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ABSTRACT 22 

Mild to moderate equine asthma is prevalent in young racehorses, particularly early in their 23 

training period. Although the precise aetiopathogenesis remains undetermined, it is possible 24 

that the susceptibility of this population might partly reflect an exercise-associated immune 25 

derangement at the level of the airway. We performed a genome-wide basal gene expression 26 

scan on alveolar macrophages (AMs) isolated from Standardbred racehorses prior to and after 27 

commencement of competition race training with a view to identifying any exercise-28 

associated gene expression modulation consistent with functional alterations which might 29 

reflect training-associated immunological derangement. Microarray technology was used to 30 

analyse the basal gene expression profiles of bronchoalveolar fluid-derived AMs, harvested 31 

from six systemically healthy Standardbred racehorses prior to (T0) and following (T1) entry 32 

into training. Additionally, AM LPS-induced TNF-α and IL-10 release at T0 and T1 was 33 

assessed. Although the data revealed significant inter-horse heterogeneity in relation to the 34 

magnitude of individual gene expression at each time-point, within each horse, several 35 

inflammatory related genes (e.g. chemokine ligands, interferons and NFKB) declined in 36 

expression from T0 to T1. Entry into training did not significantly alter AM LPS-induced 37 

TNF-α or IL-10 release. The data support a direct effect of training on AM basal gene 38 

expression, particularly with respect to immune-related genes. The pattern of training-39 

associated differential gene expression may indicate relative downregulation of 40 

inflammatory-related genes, consistent with an immunosuppressive effect of training and an 41 

increased susceptibility to opportunistic pathogens.  42 

 43 

Keywords:  immunity; racehorse; lungs; transcriptomics; microarray; alveolar macrophage 44 

1. Introduction 45 
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Mild to moderate equine asthma (previously termed inflammatory airway disease) is a 46 

chronic airway inflammatory disease, characterised by chronic coughing, increased mucus 47 

production, inflammatory cell infiltration of the airways and poor performance [1, 2]. Based 48 

upon the diversity of inflammatory cell populations and the disparity in both the direction and 49 

degree of airway T-helper cell polarisation associated with the syndrome [1, 3-6], it is likely 50 

that different causative and predisposing factors contribute to varying degrees in different 51 

horse populations. Evidence exists of an association between bacterial isolation from the 52 

trachea and the presence of mucus, an important criterion in disease definition [7-12]. This 53 

association, when considered along with the apparent reduction in disease risk with 54 

increasing time in training may support an infectious aetiology with the subsequent 55 

development of immunity [7, 13]. However, the inverse association with time in training 56 

remains even after adjustment for bacterial detection, potentially supporting alternative 57 

aetiopathogenic mechanisms [14]. Adaptation of the innate immune response to repetitive 58 

airborne challenge with non-infectious agents, such as that recognised in organic dust 59 

induced respiratory disease in man [15, 16], could also potentially result in a similar inverse 60 

association with time in training. Despite such hypotheses, the influence of training on 61 

immune function in horses  has received comparatively little attention [17, 18]. 62 

 63 

Despite a clear association between high intensity exercise in humans and symptoms of 64 

respiratory infection, infectious causes are generally identified in only 35-45% of cases 65 

exhibiting symptoms [19-21]. Several immunological derangements are associated with 66 

intense exercise, including effects on cell migration and margination, mucosal IgA secretion, 67 

cellular function and cell surface receptor expression [22-25]. Although most studies on 68 

innate immune cells in humans and animals have focused on circulating monocytes, [19, 22, 69 

26-28], exercise also elicits alterations in alveolar macrophages (AM). In humans [29], mice 70 
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[30-32] and horses [33], intense exercise reduced AM MHC-II expression [31], antigen 71 

presentation capacity [30], phagocytic properties [33] and impaired responses to various 72 

stimuli [23, 32].  73 

Previous studies have used microarray technology to investigate the effect of intense exercise 74 

on global gene expression of peripheral blood monocytes [34, 35].  In addition, recent RNA-75 

sequencing has also identified a number of novel candidate regulators [36]. Although such 76 

work has provided valuable information on exercise-induced alterations in immunity, it offers 77 

limited insight into exercise- and/or training-associated changes in resident macrophage 78 

function and related tissue level immune responses [25]. Previous equine studies have 79 

investigated the effect of intense exercise on the functional properties of harvested AMs [33, 80 

