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Abstract 

This thesis makes use of advanced econometric tools to improve empirical frameworks 

and methods for measuring inequality of opportunity. In addition, we apply these empirical 

methods to measure inequality of opportunity in China ― a developing country with rising 

economic inequality and rapid economic growth. A conventional approach to measuring 

inequality of opportunity classifies outcomes such as the distribution of income, wealth and 

health status into two sets of factors: those beyond individuals' responsibility 

(“circumstance”) and those within individuals' responsibility (“effort”). Based on this 

framework, we model the correlation between circumstances and effort.  

In Essays I and II, we use a model allowing heteroscedasticity between circumstances and 

a latent class model to identify two different ways that circumstances could be affected by 

effort. First, different types, which are groups with individuals sharing the same 

circumstances, could have different effort distributions. Second, circumstances can have 

different effects on income for different levels of effort. Using these models, we measure 

inequality of opportunity in China at both provincial and national levels and find a higher 

inequality of opportunity than the conventional approach identifies.  

In addition, we examine educational inequality of opportunity using administrative data 

from a highly-ranked university.  This study is different from most empirical literature in 

measuring inequality of opportunity in that graduate outcome, the outcome of interest, is a 

categorical variable. We use the multinomial regression model and stochastic dominance 

to study how graduates’ family backgrounds affect their graduate outcomes. We find that 

those who are from a low-income or from rural family are disadvantaged in receiving high-

quality higher education. Even though they are enrolled in a top university, they have less 

opportunity for a postgraduate degree. 
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Chapter 1

Introduction

Economic inequality has received significant attention from academics, the general

public and policy makers. Reports show that the wealthiest 1% own more than 50% of the

world’s wealth by 2016 (Hardoon, 2017). However, research suggests that what concerns

people is not economic inequality itself but the economic unfairness (Starmans et al., 2017)

— when one is unfairly under-rewarded or over-rewarded due to “irrelevant” factors such

as gender, ethnicity, parents’ socioeconomic background, etc. Because of the aversion to

economic unfairness, some scholars and politicians argue that policy interventions related

to redistribution should be based on economic fairness rather than economic equality.

Researchers have designed measures of inequality of opportunity to show the level

of economic unfairness and capture the extent to which economic inequality is due to

irrelevant factors (Roemer, 1998). However, these measures could be potentially biased

due to limited data and the use of simplified empirical methods. This thesis makes use of

advanced econometric tools to improve empirical methods used in measuring inequality

of opportunity. In addition, we apply these new empirical methods to measure inequality

of opportunity in China — the most populous country in the world, where economic

inequality has been rising amid rapid economic growth.

Rising economic inequality in China has been well-documented. Measured by the

Gini coefficient, income inequality is reported to have increased from under 0.30 before

1980 to 0.55 in 2012 (Xie and Zhou, 2014). Educational inequality has also risen with

income inequality. Children living in urban areas or having rich parents receive more

years of schooling (Zhang et al., 2015) and are more likely to enter a college (Wang et al.,

2013). In terms of wealth inequality, a report conducted by Beijing University using

China Family Panel Studies (CFPS) found that the top one percent of households held

one-third of total assets, while the bottom 25 percent held only one percent (ISSS, 2014).

These rising inequalities should be a great concern to the public if they are deemed

“unfair”, that is, if inequalities are determined by factors beyond individuals’ control.

For example, the Hukou system, a household administrative system in China that re-

strains rural population from accessing education and employment in urban areas (Liu,

8



2005), has been found to contribute significantly to rural-urban inequality. Moreover, re-

gional disparities are reported to influence educational attainment (Hannum and Wang,

2006). To measure unfair inequality, we follow the framework of equality of opportunity

developed by Roemer (1998).

In the literature on economic inequality, most measures of inequality refer to inequality

of economic outcomes such as income, wealth and consumption. On the contrary, a

measure of inequality of opportunity shows the proportion of inequality of outcome that

is due to irrelevant factors — factors which are out of individuals’ control. Roemer (1998)

postulates that outcomes such as the distribution of income, wealth and health status

are determined by two sets of factors: those beyond individuals’ responsibility (denoted

as “circumstances”) and those within individuals’ responsibility (denoted as “effort”).

In order to achieve equal opportunity, he decomposes outcomes into circumstances and

effort, and argues that the effect of “circumstances” on inequality of outcome should be

eliminated. Based on this point of view, economists such as Roemer (1998) and Fleurbaey

and Peragine (2013) have established conceptual and theoretical frameworks to measure

inequality of opportunity.

Based on Roemer’s theoretical concepts and framework, researchers have measured

inequality of opportunity for different countries. Most of these studies focus on devel-

oped countries such as Norway (Almas et al., 2011), Sweden (Björklund et al., 2012),

Italy (Checchi and Peragine, 2010), France (Lefranc et al., 2009) and U.S. (Pistolesi,

2009). Others measure inequality of opportunity in Latin America including Ferreira

et al. (2003), Bourguignon et al. (2007), Ferreira and Gignoux (2008) and Paes de Barros

et al. (2009). Few studies consider inequality of opportunity in China.

However, both the theoretical foundations and empirical methodologies currently in

use have limitations. First of all, one may question whether inequality of outcome can

be conceptually separated into circumstances and effort (Kanbur and Wagstaff, 2014).

It is possible that one’s effort is strongly influenced by circumstances. For example, a

child from a single-parent family may exert less effort in school than other children. In

addition, it is difficult to identify some factors such as luck, risk and talent as either

circumstances or effort. In addition, most empirical studies treat parents’ socioeconomic

status as one’s circumstances. It is equivalent to saying that one’s circumstances depend

on parents’ effort (Kanbur and Wagstaff, 2014). Thus, implementing inequality of oppor-

tunity by eliminating parents’ influence may weaken the role of the family (Roemer and

Trannoy, 2015, pp. 56). In our study, we do not focus on the conceptual limitation of the

literature. We take the view of Roemer (1998) that circumstances and effort are corre-

lated with each other and the effects of circumstances on effort should also be eliminated

in order to achieve equal opportunity. This view is also adopted in empirical research,

e.g. Bourguignon et al. (2007) and Ferreira and Gignoux (2008).

The relationship between circumstances and effort is not just a conceptual issue. It

9



has implication for empirical work. For example, circumstances and effort are assumed

to be independent in most empirical literature. However, if they are correlated with each

other, neglecting it could lead to a biased measure of inequality of opportunity. Another

problem is that individual effort is difficult to observe. Therefore, most studies treat

effort as an unobserved variable. This unobserved effort, combined with some unobserved

circumstances, could also bias the measures of inequality of opportunity.

Due to these theoretical and empirical limitations, the concept and the measurement

of equality of opportunity is still in development. In the thesis, we focus mainly on the

empirical issues rather than the theoretical ones.

In Essay I, we examine unfair income inequality in contemporary China at both the

national and the regional levels using data from the China Family Panel Study, which

contains 33,600 individual observations for the years 2010 and 2012. Our empirical anal-

ysis includes zero-income observations using a Hurdle model and a Heckman model. In

addition, we study the correlation between circumstances and effort by parameterizing

heteroskedasticity between circumstances using maximum likelihood estimation. Shapley

decomposition is implemented to identify the contributions of each of the identified “cir-

cumstances” and “efforts” to income inequality. We find that more than 20% of income

inequality is due to the effect of circumstances on income through effort. This finding

proves the significant effect of circumstances on effort. An estimation with no regards

to this correlation could lead to an underestimated measure of inequality of opportunity.

Within this model framework, we identify gender, geographic factors and parents’ socioe-

conomic status as the three main factors contributing to unfair income inequality. At

the regional level, as we move from low-income to high-income regions, fair within-region

income inequality decreases significantly while unfair within-region income inequality in-

creases slightly, with a small net effect on total income inequality. This implies that

people suffer similar unfair within-region income inequality no matter in which region

they live.

In Essay II, we propose an alternative approach which treats unobserved effort as a

categorical latent variable. In the conventional empirical approach, effort is commonly

treated as unobserved and captured by the residual in a model. Moreover, effort and cir-

cumstances are assumed to be independent of each other. In this essay, individual effort

is assumed to be distributed around three levels: low, middle, and high. The assignment

probability to each class is determined by a probabilistic function. These probabilities

are estimated by a finite mixture model. Using this model, we allow the effects of cir-

cumstances on income to be different across levels of effort. Including these heterogenous

effects, our estimates show a higher unfair income inequality than the estimates obtained

by using a conventional approach. In addition, we find a substantial income gap between

low-effort and high-effort levels and that inequality of opportunity is the highest if every

individual exerts the middle-level effort.
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In Essay III, we shift the focus from income to education by investigating the ex-

pansion of tertiary education in China. The number of graduates from Chinese higher

education institutions has increased substantially in the last two decades. However, it

raises the question as to whether the higher education sector provides equal opportunity

to everyone amid the expansion. Our study examines whether individuals’ circumstances

could affect enrolment in tertiary education and graduates’ outcomes using the admin-

strative data from a highly-ranked university. Our study finds a widening rural-urban

inequality in tertiary education. Urban students are overrepresented in this university

and they have more choices after graduation than their rural counterparts. Another de-

terminant is family income. A child from a low-income family background is less likely

to enter this university and has fewer choices after graduation.

Through these three essays, this thesis contributes to the literature on inequality of

opportunity in three aspects. Firstly, it provides an improvement on the econometric

methodology for measuring inequality of opportunity. In the first essay, a heteroskedas-

tic model is designed to capture the effect of circumstances on effort. In the second essay,

we use a latent class model to capture the unobserved effort and to deal with the het-

erogenous effects of circumstances on income between levels of effort. These two empirical

approaches shed light on how circumstances and effort are correlated and the role effort

plays in inequality.

Secondly, this thesis enriches the literature of inequality of opportunity in China.

Since most of the literature on inequality of opportunity focuses on developed countries

and Latin American countries, this thesis makes use of Chinese datasets from the last

decade and estimates the measure of inequality of opportunity in income and educational

outcome in contemporary China.

Finally, this thesis extends the study in equal opportunity to access to education. Most

studies measuring inequality of opportunity in education treat academic performances as

the outcome. In the third essay, we extend the framework to examine youths’ abilities to

gain access to higher education. Our study fills the knowledge gap on how circumstances

affect access to higher education in China.

The thesis comprises a comprehensive literature review and three essays. It proceeds

as follows. Chapter 2 focuses on the current methodology of measuring inequality of

opportunity and previous empirical work on measuring inequality of opportunity in China.

Chapters 3 to 5 present three essays respectively. Chapter 6 offers a summary and

conclusion draw from the thesis.
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Chapter 2

Review of Literature

2.1 Introduction

Emerging only in the last two decades, equality of opportunity is a new and attractive

approach to improve social justice. It has a distinctive meaning in terms of equality of

outcome. In the traditional literature that examines economic inequality, most “inequal-

ities” are referred to as inequality of outcome — inequality such as income inequality,

wealth inequality and consumption inequality — while inequality of opportunity exam-

ines inequality of outcome in such a way that the allocation of justice and fairness should

be considered. It argues that there could be inequality which is fair and equality which is

unfair. The redistribution of inequality of outcome should eliminate the unfair part and

retain the fair one.

This literature review introduces the origin and development of the concept of equality

of opportunity, examines the establishment of theoretical frameworks and measurements,

presents the empirical works on inequality of opportunity in different countries and dis-

cusses the limitation and scope of this area.

This literature review proceeds as follows. Section 2 introduces the philosophical

background of equal opportunity. Section 3 examines theoretical models of equality of

opportunity. Section 4 reports the current methodology used in measuring inequality of

opportunity. Section 5 discusses the relationship between equality of opportunity and

other economic concepts and ideas such as development, income inequality and inter-

generational mobility. Section 6 provides empirical findings and measures inequality of

opportunity in China. Finally, the last section discusses the limitation and scope of

equality of opportunity.

2.2 Origins and Concepts of Equal Opportunity

The study on equal opportunity originates from the discussion of social choice, fair

allocation and distributive justice. Harsanyi (1953, 1955) and Rawls (1971) stated that
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a “just” social choice should be made by a rational agent with a fair mind. Rawls

(1971) assumed an “original position” so that “the veil of ignorance” is such an ”original

position“ from which the person makes a social choice under uncertainty without knowing

his own social status or circumstances in society (Rawls, 2009).

Under the assumption of “the veil of ignorance”, Rawls stated two principles of justice

(Rawls, 2009, p. 266):

First principle: Each person is to have an equal right to the most extensive

total system of equal basic liberties compatible with a similar system of liberty

for all.

Second principle: Social and economic inequalities are to be arranged so that

they are both: (a) to the greatest benefit of the least advantaged, consistent

with the just savings principle, and (b) attached to offices and positions open

to all under conditions of fair equality of opportunity.

The first principle assumes that every individual has a lexicographic preference on

“primary goods”, goods that “every rational man is presumed to want” (Rawls, 1971,

p. 92), such as rights, liberties, income and wealth, intelligence, health, etc. The lexi-

cographic preference is that given two sets of “primary goods” that include intelligence,

health, liberties, wealth, and etc., one only compare the next important good if the

amount of the most important is equal. John Rawls claimed that “liberty” is the most

important among these primary goods so that each person is to have an equal right for

it.

The second principle prescribes social and economic inequalities by applying “the

difference principle”(which is part (a) in the second principle) and “fair equality of op-

portunity”(which is part (b) in the second principle).

The difference principle obeys a maximin criterion which can be expressed as the

following equation if a person’s preferences can be represented by a utility function.

min[u1(x), . . . , uN(x)] > min[u1(y), . . . , uN(y)] (2.1)

where ui(x), i = {1, . . . , N} is the utility function for individual i to the social state

x; and where ui(y), i = {1, . . . , N} is the utility function for individual i to the social

state y. A rational individual will be risk averse so that he/she will prefer “the greatest

benefit of the least advantaged”. This maximin criterion has been used in the theoretical

framework of inequality of opportunity (Roemer, 1998).

In terms of the “fair equality of opportunity”, according to Rawls (2009, p. 57), there

are two natural senses in which positions and offices are open equally to all: equality

as careers open to talents and equality as fair equality of opportunity. The difference

between these two senses is that the former fails to eliminate social contingencies, e.g.
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family background, while the latter succeeds. Nonetheless, even for the latter sense,

individuals’ abilities may be affected by either all kinds of social conditions or their

natural talents. Rawls asserts that “there is no more reason to permit the distribution of

income and wealth to be settled by the distribution of natural assets than by historical

and social fortune.”

Rawls addresses the question of “moral desert” (Rawls, 2009, pp. 274); that is,

whether the distribution of income and wealth according to some characteristics or con-

ditions is morally deserved. He lists at least three different kinds of factors which are

not deserved by individuals: natural talent, all kinds of social conditions and class atti-

tudes which develop natural capacities; and other social conditions which contribute less

to individual abilities. This question of “moral desert” affects the later debate on the

responsibility cut between circumstances and effort in terms of measuring inequality of

opportunity.

Although Rawls provides a constructive theory of distributive justice, his theory has

been criticized by many academics. Harsanyi (1976) disagreed with the application of

the maximin principle and the difference principle because of their violation of the as-

sumption of rationality. He provided a counterexample of a person deciding between

working in a low-paid job in New York and working in a well-paid job in Chicago. He

assumed that the person was currently living in New York, and if he decided to work in

Chicago, he had to take a plane with a very small possibility of being killed in a plane

crash. According to the maximin principle, he would prefer to stay in New York to avoid

the worst consequence. Then he further argues that people may face a lot of these worst

possible outcomes. He goes on to say:

If you took the maximin principle seriously then you could not ever cross a

street (after all, you might be hit by a car); you could never drive over a

bridge (after all, it might collapse); you could never get married (after all, it

might end in a disaster), etc. If anybody really acted this way he would soon

end up in a mental institution (Harsanyi, 1976, p. 595).

Thus, Harsanyi (1976) prefers the expected-utility maximization principle rather than

the maximin principle or the difference principle proposed by Rawls.

Dworkin (1981a) provided an alternate approach which applies the expected-utility

maximization. He claimed that the talents and abilities individuals have are pure luck

(“brute luck” defined by Dworkins), which are out of individuals’ control; while there are

the other kinds of luck (“option luck”) such as the lottery and gambling which are within

individuals’ control. Thus, the distributive justice problem can be solved by transferring

“brute luck” to “option luck” by means of a hypothetical insurance system to transfer

the “brute luck” to the “option luck”.
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In addition to “moral desert”, another issue concerning distributive justice is whether

individuals’ taste or preference should be respected. A debate related to this issue is

between equality of resources and equality of welfare. The former claims that individuals

should share the same amount of resources which are available to be distributed (Dworkin,

1981a). The latter states that regardless of how many resources are provided, individuals

should enjoy the same welfare. These two claims contradict each other because equality

of resources might fail to balance equality of welfare and vice versa.

In order to deal with the incompatibility of equality of resources and equality of wel-

fare, Arneson (1989) proposed an equal opportunity for welfare. He defines an opportunity

as “a chance of getting a good if one seeks it” (Arneson, 1989, pp. 85). Then he claims

that each individual should face “equivalent arrays of options” and these arrays of options

should be effective such that one of the following is true (Arneson, 1989, pp. 86):

(1) the options are equivalent and the persons are on a par in their ability to

“negotiate” these options

(2) the options are nonequivalent in such a way as to counterbalance exactly

any inequalities in people’s negotiating abilities

(3) the options are equivalent and any inequalities in people’s negotiating abil-

ities are due to causes for which it is proper to hold the individuals themselves

personally responsible.

The improvement of equal opportunity for welfare is that it considers individual’s

choices and options. Only welfare loss due to factors beyond a person’s control will be

compensated.

Although equal opportunity of welfare seems to solve the compensation difficulty in

terms of taste and preference, the problem with inequality of welfare and equal oppor-

tunity of welfare is that people who have the same loss of resources (disabilities, for

example) may suffer different welfare loss. In contrast, for resource-egalitarians, the

same degree of disabilities yields the same level of resource loss. Thus, people who have

the same degree of disabilities should be compensated at the same level. To deal with

this welfare deficiency, Cohen (1989) proposed a broader concept of equal opportunity

for welfare —equal access to advantage. He argued that both welfare-egalitarians and

resource-egalitarians assume a number of dimensions of disadvantage and judge whether

inequality due to the disadvantage is acceptable or not. The difference between them is

that welfare-egalitarians focus on preference and welfare, while resource-egalitarians pay

attention to the different kinds of resources individuals have. However, “the right cut is

between responsibility and bad luck”(Cohen, 1989, pp. 922). He believes that disadvan-

tage should be compensated only when it is out of a person’s control, regardless of his

“unfortunate resource endowment and unfortunate utility function”. This responsibility-
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sensitive thinking on the problem of justice led later to the emergence of an economic

literature dealing with the concept of inequality of opportunity.

In addition, Sen (1995) proposed equality of capability as an alternative way to deal

with distributive justice and this concept has a relationship with inequality of opportunity.

He defined a person’s position in a social arrangement under two different perspectives:

“the actual achievement” and “the freedom to achieve”(Sen, 1995, pp.31). Then, he pro-

posed functionings consisting of a person’s achievement, and capability as “the person’s

freedom to choose from possible livings”(Sen, 1995, pp. 40). Thus, the capability to

achieve functionings is the real opportunity which represents people’s freedom to achieve

well-being. He argued that capability can better reflect the level of a person’s freedom

and opportunity than the “primary good” proposed by John Rawls and the “equality

of resources” suggested by Ronald Dworkin because “primary good” and “equality of

resources” are means to freedom, not freedom itself; though improving means to freedom

can help a society to achieve better freedom. However, Sen’s equality of capability also is

difficult to apply in empirical research (one attempt is the Human Opportunity Index by

Paes de Barros et al. (2009)). It is hard to quantify with the intention of measuring the

real inequality of capability; furthermore, some capabilities are congenital and difficult

to be equalized.

In summary, this section discusses the theoretical background of inequality of oppor-

tunity. The concept of inequality of opportunity originates from the idea that equalizing

outcomes is not enough to achieve distributive justice. Political philosophers such as John

Rawls, Ronald Dworkin, Amartya Sen, etc. propose a variety of theories and methodolo-

gies to improve distributive justice. These theories and debates have led to the emergence

of researches on inequality of opportunity in economics.

2.3 Theoretical Models of Equality of Opportunity

The theoretical models of equal opportunity are based on two basic principles: the

compensation principle and the reward principle. The compensation principle focuses on

compensating inequalities due to circumstances given the same degree of effort, while the

reward principle examines how individuals are rewarded under the same circumstances.

In terms of the compensation principle, individuals can be compensated before or after

their outcome have been made. An ex-ante compensation principle defines as a compen-

sation principle implemented before knowing one’s actual outcome. The compensation is

only based on circumstances that should not be the responsibility of individuals. An ex-

post compensation principle reallocates the resources after knowing individual outcomes.

In other words, the compensation is based on both circumstances and effort. Most litera-

ture use either the ex-ante or ex-post approach. However, the ex-ante approach is easier

to implement because it only requires the information on circumstances.
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In contrast, the reward principle values the inequality among those sharing the same

circumstances. For example, liberal reward principle states that income due to pure

effort should not be redistributed, while utilitarian reward focus on those who sharing

the same circumstances should have the same income. However, the reward principle is

incompatible with the ex-post compensation principles (Fleurbaey and Peragine, 2013).

In this section, we introduce several models developed based on these two principles.

2.3.1 A Model for Equal Opportunity Policy

Roemer (1998) proposed a model for an equal opportunity policy. He categorized the

population into a finite set of types T = 1, 2, . . . , T based on an individual’s circum-

stances. Within a type t, he defined an achieved level of individual outcomes (which

could be income and educational achievement) denoted by ut(e, φ) where e is a measure

of individuals’ effort and φ is a unitary social policy in the set of social policies Φ. He

assumed that the function ut is strictly monotone increasing in e.

In order to identify the effect of circumstances on the function ut, Roemer (1998)

examined the relationship between circumstances and effort and decomposes the raw

effort into the average effort for type t and the degree of effort π = Gt
φ(e) where G is the

distribution function of effort in type t given the policy φ. He argued that the influence of

circumstance is mainly due to the average effort for type t. An individual should only be

accountable for his effort compared with others having the same circumstances. Formally,

he defined:

vt(π, φ) = ut(et(π), φ) (2.2)

where vt is a function measuring the achieved level for a type t individual given his degree

of effort π and the policy φ.

Given the limitation of resources and the feasible set of policies Φ, an optimal policy in

line with equal opportunity can adopt the principle of justice proposed by Rawls (1971)

in which he claimed that “social and economic inequalities are to be arranged to the

greatest benefit of the least advantaged”.

Therefore, Roemer (1998) suggested an approach to maximize the least advantaged:

max
φ∈Φ

∫ 1

0

min
t
vt(π, φ)dπ (2.3)

A similar approach from Van De Gaer (1993) is:

max
φ∈Φ

min
t

∫ 1

0

vt(π, φ)dπ (2.4)

The difference between these two approaches is that Roemer’s (1998) approach chose

the minimum value of vt for each degree of effort π and Van De Gaer’s (1993) approach
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calculated the average degree of opportunity (the aggregation of vt for every possible

effort in that type t) for each type t first and then chose to maximize the type with the

least average degree of opportunity.

Table 2.1 shows an example with 2 types and 4 degrees of effort. Following Roemer’s

approach, the optimal policy should maximize the outcome of type 1 with 1 and 3 degree

of effort and the outcome of type 2 with 2 and 4 degree of effort. Based on Van De

Gaer’s (1993) approach, the optimal policy should consider maximizing type 2’s outcome

instead of type 1’s since type 2 has the lower average outcome. The two approaches are

indifferent if one type is unambiguously disadvantaged compared with the other types

(that is, for each π, there exists a t̂ whose achievement function vt̂(π) ≤ vt(π) for all

t ∈ T ).

Table 2.1: An example with 2 types and 4 degrees of effort

Type 1 Type 2
1 3 5
2 5 3
3 4 6
4 8 2

As the above example shows, one requires the information of degree of effort if ap-

plying Roemer’s (1998) approach while for Van De Gaer’s (1993) approach, one needs

to know the average outcome for each type. However, both approaches do not consider

the population for each degree of effort. For example, both approaches might be biased

if one degree of effort in type t represents only one individual and the other comprises

thousands.

2.3.2 A Fair Compensation Model

Bossert (1995) and Fleurbaey and Bossert (1996) postulated several principles on dis-

tinguishing the responsibility of an individual’s income. They decomposed the sources

of income into “relevant characteristics” and “irrelevant characteristics”. The former

are the individual characteristics whose influence to income should be considered “rele-

vant” and the latter are the characteristics whose effect to income should be considered

as “irrelevant”. This decomposition is more general and broader than the concept of

equal opportunity in which income (or other forms of outcome) should not be affected

by circumstances (factors out of an individual’s control) but by effort (factors within

an individual’s control). Effort could be one of the “relevant characteristics” but not

vice versa. Besides, effort could be ordinal (high effort vs. low effort) while “relevant

characteristics” could be nominal.
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Based on Bossert’s (1995) framework, one can derive two principles: Group Solidarity

(GS) and Individual Monotonicity (IM). The former is deduced from the perspective of

irrelevant characteristics — if one changes his irrelevant characteristics, everyone should

change a similar amount of their income or keep the same income as before; while the

latter is derived from the perspective of relevant characteristics — if one changes his

relevant characteristics, no redistribution is needed.

Based on these two basic principles, researchers designed several redistribution mecha-

nisms to identify situations where the allocation is fair and equal opportunity is satisfied.

These redistribution mechanisms are designed to satisfy group solidarity or individual

monotonicity. Besides, they can also be designed to satisfy Pareto efficiency or the no-

envy principle. Using redistribution mechanisms, one can calculate the counterfactual

income distribution when the allocation is fair (equal opportunity is satisfied) and then

measure the distance between the real income and the counterfactual income.

However, there are some drawbacks when applying this approach. First, one needs

a reference or benchmark vector for personal characteristics. These benchmarks are

computed from specific redistribution mechanisms. In consequence, different benchmarks

yield different results. Second, it takes several steps to calculate the measurements,

which might increase the error. Besides, it is still not clear how to treat the error — as

irrelevant or relevant characteristics. The last shortcoming is that this approach assumes

the independence between the irrelevant and relevant characteristics. It neglects the

situation when the relevant characteristics are affected by the irrelevant characteristics.

In this section, we briefly reviewed the allocation mechanisms and their implementa-

tion in empirical studies.

2.3.2.1 The Notation

The population in a given society is N = 1, . . . , n, where n ≥ 2. There are r ∈ N
individual characteristics that are considered “relevant” and s ∈ N “irrelevant”. Person

i’s irrelevant characteristics are described by aSi ∈ Rs. The characteristics vector of i ∈ N
is ai = (aRi , a

S
i ) ∈ Rr+s. A characteristics profile is given by a = (a1, . . . , an) ∈ Rn(r+s),

and it can be partitioned into aR = (aR1 , . . . , a
R
n ) ∈ Rnr and aS = (aS1 , . . . , a

S
n) ∈ Rns.

The set of possible characteristics vectors is Ω = ΩR ×ΩS, where ΩR ⊆ Rr, ΩS ⊆ Rs,

and ΩR,ΩS 6= ∅.
Furthermore, each agent has his/her non-negative individual income yi ∈ R+. Let the

vector y = (y1, . . . , yn) ∈ R+
n. The set of possible income vectors is y ⊆ R+

n.

An economy e is a pair (y, a) ∈ y×Ω. Let E be the domain of economies. A complete

and transitive binary relation %O is defined to compare inequality of opportunity between

two economies. ∼O represents two economies having the same inequality of opportunity.

If %O is continuous on y × Ω, we can find a function I : y × Ω 7→ R such that I(e)
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represents the measurement of inequality of opportunity in economy e.

2.3.2.2 The Redistribution Mechanisms

The concept of equal opportunity states that inequality due to relevant characteris-

tics is acceptable and inequality due to irrelevant characteristics is offensive. Therefore,

(Fleurbaey and Bossert, 1996) purposed two basic principles for redistribution: Group sol-

idarity (GS) based on irrelevant characteristics and Individual monotonicity (IM) based

on relevant characteristics.

GS says that if one agent changes his irrelevant characteristics, the measurement

of inequality of opportunity should not change when every agent’s income increases or

decreases by the same amount.

Axiom 2.3.1 (Group solidarity (GS)) ∀a, â ∈ Ω,∀k ∈ N , aSk = âSk and aj = âj,∀j ∈
N \ {k}. e ∼ ê if and only if ŷk − yk = ŷj − yj,∀k, j.

IM says that if one agent changes his relevant characteristics, the measurement of

inequality of opportunity should not change when only this particular agent’s income

changes.

Axiom 2.3.2 (Individual Monotonicity (IM)) ∀a, â ∈ Ω,∀k ∈ N , aSk = âSk and

aj = âj,∀j ∈ N \ {k}. e ∼ ê if and only if ŷj = yj,∀j

Bossert (1995) proved that IM and GS are compatible only if the income is an addi-

tively separable function of relevant and irrelevant characteristics. He assumed that an

income function is a mapping f : Ω 7→ R++, a = (aR, aS) 7→ f(a). In other words, an

agent’s income is determined by his or her own characteristics only. He also suggested a

possible generalization that allows income to depend on the entire characteristics profile.

The redistribution mechanism might also aim to satisfy other allocation principles

such as the Pareto efficiency and no-envy allocation rule. Foley (1967) defined no-envy

allocation as follows.

Definition 2.3.1 (No Envy Allocation) Given e ≡ (R,Ω) ∈ E, the allocation z ∈
Z(E) is envy-free for e, written as z ∈ F (e), if for each pair i, j ⊂ N, ziRizj.

The no-envy allocation states that an allocation is said to be fair if nobody prefers

anybody else’s bundle over his own. The advantage of no-envy allocation is that “it

treats economic agents symmetrically, is ordinal in nature, and is free of interpersonal

comparisons of utility” (Pazner and Schmeidler, 1978). However, Pazner and Schmeidler

(1978) showed that among all Pareto-efficient allocations, none can be found that is fair

under the standard Arrow-Debreu production economies.

In order to have an allocation which never conflicts with Pareto efficiency, Pazner and

Schmeidler (1978) defined an egalitarian-equivalent allocation.
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Definition 2.3.2 (Egalitarian Equivalence) Given e ≡ (R,Ω) ∈ E, the allocation

z ∈ Z(e) is egalitarian-equivalent for e, written as z ∈ E(e), if there is z0 ∈ Z(e) such

that zI(z0, . . . , z0)

Pazner and Schmeidler (1978) explained the egalitarian-equivalent allocation as fol-

lows:

“An allocation is said to be egalitarian-equivalent if there exists a fixed com-

modity bundle (the same for each agent) that is considered by each agent

to be indifferent to the bundle that he actually gets in the allocation under

consideration. It is shown that Pareto-efficient and egalitarian-equivalent al-

locations always exist under (even weaker than) the standard conditions on

the economic environment.”

Based on the fair allocation rule, Bossert (1995) defined a redistribution mechanism

to eliminate the effects of “irrelevant” characteristics given that income is a function

f : Ωn 7→ RN
++ of individual’s own characteristics.

