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Abstract

Real-world networks, such as the Internet, can be studied by modelling the network as a

random graph. Often the process for generating such a random graph provides insight into

how the real-world network was formed. For example, if the real-world network is generated

by a “rich-get-richer” scheme, where graph nodes receive more connections if they are already

well connected, then a good random graph model would also feature this mechanism. However,

random graphs are high-dimensional, complicated objects. Computing probabilities related to

the properties of random graphs are often computationally expensive or outright impossible.

Furthermore, basic Monte Carlo techniques for estimating such probabilities often fail, despite

producing results that appear reasonable.

This motivates the use of advanced sequential Monte Carlo techniques to estimate quantities

of interest with acceptable speed and accuracy. In this thesis we investigate the application of

sequential Monte Carlo to estimating tail probabilities of expected typical distance for prefer-

ential attachment random graphs, fitting a general graph process given time series data, and

simulating from an exponential random graph model. We show that it is possible to construct

estimators that perform better than the rudimentary Monte Carlo techniques on a variety of

estimation problems. These estimators can be used by practioners to quickly obtain proba-

bilities regarding a variety of random graph models, and therefore draw inference about the

related real-world networks.
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Chapter 1

Introduction

Networks are prevalent in modern life, from technological networks such as the Internet and

the World Wide Web [20], to biological networks including protein interaction [67] and social

interaction networks for humans and other animals. By studying the structure of these networks

we gain insight into how they were formed, how they might change in the future and how they

can be influenced in our favour. For example, in an epidemological network a person with more

social connections has more opportunities to spread an infection. The study in [18] uses the

friendship paradox to find and monitor these well-connected individuals in an effort to detect

epidemics sooner than simply studying randomly chosen people from the population.

Real-world networks of interest are often too difficult to study directly — they are expensive

to study accurately and change frequently. Furthermore, it is unethical to experiment with

many real-world networks, such as introducing an infection into a population to study its rate

of propagation. Rather than working with real-world networks, it is possible to generate random

graph models to emulate reality. This alleviates the aforementioned problems and motivates

studying random graph theory, an emerging field of mathematical study.

A major random graph model of interest was introduced by Barabási and Albert in 1999,

demonstrating the power of preferential attachment for modelling real-world networks; see [7].

Informally, preferential attachment describes any mechanism for building a graph where the

probability of attaching an edge to a vertex is dependent on the degree of said vertex.

The Barabási–Albert model gained attention due to its ability to create graphs with degree

sequences that follow a power law — a property found in many real-world networks [25].

1



2 CHAPTER 1. INTRODUCTION

Specifically, the probability that a vertex has a particular degree d is proportional to d−3. This

contrasts with earlier graph models such as the Erdős–Rényi [24] and Waxman [79] random

graphs, which do not have power-law degree sequences, and thus are unsuitable for modelling

real-world networks similar to the World Wide Web [55].

A key result for Barabási–Albert models concerns the typical distance, which can be thought

of as the expected number of ‘hops’ between a randomly chosen pair of connected vertices.

The asymptotic typical distance was found to bounded by an O(log n) function, where n is

the number of vertices in the graph [11]. This is a very important result, as it satisfies the

small-world criterion. The precise definition of a small-world network varies in the literature;

informally we describe it as a network for which the average path length between any two

vertices is of the order log n. This small-world phenomenon is exhibited by many real-world

networks, such as social networks [64], the World Wide Web [2], and neurological networks [78].

While the asymptotic result for the typical distance is well studied, its distribution is not. In

this thesis we will use kernel density estimates [66] to study the probability that the expectation

of the typical distance is larger than some constant level γ. As this becomes a rare-event

probability for large γ, we use the Monte Carlo techniques of sequential importance sampling [45]

and splitting [33] to reduce the variance of our estimators. The application of these techniques

to random graphs has not been studied in-depth, providing new challenges.

The drawback of the preferential attachment models is that they do not explicitly create

substructures that are common in real-world networks, such as cliques and triangles [3]. The

exponential random graph (ERG) model [61, 77] (alternatively called the p* model) is a family

of random graph distributions where substructures of interest can be directly weighted, allowing

for a high level of control over the random graph’s behaviour. When observed network data are

available, maximum likelihood estimation techniques applied to the model can give statistical

evidence that the occurrence of a substructure is more than just random chance. Applications

of the model include hierarchical networks [76], social networks in a school environment [37]

and business connections [61].

The ERG model operates on a vertex set of fixed size. A random graph G in the ERG family

has a density where the log-probability of each graph is proportional to the linear combination

of selected graph statistics multiplied by model parameters. See Definition 2.9 for the specific

formulation. By choosing appropriate graph statistics and weighting them as desired, graphs
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with the desired traits will appear with high probability. For example, if a statistic which

counts the number of components in a graph is weighted negatively, connected graphs would

be generated with greater frequency.

A major drawback for the ERG model is that there is currently no way to exactly simulate

from non-trivial models. Calculating the normalizing constant for an ERG on n vertices requires

2(n2) calculations, which is completely infeasible for modern computers when n > 10. An

alternative approach is to get approximate samples using Markov chain Monte Carlo (MCMC)

[68]. This method has questionable efficacy, as it was demonstrated in [9] that the time required

to obtain accurate samples using MCMC scales exponentially with the number of vertices in

the graph.

In this thesis we apply the stratified splitting algorithm (SSA) [73] to the ERG model to

create a method which is faster than full enumeration and more reliable than MCMC. We

demonstrate that for small models SSA is the superior choice for general ERG model specifi-

cations. Larger models tend to require too many splitting levels which causes the algorithmic

error to explode.

The dynamical behaviour of real-world networks is not captured by ERG models. Further-

more, models such as preferential attachment are too simple for accurate model simulation.

These problems led to the creation of the generalized dynamic network (GDN) model [71], a

Markovian, continuous-time weighted graph process. The weights are usually a vector of real

numbers associated with each vertex, which allows for much more sophisticated models. For

example, the weights can create a susceptible-infected-susceptible epidemic model running atop

the random graph. Analytical work on similar graph processes is seen in [38] and [13]. Our

work in Chapter 4 focusses on simulations and applications, allowing greater flexibility in how

the weights evolve over time.

When dynamically adding and removing vertices is permitted, the state space and transi-

tions become very complicated, as each state of the Markov chain is described by an adjacency

matrix whose size depends on the current number of vertices. Work in [71] has concluded that

handling these vertex transitions, along with general edge transitions, makes analytical results

too difficult to achieve with current techniques. This necessitates simulation studies.

Preliminary work in [75] demonstrates the power of the model by using discrete event

simulation to embed a contact process evolving over the graph simultaneously with the graph
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being rewired. The results revealed that a contact process evolving over changing network

spreads slower compared to the same contact process on a static network. The discrepancy

highlights how GDN can provide new insight into natural phenomena such as viruses in social

networks.

This thesis introduces a GDN package written for C++. This package is designed to allow for

swift construction and observation of models by abstracting out many tedious parts of writing

a simulation. A special software companion was also developed to allow for the dynamic graphs

to be visualized, as existing software lacked the features we desired. The package also features a

filtering algorithm for estimating the likelihood of a model given data snapshots. This can then

be used with a noisy optimiser such as the cross-entropy method [45] to provide a maximum

likelihood estimate.



Chapter 2

Random Graph Theory

The study of random graphs can be traced back to [24], where the random graph model was

introduced as a tool for proving graph theoretic results. However, it was the paper by Barabási

and Albert [7] which ignited study into random graphs for modelling real-world complex network

behaviour.

As noted in [23] and [74] many papers on random graphs lack mathematical rigour. For

example, the original paper [7] by Barabási and Albert does not specify how to begin the

construction of the random graph. Other incidences involve using a mean-field approximation

to obtain results, despite the mean-field approach being designed for latices rather than the

more chaotic random graphs of interest [36]. To address this, we open the chapter by describing

what a graph is and what statistics are of interest. This is then followed by a precise definition

of random graphs and random graph processes. These sections form the fundamentals for the

rest of the chapter which defines and explains the three most relevant random graphs for this

thesis: those by Erdős-Rényi, Barabási-Albert and the exponential random graph.

2.1 Graph Theory

We begin with formal definitions of the graph theory nomenclature that will be used throughout

this thesis.

5



6 CHAPTER 2. RANDOM GRAPH THEORY

Definition 2.1. A (simple) graph g = (V , E) is a pair of two sets: the vertex set V =

{1, 2, . . . , n} and the edge set E = {{v1, v2}, {v3, v4}, . . .}, for all vi ∈ V . For each {vi, vi+1} ∈ E ,

vi 6= vi+1. �

As E is a set, duplicate edges are not permitted (See Definition 2.2 for multigraphs which

permit duplicate edges). Every graph considered in this thesis will be undirected. We denote

the set of all such graphs by G, and let Gi be the set of all graphs on i vertices. Some fields refer

to graphs as networks, vertices as nodes and edges as ties. Note that our use of lower-case letters

to denote graphs is non-standard; this is to ensure a clear distinction between deterministic

and random graphs.

If {u, v} ∈ E we say that the vertices u and v are adjacent. For any pair of vertices, either

an edge exists between them or it does not. Thus the structure of a graph can be encoded

in a symmetric, binary matrix. Such a matrix A = {aij} is called an adjacency matrix. As

Definition 2.1 ensures that the vertices have integer labels, the vertices themselves can be

used directly as the indices for the adjacency matrix. If vertices v and u are adjacent, then

auv = avu = 1. Similarly, if v and u are not adjacent, then auv = avu = 0. Note that we do not

consider v to be adjacent with itself, so the diagonal of A will be all zeroes.

TakeM to be the set of all symmetric, binary matrices of finite size and zero diagonal. Let

Adj : G → M be the function which maps a graph to the unique adjacency matrix that has

columns and rows ordered by vertex value. We are often interested in the connectivity behaviour

of a given vertex v. The set of vertices adjacent to v in graph g is called the neighbourhood of

v, and is denoted by Ng(v). Another important concept is the degree of v,

degg(v) :=
∑
u∈V

Adj(g)uv. (2.1)

The degree sequence is the vector of all vertex degrees; that is, (degg(1), degg(2), . . . , degg(n)).

Comparing the degree sequences of two graphs can provide insight into their structural differ-

ences.

An ordered sequence of vertices u1, u2, . . . , uk is called a path if ui and ui+1 are adjacent

for i ∈ {1, . . . , k − 1}. The length of this path is k − 1; counting the edges traversed, not the

number of vertices. The distance between two vertices u and v in graph g, denoted dg(u, v), is

the length of the shortest path from u to v. If there is no path from u to v then by convention

dg(u, v) =∞.
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A cycle is a sequence of vertices u1, u2, . . . , uk, u1 that has consecutive vertices adjacent and

all ui, i ∈ {1, 2, . . . , k} are unique. Of interest to this thesis are graphs without cycles, called

trees.

Theorem 2.1. For vertices u, v, w ∈ Vg,

i) dg(v, v) = 0

ii) dg(u, v) = dg(v, u)

iii) dg(u, v) + dg(v, w) ≥ dg(u,w).

Proof. For (i), the shortest path from v to itself is contains only v. Thus dg(v, v) = 0 directly

from definition. To show (ii), we simply note that edges are undirected, so all paths from u

to v can be reversed into paths from v to u and vice versa. It follows that dg(u, v) = dg(v, u).

Finally for (iii), as there exists a path between between u and w of length dg(u, v) + dg(v, w),

we have an upper bound on shortest path between dg(u,w).

We say that Cg(v) = {u | dg(v, u) <∞} is the component of vertex v. Furthermore, u and

v are said to be connected if Cg(v) = Cg(u). As only undirected graphs will be considered in

this thesis, u ∈ Cg(v) implies that Cg(v) = Cg(u).

Often the symbols we use to represent each vertex are not important; they are merely

identification tags. If a graph g = (Vg, Eg) is a simple vertex relabelling of another graph

h = (Vh, Eh), we say these graphs are isomorphic. Put formally: g and h are isomorphic if there

exists a function f : Vg → Vh where for all u, v ∈ Vg, {u, v} ∈ Eg if and only if {f(u), f(v)} ∈ Eh.

That is, f is an adjacency-preserving bijection.

If Vg ⊂ Vh and Eg ⊂ Eh then g is a subgraph of h, written g E h. We will say g∗ is an

isomorphic subgraph of h if g∗ is isomorphic to some g which satisfies g E h. A k-star is a

subgraph of g that is isomorphic to a graph where one vertex has degree k, all others have

degree one. See Figure 2.1 for an example. A k-triangle is a subgraph of g that is isomorphic

to a graph where there exists an edge {v, u} and v, u are mutually adjacent to k other vertices.

See Figure 2.2 for an example.

Sometimes it is prudent to relax the definition of a graph by changing the edge set, as well

as edges themselves, to multisets.
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h : g :

v

Figure 2.1: The graph h is an example of a 3-star. In graph g there are four 3-stars with v as the

central vertex, one of which is highlighted.

h : g :

u

v

Figure 2.2: The graph h is an example of a 3-triangle. There is one 3-triangle in the entirety of graph

g — u and v are mutually adjacent to every other vertex in the graph.

Definition 2.2. A multigraph g = (V , E) is a pair of two sets: the vertex set V = {1, 2, . . . , n}

and the edge multiset E = {{v1, v2}, {v3, v4}, . . .}, for some vi ∈ V . The edges {vi, vi+1} are

multisets, so vi = vi+1 is permitted. �

Edges of the form {v, v} are often called self-loops or just loops. In a multigraph parallel

edges may be present. These are edges which occur more than once in the the edge multiset. We

will let the set of all multigraphs be denoted G∗. As every simple graph satisfies the definition

of multigraph, G ⊂ G∗. Furthermore, unless stated otherwise, all results and statistics which

apply to multigraphs also apply to simple graphs.

The definition of adjacency is the same for multigraphs as it is for simple graphs — u and

v are adjacent if {u, v} ∈ E . However, the adjacency matrix changes significantly. Consider

adjacency matrix A = {aij} of multigraph g = (V , E). Then for distinct vertices u, v ∈ V , auv

equals the number of times {u, v} appears in E . Special consideration is given to the diagonal

elements avv, which now equals double the number of times {v, v} appears in E . We can extend

the adjacency matrix function to be Adj : G∗ → M∗, where M∗ is the set of all symmetric,

non-negative integer matrices with even diagonal. The definition of degree follows directly from

Equation 2.1, with g now a multigraph and Adj the extended form of the adjacency matrix

function.

The following theorem implies that working in the adjacency matrix space is equivalent to

working with the graph objects directly.

Theorem 2.2. The function Adj : G∗ →M∗ is invertible.
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Proof. Consider the construction of a function Adj−1 :M∗ → G∗. The goal is to construct said

function so that g = Adj−1Adj(g).

For all A ∈ M define Adj−1(A) = h = (Vh, Eh), where Vh = {1, 2, . . . ,m} and m is the

number of rows of A. Next set

Eh =

 ⋃
1≤v≤m

Avv/2⋃
i=1

{ {v, v} }

 ∪( ⋃
1≤u<v≤m

Auv⋃
i=1

{ {u, v} }

)
. (2.2)

That is, we construct a multiset which contains the edge {u, v} repeated Auv times (or repeated

Avv/2 times for self-loops). Given a graph g = (Vg, Eg) of order n, consider h = Adj−1Adj(g).

We have Vg = Vh trivially, thus m = n. Moreover, for all distinct u, v ∈ Vh, |{ {u, v} : {u, v} ∈

Eh}| = |
⋃Au,v
i=1 { {u, v} }| = Auv = |{ {u, v} : {u, v} ∈ Eg}|. As order is not important for

multiset equality, Eh = Eg.

The definition of multigraph isomorphism extends and encapsulates the definition for simple

graph isomorphism. Multigraphs g and h are isomorphic if there exists a function f : Vg → Vh
where for all u, v ∈ Vg, Count({u, v}, Eg) = Count({f(u), f(v)}, Eh). The Count(a,B) function

simple counts the number of times element a appears in multiset B.

We conclude this section with a relevant and surprising theorem which gives mathematical

support to a common observation: “my friends have more friends than me.”

Theorem 2.3 (Friendship Paradox). Let g = ({1, 2, . . . , n}, Eg) by any finite multigraph with

degree sequence (degg(1), degg(2), . . . , degg(n)). Let V be a random vertex chosen uniformly

from the vertex set of g and U be a random vertex chosen uniformly from Ng(V ). Then

E degg(V ) ≤ E degg(U).

Proof. We follow the proof given in [74]. For notational simplicity, let deg(v) = degg(v). The

joint probability mass function is found through applying the law of total probability followed

by Bayes:

P(deg(V ) = k, deg(U) = l) =
∑
(u,v)

(
P(deg(V ) = k, deg(U) = l | U = u, V = v)

× P(U = u)P(V = v | U = u)

)
=
∑
(u,v)

I{deg(u) = k, deg(v) = l}(ndeg(u))−1,
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where the sums are taken over all edges but with order induced. That is, if {u, v} ∈ E , then

(u, v) and (v, u) will appear in the sum. Clearly

E deg(U) =
∑
l

l
∑
k

∑
(u,v)

I{deg(u) = k, deg(v) = l}(ndeg(u))−1,

but by pulling the sum over vertex pairs out front then the sums over k and l have only one non-

zero term. Hence E deg(U) = 1
n

∑
(u,v)

deg(v)
deg(u)

. A similar approach gives E deg(V ) = 1
n

∑
(u,v) 1.