37, 38], revealing an impairment of phagocytic capacity and an increase in oxidative burst 81 

activity [33, 38]. More recently, using qPCR, Frellstedt et al (2014) reported the 82 

downregulation of TLR3 mRNA expression in both AMs and monocytes in response to 83 

training, without normalisation during the recovery period, as well as an exercise-associated 84 

reduction in the level of viral-induced TNF and IFNβ expression in AMs [39].  In the present 85 

study, we aimed to extend these observations by examining the gene expression profiles of 86 

AMs in Standardbred horses before and after entry into training.  87 

 88 

2. Materials and Methods 89 

2.1 Horses, sample collection and sample time-points  90 

Six Standardbred racehorses (2 males and 4 females; age range 3-6 years), from a racing yard 91 

under the care of the Nantes Veterinary School Equine Clinic (Oniris), were included in this 92 

study. The Veterinary Ethical Review Committee of the College of Veterinary Medicine at 93 

Nantes approved all protocols involving animal use. Standard welfare procedures were 94 
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followed and informed owner consent was obtained for inclusion on the study. Prior to 95 

sample collection, the absence of clinical abnormalities was confirmed by two of the authors 96 

(AC, MD), both equine veterinary medicine specialists. 97 

Bronchoalveolar lavage fluid (BALF) samples were collected at two different time-98 

points: prior to (T0) and following (T1) entry into the training program. All samples 99 

were collected between 0600h and 0700h, prior to feeding and > 24h since the previous 100 

training session. The standard training programme consisted of an initial three week 101 

period of light work (jogging), followed by an increase in work intensity which included 102 

two days per week of continuous aerobic exercise to a point whereby the blood lactate 103 

concentration reached 3-4mmol/L. Details of the sampling time points for each animal 104 

used in the study are included in Supplementary data 1. Briefly, in 3 horses, T1 samples 105 

were obtained following a 1.5 week period of jogging from the commencement of entry 106 

into the training programme; namely, mid-way through the initial period of light work. 107 

In the remaining 3 horses, T1 samples were obtained following a 7 week period within a 108 

standardised full training program; namely, 4 weeks following completion of the initial 109 

3 weeks light work and commencement of the intense aerobic exercise (see above). 110 

BALF was collected, a differential cell count performed and BALF-derived cells isolated and 111 

cryopreserved as previously described [40, 41]. Horses were considered free from mild to 112 

moderate equine asthma based on the differential cell ratios not exceeding the following cut 113 

off values: neutrophils - 10%; mast cells - 5%; eosinophils - 2% [42, 43].  114 

 115 

2.2 Cell culture 116 

Cells were seeded in duplicate (1x106 cells/mL) in petri dishes in complete medium: (RPMI-117 

1640 medium supplemented with GlutaMAX™-I (Invitrogen Ltd, Paisley, UK ) supplement, 118 
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penicillin/streptomycin (Invitrogen Ltd, Paisley, UK) and 10% heat-inactivated Horse Serum 119 

(HS, cat no: H1138, Sigma-Aldrich, Dorset, UK) and incubated at 37oC and 5% CO2 120 

overnight. The following day, non-adherent cells were removed and fresh complete medium 121 

was added before adherent cells were stimulated with LPS (100ng/mL) from Salmonella 122 

enterica serotype Minnesota Re 595 ( L9764, Sigma-Aldrich, Dorset, UK). Supernatant from 123 

the plates was collected prior to and 6 h following LPS stimulation. Following overnight 124 

culture and removal of non-adherent cells, more than 90% of adherent cells were identified 125 

morphologically as macrophages. 126 

2.3 TNFα and IL10 assay 127 

To assess AM LPS responsiveness, culture supernatant TNFα and IL10 concentration  was 128 

measured by ELISA before and 6h following LPS stimulation at both time-points (T0, T1), 129 

using the DuoSet ELISA kit (R&D systems, Minneapolis) according to manufacturer's 130 

instructions. Optical density was read (Multiskan v2.6, Thermo Scientific, Wilmington, NC, 131 

USA) at 540 nm and data analysed using Ascent software. 132 

2.4 RNA extraction 133 

RNA was extracted using 1mL RNA-Bee according to manufacturer’s instructions and RNA 134 

concentration and purity measured using ND-1000 Nanodrop (Thermo Scientific, 135 

Wilmington, NC, USA) spectrophotometer. RNA integrity was confirmed with RNA 6000 136 

Nano Assay (Agilent Technologies, Waldbronn, Germany); an RNA integrity number (RIN) 137 