Definition 2.3.3 A redistribution mechanism is a mapping F : Ωn 7→ RN
++, a 7→ F (a)

such that,
n∑
i=1

Fi(a) =
n∑
i=i

f(ai),∀a ∈ Ωn (2.5)

If income functions f are additively separable in R and S, the following mechanism

F 0 seems very plausible.

F 0
k (a) ≡ g(aRk ) +

1

n

n∑
i=1

h(aSi ),∀a ∈ Ωn,∀k ∈ N. (2.6)

Fleurbaey and Bossert (1996) found two alternative redistribution mechanisms to

avoid the impossibility theorem and release the assumption of additive separability.

The egalitarian-equivalent mechanism FEE is defined by

FEE
k (a) ≡ f(aRk , ã

S)− 1

n

n∑
i=1

[f(aRi , ã
S)− f(ai)],∀a ∈ Ωn,∀k ∈ N (2.7)

The conditionally egalitarian mechanism FCE is defined by

FCE
k (a) ≡ f(ak)− f(ãR, aSk ) +

1

n

n∑
i=1

f(ãR, aSi ),∀a ∈ Ωn,∀k ∈ N (2.8)

Moreover, Fleurbaey and Bossert (1996) proposed two additional redistribution mech-

anisms — the average egalitarian-equivalence and average conditionally egalitarian. How-

ever, these two mechanisms require more information than FEE and FCE. In equation
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(2.7) and (2.8), either the information of observed relevant characteristics or the observed

irrelevant characteristics are required, but not both.

2.3.2.3 Econometrics Issue for the Equal Opportunity Approach

The income function f can be estimated by linear regression.

log(f(a)) = β̂0 + β̂Sa
S + β̂Ra

R + ε̂ (2.9)

Devooght (2008) used FEE to calculate the norm income — i.e. the income which

achieves equal opportunity after redistribution and uses the distance measures proposed

by Cowell (1985) to measure the distance between the observed income and the norm

income.

There are several issues related to this model:

Error term

The EE and CE mechanisms are based on the assumption of the anonymous redis-

tribution mechanism (Fleurbaey and Bossert, 1996), which implies that persons with

identical characteristics should have the same pretax income. However, during the esti-

mation, the error term will cause the violation of this assumption. Thus, this error term

should be a new variable either assigned to aR and aS. Both Almas et al. (2011) and

Devooght (2008) treated the error term as the irrelevant characteristics aC . In Devooght

(2008), the inequality due to irrelevant characteristics is 90-97.5% and it is 75% in Almas

et al. (2011). The error term might contribute to the high inequality due to irrelevant

characteristics.

Responsibility Cut

Devooght (2008) and Almas et al. (2011) considered the responsibility cut as a decision

to be made by society. They provided empirical results with many possible cuts. For

example, Devooght (2008) considered hours worked as the only responsibility variable

in one reference group and then constructed several other groups by gradually moving

variables from the irrelevant variables aS to the responsibility variable aR.

The benchmark or reference vector

To apply the Egalitarian Equivalence mechanism, one needs to calculate the reference

or hypothetical irrelevant characteristics ãS. Thus, one needs to choose a fixed benchmark

level of the compensation variables. Devooght (2008) suggested using the profile of the

most disadvantaged. He explains:

. . . anyone who works one hour extra (∈ aR) is entitled to keep the fruits of

his additional effort as far as his extra income is independent of his compen-

sation variables is taken to be the income one could earn if one were the most

disadvantaged in terms of earning power or the least marginally productive
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member of the economy. If you earn more than the least advantaged for the

same level of the responsibility variables, this is due to personal characteris-

tics of which you are the lucky possessor, and for that very reason is open for

redistribution (Devooght, 2008, pp. 289).

The Correlation between Relevant and Irrelevant Characteristics

This model requires relevant and irrelevant characteristics to be independent with

each other.

2.3.3 An Opportunity Set Approach

Based on the definition of fairness proposed by Kolm (1973) and Thomson (1994),

“equal opportunity” means that individuals in the society should face an identical op-

portunity set. Following this definition, Kranich (1996) developed an opportunity set

approach. He assumed that each individual i faces a finite set of opportunities Oi and

O = (O1, . . . , Oi, . . . , OI) is the set of all individuals’ opportunity sets. He defined a

cardinality difference relation % where O % O′ means the difference of the cardinalities

of opportunity sets between individuals in O is less than that in O′.

Basically, his approach identifies how many options or opportunities each individual

has. An “equal opportunity” society means that each individual is provided the same

amount of opportunities.

However, this theoretical approach is difficult to implement empirically because re-

searchers can only observe the choices individuals made rather than the options or op-

portunities available to choose. In Chapter 5, we use a multinomial regression model

to study university graduate outcomes. This model assumes that every graduate has

three options in their opportunity sets. Instead of measuring the cardinality of every

graduate’s opportunity set, we measure the probability of realising each option for each

graduate. This approach is empirically more plausible than the opportunity set proposed

by Kranich (1996).

2.3.4 The Stochastic Dominance Approach

Lefranc et al. (2008) and Lefranc et al. (2009) applied the stochastic dominance criteria

to rank the opportunity sets offered by difference circumstances. In their approach,

circumstances are treated as lotteries in such a way that inequality of opportunity is

determined by either unequal returns to the lotteries (circumstances) or unequal risk

of the lotteries. Assuming that individuals with circumstances c earn income y, the

definitions of stochastic dominance are as follows:

Definition 2.3.4 The circumstances c first-order stochastic dominance (FSD) the cir-

cumstance c′, i.e. c %FSD c′ iff:
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F (y|c) ≤ F (y|c′), ∀y ∈ R+ (2.10)

Definition 2.3.5 The circumstances c second-order stochastic dominance (SSD) the cir-

cumstance c′, i.e. c %SSD c′ iff:∫ y

0

F (x|c)dx ≤
∫ y

0

F (x|c′)dx,∀y ∈ R+ (2.11)

The SSD is equivalent to generalized Lorenz dominance (GLD). Formally:

∀y ∈ R+c �SSD c′ ⇔ ∀π ∈ [0, 1]GLF (|̇c)(π) ≥ GLF (|̇c′)(π) (2.12)

where GLF (|̇c)(π) is the value of the generalized Lorenz curve at π for the distribution of

F (|̇c).
Based on the definition of stochastic dominance, equality of opportunity is defined as:

Definition 2.3.6 Equality of opportunity is achieved if and only if @c, c′ ∈ C such that

c %SSD c′.

In the definition of equality of opportunity, Lefranc et al. (2008) used the SSD criterion

instead of FSD. This is because, in the empirical analysis, effort is usually difficult to

observe. Given only the information of circumstances, the outcome is uncertain. The

advantage of using the SSD criterion is that it takes not only the returns of the lottery

but the risk or uncertainty into consideration.

Since the SSD criterion is equivalent to the generalized Lorenz curve, inequality of

opportunity can be directly identified by comparing generalized Lorenz curves of different

circumstances. However, if the Generalized Lorenz curves intersect with each other, it is

uncertain which circumstances provide more opportunities. Another disadvantage of the

stochastic dominance is that it does not provide “a quantification of how far those groups

are from one another”(Ferreira et al., 2011). It cannot answer to which extent there is

inequality of opportunity is in an economy.

Another limitation is that it cannot measure the relative importance of any factor. For

example, suppose there are two factors —gender and parents’ income—, should we find

{male,rich} is the most advantageous type and {female,poor} is the least advantageous

type through stochastic dominance, we still would not know which factors, gender or

parents’ income, have the greater effects on their level of advantage. As the number of

categories expands, it is difficult to analyse data (Lefranc et al., 2008).

2.3.5 A Summary of the Theoretical Model

In this subsection, we compare the model of equality of opportunity of Roemer (1998)

and Van De Gaer (1993) with the fair compensation model of Fleurbaey and Bossert

(1996) and the stochastic dominance approach (Lefranc et al., 2008).
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Table 2.2 lists the differences between these four models on five different aspects.

Roemer (1998),Van De Gaer (1993) and Lefranc et al. (2008) use finite and discrete

circumstance. They categorized different circumstances into finite types. When applying

Roemer (1998) and Van De Gaer (1993) in an empirical study, one can use both non-

parametric and parametric approaches. In contrast, Fleurbaey and Bossert (1996) allowed

the circumstance to be a continuous variable so it might be better to use parametric

approaches when applying Fleurbaey’s and Bossert’s (1996) model. Lefranc et al. (2008)

applied non-parametric approaches with a stochastic dominance criterion.

The second difference between the model of equal opportunity policy and the fair

compensation model is that the model of equal opportunity policy uses the degree of effort,

the relative measure of effort, instead of the level of effort which is the absolute measure

of effort. Roemer (1998) argued that the level of effort is correlated with circumstance

since the difference in average of effort between types is out of the individual’s control and

only the degree of effort comparing with others in the same type should be considered as

effort. Based on this argument, Fleurbaey’s and Bossert’s (1996) model might retain more

bias from the correlation between effort and circumstance when measuring inequality of

opportunity. Lefranc et al. (2008) and Van De Gaer (1993) did not require the effort

being observed.

In the fourth column in Table 2.2, we list whether the model adopts an ex-ante or

ex-post approach. In this context, ex-ante means inequality of opportunity is measured

before knowing individuals’ effort and ex-post means inequality of opportunity is mea-

sured after knowing individuals’ effort. The former does not require the observation of

effort while the latter does. Among four theoretical models, Lefranc et al. (2008) and

Van De Gaer (1993) are ex-ante, which means one can measure inequality of opportunity

without observation of effort.

In the fifth column, Table 2.2 shows that only Fleurbaey and Bossert (1996) require

a reference vector. It is possible that choosing different reference vectors might influence

the measurement of inequality of opportunities.

Furthermore, the two models of equal opportunity policy consider the redistribution

with limited resources so the most disadvantaged group will be considered first. However,

the fair compensation model redistributes under a pure allocation framework. The model

first computes the ideal fair allocation with equal opportunity and then measures the

distance between the reality and the counterfactual equality. Thus, the two models of

equal opportunity policy are the second best approach and the fair compensation model

is the first best approach.
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Table 2.2: The Comparison of Theoretical Model

Model Circumstance Effort The Ap-
proach

Reference
Vecter

1st or 2nd
Best

Roemer (1998) finite/discretedegree of
effort

Ex-post No 2nd

Van De Gaer (1993) finite/discretedegree of
effort

Ex-ante No 2nd

Fleurbaey and Bossert (1996) could be
continuous

level of ef-
fort

Ex-post Yes 1st

Lefranc et al. (2008) finite/discretedegree of
effort

Ex-ante No 2nd

2.4 The Measurement of Inequality of Opportunity

2.4.1 The Outcome of Interest in Measuring Inequality of Opportunity

Equal Opportunity can be advocated in terms of many different inequalities of out-

comes. A typical inequality of outcome is income inequality (Paes de Barros et al., 2009).

Others are educational inequality (Ferreira and Gignoux, 2014), health inequality (Jusot

et al., 2013). Most outcomes of interest are continuous variables. Some outcomes could

be binary variables (Foguel and Veloso, 2014) or categorical variables (Dias, 2009). For

a continuous outcome, a linear or log-linear specification is widely used. For a binary

variable or a categorical variable, nonlinear models such as a logit model, an ordered

probit or a multinomial model are more appropriate. In addition, one can use a stochas-

tic dominance test to evaluate inequality of opportunity (Lefranc et al., 2008) between

circumstances.

Given different outcomes of interest and different model specifications, the measures

of inequality of opportunity might not be comparable. Measures can only be compared

using the same outcomes of interest and the same model specifications.

2.4.2 Selection of Circumstances and Effort

Roemer’s framework divides inequality of outcome into circumstances and effort. This

raises questions about how to distinguish circumstances and effort. To clarify this ques-

tion, first we need to define inequality of outcome; that is, what kind of inequality are

we dealing with (just as “inequality of what” proposed by Sen (1995)). Second, factors

affecting inequality of outcome should be identified, e.g. gender, IQ, parents’ income, etc.

The last step is that these factors should be distinguished with respect to the responsible

factor (effort) and the non-responsible factor (circumstances).

In terms of “inequality of what”, although different philosophers propose different

kinds of inequality (e.g. inequality of welfare, inequality of resources, inequality of ca-

pability, etc.), most empirical literature uses earning inequality, wealth inequality and
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educational inequality as inequality of outcome. The outcome of interest has been dis-

cussed in the previous section. In this section, we focus on the last two steps.

2.4.2.1 Factors Contributing to Inequality

In considering economic inequality, including income inequality and wealth inequality,

we may distinguish between four different types of factors that account for inequality of

outcome: inheritable factors, personal choices and preferences, social background factors,

and luck.

Inheritable factors

Inheritable factors are the genetic or non-genetic influences from parents. The genetic

influence is the talent or innate ability inherited from parents. The non-genetic influence

includes the family’s cultural background and the intergenerational transfer of physical

and human capital from parents to children. The former refers to “meme”, an analogy

between cultural and genetic transmission proposed by Dawkins (2006). As mentioned

by Becker and Tomes,

Some children have an advantage because they are born into families with

greater ability, greater emphasis on childhood learning, and other favourable

cultural and genetic attributes. Both biology and culture are transmitted

from parents to children, one encoded in DNA and the other in a family’s

culture (Becker and Tomes, 1986, pp. S4)

Thus, the cultural transmission from parents to children can be seen as another endow-

ment determined when children are born.

Becker and Tomes (1986) emphasised intergenerational transfer through parents’ hu-

man capital investment, and monetary and asset transfers. The rich may invest more

in children’s human capital, may save more money in old age (Carroll, 1998) and may

leave larger bequests (Nardi, 2002). Although most literature concentrates on the role

of parents’ occupation and income, the role of intergeneration transfers such as human

capital investment, expenditure on children, and bequest is neglected. Furthermore, the

willingness to invest in children may vary. It is even more difficult to measure parents’

willingness to invest in their own children.

Personal choices and preferences

Personal choices and preferences also can cause inequality of outcome among individ-

uals. People face choices and uncertainties every day. Their differences in preferences and

decisions may largely influence their outcomes. One important issue is portfolio choice.

Rich households hold completely different portfolios compared with poor households. For

example, rich households own more risky assets than poor households (Bertaut and Starr-

McCluer, 2000). Studies of inequality of opportunity seldom include personal choices and

preferences because it is hard to observe and measure personal choices and preferences.
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Social background

The third type comprises the social background factors including the bias and dis-

crimination in society, geographical disparity and government policy. Inequalities caused

by social discrimination such as gender inequality, race inequality and regional disparities

have been widely studied by researchers. More literature on inequality of opportunity

will also consider these social background factors. Government policy also will affect

inequality of opportunity. Although some redistribution policies do reduce inequality,

these may not reduce inequality of opportunity.

Luck

The last factor is luck. The idea of luck referred to as “luck egalitarianism” was first

proposed by Dworkin (1981b). There are four different kinds of luck defined by Dworkin

(1981b): social background luck, genetic luck, brute luck and option luck. (Lefranc et al.,

2009)

Social background luck is individuals’ difference in social background beyond their

control. Individuals cannot decide either the country or region they were born or their

parents’ income or occupation; however, these differences determine the circumstances of

the rich or poor. A person born in a poor region will obviously have fewer opportunities

than in a rich region.

Genetic luck is the difference in inheritance of innate characteristics and abilities

from parents. Some people born with talents inherited from their parents. This genetic

endowment may cause some people richer than others.

Brute luck is the luck that provides no choice to an individual. For example, if one is

hit by a car on the street, it is totally out of that person’s control. In contrast, option luck

is the luck that provides choices to an individual such as lottery, gambling, etc. Dworkin

(1981a) proposed a hypothetical insurance to hedge the bad luck—social background luck,

genetic luck, brute luck. This insurance provides choices to individuals so that every kind

of luck eventually becomes option luck.

Dworkin (1981a) argued that option luck provides choices to individuals, and hence

individuals are responsible for their option luck. If every luck can be transferred into

option luck by means of the hypothetical insurance, their resources could be equalized

justly.

Since most studies just take social background luck (parents’ income and occupation)

into consideration, the measurement of inequality of opportunity excludes genetic luck

and brute luck. Presumably, it is absorbed in the random component of the model.

2.4.2.2 Distinguishing Circumstances and Effort

After identifying the factors influencing inequality, we need to distinguish between

factors that account for circumstance and those that do not. The question is referred to
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as “responsibility cut” in literature.

Table 2.3: A Literature Review on Responsibility Cut

Reference Responsibility variable Non-responsibility vari-
able

Outcome

(Checchi and Peragine,
2010)

unobservable the level of parents’ ed-
ucation, region of birth,
sex

individual annual earn-
ings

(Bourguignon et al.,
2007)

unobservable Race, parental school-
ing, region of birth, fa-
ther’s occupational sta-
tus

hourly earnings

(Zhang and Eriksson,
2010)

unobservable Parental household in-
come, Gender, parental
education, parental
occupational status,
household size, region,
urban or rural area

average household dis-
posable income

(Björklund et al., 2012) unobservable Parental income,
parental education,
own IQ, number of
siblings, body mass
index, family structure

total market income be-
fore taxes

(Checchi et al., 2010) unobservable Parental education,
parental occupation,
gender, nationality,
geographical location

post-tax individual
earnings

(Pistolesi, 2009) unobservable age, parental educa-
tion, father’s occupa-
tion, ethnicity, region of
birth

individual annual earn-
ings

(Ferreira and Gignoux,
2008)

unobservable gender, ethnicity,
parental education,
father’s occupation,
region of birth

household per capita in-
come

Table 2.3 shows how literature allocates responsibility. There is no accepted standard

in responsibility allocation. Consequently, it is hard to compare these empirical researches

with each other. Besides, different literature may have different errors caused by different

responsibility cuts.

In empirical research, there are three main ways to allocate the responsibilities be-

tween circumstances and effort. Most literature concerns family background and social

background as circumstances. Some literature such as Björklund et al. (2012) considers

genetic influence, such as IQ as circumstances. One literature (Lefranc et al., 2009) even

takes luck into consideration.

Since most literature pays no attention to genetic influence, if we can estimate how

these genetic factors influence inequality of opportunity, we may be able to estimate the

bias in the empirical studies generated by ignoring genetic factors. One study conducted

by Björklund et al. (2012) found that IQ is the most significant factor behind income

inequality in Sweden. It accounts for 11.5% in total income inequality compared with

the second factor, parent income (7.1%). If genetic effect widely varies from country

to country, it is essential for researchers to control for it when measuring inequality of

opportunity.

29



There is some evidence of genetic effects on effort. Mosing et al. (2014) studied 10,500

twins’ music performances in Sweden. They found that the genetic factors affected both

their willingness to practice and their skills. Music practice was substantially related to

heredity (40% —70%). Moreover, their study excluded the possibility of the causal effect

of music practice on musical ability. This result indicates that genetic variation affects

both ability and inclination to practice.

Another study by Hambrick and Tucker-Drob (2014) shows a similar result. They

looked for evidence for gene-environment correlation and interaction with respect to music

accomplishment. They found that genetic factors played a more important role in music

accomplishment compared with music practice. It is more likely that “genetic potentials

for skilled performance are most fully expressed and fostered by practice”.

2.4.3 Approaches to Measure Inequality of Opportunity

To measure inequality of opportunity, most of the literature starts from estimating

counterfactual distributions. However, researchers apply different theoretical frameworks,

make different assumptions and use different empirical models.

For example, some researchers use parametric estimates (Bourguignon et al., 2007)

and others prefer non-parametric estimates (Checchi and Peragine, 2010). Ramos and

Van de gaer (2016) discussed the pros and cons of the parametric approach. They ar-

gued that if non-parametric approach is applied, each group of data should contain a

sufficient number of observations. Because circumstance is multi-dimensional, if more

circumstances are added, number of types grows exponentially. As a consequence, the

observation for each type would be very few. In addition, if one of the circumstances

is continuous, the observation for each type would not be enough for non-parametric

methodology as well. Another advantage of the parametric approach is that one can

measure inequality caused by one circumstance (or a set of circumstances) by controlling

other sets of circumstances. Thus, the partial effect of a particular circumstance is able

to be measured.

Using a parametric approach (Bourguignon et al., 2007), the outcome of interest can

be ideally modelled in the following equation:

y = f(c, e, u) (2.13)

where y is the outcome of interest, c is the vector of circumstances, e is the vector

of efforts and u is an error term capturing variation due to unobserved factors. Since

circumstances and effort have limited categories, population can be grouped into types in

which individuals share the same circumstances, and tranches in which individuals share

the same effort.

The function f in equation (2.13) could be either linear or non-linear. Although a lin-
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ear parametric approach would be more easily applied, it could underestimate inequality

of opportunity compared with a nonlinear parametric approach (Hufe and Peichl, 2015).

To show different methods used in measuring inequality of opportunity, we further assume

a linear parametric model:

y = αc + βe + u (2.14)

where α, β are vectors of coefficients for vector c and e.

Given the linear parametric model, counterfactual distributions can be generated

based on the estimators of the coefficients in equation (2.14). Inequality of opportunity

can be either measured directly by the counterfactual distributions or indirectly by the

distance between the counterfactual distributions and the real distributions of y:

IOPD = I(ỹ) (2.15)

IOPI = I(y)− I(ỹ) (2.16)

where IOPD is the direct measure of inequality of opportunity, IOPI is the indirect

measure of inequality of opportunity and ỹ is the counterfactual distribution given that

effort is fixed. The difference between direct and indirect measure is that direct measure

estimates inequality of opportunity IOP by only considering the contribution of circum-

stances, while indirect measure measures the distance between total inequality and equal

opportunity by eliminating the inequalities due to differences in circumstances.

To estimate inequality of opportunity using direct and indirect measures, one should

first determine how to compute the counterfactual distributions. The estimation of the

counterfactual distributions depends on the theoretical frameworks and data limitations.

For example, effort is normally difficult to observe in datasets. In this case, one can

use an ex-ante approach (Van De Gaer, 1993). The counterfactual distribution can be

the fitted distribution given circumstances:

ỹ = α̂c (2.17)

where α̂ is the estimators of an OLS model in which we assumed that effort is unobserved

and in the error term u:

y = αc + u (2.18)

The advantage of this approach is that only the information on circumstances are

required. However, inequality of opportunity is underestimated using this approach be-

cause some unobserved circumstances could also be included in the error term. Re-

searchers have found substantial measurement error due to unobserved circumstances.

Using Monte Carlo simulations, Lara Ibarra and Martinez Cruz (2015) found that miss-
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ing a relevant circumstance could lead to up to 80% downward bias. Balczar (2015) also

found similar bias using the data of toddlers where effort plays no role.

To address the problem of underestimation, Niehues and Peichl (2014) used a panel

data from Germany and the United States and estimated inequality of opportunity using

a fixed-effects regression. In their fixed effect model, they assumed that all circumstances

are unobserved and interpreted the time-invariant individual effect as the effect of all

circumstances. In consequence, their results yielded an overestimated measure.

An alternative approach is to use a non-linear regression. Hufe and Peichl (2015) re-

leased the linearity assumption in a conventional framework and included the interaction

terms of circumstances in the regression. Their results showed a 50% upwards correction

of the downward bias. Donni et al. (2015) used a latent class approach to model the

unobserved circumstances. Their method also partially corrected the downward bias.

Inequality of opportunity can be more precisely estimated if effort can be observed.

In this case, an ex-post approach (Roemer, 1998) can be more appropriate to measure

inequality of opportunity. A counterfactual distribution can be generated given circum-

stances and effort:

ỹ = α̂c + β̂e (2.19)

where α̂ and β̂ are the OLS estimators of parameters in the model.

A direct measure given this counterfactual distribution is to replace each individual’s

income with the average of ỹ for the type each individual belongs to; that is, for each

individual i in type j, suppose the number of individuals in type j is Nj,

ydi =
1

Nj

Nj∑
1

ỹji (2.20)

where yd = {yd1 , · · · , ydi , · · · , ydN} is the counterfactual distribution for the direct measure

and ỹji is the outcome for individual i in j type.

An indirect measure is to replace individual’s income with the average of ỹ for each

tranche; that is, for each individual i in tranche k, suppose the number of individual in

tranche k is Nk,

yIi =
1

Nk

Nk∑
1

ỹki (2.21)

where yI = {yI1 , · · · , yIi , · · · , yIN} is the counterfactual distribution for the indirect mea-

sure and ỹki is the outcome for individual i in k tranche.

After generating ydi and yIi , the direct and indirect measures can be estimated using

equation (2.16).

One issue for the ex-post approach is that it requires the data on effort. However,

effort is related to personal choices and preferences and is hard to be observed. In the
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second essay, we contribute to the literature by proposing a latent class model to capture

the unobserved effort.

Another issue for the ex-post approach is that it is incompatible with the ex-ante

approach. Thus, norm-based measures choose a weakened version of this principle by

using norm income. (See Ramos and Van de gaer (2016) Almas et al. (2011) Devooght

(2008)). In order to find the norm income for a particular individual, first we need to

define a redistribution mechanism under which both ex-ante and ex-post compensation

are satisfied to some extent. Then the norm income is computed based on the mechanism

and treated as the income a particular individual should get. The distance from the real

income to the norm income is the inequality of opportunity.

One distribution mechanism is called “the generalized proportionality allocation” de-

veloped by Bossert (1995) and Almas et al. (2011).

zGPPi =
g(ei; ·)∑
j g(ej; ·)

∑
i

yi

where g(e; ·) = 1
n

∑
j f(ei, cj)

Another distribution mechanism was developed by Fleurbaey and Bossert (1996) and

is called “the egalitarian equivalent allocation”.

FEE
k (c, e) := f(ek, c̃)− f(c, e)∀c, e ∈ Ωn,∀k ∈ N.

Ramos and Van de gaer (2016) argued that norm-based measure should be used

instead of the indirect measure because an indirect measure is only the decomposition

of inequality of outcome which ignores inequality of opportunity itself. It answered the

question of to which extent inequality of outcome is due to inequality of opportunity.

In contrast, direct measure and norm-base measure are concerned with the inequality of

opportunity directly.

2.4.4 The Partial Ordering of Inequality of Opportunity

Inequality of Opportunity can also be ranked using the partial ordering approach.

On the one hand, Between groups of those who share the same circumstances, less in-

equality is preferred for an equal opportunity policy. On the other hand, within groups

of those who exert the same effort, less inequality is preferred for an equal opportunity

policy. Following either criteria, one can use a partial ordering such as the Lorenz or the

generalized Lorenz partial ordering to rank difference policies (Peragine, 2004b). Several

criteria on the basis of equality of opportunities can also be derived and examined using

a partial ordering approach (Peragine, 2004a).

Rodrguez (2008) applies a partial equality-of-opportunity ordering to compare the

degree of equality of opportunity among 12 countries. He found that Denmark dominates
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all other economies in terms of post-tax income.

The benefit of using the partial ordering approach is that one can compare income

distribution rather than comparing the measure of income distribution.However, it cannot

tell whether one economy dominates another when one inequality-of-opportunity curve

cross the other.

2.4.5 Correlation between Circumstances and Effort

Effort could be shaped by circumstances. Jusot et al. (2013) summarized three differ-

ent views on the correlation between circumstances and effort proposed by Roemer (1998),

Barry (2005) and Swift (2005) respectively. They provided an example of education in

which some students study hard under the influence of their parents.

Roemer (1998) argued that individuals should be responsible for factors within their

control. This view is known as the control view. Based on this view, the influence of

parents on children’s efforts is out of the children’s control and it should be considered

as circumstances and cleaned from the effort variables.

In contrast with Roemer’s view, Rawls (1971) and Dworkin (1981b) argued that in-

dividuals should be responsible only for their preferences and choices (known as the pref-

erence view). Based on this view, Barry (2005) stated that students’ efforts are choices

based on their own free will, even if made under the pressure of their parents; thus, this

type of effort deserves respect.

Another view from Swift (2005) claimed that the pressure is an effort of parents which

should be respected. Swift (2005, pp. 271) argued that the effort of parents on their

offspring is “an interaction that we have reason to value and protect” and “preventing

those interactions would violate the autonomy of the family”.

Jusot et al. (2013) assessed whether the different views on the correlation affected

the measurement of inequality of opportunity in health. Using the French Health, Health

Care and Insurance Survey, they found that these three different views have little influence

on the measurement of inequality of opportunity in health.

Based on Roemer’s (1998) view, Bourguignon et al. (2007) developed a parametric

approach to deal with the correlation problem between effort and circumstances. They

used a matrix of coefficients to catch the effect of circumstances on effort which is vector-

valued.

Ei = HCi + vi

where Ei is the effort of individual i, Ci is the circumstance of individual i, H is a

matrix of coefficients and vi is the white-noise. This approach models Roemer’s view on

the correlation between circumstances and effort. It can be easily implemented if both

circumstances and effort can be observable.
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For example, individual educational level is commonly regarded as a variable related

to effort. Therefore, this variable can be regressed with circumstances variables to capture

the indirect effect of circumstances on inequality of outcome through educational levels.

For implementation of this approach, see Alain et al. (2010), Lazar (2013) and Deutsch

et al. (2018).

In addition to Bourguignon’s and Ferreira’s (2007) model, with effort unobserved,

Björklund et al. (2012) models the heteroskedasticity of effort across type so that the

effort correlating with circumstances can be captured.

In our study, we propose two models in Chapter 3 and 4 to deal with the correlation

issue given that effort variables are unobservable.

2.4.5.1 Human Opportunity Index

Paes de Barros et al. (2009) developed another approach called “Human Opportunity

Index” to measure inequality of opportunity in different countries. In light of Human

Development Index developed by Sen (1979), Paes de Barros et al. (2009) considered

the concept of basic capability, e.g. the capability to attain water and electricity. By

focusing on basic capability, this index is more applicable to developing rather than

developed countries.

2.4.6 Measure Educational Inequality of Opportunity

The empirical approaches introduced in previous section can also be applied in mea-

suring educational inequality of opportunity. For example, Ferreira and Gignoux (2014)

study how circumstances contribute to the test score of the Program of International Stu-

dent Assessment (PISA) which were conducted in 57 countries in 2006. They use a direct

ex-ante approach similar to Paes de Barros et al. (2009) to estimate the lower-bound

educational inequality of opportunity. The test score is used as a proxy of educational

achievement.

However, when measuring educational inequality of opportunity, some outcome vari-

ables could be categorical variables. For example, Brunori et al. (2012) measure inequal-

ity of opportunity in the access to tertiary education in Italy. The access of tertiary

is a binary variable. Zeng et al. (2014) look into gender inequality in education using

educational attainment — a categorical variable — as an outcome variable.

In Chapter 5, we also use a categorical variable — the graduate choice — to study

educational inequality in China. This variable is a multinomial variable. Our study shows

how circumstances affect college graduates’ choices in China.
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2.4.7 Inequality Measures

Inequality measures such as the Gini coefficients, Entropy index and the dissimilarity

index are widely used in empirical literature.