To finish the proof, use the Cauchy-Swartz inequality.

E deg(V ) =
1

n

∑
(u,v)

√
deg(u)

deg(v)

√
deg(v)

deg(u)

≤

√√√√∑
(u,v)

deg(u)

deg(v)

√√√√∑
(u,v)

deg(v)

deg(u)

=
1

n

∑
(u,v)

deg(u)

deg(v)

= E deg(U),

with the second equality possible thanks to the symmetry of summing over all ordered edges.

2.1.1 Graph Statistics

Graphs are high-dimensional, highly sophisticated objects. This makes them very difficult to

visualize and compare in a meaningful way. It is therefore helpful to consider graph statistics

— functions of the form ϕ : G∗ → R. A collection of these functions can summarize the graph

into a few characteristic numbers that highlight important structural features. Poor selection

of graph statistics will cause us to miss interesting properties. Which graph statistics are

appropriate for use is heavily dependent on context.

One of the most common and useful graph statistics is the density of a multigraph g =

(Vg, Eg), defined as

Den(g) :=
2|Eg|

|Vg|(|Vg| − 1)
.

For a simple graph Den(g) tells us the proportion of vertex pairs that have an edge between

them. Real-world networks often have low density, containing edges roughly proportional to

the number of vertices.
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A general approach to create an interesting graph statistic is to simply count the number

of times a specific subgraph h appears in the graph g. For example, if h and g are the graphs

from Figure 2.1, we would be counting the number of 3-stars in g, denoted 3−stars(g). In this

case 3−stars(g) = 10.

We are often interested in the notion of average distance between any two randomly chosen

vertices in a multigraph. The following is one such statistic.

Definition 2.3. We say that D(g) is the expected typical distance (ETD) of g, defined by

D(g) :=
1

|Lg|
∑

{u,v}∈Lg

dg(u, v), (2.3)

where Lg is the set of all vertex pairs {u, v} where Cg(v) = Cg(u). �

Often we will want to know the expected typical distance from u. That is, the expected

distance from u to any point uniformly chosen from its component. We denote this quantity

as Dg(u) and formulate it as

Dg(u) =
1

|Cg(u)|
∑

v∈Cg(u)

dg(v, u). (2.4)

For completeness we include the definition of typical distance commonly used in the lit-

erature. The typical distance of a multigraph, denoted TD(g), is a probability distribution

of the distance between two vertices selected at random from V , given that the two vertices

are connected. Note that this is not a graph statistic, which is why this thesis focusses on

expected typical distance instead. This property has been investigated by researchers in many

publications, including [7], [11] and [22]. Specifically,

P(TD(g) = i) =
1

|Lg|
∑

{u,v}∈Lg

I{d(u, v) = i}, (2.5)

where Lg is the set of all vertex pairs {u, v} with Cg(v) = Cg(u). As one would expect, D(g) =
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E(TD(g)), as

E(TD(g)) =
∞∑
i=0

iP(TD(g) = i)

=
1

|Lg|
∑

{u,v}∈Lg

∞∑
i=0

iI{d(u, v) = i}

=
1

|Lg|
∑

{u,v}∈Lg

d(u, v)

= D(g).

2.2 Random Graphs

We begin our discussion of random graphs with a formal definition.

Definition 2.4. Consider the probability space (Ω,F ,P). We say that a measurable function

G : Ω→ G∗ is a random graph. �

The following theorem ensures that every A ⊂ G∗ is measurable.

Theorem 2.4. The set of all multigraphs G∗ is countable.

Proof. From Theorem 2.2 we have the invertible function Adj which maps any multigraph into

its adjacency matrix. Let Mn be the set of all n-row, symmetric matrices with non-negative

integer entries and even diagonal. As each element of Mn is a finite, ordered collection of

integers, Mn is countable. Furthermore, M∗ =
⋃
nMn is countable because it is a countable

union of countable sets. There exists a bijection between M∗ and G∗, so G∗ must also be

countable.

Recall that graph statistics are functions ϕ : G∗ → R. By Theorem 2.4 we can infer that all

graph statistics are measurable and therefore are a random variable when their argument is a

random graph.

Example 2.1. Consider the following graphs.

g1 :

1

2 3

4

g2 :

1

2 3

4

g3 :

1

2 3

4
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For concreteness we will choose the probability space (Ω, 2Ω,P), where Ω = {1, 2, 3} and

P({ω}) =


1
2

if ω = 1

1
3

if ω = 2

1
6

if ω = 3.

Then, G, defined by G(ω) = gω is a random graph, with P(G(ω) = g1) = 1
2
,P(G(ω) = g2) = 1

3

and P(G(ω) = g3) = 1
6
.

We can now look at the distributions of various graph statistics. For example, the distribu-

tion of the graph density is

P(Den(G(ω)) = x) =


2
3

if x = 2
3

1
3

if x = 1
2

0 Otherwise.

While there is no concept of an “expected graph”, we will often look at the expected value of

graph statistics. For example the expected distance between vertices 1 and 4 is E(dG(1, 4)) =

11
6

. �

The underlying probability space is generally not necessary to define. By Theorem 2.4 the

set of multigraphs G∗ is countable so every random graph G can be converted into gX where X

is a positive integer-valued random variable. Finally we can apply Theorem 14.1 in [10] to our

distribution for X, ensuring that any valid distribution over our multigraphs can be turned into

a random graph. To simplify notation, we will write G in place of G(ω) when the underlying

probability space is implicitly defined.

While considering single random graphs is interesting in its own right, we ultimately want

to allow the graphs to change over time. Some random graphs are constructed via a sequence

of steps, each step containing its own random graph.

Definition 2.5. A collection of random graphs {Gt}t∈T is called a graph process with index

set T . �

The usual choices for T will be {0, 1, 2, . . .} for discrete time and [0,∞) for continuous time

processes. As we will be dealing with sequences of multigraphs (gt)t≥0 we will often write Ct(v),

Dt(v) and dt(v, u) in place of Cgt(v), Dgt(v) and dgt(v, u) when there are no ambiguities.



14 CHAPTER 2. RANDOM GRAPH THEORY

As mentioned in Section 2.1.1, many real-world networks have low density. A multigraph

which exhibits this behaviour is called sparse. Formal definitions of sparsity vary, for example

compare the definitions from [47] and [74]. As this thesis focusses on random graphs, we use

the following definition.

Definition 2.6. A sequence of multigraphs {Gn}n∈{1,2,...}, where each Gn has n vertices, is

sparse if

lim sup
n→∞

E(degGn(Vi)) <∞, (2.6)

where Vi is a vertex chosen uniformly at random from Gn. �

This definition is usually applied to random graph models which have the number of vertices

n as a parameter. When context is clear, referring to a single random graph G as sparse implies

that is generated by a model which satisfies Definition 2.6.

The notion of a small world is important to the study of complex networks. Informally, a

network is a small world if the typical distance is bounded by the logarithm of the number of

nodes in the network. The formal definition requires a sequence of random graphs {Gn}n∈{1,2,...},

where each Gn has n vertices.

Definition 2.7. We say that a random graph model has the small-world property if

lim
n→∞

P(TD(Gn) ≤ K log n) = 1 (2.7)

where K is some constant and Gn is a random graph from the model of interest with n vertices.

�

2.3 Erdős-Rényi Random Graphs

The first random graph model of interest to this thesis is the most influential and famous:

the Erdős–Rényi (ER) random graph [24]. It is important to note that this graph was never

intended to model real-world phenomena, rather it was developed as a tool to assist with graph

theory proofs. The model has few direct applications — its popularity stems from its interesting

theoretical properties and the relative ease through which said properties are derived.

There are two related ER models, with both distributed over the set of simple graphs G.

The first is denoted ER(n,m), where m edges are distributed among n vertices by selecting
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vertex pairs uniformly without replacement [24]. Figure 2.3 has a few typical realizations for

various m. The alternative formulation ER(n, p), first proposed by [28], adds an edge between

each pair of vertices with probability p. Figure 2.4 contains a visualization for this formulation

for various p. Both models avoid generating self-loops and parallel edges, so one may work in

the space of simple graphs for convenience.

Let Pp(E) and Pm(E) be the probabilities of any event E under ER(n, p) and ER(n,m)

respectively,

Pp(E) =
n̄∑

m=0

Pm(E)

(
n̄

m

)
pm(1− p)n̄−m (2.8)

where n̄ =
(
n
2

)
[74]. This means that properties of one variant can be translated to the other.

From here on, we will use the second formulation ER(n, p) unless stated otherwise.

We now formally define the ER random graph using the notation from Sections 2.1 and 2.2.

Definition 2.8. A random graph G = (VG, EG) is an Erdős–Rényi random graph ER(n, p) if

|VG| = n and the event {{v, u} ∈ EG} is independent for each distinct pair v, u ∈ VG, with

P({v, u} ∈ EG) = p. �

Figure 2.3: Realizations of the ER(30,m) model for m = 30, 80 and 200 respectively.
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Figure 2.4: Realizations of the ER(30, p) model for p = 0.07, 0.16 and 0.46 respectively. These numbers

were chosen to produce similar graphs to Figure 2.3.

As each edge is potentially present, the number of edges follows a Bin
((
n
2

)
, p
)

distribution,

where Bin is the binomial distribution. Furthermore, each vertex has degree Bin(n − 1, p).

Often the probability p will be of the form p = λ/n and the behaviour of the graph is studied

as n → ∞. As each vertex has a Bin(n − 1, λ/n) distribution, the probability distribution of

the degree of a vertex approaches a Poi(λ) distribution as n → ∞. Here Poi is the Poisson

distribution. Indeed, throughout this thesis when discussing the “asymptotic” behaviour of a

random graph distribution, we will usually be talking about what happens as we increase the

number of vertices. As the expected total number of edges grows at a linear rate, this satisfies

the definition of sparsity specified in [74], meaning ER(n, λ/n) is sparse for any λ > 0.

One property that has been extensively studied is the size of the largest component in a

realization of an Erdős–Rényi random graph G. For λ < 1, λ = 1 and λ > 1 we refer to as

the sub-critical, critical and super-critical regimes respectively. Here we will briefly discuss the

super-critical regime. Refer to [54] or [74] for an in-depth look at all three regimes. Consider

a Poisson branching process with parameter λ. As λ > 1, the branching process will have

extinction probability ηλ < 1. We can couple this branching process to a breadth first search

in a realization of ER(n, λ/n), so that the total progeny of the branching process stochastically

dominates the component size found through the breadth first search of our graph. This leads

to the following theorem from [4]:

Theorem 2.5. Fix λ > 1, set ηλ to be the extinction probability of the Poisson branching

process with parameter λ. For every ν ∈ (1
2
, 1) there exists δ > 0 such that

P
(∣∣ |C∗| − (1− ηλ)n

∣∣ ≥ nν
)

= O(n−δ), (2.9)
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where C∗ is the size of the largest component in an ER(n, λ/n) model.

What this means is that the largest component and the total progeny of the branching

process are roughly the same size. Furthermore it implies that a randomly chosen vertex is

likely to be in this giant component C∗.

2.4 Preferential Attachment Models

The Erdős–Rényi random graph model is a poor fit for real-world networks as edges in real-

world networks do not form independently of each other. For example, in a social network, you

are far more likely to meet a friend-of-a-friend than a total stranger.

It was observed in [1] that the world wide web obeys a power law. That is, P(deg(v) =

k) ∝ k−τ for arbitrary v and some constant τ > 1. The desire for graph distributions that can

model this behaviour drove the development of the Barabási–Albert (BA) random graph. First

proposed in [7] and formally defined in [12], the Barabási-Albert random graph uses preferential

attachment to simulate the underlying processes found in many real-world networks. Since its

inception, there have been numerous variants of the BA model. In this thesis, we focus on a

generalization of the BA model called the preferential attachment (PA) model.

The PA model has three parameters: the number of vertices n, minimum degree m and

attachment bias α. See Figure 2.6 for a demonstration of varying m and Figure 2.5 for examples

of varying α. The Shorthand to denote the model with a particular set of parameters is

PA(n,m, α). The BA model is the special case where α = 0.

The standard method of constructing a realization of a PA(n,m, α) model first requires the

specific case of m = 1 to be described. Realizations of PA(n, 1, α) are created via a graph

process {Gt}t∈T , where each Gt is a multigraph and T = {0, 1, . . . , n}. The process starts with

G0 empty. To advance the process from any Gt, add a vertex labelled t+ 1 followed by an edge

{t+ 1, Vt+1}, where Vt+1 is a vertex chosen randomly from the vertex set of Gt according to the

probability

P(Vt+1 = v | Gt = gt) =
deggt(v) + α + δv,t+1

t(2 + α) + 1
v = 1, . . . , t+ 1, (2.10)

where δi,j is the Kronecker delta and α > −1. This new graph with additional edge and vertex

is called Gt+1. Once t = n, we deliver Gn as a realization of a PA(n, 1, α) random graph.
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Figure 2.5: Realizations of PA(50, 1, α) for α = 0.75, 1 and 3 respectively.

To extend this to generating PA(n,m, α) random graphs for m ≥ 2, a common approach

is to construct a PA(nm, 1, α/m) graph and then merge vertices to reduce the total number of

vertices to n. We will call this the indirect construction. Specifically, say we have generated G

with vertices 1, 2, . . . nm. Define Vi = {m(i− 1) + 1,m(i− 1) + 2, . . . ,mi} for i ∈ Z, 1 ≤ i ≤ n.

Construct a new graph H with n vertices. For every edge {u, v} in G with u ∈ Vi and v ∈ Vj,

add edge {i, j} in H. Note that both i = j and u = v are permitted, creating self-loops in H.

The only parameter restriction for PA(n,m, α) is α > −m, inherited from the intermediary

construction of PA(nm, 1, α/m). The α = m case does not work for our construction, as at

t = 1, Equation 2.10 evaluates to 0
0
. Some circumvent this issue by starting the graph with a

single vertex with a loop. If this is done, the graph generated is trivial — all edges attach to

vertex 1.

We will now cover some properties of the Barabási–Albert model (that is, PA(n,m, 0)).

Empirical studies indicate that the degree of a randomly chosen vertex follows a power law

with τ = 3 when n is sufficiently large [7]. This result was proven to be true asymptotically,

with a proof available in [23]. This power-law degree sequence means that we expect each BA

graph to have a few nodes with a high concentration of edges.

In the general preferential attachment model, the α parameter alters the power-law expo-

nent. Work in [12] has shown that the power-law exponent is τ = 3 + α/m for PA(n,m, α)

making it a useful generalization of the Barabási–Albert model. The maximal degree of the PA

model has also been investigated [53]. Let Mn be the maximal degree of a PA random graph

with α and m fixed. Then there exists a random variable X with P(X = 0) = 0 such that

Mnn
−1/(2+α/m) → X as n→∞ almost surely. Compare this to the maximum of n iid random

variables distributed acording to our power-law τ — we find that τ This means that Mn has

the same order as the maximum of n iid random variables distributed according to a power-law
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Figure 2.6: Realizations of PA(30,m, 0) for m = 1, 2 and 3 respectively.

with exponent τ = 3 + α/m, as the expected maximum of the iid sequence is proportional to

n1/(2+α/m).

One key result from the study of PA models is that they exhibit the small-world property (see

Definiton 2.7). Work in [11] used results from [57] to show that for PA(n, 1, 0), the asymptotic

typical distance bounded on both sides by an O(log n) function. For more general m = 1 models

we refer the reader to the accessible proof of Theorem 7.1 of [74], which shows PA(n, 1, α) models

satisfy

TD(Gn)

log(n)
→ 2(1 + α)

2 + α
, (2.11)

where the convergence is in probability. Simple rearrangement will show that this satisfies

Definition 2.7, thus an O(log n) function bounds typical distance with high probability. Further

work has shown that for m ≥ 2, the typical distance can be much smaller. For α < 0, the typical

distance converges in probability to an O(log log n) function [21]. Of note is the α = 0,m ≥ 2

case, which corresponds to a power-law exponent τ = 3. Here it can be proven that the typical

distance converges to some O( logn
log logn

) function [11]. For completeness we note that when m ≥ 2

and α ≥ 0, the typical distance is bounded by O(log n) as with the m = 1 case [22].

As the PA random graph exhibits a power-law degree sequence and is a small world, it

has the base properties required for simulating and modelling real-world complex networks.

For example it has been used to simulate human sexual relationships [41] and protein network

evolution [58]. We note that the PA model uses a set of simple and sensible rules for simulating

a network, which means it can be used to explain how the real-world networks developed.
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As seen in the realizations of Figure 2.5, PA random graphs typically consist of a single

large component. In the m = 1 case, a disconnectivity must be due to vertex selecting itself

and forming a self-loop. As there is no way to bridge between two existing components, the

random variable Cn for the number of components in a PA(n, 1, α) is

Cn = X1 +X2 + · · ·+Xn, (2.12)

where Xi = 1 with probability 1+α
i(2+α)+1

, and 0 otherwise. For large graphs Cn/ log n converges in

probability to (1+α)/(2+α)[74], implying that the number of components grows logarithmically

in n. When m ≥ 2, components may be joined as the construction of the graph proceeds.

