appropriate samplestdsequent microarray
analysis was based on the RNA derived from pre-t&ed samples having a RIN > 7. Full

data are available in the Gene Expression OmniB&)] database,;

https://www.ncbi.nlm.nih.gov/geo/query/acc.cqi?aBSE107494). Exploration of gene
expression by PCA revealed sample separationwuaatoups corresponding to TO and T1
(Fig. 3). However, no statistically significant differeme@s observed in gene expression

between TO and T1 (p< 0.05, Fold charg®).

Network analysis of normalised expression datatedea graph of 12,860 nodes connected
by 104,012 edges. The clustering algorithm MCL vaithinflation value of 2.2 was used to
identify groups of tightly co-expressed genes amrate 4,117 clusters containing a minimum
of three nodes [46Fig. 4 shows the network graph of all the genes basambaxpression,

in which clusters of genes with greater expresatogither TO or T1 were observed. Despite
significant inter-horse heterogeneity in the magphet of individual gene expression at each
time-point, within each horse, several inflammataated genes (e.g. chemokine ligands,

interferons andNFKB1) were expressed to a lesser degree at T1, compai€i(Fig. 5).

Using DAVID software, GO annotation analysis (Bgikwal Processes) of genes associated
with the different clusters yielded a gene lisZ6fannotated genes with lower expression at

T1 (Cluster 2, 5, 16, 21, 3Supplementary data 2). This list included genes involved in cell
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activation and immune system processes, implyiagttiere was less immune activity at T1

compared to TQT able 1).

Annotation cluster Biological process Enrichment score  Gene count
1 Response to stimulus 7.92 50-58
2 Immune system process 2.7 11-17
3 Immune system development  2.68 3-17
4 Immune response activating 1.89 3-27

cell surface receptor signalling

pathway

5 Cell development- 1.26 8-46

differentiation

6 Response to virus/biotic 1.04 4-8

stimulus

Table 1. The top 6 out of 25 annotation clusters createDAYID software that were
related with the list of 117 genes found highef@t The enrichment score is a modified

Fisher exact p value calculated by the software.

4. Discussion
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To our knowledge, this study is the first to repmtthe findings of microarray analysis of
equine AMs harvested before and during a periddagiing, thus permitting an assessment
of the effect of training on the basal gene expoassf the principal innate immune cell of

the equine airway. We considered this a justifi@gproach due to (a) the high prevalence of
airway inflammation in racehorses in training, it undetermined role of opportunistic
bacterial and/or viral infection in this populatiand (c) the apparent parallels with the well-
recognized phenomenon of exercise-associated agspirsymptoms in humans. Despite the
limited sample size, our analysis supports a defetct of training on racehorse AM gene
expression, particularly of immune-related geneast iay play a role in increasing
susceptibility to opportunistic infection and suggthat larger population studies would be

more informative.

Principal component analysis revealed a distingas#ion between the two time-points,
supporting a universal effect of training on AM ge¥xpression. However, there was marked
horse-to-horse variation that may have had an tefigbe magnitude of altered gene
expression. Although this may have had a genesspthe data set is clearly not large
enough to permit an expression quantitative tomiti$ analysis. In humans, the large majority
of LPS-inducible genes show evidence of heritablgation in their expression [47].
Accordingly, a much larger dataset would be reqLicedemonstrate the significance of any

impact of training against a substantial backgroomhidter-individual variation.

Despite that, a subset of genes was apparently-teguiated during the training period.
These included genes encoding several chemokinemtanferons and the transcription
factorsSTAT4 andNFKB1, thus complementing the findings of Frellsteidal (2014), who

reported a significant training-associated decr@asguine AM basadlFNB expression, also
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reported in the current study. Similar results halge been reported in human PBMCs,
where prolonged intense training suppressed theB\$ighaling pathway, indicating an
immunosuppressive effect of training on blood celhpartments [48]. This decreased AM
IFN expression could predispose to lower airwaglhiimfection. Interestingly, orally
administered IFNI has previously shown clinical efficacy in Standaeti racehorses with
mild to moderate asthma [49]. Similarly, 8BAT4 is integral to the induction of IL12
signaling and the Th1 response [50], its downrdgiacould increase susceptibility to
opportunistic bacterial infection. Many of the etldownregulated gene€XCL9, CXCL10,
STAT4, GBP5) are known IFN target genes, and likely to be doagulated consequent to
reduced IFN signalling [51]. Downregulation of $keegenes is therefore suggestive of a
phenotypic shift in AMs representing an overall immsuppressive effect of exercise, as

previously suggested [28, 33, 38].