>7 was considered appropriate for microarray analysis.   138 

2.5 Microarray analysis 139 

Microarrays (Affymetrix, Santa Clara, CA) were processed by Edinburgh Genomics as 140 

previously described [44]. Briefly, total RNA (50ng) was amplified by the Nugen Pico SL kit 141 
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(Agilent, the Netherlands). Two and a half micrograms of the cDNA produced were biotin 142 

labelled using the Nugen Encore labelling kit. Biotin labelled transcripts were prepared for 143 

hybridisation following the Nugen protocol for Gene Titan hybridisation (Affymetrix, Santa 144 

Clara, CA), using the Affymetrix Gene Titan Hybridization Wash and Stain Kit for WT 145 

Array Plates (PN 901622). The samples were hybridised to Equine Gene 1.0 ST Array Strips 146 

from Affymetrix, including 30,559 probe sets, each interrogating a specific transcript of a 147 

gene, using the appropriate Hyb-Wash Scan protocol and the Gene Titan Hyb-Wash Stain Kit 148 

for the reagents (Affymetrix, Santa Clara, CA). The arrays used were oligonucleotide 149 

microarrays that consisted of probes corresponding to exons along the whole length of each 150 

transcript (25 probes per probe set representing a transcript). 151 

Analysis performed by Partek Genomic Suite 6.6 software. A two way ANOVA (with time-152 

point: fixed effect; horse ID: random effect) was performed to identify differentially 153 

expressed genes within the group of horses between the sampling time-points. Consistent 154 

with cut-off values widely used in microarray data analysis, fold changes of >2 and a p value 155 

of 0.05 were applied.  156 

A network analysis of expression data was performed in BioLayout Express3D [45], whereby 157 

pairwise Pearson correlation coefficients were calculated and a threshold of r ≥ 0.9 chosen for 158 

transcript to transcript comparisons across the array samples. The resulting network graph 159 

consists of nodes, representing transcripts, and edges, representing correlations between the 160 

expression patterns of the transcripts above the threshold. The Markov cluster algorithm 161 

(MCL) was used with an inflation value of 2.2 [45] to identify groups of tightly co-expressed 162 

genes. Clusters are numbered according to the number of transcripts they contain (i.e. Cluster 163 

1 has the greatest number of transcripts). Transcripts with dynamic range less than 1.5 were 164 

removed from analysis. Only clusters showing consistent up or downregulation of genes 165 
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across all samples in the group were analysed. Any clusters resulting from aberrant 166 

expression in a single horse were excluded. 167 

2.6 Functional annotation 168 

DAVID (Database for Annotation, Visualisation, and Integrated Discovery) 6.7 software, was 169 

used to determine the biological processes of the genes included in the gene lists. The 170 

enrichment score of the DAVID package is a modified Fisher exact p value calculated by the 171 

software. The higher the enrichment score, the more enriched the cluster. An enrichment 172 

score of >1 reflects over-expression of the functional category.  173 

 174 

3. Results  175 

3.1 Cell recovery and populations 176 

Harvested cell viability exceeded 80%. Total cell counts [200(+23)/µl for T0 and 255(+43)/µl 177 

for T1] did not significantly differ between time-points. There was no statistical difference in 178 

BALF differential cell ratios (Fig. 1) between time-points and a degree of inter-horse 179 

heterogeneity was evident regarding training associated alterations in BALF neutrophil, 180 

eosinophil and mast cell ratios. With the exception of horse 5, neutrophil ratios remained 181 

relatively unaltered. With the exception of horses 2 and 5, the eosinophil ratios remained low. 182 

With respect to BALF mast cell ratios, horses 2 and 5 showed a mild training associated 183 

increase and Horse 1 showed a marked training associated decrease.  184 

 185 

3.2 The effect of race training on AM basal and LPS-induced TNFα and IL10 production  186 
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AM basal TNFα production remained low at both T0 and T1. LPS stimulation resulted in a 187 

significant increase in 6h AM TNFα production at both T0 and T1 (Fig. 2). LPS stimulation 188 

failed to induce detectable AM IL10 production at either T0 or T1 (data not shown). 189 

3.3 Transcriptomic analysis of equine AMs before and during the training period 190 

RNA extraction of adhered cells prior to and during the training period yielded an average of 191 