Furthermore the probability that a vertex forms the m self-loops necessary to start a new

component is more difficult as m increases. This leads to m ≥ 2 PA graphs to tend towards a

single giant component. Proof of this asymptotic result is available in [74].

Creating PA(n,m, α) random graphs using the indirect construction presented earlier are

unsuitable for the Monte Carlo methods applied later in Chapter 5. The intermediate graph

used when constructing m ≥ 2 PA graphs will not give correct results if we were to evaluate

graph statistics of it. For that reason, we use the direct construction defined by Algorithm 2.1.

Theorem 2.6 demonstrates that this construction is equivalent to the one presented in the

literature.

Theorem 2.6. The direct construction {Gt}t∈{0,1,...nm} is equivalent to the indirect construction

{Ht}t∈{0,1,...nm} of PA(n,m, α) random graphs.

Proof. Recall that the indirect construction first creates a PA(nm, 1, α/m) graph and then

merges the vertex sets Vi = {m(i − 1) + 1,m(i − 1) + 2, . . . ,mi} for i ∈ Z, 1 ≤ i ≤ n. Let Kt

be the dt/me vertex graph of Ht after this vertex merging process.

If the probability of adding edge {v, u} at step t is the same for both Gt and Kt then both

constructions are equivalent. Set v = d(t + 1)/me, the newest vertex to the graph at time

t+ 1. The probability of adding edge {v, u}, with u 6= v, to Gt is degt(u)−m+m(1 +α/m) =

degGt(u)+α. The probability of edge {v, v} being added to Gt is degt(u)−y+(y+1)(1+α/m) =

degt(u) + 1 + yα/m, where y = t mod m, which is the number of edges added from v in Gt.

Next we cover the probabilities for Kt. Adding the edge {t, z} to Ht, with z ∈ Vu translates

to the edge {v, u} being added to Kt. The probability of this is determined by the proba-

bility that the vertex chosen lies in z ∈ Vu. Thus the probability of adding edge {v, u} with
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u 6= v is
∑

z∈Vu

(
α/m+ degHt(z)

)
= α + degKt(z), where the equality is valid as the merg-

ing process preserves degree. Similarly, the probability of edge {v, v} being added to Kt is∑
z∈Vv

(
1 + degHt(z) + α/m

)
= degKt(z) + 1 + yα/m, where y = t mod m.

Clearly if Kt = Gt then the probability of adding {v, u} is the same. We have K0 = G0,

and given Kt = Gt then Kt+1 = Gt+1. Inductively this means Kt = Gt for all t ∈ {0, 1, . . . nm}

as required.

Algorithm 2.1: Simulating a PA(n,m, α) random graph.

Input: Number of vertices n, edge parameter m, attachment weight α > −m

Output: PA(n,m, α) graph Gnm

Initialize G0 as an empty graph

Initialize attachment weight array A

w ← 0

t← 0

for t < nm do

v ← d(t+ 1)/me

if t mod m ≡ 0 then

Add vertex labelled v to graph Gt

A[v]← A[v] + 1 + α
m

, w ← w + 1 + α
m

U ← Random integer chosen from {1, 2, . . . , v} with probabilities A/w

A[U ]← A[U ] + 1, w ← w + 1

Add edge {v, U} to Gt to form Gt+1

t← t+ 1

return Gnm
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2.5 Exponential Random Graph Models

The exponential random graph (ERG) model was briefly discussed Chapter 1; here we will give

further details and insights for the model.

Definition 2.9. The ERG model encompasses a family of distributions whose probability mass

functions f satisfy

f(g) = κ exp

(
m∑
i=1

θiTi(g)

)
, (2.13)

where g is a simple graph on n vertices, κ is the normalisation constant, T1, . . . , Tm are graph

statistics, and θ1, . . . , θm are model parameters. �

The ERG model is predominantly used as a tool for detecting interesting behaviour when fit

to a data set. For example in [32] it was used to detect transitive behaviour (that is, if triangles

are more likely than 2-stars). The model also can be used to detect structure between labelled

vertices. In [37] the model was fit to friendship data obtained from primary schools. As the

student’s race was included in the data, the researchers of [37] created a graph statistic that

counts the number of homogenous relationships. Maximum likelihood estimation suggested

that the parameter is positive, giving evidence that students prefer to make friends with people

of similar ethnicity.

A large number of possible selections of T (including the Markov model, for example) exhibit

near-degenerate behaviour. Near-degeneracy refers to the random graph being either full or

empty with high probability, which renders the model useless. The example provided in [17]

is an ERG model where the sufficient statistics are edge and triangle count, with parameters

β1 and β2, respectively. It was found that models such as this are approximately ER(n, u∗)

for n large and u∗ = u∗(β1, β2) is a computable constant. Figure 3 of [17] contains a plot of

u∗(−5, β2) for β2 ∈ (0, 2). The extreme values of u∗ imply that we will either obtain full or

empty graphs.

Careful manipulation of parameters is necessary to make full use of the model and avoid

degeneracy. A good example of this is the concept of alternating k-stars and alternating k-

triangles introduced in [69] and further investigated in [31]. The concept is motivated by

simple deduction: k-stars and k-triangles contain k copies of a (k − 1)-star or (k − 1)-triangle

respectively. Hence by giving 1-triangles and 3-stars positive weight, the higher order structures

are weighted too heavily. This in turn causes such higher order structures to appear more often
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than the real-world network we are attempting to model. Furthermore, this slows convergence

of the chain to stationarity as the chain will become caught in local maxima which have high

order triangles or stars. To remedy this, we equate the parameters νh = σk where h is a k-star

and set σk = −σk−1/λ for k = 3, 4, . . . , n − 1, where λ > 1 is a constant and σ2 is a free

parameter. A similar recursive parameter system is also set up for k−triangles. Results from

[31] indicate that this provides both faster mixing and more appropriate graphs.
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Chapter 3

Monte Carlo Techniques

In Chapters 4, 5 and 6 we will confront estimation and simulation problems that deterministic

numerical methods struggle to solve. As we are already working within the probabilistic frame-

work of random graphs, it is sensible to apply Monte Carlo techniques to these problems in an

attempt to find approximate solutions.

The Sections 3.1 and 3.2 of this chapter define and discuss the variance reduction techniques

splitting and importance sampling. Variance reduction is essential for providing accurate esti-

mates of rare-event probabilities. We say A is a rare event if P(A) is very small, for example less

than 10−5. For more detail on why variance reduction is necessary for rare-event estimators,

we refer the reader to [45].

Section 3.3 gives a brief description of the Metropolis–Hastings algorithm and an important

special case known as the Gibbs sampler. We explain the wide applications for these techniques

and potential problems that may arise. We conclude with Section 3.4, which describes a

fairly new method known as the stratified splitting algorithm. This technique is designed for

estimation, but the temporary results created during the algorithm’s run time can also be used

for simulation from complicated distributions.

Note that all simulation results presented in this thesis were performed on a machine running

Windows 10 64-bit, Intel Core i5 6500 3.20GHz processor with 8.00GB RAM. Multithreading

and GPU acceleration were not used.

25
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3.1 Splitting

Consider a Markov chain {Xt, t = 0, 1, 2, . . .}. We often want to know the probability that it

enters some target set Xγ before hitting an undesirable set X0, with Xγ ∩X0 = ∅. Choose sets

X1 ⊃ X2 ⊃ · · · ⊃ Xγ−1 ⊃ Xγ such that all chosen sets are disjoint from X0. Let τi be

the first time that the process hits either set X0 or Xi, and define Ai as the event {Xτi ∈ Xi}.

Then

A1 ⊂ A2 ⊂ · · · ⊂ Aγ

and

` := P(Aγ) = P(A1)P(A2 | A1) · · ·P(Aγ | Aγ−1).

We can estimate P(Ai) by running N chains {X(j)
t }, and stopping when the outcome of Ai

is known (at time τij for the jth chain). After running these chains we will have X
(j)
τij for

j = 1, . . . , N and let Y = {X(j)
τij ∈ Xi}. Provided Y is not empty, we can then resample this set

to produce a set Z which contains N chains conditioned on the success of Ai. We can use this

resampled set to estimate P(Ai+1 | Ai) by running the chains in Z until the outcome of Ai+1 is

known.

The above reasoning leads to the splitting method, an unbiased Monte Carlo technique [33].

In particular, the variant where we keep a fixed population of N sample chains is called fixed

effort splitting. If each level set Xi is chosen appropriately, such that P(Ai | Ai−1) is not too

small, crude Monte Carlo estimation for each of these individual probabilities will not have

high variance. A complete pseudocode algorithm can be seen in Algorithm 3.1.

Splitting estimators can produce poor estimates under certain circumstances. If the set Z is

empty at the ith level of splitting, Ni = 0 and ˆ̀ returns the inaccurate result of zero. Choosing

Xi in such a way to avoid generating poor sample pools is a non-trivial, problem-specific task.

The splitting method has been applied to a variety of problems, ranging from applied

sciences such as photon and electron radiography [60], [65]; to pure mathematics where splitting

can be used to solve the SAT problem [15].
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Algorithm 3.1: Splitting

Input: Fixed effort N , functions for determining if Xτ ∈ Xi for i ∈ {0, 1, . . . , γ}

Output: Returns estimate ˆ̀ of P(A)

Generate initial points X
(1)
0 ,X

(2)
0 , . . . ,X

(N)
0

Z ← {X(1)
0 ,X

(2)
0 , . . . ,X

(N)
0 }

Y ← ∅

for i = 1, 2, . . . , γ do

for j = 1, 2, . . . , N do

Run X
(j)
τi−1 until time τi, when it enters either X0 or Xi

if X
(j)
τi ∈ Xi then Y ← Y ∪ {X(j)

τi }
Z ← ∅

for j = 1, 2, . . . , N do

Choose an X
(j)
τi uniformly at random from Y

Z ← Z ∪ {X(j)
τi }

Ni ← |Y|

Y ← ∅
return N−γ

∏γ
i=1Ni

3.2 Importance Sampling

Consider the problem of finding ` = Ef [h(X)] where X is a random variable with density f .

For any alternative probability density function k that satisfies k(x) = 0 ⇐⇒ h(x)f(x) = 0,

the following holds true:

Ef [h(X)] =

∫
h(x)f(x)dx

=

∫
h(x)f(x)

k(x)
k(x)dx

= Ek
[
h(X)

f(X)

k(X)

]
.

This result implies that rather than sampling X from f , we can sample from k and reweigh

the outcome to get the same result. Intuitively, if k assigns more probability mass to regions

where H(x) varies greatly, we should be able to reduce the variance for estimating `.
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Definition 3.1. We say that ˆ̀ is an importance sampling estimator for Ef [h(X)] if

ˆ̀=
1

N

N∑
i=1

h(Xi)
f(Xi)

k(Xi)
, (3.1)

where X1,X2, . . . ,XN ∼iid k and N is the number of samples taken from k. �

A mere glance at the Monte Carlo literature shows numerous applications of importance

sampling, including estimating sums of heavy-tailed random variables [5], [6]; counting the

number of self avoiding walks of a specific length [51] [81]; and efficient construction of bootstrap

confidence intervals [40].

The main drawback of importance sampling is choosing an appropriate density k. A poor

choice will result in an estimator with higher variance than the crude Monte Carlo (CMC)

estimator, obtained by choosing k = f . Furthermore, generating samples from k may be

difficult. The additional time required for each sample may be better spent on generating more

samples from f .

3.3 Markov Chain Monte Carlo

Some probability distributions are only known in terms of an unnormalized density or mass

function. Using a technique developed by Metropolis [52] and Hastings [34], we are able to take

approximate samples from such distributions by simulating a particular Markov chain. This

technique is called Markov chain Monte Carlo (MCMC). We will assume the state space of

our Markov chain, S, is countable and all chains discussed have a transition function P (x,y),

signifying the probability of transitioning from x to y.

Recall that a stationary distribution π of a Markov chain {Xt}t≥0 satisfies∑
x∈S

π(x)P (x,y) = π(y), (3.2)

for all y ∈ S. Next, the limiting distribution π∗ of {Xt} is

π∗(y) = lim
n→∞

∑
x∈S

π0(x)P n(x,y), (3.3)

for all y ∈ S, where π0 is an initial distribution for the chain. If there exists a time τ such

that for and t ≥ τ , P t(x,y) > 0 for all states x,y ∈ S then we say {Xt} is ergodic. Ergodicity
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implies that {Xt} has only one limiting distribution for all π0, only one stationary distribution,

and π = π∗. Therefore if it is possible to construct an ergodic Markov chain such that π = f , a

realization Xt for t large will be approximately distributed according to our target distribution

f .

We first look at the Metropolis–Hastings implementation of MCMC, shown below in Algo-

rithm 3.2. We will assume the distribution of interest is discrete — for details on a continuous

implementation, see [26] or [45]. Let f̄ be an unnormalized probability mass function for the

target distribution and P be the selected Markov transition function. We can choose any P

provided that the resulting chain is ergodic [48]. It is straightforward to prove that the limiting

distribution of the chain specified in Algorithm 3.2 is f ; see [48] for a detailed proof.

Algorithm 3.2: Metropolis–Hastings Algorithm

Input: Unnormalized density f̄ , proposal transition function P , iterations T

Output: T approximate samples from f̄

X0 ← x for any x such that f(x) > 0

for t = 1, 2, . . . , T − 1 do

Y ∼ P (Xt,y)

α← min
{
P (Y ,Xt)f̄(Y )

P (Xt,Y )f̄(Xt)
, 1
}

U ← Random real number uniformly chosen from (0, 1)

if U ≤ α then Xt+1 ← Y

else Xt+1 ←Xt

return Approximate samples X0,X1, . . . ,XT−1

Of interest to this thesis is a special case of the Metropolis–Hastings algorithm known as

the random sweep Gibbs sampler. For simplicity, we will refer to this sampler as Gibbs or the

Gibbs sampler. It follows Algorithm 3.2 but the transition density P is chosen in a specific

way. Given that our sample-space is n-dimensional, the Gibbs sampler has us choose a random

dimension i uniformly followed by “updating” that dimension by sampling from the conditional

density. Specifically, let y−j be the vector formed from y by excluding the jth element. Then

for a Gibbs sampler, the transition kernel P is given by

P (x,y) =
n∑
i=1

I{x−i = y−i}
1

n

f̄(y |x−i = y−i)∑
w f̄(w |x−i = w−i)

, (3.4)

where the sum is taken over all w such that x−i = w−i.
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A key assumption of Algorithm 3.2 is that the Markov chain {Xt} quickly converges to the

stationary distribution, ensuring our samples closely follow the target distribution. The mixing

time tmix is when the chain is close to stationarity, with

tmix = min

{
t :
∑
y∈S

∣∣∣∣∣
(∑

x∈S

π0(x)P t(x,y)

)
− π(y)

∣∣∣∣∣ ≤ 1

2

}
, (3.5)

where P is the transition function for the chain, π0 is the initial distribution of the Markov

chain, π is the stationary distribution. The choice of 1
2

is mostly convention, see Section 4.5

of [48] for more details. Indeed, Theorem 4.9 of [48] tells us that after some time point the

chain will converge at an exponential rate. However it is not difficult to construct an example

where, as the problem size (e.g., dimension or states) increases, the mixing time increases

exponentially. Attempting to reduce mixing time depends heavily on the target distribution f̄ ,

see [30] for examples.

3.4 Stratified Splitting Algorithm

The stratified splitting algorithm (SSA) combines ideas from splitting, importance sampling

and MCMC to estimate E[h(X)] where X comes from a complicated density f with unknown

normalization constant [73]. The algorithm can also be repurposed into a method for approx-

imate sampling from f . As with the previous section, we will assume that the sample space

X is discrete; however, SSA can also be applied to general probability spaces. To use SSA we

need another distribution ϕ which has a known normalization constant and can be sampled

from exactly. The details of how to implement SSA are found in Algorithm 3.3. We will now

give some intuition on what the algorithm does and why it works.

The first loop of Algorithm 3.3 creates the set X0 by generating N samples from ϕ. A

simple choice of ϕ for a discrete system is a uniform distribution across all elements of the

sample space. For each iteration of the main loop, Xt is partitioned into an elite set Yt+1

and leftovers Zt. To choose the partition, all samples X ∈ Xt are first sorted by their value of

f̄(X), and value γt+1 is chosen such that the top ρN samples satisfy f̄(X) ≥ γt+1. The adaptive

level parameter ρ ∈ (0, 1) determines which proportion of samples should be accepted as elites

for the next iteration. The partition is then set to Zt =
{
X ∈ Xt : f̄(X) < γt+1

}
,Yt+1 ={

X ∈ Xt : f̄(X) ≥ γt+1

}
.

Once the partition is determined, the samples in Zt are weighed and stored for the final
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estimate calculation. The samples in Yt+1 need to be replenished so that there are N samples

all with weight greater than γt+1. To achieve this the following procedure is repeated N times:

chosen uniformly at random a sample from Yt+1 and move it using the Resample-Move algorithm

from [29]. The N moved samples are added to the set Xt+1. The move is made according to

the distribution ϕt(x) = h(x)I{f̄(x) ≥ γt}.

If ϕ is a uniform distribution across X then the local maxima and minima present in f̄ will

not slow down the mixing of the Markov chain, which overcomes a large drawback of basic

Gibbs sampler approaches.