The Gini coefficients IGini can be derived from the relative Lorenz curve L which is

the normalised cumulative income functional by the mean (Cowell, 2000):

L(F ; q) ≡ C(F ; q)

µ(F )
(2.22)

where F is the distribution of income in the population q. C is the cumulative function

and µ(F ) is the mean of the distribution of income.

Thus, the Gini coefficient can be expressed as the normalised area between the Lorenz

curve and the 45 degree line (Cowell, 2000):

IGini(F ) ≡ 1− 2

∫ 1

0

L(F ; q)dq (2.23)

Entropy indices such as the Theil index and the mean logarithmic deviation (MLD) in-

dex originate from the information-theoretic idea, which can be expressed in the following

inequality index (Theil, 1967).

The Theil index can be expressed as:

ITheil(F ) ≡
∫

x

µ(F )
log(

x

µ(F )
)dF (x) (2.24)

The MLD index can be expressed as:

IMLD(F ) ≡ −
∫

log(
x

µ(F )
)dF (x) (2.25)

They can be generalised into a single more flexible class—the generalised entropy

(GE) family of measures (Cowell, 2000):

IαGE(F ) ≡ 1

α2 − α

∫
log[(

x

µ(F )
)α − 1]dF (x) (2.26)

where α ∈ (−∞,+∞) captures the sensitivity of a specific GE index to particular parts

of the distribution. The Theil index and the MLD index are two special cases of the

GE index. When α = 0 or 1, the GE index becomes the MLD index and the Theil

index respectively. Since positive and larger α entail more sensitivity to changes in the

distribution that affect the upper tail, the Theil index is sensitive to the extreme rich

while the MLD index is sensitive to the extreme poor.

Checchi and Peragine (2010) and Ferreira et al. (2011) prefer the MLD index rather

than the Theil index and the Gini index since it is the only decomposable index which is
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path-independent (Foster and Shneyerov, 2000). A path-independent index makes sure

that the sum of between-group inequality and within-group inequality is overall inequality.

An alternative is to apply the Shapley decomposition (Shapley, 1953) to any inequality

index to get a path-independent measure. The Shapley decomposition provides flexibility

to choose different inequality indexes with no violation of path independence.

Assume that a set of factors Xk indexed by K = {1, . . . , k, . . . ,m} with a character-

istic function (the inequality index) I : 2K → R. The set of factors can include circum-

stances such as gender, ethnicity and parents’ socioeconomic status, and effort. Some

researches (e.g. Zhang and Eriksson 2010 and Manna and Regoli 2012) decomposed only

the predicted income for each circumstance. This approach shows how each circumstance

contributes to total inequality of opportunity (Israeli, 2007). Björklund et al. (2012) take

effort as one of the factors. Based on the Shapley decomposition, the factor k’s contri-

bution is determined by the Shapley value of k: φk(I) that can be calculated using the

following equation:

φk(I) =
∑

S⊆K\{k}

|S|!(m− |S| − 1)!

m!
(I(S ∪ {k})− I(S)) (2.27)

where S is the subset of K without k and |S| is the number of factors in S. In this

equation, I(S∪k)−I(S) is the marginal contribution of the factor k to total inequality and

φk(I) can be interpreted as the average marginal contribution of all possible permutations

in which factor k affects inequality jointly with other factors in the set S.

Using this equation, one can decompose total income inequality into inequality con-

tributed by circumstances and effort. In Chapter 3, we use the Shapley decomposition

method to decompose income inequality measured using the Gini coefficients. We show

that, without using Shapley decomposition, the Gini coefficients could overstate inequal-

ity of opportunity.

2.5 The Economic Consequences of Inequality of Opportunity

Researchers have studied the economic consequences of inequality of outcome (such as

income inequality and educational inequality). However, different strands of the literature

draw different conclusions. For example, a common topic is the effect of income inequality

on economic growth. Kuznets (1955) found an inverted U-shape relationship between

income inequality and economic growth. However, other empirical findings suggested a

positive (Li and Zou, 1998) or a negative (Clarke, 1995) relationship.

These contradictory findings might be due to the fact that different factors within

income inequality could have the opposite effect to economic growth. Marrero and Ro-

driguez (2013) postulated that this opposite effect comes from inequality of opportunity.

Using the data from the U.S., they found a negative relationship between inequality
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of opportunity and growth, and a positive relationship between inequality of effort and

growth.

However, Ferreira et al. (2014) found that this negative relationship is not robust

when using a cross-country meta-dataset. They used a dataset containing 118 house-

hold surveys and 134 Demographic and Health Surveys and found no evidence of the

relationship between inequality of opportunity and growth.

In addition, Brunori et al. (2013) found an inverted U-shape curve of inequality of

opportunity with economic development. Given the empirical findings, the relationship

between inequality of opportunity and economic growth is also inconclusive.

Scholars also examined the relationship between inequality of opportunity, income

inequality and intergenerational mobility. Brunori et al. (2013) showed that inequality of

opportunity is positively related to income inequality and negatively related to intergen-

erational mobility. Corak (2013) postulates that high income inequality could result in

high inequality of opportunity and low intergenerational mobility. He illustrated his idea

using the Panel Study of Income Dynamics (PSID) from the U.S. For example, he showed

that higher income families in the United States spend much more on their children pur-

chasing things that promote the capabilities of their children such as books, high-quality

child care, private schooling, etc. The expenditure gap grew during the period 1970 to

2010 as the income gap has increased since 1970. In this way, higher income parents

transfer their economic advantage to their children, which leads to low intergenerational

mobility and high income inequality.

In summary, inequality of opportunity is associated with income inequality and inter-

generational mobility; however, its effect on economic growth still needs further investi-

gation.

2.6 The Literature on Inequality of Opportunity in China

There are some recent researches on inequality of opportunity in China.

Using data from the China Health and Nutrition Survey (CHNS), Zhang and Eriksson

(2010) measured inequality of opportunity in nine Chinese provinces from 1989 to 2006

using a parametric approach and found a substantial degree of inequality of opportunity

due to parental income, and to father’s and mother’s type of employer which accounted

for 23%, 19% and 20% of inequality of opportunity, respectively. However, parents’

education has little influence on the earnings of their offspring, which implies parents’

social connections have a more crucial effect on the earnings of their offspring than their

intelligence.

They also found that the annual ratio of inequality of opportunity to income inequality

from 1989 to 2006 in China ranged from 0.46 to 0.65. A similar study by Bourguignon

et al. (2007) reported the ratio of inequality of opportunity to income inequality in Brazil
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in 1996 as 0.23. The difference between two studies is that the former used the Gini

coefficients as the inequality measure and the sample size covered both rural and urban

areas while the latter used the Theil index and the sample size covered only urban areas.

To estimate inequality of opportunity, Zhang and Eriksson (2010) assumed that in-

come is a function of individuals’ circumstances which can be observed and effort which

is unobserved. Thus, after identifying the effect of circumstances, the remaining unex-

plained part of income is due to effort.
The model was specified as:

lnincome =α0 + α1gender + α2Province+ α3Urbanarea+ α4Age+ α5Father
′seducation

+ α6Mother′seducation+ α7Father
′semployer + α8Mother′semployer

+ α9ln(householdincome) + α10Householdsize+ α11waveofsurvey + e

(2.28)

In this equation, they included both parents’ education attainment, occupation and

household’s income. The educational attainment was categorized into four levels—

primary or less, middle school, high school or vocational school and College and above.

Parental employment was classified into five different groups according to the type of

employer they worked for—farming, collective, private enterprise, government or state-

owned enterprise and foreign-owned enterprise. In addition, in the equation, they also

considered the region of households—whether the province they lived in was inland or

coastal; and whether households lived in urban or rural areas. The inclusion of region

enabled the study to examine not only family background effect but also regional dispar-

ities.

Additionally, they applied sample restrictions on the CHNS data set. First, individ-

uals lacking information about their parental background or their children’s background

were excluded. Second, they collected data only from the participants aged between

20 to 50 for the reason that participants under 20 years old may still receive education

and those participants above 50 years old commonly have missing values for parents’

income. Eventually, an unbalanced panel with 1287 valid observations during 1989-2006

was generated after data filtering.

However, the descriptive statistics provided show that 18.4% respondents’ fathers

worked as farmers and 57.8% worked in government or state-owned enterprises. For

mothers, 23.2% are farmers and 48.0% worked for the government or state-owned enter-

prises. In this thesis we found that at least 50% of parents were farmers whether before

or after data filtering. In contrast, the original data provided by CHNS1 showed that

34.33% were farmers, fishermen and hunters, while Zhang and Eriksson (2010) found

that 12% of the offspring were farmers.

Another statistic they reported was the percentage of births in urban areas which was

1See the CHNS codebook:
http://www.cpc.unc.edu/projects/china/data/datasets/longitudinal/codebook/jobs 00.pdf
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51%. Since the study focused on the years between 1989 and 2006 and the average age

they reported was 26.5 years old, the sample’s year of birth ranges from 1962 to 1979 on

average. According to the National Bureau of Statistics of China (NBS, 2013), the urban

population between 1966 to 1979 ranged from 18% to 19%. Since the percentage of place

of birth in urban areas is 51%, the current percentage of place of living in urban areas

will be higher due to the urbanization after 1978. Although the authors claimed that

inequality of opportunity is measured in a way that both urban and rural samples are

included, their sample filtering excluded most rural residents and the results are therefore

more representative of urban residents rather than the whole of China. This bias might be

one explanation for the small proportion of parents’ occupation being listed as a farmer.

Compared with Zhang and Eriksson (2010), Bourguignon et al. (2007) measured in-

equality of opportunity in Brazil in 1996 using only the urban sample. However, in 1996,

the urban population in Brazil was around 80%. Their estimation of inequality of op-

portunity represents the majority of the population in Brazil. While in China, the urban

population before 1980 was lower than 20%, the results from Zhang and Eriksson (2010)

can only represent the minorities, half of whom were born in urban areas before 1980.

In terms of the methodology, the inequality of opportunity can be measured by
G( ˆlnincome)

G( ˜lnincome)
where G( ˆlnincome) is the Gini coefficient of the fitted logarithm of income

from equation (2.28) and G( ˜lnincome) is the Gini coefficient of the observed logarithm

of income from the dataset.

Zhang and Eriksson (2010) also estimated the contribution of individual components

in equation 2.28 to the overall inequality of opportunity. In the implementation, first,

they drop the variable they would like to measure and do the regression again. Then, they

get the fitted income without the dropped variable, let’s say, the fitted income without

gender— ˆlnincomenogender. Thus, the contribution of gender to the overall inequality of

opportunity can be measured by
G( ˆlnincome)−G( ˆlnincomenogender)

G( ˆlnincome)
, where G( ˆlnincomenogender)

is the Gini coefficient of predicted income without the variable gender. This approach

might also be problematic since the estimators are estimated twice. A correlation be-

tween the omitted variable with remaining regressors may lead to two different estimators

between regression with and without the omitted variable, which may increase the bias.

In addition, they used the Gini coefficient as the inequality measure with the log-linear

model. Since the Gini coefficient cannot be decomposed, using G( ˆlnincome)

G( ˜lnincome)
might lead to

bias. In our study, we show results using the Shapley decomposition to decompose the

Gini index and estimate inequality of opportunity.

2.7 A Summary of the Literature Review

The literature on inequality of opportunity established the theoretical and empirical

foundation on decomposing inequality of outcome into circumstances and effort. It ex-
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amines the sources of inequality of outcome by considering contributions of individual’s

circumstances to it.

Several theoretical and empirical issues still remain to be resolved. On a theoretical

level, it is still not clear whether circumstances and effort can be distinguished and sepa-

rated from inequality of outcome. For example, how should the individual’s responsibility

for their outcome be allocated? Are luck and genetic factors identified as circumstances

or effort? How about different types of luck, such as brute luck and option luck (Dworkin,

1981b)? Although these questions are important to the theory of inequality of opportu-

nity, they are not within the scope of the thesis.

Instead, the thesis mainly focuses on issues of the empirical implementation. We

consider circumstances and effort, observed or unobserved, that may correlate with each

other. Some researchers such as Jusot et al. (2013) and Bourguignon et al. (2007) tried

to solve the correlation between circumstances and effort. Their methods are applicable

under the assumption that circumstances and effort are both observable. This thesis

proposed alternative approaches to the correlation issue given that efforts are unobserved.

In terms of the literature in China, Zhang and Eriksson (2010) measured inequality of

opportunity in China during 1989-2006. However, the data might be out of date and rep-

resent a biased representation of the current situation in China. In addition, the method

used in Zhang and Eriksson (2010) assumes independence of circumstances and effort and

decomposes income inequality using the Gini coefficients which are path-dependent. This

thesis investigates inequality of opportunity using a more contemporary dataset and im-

proves the methodology by considering the correlation between circumstances and effort

and using better inequality measures.
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Chapter 3

Essay I: Measuring income inequality of op-

portunity in China

3.1 Introduction

The real per capita income in China has grown at an impressive rate in the last

two decades, but so has income inequality. The Gini coefficient, an indicator of income

inequality, rose from under 0.3 before 1980 to 0.55 in 2012 (Xie and Zhou, 2014); it

is higher than in the U.S. (0.41) (The World Bank, 2016a) but similar to some Latin

American countries such as Brazil (0.53) and Colombia (0.54). The increase in inequality

was not due to a fall in the income levels of the poor 1, but due to the more rapid income

growth of the rich (Li et al., 2013). This finding raises questions about the change in

income distribution in China and its sources. In particular, what is the main source of

the divergence in income growth between the poor and the rich?

The public is also aware of high income inequality in China. The International Social

Survey Program (ISSP) (2009) surveyed perceptions of economic inequality in 38 countries

in 2009. Most Chinese respondents tended to agree with the statement: “Income differ-

ences in China are too high” and the conceding rate is on par with the other 37 countries.

More importantly, Chinese respondents have the lowest “feeling of procedural justice”

Larsen (2016) among all respondents in the ISSP survey2. Most respondents strongly

believed that socio-political connections and parents’ socio-economic backgrounds were

important for getting ahead in society.

Many researchers have studied income inequality and its determinants in China. They

found that income inequality rose with regional disparities (Knight and Song, 1993, Wan

1Quite the opposite, the poverty rate decreased from 85% to lower than 11% during 1980-2012 (The
World Bank, 2016b).

2ISSP asked respondents to what extent do “coming from a wealthy family”, “having well-educated
parents”, “knowing the right people”, “having political connections” and “giving bribes” are important
to get ahead in society. (Larsen, 2016) combined these questions into a measure of perceptions on
“procedural justice”. This measure captures the extent to which people believe they used privileges to
get ahead in society.
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and Zhou, 2005), globalization (Wan et al., 2006), migration (Park and Wang, 2010),

urbanization (Wu and Rao, 2017) and private ownership of assets (Li et al., 2013). These

studies show the sources of income inequality from different perspectives; however, they

focussed little on “procedural justice” and their findings might not explain people’s per-

ception of procedural unfairness in China.

In this paper, we try to fill this knowledge gap using the framework of equal op-

portunity (Roemer, 1998, Cohen, 1989, Arneson, 1989), in which society should only

be concerned with inequality due to factors beyond individuals’ responsibility (“circum-

stances”) and acknowledge inequality due to factors within individuals’ responsibility

(“effort”). Inequality caused by circumstances is defined as “inequality of opportunity”

(IOP). We discussed the framework of equal opportunity in Section 2.3 in depth.

If China has a higher IOP than other countries, it may explain the public perception of

poor “procedural justice” in the country3. Implementing the theory of equal opportunity

requires first a working definition of individual responsibilities or circumstances. In this

essay, we define observed factors such as gender, ethnicity and parents’ socioeconomic

status as “circumstances” and effort as an unobserved factor. Furthermore, due to the

very short timeframe of our dataset, circumstances are treated as time-invariant variables,

while effort is time-variant.

In this paper, we used a representative dataset drawn from the China Family Panel

Study (CFPS), which contains 33,600 individual observations for the years 2010 and 2012.

We measured IOP at the national, regional, and provincial levels respectively. In addition,

we investigated the relationship between the provincial gross regional product (GRP) and

IOP. Since the data spans only three years, the emphasis is on the cross-regional variation

in IOP. Although China as a whole is growing rapidly, the level and change of develop-

ment and inequality differs vastly across various Chinese regions. The underdeveloped

north-west of China has relatively high income inequality, while the highly developed

south-east region has relatively low income inequality. Therefore, a cross-regional com-

parison in inequality can be used as a vehicle to assess how inequality might change with

development and how IOP contributes to that change.

Since the data include samples with no income, we estimated the probability of earning

positive income through a Heckman model and a hurdle model. In addition, Björklund

et al. (2012) showed that the correlation between circumstances and effort is a source of

IOP. They used a non-parametric approach to measure the heterogeneous effect of effort

across circumstances. However, this approach only showed the effect of heterogeneity as a

whole but failed to reveal the effect of each circumstance. Instead, we took a parametric

approach and used maximum-likelihood estimation (MLE) to show the effect of each

circumstance variable on heteroskedasticity.

3Some institutional features such as corruption are not considered in this paper but they may also
explain the public perception of procedural fairness.
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To better understand the roles of circumstances and effort in driving inequality in

China, we conducted two decompositions. First, we followed Björklund et al. (2012)

and applied the Shapley decomposition (Shorrocks, 2013) to identify the contributions of

circumstances and effort to income inequality. This decomposition technique allows us to

use a common inequality index —Gini coefficient— without violating path dependency

(Foster and Shneyerov, 2000).

Second, we applied the Oaxaca decomposition (Oaxaca, 1973) to identify the differen-

tial effects of circumstances on income across the advantaged and disadvantaged groups

(e.g. gender, ethnicity, etc.). The IOP measure only provides an overview of the unfair

part of inequality, while the Oaxaca decomposition can reveal whether the higher income

for the advantaged group is due to their better circumstances or bigger influence of their

circumstances on income.

The main contribution of this paper is to evaluate IOP in China at both national

and regional levels using representative, cross-sectional data. Taking advantage of het-

erogeneity of Chinese regions, this study sheds light on the contribution of circumstances

to overall income inequality over various development stages. Moreover, this study is

the first one to apply the hurdle model with the Shapley decomposition to include those

who receive no income and to show the heterogeneous effect of each circumstance by

implementing MLE.

We found that at the national level, circumstances accounted for at least 30% of the

income inequality in China in 2010 and 40% in 2012. These figures rise by about 20% if

we include heteroskedasticity between types as parts of IOP, which indicates a significant

effect of circumstances on income through effort. Among this IOP, gender, geographic

characteristics and parents’ socioeconomic status are the three main factors for income

inequality.

At the provincial level, GRP appears to have a negative relationship with income

inequality and inequality of effort, but no discernible relationship with the level of IOP.

As a result, the share of IOP in the overall inequality rises with the increase of GRP.

Lastly, results from the Oaxaca decomposition show that getting rich does not require

better circumstances per se but rather, the bigger influence of circumstances to income.

In addition, the shares of IOPs in the overall inequality are similar across regions.

The rest of this paper is organized as follows. In section 3.2 we describe the approach

to measuring inequality of opportunity. In section 3.3 we discuss the empirical strategies.

Section 3.4 is the description of data. Section 3.5 shows the empirical results and section

3.6 is the conclusion.
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3.2 Literature on Measuring Inequality of Opportunity

Equality of opportunity was first conceptualized by John Rawls, who argued that

“offices and positions must be open to everyone under conditions of fair equality of op-

portunity” (Rawls, 1971, p. 302). Based on Rawls’s argument, Roemer (1998) proposed a

framework to measure IOP. He started with a classification of people based on types and

tranches: those sharing same circumstances belong to the same type and those exerting

the same level of effort share the same tranche.

Based on Roemer’s division, IOP can then be measured ex-post or ex-ante. The ex-

post IOP captures the within-tranche inequality, the inequality of a counterfactual income

distribution where all tranches have the same mean income (Checchi and Peragine, 2010).

Ex-post IOP is driven entirely by inequality between types conditional on effort. In other

words, the ex-post approach defines equal opportunity as individuals with the same effort

receiving the same outcome regardless of their types. On the contrary, the ex-ante IOP is

the between-type inequality, the inequality of a counterfactual income distribution where

everyone in a type has the same type-average income (Checchi and Peragine, 2010). This

approach is based on a weaker definition of equal opportunity in which the inequality

within tranches is allowed. Due to the strong definition and high data-demand of the

ex-post approach, most literature uses the ex-ante approach. In this paper, we also use

the ex-ante approach.

Based on an ex-ante approach, a common application of this framework is to assume

that circumstances and effort are independent and measure how circumstances and effort

contribute to total inequality respectively.4 However, this method ignores the correlation

between circumstances and effort. If the correlation exists, the measure of inequality of

opportunity would be biased.

To address this issue, firstly, we need to clarify whether the correlation between cir-

cumstances and effort should be respected as individual effort or not. Roemer (1998) ar-

gued that individuals are not held responsible for the correlation between circumstances

and effort because the correlation is also beyond the individual’s control. In contrast,

Barry (2005) believed that this correlation should be respected because it reflects indi-

viduals’ preferences even though it could be shaped by circumstances. This paper adopts

Roemer’s view because the correlation could also be a significant source of income in-

equality, and studying the correlation between circumstances and effort is one objective

in this paper.

Another problem related to the correlation between circumstances and effort is the

observability of effort. Due to the difficulty in defining and observing effort, many re-

searches assume effort as totally unobserved (e.g. Ferreira et al. 2011). If effort can be

observed, one can use a structural equations model to identify the relationship between

4We discuss different approaches in measuring inequality of opportunity in Section 2.4 in detail.
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circumstances and effort (See Bourguignon et al. 2007 and Jusot et al. 2013). If effort can-

not be observed, one can capture the correlation by the type-specific variances (Björklund

et al., 2012). If no correlation exists between circumstances and effort, the type-specific

variance should be homogeneous. Since this paper assumes effort cannot be observed,

we use the type-specific variances to identify the correlation between circumstances and

effort.

Roemer’s framework has widely been applied in empirical researches to measure in-

equality of opportunity in many countries. Paes de Barros et al. (2009) estimated the

ex-ante IOP in seven Latin American countries5. They found that although Mexico has

the highest overall income inequality, the contribution of IOP (20.8%) is the smallest

among the seven countries. The biggest share of IOP (37.3%) belongs to Guatemala.

Using longitudinal data, Pistolesi (2009) showed that rising income inequality in the U.S.

during 1968-2001 was not driven by increases in IOP. In fact, they found that IOP in the

U.S. had decreased from 43% to 20% over the period. Björklund et al. (2012) differ from

many other studies by including individual IQ and body mass index as circumstances

in a Swedish study and used the Shapley decomposition to decompose the effects of cir-

cumstances. They found that the share of IOP to total income inequality was less than

30%.

Only one research measured inequality of opportunity in China. Zhang and Eriksson

(2010) estimated that IOP moved broadly in sync with overall income inequality during

1989 to 2006, with its share of overall income inequality ranging from 46% to 65%. They

also found that the IOP was largely due to parental socio-economic status. However,

due to lack of information about parents’ socio-economic circumstances, most of their

estimations were restricted to the urban population or state-owned enterprise workers

which were mostly urban-based. Therefore, the study omitted the rural population, which

accounted for 55% to 74% of the population during the sample period.6 In addition, the

study measured IOP using the Gini coefficient but did not correct for the bias caused by

the coefficients path-dependency property (Foster and Shneyerov, 2000).

Some studies went beyond measuring IOP and examined the impact of IOP on de-

velopment. Using data from 42 countries, Ferreira et al. (2014) found IOP to have a

negative growth effect but the result is neither conclusive nor robust. In Marrero and

Rodriguez (2013), IOP was found to have a negative growth effect in rich countries only,

while both IOP and inequality of effort 7 enhanced growth in poor countries. In this

paper, we examine the relationship between IOP and development at the provincial level

in China.

Since the empirical researches introduced above used different approaches, inequality

5The seven countries are: Brazil, Colombia, Ecuador, Guatemala, Panama, Peru and Mexico
6China’s rural population share has been declining steadily over time. Source of data: World Devel-

opment Indicators.
7It is the counterfactual inequality after filtering out the effect of circumstances.
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measures (e.g. Gini, Theil index, etc.), and definitions of circumstances and effort, one

should be cautious about comparing their findings.

3.3 Measuring Inequality of Opportunity

3.3.1 The Model with Independent Circumstances and Effort

To measure IOP, we followed the approaches introduced by Checchi and Peragine

(2010). We first partitioned an income profile according to circumstances and effort.

Assuming that individuals’ income y (yi ≥ 0) is determined by a finite set of exogenous

and time-invariant circumstances c and one-dimensional continuous unobserved effort e,

we proposed a function g:

y = g(c, e) (3.1)

where c is a set of variables concerned as circumstances with n finite values so that each

value represents a type in which individuals have the same circumstances. Effort with m

finite values is represented by e. We assume that each value of e represents a tranche in

which individuals have the same effort.

This model also excludes the existence of random components or luck (Lefranc et al.,

2008) and interaction between circumstances and effort. Therefore, the following two

basic assumptions are satisfied given the non-observability of effort (Checchi and Peragine,

2010):

Assumption 3.3.1 Function g is monotonically increasing in effort e.

Assumption 3.3.2 The conditional distribution of effort e is independent of circum-

stance c

The first assumption indicates that the more effort one exerts, the more income one

earns, and the second assumption implies the independence between effort and circum-

stance. If equation (3.1) satisfies both assumptions, one can directly measure ex-ante

IOP by computing the inequality of a counterfactual income distribution in which the

contribution of effort has been eliminated (Ramos and Van de gaer, 2016). We denote

this counterfactual income distribution as Yc.

Therefore, IOP can be measured by Yc. In this paper, we used two indexes intro-

duced by Ferreira and Gignoux (2008): one for the absolute level of IOP —Inequality of

Opportunity Level (IOL)— and the other for the share of IOP relative to total income

inequality— Inequality of Opportunity Ratio (IOR). The former index is given by:

IOL = I(Yc) (3.2)
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where the function I : RN
+ 7→ R+ is an inequality index such as Mean log deviation, Theil

index and Gini coefficients.

The latter index is given by:

IOR =
I(Yc)

I(Y )
(3.3)

An alternative approach —the indirect measure— is to estimate a counterfactual

income distribution Ye by ruling out the contribution of circumstances and to measure

inequality of opportunity by substracting inequality of Ye from income inequality.

We defined the inequality of Ye as the level of inequality of effort (EOL):

EOL = I(Ye) (3.4)

Based on the indirect measure, one can compute inequality of opportunity using the

following equations:

IOL = I(Y )− EOL = I(Y )− I(Ye) (3.5)

IOR = 1− EOR = 1− I(Ye)

I(Y )
(3.6)

where EOR is the ratio of inequality of effort.

To estimate the counterfactual income distribution, one can decompose the observed

income distribution into two — a smoothed between-type distribution by replacing the

within-type income with a type-average income, and a standardized within-type distribu-

tion that eliminates the differences in the type-average incomes (Foster and Shneyerov,

2000). Thus, Yc and Ye can be denoted as the following vectors (Checchi and Peragine,

2010):

Yc = {µ(Y1)1N1 , . . . , µ(Yk)1Nk
, . . . , µ(Yn)1Nn} (3.7)

Ye = {Ỹ1, . . . , Ỹk, . . . , Ỹn} (3.8)

where 1Nk
is the unit vector of length equal to type k’s population and Ỹk = µ(Y )

µ(Yk)
Yk.

This decomposition approach avoids the value of income in either counterfactual income

distribution becoming negative.

To compute µ(Yk) for each type k, we rely on a parametric model. Suppose e is

unobserved; an individual’s log income can be regressed on circumstances c using the

following equation (Ferreira and Gignoux, 2008):

ln yi = βci + vi (3.9)

where β is a vector of coefficients and vi is a normally distributed error term, i.e. v|c ∼
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Normal(0, σ2). The predicted value is µ(Yk) when circumstances ci corresponds to type

k: µ(Yk) = ȳi = exp(βci + σ2

2
). We prefer this parametric model to a non-parametric

model because the measure would be more likely to be biased using a non-parametric

model if there are a large number of types.

3.3.2 The Model with Circumstances and Effort Correlated

In reality, effort could be shaped by circumstances so that assumption 3.3.2 is likely to

be violated. In this case, inequality of opportunity is comprised of inequality caused by

circumstances directly and inequality caused by circumstances indirectly through effort.

For measuring the direct effect of circumstances to income inequality, one can mea-

sure the inequality of the expected income given circumstances. For each individual,

the expected income conditional on circumstances can be computed using the following

equation:

E(yi|ci) = µ+ βci (3.10)

Measuring the inequality of this conditional expected income, however, eliminates

the degree of effort — that is, the deviation of the observed income from the expected

income. Björklund et al. (2012) argued that this deviation can also be a part of inequality

of opportunity if it varies across types. They identified the type-specific variances and

account them for the indirect effect of circumstances to income inequality.

Björklund et al. (2012) separated the contribution of effort to income Ye into a type-

specific heterogeneous effort Ỹe and a standardized homogeneous effort u, in which ui =

Yei
σi
σti

and Ỹe = Ye − u. The type-specific effort Ỹe is determined by variances because

each type has its own variance σ2
t = V ar[Ye|c]. Therefore, the type-specific effort Ỹe is

recognized as the correlation between circumstances and effort and considered as parts of

circumstances, while the standardized effort u is the pure effort and should be respected.

This approach works well to identify the total contribution of the correlation. Björklund

et al. (2012) found that the correlation accounts for around 4.3% to 6.4% of total income

inequality. However, this approach failed to identify to what extent each circumstance

contributes to total income inequality through the correlation between circumstances and

effort.

To capture heteroskedasticity and identify the contribution of each circumstance, we

use maximum-likelihood estimation(MLE). We identified the contribution of effort to

income Ye by rescaling individual income so that every type has the same average income8:

yei =
µ(Y )

E(yi|ci)
yi (3.11)

8Björklund et al. (2012) measured effort by the residual Ye = Y −E(Y |c). We did not use this method
because the residual could be negative, which could imply counterintuitive negative effort.
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Then, we specified the skedasticity function of income with respect to circumstances

c:

σ2
i = exp(c′iθ) (3.12)

Under the assumption of normal distribution of income9, the likelihood function is:

f(y|c) = (
1√

2π exp(c′iθ)
)
n/2

× exp[−
n∑
i=1

(y − c′iβ)2

2 exp(c′iθ)
] (3.13)

Using MLE, we can estimate both β and θ. The estimators of MLE allow us to further

standardized Ye with respect to its variance:

ỹei = yei ×
√
V ar(yei)

σ̂2
i

(3.14)

where ỹei is the homogenized effort and is independent of circumstances, and σ̂2
i is the

estimator of σ2 in Equation 3.12. Since the type-specific variances are parameterized,

we can estimate and measure the contribution of each circumstance to income inequality

through effort.

3.4 Empirical Strategy

In this section, we discuss the implementation of the econometric methodology. We

used three models to measure inequality of opportunity. First, we used the multiple

regression model in Equation (3.9) to estimate the expected income for each type. This

model assumes linearity and heteroskedasticity.