1.7µg of RNA /106 cells (± 0.5). Selection of appropriate samples for subsequent microarray 192 

analysis was based on the RNA derived from pre-LPS treated samples having a RIN > 7. Full 193 

data are available in the Gene Expression Omnibus [GEO] database; 194 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107494). Exploration of gene 195 

expression by PCA revealed sample separation into two groups corresponding to T0 and T1 196 

(Fig. 3). However, no statistically significant difference was observed in gene expression 197 

between T0 and T1 (p< 0.05, Fold change ≥ 2).  198 

Network analysis of normalised expression data created a graph of 12,860 nodes connected 199 

by 104,012 edges. The clustering algorithm MCL with an inflation value of 2.2 was used to 200 

identify groups of tightly co-expressed genes and create 4,117 clusters containing a minimum 201 

of three nodes [46]. Fig. 4 shows the network graph of all the genes based on co-expression, 202 

in which clusters of genes with greater expression at either T0 or T1 were observed. Despite 203 

significant inter-horse heterogeneity in the magnitude of individual gene expression at each 204 

time-point, within each horse, several inflammatory related genes (e.g. chemokine ligands, 205 

interferons and NFKB1) were expressed to a lesser degree at T1, compared to T0 (Fig. 5).  206 

Using DAVID software, GO annotation analysis (Biological Processes) of genes associated 207 

with the different clusters yielded a gene list of 76 annotated genes with lower expression at 208 

T1 (Cluster 2, 5, 16, 21, 39, Supplementary data 2). This list included genes involved in cell 209 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

activation and immune system processes, implying that there was less immune activity at T1 210 

compared to T0 (Table 1).  211 

Annotation cluster Biological process Enrichment score Gene count 

1 Response to stimulus 7.92 50-58 

2 Immune system process 2.7 11-17 

3 Immune system development 2.68 3-17 

4 Immune response activating 

cell surface receptor signalling 

pathway 

1.89 3-27 

5 Cell development- 

differentiation 

1.26 8-46 

6 Response to virus/biotic 

stimulus 

1.04 4-8 

 212 

Table 1: The top 6 out of 25 annotation clusters created by DAVID software that were 213 

related with the list of 117 genes found higher at T0. The enrichment score is a modified 214 

Fisher exact p value calculated by the software.  215 

 216 

4. Discussion 217 
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To our knowledge, this study is the first to report on the findings of microarray analysis of 218 

equine AMs harvested before and during a period of training, thus permitting an assessment 219 

of the effect of training on the basal gene expression of the principal innate immune cell of 220 

the equine airway. We considered this a justifiable approach due to (a) the high prevalence of 221 

airway inflammation in racehorses in training, (b) the undetermined role of opportunistic 222 

bacterial and/or viral infection in this population and (c) the apparent parallels with the well-223 

recognized phenomenon of exercise-associated respiratory symptoms in humans. Despite the 224 

limited sample size, our analysis supports a direct effect of training on racehorse AM gene 225 

expression, particularly of immune-related genes, that may play a role in increasing 226 

susceptibility to opportunistic infection and suggest that larger population studies would be 227 

more informative. 228 

 229 

Principal component analysis revealed a distinct separation between the two time-points, 230 

supporting a universal effect of training on AM gene expression. However, there was marked 231 

horse-to-horse variation that may have had an effect in the magnitude of altered gene 232 

expression. Although this may have had a genetic basis, the data set is clearly not large 233 

enough to permit an expression quantitative trait locus analysis. In humans, the large majority 234 

of LPS-inducible genes show evidence of heritable variation in their expression [47]. 235 

Accordingly, a much larger dataset would be required to demonstrate the significance of any 236 

impact of training against a substantial background of inter-individual variation.  237 

Despite that, a subset of genes was apparently down-regulated during the training period.  238 

These included genes encoding several chemokines and interferons and the transcription 239 

factors STAT4 and NFKB1, thus complementing the findings of Frellstedt et al (2014), who 240 

reported a significant training-associated decrease in equine AM basal IFNB expression, also 241 
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reported in the current study. Similar results have also been reported in human PBMCs, 242 

where prolonged intense training suppressed the NFKB signaling pathway, indicating an 243 

immunosuppressive effect of training on blood cell compartments [48]. This decreased AM 244 

IFN expression could predispose to lower airway viral infection. Interestingly, orally 245 

administered IFN has previously shown clinical efficacy in Standardbred racehorses with 246 

mild to moderate asthma [49]. Similarly, as STAT4 is integral to the induction of IL12 247 

signaling and the Th1 response [50], its downregulation could increase susceptibility to 248 

opportunistic bacterial infection.  Many of the other downregulated genes (CXCL9, CXCL10, 249 