To sample from f̄ using SSA we use the weighted samples {(Zm, wm)} defined on Line 12

of Algorithm 3.3. If a random variable X has its distribution defined by

P(X = Zm) =
wm∑
i=0wi

, for i = 0, 1, . . . , (3.6)

then as the number of samples in our SSA approaches infinity, the distribution of X converges

to our target f [50]. To obtain a realization of X, one can build a binary tree similar to the

one specified in Algorithm 6.1.

SSA can fail under certain circumstances. If the dimensionality of the problem is too high,

it will take many iterations before the samples are obtained from high density regions of f̄ .

When this problem occurs, the algorithm will be too slow for practical use. This issue can be

mitigated by carefully choosing an ϕ which assigns higher probability to high density regions

of f̄ .
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Algorithm 3.3: SSA Sampler

Input: Unnormalized density f̄(x), adaptive level parameter ρ, function of interest

h(·), and sample size N .

Output: An estimate of Ef [h(X)]

Set R̂0 ← 1, m = 0, and X0 ← ∅

Create empty vectors Z and w

for i = 1 to N do

Generate X from density ϕ

Add X to X0

for t = 0 to n− 1 do

Set γt+1 ← f̄(X)(bNρc) (i.e. the bNρcth order statistic )

Set Zt ←
{
X ∈ Xt : f̄(X) < γt+1

}
Set Yt+1 ←

{
X ∈ Xt : f̄(X) ≥ γt+1

}
R̂t+1 ← |Yt+1|

N

P̂t ←
(

1− R̂t+1

)∏t
j=0 R̂j

for k = 1 to |Zt| do
m← m+ 1

Zm ← Z(k)
t , wm ← P̂tf̄(Zm)

|Zt|

Xt+1 ← ∅

for i = 1 to N do
Select Yi uniformly from Yt+1

Use MCMC starting at Yi to generate Xi from ϕ(x)I{f̄(x) ≥ γt+1}

Add Xi to Xt+1

return
∑m

k=1 h(Zk)wk/
∑m

k=1wk as an estimator of Ef [h(X)].



Chapter 4

Generalized Dynamic Networks

In the year 2000, the ILOVEYOU virus spread virulently through the world, infecting over

fifty-million computers and causing billions of dollars in damage [46]. Once a computer was

infected it would send emails with an infectious attachment to everyone in the locally stored

contact list. The international connectivity of the internet and poor malware defences at the

time allowed the virus to propagate at an alarming rate. In order to determine how to minimize

the damage of outbreaks such as this, we need a model to test potential strategies. One way

to model this virtual epidemic is with a contact process.

A contact process {Xt}t≥0 is a stochastic process which evolves in a manner dependent on

the topology of an underlying graph g. To model the computer virus example above, g would

represent an email network comprised of computers and Xt = (X1,t, . . . , Xn,t) would represent

the infection status of each computer v ∈ {1, . . . , n} at time t. A computer could contract the

infection only if one of its neighbours in g is infected.

Here we go further and model the contact process atop a random graph G. Many papers

on this topic (for examples see [56] and [16]) model the network by running the contact process

on a static realization of a random graph. However this approach ignores the effect that a

changing graph can have on the propagation of the contact process. Examples of the changing

graph architecture affecting the behaviour of the contact process were explored in [42], [35] and

[38].

In [42] it was found that a changing graph decelerates the spread of an epidemic as a result

of vertices exhibiting fluctuating periods of high and low connectivity. By comparing real-world

33
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epidemic data to both static and dynamic models, they demonstrated that the dynamic models

could better approximate the real-world process. This shows that modelling both the graph

process and contact process in tandem is a worthwhile area of study.

This is what motivated the development of the generalized dynamic network (GDN) —

a Markovian, continuous-time weighted graph process. Unlike other graph models where the

graph process is studied as its order becomes very large (see [78], [7] or survey paper [54] for

examples), the focus of GDN is the long-run behaviour where the expected number of vertices

is bounded. Most models considered will be ergodic to ensure that the limiting distribution is

unique (see Section 3.3 for details on ergodicity).

As with most random graph models, the true insight comes from computing various graph

statistics of our process (Refer to Section 2.1.1). For example, if we were simulating the spread

of a computer virus, a simple statistic would be the number of infected computers at time t.

This chapter starts by formally defining the GDN and providing example models. This is

followed by discussion of the C++ package designed for rapid development and simulation of

GDN models. The package is demonstrated by constructing three original models, all of which

take advantage of the flexibility that GDN accommodates.

Section 4.3 explores fitting GDN models to observed data. While standard renewal theory

techniques prove useful, they depend upon unrealistic data quality. An alternative scheme

involving the splitting method is proposed and demonstrated.

In this chapter we are only concerned with simple graphs. No loops or parallel edges are

permitted.

4.1 Definition and Examples

We first cement our definition of a weighted graph.

Definition 4.1. A weighted graph g is a triple (V , E ,W ) where (V , E) is a graph andW ∈ R|V|×m

is the weight matrix, where m is the number of weights. Entry Wij corresponds to the jth weight

of vertex vi ∈ V . �
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Note that the vertices of the graph are being weighted, not the edges. Unless stated other-

wise, V = {1, 2, . . . , n}, where the number of vertices n will either be stated or be clear from

the context. For the remainder of this chapter, the set G will represent the set of all weighted,

simple graphs.

Definition 4.2. We say that a continuous time process {Gt}t≥0 is a Generalized Dynamic

Network (GDN) if the process {Gt}t≥0 Markovian with state space over some set of weighted

graphs. �

A GDN is a continuous-time Markov Chain, so to specify how the process behaves it is

necessary to identify the transition rates between states. For weighted graphs g and h, let

q(g, h) be the rate at which g transitions to h. While graph transitions of arbitrary complexity

are possible, most sensible models will be constrained to simple transitions, such as adding or

removing a single edge or vertex.

Example 4.1. Consider the following rudimentary epidemic model, where the vertices rep-

resent people and an edge {u, v} implies that the people represented by u and v share close

contact on a regular basis. The model will have a single weight per vertex, which takes values

in {0, 1}. Let Wv1 = 1 if person v is infected by the virus of interest and 0 if v is susceptible.

A susceptible person is added to the system at constant rate λ and each person leaves the

system at constant rate µ. People form edges at rate α and existing edges are destroyed at

constant rate β. Infected people recover at rate γ. The most interesting rate is infection, where

each infected person transmits the infection to all susceptible neighbours at rate ν. To ensure

the process is ergodic, we include a background infection rate of η. Put succinctly, we have the

following rates:

• q(g, g + v) = λ for v = |Vg|+ 1.

• q(g, g − v) = µ if v ∈ Vg.

• q(g, g + {u, v}) = α for all vertex pairs {u, v} /∈ Eg.

• q(g, g − {u, v}) = β for all {u, v} ∈ Eg.

• q(g, (Vg, Eg,W (g) + Ev)) = η + ν
∑

u∈Ng(v) W
(g)
u1 for all susceptible v ∈ V .

• q(g, (Vg, Eg,W (g) − Ev)) = γ for all infected v ∈ V .

The variables λ, µ, α, β, ν, η, γ > 0 are model parameters; Ev is the n× 1 matrix with a one

in the vth row and zeroes elsewhere; and Ng(v) is the set of vertices adjacent to v. We assume
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Figure 4.1: Time slices of the GDN defined in Example 4.1, taken at t = 25, 50, 75 and 100. The

black vertices are infected (i.e. wv = 1), others are susceptible. The parameters used for this process

were (λ, µ, α, β, ν, η, γ) = (0.02, 0.001, 0.01, 0.1, 0.1, 0.005, 0.05), selected to produce clear visualizations

demonstrating each aspect of the model.

that vertices enter the system without infection. In Figure 4.1 we see some time-slices with

typical behaviour for this process. An animated visualization of this model can be found at the

URL https://youtu.be/NlutwnlU-qw. �

A major focus of the GDN model is the limiting distribution. To sample from the limiting

distribution, the standard approach is to run the chain for a burn-in period and then take

intermittent samples [45]. To determine the burn-in time, we can apply the diagnostic given

in [27] to various graph statistics (e.g., edge density and number of vertices) and assess if the

chain is sufficiently mixed. The samples that are obtained can be used to construct a crude

Monte Carlo estimator for various graph statistics, for example number of edges, connectivity,

maximum degree, and expected typical distance (refer to Section 2.1.1 for details).

Figure 4.2 demonstrates the convergence to stationarity for the proportion of infected ver-

tices over time using the rates specified in Example 4.1. Here it is important to stress that

the stochastic process {s(Gt)}t≥0 induced by a graph statistic s(·) is not necessarily Marko-

vian. This does not interfere with our objective, as {s(Gt)}t≥0 will still converge to a limiting

distribution provided that s is well behaved.

https://youtu.be/NlutwnlU-qw


4.1. DEFINITION AND EXAMPLES 37

Figure 4.2: Empirical demonstration of the proportion of infected individuals in Example 4.1 con-

verging to its stationary distribution. Lighter boxes have higher probability. Result was obtained by

running 5000 chains with the parameters specified in Figure 4.1, finding the infected proportion at

each time step and binning the output.

The next example demonstrates how a GDN can have edge transition rates affected by the

underlying vertex weights.

Example 4.2. In this section we demonstrate the software and flexibility of the GDN network,

specifically how it is possible for the weights of a vertex to influence its connections. Here

we propose the opinion network, which draws inspiration from the voter model (see [49]) to

incorporate personal convictions into a social network setting.

Consider a group of n people who socialize, with friends-of-friends forming connections at

a higher rate than complete strangers. Each person v has their own set of opinions, beliefs and

principles, represented by the vth row of weight matrix W . If Wvi = Wui then persons v and u

share the opinion assigned to the ith column. The total number of opinions is known and fixed

to m.

We now describe the network rates. If u and v share a common neighbour, they form an

edge at rate α, else they form an edge at rate γ. When there is an edge between u and v, it is

removed at rate

a+ bLogit

(
m∑
i=1

(Wvi −Wui)−
m

2

)
, (4.1)

where a, b > 0 are parameters, Logit is the standard logistic function. This means that people

with similar opinions lose their connection at rate approximately a and people who are com-

pletely opposed to one-another lose their connection at a faster rate of approximately a + b.

Next, each person changes opinion spontaneously at rate η — the opinion changed is chosen
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uniformly from the m total opinions. Finally, one of the key parts of the model is that each v

will adopt an opinion of a neighbour at rate ν. The precise mechanism is that an opinion i of

the m total will be selected uniformly at random, and a neighbour u will be selected uniformly

at random as well.

In summary we have:

• q(g, g + {u, v}) = γ for all vertex pairs {u, v} /∈ Eg and u, v share no neighbours.

• q(g, g + {u, v}) = α for all vertex pairs {u, v} /∈ Eg and |Ng(v) ∩Ng(u)| > 0 .

• q(g, g − {u, v}) = a+ bLogit
(∑m

i=1 (Wvi −Wui)− m
2

)
, for all {u, v} ∈ Eg.

• q(g, (V , E ,W (g) ⊕ Evi)) = η/m for i ∈ {1, 2, . . . ,m}.

• q(g, (V , E ,W ∗[v, u, i] )) = ν/(m degg(v)), for all v, u and i.

where ⊕ denote elementwise addition modulo 2; W ∗[v, u, i] is the matrix W (g) with the entry

at the vth row and ith column set to W
(g)
ui ; and (Eij) is the matrix with a one at i, j and zeroes

everywhere else.

Our experiments were on a model with two opinions. We motivate this by appealing to the

political compass [19], which is a two-dimensional representation of a persons political views.

Note that we are simplifying the compass greatly by replacing its continuous scale with a

discrete 0 or 1 for each compass direction.

As expected, for small groups the diversity in opinions is diminished over time as a majority

forms and influences everyone else. Figure 4.3 shows the number of people holding the dominant

opinion averaged over many realizations of the process. Interestingly, it appears that we do not

get two competing components, just a single majority which absorbs most of the graph over

time. The visualization video available at https://youtu.be/dAk4ADPfKew (alternatively see

Figure 4.4) provides insight into why this behaviour occurs. A large number of people holding

a single opinion form a densely connected group, reinforced by the higher connection rate for

friends-of-friends. This cluster then assimilates others into its group — the large group is far

more likely to convert a single person than vice versa. �

https://youtu.be/dAk4ADPfKew
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Figure 4.3: Average number of people who hold the most common opinion over 50 independent trials.

The parameters are n = 20, γ = 0.4, α = 1, a = 0.4, b = 40, ν = 6, η = 0.02. These parameters were

chosen to give short simulation times and a simple visualization, for debug purposes.

Figure 4.4: Realization of an opinion process after t = 100 time units. Different colours denote different

opinions— light grey is (0, 0), dark grey is (1, 1), black is (1, 0) and white is (0, 1). The parameters

are the same as those in Figure 4.3.
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As we intend to use simulation studies to approximate the limiting distribution, we need to

consider practical limitations imposed on our models. A major issue is if the expected number

of vertices is large at times of interest then the process may require too much time or memory

to simulate. There is no technique to mitigate this problem, however some simple calculations

can be used to detect possible problems before starting a simulation.

Recall that a birth–death process is a continuous-time Markov chain on state space {0, 1, 2, . . .},

where state transitions are only permitted between consecutive states. Consider a birth–death

process with birth rate

λi = max
g∈Gi

 ∑
h∈Gi+1

q(g, h)

 , (4.2)

and death rate

µi = min
g∈Gi

 ∑
h∈Gi−1

q(g, h)

 , (4.3)

for i ∈ {0, 1, . . .} and Gj representing the set of all weighted graphs on j vertices. The following

theorem allows us to bound the expected number of vertices in Gt, but first recall the definition

of stochastic domination.

Definition 4.3. For random variables X and Y , we say that Y has stochastic dominance over

X if P(X ≤ x) > P(Y ≤ x) for all x ∈ R. We denote this relationship by X � Y . �

Theorem 4.1. Let {Gt}t≥0 be an ergodic GDN with rates defined by q(·, ·) with q(g, h) = 0 if

|Vg − Vh| > 1. If {Bt}t≥0 is the birth–death process with birth rates {λi} and death rates {µi}

defined above, and |VG0| = B0, then

|VGt | � Bt . (4.4)

Proof. We will prove Equation 4.4 via a coupling argument. Consider the Markov process

{(Gt, Bt)}t≥0 with Gt ∈ G, Bt ∈ {0, 1, . . .} and transition rate function r.

The goal is to build the transition rate function r so that the marginal process {Gt}t≥0 is a

GDN with rate function q and {Bt} is a birth–death process with birth rates {λi} and death

rates {µi}. First, for g, h ∈ G and i ∈ {0, 1, . . .} set r ((g, i), (h, i)) = q(g, h) if |Vg| = |Vh|.

Next, if |Vg| = i and |Vh| = i+1 then r((g, i), (h, i+1)) = q(g, h). To ensure the marginal pro-

cess {Bt}t≥0 has the required birth rates {λi}, we must set r((g, i), (g, i+ 1)) = λi−
∑

h q(g, h),

where the sum is taken over all h which satisfies |Vh| = i+ 1. The rate is always non-negative

as an immediate consequence of Equation 4.2.
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Now take |Vg| = i and |Vh| = i− 1. Set r((g, i), (h, i− 1)) = cgiq(g, h) and r((g, i), (h, i)) =

(1−cgi)q(g, h) for some cgi ∈ [0, 1]. Clearly this ensures that the rate from g to h in the marginal

process {Gt}t≥0 is q(g, h) — we only need to select cgi in such a way that {Bt} transitions from

i to i− 1 at rate µi. If we set

cgi =
µi∑

h q(g, h)
,

then
∑

h r((g, i), (h, i− 1)) = cgi
∑

h q(g, h) = µi as required.

This ensures that if the graph process adds a vertex, the birth–death process does too.

Similarly, if the birth-death process loses a vertex, the graph process is guaranteed to lose one.

As we assume B0 = |VG0|, this implies P(|VGt | ≤ Bt) = 1, and so |VGt | � Bt.

Corollary 4.2. Let Gt be an ergodic GDN with rates defined by q(·, ·). We let π be the stationary

distribution of the vertex counting process {|VGt |}t≥0. If {Bt}t≥0 is the birth–death process (with

stationary distribution ϕ) defined above, α = supi λi/µi < 1 and q(g, h) = 0 if |Vg − Vh| > 1,

then

Eπ|VGt | ≤ EϕBt, (4.5)

where EfXt means the expectation of Xt given that the process had initial distribution f .

Proof. First recall X � Y implies EX ≤ EY , a well known result. By Theorem 4.1 we get

E [|VGt| | |VG0| = x] ≤ E [Bt | B0 = x] for all x ∈ {0, 1, 2, . . .}. As all values are non-negative,

the following holds:

∑
x

π(x)E [|VGt| | |VG0| = x] ≤
∑
x

π(x)E [Bt | B0 = x]

Eπ E [|VGt| | |VG0| = X] ≤ Eπ E [Bt | B0 = X]

Eπ|VGt | ≤ EπBt.

As the left-hand-side is invariant under time, we can take the limits of both sides to obtain

Eπ|VGt | ≤ limt→∞ EπBt. If the {Bt} are uniformly integrable, swapping limit and expectation

of the RHS is permitted, giving Eπ|VGt | ≤ EπB∞ = EϕBt as required.