Since more than 6% of the individuals in our dataset have zero income, we used

the Heckman model (Heckman, 1979) and the lognormal hurdle model (Cragg, 1971) to

account for the zero income individuals. The Heckman model assumes that individuals

choose not to work when their reservation wage is greater than the market wage, while

the hurdle model assumes that zero income is a result of choice without referring to

reservation wage. Both of these models are superior to dropping zero income individuals

from the sample.

The third model to be considered is the heteroskedastic model (Equations (3.12) and

(3.13)) that extends the lognormal hurdle model by additional consideration of the corre-

lation between circumstances and effort. After estimating these models, we implemented

the Shapley decomposition, and measured inequality of opportunity not only for all cir-

cumstances combined but also for each circumstance as well. The last part of the analysis

is based on the Oaxaca decomposition. It is used to examine whether the income gap be-

9If income is log-normally distributed, then y represents log income in Equation (3.13)
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tween types is due to different levels of circumstances or different effects of circumstances

on income.

3.4.1 The Heckman Model

The Heckman model (Heckman, 1979) assumes that people with zero incomes could

have potentially earned wages. Wages could not be observed because their personal reser-

vation wage is higher than the market wage. If income is determined by circumstances:

y = cβ + u1 (3.15)

Income y can be observed if y is greater than the reservation wage y∗.

y − y∗ = zγ + u2 (3.16)

where z is the vector of variables affecting the difference between the market wage and

the reservation wage. Since equation (3.16) determines whether observations are selected,

we refer to this equation as the selection equation. Accordingly, equation (3.15) is the

level equation.

The errors that are correlated with each other are u1 and u2:

corr(u1, u2) = ρ (3.17)

where ρ is the correlation coefficient between two errors. If ρ 6= 0, the estimator in

equation (3.15) is biased. Equation (3.16) helps correct the selection bias. If ρ = 0, this

model is equivalent to the hurdle model in which equations (3.15) and (3.16) are two

independent equations.

In addition, the Heckman model and the hurdle model are different in that the hur-

dle model assumes no reservation wage. Since the measure of inequality of opportunity

relies on observed incomes rather than counterfactual incomes or reservation wages, we

used the results from the hurdle model to compute the measure of inequality of oppor-

tunity. Nevertheless, we still used the Heckman model as a tool to explore the effect of

circumstances on labour participation and as a robust test of the measure of inequality

of opportunity.

3.4.2 The Lognormal Hurdle Model

The lognormal hurdle model (Cragg, 1971) takes the zero-income observations into

consideration without assuming a reservation wage. The model consists of a binary

outcome model, which is used to account for zero versus positive incomes, and a non-

linear model, which deals with the positive income.
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Assume that income y can be generated as

y = wy∗ (3.18)

where w is a binary variable that equals 1 if y > 0, and y∗ is a continuous variable

that equals y but it is observed only when w = 1. We assumed y∗ to have a lognormal

distribution:

y∗ = exp(c′β + u) (3.19)

where c stands for circumstances and the error term u|c ∼ Normal(0, σ2). So the

expectation of y∗ given c is:

E(y∗|c) = exp(c′β +
σ2

2
) (3.20)

To estimate the probability of receiving positive income w, we used the logistic model:

Pr(w = 1|c) = Λ(c′γ) (3.21)

where Λ is the logistic function and γ is the vector of coefficients for the circumstance

variables in the logistic model.

Therefore, the between-type income distribution can be represented by the expecta-

tion conditional on circumstance variables:

yc = E(y|c) = Λ(c′γ)× exp(c′β + σ2/2) (3.22)

where yc represents the expected income in each type.

To estimate the contribution of effort to income, we computed the within-type income

distribution by rescaling the observed income until the income distribution in each type

has the same mean as the overall income distribution:

ye =
y ∗ ȳ
yc

(3.23)

An alternative approach is to treat the residual of the model as income earned by

effort (Ferreira and Gignoux, 2008). We did not use this approach because the residual

would sometimes be negative, which might affect the computations of the Gini index

(Chen et al., 1982).

To apply equation (3.22), we undertook the estimation in three steps. First, we esti-

mated the binary part using a logistic regression and obtained the estimator γ̂. Second,

we estimated the continuous part using a log-linear regression and obtained the estimator

β̂. The last step was to estimate the predicted income ŷ. Since y is assumed to follow a
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log-normal distribution and the true distribution σ2 could be unknown, we used Duan’s

(1983) smearing estimate.

If u is independent of c, E(y∗|c) = E[exp(u)] exp(cβ). Let τ = E[exp(u)]. We can

use the estimated smearing factor τ̂ to estimate τ . The value of τ̂ is:

τ̂ = N−1
∑
i

exp(ûi) (3.24)

where ûi is the residual of the log-linear regression.

3.4.3 The Shapley Decomposition

When measuring inequality of opportunity, we first decomposed income distribution

Y into a smoothed distribution Yc and a standardized distribution Ye. the contribution of

circumstances (IOL) and effort (EOL) can be computed based on Yc and Ye respectively

using Equation (3.2) and (3.4). To ensure IOL is consistent with IOE, we require the

sum of both indexes to be the total income inequality:

I(Y ) = I(Yc) + I(Ye) (3.25)

However, Equation (3.25) holds only if the inequality index I() is path independent10.

One path independent inequality measure is the mean log deviation (MLD). An alterna-

tive is to apply the Shapley decomposition (Shapley, 1953) to any inequality index. The

Shapley decomposition provides flexibility to choose different inequality indices with no

violation of path independence. Zhang and Eriksson (2010) used the Gini coefficients

of I(Yc) to measure inequality of opportunity without the Shapley decomposition. In

Section 3.6, we show that this method could lead to an overestimated IOL.

We used the Shapley decomposition to decompose income inequality by assuming a

set of factors Xk indexed by K = {1, . . . , k, . . . ,m} with a characteristic function (the

inequality index) I : 2K → R. The set of factors can include both circumstances such as

gender, ethnicity and parents’ socioeconomic status, and effort. Some researchers (e.g.

Zhang and Eriksson 2010 and Manna and Regoli 2012) regressed income with circum-

stances and decomposed the predicted income for each circumstance. This approach

shows how each circumstance contributes to total inequality of opportunity but not in-

come inequality (Israeli, 2007).

Deutsch and Silber (2007) demonstrates an alternative approach to decompose income

inequality by population subgroups using the Shapley decomposition. If those population

subgroups indicate differences between individuals’ circumstances, decomposing income

inequality into the between-group and within-group inequality can effectively measure

10Path independence holds when overall inequality is the sum of between-group inequality and within-
group inequality (Foster and Shneyerov, 2000)
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inequality of opportunity.

In this paper, we follow Björklund et al. (2012), taking effort as one of the factors.

Based on the Shapley decomposition, the factor k’s contribution is determined by the

Shapley value of k: φk(I) that can be calculated using the following equation:

φk(I) =
∑

S⊆K\{k}

|S|!(m− |S| − 1)!

m!
(I(S ∪ {k})− I(S)) (3.26)

where S is the subset of K without k, |S| is the number of factors in S and ! represents

factorial. In this equation, I(S ∪ k) − I(S) is the marginal contribution of the factor k

to total inequality and φk(I) can be interpreted as the average marginal contribution of

all possible permutations in which factor k affects inequality jointly with other factors in

the set S.

For a factor in set S, we used the observed value of this factor; otherwise, we took

the average of the observed value so that this factor has no effect on inequality.

Suppose we have k circumstances variables; the OLS model and the Heckman model

would have k + 1 factors (k circumstances and 1 effort variable) for the Shapley decom-

position. We used the counterfactual income distribution Ye as the effort variable. In

Equation (3.26), Ye is used when effort is in the set S and the mean of Ye is used when

effort is not in the set S.

The hurdle model would have k + 2 factors (includes the factor of whether income is

equal to zero or not). We used the predicted probabilities from the selection equation

as the factor of whether an individual earns zero or positive income. If this factor is

excluded in S, we used the average probabilities.

The number of factors would not increase when considering heteroskedasticity because

we combined the contributions of direct and indirect effect of each circumstance. The

difference between this model and the homoskedastic model is that this model uses the

estimator from the heteroskedastic model. Both mean and variance change when a factor

changes from observed values to fixed values.

One advantage of the Shapley decomposition is that the sum of the Shapley value of

each factor is the total contribution of these factors to income inequality. In our study,

Gini coefficients are used and the effort affected by the residuals of the model is taken

into account. Therefore, the sum of the Shapley value for each factor measured by Gini

coefficients is equal to total income inequality:

I(y) =
∑
k

φk(I) (3.27)
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3.4.4 The Oaxaca Decomposition

If the population is divided into two groups (e.g. female and male, urban and rural,

minority and majority group or under-developed and developed region), circumstances

may have different effects on income for each group. To study the group differences, we

employed the Oaxaca decomposition (Oaxaca, 1973).

Considering two groups, A and B, income distribution for each group is denoted as

YA and YB, and the difference between the means of the groups is:

R = E(YA)− E(YB) (3.28)

where E() is the expected value of income distribution.

We decomposed the between-group difference to three components (Jann et al., 2008):

R = EN + CO + INT (3.29)

where EN is the “endowments effect”, CO is the contribution of differences in the coef-

ficients and INT is the interaction effect of the former two.

In our model, we assumed that only circumstances can be observed. We specified the

following model:

lnY = c′β + ε (3.30)

where β is the vector of coefficients and ε is the error term.

Using this model, the difference between the means of the groups R becomes

R = E(cA)′βA − E(cB)′βB (3.31)

The first component EN ,

EN = (E(cA)− E(cB))′βB (3.32)

captures the group differences in the predictors, i.e. whether the difference in income

between groups is due to the difference in circumstances between groups.

The second component CO,

CO = E(cB)′(βA − βB) (3.33)

is the difference in the contribution of coefficients. The level of contribution indicates the

amount of inequality between groups coming from the effect of circumstances.

55



The third component INT ,

INT = (E(cA)− E(cB))′(βA − βB) (3.34)

is the interaction accounting for both the differences in endowments and coefficients.

The Oaxaca decomposition can also be applied to any number of groups to examine

sources of income inequality (Deutsch and Silber, 2008).

3.5 Data Description

To measure inequality of opportunity in China, we used data from the China Family

Panel Studies (CFPS). CFPS is a nationally representative annual longitudinal survey

containing not only individual-level data but also household- and community-level data.

It has been conducted since 2010 by the Institute of Social Science Survey (ISSS) of

Peking University, China. As in 2016, this project has released data from the 2010

baseline survey, the 2011 maintenance survey, and the 2012 follow-up survey. Since the

survey conducted in 2011 is a maintenance survey and the sample size is small relative

to 2010 and 2012, we do not include the 2011 survey in our research.

CFPS covers 16,000 households with more than 33,000 adults and 8,900 children aged

under 15 in 25 provinces/municipalities/autonomous regions in China. It is designed

to record changes in the socioeconomic wellbeing of Chinese people, covering a variety

of topics such as economic activities, educational attainment, family relationships and

dynamics, migration, and physical and mental health.

The original sample sizes in 2010 and 2012 were 33,600 and 35,720 respectively in

which 26,393 samples were recorded in both 2010 and 2012. Of these we focused on

individuals aged between 21 to 60 because the labour participation rate outside this age

range is relatively low. After filtering, the sample size was reduced to 19,736.

3.5.1 Micro-Level Data: Income and Circumstances

Table 3.1 and 3.2 present the summary statistics of variables used in the study. Male

respondents make up 47% of the sample. Ethnicity is represented by the dummy variable

“minority”. It is equal to 0 if an individual’s ethnicity is the majority group — Han;

otherwise, it is equal to 1. The percentage of the minority group is around 8%. In

addition, the average age of the respondents is 42.25. 90% of them are married. The

percentage of members of the Chinese Communist Party (CCP) in the sample is 6% and

7% in 2010 and 2012 respectively.

We also included the number of siblings as one of the circumstance variables. Becker

and Lewis (1974) studied the relationship between the number of children and children’s

outcome such as educational attainment and socioeconomic status. An empirical study
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conducted in China (Li et al., 2008) also found a negative correlation between the family

size and child outcome. In the dataset, the average number of siblings is around 3.

Another circumstance variable we used is the region of residence when the respondent

was 12 years old. Two dummy variables were generated for the region of residence. One

is whether the respondent held a non-agriculture Hukou at 12 years old and the other is

whether the respondent lived in coastal provinces at that time. We used these variables

because children are unlikely to change these circumstances through their own effort.

Hukou is a system for recording household registration in China. It divides households

into an agriculture (rural) and a non-agriculture (urban) Hukou. The former lives in

rural areas and is registered as a rural household and the latter lives in urban areas and

is registered as an urban household. Due to the difficulty in changing a Hukou status

from agriculture to non-agriculture, lots of rural immigrants hold an agriculture Hukou

status even though they live in urban areas. These rural Hukou holders have lower

educational attainment, are more likely to be unemployed, and are less likely to have

employer-provided healthcare benefits (Liu, 2005).

Individuals normally have the same type of Hukou as their parents’ before they grow

up. In our sample, the percentage of individuals who held an urban Hukou status when

they were 12 years old is 15%. We chose Hukou status instead of a place of residence

because of the difficulty in changing the Hukou status (Wu and Treiman, 2004).

Coastal provinces are the provinces on the eastern coastline of China. This area is

more developed than the inland area. We used a dummy variable to capture whether the

respondents lived in the coastal provinces when they were 12 years old (coastal12). The

data show that about 43% of the respondents grew up in a coastal province.
Table 3.2 shows respondents’ parents’ socioeconomic status (SES) when respondents

were 14 years old11, including parents’ education level, parents’ occupation status and
parents’ political affiliation. For all variables, we used only the higher of the values
observed by parents.

Parents’ education level is reported in eight levels in CFPS. We merged them into

three levels, namely (1) low level: illiterate or semi-literate; (2) middle level: primary

and junior high school; and (3) high level: senior high school or above. Of the parents

surveyed, 38% and 21% had low and high levels of education, respectively.

Parents’ occupation is divided into 8 big categories including 595 specific occupational

codes in CFPS. We regrouped them into three levels: (1) low level: agricultural workers

and workers in manufacture and transportation sectors; (2) middle level: professionals,

clerks, technical staffs and other tertiary sector workers; and (3) high level: including

the administrative/management positions, teachers for tertiary education, lawyers and

high-rank military officers. On average, 79% and 9% of individuals reported low- and

high-level of their parents’ occupation, respectively.

11Parents’ SES were only provided for respondents when they were 14 years old in CFPS
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Table 3.1: Summary Statistics (Respondents)

Statistic N Mean St. Dev. Min Max

Individual income(2010) 19,736 13,812.55 28,002.96 0.00 980,000.00
Individual income(2012) 19,736 17,297.48 32,215.31 0.00 1,809,000.00
Household income per capita(2010) 18,729 17,549.66 27,087.06 2.89 1,000,000.00
Household income per capita(2012) 19,248 23,470.16 28,641.32 0.45 918,924.00
Male 19,736 0.47 0.50 0 1
Minority 19,696 0.08 0.27 0 1
Age in 2010 19,736 42.25 10.79 21 60
Urban Hukou at age 12 19,625 0.15 0.35 0 1
Live in coastal province at age 12 19,736 0.43 0.50 0 1
Number of sibling 19,736 2.98 1.90 0 14
Married in 2010 19,736 0.90 0.30 0 1
CCP member in 2010 19,736 0.06 0.24 0 1
CCP member in 2012 19,736 0.07 0.25 0 1

1 Income is the nominal value in Yuan.
2 Income in 2012 is adjusted for inflation at the provincial level to 2010.
3 CCP is the Chinese Communist Party.
4 Household income per capita is shown in individual level.

Table 3.2: Summary Statistics (Respondents’ Parents’ SES)

Statistic N Mean St. Dev. Min Max

Low Occupation 17,309 0.79 0.41 0 1
Mid Occupation 17,309 0.13 0.33 0 1
High Occupation 17,309 0.09 0.28 0 1
CCP member 19,736 0.16 0.37 0 1
Low Education 19,736 0.38 0.49 0 1
Mid Education 19,736 0.40 0.49 0 1
High Education 19,736 0.21 0.41 0 1

1 All variables are defined when the respondents were 14 years old.
2 All variables only record the higher value between parents.
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A dummy variable indicating whether one of the parents was a member of the China

Communist Party (CCP) when respondents’ were 14 years old was used as a proxy for

parents’ political affiliation. 16% of the parents had at least one CCP membership.

Among the variables introduced above, we selected gender, ethnicity, Hukou at age

12, a coastal or inland province at age 12, number of siblings, parents’ educational level,

parents’ occupational level and whether at least one parent was CCP member as circum-

stances. In total, the respondents were divided into 1331 types 12. Most types had fewer

than 10 samples. Therefore, using a non-parametric method to measure inequality of

opportunity will result in a large upward bias.

For the dependent variables, we used the annual individual income because household

income does not necessarily reflect how a person’s upbringing affects his/her income when

household members have different upbringings. Household income, household consump-

tion and individual labour earnings have also been used in other studies (Ferreira and

Gignoux, 2008). The annual individual income was 13,813 yuan on average in 2010 and

17,297 yuan in 2012. To construct the income variable, we first computed the labour

income by summing up individual wages, awards and allowances provided by employ-

ers, income from working out of town and bonuses. Then we matched each individual

to his household’s business income (including agricultural and non-agricultural business

income), property income, transfer income and other income (including gifts). The in-

dividual income is equal to labour income plus income from all sources of non-labour

income divided by the square root of the family size13. The individual income increased

by 30% from 2010 to 2012, which is mostly attributable to the increase in the household

income per capita.

The household income per capita in 2010 was 17,550 yuan on average and rose to

23,470 yuan by 2012. Both the annual individual income and the household income were

adjusted for inflation.

3.5.2 Macro-Level Data at the Regional Level in China

To measure inequality of opportunity at the regional level, we divided the whole

dataset into 8 regions. Figure 3.1 shows the eight regions in colours, where the red region

represents municipalities. Municipalities/autonomous regions and 25 out of 31 provinces

in China are covered in the dataset. Generally, we grouped the regions by geographic

proximity and development similarity.

The gross regional product (GRP) and the growth rate per capita for each province

are shown in Table 3.3. Generally, the east and metropolitan regions have higher per

12Those types with no observation are not counted
13Non-labour income and household income are rescaled by the square root to adjust the economies

of scale within households. We also constructed income variables without the rescaling. We found that
the results in this study are not affected by using income with different scales.
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capita GRP compared with the remaining regions; while the west and north west have

higher growth rates compared with the others.

Figure 3.1: The Regional Division of China

1. 25 provinces covered in the dataset are coloured in the map.

2. The detailed division for each province is presented in Table 3.3

3.6 The Results

The empirical results are presented in four sub-sections. The first sub-section explores

how circumstances affect labour participation. The second sub-section presents inequality

of opportunity at the national level; the third sub-section presents the provincial IOP and

its relationship with GRP. Inequality of opportunity in regards to gender, ethnicity and

Hukou status constitutes the final sub-section.

3.6.1 The Effect of Circumstances on Labour Participation

In our dataset, around 6.8% and 8.1% of the respondents received no income in 2010

and 2012 respectively. This raises the question to what extent do circumstances affect

labour participation. One way to show the influence of circumstances is to compare

circumstances between positive income and zero income observations. Table 3.4 shows the

independent t-test between zero-income and positive income respondents. The coefficients

represent the difference between the mean of the zero-income group and the mean of the

positive income group. A positive coefficient suggests that a zero-income group is more

likely to have individuals with a higher value of the relative variable. In terms of the
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Table 3.3: Per Capita Gross Regional Product and Indices

Per Capita GRP(Yuan) Indices (preceding year=100)
Province Region 2010 2011 2012 2010 2011 2012
Fujian East 40025 47377 52763 113.2 111.6 110.5
Jiangsu East 52840 62290 68347 112 110.3 109.7
Shandong East 41106 47335 51768 111.3 109.9 109.2
Zhejiang East 51711 59249 63374 109.5 107.2 107.7
Tianjin Metropolitan 72994 85213 93173 111.7 110.9 109.2
Shanghai Metropolitan 76074 82560 85373 106.4 105 105.7
Beijing Metropolitan 73856 81658 87475 104.8 103.8 104.9
Shanxi Mid-North 26283 31357 33628 111.2 110.4 109.6
Hebei Mid-North 28668 33969 36584 110.6 109.7 108.9
Anhui Mid-South 20888 25659 28792 118.8 112.6 111.8
Hubei Mid-South 27906 34197 38572 114.7 113.5 110.7
Jiangxi Mid-South 21253 26150 28800 113.2 111.8 110.4
Henan Mid-South 24446 28661 31499 112.6 112.5 110.1
Jilin North 31599 38460 43415 113.6 113.5 111.9
Liaoning North 42355 50760 56649 113.4 111.6 109.4
Heilongjiang North 27076 32819 35711 112.6 112.2 110.1
Shaanxi Northwest 27133 33464 38564 114.4 113.7 112.6
Gansu Northwest 16113 19595 21978 111.6 112.3 112.2
Guangxi South 20219 25326 27952 113.9 112 110.4
Hunan South 24719 29880 33480 112.9 111.2 110.7
Guangdong South 44736 50807 54095 109.5 108 107.4
Chongqing West 27596 34500 38914 116.2 115.1 112.4
Sichuan West 21182 26133 29608 115.7 115.9 112.3
Guizhou West 13119 16413 19710 114.7 116.1 113.5
Yunnan West 15752 19265 22195 111.6 112.9 112.3

Source: China Statistical Yearbook NBS (2013)

61



significance, “Male”, “coastal province” and “high parents’ occupation” are significant in

both years. “Urban Hukou status”, “number of siblings” and “high parents’ education”

are significant in 2010, and “minority”, “mid parents’ education” and “mid parents’

occupation” are significant in 2012. From the sign of the coefficients of these variables, a

zero-income individual is more likely to be a female Han (the major ethnic group), living

in coastal provinces with an urban-Hukou status, having few siblings, and whose parents

have a higher socio-economic status.

Table 3.4: Zero Income Vs Positive Income (the Independent t-test)

(1) (2)
2010 2012

Male -0.102∗∗∗ (-7.15) -0.124∗∗∗ (-8.78)
Minority group -0.00720 (-0.94) -0.0255∗∗∗ (-3.37)
Coastal province at age 12 0.0909∗∗∗ (6.38) 0.0922∗∗∗ (6.56)
Urban Hukou at age 12 0.0685∗∗∗ (6.83) 0.0158 (1.59)
Mid education(Parents) -0.000528 (-0.04) 0.0232∗ (1.66)
High education(Parents) 0.0255∗∗ (2.32) 0.0113 (1.04)
Mid occupation(Parents) 0.00624 (0.65) 0.0173∗ (1.84)
High occupation(Parents) 0.0206∗∗ (2.57) 0.0166∗∗ (2.10)
Member of CCP(Parents) 0.00542 (0.50) -0.00490 (-0.46)
Number of sibling -0.257∗∗∗ (-4.72) -0.0767 (-1.42)
1 ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
2 The standard error is in the parentheses.
3 The coefficients represent the mean difference between the zero-income group and the positive-

income group. The null hypothesis for the independent t-test is the mean (of the percentage of
male, for example) for the zero-income group is identical to the mean for the positive-income
group.

Including zero income observations, we ran regressions based on the Heckman model

and the hurdle model for the data in 2010 and 2012 respectively. The results for 2012 are

shown in Table 3.5. Since the results for 2010 are similar to those for 2012, we show the

results in Table 3.14 in the Appendix. In Table 3.5, columns (1) and (2) show the results

from the hurdle model. Columns (3) and (4) are the results from the Heckman model.

Columns (1) and (3) are the results from the selection equations, in which the estimators

are presented in the form of marginal effect. Columns (2) and (4) are the results from

the level equations.

In the selection equations (columns (1) and (3)), we added two variables —the inter-

action between male and marital status— as the exclusion restriction of the Heckman

model because gender and marital status are likely to affect the reservation wage and the

decision on labour participation. We did not include these two variables in the Hurdle

model because this model does not require exclusion restrictions.

In general, compared to the Hurdle model, the Heckman model estimates a higher

log income distribution. This implies that zero income observations could receive higher

market wages than the average income level. This implication is also supported by the
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negative correlation (ρ in Table 3.5) between the errors of the selection and the level

equation and the coefficients of the selection equation as well. The coefficients of the

selection equation suggest that those with circumstances such as female, major ethnic

group, urban Hukou, coastal provinces and higher parents’ SES are more likely to have

a higher reservation wage than the market wage. Most of these circumstances, however,

contribute to a higher income.

Table 3.5: Hurdle Model vs Heckman Model (2012)

Hurdle Model Heckman Model
(1) (2) (3) (4)

Selection Level Selection Level
Male 0.036∗∗∗ 0.595∗∗∗ 0.098∗∗∗ 0.488∗∗∗

Minority 0.023∗∗∗ −0.377∗∗∗ 0.248∗∗∗ -0.442∗∗∗

Urban Hukou at age 12 -0.001 1.164∗∗∗ -0.284∗∗∗ 1.125∗∗∗

Coastal Province at age 12 -0.025∗∗∗ 0.372∗∗∗ -0.118∗∗∗ 0.443∗∗∗

Mid education(Parents) -0.005 0.255∗∗∗ -0.074∗∗∗ 0.258∗∗∗

High education(Parents) -0.002 0.221∗∗∗ -0.051 0.217∗∗∗

Mid occupation(Parents) -0.010 0.252∗∗∗ -0.076∗∗ 0.281∗∗∗

High occupation(Parents) -0.017∗∗ 0.231∗∗∗ -0.056 0.295∗∗∗

Member of CCP(Parents) 0.009 0.103∗∗∗ 0.043 0.073∗∗

Number of sibling 0.001 −0.046∗∗∗ 0.005 -0.052∗∗∗

Married in 2010 -0.118∗∗∗

Constant 11.140∗∗∗ 8.173∗∗∗ 1.442∗∗∗ 8.544∗∗∗

Observations 17176 15821 17176
ρ -0.952∗∗∗

σ 1.65∗∗∗

λ -1.57∗∗∗

1 ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
2 The coefficients of the selection equations are presented in the form of marginal effect.

The selection equation in the Hurdle model shows a similar result. The coefficients

for male, minority, coastal province and high parents’ occupational level are significant

at the 5% level in 2012. Given their coefficient, we conclude that those who are male, the

minority group, living in inland provinces or having lower parents’ SES are more likely

to earn positive income. This result is consistent with the results from the independent

t-test as well as the Heckman model.

In the selection equation, the difference between the Hurdle model and the Heckman

model is that the Heckman model indicates a higher marginal effect than the Hurdle

model. For example, the Hurdle model suggests that rural and urban Hukou have similar

probabilities of receiving zero income, while the Heckman model indicates that urban

Hukou holders are 28.4% more likely to have a higher reservation wage than the market

wage. Given a negative and significant ρ, we conclude that the OLS model (which is

also the level equation in Hurdle model) could be biased and the assumption of the
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reservation wage gives a better explanation of the decision on the labour participation

than the Hurdle model.

In the level equation, different circumstances have different impacts on income. Com-

paring parents’ SES with other variables, we find that gender, ethnicity, whether one

lives in a coastal province and Hukou status seem to contribute more to income inequal-

ity than parents’ SES does. These demographic characteristics affect not only income

but also the decision in labour participation. Parents’ SES, on the other hand, affects a

person’s income earned but has less implication in their labour participation.

Among all circumstances, Hukou status has the largest impact on income and the

labour participation, which might indicate a substantial rural-urban inequality in China.

Urban Hukou holders are less likely to participate in the labour market but they could

earn 112.5% more, if they work, than their rural counterparts. Given a similar impact

of living in a coastal/inland province14, we conclude that regional disparities can be the

most important factor of income inequality in China. This finding is in line with other

researches in regional inequality in China such as researches from Wan et al. (2006), Xie

and Zhou (2014) and Wu and Rao (2017).

3.6.2 Inequality of Opportunity at the National Level

Considering the correlation between circumstances and effort, we parameterized het-

eroskedasticity and estimated the model using MLE with equation (3.13). Table 3.6

shows the results. The first two columns are the estimators of the mean and the last two

are of the variance. Comparing this table with Table 3.5, the coefficients of the mean

are similar to the level estimation of the hurdle model. Therefore, when computing the

Shapley values, the results might be similar if replacing the coefficients of the mean from

OLS with those from MLE.

As is shown in the last two columns in Table 3.6, heteroskedasticity has a significant

effect on income inequality through a variety of factors. Male’s income has a higher

variation than female’s in 2010 (8.8%) but not in 2012 (-0.3%). This difference in income

variance might be due to a larger increase in income for low income males than high

income males from 2010 to 2012.

Hukou status also has a large impact on income distribution. Those with a urban

Hukou have 58.8% lower income variance in 2012, but are not different from their rural

Hukou counterparts in 2010; while income differential is much higher in 2012 (117.2%)

than 2010 (62.6%). This indicates that income grows much faster for those who hold

urban Hukou status than those with rural Hukou status. This finding is also supported

by other studies such as Liu (2005) and Afridi et al. (2015). For urban Hukou holders,

14For the convenience in computing IOR, we divided the 25 provinces in China into only two categories:
inland and coastal. Therefore, the coefficient of inland/coastal dummy variable only roughly shows the
regional disparity.
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those with low income might benefit more than their high income counterparts so that

the income distribution converges and the variance reduces by 58.8%.

In addition, living in the coastal province reduces the income variances from 17.8% in

2010 to 7.7% in 2012, while the income differential between inland and coastal province

increases from 27.7% to 39.1%. This indicates that for residents in the coastal province,

those with low income might benefit more than their high income counterparts.

In summary, from the heteroskedastic model, we find that variances are influenced

mainly by gender, ethnicity, Hukou status and whether one lives in the coastal province.

Those who are male, urban Hukou status and living in the coastal province with lower

income are more likely to have higher growth of income from 2010 to 2012.

Table 3.6: The MLE with Type Heteroskedasticity at the National Level

Mean Variance
2010 2012 2010 2012

Constant 8.287∗∗∗ 8.191∗∗∗ 0.611∗∗∗ 0.901∗∗∗

(0.032) (0.035) (0.033) (0.033)
Male 0.556∗∗∗ 0.550∗∗∗ −0.088∗∗∗ 0.003

(0.022) (0.024) (0.023) (0.023)
Minority −0.196∗∗∗ −0.362∗∗∗ −0.007 0.088∗∗

(0.040) (0.046) (0.042) (0.042)
Urban Hukou at age 12 0.626∗∗∗ 1.172∗∗∗ −0.054 −0.588∗∗∗

(0.034) (0.031) (0.035) (0.035)
Coastal Province at age 12 0.277∗∗∗ 0.391∗∗∗ 0.178∗∗∗ 0.077∗∗∗

(0.023) (0.024) (0.023) (0.023)
Mid education(Parents) 0.199∗∗∗ 0.232∗∗∗ 0.037 0.014

(0.025) (0.027) (0.026) (0.026)
High education(Parents) 0.221∗∗∗ 0.214∗∗∗ 0.026 −0.014

(0.034) (0.035) (0.035) (0.034)
Mid occupation(Parents) 0.137∗∗∗ 0.235∗∗∗ 0.026 −0.052

(0.036) (0.036) (0.037) (0.037)
High occupation(Parents) 0.129∗∗∗ 0.216∗∗∗ 0.087∗∗ 0.070

(0.044) (0.045) (0.044) (0.045)
Member of CCP(Parents) 0.132∗∗∗ 0.099∗∗∗ −0.122∗∗∗ −0.054∗

(0.030) (0.032) (0.032) (0.032)
Number of sibling −0.033∗∗∗ −0.044∗∗∗ −0.003 −0.019∗∗∗

(0.006) (0.006) (0.006) (0.006)
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

The standard error is in the parentheses.