In agreement with previous reports, training wasassociated with altered AM morphology
[52, 53] or LPS responsiveness, as assessed by fd\ase [39]. Exercise-induced
abrogation of LPS-induced TNFelease is recognised in humans and partly atéibto
muscle-derived IL-6 release [54]. Others have shawnst-race reduction in LPS-induced
inflammatory gene (e.¢gFNB andCXCL10) expression in whole blood cells of marathon
runners [55]. In light of the proposed contribytoole of housing-associated increases in
airborne endotoxin exposure in mild to moderathrast[2], “entry into training” could
potentially induce a degree of acquired tolerancenidotoxin exposure, as recognized in
human organic dust-induced disease. Our study gedvino evidence for this proposal. With
one exception, all horses fulfilled BALF cytologicalthough not clinical, criteria consistent
with mild to moderate equine asthma, at TO andorAs previously reported, there was no
consistent relationship between training and thepteral change in total or differential BALF

cell counts [24, 33].
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5. Conclusion

In keeping with the “one health” initiative, thaseincreasing awareness of the potential
benefits of the bi-directional cross-species trainshal application of biological data between
horse and human; indeed, we have recently publigioekl supporting this concept [44]. It is
particularly feasible that data derived from a naltathlete such as the horse could make
relevant contributions to the increasing body aflexce relating to human exercise
immunology. Furthermore, compared with humansyéhagive ease by which AMs can be
harvested from equine athletes, within the contéstandard clinical investigation, offers a
potentially valuable resource for such comparativelies. Together, our study, which
exploited the infrequent availability of lower amyderived immune cells from a small
cohort of racehorses, revealed unique, albeitdidiilata on compartmentalised training-
associated immune effects. However, future lonlyial studies involving larger groups of
animals, including those with evidence of patholae required to expand on our results

and produce additional insights into disease susGky.
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FigureLegends

Fig. 1: BALF differentia cell count (%; mean +/- SEM) derived from six horses before (T0O) and

after (T1) entry into training.

Fig. 2: Supernatant TNFo concentration (pg/ml; mean +/- SEM) in LPS treated AMs harvested

from six horses before (TO) and after (T1) entry into training.

Fig. 3: Principle component analysis. Principle component analysis of AMs (6 racehorses at TO
and T1). Yellow and pink ellipsoid-webs represent TO and T1 AMs, respectively. Each
individual represented by a different coloured sphere. Analysis performed by Partek Genomic

Suite 6.6 software.

Fig. 4: Network graph analysis of response of equine AMs to training using Biolayout
Express™. Graph (a): gene expression of AMs (6 racehorses at TO and T1. Image (b): nodes
involved in the clusters with an expression profile shown in (c) and (d). Graphs (c) and (d):
pattern of gene clusters detected higher at TO and T1, respectively (x-axis=horse ID a TO and

T1; y-axis = normalised expression level based on microarray intensity).

Fig. 5: Expression profiles of immune related genes downregulated at TO and considered to have
potentia biological significance. X-axis shows each horse ID at TO (blue) and T1 (red); y-axis
shows the normalised relative intensity of gene expression. Dark and light green columns
represent the mean (+SEM) normalised relative intensity of expression (n=6) at TO and T1,
respectively. P values provided where statistical differences (paired t-test) were detected between

TOand T1 (Mini Tab 16, Minitab UK). Statistical significance assumed at p<0.05.
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Highlights

* Microarray analysis of alveolar macrophage gene expression of racehorses.

» Traning resulted in a change in aveolar macrophage basal gene expression.

» Thiswas potentially reflective of a degree of immunosuppression.

* Results complement previous findings derived from human and equine-based studies.