For completeness, we will show that {Bt} is a uniformly integrable sequence of random

variables (See [63] for more on uniform integrability). Note that B0 ∼ π and B∞ ∼ ϕ, thus by

Theorem 4.1, P(Bt > i) ≤ P(B∞ > i) for all t ≥ 0. Recall that B∞ has distribution ϕ, which is

the stationary distribution of a birth–death process, hence ϕi = ϕ0

∏i−1
j=0

λi
µi
≤ Cαi, where C is
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some positive constant. Thus the tail distributions P(Bt > i) are bounded by some geometric

random variable, meaning {Bt} is uniformly integrable.

For Example 4.1 we have λi = λ and µi = iµ, so the expected number of vertices in

stationarity is λ/µ. Thus if we design a process with λ/µ too high (say, over 500) then our

simulation will take too long to execute.

4.2 Simulation Software

In this section we give an overview into how to use our C++ implementation of a GDN simu-

lator. Currently in its third revision, the package is designed to handle routines common to all

models so that model creation and testing requires less time and effort. The source code can be

accessed from https://bitbucket.org/MorganAndMore/graph-work. Note that the code re-

quires the Boost graph library to compile (tested to work with Visual Studio 2015 v14.025431.01

and Boost library version 1.62.0). We compiled the This code was used to generate the data

for the various figures and visualizations throughout this chapter.

The generality of GDN models means that creating new models is not as simple as spec-

ifying a few new parameters. One must evaluate new transition rates after every transition,

evaluate how long to stay in the current state and select the next state. The procedure for

creating a new GDN specification requires the creation of a class CustomProcess which in-

herits from GeneralizedDynamicNetwork. Then, in CustomProcess, override the functions

CreateInitialGraph and EvaluateRates to match the desired GDN model.

Further details can be found in the header files of the code. Examples of overriding the

aforementioned functions are found in the source files which implement a contact process and

the opinion process (See Examples 4.1 and 4.2 respectively).

4.3 Parameter Fitting

Consider a GDN {Gt}t≥0 with transition function q(g, h), which is parametrized by vector θ.

We wish to take an observed graph sequence {gt}t≥0 and estimate θ such that the resulting

process {Gt}t≥0 is the most likely to have generated {gt}t≥0. We denote the “true” parameter

https://bitbucket.org/MorganAndMore/graph-work
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vector by θ∗ and an estimate of the “true” parameter vector by θ̂.

Before introducing an advanced method for estimating θ∗ = (θ∗1, θ
∗
2, . . .), we describe a

rudimentary approach. If there exists a continuous, invertible function k, along with graphs

gi and hi such that q(gi, hi) = k(θi), then it is possible to construct a simple asymptotically

unbiased estimator for θ∗i using the method of moments.

Theorem 4.3. Let T1, T2, . . . , TN be the holding times of state gi and B1, B2, . . . , BN be Bernoulli

random variables where successes mean that gi transitioned to hi. Then

θ̂i := k−1

(∑N
j Bj∑N
j Tj

)
(4.6)

is an asymptotically unbiased estimator for θ∗i .

Proof. Under the assumption that {gt} is a realization of a GDN, Tj ∼ exp(r) and Bj ∼ Ber(p)

with rp = k(θ∗i ). Then

lim
N→∞

θ̂i = lim
N→∞

k−1

(∑N
j Bj∑N
j Tj

)

= k−1

(
lim
N→∞

N−1
∑N

j Bj

N−1
∑N

j Tj

)
= k−1(rp),

where the third equality holds due to the independence of holding times and resulting state

and applying the law of large numbers.

This approach is highly flawed, and is infeasible to use on non-trivial examples. The first

problem is that the statespaces of interest are typically high-dimensional, and the method

described above requires that we focus on a single state which will rarely be observed. This

means the estimator will have high variance as N will be quite low unless we spend a substantial

amount of time generating the dynamic random graph.

The second problem is the unrealistic quality of data required to apply this method. If we

were observing a network through surveys at fixed points, we would only know the graph up

to a few statistics at times t1, t2, . . . , tτ . This motivates the following approximate algorithm.
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4.3.1 Approximate Maximum Likelihood Estimation

Let s(gt1), . . . , s(gtτ ) be the data observed from a real-world dynamic network {gt}t≥0, where

s is the vector of statistics collected at predetermined time points. Then, the likelihood of the

data given θ is

`(θ) = Pθ(s(Gt1) = s(gt1), . . . , s(Gtτ ) = s(gtτ )), (4.7)

where Gt was generated under the selected GDN model with parameter vector θ, as indicated

by the use of Pθ. The θ which maximises `(θ) is a maximum likelihood estimate (MLE) of θ∗.

Our goal is to create a method which finds the MLE for arbitrary GDN specifications.

Directly evaluating `(θ) for a given dataset requires integration over a set of functions. That

is,

`(θ) =

∫
A

I {s(ht1) = s(gt1), . . . , s(htτ ) = s(gtτ )} d{ht}t≥0, (4.8)

where the A is some appropriate measurable set of functions and {ht}t≥0 is the complete tra-

jectory of a continuous-time dynamic graph. Integrating with respect to functions (as opposed

to integrating over a real-valued space) requires very advanced techniques and in general is too

difficult to compute exactly. This motivates the use of estimation techniques to approximate

the likelihood function. Our method draws inspiration from sequential filtering, see [14] for an

overview. Furthermore, to reduce computation time we use a relaxation similar to a common

technique in approximate Bayesian computation [70].

Crude Monte Carlo can be used to estimate `(θ), however the probability that a sample

path {s(Gt)}t≥0 triggers the event {s(Gt1) = s(gt1), . . . , s(Gtτ ) = s(gtτ )} will be very low in

most models. As this is a rare-event problem involving Markov chains, the splitting method

(See Section 3.1) offers a potential solution.

Let X1 = {{ht}t≥0 : s(gt1) = s(ht1)}, where {hu}u≥0 is any dynamic graph. Furthermore,

let Xi = {{ht}t≥0 : s(gti) = s(hti)} ∩ Xi−1. Clearly this gives X1 ⊃ X2 ⊃ · · · ⊃ Xτ . Finally let

X0 = {{ht}t≥0 : ∃i such that s(gti) 6= s(hti)}, so the sets Xi, i ∈ {0, . . . , τ} can be directly used

with splitting as defined in Section 3.1. The continuous-time nature of the underlying GDN

process does not cause any problems with Algorithm 3.1.

Meaningful results can still be obtained if the sets {Xi} are relaxed to permit more values.

Specifically, take Xi = {{ht}t≥0 : s(gti)(1− ε) ≤ s(hti) ≤ s(gti)(1 + ε)} ∩ Xi−1, where ε > 0

is the relaxation parameter. Larger ε means P({Gt}t≥0 ∈ Xi) is larger for each i and thus
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Figure 4.5: Results from running the approximate likelihood scheme for varying values of α and β.

The plot is a cross section of the the likelihood surface where β = 9α — all values (α, β) not shown

in this cross section returned a likelihood of zero. Note that log(α) = 0 is the true value.

Algorithm 3.1 requires fewer samples to produce a low variance estimator. Increasing ε also

reduces the accuracy of the MLE, meaning it must be chosen carefully.

Now that estimations of `(θ) can be made, we can attempt to fit a GDN model to observed

data. There is no guarantee that `(·) will be convex, thus it potentially has a set of optimal

values rather than a single point. This makes maximum likelihood estimation challenging, as

we will see in the next two examples.

Example 4.3. Consider finding the MLE for a GDN that fits the framework of Example 4.1.

Specifically the parameters α and β are of interest — to reduce the computation time of this ex-

ample, all other parameters are assumed to be known. The data will be generated by observing

a realization of the same GDN in Example 4.1 with the parameters θ∗ = (λ, µ, α, β, ν, η, γ) =

(0, 0, 0.1, 0.9, 0.1, 0.005, 0.05).

If the observation points t1, t2, . . . , tτ are taken too far apart, the graph process will reach

stationarity between them. For estimating the rates of edge formation and destruction, the

process at stationarity will only give us information about α/(α + β), which is not enough for

uniquely estimating both α and β.

To keep this simple, the only statistic of interest will be the edge-count. All parameters

other than α and β are considered known and zero. There will be a fixed count of twenty
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Figure 4.6: Results from running the approximate likelihood scheme for varying values of η where

log(η) = 1.79 is the true value.

vertices in the model. We write ˆ̀(α, β) for the estimated likelihood of the data given the model

with parameter vector θ = (0, 0, α, β, 0.1, 0.005, 0.05).

Figure 4.5 shows the behaviour of the maximum likelihood in the domain [0.09, 9]× [0.01, 1].

The maximal value is attained at ˆ̀(0.1, 0.9) = 3.144× 10−6, which matches the true values of

α and β in θ∗. �

Example 4.4. For our final example, we will use our likelihood estimator on the opinion

network defined in Section 4.2. The goal is to find the maximum likelihood estimate of the rate

that a person’s beliefs are converted by one of their peers, represented by η.

The statistic vector s selected returns the order statistics for the number of vertices holding

a particular opinion. For example, let g be the graph presented in Figure 4.4; then s(g) =

(12, 4, 3, 1).

We assume knowledge of all parameters except for η. The true process {Gt}t≥0 was gener-

ated under parameters (γ, α, a, b, η, ν) = (0.4, 1.2, 0.4, 40, 6, 0.02), with s(Gt) recorded at times

0.05, 0.1, . . . , 1. Results of running the splitting algorithm likelihood estimation algorithm on

various points is found in Figure 4.6.

To avoid the lower values of η from attaining ˆ̀(η) higher than the true value of η = 6,

it was necessary to run the algorithm with the relaxation parameter ε set to zero. We see
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that the estimate is relatively close, and importantly the very rapid rates are ruled out as

possibilities. �

4.4 Discussion

The GDN has a great amount of flexibility, allowing for processes running atop the random

graph, such as contact processes, to affect its structure. As seen with Example 4.2, the GDN

opens new avenues for simulation studies. In the case of a SIS simulation study, this allows for

quarantine effects to be applied to infected individuals. Many graph models in the literature,

such as the one presented in [43], do not account for the infectives behaving differently to

susceptibles. A preliminary study in [44] demonstrates this application of GDN by modelling

a hospital quarantine.

Continuous-time Markov Chains simplify many aspects of model construction. For most

models, the transition rates will only be positive for actions which only affect a single aspect

of the graph. That is, a single vertex is born or dies, a single edge is born or dies, etc. This is

seen in Example 4.1 where only six simple rates are needed to define a complete SIS model. In

discrete-time models, this would need to be an assumption — that for any time step, multiple

changes to the graph will not be seen. Furthermore, continuous-time models allow for the

efficient handling of graphs that have periods of “downtime” when few transitions occur. In

such cases, a discrete model would require multiple transitions from the current state to itself

but a continuous-time model skips directly to the time when the state changes.

A significant problem for GDN models is that they are computationally intensive. Simulat-

ing a GDN process requires the re-evaluation of every transition rate after each transition. If

any of these rates are of the order O(n2) or worse, it would take tremendous computation power

to simulate graphs with expected vertex counts in the tens-of-thousands. This issue of scale

is compounded by the infinite resolution of continuous-time. The more “activity” present in a

process, the shorter each transition advances the simulation clock. For example, a trivial graph

with one vertex and a single binary label that flips at rate 1 would be expected to advance time

by 1 unit for each transition. A similar graph with n = 106 vertices (and no edges) flipping

their labels independently would be expected to advance time by 10−6 units per transition.

This problem of scale could be significantly mitigated if instead of re-evaluating every rate
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after a transition, only the rates which change are updated. For example, in Example 4.1 the

rates associated with each vertex (including the incident edge birth and death rates) only change

when the vertex itself or one of its neighbours are altered from a state transition. This property

of rates entirely dependent on local structure is common in many graph models. Implementing

this as an optional setting in the GDN simulation software package would require a major

rewrite of the back-end systems, and as such was left off the current version.

As discussed at the start of Section 4.3, attempting to fit models to observed data using the

classical approach requires precise knowledge of the transition times. Such information would

not be available for most real-world dynamic networks. Using a Maximum Likelihood Estimator

is a viable alternative, however it requires the evaluation of a highly complicated integral. We

saw no way to create a general software system which could evaluate these integrals analytically,

so we turned to Monte Carlo techniques.

The approach given in Section 4.3.1 was capable of providing estimates of the likelihood

function ˆ̀(θ). Though it was demonstrated in Example 4.3 and 4.4 that this scheme can

work as expected, there are issues which prevent this method from being used as an effective

tool for fitting a model to real-world data. First, the time to compute an estimate ˆ̀(θ) is

highly dependent on θ. Specifically if a particular choice of θ causes high rates for the graph

process, far more transitions would be required to advance the process to the required time.

In computing the results for Example 4.3, this issue was observed through the debug output,

where the choice of θ = (1, 9) took roughly ten times longer than θ = (0.1, 0.9). The lopsided

nature of the estimation time makes pilot trials difficult — some results will be returned within

seconds, others will take days. If a number of potential models are being considered, the MLE

calculations for each should be run in parallel to avoid weeks of delay.

The next issue is that of the sensitivity of results to the ε hyperparameter. Setting ε too

high produces overestimates ˆ̀(θ) for a θ that corresponds to graph processes with low transition

rates. This is because if ε is high, the “window” to hit is so wide that not changing the process

at all is preferred. Indeed, Example 4.4 required ε = 0 to get reasonable results, as otherwise

there were large overestimates for low η. Alternatively, if ε is too low, none of the simulated

graph processes will hit the specified targets, resulting in an estimate of ˆ̀(θ) = 0. This occurred

in Example 4.3, with a handful of pilot trials necessary to find an appropriate value for ε. To

ensure
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A key open question remains: whether using an approximate Bayesian computation ap-

proach would provide higher quality models over the MLE scheme proposed in this section.

Approximate Bayesian computation has a wealth of literature discussing the quality of its re-

sults, see for example [39] and [80]. To the author’s knowledge, similar results for the approach

we used do not exist. A study investigating the two approaches to identify the pros and cons

of each is an avenue of future research.
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Chapter 5

Expected Typical Distance Estimation

of Preferential Attachment Models

Six-degrees of separation is a commonly claimed property of our highly connected, international

society. It asserts that every person can be linked to any other via a chain of six or fewer

acquaintances on a first name basis. The notion that society is closely connected through

friends-of-friends is referred to as the small-world phenomenon.

Studies of this phenomenon were popularized by Stanely Milgram’s experiment in 1967

[72]. The experiment involved sending packages to random recipients in the United States and

requesting that they be sent back to a member of the research team. The catch was that

the package-holder could only send the package to someone they knew on a first name basis.

By recording the number of exchanges needed for the package to reach its destination, the

researchers estimated the typical distance between any two people in the country to be about

5.5. There have been numerous, more rigorous, studies of the small-world phenomenon since

Milgram’s famous experiment, see [81] and [43] for example.

The rise of digital communication and extensive data collection has allowed far greater

accuracy regarding network observations. As of February 2016, the popular social networking

site Facebook had over 1.6 billion users and complete data regarding the friendship network.

Facebook released a statement that their calculations suggest the average distance between two

randomly selected users is 4.57 [8].

One explanation for this small-world behaviour is that humans organize themselves through

51
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a form of preferential attachment. This motivates us to investigate the expected typical distance

(ETD) of the preferential attachment random graph model. To glean some further understand-

ing of this phenomenon, see Definition 2.3.

We begin our investigation in Section 5.1 by proving some theorems related to expected

typical distance. This is followed by an empirical study in Section 5.2 where we produce kernel

density estimates for the typical distribution of various PA models. Section 5.3 and Section 5.4

discuss two approaches to estimating the tail probabilities: splitting and sequential importance

sampling. Both sections contain algorithms used to implement each scheme and the related

results.

In this chapter all graphs are taken to be multigraphs. Note that as we use the convention

that self-loops are counted twice with regards to degree, every edge contributes two towards

the total degree of the graph. Thus, the total degree sum of any graph is twice the number of

edges.

5.1 Theoretical Results

This section is concerned with expected typical distance results for deterministic multigraphs.

The results will directly translate into useful tools for the algorithms in the following sections.

Recall that the typical distance from u is defined as Dg(u) = 1
|Cg(u)|

∑
v∈Cg(u) d(v, u).

Theorem 5.1. Consider graphs g and h, where h is formed by adding an edge {z, w} between

two disconnected components Cg(z) and Cg(w). Then if Cg(z) and Cg(w) have m and n vertices

respectively,

Dh(v) =
mDg(v) + n(Dg(w) + dg(v, z) + 1)

(m+ n)
, v ∈ Cg(z). (5.1)
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Proof. Let U be a uniformly chosen vertex from h. Then

Dh(v) =
1

m+ n

∑
u∈Vh

dh(v, u)

=
1

m+ n

 ∑
u∈Cg(z)

dg(u, v) +
∑

u∈Cg(w)

dg(v, z) + 1 + dg(w, u)


=

1

m+ n

mDg(v) + n(dg(u, z) + 1) +
∑

u∈Cg(w)

dg(w, u)


=
mDg(v) + n(dg(v, z) +Dg(w) + 1)

m+ n
.

Lemma 5.2. Consider the graph h which is formed by adding an edge {z, w} to g such that

Cg(z) = Cg(w). Then D(h) ≤ D(g).