STAT4, GBP5) are known IFN target genes, and likely to be down-regulated consequent to 250 

reduced IFN signalling [51].  Downregulation of these genes is therefore suggestive of a 251 

phenotypic shift in AMs representing an overall immunosuppressive effect of exercise, as 252 

previously suggested [28, 33, 38]. 253 

In agreement with previous reports, training was not associated with altered AM morphology 254 

[52, 53] or LPS responsiveness, as assessed by TNFα release [39]. Exercise-induced 255 

abrogation of LPS-induced TNFα release is recognised in humans and partly attributed to 256 

muscle-derived IL-6 release [54]. Others have shown a post-race reduction in LPS-induced 257 

inflammatory gene (e.g. IFNB and CXCL10) expression in whole blood cells of marathon 258 

runners [55].  In light of the proposed contributory role of housing-associated increases in 259 

airborne endotoxin exposure in mild to moderate asthma [2], “entry into training” could 260 

potentially induce a degree of acquired tolerance to endotoxin exposure, as recognized in 261 

human organic dust-induced disease. Our study provided no evidence for this proposal. With 262 

one exception, all horses fulfilled BALF cytological, although not clinical, criteria consistent 263 

with mild to moderate equine asthma, at T0 and/or T1. As previously reported, there was no 264 

consistent relationship between training and the temporal change in total or differential BALF 265 

cell counts [24, 33].  266 
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5. Conclusion 267 

In keeping with the “one health” initiative, there is increasing awareness of the potential 268 

benefits of the bi-directional cross-species translational application of biological data between 269 

horse and human; indeed, we have recently published work supporting this concept [44]. It is 270 

particularly feasible that data derived from a natural athlete such as the horse could make 271 

relevant contributions to the increasing body of evidence relating to human exercise 272 

immunology. Furthermore, compared with humans, the relative ease by which AMs can be 273 

harvested from equine athletes, within the context of standard clinical investigation, offers a 274 

potentially valuable resource for such comparative studies. Together, our study, which 275 

exploited the infrequent availability of lower airway derived immune cells from a small 276 

cohort of racehorses, revealed unique, albeit limited, data on compartmentalised training-277 

associated immune effects.  However, future longitudinal studies involving larger groups of 278 

animals, including those with evidence of pathology, are required to expand on our results 279 

and produce additional insights into disease susceptibility.  280 

 281 
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Figure Legends 

Fig. 1: BALF differential cell count (%; mean +/- SEM) derived from six horses before (T0) and 

after (T1) entry into training. 

Fig. 2: Supernatant TNFα concentration (pg/ml; mean +/- SEM) in LPS treated AMs harvested 

from six horses before (T0) and after (T1) entry into training. 

Fig. 3: Principle component analysis. Principle component analysis of AMs (6 racehorses at T0 

and T1). Yellow and pink ellipsoid-webs represent T0 and T1 AMs, respectively. Each 

individual represented by a different coloured sphere. Analysis performed by Partek Genomic 

Suite 6.6 software.  

Fig. 4: Network graph analysis of response of equine AMs to training using Biolayout 

Express3D. Graph (a): gene expression of AMs (6 racehorses at T0 and T1. Image (b): nodes 

involved in the clusters with an expression profile shown in (c) and (d). Graphs (c) and (d): 

pattern of gene clusters detected higher at T0 and T1, respectively (x-axis = horse ID at T0 and 

T1; y-axis = normalised expression level based on microarray intensity).  

Fig. 5: Expression profiles of immune related genes downregulated at T0 and considered to have 

potential biological significance. X-axis shows each horse ID at T0 (blue) and T1 (red); y-axis 

shows the normalised relative intensity of gene expression. Dark and light green columns 

represent the mean (+SEM) normalised relative intensity of expression (n=6) at T0 and T1, 

respectively. P values provided where statistical differences (paired t-test) were detected between 

T0 and T1 (Mini Tab 16, Minitab UK). Statistical significance assumed at p<0.05. 
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Highlights 

• Microarray analysis of alveolar macrophage gene expression of racehorses. 
• Training resulted in a change in alveolar macrophage basal gene expression. 
• This was potentially reflective of a degree of immunosuppression. 

• Results complement previous findings derived from human and equine-based studies. 

 

 