To implement the Shapley decomposition, we grouped 10 explanatory variables into

5 factors — gender, ethnicity, geographic characteristics, parents’ SES and the number

of siblings. Geographic characteristics comprise Hukou status and coastal province; and
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parents’ socioeconomic status includes parents’ educational level, occupational level and

member of CCP.

Table 3.7 shows the decomposition of IOR at the national level. The first two columns

are the decomposition of the results from the linear regression. Only observations with

positive income are included. The third and fourth columns are the decomposition using

the Heckman model. The fifth and sixth columns are the decomposition using the whole

hurdle model with homoskedasticity. The last two columns are the decomposition using

the hurdle model with heteroskedasticity.

Comparing the model without zero income with the first hurdle model, we found that

the inclusion of zero income only slightly changed the Shapley value for each factor. In

total, IOR decreased over 1% in both years if considering zero-income individuals. This

slight decline might indicate that those who have advantages in circumstances might be

more likely to receive zero income.

Although the Heckman model and the Hurdle model have different assumptions on

labour participation, IOR from both models yields similar results. The results from

these two models show the robustness of the Shapley decomposition when zero income

observations are considered.

In terms of the contribution of each factor to total income inequality, gender and

geographic characteristics are two main sources. They together contribute more than

20% of total income inequality if assuming homoskedasticity. This figure increases to

more than 40% when the error is heteroskedastic. Parents’ socioeconomic status accounts

for around 5% to 7% for homoskedasticity and more than 9% for heteroskedasticity. This

effect of parents’ socioeconomic status on income might explain low income mobility

and low intergenerational mobility. For example, researchers find that as the Chinese

economy has developed rapidly in the last two decades, it became more difficult for those

in the bottom to climb the economic ladder but much easier for those on the top to stay

there (Chen and Cowell, 2015). This decrease in mobility might be related to the bigger

impact of parents’ socioeconomic status on children’s income. Researchers find that the

similarities in income, education and health between parents and children have increased

in the last two decades (See Qin et al., 2016 and Eriksson et al., 2014).

Sibling number and ethnicity makes up less than 5% of total income inequality for

homoskedasticity and around 5% to 8% for heteroskedasticity. Considering all factors, we

found that IORs were 29.35% in 2010 and 40.15% in 2012 for the linear regression model.

When we accounted for the samples with zero income, IORs reduced to 27.59% in 2010

and 37.97% in 2012. However, when we allowed for heteroskedasticity, IORs increased

to around 50% in both years. These measures identify the lower bound of inequality

of opportunity in China considering that our models do not capture some unobserved

circumstances.

The difference in IORs between homoskedasticity and heteroskedasticity implies that
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circumstances also largely affect income inequality indirectly through effort. Among

these differences in IORs, we found that around 4-5% of income inequality was due to

the indirect effect of gender, about 8% to 12% was due to geographic characteristics and

about 5% was due to parents’ SES. Comparing the results over two periods, we found that

the difference in IOR arose mainly from the geographic characteristics. The gap shrinks

when heteroskedasticity is taken into account, which is in line with what we found in the

results of MLE.

Table 3.7: The Shapley decomposition at the National Level

OLS Heckman Hurdle model 1 Hurdle model 2
2010 2012 2010 2012 2010 2012 2010 2012

Gender 9.34 8.71 7.35 8.34 8.95 8.39 12.41 12.57
Ethnicity 0.74 1.28 0.68 1.21 0.68 1.16 1.12 1.39

Geographic 11.27 20.33 12.54 19.02 10.47 19.02 21.61 23.99
Parents’ SES 5.77 6.92 5.26 6.48 5.34 6.4 9.69 10.13

Sibling number 2.23 2.89 2.76 2.81 1.96 2.61 3.82 5.93
Income: +/0 0.19 0.39 0.16 0.38

IOE 70.65 59.85 71.41 62.15 72.41 62.03 51.19 45.62
IOR 29.35 40.15 28.59 37.85 27.59 37.97 48.81 54.38

1 OLS is the regression without zero-income. Heckman is the Heckman model. Hurdle model 1 is the regression
using the hurdle model with type homoskedasticity. Hurdle model 2 is the regression using the hurdle model
with type heteroskedasticity.

2 The ”Geographic” factor includes individuals’ Hukou status when they were 12 years old.
3 Parents’ SES is the parents’ socioeconomic status which include parents’ educational level, occupational status

and political affiliations.
4 Income: +/0 is the contribution of probability to have a positive income.
5 All values are presented in percentages.
6 IOE stands for the proportion of income inequality due to effort and IOR represents the proportion of income

inequality due to circumstances.

We also conducted sensitive analysis for the IOR measures shown in Table 3.7. The

results are presented in the Appendix (Tables 3.15, 3.16, and 3.17). In the sensitive

analysis, the first test changed the sibling number into a three-level variable: with no

sibling, 1 sibling, and with 2 or more siblings. The number of types was reduced to 585.

The second test dropped the types with less than 5 samples. The number of types was

dropped to 534. The last test dropped the types with less than 10 samples. The number

of types was further reduced to 296. The measures in the first two tests (Tables 3.15

and 3.16) are similar to our main results (Table 3.7). The measures slightly decreased

when types with fewer than 10 samples were dropped. These results from the sensitivity

analysis show that our main results in Table 3.7 are robust and not affected by the

reduction of samples and types.

Zhang and Eriksson (2010) measured IOR in nine provinces in China from 1989 to

2006 excluding individuals with no income. Their results in IOR ranged from 46% in 1989

to 63% in 2006. Their paper uses Gini coefficients without the Shapley decomposition

and treated the predicted income from the linear regression as inequality of opportunity.

Since Gini coefficients are not path independent, the results could be biased.
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Given that circumstances c is observable and effort e is unobserved, the relationship

between income inequality and circumstances can be modelled by y = cβ + ε where ε

is the residual. Let the predicted income be ŷ = cβ̂, IOR = I(ŷ)/I(y)15. Applying

the same method as Zhang and Eriksson (2010), we found that IOR is 37.18% in 2010

and 53.64% in 2012. The results are higher than those from our method. Therefore, the

method using Gini coefficients without Shapley decomposition could overstate IOR.

We further implemented Shapley decomposition on IOR computed from predicted

income to identify the contribution of each factor. The results are shown in Table 3.8. The

first two columns are the results using the Gini coefficients with Shapley decomposition

only on circumstances (the same as Zhang’s and Eriksson’s (2010) method) and the

last two are the results using the Gini coefficient with Shapley decomposition on both

circumstances and effort. It shows that almost all factors record higher contribution

under the former method.

Table 3.8: The Shapley Decomposition (Including or Excluding Effort)

Excluding Effort Including Effort
2010 2012 2010 2012

Gender 13.97 11.24 9.34 8.71
Ethnicity 0.98 1.75 0.74 1.28

Geographic 14.07 28.98 11.27 20.33
Parents’ SES 6.36 8.10 5.77 6.92

Sibling Number 1.8 3.58 2.23 2.89
IOR 37.18 53.64 29.35 40.15

1 In the first two columns, Shapley decomposition is used to decompose the counterfactual income distribution deter-
mined only by circumstances; while in the last two columns, Shapley decomposition is implemented to the observed
income assumed to be influenced by both circumstances and effort.

2 The “Geographic” factor includes individuals’ Hukou status when they were 12 years old.
3 Parents’ SES is the parents’ socioeconomic status which include parents’ educational level, occupational status and

political affiliations.
4 All values are presented in percentages, representing the contribution of the relative factor to total income inequality.
5 IOR represents the proportion of income inequality due to circumstances.

Given the same method, IOR reduces from 63% in 2006 as reported in Zhang and

Eriksson (2010) to around 50% in 2012 as reported in Table 3.8. In addition, Zhang and

Eriksson (2010) estimated the contributions of each circumstance to total income. They

found that parents’ socioeconomic status is the most important factor in circumstances

while our analysis shows that the most important factors are geographic characteristics

including whether living in a coastal province and Hukou status.

Comparing this study to studies in other countries, we found that IOR in China is

higher. If we only consider individuals with positive incomes and assume homoskedas-

ticity across type, IOR in China measured by a direct ex-ante approach (29.35% in 2010

and 40.15% in 2012) is higher than most of the Latin American countries (20.8% - 37.3%

15The same method can also be found in Manna and Regoli (2012); if using variances as the inequality
index, I(ŷ) is equal to the coefficient of determination R2 (Israeli, 2007).
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from Barros et al.’s (2009) study) and U.S. (around 20% in 2001 (Pistolesi, 2009)) with

the same approach.

These differences may be due to different empirical methods and data used in these

studies. For example,Pistolesi (2009) use ethnicity, birth region, parents education and

father’s occupation as circumstances variables. Paes de Barros et al. (2009) use gender,

race, parent’s occupation, parent’s education and birth region to identify circumstances.

Our study includes not only common variables like ethnicity, parent’s education and

occupation but also variables that are particularly relevant in the case of China such as

the Hukou status, an indicator of residency in a coastal province, an indicator of political

affiliations, and number of siblings. To some extent, the Hukou status and residency in

a coastal province are similar measures compared to birth region in other studies. We

found these variables contribute up to more that 1% of income inequality, which is much

higher than the contribution of birth region for other countries.

Using Shapley decomposition and accounting for heteroskedasticity, Björklund et al.

(2012) reported IOR to be greater than 30% in Sweden while we found that IOR is

around 50% in China. Björklund et al. (2012) use parents’ income, parents’ education,

IQ, number of siblings, BMI and family structure as circumstances. They found that the

largest contribution of circumstances to inequality comes from IQ while our results show

that it comes from the Hukou status. If IQ also has a significant contribution to income

inequality in China, the IOR could be even higher.

The higher IOR in China might explain why Chinese respondents have the lowest

“feeling of procedural justice” in the ISSP survey. However, international comparison

should be conducted with caution because different studies use different methods.

3.6.3 Inequality of Opportunity at the Regional Level

Tables 3.9 and 3.10 show the measures of inequality of opportunity at the regional

level using the hurdle model assuming homoskedasticity across types in 2010 and 2012

respectively (the results of regressions are presented in the Appendix from Tables 3.18

to 3.25). We did not include the heteroskedastic model because, at the regional level,

most coefficients of the mean and variance from MLE were not significant. Since some

regions contain all coastal provinces and some contain all inland provinces, we removed

the “coastal province” dummy in the regressions.

In general, IOR varies from 19.77% to 28.36% in 2010 and from 26.55% to 33.91%

in 2012 across regions. These figures are smaller than those at the national level. It is

probably because regional disparity contributes to IOP at the national level. In particular,

IOR is the highest in the mid-north region in 2010 and in the south region in 2012, while

it is the lowest in the mid-south region in 2010 and in the west region in 2012. The

differences between the highest and the lowest are around 9% in 2010 and 7.5% in 2012,
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which indicates a regional disparity in inequality of opportunity in China.

In terms of the Shapley decomposition, gender, Hukou and parents’ socioeconomic

status are three main sources of income inequality for all regions. This result is in line

with that at the national level. However, the contributions of these three sources vary

across regions. In the metropolitan region, gender accounts for 8.42% in 2010 and 4.36%

in 2012 of total income inequality; while in the mid-north, it represents 13.28% in 2010

and 14.41% in 2012 of total income inequality. The difference between these two regions

is more than 5%.

The contributions of Hukou and parents’ SES also show huge difference across re-

gions. Hukou status contributes approximately 10.61% of income inequality in 2010 in

the northern west and around 11.33% in 2012; while it contributes only 1.02% to income

inequality in the east in 2010. This negligible contribution might be due to the smaller

rural-urban income gap in the east. In our dataset, the average income in the rural east

region is 14,470 yuan and the average urban income is 20,230 yuan; while in the northern

west the rural samples earn 7,344 yuan and the urban samples earn 21,800 on average.

In terms of parents’ SES, the south region is the highest for both years. It accounts for

more than 9% in both periods. The lowest contribution is in the north (2.75% in 2010

and 4.16% in 2012).

To conclude, we find that regional disparities exist not only in income inequality

but also in its sources. Rich regions like the metropolitan region have a lower level

of income inequality but higher IOR; while poor regions have a higher level of income

inequality but lower IOR. Specifically, gender, Hukou and parents’ socioeconomic status

are the three main sources of income inequality. Their contribution, measured by Shapley

decompositions, varies from region to region, which indicates large regional heterogeneity

in each source of income inequality.

3.6.4 Provincial Inequality and GRP per capita

We also estimated inequality of opportunity at the provincial level for 25 provinces in

the dataset. The IORs at the provincial level are computed using the Shapley decompo-

sition with the hurdle model. We assumed type homoskedasticity since the sample size

for each province is too small to cover all types.

Figure 3.2 demonstrates the relationship between GRP per capita and inequality of

opportunity measured by IOL and IOR at the provincial level. The upper two graphs show

GRP per capita with the observed Gini coefficients and IOR respectively. Provinces with

higher GRP per capita clearly have lower Gini coefficients but higher IOR. To interpret

this difference, we graphed the level of inequality contributed by effort (EOL) alongside

the level of inequality contributed by circumstances (IOL) in the lower panel. The graph

shows that EOL has a negative relationship with GRP, dropping from around 50% when
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GRP per capita is lower than 20,000 Yuan to below 30% when GRP per capita is close to

100,000 Yuan if assuming type homoskedasticity, while IOL only increases slightly (from

20% to 22%).

To sum up, EOL clearly shows a decreasing trend; while IOL does not show a clear

trend. This finding is in contrast to Marrero and Rodriguez (2013), who found that in-

equality of opportunity is negatively related to growth and inequality of effort is positively

related.

The difference in the results might be due to the fact that our research focussed on

a developing country— China, while Marrero and Rodriguez (2013) studied a developed

country— the United States. At the early stages of development, an increase in effort

(e.g. decision for rural residents to move to urban areas to find jobs) might make a huge

difference in income, while at the later stage of development, the same amount of increase

in effort might make no difference (e.g. for rural migrants, urban jobs are not as easy to

find as 20 years ago.).

In summary, the results indicate that income inequality reduces from about 0.7 to

0.5 when GRP per capita rises from below 20,000 yuan to more than 90,000 Yuan. This

reduction seems mostly due to the decrease in EOL, which might imply that a poor

province has a more diverse distribution of effort or a bigger influence of effort on income

inequality.

Figure 3.2: Provincial Inequality and GRP per capita

1. GRP is the Gross Regional Product per capita.

2. IOR is the proportion of income inequality due to circumstances.

3. IOL stands for the level of income inequality due to circumstances.

4. EOL represents the level of income inequality due to effort.

5. Source: GRP is collected from the China statistical yearbook (NBS, 2013).

6. Observed Gini, IOL, EOL and IOR are based on authors’ calculation.
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3.6.5 The Role of Circumstances in Income Differential between Gender,

Ethnicity and Hukou Status

This section shows the role of circumstances in income differential between gender,

ethnicity and Hukou status respectively. We used Hukou status in one’s childhood because

it is determined by one’s parents’ Hukou status and beyond the individual’s control.

Firstly, we grouped the dataset by gender, ethnicity and Hukou status. The means

and standard deviations are listed in Table 3.11. Male’s individual income is around

60% more than female’s, while male’s household income per capita is almost the same as

female’s. Therefore, using household income per capita might fail to reveal inequality of

opportunity in gender.

Household income of the majority group is 27% more than that of the minority group

in 2010, and a similar gap is observed for individual income. This gap enlarges in 2012

to around 45%, which might imply that minority group benefits little from the growth

during 2010-2012.

Among gender, ethnicity and Hukou status, the income gap is the biggest for Hukou

status. Individual income of urban Hukou holders is around 93% more than their rural

counterparts in 2010. This gap increases to 156% in 2012. A similar gap is observed

for household income, which indicates that family members in most households have the

same Hukou status as each other.

Table 3.11: Income difference in gender, ethnicity and Hukou status

(1) (2) (3)
Female Male Majority Minority Rural Urban

HHincome(2010) 17614.7 17584.6 17898.7 14108.9 15367.7 30357.1
(26598.9) (27818.2) (27470.1) (23498.2) (23792.5) (39166.1)

HHincome(2012) 21294.3 21992.0 22175.8 15294.3 19280.7 35031.5
(25087.9) (28270.2) (27222.3) (17834.9) (23905.1) (35873.9)

INDincome(2010) 10755.7 17545.1 14289.3 10321.8 12278.1 23743.4
(23338.6) (32100.0) (28438.6) (22907.3) (24838.9) (40561.5)

INDincome(2012) 12483.2 20302.9 16644.3 10873.1 13117.5 33615.1
(20274.7) (37968.9) (31066.8) (17552.3) (26298.8) (42689.3)

1 HHincome is the household income per capita.
2 INDincome is the individual income per capita.
3 “Majority” and “Minority” indicate ethnicity.
4 “Rural” and “Urban” indicate Hukou status.
4 The values in parentheses are the standard deviations.
5 Source: CFPS and authors’ calculation.

To illustrate how circumstances contribute to the income differential shown in Table

3.11, we use Oaxaca decomposition and the results in 2012 are shown in Table 3.12. In

the table, “Advantage” represents the predicted income for the advantaged groups; while

“Disadvantage” represents the predicted income for the disadvantaged groups. According

to Table 3.11, we identify the group of male, urban Hukou holders and the major ethnic
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group (Han) as the advantage groups. We treat zero income observations as if they earn 1

yuan, transform income into log income and regress log income with other circumstances.

Based on the predicted income from the regressions, we decomposed the expected income

differential between groups into three components: endowments, coefficients and interac-

tion.

We found that almost all the income differential between gender comes from coeffi-

cients. Given the same circumstances, a male earns 83.6% more income than a female in

2012. However, the effort of endowments are close to 0 and not significant, which means

a male has no advantage in circumstances.

Income differential caused by circumstances between urban and rural Hukou hold-

ers are the largest among the three demographic variables. Urban Hukou holders earn

137.5% more income on average than their rural counterparts. Around 39% of this gap

can be explained by the difference in circumstances and 85% is related to the effect of

circumstances. In other words, rural Hukou holders could not only have disadvantage

in circumstances (lower parents’ SES, for example) but also earn less if they have the

same circumstance as their urban counterparts. This finding is consistent with Afridi

et al. (2015)’s experimental study on the impact of China’s Hukou system on individuals’

performance. They found that a rural Hukou reduced the academic performance of rural

migrant students compared to their local urban counterparts.

Income gap caused by circumstances can also be found between different ethnic groups.

Individuals in the major ethnic group earn 39.7% more income on average than other

minorities. Around 38.5% of this difference in income is due to the difference in circum-

stances, while around 77.6% is due to the effect of circumstances. This indicates that

individuals in the major ethnic group have advantage in circumstances and earn more

income even though they have the same circumstances as minorities.

Since the results in Table 3.12 include zero income observations, one source of income

differential could be from those zero income observations. In Table 3.13, we excluded zero

income observations and did the Oaxaca Decomposition again. We found that the income

gap becomes smaller (reduced by 20%) for gender but becomes larger for ethnicity (18%

increase) and Hukou status (20% increase). This result indicates that female, urban

Hukou holders and majority groups are more likely to choose not to work, which is

consistent with what we found in the analysis of labour participation.

We implemented the Oaxaca decomposition using the data in 2010. The results are

shown in Table 3.26 in the Appendix. Results are generally similar to those for 2012.

The only difference is that in 2010, income differential between rural and urban Hukou

holders was much lower than that in 2012.

In summary, we find that a male earns a higher income than a female given the same

circumstances but has no advantage in other circumstances. This gap is partially due

to the lower labour participation of females and partially due to the discrimination of
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Table 3.12: Oaxaca Decomposition by Gender, Hukou Status and Ethnicity(2012)

(1) (2) (3)
Gender Hukou Ethnicity

Disadvantage 7.772∗∗∗ 8.020∗∗∗ 7.801∗∗∗

(0.0327) (0.0240) (0.0733)
Advantage 8.618∗∗∗ 9.395∗∗∗ 8.198∗∗∗

(0.0318) (0.0763) (0.0244)
Difference -0.846∗∗∗ -1.375∗∗∗ -0.397∗∗∗

(0.0456) (0.0799) (0.0773)
Endowments -0.0119 -0.538∗∗∗ -0.153∗∗∗

(0.00884) (0.0991) (0.0212)
Coefficients -0.836∗∗∗ -1.174∗∗∗ -0.308∗∗∗

(0.0451) (0.108) (0.0827)
Interaction 0.00185 0.337∗∗ 0.0640

(0.00743) (0.123) (0.0392)
Observations 13690 13690 13690

1 Advantage is the predicted income when the dummy variable listed in column is equal to 1.
2 Disadvantage is the predicted income when the dummy variable listed in column is equal to 0.
3 Standard errors in parentheses
4 ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001

Table 3.13: Oaxaca Decomposition by Gender, Hukou Status and Ethnicity (2012 without
Zero Income Observations)

(1) (2) (3)
Gender Hukou Ethnicity

Disadvantage 8.466∗∗∗ 8.597∗∗∗ 8.219∗∗∗

(0.0199) (0.0151) (0.0520)
Advantage 9.088∗∗∗ 10.15∗∗∗ 8.810∗∗∗

(0.0204) (0.0314) (0.0150)
Difference -0.621∗∗∗ -1.556∗∗∗ -0.591∗∗∗

(0.0285) (0.0349) (0.0541)
Endowments -0.0141 -0.319∗∗∗ -0.213∗∗∗

(0.00964) (0.0417) (0.0195)
Coefficients -0.608∗∗∗ -1.042∗∗∗ -0.425∗∗∗

(0.0268) (0.0584) (0.0568)
Interaction 0.000946 -0.195∗∗ 0.0464∗

(0.00511) (0.0629) (0.0270)
Observations 12760 12760 12760

1 Advantage is the predicted income when the dummy variable listed in column is equal to 1.
2 Disadvantage is the predicted income when the dummy variable listed in column is equal to 0.
3 Standard errors in parentheses
4 ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001
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females in the labour market. However, for ethnicity and Hukou status, the disadvan-

tageous groups have even higher job participation, which indicates higher inequality of

opportunity between ethnic groups or different Hukou status for employed people than

is shown in Table 3.12.

3.7 Conclusion

In this essay, we used the data from the CFPS and computed IOR in 2010 and 2012

respectively. Taking advantage of the heterogeneity of regional development in China, we

grouped 25 provinces into 8 regions. At the national level, we found that IOR was around

30% in 2010 and 40% in 2012 if assuming homoskedasticity across types. This finding

suggests that inequality of opportunity in China is at least 30% of income inequality in

2010 and 40% in 2012 given the observed circumstances in our dataset. Higher than

the findings for most Latin American countries and U.S., this figure indicates a large

proportion of income inequality is due to circumstances beyond individuals’ control. IOR

increases to around 50% when heteroskedasticity is accounted for. This increase might

suggest the effect of circumstances on effort and an underestimated measure of IOP if

heteroskedasticity is neglected.

We also found evidence of relationships between regional development and inequality.

GRP, as a proxy for regional development, has a negative relationship with the observed

income inequality measured by Gini coefficients but a positive relationship with IOR.

More specifically, income inequality due to effort decreases when comparing the rich

regions to the poor while income inequality due to circumstances does not show a clear

pattern. As a result, the overall observed income inequality decreases with regional

development. This result suggests that different regions have a similar level of within-

region inequality of opportunity even though income inequality varies across region.

On the one hand, the results shed light on how income inequality is driven by cir-

cumstances and effort. On the other hand, the analysis highlights possible bias in the

conventional approaches to inequality of opportunity. Application of the Heckman model

and the hurdle model were attempts to correct the bias from the exclusion of the obser-

vations with zero income. These two models also demonstrate as to how circumstances

affect labour participation. Although IORs change little after including zero-income ob-

servations, a larger sample size helps improve the robustness and the representativeness

of the results.

MLE aims to correct another bias—type heteroskedasticity. Assuming a heteroskedas-

tic model and using MLE, we show the indirect contribution of each circumstance to

total income inequality. After taking account of type heteroskedasticity, IORs show a

consistency over the two periods than the results without type heteroskedasticity. This

consistency also suggests that some circumstances such as Hukou status contributed more
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indirectly to total income inequality in 2010 than that in 2012.

Applying these econometric techniques, we are able to relax the assumption of in-

dependence between circumstances and effort and measure the indirect effect of effort

on circumstances through the heteroskedastic model. Other advanced models such as

models for panel data can be applied in a future study when the data for additional years

become available in CFPS.

We are also aware of the different role circumstances play in income for different co-

horts. Noticeably, we find a huge income gap between rural and urban Hukou holders.

This income differential between urban and rural Hukou holders is largely due to circum-

stances. Rural Hukou holders initially have more disadvantages in circumstances than

their urban counterparts. They tend to earn much less income even though they have

the same circumstances as their urban counterparts except for Hukou status.

These sources of income differentials between rural and urban Hukou holders indicate

that living in a rural/urban area in one’s childhood could have a long-term effect on one’s

income. The disadvantage for rural Hukou holders has already existed in the previous

generation because their parents have a lower SES on average compared with their ur-

ban counterparts. Given that circumstances have a large influence on total income, the

disadvantage in lower parents’ SES might result in lower income and lower SES in the

next generation. For example, Eriksson and Zhang (2012) show a high level of income

similarity between siblings in China. Du et al. (2014) report high income similarity be-

tween parents and children. These studies show a low intergenerational mobility in China

which might help explain high inequality of opportunity found in this study.

In Chapter 5, we investigated further in the effect of Hukou status on educational

inequality.

Given the substantial income gap between rural and urban Hukou holders, future

studies can explore how Hukou status affects intergenerational mobility and inequality of

opportunity in the long run and whether the influence comes from living in a rural/urban

area or the Hukou system itself.
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3.8 Appendices

Table 3.14: Hurdle Model vs Heckman Model (2010)

Hurdle Model Heckman Model
(1) (2) (3) (4)

Selection Level Selection Level

Male 0.030∗∗∗ 0.560∗∗∗ 0.116∗∗∗ 0.481∗∗∗

Minority 0.001 −0.200∗∗∗ 0.035 -0.200∗∗∗

Urban Hukou at age 12 -0.034∗∗∗ -0.253∗∗∗ -0.253∗∗∗ 0.706∗∗∗

Coastal Province at age 12 -0.027∗∗∗ -0.101∗∗∗ -0.101∗∗∗ 0.337∗∗∗

Mid education(Parents) 0.004 0.207∗∗∗ 0.028 0.195∗∗∗

High education(Parents) -0.001 0.219∗∗∗ 0.022 0.221∗∗∗

Mid occupation(Parents) 0.008 0.140∗∗∗ 0.056 0.128∗∗

High occupation(Parents) -0.008 0.143∗∗∗ 0.001 0.172∗∗∗

Member of CCP(Parents) 0.004 0.128∗∗∗ -0.001 0.113∗∗∗

Number of siblings 0.004∗∗∗ −0.034∗∗∗ 0.012 -0.045∗∗∗

Married 0.057
Constant 10.339∗∗∗ 8.286∗∗∗ 1.411∗∗∗ 8.532∗∗∗

17176 15860 17176
-0.91∗∗∗

1.518∗∗∗

-1.381∗∗∗

1 ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
2 The coefficients of the selection equations are presented in marginal effect.
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Table 3.15: The Measures of Inequality of Opportunity at the Na-
tional Level (2-level Sibling Number)

OLS Hurdle model 1 Hurdle model 2
2010 2012 2010 2012 2010 2012

Gender 9.37 8.81 8.97 8.45 12.72 13.03
Ethnicity 0.75 1.30 0.69 1.18 1.18 1.49

Geographic 11.20 20.44 10.39 19.10 22.03 24.90
Parents’ SES 5.99 7.30 5.54 6.73 10.07 10.72

Sibling number 1.89 2.00 1.68 1.82 1.03 1.81
Income: +/0 0.21 0.46 0.20 0.45

IOE 70.79 60.16 72.52 62.26 52.76 47.60
IOR 29.21 39.84 27.48 37.74 47.24 52.40

1 OLS is the regression without zero-income. Hurdle model 1 is the regression using the
hurdle model with type homoskedasticity. Hurdle model 2 is the regression using the
hurdle model with type heteroskedasticity.

2 The ”Geographic” factor includes individuals’ Hukou status when they were 12 years old.
3 Parents’ SES is the parents’ socioeconomic status which include parents’ educational level,

occupational status and political affiliations.
4 Income: +/0 is the contribution of probability to have a positive income.
5 All values are presented in percentage.
6 IOE stands for the proportion of income inequality due to effort and IOR represents the

proportion of income inequality due to circumstances.

Table 3.16: The Measures of Inequality of Opportunity at the Na-
tional Level (Dropping Types with less than 5 Samples)

OLS Hurdle model 1 Hurdle model 2
2010 2012 2010 2012 2010 2012

Gender 9.75 9.16 9.34 8.83 12.67 12.88
Ethnicity 0.63 1.23 0.58 1.11 0.94 1.26

Geographic 10.74 18.69 9.99 17.46 20.97 23.32
Parents’ SES 5.73 6.89 5.32 6.38 9.67 10.04

Sibling number 2.35 3.14 2.08 2.84 3.84 6.04
Income: +/0 0.20 0.42 0.16 0.42

IOE 70.81 60.89 72.49 62.95 51.74 46.05
IOR 29.19 39.11 27.51 37.05 48.26 53.95

1 OLS is the regression without zero-income. Hurdle model 1 is the regression using the
hurdle model with type homoskedasticity. Hurdle model 2 is the regression using the
hurdle model with type heteroskedasticity.

2 The ”Geographic” factor includes individuals’ Hukou status when they were 12 years old.
3 Parents’ SES is the parents’ socioeconomic status which include parents’ educational level,

occupational status and political affiliations.
4 Income: +/0 is the contribution of probability to have a positive income.
5 All values are presented in percentages.
6 IOE stands for the proportion of income inequality due to effort and IOR represents the

proportion of income inequality due to circumstances.
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Table 3.17: The Measures of Inequality of Opportunity at the Na-
tional Level (Dropping Types with less than 10 Samples)

OLS Hurdle model 1 Hurdle model 2
2010 2012 2010 2012 2010 2012

Gender 10.18 10.14 9.78 9.78 12.98 13.47
Ethnicity 0.38 0.98 0.34 0.88 0.89 1.16

Geographic 9.78 16.82 9.11 15.68 19.87 21.93
Parents’ SES 5.55 6.54 5.17 6.07 9.14 9.26

Sibling number 2.04 3.10 1.79 2.80 3.89 6.15
Income: +/0 0.27 0.52 0.22 0.52

IOE 72.08 62.41 73.54 64.27 52.99 47.52
IOR 27.92 37.59 26.46 35.73 47.01 52.48

1 OLS is the regression without zero-income. Hurdle model 1 is the regression using the
hurdle model with type homoskedasticity. Hurdle model 2 is the regression using the
hurdle model with type heteroskedasticity.