Proof. Recall

D(h) =
1

|Mh|
∑

{u,v}∈Mh

dh(u, v), (5.2)

where Mh is the set of all vertex pairs u, v with Ch(v) = Ch(u). Each shortest path in h either

traverses {z, w} or it does not. As h has all edges of g, the shortest paths of g are still present

in h. Without loss of generality, this gives dh(v, u) = min{dg(v, z) + 1 + dg(w, u), dg(v, u)}.

Thus dh(v, u) ≤ dg(v, u) and D(h) ≤ D(g) as g and h have the same components.

A bridge is an edge whose removal would increase the number of components in the graph.

The following corollary is concerned with edges that are not bridges.

Corollary 5.3. If g is constructed from h by removing a non-bridge edge, then D(g) ≥ D(h).

Proof. h can be thought of as g with an extra edge {z, w} such that Cg(z) = Cg(w). By

Lemma 5.2 we have D(g) ≥ D(h).

Lemma 5.4. For a tree g and path p with the same number of vertices, D(g) ≤ D(p).

Proof. If g is isomorphic to p then D(g) = D(p). So assume g is not isomorphic to p, and thus

g must have a vertex v1 with degree greater than 2.
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Consider subgraph partition h1, h2, h3 such that v1 ∈ Vh3 and disconnected when v1 is cut

from g. Without loss of generality assume |Vh1| ≤ |Vh2| ≤ |Vh3|. There exists a path v1, v2, . . . , vt

where vt is of degree one and vt ∈ h2.

We will now generate a sequence of graphs starting at g1 = g and advancing from gi to gi+1

via the following procedure. From the above definitions, gi has an edge from vi to some vertex

u ∈ h1. To create gi+1, disconnect this edge and adding an edge from vi+1 to u. This causes

di+1(z, w) ≥


di(z, w) + 1 z ∈ h1, w ∈ h3

di(z, w) z ∈ h2, w ∈ h3

di(z, w)− 1 z ∈ h1, w ∈ h2,

(5.3)

where we have in equality the first two cases. Thus D(gi+1) ≥ D(gi) + |Vh3| − |Vh2| ≥ D(gi) by

our assumption on the sizes of the subgraphs.

So by repeated application of the above procedure, we find D(g) = D(g1) ≤ D(g2) · · · ≤

D(gt). Effectively we have moved the bridge — connecting subgraph h1 to the rest of the graph

— down the path v1, v2, . . . , vt. Furthermore, gt has one fewer vertex of degree 3. We can take

gi, find another vertex of degree 3 (or greater) and repeat the above procedure until all vertices

are degree 2 or fewer. At this point we must have a path, and as every modification to the

graph never reduced the expected typical distance, we have D(g) ≤ D(p).

Theorem 5.5. The graph with largest expected typical distance on n vertices is an n vertex

path.

Proof. Let g ∈ G be any n vertex graph. From g construct h by sequentially removing non-

bridge edges until we are left with a a collection of trees. Let l be the graph constructed by

converting each tree component into a path by the method described in Lemma 5.4. Finally

connect each of the paths together to form a single n vertex path p. From Corollary 5.3 and

Lemma 5.4, D(g) ≤ D(h) ≤ D(l) ≤ D(p).

5.2 Numerical Results

The aim of this section is to analyse the ETD of preferential attachment random graphs

through crude Monte Carlo simulations. We begin by generating simple kernel density es-
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timates (KDEs). The plots in Figure 5.1 were constructed by simulating many points using

Algorithm 2.1, followed by applying the KDE algorithm specified in [45].

Recall from Section 2.4 that the typical distance of PA(n,m, α) models are bounded by

O(log log n) and O(log n/ log log n) functions in the m ≥ 2, α < 0 and α = 0 cases respectively.

We expect this to result in very low variance in these models, especially for large n. As this

chapter is more concerned with observing graphs which have high ETD despite the small-world

nature of the model, we focus on the m = 1 case and α ≥ 0.

By viewing the plots in Figure 5.1, it is possible to observe properties of the ETD distribution

for varying parameters of the preferential attachment random graph. All of the plots are

unimodal with most of the density concentrated around this mode. Increasing α shifts the

mode to the right, increasing m shifts the mode to the left. Figure 5.1(a) and 5.1(b) show a

slight right skew on both distributions. Note that only m = 1, 2 are shown here as for m ≥ 2

the typical distance distributions behave similarly to the m = 2 case, see [22].

Of particular interest is P(D(Gt) > γ) when γ is large. Such a probability would indicate

that a self-forming network is inefficient at spreading information. Before attempting to es-

timate this probability, we first observe the behaviour of sample paths {Gt}t≥0 which satisfy

{D(Gnm) > γ} for γ relatively large; such sample paths are referred to as elite. To observe

the behaviour of sample paths, many are generated as per a modified version of Algorithm 2.1

which records D(Gt) at each time step. In Figure 5.2(a) it is demonstrated that for the m = 1

case the elite sample paths are easily distinguishable early in the process. Compare this with

the m = 2 case shown in Figure 5.2(b), where the elite sample paths are only distinguishable

after t = 40. The difference in behaviour of sample paths when we alter m is likely attributable

to m = 2 allowing the ETD to drop, whereas it is non-decreasing for m = 1, see Theorems 5.1

and Lemma 5.2.
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(a) KDE for n = 50, α = 0, m = 1.
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(c) KDE for n = 50, α = 0, m = 2.

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(d) KDE for n = 50, α = 3, m = 2.

Figure 5.1: Kernel density estimates for α = 0, 3 preferential attachment models. Each plot was

generated using 105 samples of the specified preferential attachment random graph.
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(a) Mean paths for n = 50, α = 0, m = 1. Here γ = 5.8.
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(b) Mean paths for n = 50, α = 0, m = 2. Here γ = 3.1

Figure 5.2: The coloured regions show an empirical estimate for the interval [µt − σt, µt + σt]

for t = 0, 1, . . . nm, where µt = ED(Gt), σt =
√

VarD(Gt) for the black region; and µt =

E(D(Gt) |D(Gnm) ≥ γ), σt =
√

Var(D(Gt) |D(Gnm) ≥ γ). The threshold γ is specified under each

subfigure, and was chosen so that the probability that D(Gnm) exceeds gamma is roughly 10−5.
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5.3 Splitting

For large γ, {D(Gnm) > γ} is a rare-event. To obtain accurate results in a reasonable timeframe,

it is necessary to develop an advanced Monte Carlo estimator. In this section we apply the

splitting method to create an estimator for P(D(Gnm) > γ), denote this estimator by ˆ̀
split

The graph process used to construct a preferential attachment model is a discrete-time

Markov chain. In addition, Figure 5.2(a) and Figure 5.2(b) imply that we can identify elite

samples with respect to ETD before the graph is completely constructed. The key difficulty

in any splitting implementation is designing the sets X0,X1, . . . ,Xk so that ˆ̀
split has the lowest

variance possible. Set

Xi =

{
gt :

k∑
j=1

I{D(gt) ≥ γj, t ≥ τj} ≥ i

}
, (5.4)

where τ1, τ2, . . . , τk are thresholds in time and γ1, γ2, . . . , γk are thresholds in expected typical

distance. Having thresholds in time is necessary as P(D(Gnm) ≥ γ |D(Gt) ≥ γ) increases with

t for m ≥ 2. That is, graphs with high ETD early in the generation process are at far greater

risk of loosing the structure which causes their high ETD when more vertices and edges are

added.

To perform splitting naively on the preferential attachment model, we can invoke Algo-

rithm 3.1 with initial points G
(1)
0 , G

(2)
0 , . . . , G

(N)
0 initialized to empty graphs; advancing G

(j)
t

through time is performed via the update technique described in Section 2.4 and; the sets Xi
are as described in Equation 5.4.

It is important to note that for a graph g on n vertices, D(g) is an O(n2) operation. As

D(g) must be carried out at each time step when advancing our graph processes {G(j)
t }. This

means that naive splitting has time complexity O(n3), compared to the far more manageable

O(n2) of crude Monte Carlo. To improve the performance of the algorithm, we use a bounding

scheme as described in the next section.

5.3.1 Bounding Scheme

Determining if a sample Gt has entered one of the target sets Xi is a prohibitively long cal-

culation on all but the most trivial of models. A solution is suggested from the observation
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that if we have a sequence of sets Y1,Y2, . . . ,Yk such that for each i ∈ {1, 2, . . . , k}, Xi ⊆ Yi,

then Gt /∈ Yi implies Gt /∈ Xi. If determining Gt ∈ Yi is significantly faster than determining

Gt ∈ Xi, the execution time of the algorithm can be greatly reduced. All that remains is to

find an appropriate sequence of sets Y1,Y2, . . . ,Yk.

Recall that under our choice of vertex set V , each vertex is labelled by a unique integer. So

for vertices v and u, v ≤ u means the the label of v is smaller than the label of u.

Say that at time t of our preferential attachment graph process construction we have two

vectors of length n, c(t) and b(t). The vector c(t) satisfies, for all vertices u and v, cv(t) ≤ v

and cv(t) = cu(t) if CGt(v) = CGt(u). Thus c(t) contains information regarding the component

of each vertex. The second vector b(t) has the property bv(t) ≥ DGt(v) for every vertex v. Thus

the following holds:

D∗(b) :=
1

|MGt |
∑
v∈V

CGt(v)bv(t) ≥
1

|MGt|
∑
v∈V

CGt(v)DGt(v) = D(Gt). (5.5)

Note that we can use c(t) to find Cg(·) and Mg terms in the above equation, where Mg is the

set of all vertex pairs {u, v} for which Cg(v) = Cg(u).

Define the sets Y1,Y2, . . . ,Yk by:

Yi =

{
gt :

k∑
j=1

I{D∗(b) ≥ γj, t ≥ τj} ≥ i

}
, (5.6)

with τ1, τ2, . . . , τk and γ1, γ2, . . . , γk matching the variables used for the corresponding Xi set

(see Equation 5.4). As DGt(v) ≤ bv(t), it follows that Xi ⊆ Yi.

The problem that remains is to ensure c(t) and b(t) correctly satisfy the properties assumed

above. First set cv(0) = v and bv(0) = 0. As G0 of all preferential attachment random graphs

is empty, the two vectors satisfy their respective requirements. Recall that the PA construction

process always adds one edge to advance Gt to time t+ 1. Either the edge lies within a single

component, or it bridges two disconnected components. In the former case, Lemma 5.1 ensures

setting b(t + 1) = b(t) and c(t + 1) = c(t) maintains the properties we require of b and c.

In the latter case, say {z, w} was the edge added, then Theorem 5.2 can be used to update

each each bv(t) with a single breadth-first search. Next set cv(t + 1) = min{cz(t), cw(t)} for

v ∈ CGt(z) ∪ CGt(w) and for v /∈ CGt(z) ∪ CGt(w), set cv(t+ 1) = cv(t). As finding b(t+ 1) and

c(t + 1) at-worst require O(n) operations, checking Gt ∈ Yi is faster than checking Gt ∈ Xi,

as required. Algorithm 5.1 gives complete details on how to perform this update scheme when

the most recent edge added is between two disconnected components.
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Algorithm 5.1: UpdateVector

Input: Component vector c, ETD bound vector b, graph G, latest edge {z, w}.

Output: Updated vectors c and b.

m← number of elements of c with cv = cz

n← number of elements of c with cv = cw

b∗ ← 0 of length |VG|

∆← result from breadth first search starting at z (so ∆v = dt(z, v))

for v ∈ {1, 2, . . . , |VG|} do

if cj = cz then

b∗v ←
mbv+n(bw+∆v+1)

m+n

cv ← min{cz, cw}

else if cj = cw then

b∗v ←
nbv+m(bz+∆v)

m+n

cv ← min{cz, cw}

else

b∗v ← bv

b← b∗

return c, b

When it is found that Gt ∈ Yi, we must compute DGt(v) for each vertex so that we can

determine if Gt ∈ Xi is true. After computing DGt(v), the evaluation of bv(t + 1) should use

DGt(v) in place of bv(t) to ensure the best possible bounds.

Note that we start the process with exact bounds (i.e., bv(0) = DG0(v)) and Theorem 5.2

shows that if an edge is added between two components, bv(t) = DGt(v) implies bv(t + 1) =

DGt+1(v). This means that preferential attachment models with m = 1, Yi = Xi, reducing the

algorithm to an O(n2) operation. Empirical tests have shown that there is a significant speed

boost when using the bounding scheme in the m = 2 case — up to fifteen times faster. This

allowed us to perform experiments on graphs with n = 50.
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Algorithm 5.2: ETD Splitting

Input: Fixed effort N , thresholds in time τ1, τ2, . . . , τk, thresholds in ETD

γ1, γ2, . . . , γk, preferential attachment parameters n,m, α.

Output: Returns estimate ˆ̀ of P(A)

for j = 1, 2, . . . , N do

Generate empty graph G(j)

b(j) ← 0 (zero vector of length n)

c(j) ← (1, 2, . . . , n)

Z ← {(G(1), b(1), c(1)), . . . , (G(N), b(N), c(N))}

Y ← ∅

for i = 1, 2, . . . , k do

for j = 1, 2, . . . , N do

continue ← true

Obtain (G(j), b(j), c(j)) by reference from Z

while continue do

t← |EG(j) |

if t < nm then

Advance G(j) one time step under the rules imposed by PA(n,m, α)

UpdateVector(c, b, G(j))

if
∑k

l=1 I{D∗(b(j)) ≥ γl, t ≥ τl} ≥ i then

bv ← DG(j)(v) for all v ∈ VG(j)

if
∑k

l=1 I{D∗(b(j)) ≥ γl, t ≥ τl} ≥ i then

Y ← Y ∪ {(G(j), b(j), c(j))}

if t = nm then

continue ← false

Z ← ∅

for j = 1, 2, . . . , N do

Choose an X
(j)
τi uniformly at random from Y

Z ← Z ∪ {X(j)
τi }

Ni ← |Y|

Y ← ∅
return N−γ

∏γ
i=1Ni
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The results in Table 5.1 demonstrate the poor performance of this splitting implementation,

even with the major speed improvements provided by the bounding scheme. In order to produce

times comparable to crude Monte Carlo, very few samples are allowed per splitting level. This

issue is likely a result from using an inefficient approach for copying graphs.

Another issue is the splitting algorithm trends towards providing many underestimates and

a small number of significant overestimates. This greatly increases the variance of the estimator

and is particularly evident in the α = 3 cases.

The time required to copy graphs is quite expensive as they are high-dimensional objects

which are frequently moved during the execution of the algorithm. This motivates us to inves-

tigate an alternative estimator which does not require any copy operations.

5.4 Sequential Importance Sampling

Recall that our goal is to evaluate ` = P(D(G) > γ) for γ large, where G is a PA(n,m, α)

random graph. For the rest of this chapter we restrict ourselves to m = 1; this allows us

to easily construct a sequential importance sampling (SIS) estimator which outperforms the

splitting estimator from the previous section. Section 5.5 contains a detailed explanation of

why m ≥ 2 is not considered for the SIS estimator.

We can uniquely determine Gt using the vector Vt = (V1, . . . , Vt) of vertices selected as an

end-point for each edge. Hence there exists a function h such that Gt = h(Vt). Furthermore

denote

ft+1(vt+1 | vt) = P(Vt+1 = v | Gt = h(vt))

for t = 1, 2, . . . , n; for convenience set S(Vt) := D(h(Vt)).

We can sample from an importance sampling density (See Section 3.2) for each additional

edge. Construct such a density by taking k(vn) = k1(v1)k2(v2 | v1) · · · kn(vn | vn−1) where k

satisfies k(vn) = 0 =⇒ I{S(Vn) > γ}f(vn) = 0.

By taking the expectation with respect to k, we can represent ` as

` = Eg

[
I{S(Vn) > γ}

n∏
t=1

f(Vt+1 | Vt)
k(Vt+1 | Vt)

]
. (5.7)

Assume it is easy to simulate from k1(v1) to find V1, and then simulate from k2(v2 | v1) to find
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V2 and so on, until we have Vn from k(vn). As the nominal pdf f has conditionals ft(vt | vt−1)

that are easy to evaluate, we arrive at the following unbiased SIS estimator:

ˆ̀=
1

N

N∑
i=1

I{S(V (i)
n ) > γ}

n∏
t=1

f(V
(i)
t+1 | V

(i)
t )

k(V
(i)
t+1 | V

(i)
t )

, (5.8)

where V
(1)
n ,V

(2)
n , . . . ,V

(N)
n are iid samples from g.

The remaining problem is to select k1, k2, . . . , kn such that the variance of the estimator is

minimized. We propose the following family of importance sampling densities:

kt+1(vt+1 | vt) ∝
(
degH(vt+1) + α + δvt+1,t+1

)
×max{1, DH(vt+1)p}, (5.9)

where p ≥ 0 is a parameter of the density and H = h(vt). Essentially this density means that

for each new edge added to the graph, it is more likely that the edge will be incident with a

vertex that has high distance from other vertices. Equation 5.1 shows that this will produce

graphs with higher ETD, therefore sampling from g means the event D(G) > γ is more likely

to occur. For p = 0 the estimator is identical to CMC, which will be useful in analysing the

performance of the estimator.

5.4.1 Efficient Expected Typical Distance Evaluation

A major issue to be addressed is the expensive ETD calculation required to find Dt(v) for every

vertex v at each time t. A naive implementation of the estimator would find the ETD using

a breadth first search (BFS) from each vertex. Here each BFS requires O(n) time and there

are at most n vertices, so evaluating the ETD takes O(n2) time. The ETD would need to be

found before evaluating kt+1(vt+1 | vt) at each stage, hence it must be computed n times. Thus

a naive implementation would take O(n3) time to execute.

Compare this against CMC, which only requires a single ETD calculation after all edges

are added. So CMC requires O(n2) time, which shows that a naive approach to implementing

the SIS estimator is inadequate. Recall from Section 5.3.1 that it is possible to maintain a

vector b such that bv ≥ DGt(v), with equality attained when m = 1 (i.e. when each step of

the preferential attachment process adds one edge attached to one vertex). As we are only

considering PA(n, 1, α) random graphs, this bounding scheme can be used to find DGt(v) at

each time step with far fewer calculations The full SIS algorithm that incorporates this update

scheme is given in Algorithm 5.3.
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Algorithm 5.3: SIS estimator for P(D(G) > γ)

Input: Number of vertices n, parameter α, parameter p, threshold γ

Output: Estimate of P(G > γ) for G in PAn(α)

W ← 0

for i = 1 to N do

Construct G0 as a graph with n vertices

w = 1

b← 0

for j = 1 to n do cj = j

for t = 0 to n− 1 do

Vt ← vertex chosen randomly with density kt+1(v | Vt)

w ← w × ft+1(Vt+1 | Vt)
kt+1(Vt+1 | Vt)

Construct Gt+1 by adding edge {t+ 1, V } to Gt to make Gt+1

UpdateVector(c, b, Gt+1, V, t+ 1)

if (
∑n

j=1 bj)/n > γ then W ← W + w

return W/N

The asymptotic time complexity of the SIS estimator with this update scheme is on par

with CMC.

Proposition 5.6. Algorithm 5.3 has asymptotic time complexity O(n2), where n is the number

of vertices in the random graph.

Proof. There are n iterations for a PAn(α) random graph. At each iteration the vertex Vt

must be selected and vectors b and c must be updated. The subroutine for choosing Vt in

Algorithm 5.3 loops over vertices 1, . . . , t. As t ≤ n, this subroutine is O(n). Within the same

iteration we perform single breadth first search which takes O(n) time. Counting the size of

the components from c and then updating every element of b and c requires two separate loops

over both vectors, and hence requires O(n) time. As all other operations are not dependent on

n, the full algorithm requires O(n(n+ n+ n)) = O(n2) time to run.

Tables 5.2 through 5.3 demonstrate the performance of the estimator. Here N is the number

of graphs generated per estimate. The relative error RE of each estimator is itself an estimate,
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calculated as

RE(Ẑ) =
S

X̄
√
N
, (5.10)

where N is the number of independent runs of the estimator, and X̄ and S are the sample

mean and standard deviation of the estimator Ẑ. To compare trials with differing times, we

define the numerical efficiency NE of estimator Ẑ as

NE(Ẑ) = TimeẐRE(Ẑ)2 (5.11)

where TimeẐ is the execution time of the estimation algorithm. Under the assumption that

each of the N runs of the algorithm is independent, TimeẐ ≈ cN for some constant c. Thus

NE(Ẑ) should be invariant under changes in N . Estimators with low NE(Ẑ) are more efficient,

and only estimators of the same problem (with same parameters) may be fairly compared.

It is clear from Table 5.2 that the estimator outperforms CMC for appropriate parameter

selection. Setting the parameter p too high causes the estimator to increase in variance — note

that the sample variance will be low because the large deviations anticipated become rare. For

the problem described in Table 5.2 the optimal value for p appears to be between 0.8 and 1.2.

Finding the optimal value can be done through a pilot run with fewer samples. Empirical

tests show that the estimator is stable, so increasing the number of runs by a factor of K

reduces the relative error by a factor of
√
K.

Finally, we see in Figure 5.3 that the use of an update scheme is essential for ensuring the

SIS estimator is viable for large n.
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Table 5.1: Performance comparison of estimators for P(D(Gnm) > γ). The parameter p for SIS was

set to 1 in all cases. SIS and CMC used N = 107 samples each, and splitting used N = 10000 samples

per level, with six levels.

Parameters Estimator Estimate Relative

Error

Time

(seconds)

Efficiency

γ = 6.0, n = 50,

m = 1, α = 0

CMC 1.10e-6 0.3020 14692 1331

SIS 8.25e-7 0.0260 11732 8

Splitting 1.21e-6 0.1624 5885 155

γ = 6.8, n = 50,

m = 1, α = 3

CMC 2.6e-6 0.1961 11583 445

SIS 2.41e-6 0.0418 14828 26

Splitting 1.91e-6 0.1169 9986 136

γ = 3.2, n = 50,

m = 2, α = 0

CMC 1.30e-6 0.2773 20545 1580

Splitting 1.67e-6 0.3677 12304 1663

γ = 3.3, n = 50,

m = 2, α = 3

CMC 8.57e-6 0.1291 13188 220

Splitting 1.08e-7 0.3773 12665 1802

Table 5.2: SIS estimator results for varying parameter p, with n = 50, α = 0, N = 107, γ = 6.0. Recall

that larger values of p force the algorithm to generate random graph realizations with larger expected

typical distance.

Parameter p 0 0.2 0.4 0.6 0.8 1 1.2

Mean 1.10e-6 7.26e-7 7.96e-7 8.05e-7 8.29e-7 8.25e-7 7.90e-7

Relative Error 0.302 0.185 0.096 0.061 0.037 0.026 0.020

Time (seconds) 14692 11852 12848 11204 12052 11732 13308

Efficiency 1340 406 118 42 16 8 5
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Figure 5.3: Time required for each algorithm to complete. Here α = 0, N = 10000. Naive SIS is the

implementation of the SIS algorithm described at the start of Section 5.4.1

5.5 Discussion

The performance of the splitting estimator was hampered by its high computation times. Even

with the bounding scheme implemented, the algorithm took too long to execute, forcing fewer

samples per splitting level. These long execution times are likely the result of two contributing

factors. The first is that splitting, in contrast to the other estimators described in this chapter,

requires graphs to be copied in memory. If graphs are stored using an adjacency matrix,

this is an O(n2) operation. The second, more important issue is that there are more full

expected typical distance calculations in the splitting implementation, when compared to the

other algorithms. For m ≥ 2, it is necessary to evaluate the expected typical distance at least

once per sample per splitting level. To keep the run time reasonable, this results in a necessary
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Table 5.3: Comparison of CMC and SIS estimation results for varying α and γ, with fixed N =

107, n = 50. For SIS, p = 1. Time is in seconds.

Parameters Method Estimate
Relative

Error

Time

(seconds)
Efficiency

α = 0, γ = 4.5
CMC 4.53e-5 0.0470 4202 9.28

SIS 3.60e-5 0.0098 3812 0.36

α = 0, γ = 4.75
CMC 6.60e-6 0.1231 3135 47.50

SIS 4.90e-6 0.0211 3326 1.48

α = 0, γ = 5.0
CMC 5.00e-7 0.4472 3110 621.96

SIS 6.18e-7 0.0486 3685 8.70

α = −0.75, γ = 3.75
CMC 4.77e-5 0.0458 4493 9.42

SIS 3.49e-5 0.0126 3922 0.62

α = −0.75, γ = 4.0
CMC 4.40e-6 0.1508 4117 93.62

SIS 3.52e-6 0.0313 3596 3.52

α = −0.75, γ = 4.25
CMC 5.00e-7 0.4082 3140 523.21

SIS 3.11e-7 0.0892 3972 31.60

α = 3, γ = 5
CMC 5.15e-5 0.0441 3172 6.16

SIS 3.35e-5 0.0090 3406 0.28

α = 3, γ = 5.25
CMC 9.50e-6 0.1026 2559 26.94

SIS 5.49e-6 0.0180 3118 1.01

α = 3, γ = 5.5
CMC 1.30e-6 0.2773 2527 194.31

SIS 7.22e-7 0.0406 3157 5.20
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reduction in the total number of samples by an order of magnitude.

Using the estimators described in this chapter on larger graphs has multiple drawbacks. The

most evident is that a full expected typical distance calculation has O(n2) time complexity. If

the problem of time was somehow mitigated, large graphs are still high dimensional objects and

Sequential Monte Carlo methods struggle to accurately solve high dimensional problems [59].

Furthermore, as n gets large, the typical distance converges to O(log n) (or smaller) for the

models considered. This means that graphs with large expected typical distance would become

less and less common as n increases. Thus studying the behaviour of larger graphs would be

best left to a theoretical methods rather than simulation. Specifically, after around n = 100

vertices, the estimator would either take too long to compute or be too inaccurate to use.

An application of these estimators is the ability to generate high ETD samples via resam-

pling. For example, if one was to obtain the graphs {G(1), G(2), . . . , G(N)} and the corresponding

importance weights {w1, w2, . . . , wN} from the SIS estimator, they could resample the graphs ac-

cording to the weights. The resulting samples would be approximate samples from PA(n,m, α)

restricted to only D(G) ≥ γ graphs. A tool such as this could provide insights for similar

statistics by allowing a researcher to directly observe extreme graphs.

Before arriving at the density in Equation 5.9, others were considered and tested. We devised

an importance density k that assigned additional probability to the vertex which was most

recently added. The idea was that this would encourage long chains which increase the typical

distance and cause the target event {D(G) ≥ γ} to occur more frequently. Experimentally

we found that the variance of this estimator was higher than for CMC. While sampling under

k does trigger the target event, it does not reproduce the conditions which have the highest

chance to trigger the event under f , thus increasing the SIS estimator’s variance.

For the m ≥ 2 case we can use the k from Equation 5.9 but only for times t = 1,m+1, 2m+

1, . . .. That is, the first edge added between the new vertex and the rest of the graph. The

efficient ETD update no longer works exactly — it will instead form a bound as in Section 5.3.1.

Experiments showed that both using the bound and performing full calculations resulted in

minimal variance reduction but a large increase in computation time. The minimal reduction

is very likely caused by a simple observation: attaching a new vertex v to a u with high ETD will

increase the overall ETD for that time step, but the next step will add an edge from v to the rest

of the graph as per usual. As a result, any increase to the ETD from the importance sampled
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step is undone. We tried to remedy this by using another density for t = 2,m + 2, 2m + 2, . . .

which prioritised connecting v to vertices close to u but this had little effect on the estimator

variance.

It is possible to naively apply the SIS estimator to the tail probability of typical distance

(that is, estimating P(TD(G) ≥ γ)). This is done by running the estimator as in Algorithm 5.3

normally but replacing line 14 with W ← W +w× P(TD(Gnm) ≥ γ) However our tests of this

produced poor results compared to the CMC estimator. It is likely that the graphs with large

typical distance exhibit different structural properties to graphs with large ETD. A specialized

estimator would need to be developed to obtain accurate results.



Chapter 6

Exponential Random Graph Model

Simulation

The National Longitudinal Study of Adolescent to Adult Health (Add Health) gathered rela-

tionship data between students from various schools in the United States. The data contained

information regarding which pairs of students were friends, along with the age, sex and race

of each student. A random graph can be used to model the collected data, with vertices and

edges representing students and friendships respectively. In [37] and [32], an exponential ran-

dom graph (ERG) model was used to model the Add Health dataset (see Section 2.3 for an

introduction to ERG models).

To model data using an ERG, one must select appropriate graph statistics. In [32], the

chosen graph statistics included basic subgraph counts such as edge and triangle count, as well as

graph statistics that incorporate the dataset’s supplementary information, such as the number

of same-sex friendships. When an ERG model is fit to the collected data, the model parameters

provide insight into the real-world network. For example, if a parameter weighting same-sex

friendships is larger than the corresponding parameter weighting opposite-sex friendships, it

indicates a preference among students for homogeneous partnerships.

Fitting an ERG model to data usually requires a large number of simulations [68]. Simu-

lating from an ERG model is very difficult in non-trivial cases — the normalization constant

is intractable and MCMC has poor convergence to stationarity [17]. We are motivated to ap-

ply the stratified splitting algorithm (see Section 3.3) in an attempt to use the ERG model

effectively on a wider range of models.

71
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We begin this chapter by discussing the basic approaches for estimating and simulating from

ERG models in Section 6.1. The stratified splitting algorithm (SSA) is applied to the problem

in Section 6.2. We conclude the chapter with Section 6.3, which contains results from applying

the various methods stated to three models, each with their own challenges.

In this chapter we are only concerned with simple graphs. No loops or parallel edges are

permitted.

6.1 Basic Methods

For completeness we will first describe how to apply basic techniques to estimating and sim-

ulating from an arbitrary ERG. We will use these techniques later for comparison with our

advanced SSA approach.

Note that throughout this chapter, f̄ is taken to be the unnormalized probability density

function of the ERG. As f̄ often takes on extreme values, it is necessary to use the log-sum-exp

function to prevent floating-point underflow.

Underflow and overflow are serious problems when dealing with ERGs and other high-

dimensional probability systems. The log-sum-exp (LSE) function allows us to work in the log

domain for addition operations, which mitigates the limitations of finite precision. Specifically

we define a function LSE(w1, w2, . . . , wn) which takes log-domain variables wi and computes

their linear domain sum.

The precise formulation is

LSE(w1, . . . , wm) = w∗ + log(exp(w1 − w∗) + · · ·+ exp(wm − w∗)), (6.1)

where w∗ = max{w1, . . . , wm}. It is trivial to show that this is mathematically equivalent to

naively converting all log-domain variables to linear, taking their sum and then converting back

to the log-domain. However, by bringing the largest weight w∗ and noting that exp(w1−w∗) +

· · · + exp(wm − w∗) ≥ 1, we can see that LSE(w1, . . . , wm) ≥ w∗ and thus underflow will be

avoided.

As techniques such as Gibbs sampling and SSA operate on vectors, not graphs, we introduce

a technique for converting simple graphs to binary vectors. Consider a graph g with Vg =
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{1, 2, . . . , n}. For vertices v, u ∈ Vg with v < u, let i = (u − 2)(u − 1)/2 + v. Next construct

a vector x of length
(
n
2

)
with xi = 1 if edge {v, u} is present in g, and zero otherwise. From

this description of x it is clear that every graph g on n vertices corresponds to a unique binary

vector x of length
(
n
2

)
. For simplicity, define f̄(x) := f̄(g), where g is the graph constructed

from binary vector x.

6.1.1 Exact Simulation

Simulating from distributions with finite support is usually a trivial matter — one can apply

the inverse-transform method [45] and iterate through a list of possible outcomes. Applying

this naively to an ERG would be extremely inefficient, requiring a O(t(d)2d) operation for

every sample, where t(d) is the worst-case time for evaluating the necessary graph statistics

and d =
(
n
2

)
. Some rudimentary tests on an ERG with statistics that count the number of

2-stars, 3-stars and triangles show that a single sample from an n = 7 model requires 10.1

seconds on average. For this model t(
(
n
2

)
) = n3, so we can extrapolate an approximation for

the time required to generate one million samples for the n = 8 case — it would take 1.93×109

seconds, or 61 years.

An alternative approach can be used where only a single O(t(d)2d) operation is needed,

and subsequent samples can be generated at a cost of O(d) per sample. While this is an

improvement, in terms of time, it explodes the space complexity to O(2d) which is too large for

n ≥ 9.

By Theorem 2.4 we know that the set of all graphs with n vertices can be enumerated

g1, g2, . . .. Let U be a uniform random variable on the interval [0, 1]. To generate a random

graph G by the inverse transform method, gj is assigned a value aj in the interval [0, 1] so that

P(aj−1 ≤ U ≤ aj) = P(G = gj) (take a0 = 0) [62]. Then upon generating a realization of U , to

generate G simply find the interval aj−1 ≤ U ≤ aj, then take G = gj. As the number of graphs

on n vertices grows exponentially with n, it would be ideal to construct a system which allows

for rapidly finding the interval aj−1 ≤ U ≤ aj.

Recall that all graphs g can be expressed as a binary vector x. The binary nature of x

means all possible binary vectors of length n, thus all possible graphs on n vertices, can be

stored implicitly in a binary tree. That is, every path taken from the root node to a leaf

node can be viewed as a sequence of d binary choices, 0 if the path moves through the left
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child, 1 if the path moves through the right. Order all binary vectors x lexicographically

(x1 = (. . . , 0, 0),x2 = (. . . , 0, 1),x3 = (. . . , 1, 0) and so on). Set each internal node of the

binary tree to contain the value aj∗ , where j∗ is the largest index in the left subtree from the

node. With such a binary tree, finding the interval (aj−1, aj] which contains U can be done in

d =
(
n
2

)
steps, a significant improvement over 2d.

Algorithm 6.1 will construct the binary tree when called with the parameters 0, [ ], 0, d. To

use this tree for simulation, we employ Algorithm 6.2.

Proposition 6.1. Simulating M samples from an n vertex ERG under the binary tree approach

above requires O(t(d)2d +Md) time and O(2d) space, where t(d) is the number of computations

required to evaluate f̄(x).