2 The ”Geographic” factor includes individuals’ Hukou status when they were 12 years old.
3 Parents’ SES is the parents’ socioeconomic status which include parents’ educational level,

occupational status and political affiliations.
4 Income: +/0 is the contribution of probability to have a positive income.
5 All values are presented in percentages.
6 IOE stands for the proportion of income inequality due to effort and IOR represents the

proportion of income inequality due to circumstances.

Table 3.18: The Hurdle Model at the Regional Level (Metropolitan)

2010 2012

logistic OLS logistic OLS

(1) (2) (3) (4)

Male 1.574∗∗ 0.458∗∗∗ 1.316 0.236∗∗∗

(0.205) (0.064) (0.201) (0.060)
Minority 0.870 −0.215 286,301.700 0.038

(1.073) (0.377) (426.746) (0.337)
Hukou at age 12 1.153 0.308∗∗∗ 2.911∗∗∗ 0.480∗∗∗

(0.223) (0.070) (0.251) (0.065)
Mid education(Parents) 1.379 0.188∗∗ 0.723 0.310∗∗∗

(0.257) (0.079) (0.237) (0.075)
High education(Parents) 0.737 0.505∗∗∗ 0.667 0.321∗∗∗

(0.288) (0.098) (0.300) (0.092)
Mid occupation(Parents) 0.963 −0.035 1.214 0.145∗

(0.255) (0.082) (0.272) (0.076)
High occupation(Parents) 0.909 0.068 1.447 0.120

(0.327) (0.104) (0.360) (0.097)
Member of CCP(Parents) 1.657∗ 0.162∗ 1.015 0.028

(0.291) (0.084) (0.277) (0.078)
Number of siblings 1.102 −0.046∗∗ 0.873∗∗ −0.054∗∗∗

(0.063) (0.019) (0.056) (0.018)
Constant 7.080∗∗∗ 9.383∗∗∗ 11.928∗∗∗ 9.815∗∗∗

(0.276) (0.092) (0.275) (0.086)

Observations 1,484 1,373 1,484 1,370

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.19: The Hurdle Model at the Regional Level (Mid-North)

2010 2012

logistic OLS logistic OLS

(1) (2) (3) (4)

Male 2.324∗∗∗ 0.722∗∗∗ 2.318∗∗∗ 0.916∗∗∗

(0.198) (0.067) (0.206) (0.075)
Minority 0.876 −1.144∗∗∗ 2.970∗ −0.632∗∗∗

(0.348) (0.140) (0.596) (0.152)
Hukou at age 12 0.541 0.815∗∗∗ 0.522∗ 1.162∗∗∗

(0.390) (0.171) (0.378) (0.193)
Mid education(Parents) 0.956 0.366∗∗∗ 1.213 0.332∗∗∗

(0.211) (0.078) (0.220) (0.087)
High education(Parents) 1.067 0.403∗∗∗ 1.184 0.588∗∗∗

(0.283) (0.102) (0.283) (0.115)
Mid occupation(Parents) 1.692 0.019 0.668 0.347∗∗

(0.363) (0.119) (0.296) (0.136)
High occupation(Parents) 3.216∗∗ 0.056 1.833 0.042

(0.541) (0.141) (0.492) (0.158)
Member of CCP(Parents) 0.850 0.187∗∗ 1.258 0.155

(0.256) (0.095) (0.284) (0.105)
Number of siblings 1.081 0.021 1.138∗∗ 0.007

(0.055) (0.020) (0.058) (0.022)
Constant 7.364∗∗∗ 7.851∗∗∗ 6.077∗∗∗ 7.666∗∗∗

(0.261) (0.100) (0.263) (0.113)

Observations 1,881 1,745 1,881 1,755

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.20: The Hurdle Model at the Regional Level (North)

2010 2012

logistic OLS logistic OLS

(1) (2) (3) (4)

Male 1.450∗∗∗ 0.620∗∗∗ 1.954∗∗∗ 0.477∗∗∗

(0.125) (0.055) (0.145) (0.054)
Minority 1.198 0.156∗ 1.111 −0.079

(0.230) (0.095) (0.246) (0.094)
Hukou at age 12 0.677∗∗∗ 0.180∗∗∗ 0.973 0.820∗∗∗

(0.137) (0.067) (0.160) (0.064)
Mid education(Parents) 0.843 −0.030 0.759∗ 0.121∗

(0.150) (0.065) (0.167) (0.063)
High education(Parents) 0.868 0.057 0.889 0.034

(0.192) (0.086) (0.217) (0.084)
Mid occupation(Parents) 1.015 0.161∗ 0.716∗ 0.149∗

(0.178) (0.084) (0.192) (0.082)
High occupation(Parents) 0.952 0.123 0.764 0.276∗∗∗

(0.212) (0.101) (0.244) (0.098)
Member of CCP(Parents) 0.926 0.084 1.507∗∗ 0.032

(0.160) (0.075) (0.196) (0.073)
Number of siblings 1.072∗∗ −0.060∗∗∗ 1.019 −0.029∗∗

(0.033) (0.014) (0.035) (0.014)
Constant 6.837∗∗∗ 8.818∗∗∗ 8.656∗∗∗ 8.675∗∗∗

(0.185) (0.082) (0.204) (0.080)

Observations 2,675 2,367 2,675 2,433

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.21: The Hurdle Model at the Regional Level (East)

2010 2012

logistic OLS logistic OLS

(1) (2) (3) (4)

Male 1.292 0.657∗∗∗ 1.443∗∗ 0.691∗∗∗

(0.164) (0.075) (0.161) (0.085)
Minority 695,723.500 −0.193 911,550.300 0.427

(482.469) (0.487) (480.666) (0.554)
Hukou at age 12 0.597 0.343∗ 0.533∗ 1.084∗∗∗

(0.338) (0.186) (0.328) (0.213)
Mid education(Parents) 1.304 0.567∗∗∗ 0.785 0.402∗∗∗

(0.184) (0.085) (0.179) (0.097)
High education(Parents) 1.007 0.271∗∗ 1.002 0.373∗∗∗

(0.247) (0.120) (0.259) (0.135)
Mid occupation(Parents) 1.232 0.088 1.249 −0.170

(0.301) (0.130) (0.280) (0.149)
High occupation(Parents) 1.080 0.333∗∗ 1.490 0.082

(0.307) (0.142) (0.315) (0.161)
Member of CCP(Parents) 1.074 −0.041 0.751 0.226∗

(0.233) (0.104) (0.208) (0.121)
Number of siblings 1.071 −0.042∗∗ 0.950 −0.066∗∗∗

(0.044) (0.020) (0.041) (0.023)
Constant 5.725∗∗∗ 8.459∗∗∗ 9.438∗∗∗ 8.331∗∗∗

(0.208) (0.101) (0.214) (0.114)

Observations 1,704 1,531 1,704 1,520

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.22: The Hurdle Model at the Regional Level (Mid-South)

2010 2012

logistic OLS logistic OLS

(1) (2) (3) (4)

Male 1.662∗∗∗ 0.495∗∗∗ 1.792∗∗∗ 0.660∗∗∗

(0.164) (0.051) (0.174) (0.056)
Minority 1.623 −1.164∗∗∗ 0.711 −0.999∗∗∗

(0.728) (0.194) (0.536) (0.217)
Hukou at age 12 1.099 0.269∗∗∗ 0.494∗∗∗ 0.820∗∗∗

(0.266) (0.087) (0.227) (0.097)
Mid education(Parents) 0.827 0.074 0.742 0.169∗∗∗

(0.187) (0.059) (0.202) (0.065)
High education(Parents) 0.768 0.222∗∗∗ 0.814 0.196∗∗

(0.230) (0.076) (0.250) (0.083)
Mid occupation(Parents) 1.151 0.134 0.952 0.302∗∗∗

(0.265) (0.084) (0.256) (0.091)
High occupation(Parents) 0.776 −0.092 0.648 0.204∗

(0.271) (0.097) (0.265) (0.107)
Member of CCP(Parents) 1.000 0.188∗∗ 0.960 0.215∗∗∗

(0.225) (0.074) (0.226) (0.082)
Number of siblings 1.057 −0.046∗∗∗ 1.044 −0.059∗∗∗

(0.048) (0.015) (0.051) (0.016)
Constant 11.820∗∗∗ 8.486∗∗∗ 16.784∗∗∗ 8.341∗∗∗

(0.225) (0.074) (0.246) (0.080)

Observations 2,791 2,618 2,791 2,634

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

85



Table 3.23: The Hurdle Model at the Regional Level (South)

2010 2012

logistic OLS logistic OLS

(1) (2) (3) (4)

Male 1.729∗∗∗ 0.591∗∗∗ 1.510∗∗∗ 0.520∗∗∗

(0.153) (0.069) (0.127) (0.078)
Minority 5.034∗∗ 0.346∗∗ 1.437 0.020

(0.720) (0.157) (0.342) (0.179)
Hukou at age 12 0.522∗∗∗ 0.711∗∗∗ 1.175 1.151∗∗∗

(0.207) (0.112) (0.203) (0.123)
Mid education(Parents) 1.635∗∗∗ 0.353∗∗∗ 1.569∗∗∗ 0.425∗∗∗

(0.170) (0.080) (0.142) (0.090)
High education(Parents) 1.501∗ 0.205∗∗ 1.539∗∗ 0.136

(0.210) (0.099) (0.178) (0.111)
Mid occupation(Parents) 1.555∗ 0.241∗∗ 0.878 0.302∗∗

(0.267) (0.110) (0.205) (0.124)
High occupation(Parents) 0.616∗∗ 0.435∗∗∗ 0.476∗∗∗ 0.554∗∗∗

(0.247) (0.133) (0.212) (0.152)
Member of CCP(Parents) 1.332 0.281∗∗∗ 1.654∗∗ 0.081

(0.237) (0.104) (0.210) (0.117)
Number of siblings 1.003 0.003 1.041 −0.058∗∗∗

(0.040) (0.019) (0.034) (0.021)
Constant 5.940∗∗∗ 8.045∗∗∗ 3.484∗∗∗ 8.270∗∗∗

(0.202) (0.100) (0.170) (0.113)

Observations 2,223 2,013 2,223 1,914

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.24: The Hurdle Model at the Regional Level (West)

2010 2012

logistic OLS logistic OLS

(1) (2) (3) (4)

Male 1.264 0.440∗∗∗ 1.429∗ 0.548∗∗∗

(0.176) (0.060) (0.202) (0.071)
Minority 1.054 −0.133∗∗ 1.319 −0.246∗∗∗

(0.188) (0.064) (0.227) (0.075)
Hukou at age 12 0.629 0.832∗∗∗ 0.589 1.209∗∗∗

(0.341) (0.144) (0.349) (0.172)
Mid education(Parents) 1.414∗ 0.252∗∗∗ 0.760 0.281∗∗∗

(0.205) (0.068) (0.225) (0.080)
High education(Parents) 1.152 0.085 0.743 0.204∗

(0.269) (0.097) (0.297) (0.114)
Mid occupation(Parents) 0.640 −0.051 0.673 0.199

(0.310) (0.118) (0.327) (0.141)
High occupation(Parents) 0.602 −0.061 0.811 −0.132

(0.384) (0.152) (0.428) (0.179)
Member of CCP(Parents) 1.473 0.170∗ 1.129 0.138

(0.297) (0.094) (0.305) (0.113)
Number of siblings 1.069 0.019 1.135∗∗ −0.028

(0.047) (0.016) (0.056) (0.019)
Constant 9.014∗∗∗ 8.220∗∗∗ 12.346∗∗∗ 8.076∗∗∗

(0.210) (0.077) (0.243) (0.090)

Observations 2,084 1,939 2,084 1,973

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.25: The Hurdle Model at the Regional Level (Northern West)

2010 2012

logistic OLS logistic OLS

(1) (2) (3) (4)

Male 1.287 0.487∗∗∗ 2.260∗∗∗ 0.643∗∗∗

(0.271) (0.052) (0.216) (0.058)
Minority 0.228∗∗∗ −0.281∗ 0.390∗∗ −0.941∗∗∗

(0.448) (0.165) (0.425) (0.180)
Hukou at age 12 0.395∗∗ 1.097∗∗∗ 1.141 1.551∗∗∗

(0.375) (0.112) (0.399) (0.121)
Mid education(Parents) 0.823 0.158∗∗∗ 0.896 0.260∗∗∗

(0.301) (0.059) (0.226) (0.065)
High education(Parents) 1.069 0.170∗ 0.649 0.238∗∗

(0.457) (0.089) (0.305) (0.099)
Mid occupation(Parents) 1.098 −0.055 0.863 0.080

(0.495) (0.107) (0.359) (0.119)
High occupation(Parents) 1.092 −0.057 1.209 0.041

(0.542) (0.122) (0.440) (0.135)
Member of CCP(Parents) 0.658 0.124∗ 0.724 0.094

(0.347) (0.075) (0.259) (0.084)
Number of siblings 1.305∗∗∗ −0.015 0.990 0.002

(0.084) (0.014) (0.053) (0.016)
Constant 23.022∗∗∗ 8.122∗∗∗ 18.405∗∗∗ 7.887∗∗∗

(0.329) (0.068) (0.252) (0.074)

Observations 2,334 2,274 2,334 2,222

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.26: Oaxaca Decomposition by Gender, Hukou Status and Ethnicity(2010)

(1) (2) (3)
Gender Hukou Ethnicity

Differential
Disadvantage 7.845∗∗∗ 8.133∗∗∗ 7.917∗∗∗

(0.0317) (0.0231) (0.0758)
Advantage 8.605∗∗∗ 8.753∗∗∗ 8.223∗∗∗

(0.0309) (0.0822) (0.0235)
Difference -0.760∗∗∗ -0.620∗∗∗ -0.306∗∗∗

(0.0442) (0.0854) (0.0793)
Decomposition
Endowments -0.00358 -0.463∗∗∗ -0.0859∗∗∗

(0.00656) (0.107) (0.0177)
Coefficients -0.762∗∗∗ -0.474∗∗∗ -0.258∗∗

(0.0442) (0.110) (0.0859)
Interaction 0.00515 0.316∗∗ 0.0379
(0.00696) (0.128) (0.0392)

Observations 13690 13690 13690
1 Advantage is the predicted income when the dummy variable listed in column is equal to 1.
2 Disadvantage is the predicted income when the dummy variable listed in column is equal to 0.
3 Standard errors in parentheses
4 ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001
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Chapter 4

Essay II: Measuring Inequality of Opportu-

nity in China using A Finite Mixture Model

4.1 Introduction

In the last two decades inequality of opportunity (Cohen, 1989, Arneson, 1989 and

Roemer, 1998) has frequently been studied both theoretically and empirically in eco-

nomics. Roemer (1998) proposed a framework to measure inequality of opportunity. He

argued that inequality of outcome (such as income, health and educational equality) due

to factors beyond individuals’ responsibility (“circumstances”) is unfair while inequality

due to factors within individuals’ responsibility (“effort”) is acceptable (Roemer, 1998).

Based on Roemer’s framework, equal opportunity requires two basic principles: the com-

pensation principle and the reward principle (Fleurbaey, 2008). The former demands

that inequality due to circumstances should be compensated and the latter states that

inequality due to effort should be fully respected and rewarded.

Applying these two principles, researchers have measured inequality of opportunity

in different countries (see recent surveys such as Roemer and Trannoy, 2015; Peragine

and Ferreira, 2015; and Ramos and Van de gaer, 2016). One can easily measure the

contribution of circumstances to inequality of outcome if both circumstances and effort

can be observed. However, data imperfections restrict researchers from observing all

variables regarded as circumstances or effort. Data on circumstances such as gender,

ethnicity and family background might be easy to access, but the list of circumstances

could never be exhaustive. These unobserved circumstances can lead to a downward bias

on measures of inequality of opportunity (Lara Ibarra and Martinez Cruz, 2015).

Effort variables are even more likely to be affected by lack of data. Effort related to

individuals’ preferences and choices are difficult to observe. With the absence of effort,

one can only measure inequality of opportunity before knowing effort, i.e. using the

ex-ante compensation principle. Measures relying on the information of effort, i.e. the

ex-post compensation principle, cannot be used (Fleurbaey and Peragine, 2013).
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To solve this problem, Roemer (1998) assumed that quantiles of income distribution

conditional on circumstances represent the degree of effort. Although this assumption

provides an effective way to identify the degree of effort, it could lead to biased results if

circumstances and effort are not independent of each other.

In terms of the correlation between circumstances and effort, researchers agree that

effort variables could be shaped by circumstances; however, they use different approaches

to accounting for this correlation due to their different views in terms of what people

should be responsible for. Roemer (1993, 1998) argued that individuals should be re-

sponsible for factors within their control (this view is known as the control view). Based

on his view, preferences and tastes related to family backgrounds should also be consid-

ered as circumstances because these factors are out of individual control. If effort can

be observed, one can measure the indirect effect of circumstances on income through

effort as part of inequality of opportunity (Bourguignon et al., 2007). If effort cannot

be observed, one can take account of different variances from the distribution of effort

conditional on circumstances (Björklund et al., 2012).

In contrast with Roemer’s view, Rawls (1971), Dworkin (1981a,1981b,) and Fleurbaey

(2008) considered individual responsibilities as their preferences and choices (known as the

preference view). Based on this preference view, Barry (2005) argued that preferences and

tastes shaped by family backgrounds should be respected. Jusot et al. (2013) compared

different views on the correlation between circumstances and effort and found that the

correlation makes little difference to the measure of inequality of opportunity in terms of

health inequality.

In this study, we propose an alternative model — a latent class model, in which each

class corresponds to an unobserved level of effort. It can also be interpreted as a finite

mixture model defined as a probability-weighted mixture of distributions. The finite

mixture model (FMM) is used to estimate the average income in each level conditional

on circumstances. More importantly, this model allows the effect of circumstances on

income to be different across levels of effort. This heterogeneous effect of circumstances

indicates that the unfair inequality represented by the contribution of circumstances to

income inequality could vary with the level of individual effort. Low individual effort

such as choosing not to participate in the labour force could substantially decrease the

effect of circumstances on income. As a result, neglecting this individual effort could lead

to a biased estimate of inequality of opportunity.

However, the latent class in FMM could also correspond to unobserved circumstances

(Donni et al., 2015). To address this issue, we proposed and implemented a finite mixture

model with varying probabilities (FMMV) —a generalised version of the finite mixture

model where the classification is assumed to be determined by either circumstances or

effort. A circumstance-determined latent class captures unobserved circumstances or

effort correlated with circumstances, while an effort-determined latent class captures un-
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observed effort that is independent of circumstances. Comparing the results between

FMMV and FMM, we can have a better understanding on whether the latent class in

FMM corresponds to unobserved circumstances or effort.

In addition, we can obtain not only ex-ante but also ex-post measures to examine

inequality of opportunity using FMM. Theoretically, inequality of opportunity can be

measured by two different approaches — ex-ante and ex-post approaches: the former

approach requiring effort to be observed and the latter allowing effort to be latent. Ap-

plying the finite mixture model, we can measure inequality of opportunity using both

approaches even without the observation of effort.

Latent class models have been widely applied in both microeconomics and macroe-

conomics to handle inter-individual or time heterogeneity with different types of data

such as time-series (Frühwirth-Schnatter, 2006), cross-section (Deb and Trivedi, 1997)

and panel data (Deb and Trivedi, 2013). The advantage of this model is that it specifies

data as a mixture of distributions so it has greater flexibility compared with other fully

parametric models such as a linear regression model.

In addition, a conventional model naturally assumes that the effects of circumstances

on income are homogeneous. However, in reality, this might not be the case. A low-

income individual, having deliberately chosen a low level of effort (e.g. short working

hours), might not feel the disadvantage from his/her circumstances. A more common

complaint on inequality of opportunity could be from one with a high level of effort but

low income due to his/her disadvantageous profiles. This raises an important question

about whether those with high effort may also be exposed to a higher inequality of

opportunity.

This question might be addressed by using a finite mixture model. Since income

distribution is parameterized in each component, a counterfactual income distribution

can be estimated for each level of effort so that inequality of opportunity can be measured

by comparing counterfactuals.

Our results showed a better performance in terms of the information criteria and

goodness of fit when using a finite mixture model rather than a conventional linear

regression model. We found evidence of heterogeneous effects of circumstances on income

across effort levels. In other words, sources of income inequality for each effort level are

different. Inequality of opportunity could be significantly underestimated when ignoring

this heterogeneous effect. FMM shows results similar to those obtained with FMMV

assuming an effort-determined latent class, which implies that the latent class in FMM

captures factors associated with individual effort even though effort is assumed to be

unobserved. Moreover, through examining the counterfactual income distribution for

each level of effort, we found that inequality of opportunity is the highest if everyone

exerts a middle level of effort.

The rest of this article is organised into the following sections. In section 4.2 we briefly
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review the literature on conventional approaches to measuring inequality of opportunity.

Section 4.3 introduces model specifications and econometric methodologies. Section 4.4

describes the data used in this study, while section 4.5 presents our results. Section 4.6

draws conclusions and discusses their implications.

4.2 The Conventional Approach to Measuring Inequality of Op-

portunity

To measure inequality of opportunity, one can assume a population N with two sets

of individual characteristics: a vector of circumstances c and a vector of efforts e. As

a working definition, circumstances and efforts are sets of variables with finite values.

In other words, circumstances c belong to a finite set Ω = {c1, c2, . . . , cn} and efforts

e belong to a finite set Θ = {e1, e2, . . . , em}. Most of the literature defines a group of

individuals with the same circumstances as a type and a group of individuals with the

same effort as a tranche. Hence, there are n types and m tranches.

Assume that an individual’s income y is generated by circumstances, efforts and a

random term ε (assumed to be independently and identically distributed) by a function

g : Ω × Θ 7→ R. The function g(·) is treated as a linear function in most empirical

researches. Given that ε is additively separable in the g function, we can express the data

generation process in the following equation.

y = g(c, e) + ε (4.1)

where E(ε|c, e) = 0.

Based on this equation, one can compute expected outcome:

E(y|c, e) = g(c, e) (4.2)

Two approaches are commonly applied to measure inequality of opportunity: the

ex-post and ex-ante approaches. The ex-post approach eliminates between-tranche in-

equality — the inequality of a counterfactual distribution in which each individual’s

outcome is replaced by the expected outcome given one’s effort (Checchi and Peragine,

2010). In contrast, the ex-ante IOP measures between-type inequality — the inequality

of a counterfactual distribution where individual’s outcome is replaced by the expected

outcome given one’s circumstances (See Van De Gaer, 1993 and Checchi and Peragine,

2010).

Using the ex-ante approach, one can measure inequality of opportunity by a distribu-

tion of expected outcome conditional on circumstances E(y|c):

IOPante = I(E(y|c)) (4.3)

92



where I(·) is an inequality index such as Gini coefficient, Theil index or the mean log

deviation (MLD).

Using the ex-post approach, inequality of opportunity can be measured by a standard-

ised distribution of expected outcome where the difference between tranches is eliminated:

IOPpost = I[
y ∗ µ̄
E(y|e)

] (4.4)

where µ̄ = 1
N

∑
i∈N yi is the mean of expected outcome y, and E(y|e) is the expected

income given efforts e. Therefore, y
E(y|e)

is an element-wise rescaling for each individual’s

income.

One can also measure inequality of opportunity relative to the observed inequality:

IOR =
IOP

I(y)
(4.5)

This measure shows the proportion of income inequality due to inequality of oppor-

tunity.

The difference between the ex-ante and ex-post approach is that the ex-post ap-

proach requires information on effort while the ex-ante approach can measure inequality

of opportunity without knowing effort. This difference makes the ex-post approach more

data-demanding.

If effort is observed, one can also use a measure named direct unfairness proposed

by Fleurbaey and Schokkaert (2009). In this measure, a reference value for effort ẽ is

chosen. Hence, the measure of inequality of opportunity represents the inequality of a

counterfactual distribution if every individual exerts the reference level of effort ẽ, and

IOPDU = I(E(y|c, ẽ)) (4.6)

Due to the difficulty in observing effort, most literature used the ex-ante approach.

Therefore, a common practice of measuring inequality of opportunity in terms of income

inequality is based on the following linear regression (Ferreira et al., 2011):

yi = x′iβ + ε (4.7)

where yi is individual income, xi is a set of observed individual circumstances and ε

is the error term. In this model, one treats the error term as the contribution of effort to

income.

Once the parameters β are identified, the level of inequality of opportunity can be

measured using the following equation (Ferreira et al., 2011).

IOP ols
ante = I(E(y|x)) = I(xi

′β̂) (4.8)
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where β̂ is the estimator of β.

However, this model relies on the following four assumptions.

Assumption 4.2.1 Circumstances x have a linear relationship with income y 1

A non-linear relationship between circumstances and income could violate this as-

sumption. Hufe and Peichl (2015) found that the measure of inequality of opportunity

increases by 11% after considering the non-linearity between circumstances and income.

In this study, we add some interaction terms to capture possible non-linearity between

circumstances and income.

Assumption 4.2.2 Observed circumstances x and unobserved effort included in the

residual ε should be independent of each other.

This assumption could be an issue because effort is likely to be shaped by circum-

stances. This raises the question of whether the indirect effect of circumstances on indi-

vidual income through effort should be included in the measure of inequality of opportu-

nity. Scholars have different views on this question. Roemer (1998) argued that the part

of effort determined by circumstances should also be considered as circumstances and

compensated; while Barry (2005) believed that this part of effort should be rewarded.

Another view, that of Swift (2005) emphasizes the autonomy of a family. He argued that

interactions within families should be respected. If some parts of effort are determined

by family-related circumstances such as family backgrounds, that part of circumstances

should be respected and rewarded. Jusot et al. (2013) compared the contribution of cir-

cumstances and effort to health inequality based on these three different views and found

little difference in the contributions of circumstances and effort.

Assumption 4.2.3 No unobserved circumstances exist in the model.

In Equation (4.7), x is unlikely to capture all circumstances. The contribution of un-

observed circumstances could be included in the residual and treated as the contribution

of effort. Hence, the measure of inequality of opportunity could be downwardly biased.

Using Monte Carlo simulations, Lara Ibarra and Martinez Cruz (2015) found that the

omission of a relevant circumstance can cause up to an 80 percent underestimation on

inequality of opportunity.

Assumption 4.2.4 The error term ε should be homoskedastic, i.e. V ar(ε|x) = σ2

A heteroskedastic error term could indicate heterogeneity in type-specific effort distri-

bution or heterogeneity in the effect of circumstances on individual income. Björklund

1Income could also be log-normally distributed. In this case, y represents log income and circum-
stances could have a linear relationship to log income.
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et al. (2012) found that the heterogeneous type-specific variance is an important source of

inequality of opportunity. Waltenberg and Vandenberghe (2007) captured the heteroge-

neous effect of circumstances on individual income using a conditional quantile regression

model.

4.3 Measuring Inequality of Opportunity: A Latent-Class ap-

proach

4.3.1 Model Specification and Assumptions

Assume there are N individuals where N = {1, . . . , N} represents the set of popula-

tion. Due to the difficulty of observing effort, we assume a vector of circumstances c and

define effort as a categorical variable with m finite values. Let Ω denote the finite set

of circumstances and let J = {1, . . . ,m} represent the finite levels of effort. By working

definition, circumstances c are exogenous and time-invariant variables. Level of effort

could be time-variant and influenced by circumstances2.

We further assume a vector of probability to exert each level of effort. Given that j

is a level of effort such that j ∈ J , for all j ∈ J , πji represents individual i’s probability

to exert j level of effort.

One can generate income yj given a level of effort j for all j ∈ J by the function

gj : Ω 7→ R+:

yj = gj(x) + εj (4.9)

where yj represents income received if exerting j level of effort. Since function gj varies

across j, the effect of circumstances on income is heterogeneous across levels of effort.

Therefore, we assume the homoskedasticity of εj instead of ε in Assumption 4.2.4.

Assumption 4.3.1 The error term εj should be homoskedastic, i.e. V ar(εj|x) = σj
2

for

all j ∈ J .

One can compute the expected value of yj using the following equation.

E(yj) = gj(x) (4.10)

For the convenience of interpretation and comparison, we restrict the label of effort in an

increasing order so that a bigger index represents a higher level of effort.

Assumption 4.3.2 For all j, l ∈ J , j > l (or j < l) indicates that j (or l) is a higher

level of effort than l (or j).

2Since we use a cross-sectional model in this chapter, we specify this model with no regard to time.
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Therefore, if two individuals possess the same circumstances, higher effort should result

in higher income, and vice versa:

Assumption 4.3.3 For all i, k ∈ N and i 6= k, given xi = xk, yli > yjk ⇔ l > j for

l, j ∈ J .

Suppose yji is individual i’s income given j level of effort and πji is the probability

that individual i exerts j level of effort; for any individual i ∈ N , one can compute an

individual’s expected income given circumstances:

E(yi|x) =
∑
j∈J

πjiE(yj|x) (4.11)

Similarly to the conventional approach, one can measure inequality of opportunity

using the ex-ante, the ex-post or the direct-unfairness approach.

Derived from Equation 4.3, inequality of opportunity using the ex-ante approach is:

IOPante = I(E(y|x) = I{
∑
j∈J

πjE(yj|x)} (4.12)

where E(y|x) is the vector of expected incomes given circumstances.

Based on Equation 4.6, inequality of opportunity using the direct-unfairness approach

is that for any j ∈ J , we set πj = 1 and πl = 0 for all l 6= j ∈ J :

IOP j
DU = I{E(yj|x)} (4.13)

This measure examines the level of inequality of opportunity given that every indi-

vidual exerts j level of effort.

Although effort cannot be observed, one can estimate individuals’ level of effort based

on the probabilities π. Individuals are more likely to be exert j level of effort if πji > πli

for all l 6= j, l ∈ J . We define that j̃i = arg maxj∈J π
j
i is a classification variable which

identifies the level of effort each individual exerts. This classification variable can partition

individual income based on levels of effort. If the latent class captures all variations of

income due to effort, i.e. the within class variation is only due to circumstances, the latent

class can represent the tranche defined in the conventional approach. Alternatively, we

define the latent class as “effort group”.

Whether or not a latent class represents a tranche, the ex-post measure can be used

to eliminate the between-class inequality.

Defining that individuals exerting j level of effort are in the set N j = {1, . . . , N j}, we

can measure the ex-post inequality of opportunity using:

IOPpost = I[
yµ

ỹ
] (4.14)
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where IOPpost is ex-post inequality of opportunity, µ is the mean of y, ỹ is the counter-

factual income distribution replacing each individual income by the mean income of the

given identified class.

Decomposition approaches can also be used to measure the ex-post inequality of

opportunity. Since the latent class partitions data into several effort groups, one can

make use of the entropy index to decompose overall income inequality into within-group

and between-group inequality.