Proof. To simulate M samples we must build the tree by Algorithm 6.1 and then run Algo-

rithm 6.2 M times. All steps of Algorithm 6.1 are constant except for evaluating the statistics

and calling the recursion. Thus constructing all non-leaf nodes requires O(2d) time and con-

structing all leaf nodes requires O(t(d)2d), producing a total running time of O(t(d)2d).

Next, we note that to generate samples from the tree, we must traverse from the root to

the appropriate leaf, determined by a uniformly generated number U . Evaluating such a U

is constant time with most algorithms, and the tree has height d. Therefore generating M

samples from the ERGM tree requires O(Md) time. This gives a total time of O(t(d)2d +Md)

as required.

In terms of space, the binary tree has 2d leaf nodes and 2d−1 non-leaf nodes. As every node in

the tree requires a constant amount of space, the space complexity is O(2×2d+1) = O(2d).
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Algorithm 6.1: BuildERGMTree

Input: curent depth level of tree l, binary vector x = (x1, . . . , xl−1), reference of

cumulative weight w, total number of edges d :=
(
n
2

)
.

Output: Returns the node created.

node ← empty node

if l = d then

w ← w + f̄(x)

else

node.leftChild ← BuildERGMTree(l + 1, [x 0], w, d)

node.leftChild.parent = node

node.value ← w

node.rightChild ← BuildERGMTree(l + 1, [x 1], w, d)

node.rightChild.parent = node

return node

Algorithm 6.2: Full ERGM Simulation

Input: Binary Tree T constructed using the above algorithm, the total weight sum w.

Output: One sample from the respective ERGM.

i← 0, x← [ ]

U ∼ Uniform(0, 1)

node ← root of tree T

while i < d do

if wU < node.value then
node ← node.leftChild

x← [x 0]

else
node ← node.rightChild

x← [x 1]

Construct graph G from x

return G
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Algorithm 6.3: Gibbs Sampling Algorithm

Input: Unnormalized log-domain density log f̄ , initial guess X0, iterations T

Output: Approximate samples X1, . . . ,XT

for t = 1, 2, . . . T − 1 do

M ∼ DU(1, d)

w1 ← log f̄(Xt)

w2 ← log f̄(Xt

⊕
eM)

α← exp(w1 − LSE(w1, w2))

U ∼ U(0, 1)

if u ≤ α then Xt+1 ←Xt

else Xt+1 ←Xt

⊕
eM

return X1, . . . ,XT

6.1.2 Markov Chain Monte Carlo

The most common method for sampling from ERGs is to use a Gibbs sampler. For completeness,

we now state the Gibbs Sampler algorithm for exponential random graph models. Note that

ei is taken as the vector with a 1 at position i and zeroes everywhere else, and
⊕

denotes

addition modulo 2.

The density of an exponential random graph often has multiple sharp peaks which means

the probability of a Gibbs sampler leaving local maxima is incredibly rare. This problem can

be difficult to detect in larger models, so results obtained with MCMC may be incorrect despite

appearing reasonable.

6.2 Stratified Splitting Algorithm

We propose the stratified splitting algorithm (SSA) as an alternative approach to ERG sampling

and estimation. Refer to Section 3.4 for an introduction to this method. As it utilizes a series

of particles, and the particles transition across the space uniformly, the problem of poor mixing

induced by extreme maxima is mitigated. The algorithm we use is identical to Algorithm 3.3

but all weights w1, w2, . . . are handled in the log-domain, using LSE where necessary.

When deploying SSA, a density ϕ must be specified. The default choice of ϕ is a density
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with some sense of uniformity over space, for example the density associated with ER(n, 1
2
)

random graphs. However most graphs on n vertices have around d
2

edges, which is far more

than the expected number of edges for useful ERG models. This slows down SSA by forcing

the algorithm to focus its searching effort in the wrong region of the state space.

A possible alternative choice of ϕ is

ϕ(g) =

(
d

|Vg|

)−1

(6.2)

which weights each possible graph so that the probability of getting a graph with exactly i

edges is uniformly distributed.

6.3 Models and Results

To compare the performance of SSA and Gibbs, we will use the estimators to empirically

estimate the expected value for a variety of graph statistics, under different ERG models.

The three models in this chapter were chosen to cover three cases: a common model from

the literature (alternating triangles), a custom model to demonstrate the misleading results

produced by Gibbs sampling (strictly business) and a trivial model which can be analytically

solved for n ≥ 10 (edge valley). The following subsections define each of these models and the

parameters we used for our simulations.

Plots showing the individual estimates over many independent runs of each estimator are

given in Figure 6.1 to 6.4. The differences between the estimators are demonstrated by the

empirical mean squared error (MSE) shown in Table 6.1.

The MSE is defined as follows:

MSE(ˆ̀) = E[(`− ˆ̀)2], (6.3)

where ` is the value we wish to estimate and ˆ̀ is the random variable corresponding to the

output of the estimator of interest. It is easy to show that MSE(ˆ̀) = Var(ˆ̀)+Bias(`, ˆ̀)2, where

Bias(`, ˆ̀) = E[ˆ̀]− `. We will estimate the MSE through our simulations.
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Gibbs SSA SSA Alt
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Figure 6.1: Estimates of the expected number of edges for the Edge Valley model with n = 15, θ = 0.1.

The horizontal line represents the true value. The middle column is for SSA with density ϕ(g) = 1
2d

,

the right column is for SSA with the density specified in Equation 6.2

6.3.1 Edge Valley

Edge valley is an ERG model where the only statistic is T (g) = (|Eg| − d
2
)2, where d =

(
n
2

)
is the total number of edges possible in the model. This model creates an extreme bimodal

distribution with an analytically tractable normalizing constant for large n. We choose n = 15

and θ = 0.1 for testing, where θ is the parameter weighting the statistic T (g). These parameters

were found to best demonstrate the bimodal effect which traps a Gibbs sampler — increasing

n further started to cause issues which will be discussed shortly.

Figure 6.1 shows that both SSA and the MCMC estimator struggle to find the correct

answer. SSA demonstrates that more samples per estimation are needed for it to perform well,

whereas increasing the number of samples will not help MCMC get any closer to the correct

result. This is the only case we found where using SSA with the alternate density specified in

Equation 6.2 performs better than the default, uniform h.

6.3.2 Alternating Stars and Triangles

To produce non-degenerate models with an ERG model it is necessary to have statistics that

do not cause a positive feedback loop. For example in the Markov model, promoting the

appearance of triangle subgraphs also promotes the appearance of complete graphs of higher

order. This issue led to the concept of alternating k-stars and k-triangles [69], an approach for
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extending star and triangle graph statistics to avoid the aforementioned feedback loop.

The alternating k-triangle statistic is defined as follows

T1(g) :=
∑
i<j

I{{i, j} ∈ Eg}
n−2∑
k=1

(
Lij(g)

k

)(
−1

λ

)k−1

, (6.4)

where Lij is the number of vertices in g for which i and j are mutually adjacent. Next, the

alternating k-star statistic is

T2(g) :=
n−1∑
k=2

Sk(g)

(
−1

λ

)k−2

, (6.5)

where Sk is the number of k-stars in g. The final statistic for this model is simply T3(g) = |Eg|.

Using parameter vector θ = (2,−1,−1), we obtained the results shown in Figure 6.2 and

Table 6.1. Gibbs performing well is expected, as the alternating stars/triangles model was

developed to avoid degenerate behaviour. Here the key result is that SSA does not perform

worse, allowing it to be used as a general tool for small vertex exponential random graph

models.

Gibbs SSA SSA Alt
14

14.2

14.4

14.6

14.8

15

Figure 6.2: Estimates of the expected number of 3-stars in the alternating stars/triangles model. The

horizontal line represents the true value. The middle column is for SSA with density ϕ(g) = 1
2d

, the

right column is for SSA with the density specified in Equation 6.2.

6.3.3 Strictly Business

The third model, called strictly business, uses a multilevel model [76] to simulate an organization

where individuals must be related to exactly one department. The model sorts vertices into two
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categories, type-A and type-B. Here the type-A vertices are treated as business departments

and the type-B vertices represent individual workers.

We take T (g) = (a1, a2, a3, a4), where

• a1 is the number of edges between type-A vertices

• a2 is the number of edges between type-B vertices

• a3 is the number of type-B vertices which do not connect to exactly one type-A vertex

• a4 is the efficiency of all type-B to type-B paths.

The efficiency is defined as
∑

v,u∈U d(u, v)−1, where u, v are distinct vertices in some subset U

and d(·, ·) is the usual graph distance function.

As the goal of the model is to generate a network where each type-B has one adjacent type-A

vertex, θ3 is taken to be a significant negative number. This causes the Gibbs sampler, as defined

in Algorithm 6.3 to break. For a Gibbs sampler to traverse between various configurations (e.g.

two type-A nodes with degree 3 to one of degree 2 and the other of degree 4) it will need to

propose and accept a transition into a graph with a3 > 0 and thus it will have very low weight.

If we were to simply have the Gibbs sampler update k edges in a block it introduces a new

problem: we now have
(
d
k

)
possible transitions from each state, with only a handful leading to

worthwhile states. This means that we would require a specialized transition kernel for Gibbs,

which violates our goal of developing a simple “plug-and-play” algorithm.

For our simulations, we set θ = (−0.02,−5,−100, 0.005), n = 7 and set two vertices to

be type-A, the rest are type-B. The large negative weighting on θ3 ensures that the random

graph distribution prioritises graphs where each type-B vertex has exactly one adjacent type-A

vertex. The other parameters were chosen arbitrarily.

As Gibbs will get stuck on specific organization allotments, the results in Figure 6.4 are

expected. Note how it is not immediately obvious that Gibbs has failed if only the edge count

statistic is considered, as in Figure 6.3. This is why it is important to use a variety of statistics

when evaluating the performance of an estimator. The full table of MSE results for each statistic

is shown in Table 6.1.

Note that the failure of SSA-Alt is an unusual result. It appears that the algorithm termi-

nates far sooner than the default SSA scheme, causing poor exploration of the graph space.
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4

5

6

7

8

9

10

Figure 6.3: Estimates of the expected number of edges for the strictly business model. The horizontal

line represents the true value. The middle column is for SSA with density ϕ(g) = 1
2d

, the right column

is for SSA with the density specified in Equation 6.2.
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Figure 6.4: Estimates of the expected number of employees in the highest degree organization (Type-

A vertex) for the strictly business model. The horizontal line represents the true value. The middle

column is for SSA with density ϕ(g) = 1
2d

, the right column is for SSA with the density specified in

Equation 6.2.
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Model (Statistic) Gibbs SSA SSA Alt.

Edge Valley (Edges) 9.0250e+03 1.1813e+03 7.8141e+01

Strictly Business (Edges) 3.4769e-05 1.8432e-04 1.0908e+01

Strictly Business (3-Stars) 1.3655e+01 3.6989e-02 1.5029e+01

Strictly Business (Triangles) 1.5871e-04 1.3668e-06 5.0026e+00

Strictly Business (See Figure 6.4) 4.1712e-01 1.1482e-03 1.1689e-01

Alternating (Edges) 6.6297e-3 3.4660e-03 1.6968e-02

Alternating (3-Stars) 3.4451e-01 2.3831e-01 1.0291e-00

Alternating (Triangles) 5.2700e-02 1.1090e-03 3.6423e-02

Table 6.1: Table comparing the mean squared error for various statistics of the models of interest.

Each estimator was run ten times on the model with parameters defined in each model’s respective

section.

6.4 Discussion

The results above give credence to SSA serving as general algorithm for small graphs. However

many practitioners desire models with over one thousand vertices, and our tests with SSA

on graphs larger than 20 vertices on the edge valley and strictly business performs on par

with MCMC. That is, both algorithms fail to completely explore the state space, and thus

their accuracy is poor. In general, large vertex counts cause the low probability states to far

outnumber the high probability states, effectively making them harder to find. As a result, the

algorithm requires more iterations. Not only does this increase the time required to execute

the algorithm, it also decreases its accuracy. This is because the product estimator P̂t in

Algorithm 3.3 increases in variance as more terms are added to the product.

An important result is shown in Figure 6.3. Both the Gibbs sampling estimator and SSA

estimate the correct number of edges, despite Figure 6.4 demonstrating that the Gibbs sampler

is failing to properly explore the state space. The deceptive result from the Gibbs sampler is

why one should use a wide battery of graph statistics to verify the performance of any sampler.

It should be noted that the statistics in Table 6.1 are not exhaustive — it grants evidence

that SSA succeeds where the Gibbs sampler fails, but does not guarantee this will be the case
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for all graph models on the same number of vertices. The development of standard graph

statistics for testing simulation methods would be a good avenue for future research.

One may wonder why it is not standard practice to simply run multiple, independent chains

of the Gibbs sampler and take an average of the results. This averaging estimator is only valid

if the chains have mixed properly, but if this was true it would not be necessary to run multiple

chains at all. It is not difficult to construct an ERG which breaks this averaged estimator —

for example a variant of the edge valley model where the peak in probability at no edges is half

that of the peak at maximum edges. In such a model, a Gibbs sampler would have even chance

of getting stuck at either the empty or complete graph, yet it should spend a third of the time

at the empty graph state.

Table 6.1 shows that the SSA estimator consistently outperforms crude Monte Carlo via

Gibbs sampling for small graphs. From this we infer that the approximate samples generated

by SSA are closer to the true distribution than Gibbs samples. Further work investigating this

could be to perform a Kolmogorov–Smirnov test on the various graph statistics to measure the

distance between the approximate distributions and the true distribution.

An open problem for future research is to find a ϕ density for SSA which performs better

for large graphs. The two choices presented in this chapter (See Section 6.2) are general but

do not weight sparse graphs higher than their dense counterparts. Finding a more suitable ϕ

density would greatly improve the applicability of the SSA estimator, enabling it to be used on

larger graphs.
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Chapter 7

Conclusion

The theme of this thesis was to investigate the application of sequential Monte Carlo methods

to random graph models. To that end, we began with defining random graphs in Chapter 2.

We gave random graphs the full measure theoretic treatment, and provided a proof that the set

of all multigraphs is countable. This was followed by the introduction of three popular models

from the literature: the Erdős–Rényi, preferential attachment and exponential random graph

models.

Chapter 3 introduced the simulation tools required for the subsequent chapters. Algorithms

and an abridged background for the splitting method, importance sampling and the stratified

splitting algorithm were provided. As these tools operate on general, multidimensional objects,

we are able to apply them to random graphs.

Chapter 4 defined the generalized dynamic network, a random graph model that evolves

through continuous time. Two aspects of this model that make it novel. The first is that has

weights which can change through time. This means that additional processes, such as contact

processes, can be simulated on the graph as it evolves. The second benefit of the model is

that these weights are able to affect the underlying graph topology. This trait means that

effects such as quarantining infected individuals in a SIS model can be simulated. The network

model was demonstrated by two examples, a simple susceptible-infected-susceptible model, and

a social network model inspired by the well-known voter model. Links to a code repository are

provided, if the reader wishes to experiment with the model themself. The chapter also contains

work on fitting the graphs to data. The continuous time and general nature of the network

makes it difficult to specify a ‘one-size-fits-all’ method. As the standard approaches would
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not work, we turn to a sequential Monte Carlo alternative: approximate maximum likelihood

estimation via splitting. On low dimensional models it works, however it takes a significant

amount of computation time to achieve accurate results.

The fifth chapter focussed on the expected typical distance (ETD) of preferential attachment

models. The chapter starts with some small theoretical results regarding how the ETD changes

as the underlying graph is modified. For example, adding an edge between any two vertices in

the same component cannot increase the ETD. The theoretical study is followed by numerical

simulations. These simulations demonstrate that, during the construction of a preferential

attachment graph realization, graphs which result in a high ETD can be identified. This lead

to studying the use of sequential Monte Carlo methods to find the probability that the ETD is

large. The splitting algorithm was not as effective as hoped — each sample required too much

computation time to process. This lead to the application of sequential importance sampling,

which proved effective in m = 1 models, but not m ≥ 2.

The sixth chapter was concerned with simulating from exponential random graph (ERG)

models and estimating quantities of interest. The chapter begins with a description on how to

use perform a full simulation from an ERG model. By consuming a significant amount of mem-

ory, it is possible to save time — however the exponential time complexity is still far too steep

for non-trivial graphs. This leads to the application of the stratified splitting algorithm (SSA)

to the estimation problem, with a byproduct of samples approximately distributed according

to the underlying model. To test the algorithm, a Gibbs sampler and SSA were applied to

three models and the results compared. Gibbs demonstrated misleading results by producing

accurate estimates for simple statistics but clearly erroneous estimates for sophisticated graph

statistic tests. SSA did not suffer from such a problem, highlighting its potential use on smaller

graph models.

As we have seen, sequential Monte Carlo methods can provide solutions to modern random

graph simulation problems. The key drawback is graph size — sequential Monte Carlo struggles

to perform efficiently in higher dimensions, limiting the scope of the problems it can solve.

However, as demonstrated throughout this thesis, sequential Monte Carlo methods do work

well on smaller problems. Further research could find new tricks and techniques to expand the

types of problems sequential Monte Carlo can be applied to, as well as improving efficiency on

the problems investigated in this thesis.



Chapter 8

Bibliography

[1] Lada A Adamic and Bernardo A Huberman. Power-law distribution of the world wide

web. Science, 287(5461):2115–2115, 2000.
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