For the Theil index, the overall income inequality can be decomposed using the fol-

lowing equation:

T = Tw + Tb =
∑
j∈J

sjTj +
∑
j∈J

sj ln
µj
µ

(4.15)

where T is the Theil index for overall income inequality, Tw and Tb are within-class

Theil index and between-class Theil index respectively, sj is the income share of class j,

µj is the average income of class j and µ is the average income for the entire population.

If the latent class represents the effort group, the between-class inequality measured

by Tb should represent inequality due to effort. The within-class inequality Tw captures

inequality due to circumstances and inequality due to variation in effort within each

effort group. Therefore, Tw indicates the upper-bound of inequality of opportunity. It

gets closer to the real inequality of opportunity when the latent class captures more

variation in effort.

Similarly, Mean Log Deviation (MLD) can also be used in the decomposition of income

inequality:

LT = Lw + Lb =
∑
j∈J

rjLj +
∑
j∈J

rj ln
µ

µj
(4.16)

where L is the MLD index for overall income inequality, Lw and Lb are within-class MLD

index and between-class MLD index respectively, and rj is the population share of class

j.

4.3.2 The Finite Mixture Model

To estimate gj and πji in Equation (4.11) , we used the finite mixture model (the

latent class model3). We assumed that effort is a latent variable h with m finite values

and each i has the probability πji on each class j so the average probability for being in

class j is πj. If a sample is large enough, πj can also represent the population proportions

of class j.

Formally, individual income is determined by circumstances x and class j:

3We used the finite mixture model (FMM) and the latent class model (LCM) interchangeably: the
number of mixture components is equal to the number of latent classes
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yji = x′iβ
j + εji (4.17)

yi ∼
∑

πjiN (µj, σ
2
j ) (4.18)

For πji , we first identified the mean of πji — πj where πj = E[πji ] = 1
N

∑N
i=1 π

j
i ,
∑
πj = 1

and 1 > πj > 0. Let θj = (βj, σ
2
j , πj) be the parameters of the model. To be consistent

with Assumptions 4.3.2 and 4.3.3, we defined the order of the components as µj−1 < µj <

µj+1.

Given each j ∈ J , the distribution of income conditional on x and j can be represented

by fj(y|x; θj) where θj = (µj, σj) is the vector of parameters from the normal distribution

of tranche j with the class-specific mean µj = xiβj and variance σ2
j . Therefore, the overall

distribution of income f(y|x) given x is the weighted sum:

f(y|x) =
m∑
j=1

πjfj(y|x; θj) (4.19)

Instead of satisfying Assumption 4.2.1 to Assumption 4.2.4 in the conventional model,

this model can relax Assumptions 4.2.1 and 4.2.4 so it should satisfy Assumption 4.2.2,

4.2.3, 4.3.1,4.3.2 and 4.3.3.

To compute the conditional expectation of individual income using Equation (4.11),

the probabilities πji should also be estimated. To estimate πji , we used the posterior

probability of being in class j:

πji = Pr(i ∈ j|θ, yi) =
πjfj(yi|xi, θj)∑
j∈J π

jfj(yi|xi, θj)
, ∀j ∈ J (4.20)

In this equation, a higher prior probability could result in a higher posterior prob-

ability, and the posterior probability of class j also depends on the expected income in

that class. Higher expected income in one class indicates higher probabilities for individ-

uals of being in that class. This effect of expected income on individual’s probabilities

is consistent with what we assumed in Assumption 4.3.3, namely that a higher income

indicates a higher level of effort.

Therefore, the conditional expectation of individual income is a weighted sum of the

conditional mean of each class:

E(yi|xi) =
m∑
j=1

πjiµj (4.21)

where
∑m

j=1 π
j
i = 1, µj = Ej(yi|xi).

To estimate the parameters θ = {π1, . . . , πm, θ1, . . . , θm}, we used gradient-based op-

timization methods (Deb, 2008) such as the Gauss-Newton or Newton-Raphson method
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to maximize the log-likelihood, which has the following functional form:

l(θ) =
n∑
i=1

log
m∑
j=1

πjf(yi|xi; θj) (4.22)

Using Equation (4.21), one can compute a counterfactual income distribution based

on the estimator of θ for each class. Then, inequality of opportunity for each effort group

can be measured, which sheds light on whether individuals with a high level of effort

suffer a higher inequality of opportunity.

Our study attempted a finite mixture model with two to six components and used

the information criterion (AIC and BIC) to determine which model performed better. In

either case, the number of effort groups or levels of effort are assumed to be the number of

components. For each component, we estimated the counterfactual income distribution,

which is the income distribution for a given level of effort.

We also used the posterior probability to categorise individual income into different

levels of effort. We compared the posterior probability for each individual in each class

and classified individual income into the class with the highest posterior probability.

Then using Equation (4.14), we removed the between-class inequality and computed the

ex-post inequality of opportunity.

To measure ex-ante inequality of opportunity, we used the expected income computed

by Equation (4.21) and computed the measures using Equation (4.12).

4.3.3 A Finite Mixture Model with Varying Prior Probabilities

One issue related to a finite mixture model is whether the latent class represents

effort. The components in the model could also be a proxy for other variables such as

unobserved circumstances, individual intelligence, etc. To address this issue, we used the

generalized finite mixture model with varying prior probabilities (FMMV) (Jacobs et al.,

1991) in which the prior probabilities πji are parametrized. The model can be defined as

the following mixture distribution,

f(y|x) =
m∑
j=1

πji (zi)fj(y|x; θj) (4.23)

where πji is a logistic transformation of a function of z:

logit(πji ) = αj + ziγj (4.24)

This model allows the prior probability πji to depend on some exogenous variables zi.

We used two different specifications: one captures the influence of circumstances (denoted

as zc), and the other represents the impact of effort (denoted as ze). We named the

former specification as Finite Mixture Model 1 with Varying Probability (FMMV1) and
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the latter as Finite Mixture Model 2 with Varying Probability (FMMV2). In FMMV1,

the circumstance-determined latent class captures the effect of unobserved circumstances

or unobserved effort due to circumstances; while in FMMV2, the effort-determined latent

class captures the pure effect of unobserved effort. In terms of the effort variables in

FMMV2, since they can be endogenous and influenced by circumstances, we can express

the relationship between each effort variable and circumstance in the following equation.

logit(πji ) = αj + zeiγ
j (4.25)

zei = φXi + vei (4.26)

where X = [x,x, . . . ,x]′ and vei is the residual for zei , which is independent of circum-

stances variables.

To let πji only represent the effort level independent with circumstances, we set φ = 0.

Therefore, the logistic transformation can only transform the residuals of effort variables.

logit(πji ) = αj + veiγ
j (4.27)

4.4 Data Description

To measure inequality of opportunity in China, we use the data from China Family

Panel Studies (CFPS). CFPS is a nationally representative annual longitudinal survey

containing not only individual-level data but also household- and community-level data.

It has been conducted since 2010 by the Institute of Social Science Survey (ISSS) of Peking

University, China. By 2016, this project has already published its survey including three

years— 2010 baseline survey, 2011 maintenance survey and 2012 follow-up survey. Since

the survey conducted in 2011 is a maintenance survey, the sample size is small relative

to 2010 and 2012. We will not include the 2011 survey in our research.

CFPS covers 16,000 households with more than 33,000 adults and 8,900 youths in

25 provinces, municipalities or autonomous regions in China. Its main purpose is to

record the changes in the socio-economic wellbeing of Chinese people, covering a variety

of topics such as economic activities, educational attainment, family relationships and

dynamics, migration, and physical and mental health. The design of CFPS was inspired

by authoritative panel studies in other countries such as the Panel Study of Income

Dynamics (PSID) so that the international comparison becomes possible.

We used the China Family Panel Study (CFPS) dataset in 2010 and 2012 and selected

individuals aged 21 to 604. The initial sample sizes in 2010 and 2012 were 33,600 and

4There is a degree of repetition between Section 4.4 and 3.5. This information is repeated for the
benefit of the readers who could be interested only in this essay
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35,720 respectively, in which 26,393 subjects have records for both 2010 and 2012. Then

we selected individuals aged between 21 to 60 years because the labour participation rate

outside this age range is relatively low. After filtering, the sample size was reduced to

19,736.

Tables 4.1 and 4.2 present the summary statistics of the variables we used in the study.

Male respondents make up 47% of the sample. Ethnicity is represented as the dummy

variable for being in the minority groups in China. It is 0 if an individual’s ethnicity is

the majority group —Han; otherwise, it is 1. The percentage of the minority group is

around 8%. In addition, the average age of the respondents is 42.25.

We also include the number of siblings as one of the circumstance variables. Becker

and Lewis (1974) studied the relationship between the number of children and children’s

outcomes such as educational attainment and socioeconomic status. An empirical study

conducted in China (Li et al., 2008) also found a negative correlation between family size

and child outcome. In the dataset, the average number of siblings is around 3.

Another circumstance variable we used is regions of residence when the respondents

were 12 years old. Two dummy variables were generated as the measurement of regions

of residence. One is whether individuals held a non-agriculture Hukou status at age 12

and another is whether individuals lived in coastal provinces at age 12.

Hukou is a system for recording household registration in China. It divides households

into agriculture (rural) and non-agriculture (urban) Hukou. The former live in rural

areas and are registered as rural households and the latter live in urban areas and are

registered as urban households. Since there is difficulty in changing the Hukou status

from agriculture to non-agriculture, many rural immigrants hold agriculture Hukou even

though they live in urban areas. Individuals normally have the same Hukou status as

their parents before they are grown-up. In our sample, the percentage of individuals who

held non-agriculture (urban) Hukou when they were 12 years old is 15%.

Coastal provinces are the provinces in Eastern China along the coast. This area is

more developed than the inland area. We used a dummy variable to capture whether an

individual lived in the coastal province when he/she was 12 years old (coastal12). The

data showed that about 43% of the respondents lived in the coastal province when they

were 12 years old.

The annual individual income is 10,575 yuan on average in 2010 and 13,412 yuan

in 2012. To construct the income variable, we first computed the labour income by

summing individual wages, awards, allowances, incomes of working out of town and

bonuses. Then we matched each individual to his household’s business income (including

agricultural and non-agricultural business income), property income, transfer income and

other income (including gifts). The individual income is equal to labour income plus

all sources of non-labour income divided by the family size. In addition, we took the

provincial-level inflation rate into account. We used the Consumer Price Index (CPI)
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in Chinese Statistical Yearbooks and adjusted income in 2012 to the same price level as

income in 2010. In this study, we used the average income of the years 2010 and 2012 as

the dependent variable because the average income eliminates the variation over time. It

shows individual’s income over a longer period.

In Table 4.1, we also reported variables related to effort. Around 6% of respondents

are members of the Chinese Communist Party (CCP). On average, respondents had 6.54

years of education, 61% of them were employed and 30% of them migrated from rural to

urban areas. They spent 34.98 hours on average on work and study per week.

Table 4.1: Summary Statistics (Respondents)

Statistic N Mean St. Dev. Min Max

Average Income 19,736 11,993.64 20,389.70 0.00 864,893.10
Circumstances
Male 19,736 0.47 0.50 0 1
Minority 19,696 0.08 0.27 0 1
Age 19,736 42.25 10.79 21 60
Urban Hukou at age 12 19,625 0.15 0.35 0 1
Live in Coastal Province at age 12 19,736 0.43 0.50 0 1
Number of Siblings 19,736 2.98 1.90 0 14
Income from other Households 18,729 12,271.25 20,694.68 1.00 697,459.90
Effort
CCP Member 19,736 0.06 0.24 0 1
Years of Education 19,732 6.54 4.84 0.00 22.00
Employed 19,134 0.61 0.49 0 1
Migrant 19,625 0.30 0.46 0 1
Hours spent on Work and Study per Week 19,736 34.98 26.30 0.00 140.00

1 Average income is the average income between 2010 and 2012.
2 CCP is the Chinese Communist Party.

Table 4.2 shows respondents’ parents’ background when respondents were 14 years

old including parent’s education level, parent’s occupation status and parent’s political

affiliation. For all variables, we used the higher value of the two parents.

In terms of parents’ education level, it is reported in eight levels in CFPS. We merged

these levels into three levels. (1) Low level: illiterate or semi-literate ; (2) Middle level:

primary and junior high school; and (3) High level: senior high school or above. The

percentage of parents with the low-level education was 38%, and the high level made up

21%.

As far as parents’ occupations are concerned, they include eight large categories in-

cluding 595 specific occupational codes in CFPS. We regrouped them into three levels: the

low level included agricultural workers and workers in manufacture and transportation

sectors; the middle level included professionals, clerks, technical staffs and other tertiary

sector workers; and the high level included the administrative/management positions,
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Table 4.2: Summary Statistics (Respondents’ Parents)

Statistic N Mean St. Dev. Min Max

Low Occupation 17,309 0.79 0.41 0 1
Mid Occupation 17,309 0.13 0.33 0 1
High Occupation 17,309 0.09 0.28 0 1
CCP member 19,736 0.16 0.37 0 1
Low Education 19,736 0.38 0.49 0 1
Mid Education 19,736 0.40 0.49 0 1
High Education 19,736 0.21 0.41 0 1

1 All variables are respondents at 14 years of age.
2 All variables only account the higher value between parents.

teachers in tertiary education, lawyers and high-rank military officers. On average, 79%

of the individuals reported a low status of occupation for their parents and 9% a high

status.

Furthermore, we generated a dummy variable equal to 1 when one of the parents was

a member of China Communist Party (CCP) when respondents were 14 years old as a

proxy for parents’ political affiliation. The percentage of members of the CCP was 16%.

For the OLS and FMM models, we selected gender, ethnicity, Hukou status at age

12, living in the coastal province at age 12, number of siblings, parents’ educational level,

parents’ occupational level, and parents’ political affiliation as circumstances variables. In

terms of the FMMV1 model, we added income from other households to the circumstances

variables in FMM to prevent the explanatory variables for effort from being identical to

the explanatory variables for log income. In FMMV2, we used the residuals of variables

related to effort.

4.5 Results

4.5.1 Results from OLS and Finite Mixture Models

In this section, we present the estimation results from the OLS and four different

specifications of a finite mixture model. Table 4.3 shows the estimation results from OLS

and FMM5. In the first six rows, we presented the estimated average income in year 2010

and 2012 for each component in logarithmic form6. Given the number of classes, all FMM

models significantly separate given data into classes.

For comparing these models, we presented log-likelihood and information criteria in

the last three rows. Obviously, OLS performs worse than any type of finite mixture

models in terms of log-likelihood and information criteria. We also used the information

5FMM is estimated using Stata module “fmm” from Deb (2008) in Stata version 14.
6We took the average of income for year 2010 and 2012 first, and then transformed the average income

into the logarithmic form.
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Table 4.3: OLS vs. FMM

(1) (2) (3) (4) (5) (6)
OLS 2FMM 3FMM 4FMM 5FMM 6FMM

Mean
Comp.1 9.276∗∗∗ 8.038∗∗∗ 7.702∗∗∗ 7.642∗∗∗ 7.336∗∗∗ 7.331∗∗∗

Comp.2 9.533∗∗∗ 9.468∗∗∗ 9.451∗∗∗ 9.800∗∗∗ 9.804∗∗∗

Comp.3 9.824∗∗∗ 9.807∗∗∗ 9.437∗∗∗ 9.434∗∗∗

Comp.4 3.532∗∗∗ 0.953∗∗∗ 4.796∗∗∗

Comp.5 10.027∗∗∗ 10.019∗∗∗

Comp.6 10.468∗∗∗

π1 0.210 0.174 0.164 0.133 0.133
π2 0.790 0.534 0.520 0.119 0.118
π3 0.292 0.307 0.534 0.533
π4 0.009 0.008 0.008
π5 0.206 0.204
ll -2.97e+04 -2.87e+04 -2.83e+04 -2.83e+04 -2.81e+04 -2.81e+04
aic 59491.554 57476.080 56769.411 56707.641 56412.463 56344.184
bic 59599.784 57715.733 57132.756 57194.678 57023.192 57078.605
1 ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
2 The dependent variable for all models is the average income for year 2010 and 2012 in the logarithmic form.
3 Source: Authors’ Analysis.

matrix test (Cameron and Trivedi, 1990) to check for normality and homoskedasticity

assumption. The test rejects both normality and homoskedasticity in OLS model. This

rejection indicates a violation of Assumption 4.2.4 and heteroskedasticity in OLS. There-

fore, a measure of inequality of opportunity using OLS could be an underestimate as it

does not account for heteroskedasticity.

Column (2) to (6) show the results from FMM with two to six components. Based

on log likelihood and information criteria, we concluded that 3FMM preforms signifi-

cantly better than 2FMM; while 4FMM, 5FMM and 6FMM performs slightly better than

3FMM. However, the prior probability of component 4 in 4FMM, 5FMM and 6FMM is

around 0.008. This suggests that respondents are highly unlikely to be in component 4.

Therefore, we prefer 3FMM models. Since we are mainly interested in a predictive mean,

a more parsimonious model is to be preferred.

Table 4.4 shows the estimation results from OLS and 3FMM with constant and varying

prior probabilities respectively. Columns (4) and (5) show the results from two FMMV

models with three components. Both models perform significantly better than 3FMM

and OLS. The Akaike’s information criterion (AIC) drops from 56,769 in 3FMM to 53,025

in FMMV1 and to 51,520 in FMMV2. Comparing the two FMMV models, we find that

FMMV2 performs slightly better than FMMV1.

Table 4.4 also shows the mean and variance of each component. In general, means of

log income of two FMM models range from around 8 to 10 and means of the two FMMV

models range from about 6.7 to 10.1. Among the three components, the highest value is
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Table 4.4: OLS vs. FMM (Including Varying Probability Model)

(1) (2) (3) (4) (5)
OLS 2FMM 3FMM FMMV1 FMMV2

Mean
Comp.1 9.276∗∗∗ 8.038∗∗∗ 7.702∗∗∗ 6.713∗∗∗ 7.685∗∗∗

Comp.2 9.533∗∗∗ 9.468∗∗∗ 8.942∗∗∗ 9.403∗∗∗

Comp.3 9.824∗∗∗ 10.041∗∗∗ 10.054∗∗∗

Variance
Comp.1 1.788∗∗∗ 1.956∗∗∗ 2.028∗∗∗ 1.718∗∗∗

Comp.2 1.022 0.933∗∗ 1.127∗∗∗ 0.866∗∗∗

Comp.3 0.591∗∗∗ 0.585∗∗∗ 0.642∗∗∗

π1 0.210∗∗∗ 0.174∗∗∗

π2 0.790∗∗∗ 0.534∗∗∗

Loglikelihood -2.97e+04 -2.87e+04 -2.83e+04 -2.64e+04 -2.57e+04
AIC 59491.554 57476.080 56769.411 53025.023 51519.852
BIC 59599.784 57715.733 57132.756 53601.044 51958.817
1 ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
2 The dependent variable for all models is the average income for year 2010 and 2012 in the logarithmic

form.
3 Source: Authors’ Analysis.

the mean of component 3 and the lowest is that of component 1. This result is consistent

with the labelling convention we are using. Therefore, component 1 represents a low-effort

level and component 3 represents a high-effort level according to the “monotonic tranche”

assumption (Assumption 4.3.3). In terms of the variance, component 1 has the largest

variance, and component 3 has the smallest for all 3-component models. As a result, the

distribution of component 1 might overlap with the distributions of other components.

However, variances are smaller in FMMV2 models than in 3FMM and FMMV1, which

indicates that the overlap among the three components would be smaller in FMMV2

models. Therefore, we conclude that FMMV2 models appear to offer a better separation.

Given results from FMM models, we computed the prior and posterior probabilities

for each individual in terms of both 3FMM and FMMV models. The distributions of the

prior and posterior probabilities are presented in Figure 4.1. We find that distributions

of the posterior probabilities are more polarized towards 0 or 1 compared to distributions

of prior probabilities, which brings more certainties in predicting the level of effort for

each individual. Therefore, we choice posterior probabilities to identify individual’s level

of effort rather than prior probabilities.

Using posterior probabilities for FMM models, we estimated the kernel density distri-

butions of fitted log-income of the OLS model, three different FMM models and observed

income (see Figure 4.2). The observed log-income distributes from roughly 5 to 12 in both

years with two humps. This bimodality is consistent with a mixture of distributions.

Comparing the estimations of the four models, the estimation of the OLS model is

highly concentrated around the mean. It poorly predicts either the bimodality or the two
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Figure 4.1: The Kernel Distribution of the Prior and Posterior Probabilities by Levels of
Effort

(a) Low-level effort

(b) Middle-level effort

(c) High-level effort
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Figure 4.2: Comparing Predicted and Observed Log-Income

tails of the observed distribution. The three FMM models fit better to the bimodality

of observed income compared to the OLS model. In terms of the three FMM models,

FMMV2 has better goodness of fit than the other two FMM models.

This difference between OLS and FMM models shows that identifying levels of effort

and allowing the effect of circumstance on income to be different across levels of effort

significantly increase the goodness of fit. The highest goodness of fit appears in FMMV2

when the latent class is more closely determined by pure individual effort.

For three FMM models, we also examined determinants of the prior probabilities.

Prior probabilities predict the likelihood of exerting different effort levels before knowing

income. In 3FMM, prior probabilities are fixed. This model identifies that every individ-

ual has a 53.4% probability of belonging to the middle-effort level and a 17.4% probability

of belonging to the low-effort level. In the two FMMV models, prior probabilities were

parametrized by variables related to effort.

Table 4.5 shows the estimators for prior probabilities in the two FMMV models. The

high-effort level is the baseline. In FMMV1, the independent variables are considered as

observed circumstances. We find that female or minorities with rural Hukou are more

likely to be in the low effort level. Individuals whose family members have higher income

are more likely to be in the low level. The coefficients of parents’ socio-economic status

are not significant in the low level but negative and significant in the middle level, which

means that individuals whose parents have a higher socioeconomic status are more likely

to be in the high level.

In FMMV2, the independent variables are considered as pure effort. All coefficients

are negative and significant, which indicates that individuals are more likely to be in

the high-effort level if they exert more effort via CCP membership, years of education,
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Table 4.5: The Estimators for Prior Probabilities in FMMV models

FMMV1 FMMV2
Effort Level Low Middle Low Middle
Female -0.214 0.305 CCP Membership -1.247∗∗∗ -0.723∗∗∗

Minority group -1.849∗ -0.018 Years of Education -0.212∗∗∗ -0.212∗∗∗

Rural Hukou at age 12 0.317 1.610∗∗∗ Employed -3.382∗∗∗ -1.467∗∗∗

Female and Minority 0.88 0.625 Migration -0.839∗∗∗ -1.659∗∗∗

Rural Hukou and Minority 2.753∗∗∗ 1.477∗∗∗ Hours spent -0.010∗∗∗ -0.014∗∗∗

Rural Hukou and Female 1.528∗∗∗ 0.903∗∗

Living in coastal province 0.134 -0.973∗∗∗

Mid-educated Parents 0.011 -0.647∗∗∗

High-educated Parents 0.229 -0.449∗∗∗

Mid Occupation (Parents) 0.133 -0.667∗∗∗

High Occupation (Parents) 0.168 -0.850∗∗∗

Parents CCP Membership -0.274 -0.187
Number of sibling 0.044 0.234∗∗∗

Log-income from other families 0.203∗∗∗ 0.271∗∗∗

Constant -1.860∗∗∗ -0.778∗ -0.544∗∗∗ 0.940∗∗∗

1 ∗p < 0.10,∗∗ p < 0.05,∗∗∗< 0.01
2 Source: Authors’ Analysis

getting employed, migration, and hours spent on work and study.

To show how circumstances affect income differently for each level of effort, we es-

timated kernel density distributions of three components for each FMM models. The

results are shown in Figure 4.3. The log income distribution of each component is the

counterfactual log income assuming all individuals in the sample are in that component.

In the 3FMM and FMMV2 models (Figure 4.4(a) and 4.4(c)), component 2 overlaps with

component 1 and 3; while in the FMMV1 model, component 1 distributes from around

2 to 10, which overlaps with component 2 and 3. This is because the latent class is as-

sumed to be determined by circumstances in FMMV1 while for FMMV2 the latent class

is determined by pure effort. Since 3FMM is closer to FMMV2, the latent classes for

FMM are more likely to be determined by pure individual effort.

Given the results from 3FMM and FMMV2, we can conclude that individuals with the

middle level of effort could have the highest inequality of opportunity — the highest effect

of circumstances on income. The estimated distribution for these two models are bimodal

for the low-level effort, multimodal for the middle-level effort and close to unimodal for

the high-level effort, which indicates that circumstances affect income differently across

levels of effort.

For FMMV1, given that the latent class is determined by observed circumstances,

the lowest level has the highest inequality of opportunity, which indicates that circum-

stances could have more effect on income if individuals exert the low level of circumstance-

correlated effort — the effort that is driven by their own circumstance.

108



Figure 4.3: Kernel Density Estimation of Three Components

(a) 3FMM

(b) FMMV1

(c) FMMV2

109



To more specifically show heterogeneous effects of circumstances on income across

effort levels, we present the estimators of circumstance variables for 3FMM and FMMV2

in Table 4.6. In general, the results from 3FMM and FMMV2 are similar.

Table 4.6: The Heterogenuous Effect of Circumstance Variables on Income Across Effort
Levels

3FMM FMMV2
Effort Level Low Middle High Low Middle High
Female -0.743∗∗∗ -0.315∗∗∗ -0.196∗∗∗ -0.759∗∗∗ -0.360∗∗∗ -0.223∗∗∗

Minority group -0.572 -0.854∗∗ 0.154∗ -0.524 -0.806∗∗ -0.053
Rural Hukou at age 12 -0.38 -1.107∗∗∗ -0.012 -0.661∗∗∗ -1.029∗∗∗ -0.198∗∗∗

Female and Minority 0.385 0.522∗∗∗ -0.288∗∗ 0.2 0.498∗∗∗ -0.192∗

Rural Hukou and Minority 0.483 0.001 -0.306∗∗∗ 0.456 0.07 -0.069
Rural Hukou and Female -0.086 -0.682∗∗∗ -0.372∗∗∗ -0.016 -0.614∗∗∗ -0.367∗∗∗

Living in coastal province -0.196∗ 0.507∗∗∗ 0.394∗∗∗ -0.214∗∗ 0.452∗∗∗ 0.387∗∗∗

Mid-educated Parents 0.222∗∗ 0.289∗∗∗ 0.236∗∗∗ 0.138 0.307∗∗∗ 0.250∗∗∗

High-educated Parents 0.295∗∗ 0.273∗∗∗ 0.217∗∗∗ 0.234∗ 0.255∗∗∗ 0.251∗∗∗

Mid Occupation (Parents) 0.19 0.200∗∗∗ 0.200∗∗∗ 0.146 0.198∗∗∗ 0.183∗∗∗

High Occupation (Parents) 0.157 0.230∗∗∗ 0.211∗∗∗ 0.126 0.194∗∗∗ 0.219∗∗∗

Parents CCP Membership 0.409∗∗∗ 0.064 0.105∗∗∗ 0.308∗∗∗ 0.076∗∗ 0.120∗∗∗

Number of sibling 0.015 -0.037∗∗∗ -0.084∗∗∗ 0.024 -0.030∗∗∗ -0.077∗∗∗

Constant 7.702∗∗∗ 9.468∗∗∗ 9.824∗∗∗ 7.685∗∗∗ 9.403∗∗∗ 10.054∗∗∗

1 ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
2 Source: Authors’ Analysis

More importantly, there are significant differences in the effect of circumstances across

effort levels. Some circumstances such as being in minority groups, having rural hukou,

female in minority groups, rural female and living in a coastal province could have huge

impacts on income in the middle level of effort compared to other levels of effort. This

might explain the reason why inequality of opportunity is the highest for the middle-level

effort.

For the low level of effort, circumstances like minority groups, rural hukou, female in

the minority groups, rural female and parents’ occupation have insignificant effects on

income; while female and parents CCP membership have the highest impact on income

compared to other effect levels. This suggests that the sources of inequality of opportunity

for the low level of effect are limited to several circumstances such as gender and political

affiliation, which explains the bimodal feature of income distribution presented in 4.3 for

this level of effort.

For the high level of effort, although most circumstances have significant effect on

income, their effect is relatively small compared to other effort levels. As a result, the

income distribution for this level of effort is more concentrated to its mean.

Based on the estimators of the three FMM models, we conducted joint tests to test

heterogeneity between class for each circumstance variable. The null hypothesis is that
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the estimators for a given variable are identical across all classes. The results are presented

in Table 4.7. The heterogeneous effect mainly occurs for the variables related to regions

such as Hukou status and living in coastal province. The effect of parents’ socioeconomic

background is homogeneous between classes.

Table 4.7: The Joint Test of Estimators of Circumstance Variables

3FMM FMMV1 FMMV2
Female 0.2052 0.156 0.1658
Minority group 0.0373 ∗∗ 0.1228 0.0362 ∗∗

Rural Hukou at age 12 0∗∗∗ 0∗∗∗ 0∗∗∗

Female and Minority 0.2513 0.0098∗∗∗ 0.0002∗∗∗

Rural Hukou and Minority 0∗∗∗ 0.5601 0.67
Rural Hukou and Female 0.1357 0.0676∗ 0.0367 ∗∗

Living in coastal province 0∗∗∗ 0.0087∗∗∗ 0∗∗∗

Mid-educated Parents 0.0831∗ 0.1876 0.2882
High-educated Parents 0.7826 0.7441 0.6952
Mid Occupation (Parents) 0.8258 0.5871 0.8959
High Occupation (Parents) 0.9499 0.976 0.4095
Parents CCP Membership 0.0443 ∗∗ 0.6434 0.2292
Number of sibling 0.0039∗∗∗ 0.5893 0∗∗∗

1 ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
2 The null hypothesis is that the estimators for given variable (e.g. female) are

identical for all classes. For a three-class model, given estimators β̂1, β̂2 and β̂3.
The null hypothesis is: β̂1 = β̂2 = β̂3.

3 Figures in the table are p-values of the joint test for each variable.
4 A significant value represents a rejection of the null hypothesis that estimators are

the same between classes.
5 Source: Authors’ Analysis

The results from the joint test statistically prove the heterogeneous effect of circum-

stances on income across levels of effort. This heterogeneous effect is taken into account

using the FMM models to measure inequality of opportunity.

4.5.2 Within- vs. Between-Tranche Inequality

In this section, we report within- and between-tranche inequality. Within-tranche

inequality shows income inequality among individuals exerting the same effort level.

Between-tranche inequality implies income inequality for different effort levels.

Table 4.8 shows predicted income for 3-component models. For 3FMM and FMMV1

models, the expected income for the high level of effort is about six times as high as that

for the income for the low level. In terms of the FMMV2 model, the difference in income

between the high and the low level is even larger (more than 15 times). This significant

difference indicates high between-tranche inequality and shows that FMMV2 captures

more between-tranche inequality than the other two, but results are broadly consistent

across the three models.
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Importantly, the results raise an additional question: whether the difference in effort

causes income gap of more than ten times. One reason for such a large income gap could

be due to the presence of extreme income observations. We conducted a robustness test

by dropping observations with extreme income. The results are similar to those obtained

when including extreme income. Therefore, a presence of extreme incomes is unlikely to

be the source of large income gap.

In addition, the level of effort is always associated with an individual’s decisions and

choices. For example, an individual from a high-income family member might have more

flexible working hours. A decision concerning working or not can make a huge difference

in income. In FMMV models (Table 4.5), we find that if other family members earn no

income, individuals are highly likely to be classified into the high level of effort.

Table 4.8 also reports standard deviations (Column 2) and Gini coefficients (Column

3). Gini coefficients show inequality in the counterfactual income distribution assuming

every individual exerts the same level of effort (the within-tranche inequality).

We find that component 2 has the highest within-tranche inequality in FMM and

FMMV2; while component 1 has the highest within-tranche inequality in FMMV1. The

difference in the highest within-tranche could be due to the fact that the class variable

is assumed to be determined by circumstances in FMMV1, whereas the class variables in

3FMM and FMMV2 are more likely to indicate the pure effect of effort.

Table 4.8: Predicted Income for Three-Components
Model

Mean St. Dev Gini Min Max

3FMM

Comp.1 3948.445 2214.317 0.29 1445.066 15537.1

Comp.2 10038.94 10709.47 0.49 1344.219 61322.71

Comp.3 23200.88 10964.22 0.26 4583.262 67827.6

FMMV1

Comp.1 3530.331 5001.106 0.56 31.58417 52347.34

Comp.2 8221.551 4966.052 0.30 3120.518 29831.92

Comp.3 23960.5 6941.157 0.16 9947.511 53545.4

FMMV2

Comp.1 1714.289 1016.217 0.29 644.4515 7762.05

Comp.2 9342.952 9101.504 0.45 1565.19 52502.21

Comp.3 29644.51 15170.18 0.28 6448.702 95158.84

1 Results are generated using log-normal transformation assuming ho-

moskedasticity.
2 St. Dev is standard deviation. Gini is Gini coefficient within compo-

nents.
3 Source: Author’s calculation.

We also use the Lorenz curve to show the within-tranche inequality. Figure 4.4 shows

the Lorenz curve of the counterfactual income distribution estimated by three component
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finite mixture models. The line “Component 1 (2 or 3)” represents counterfactual income

distribution if one exerts the low (middle or high) level of effort. In general, income

inequality is lowest if every individual exerts high-effort level in all models. Individuals

with middle-effort level suffer the highest level of income inequality in FMM and FMMV2.

This implies that circumstances have the largest impact on income for those who exert

the middle level of effort.

Figure 4.4: Lorenz Curve of Predicted Income

4.5.3 Ex-ante and Ex-post Inequality of Opportunity

To compute inequality of opportunity, we first classified the sample into three tranches

based on posterior probabilities. Table 4.9 shows the results of the classification. More

than 62.94% is classified as the middle-effort level in 3FMM. The figure reduces to 61.89%

in FMMV1 and 56.33% in FMMV2.

Table 4.9: Estimated Proportions of Latent Classes (Percentage)

Low Middle High
3FMM

6.94 62.94 30.13
FMMV1

3.98 61.89 29.74
FMMV2

9.10 56.33 31.95
1 Figures in the table are repre-

sented in percentages.
2 Source: Author’s calculation.
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Table 4.10 shows the results for ex-ante and ex-post inequality of opportunity using

OLS and three different specifications of 3-component finite mixture models. We also

used 5-component finite mixture models as a robustness check. Comparing the results

obtained with a 3-components to a 5-components finite mixture model, we found that

results are similar.

For Table 4.10, we use three different inequality measures: Gini coefficients, Theil

index and MLD index. In general, the observed income inequality (Row 3 in Table 4.10)

is around 0.65 in Gini coefficients, 0.84 in Theil and 1.05 in MLD.

Table 4.10: The Measures of Inequality of Opportunity (3 Components)

OLS 3FMM FMMV1 FMMV2
Gini Coefficient

Ex-ante IOL 0.35 0.45 0.53 0.53
Observed Gini 0.65 - - -

Ex-ante IOR 0.54 0.69 0.82 0.82
Theil

Ex-ante IOL 0.21 0.34 0.47 0.47
Ex-post IOL 0.77 0.44 0.45

Observed Theil 0.84 - - -
Ex-ante IOR 0.25 0.40 0.56 0.56
Ex-post IOR 0.92 0.52 0.54

MLD
Ex-ante IOL 0.20 0.35 0.50 0.50
Ex-post IOL 0.76 0.40 0.43

Observed MLD 1.05 - - -
Ex-ante IOR 0.19 0.33 0.48 0.48
Ex-post IOR 0.72 0.38 0.41

1 IOL is the absolute level of inequality of opportunity.
2 Ex-ante IOL uses predicted income of each model; ex-post IOL removes

the between-class inequality.
3 IOR is the relative level of inequality of opportunity; it is the ratio of

IOR to observed inequality.
4 Source: Authors’ own calculation based on CFPS data.

The first row shows results from the absolute values of ex-ante inequality of oppor-

tunity in Gini coefficients. We find that FMMV models capture more inequality than

3FMM model. IOL is 0.53 using the FMMV2 model and the FMMV1 model. The dif-

ference between the four models is similar for the Theil and MLD indices. However,

the Gini and entropy indices differ in that Gini coefficients capture more inequality of

opportunity than the entropy indices. This is because the Gini coefficients do not have a

path independence property (Foster and Shneyerov, 2000) 7 so that the sum of ex-ante

IOL and inequality due to effort is larger than the overall income inequality. Since de-

composing income inequality in the Gini index requires different approaches such as the

7If one decomposes income distribution into two — a smoothed between-group distribution and a
standardized within-group distribution, a “path independent” measure keeps the sum of inequality of
these two distributions equal to the inequality of the total income distribution
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Shapley decomposition, we only use the Theil and the MLD index to compute the ex-post

inequality of opportunity in this essay.

For the ex-post measure, we find that the within-class inequality is the highest for

3FMM. This result indicates that the latent class captures less variation in effort com-

pared to FMMV1 and FMMV2. In FMMV1, the ex-post measure captures 38% of the

within-class inequality, using the MLD and 52% using the Theil index. Both figures

are significantly lower than those obtained in 3FMM. This indicates that between-class

inequality is much higher if the latent class represents factors related to observed cir-

cumstances. This result also suggests that inequality of opportunity could be highly

underestimated if unobserved circumstances and circumstances-related effort are omitted

in the measure.

In FMMV2, the ex-post measure captures 41% of the within-class inequality when

using the MLD and 54% when using the Theil index. Since the latent class is determined

by pure effort in FMMV2, between-class inequality fully represents inequality due to

differences in effort. Therefore, this measure could be the upper bound of inequality of

opportunity and it could also be a more accurate measure of inequality of opportunity

compared to 3FMM and OLS.

One issue for our results is the incompatibility between the ex-ante and ex-post mea-

sures (Fleurbaey and Peragine, 2013). On the one hand, the ex-ante measure is computed

by the between-type income inequality. If there are some unobserved circumstances, this

measure could be underestimated. On the other hand, the ex-post measure is computed

by eliminating the between-class income inequality and it could be overestimated because

the variation in effort cannot be fully captured due to data limitations. However, our

results show that the ex-ante measure, the one supposed to be underestimated, is larger

than the ex-post measure in the two FMMV models, the one supposed to be overesti-

mated. This inconsistent result might relate to the incompatibility between the ex-ante

and ex-post measure.

In spite of the incompatibility, both ex-ante and ex-post measures show that IOR is

more than 40% when using the MLD in FMMV2 models, which suggests that inequality

of opportunity in China accounts for more than 40% of total income inequality in China.

4.6 Conclusion

Since inequality of opportunity requires a decomposition of inequality of outcome in

terms of circumstances and effort, one needs to know whether each factor should belong

to circumstances or effort when applying this idea. However, scholars have different views

and have reached little agreement. Barry (2005) stated that effort should be respected

even though it is determined by circumstances; while Roemer (1998) argued that the part

of effort determined by circumstances is beyond the individual’s control and should be
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eliminated.

Another difficulty is data imperfection. The lack of appropriate data explains that

most of the literature treated circumstances such as gender, ethnicity, birthplace, the

educational attainment of parents and the main occupation (Paes de Barros et al., 2009)

as exogenous variables, while treating effort as unobserved. However, unobserved circum-

stances and effort lead to biased measures. As a result, most of the literature claims that

their measures are “the lower bound” of inequality of opportunity.

To address these issues, we assume that effort is an unobserved categorical variable —

a latent class, in other words. Using a finite mixture model, we estimated each individual’s

effort level according to the latent class to which he/she is likely to belong to. Although

this classification only roughly shows every individual’s level of effort (three levels of effort

in our cases), it does not rely on a particular set of effort variables. Bourguignon et al.

(2007) used the individual’s own schooling attainment and a migration dummy as effort

variables. Jusot et al. (2013) used health-related behaviours toward smoking, obesity

and vegetables consumption as effort variables. In this paper, the latent class assumed

as effort does not represent any specific variables. As a result, when we use the ex-post

approach, the measures are more likely to represent inequality when the overall effect of

effort is removed.

One issue for a latent class model is that it is difficult to know exactly what a latent

class represents. Our FMM models identify three latent classes which might represent

either different levels of effort or even unobserved circumstances. To clarify the identifi-

cation of latent classes, we used the finite mixture model with varying prior probabilities

that allows the prior probabilities (the latent class) to be influenced by a set of factors

z. These factors can be circumstances or effort variables. Our results showed that the

identification of latent classes in the FMM model with constant prior probabilities is sim-

ilar to that in the FMMV2 model in which the latent class is determined by pure effort.

This result indicated that a latent class model is effective in identifying different levels of

effort even though effort is unobserved.

With the ability to identify effort without observing it, this model makes the applica-

tion of the ex-post approach feasible. Most literature uses the ex-ante approach because

of the difficulty of observing effort. However, inequality of opportunity given the ex-ante

approach shows only one particular perspective — the inequality when effort has not

been exerted. Relying on this approach provides no insight into the role effort plays in

income inequality and how effort interacts with circumstances. In this paper, we try to

address these questions using the latent class model.

Our findings show a lower IOR based on the ex-post measure than the one obtained

on the basis of an ex-ante measure. These differences between the ex-ante and ex-post

measure have been addressed by other researches (Fleurbaey and Peragine, 2013). Our

results confirmed that when we used more advanced models, we captured more variations
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so that the ex-ante measure increased, and the ex-post measure decreased. The ex-post

measure turned out to be lower than the ex-ante measure.

Benefiting from the estimate of effort levels, our finding confirms the heterogeneous

effect of circumstances on income across different levels of effort. Inequality of opportunity

turns out to be the largest if everyone exerts the middle level of effort. This finding implies

that the group with the middle level of effort should be compensated more than other

groups.

This idea of categorizing effort into several classes has also some limitations. The finite

mixture model cannot support too many components. In this paper, we also measured

inequality of opportunity given five components. Although the results are similar to those

obtained in a 3-components model, we do not know whether the results would change for

10 components. Future research could develop alternative empirical tools to overcome

this obstacle.
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Chapter 5

Essay III: Inequality of Opportunity in the

Access to Higher Education in China: Evi-

dence from a High-Ranked University

5.1 Introduction

People have more opportunities to attend college in contemporary China due to the

rapid expansion of tertiary education in the last three decades. The number of graduates

from higher education institutions with a bachelor’s degree increased from 805,000 in

1995 to 6,809,000 in 2015 (NBS, 2016). At the macro-level, the expansion of tertiary

education plays an important role in economic growth. Whalley and Zhao (2013) found

that 39.4% of economic growth in China during 1999-2008 was contributed by growth in

human capital stock.

At the micro level, tertiary education brings high returns for individuals. Awaworyi

and Mishra (2014) conducted a meta-analysis and found that college education and above

in China leads approximately to a 14% increase in individual income, more than other

levels of educations do.

However, the opportunity to receive tertiary education might not be equally dis-

tributed. If the opportunities provided by the expansion favour those with a certain gen-

der, ethnicity and family background, this unequal distribution of opportunities might

drive educational inequality and lower economic and social mobility.

This paper uses the framework of equal opportunity (Roemer, 1998, Cohen, 1989

and Arneson, 1989) to examine the fairness of the expansion of tertiary education in

China. This framework has been widely used in studying income (Checchi and Peragine,

2010 and Paes de Barros et al., 2009) and health (Jusot et al., 2013) inequality. It

regards inequality due to factors beyond individuals’ responsibilities (“circumstances”) as

unfair and accepts inequality due to factors within individuals’ responsibilities (“effort”).

Applying this framework, we examine to what extent college admission and graduate

outcomes are determined by circumstances.

118



Some researchers have used the framework of equal opportunity to study educational

inequality. Ferreira and Gignoux (2014) developed a measure to capture the effect of cir-

cumstances on students’ academic achievements. This measure has been used to examine

inequality of opportunity in education in different regions and countries, e.g. Gamboa

and Waltenberg (2012) for Latin America and Salehi-Isfahani et al. (2014) for the Middle

East and North Africa. Nevertheless, students’ academic achievements are one objective

in achieving equal opportunity in education. The access to education is also critical to

educational equality of opportunity.

Brunori et al. (2012) examines the access to the tertiary education in Italy base on

the framework of inequality of opportunity. In their paper, the educational outcome is

defined as a binery outcome with intrinsic ordering (e.g. unemployed after graduation,

and work or studied in a university after graduated from a high school). Different from

Brunori et al. (2012), we use a multinomial outcome to identify graduate outcomes with

no intrinsic ordering.

Researchers have found inequality of opportunity in terms of the access to education in

China. For example, children from rural households receive fewer years of schooling than

their urban counterparts (Zhang et al., 2015). Rural girls have been found disadvantaged

in the access of middle school and high school (Connelly and Zheng, 2003).

Inequality of opportunity could be more obvious in college access. Li et al. (2015)

found that rural youth from poor counties were seven times less likely to access any

college than urban youth in 2003 and the gap was even larger in access to elite colleges.

In China, college admission is mostly determined by the College Entrance Exami-

nation (CEE). It is designed to provide equal opportunity to all high school graduates.

However, researchers find an overrepresentation of certain characteristics (e.g. male, ur-

ban, etc.) of students in colleges. Wang et al. (2013) showed that rich, Han (the major

ethnic group in China) and urban males are overrepresented in colleges. Zeng et al. (2014)

found that a female’s opportunity to attain college is significantly lower than a male in

rural areas.

Although the expansion of tertiary education brings more opportunity to high school

graduates, it also increases graduate unemployment (Li et al., 2014). To reduce graduate

unemployment, the government expanded postgraduate enrollments. The numbers of

entrants for postgraduate degrees rose from 51,053 in 1995 to 645,055 in 2015 NBS (2016),

more than 10 times during the two decades, compared to the 8.5 times increase in bachelor

degree places. Meanwhile, some college graduates choose to go overseas for a postgraduate

degree. Therefore, the expansion of postgraduate study raises the question of whether

college graduates have equal opportunity of gaining access to postgraduate study.

This research studies educational inequality of opportunity in China during the ex-

pansion of tertiary education and focuses on inequality of access to higher education in

two aspects: college admission and graduates’ whereabouts. Using the administrative
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data on economic graduates from a highly-ranked university in China during the period

2008-2015, we investigate students’ demographic characteristics to see which individual

characteristics were overrepresented and examine the effect of circumstances on grad-

uates’ CEE scores. If the enrolment of a university truly depends on the CEE scores,

circumstances variables are expected to be uncorrelated with CEE scores. Deviation from

this expectation could be evidence of inequality of opportunity, or some policies such as

affirmative actions that target particular groups. We also study what factors influence

graduates’ whereabouts when seeking employment, or when continuing a domestic or

oversea postgraduate degree. Opportunity is equal when graduates’ whereabouts are

independent of circumstances after controlling for their academic achievement.

In this study, we particularly focus on the difference in college admission and grad-

uates’ whereabouts between rural and urban areas. Researchers reported gaps between

rural and urban areas in income (see Kanbur and Zhang, 1999, Sicular et al., 2007 and

Whyte, 2010) and education (Qian and Smyth, 2008). These gaps are one of the main

determinants of rising income inequality in contemporary China (Xie and Zhou, 2014).

To study the rural-urban difference, we make use of students’ Hukou status.

Hukou is a household registration system in China. Households’ permanent residential

address, referred to as “Hukou address”, is recorded by the government. These addresses

are divided into agricultural and non-agricultural Hukou based on whether the Hukou

address is in rural or urban areas.

This division causes some restrictions on the rural population. For example, rural

households could have limited access to education and employment (Liu, 2005) in urban

China. Their children are only allowed to take college entrance exams in their domicile

based on Hukou. These restrictions prevent rural householders from bringing their chil-

dren to urban areas to receive education even though they find jobs there, and this might

be one reason (Biao, 2007) that more than 20 million children (NBS, 2016) were left be-

hind in rural areas by 2015. Due to these restrictions, the Hukou system has a structural

effect on income inequality (Whalley and Zhang, 2007) and educational inequality (Afridi

et al., 2015) between rural and urban areas. In this study, we examine how the Hukou

system affects college admission and graduates’ whereabouts using the administration

data from one university in China.

Our study confirms that there is a widening rural-urban inequality in tertiary edu-

cation. The proportion of rural students decreases dramatically between 2008 and 2015

in the examined university. Rural graduates also have fewer opportunities after their

graduations than their urban counterparts. The household income gap between rural

and urban areas might explain this rural-urban inequality. A higher household income

can positively affect a student’s chance to enrol in a highly-ranked university even though

the student has a lower entrance exam score. It can also provide more opportunities for

students after graduation.
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The rest of this essay is presented in the following sections, as follows. Section 5.2

introduces the tertiary education system in China. Section 5.3 shows the estimation

strategy. Section 5.4 describes the data used in this study. In section 5.5, we present and

discuss the result and section 5.6 is the conclusion.

5.2 The College Admissions System in Contemporary China

The tertiary education system in China was reformed and started to recover in 1978

after the Cultural Revolution. It relies on the College Entrance Examination (CEE),

known as gaokao; that is a decisive test for entrance into almost all tertiary education

institutions. In this section, we explain the admission system including CEE and other

related policies that affect students’ opportunities to receive tertiary education in China.

In China, every child should receive nine-year compulsory education including five

years in elementary school and four years in junior middle school. After graduating from

junior middle school, graduates can choose to work, learn a specific skill in a technical or

vocational school, or study in a high school. Those who enrolled in a high school would

take part in CEE in the final year of their study in the high school.

In general, CEE comprises “3 + X” subjects, where “3” refers to three compulsory

subjects, including “Chinese, Mathematics and English” and “X” stands for a subject

students can choose by themselves. In the high school, students are required to choose

between two courses of study: art or science. Those who choose the art stream can select

a major from Political Sciences, History, and Geography while those who choose science

can select a major from Physics, Chemistry, and Biology. This difference in majors could

result in a university having different entry score requirements for students from art and

science. In our dataset, students are classified as art or science students, depending on

which subject they choose in the CEE.

Students can obtain an exemption or bonus points in the CEE. For example, some

students could receive an exemption and a direct admission without the CEE due to

their outstanding academic performances in high school. Minorities, foreign nationals,

and those who have achieved distinguished results in science and technology competitions,

sports competitions and art competitions can also receive additional points in the CEE.

After students take the CEE, they receive their CEE scores within several days. After

they receive their CEE scores the students complete the application form with a list of

ordered preference. The application form is classified into several tiers1. Students are

aware of the cutoff score for each tier; however, they do not know the exact entry score

for each university. Therefore, they face uncertainty when applying to universities.

Although the purpose of the CEE is to provide a nationwide standardized and merit-

1The first tier comprises key universities; the second tier is regular universities; the third is vocational
universities.
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based exam, the content and form of the exam varies from province to province. For

example, the maximum score of the CEE is normally 750. Some provinces and munici-

palities such as Jiangsu, Shanghai, Zhejiang and Hainan Provinces have different maxi-

mum scores ranging from 480 to 900. This is because these provinces have permission to

customize their own exams. Until now, 16 provinces and municipalities are permitted by

the Ministry of Education to adopt customized exams.

In addition, universities set a different quota for each province. They usually give a

large quota to students from their home province. For example, around 57% of students in

our dataset come from the home province of the university investigated. Due to regional

disparities in the CEE and the quota, we only surveyed students from the home province

to analyze the impact of individual characteristics on the CEE score.

In the last decade, going abroad to study has become an increasingly popular choice

among students. The Chinese Ministry of Education reports that fewer than 200,000

students went abroad in 2008 and this figure has increased to more than 500,000 in 2015.

In our study, we consider an overseas postgraduate degree as one of three main options

of graduates.

5.3 Data

The data used in this paper come from student administrative records in one of the

Project 985 universities2 in China. The data spans the years 2008 to 2015. This university

is one of the top universities in China and it is the best university in its home province.

The dataset includes graduates’ academic performance, family backgrounds and their

whereabouts immediately after graduation.

Table 5.1 presents summary statistics of the data. The data contain 2,565 observa-

tions of students in the economics faculty who graduated during 2008 to 2015. Females

constitute 57% of all graduates. Ethnic minority accounts for only 4% of the graduates

and 57% of students are from the home province; that is, the province where the univer-

sity is. Graduates who have a single parent make up only 3%. Among those graduates,

the majority of them (63%) holds an urban Hukou.

Regarding family background, 1,998 out of 2,565 report their father’s annual income,

with an average income of 27,335.6 yuan and 1,775 report their mother’s income, with an

average of 20,847.86 yuan. Household income per capita is reported by 2,354 graduates.

We took into account economies of scale and computed household income per effective

member, which on average was equal to 27,777.11 yuan. The number of missing variables

was the lowest for household income. We therefore decided to use household income per

effective member3 instead of parents’ income as one of the proxies for family background.

2Project 985 is a project for both central and local governments to provide funds to universities.
There are 39 universities sponsored by Project 985; most of them are top universities in China.

3The Household income per effective member equals to the total household income divided by the
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Table 5.1: Summary Statistics

Statistic N Mean St. Dev. Min Max

Father’s income 1,998 27,335.6 32,137.1 0 600,000
Mother’s income 1,775 20,847.86 21,803.39 0 360,000
No. family members 2,565 3.62 0.95 2 9
Imputed No. family members 2,565 0.03 0.18 0 1
HHincome 2,278 27,777.11 39,749.4 0 1,247,077
GPA 2,554 83.11 5.34 29.00 94.74
CEES 2,338 611.50 56.16 168.50 785.00
Year of graduation 2,565 2,008 2,015
Female 2,565 0.57 0.49 0 1
Ethnic Minority 2,565 0.04 0.19 0 1
Single parent 2,565 0.03 0.18 0 1
Home Province 2,565 0.57 0.49 0 1
Urban Hukou 2,565 0.63 0.48 0 1
Self-reported poverty 2,565 0.18 0.39 0 1
Major in science 2,565 0.51 0.50 0 1
Direct admission 2,565 0.004 0.06 0 1
Unemployed 1,321 0.12 0.32 0 1
Failed postgraduate exam 783 0.09 0.28 0 1

1 Home Province is whether the graduates’ households are in the same province as the university.
2 Imputed No. family members is a dummy for the missing value of No. family members.
3 GPA is Grade Point Average during undergraduate study. CEES is Chinese Entrance Exam Score ranging from 0

to 750.
4 Self-reported poverty is whether the graduates report that their families are in poverty.
5 Major in science is whether the graduates majored in science when they were in high school.
6 Direct admission is a dummy for those who were directly admitted by the university.
7 Failed postgraduate exam is a dummy for those who failed the entrance exam for postgraduates.
8 HHincome is household income per effective member.
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In China, high school students usually have no income because getting in a top uni-

versity is highly competitive, which left students with no time for any part-time work. It

is quite rare even rarer for a university student to acquire a part-time job. This is because

most families provide financial supports to their children until they graduate. Therefore,

we assume that household income is exogenous. However, it is possible that to support

children for studying in a good university, parents could work harder.

For the number of family members, we treated the missing value as “3” if the graduate

was not from a single parent family and “2” if the graduate was from a single parent family

because most families have only one child due to the One Child Policy. However, this

treatment might understate the number of family members, especially among those from

rural areas because rural parents are more likely to have more than one child than their

urban counterparts. The average number of family members is 3.62.

In addition, we also collected the information about parents’ occupation as shown

in Table 5.2. Based on the administrative data, we divided parents’ occupation into 11

categories: administrator (those who have administrative jobs such as business execu-

tives and government officers), civil servant, farmer, manual worker, other professionals

(those who do non-manual work other than teaching), other teacher (those not teaching

in university), passed away, retired, self-employed, unemployed and university teacher.

Within these 11 categories, farmers and other professionals are the two biggest groups ac-

counting for around 30% of the population; administrators are comprised of 14.7% males

and 6.82% females; teachers (including university and non-university teacher) account for

more than 10% of the population.

In terms of graduates’ performances, the dataset has information on GPA obtained

by students at universities, Chinese Entrance Exam Score (CEES) and their major in

high school. On average, the students got 83.11 out of 100 for their GPA and 611.50 out

of 750 for their CEES4. 51% graduates choose science in high school.

Table 5.3 shows graduates’ major in university. Since the administrative data are

only from the School of Economics of the University, the majors shown in Table 5.3 are

provided by the School of Economics. The most popular major is finance with 34.22% of

the population, and the least popular is insurance accounting for 5.59% of the population.

The dataset also has details for graduates’ whereabouts. In the last row of Table 5.1,

unemployed is a dummy for the graduates who did not get the job they had applied for or

did not pass the entrance exam if they chose to take the entrance exam for a postgraduate

degree. The percentage of those unemployed graduates is 10%.

Table 5.4 shows graduates’ choices regardless of the outcomes of their choices. For

example, some graduates may end up being unemployed even if they decided to look for

a job. We put those graduates in the same group as those who successfully found a job.

square root of the number of members in the household
4Some students can be awarded extra marks due to their special talent.
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Table 5.2: Parents’ Occupation

(1) (2)
Father Mother

No. Percentage(%) No. Percentage(%)
Administrator 348 14.70 150 6.82
Civil Servant 112 4.73 69 3.14
Farmer 596 25.18 680 30.91
Manual Worker 144 6.08 97 4.41
Other Professionals 701 29.62 712 32.36
Other Teacher 211 8.91 257 11.68
Passed Away 24 1.01 9 0.41
Retired 14 0.59 37 1.68
Self-employed 122 5.15 102 4.64
Unemployed 19 0.80 31 1.41
University teacher 76 3.21 56 2.55
Total 2367 100.00 2200 100.00
1 Administrator is a occupation category for business executives and government officers.
2 Other Professionals are positions for non-manual work other than teachers.
3 Other teacher is a category for teachers exluding those who are teaching in university.

Table 5.3: Graduates’ Major in School of Economics

No. Percentage(%)
Public Finance 367 14.55
Economics 208 8.25
Finance 863 34.22
Financial Engineering 333 13.20
Insurance 141 5.59
International Trade 399 15.82
Mathematical Finance 211 8.37
Total 2522 100.00
1 These majors listed above belong to the School of Economics

in the univerity we studied.
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In Table 5.4, half of the graduates choose to work; 30.53% graduates decide to continue

their postgraduate studies in China and 13.80% to do their postgraduate study overseas.

Table 5.4: Graduates’ Choices

No. Percentage(%)
Domestic postgraduate 783 30.53
Not Sure 107 4.17
Oversea postgraduate 354 13.80
Work 1321 51.50
Total 2565 100.00
1 Graduates choosing domestic postgraduate include those who

had been successfully enrolled in universities in China for post-
graduate programs and those who had failed National Postgrad-
uate Entrance Examination.

2 Graduates choosing oversea postgraduate include those who
reported themselves studying oveaseas or intending to study
oveaseas.

3 Graduates choosing work include those who reported their new
jobs or reported themselves looking for jobs.

Figure 5.1 is the stacked bar chart of graduates’ choices by year and by percentage.

The proportion of graduates doing overseas postgraduate increased sharply after 2012.

Figure 5.1: The Stacked Bar Chart of Graduates’ Choices by Year by Percentage

Source: Authors’ calculation.

In summary, this section gives a brief introduction on the administrative data we

used. It provides an overview of graduates’ family backgrounds, academic performances

and their choices after graduates. These data are used in this paper for studying how

students’ family backgrounds affect their educational outcomes.
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5.4 Estimation Strategy

We use a multinomial model to identify the relationship between individuals’ choices

and their individual characteristics. The probability that individual i chooses option j is

(McFadden et al., 1973):

πij = Pr(Yi = j) =
exp(µj + βjXi)

1 +
∑J

j=1 exp(µj + βjXi)
(5.1)

The probability, based on the theoretical framework for discrete choice, is the stan-

dardised utilities. We make use of the criterion of the second stochastic dominance to

check whether equal opportunity prevails between rural and urban students, and between

different parents’ occupations.

Using administrative data from the university, we identified three types of graduates’

choices: work; domestic postgraduate; and overseas postgraduate. These choices can be

decided by graduates in three different ways. First, graduates can view the three choices

independently. In this case, we adopted a multinomial regression model and tested the

assumption of Independence of Irrelevant Alternatives (IIA) using the Small-Hsiao test

and the Hausman test with one model including all variables except parents’ occupation

and the other including all variables except mother’s occupation and major.

Graduates can also make their decision on two choices first, given some choices having

similar attributes. For example, graduates are supposed to be in China if they choose

work or a domestic postgraduate. Thus, they may first decide whether they would like

to stay at home or go overseas. Alternatively, graduates would study if they choose a

domestic postgraduate or an overseas postgraduate course. Therefore, they may first

decide whether they would like to study or work. In both cases, we use a nested logit

model.

If three choices are independent, the multinomial regression model should satisfy the

Independence of Irrelevant Alternatives (IIA) assumptions; that is, the exclusion of one

alternative should not affect the choices between the other two alternatives. We use the

Hausman test and the Small-Hsiao test.

The Hausman test of IIA (Hausman and McFadden, 1984) is defined as:

HIIA = (β̂R − β̂∗F )′[ ˆV ar(β̂R)− ˆV ar(β̂∗F )]−1(β̂R − β̂∗F ) (5.2)

where β̂F is the estimate of the full model with all three choices, β̂∗F is a subset of β̂F in

which the coefficients are dropped if their corresponding choice have not been estimated

in a restricted model and β̂R is the estimate of a restricted model with two choices. HIIA

is asymptotically distributed as a chi-square if IIA is true.

An alternative way to test IIA is the Small-Hsiao test (Small and Hsiao, 1985). The
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statistic of the Small-Hsiao test is from a Likelihood Ratio test which is:

SH = −2[L(β̂S1S2
u )− L(β̂S2

r )] (5.3)

where

(β̂S1S2
u ) = (

1√
2

)β̂S1
u + [1− (

1√
2

)]β̂S2
u (5.4)

The data are randomly divided into two samples S1 and S2. β̂S1
u is the estimates of

multinomial regression for sample 1. β̂S2
u is the estimates of multinomial regression for

sample 2. β̂S2
r is the estimates of the restricted model for sample 2 in which an alternative

is excluded. The statistic of the Small-Hsiao test is shown to be asymptotically distributed

as a chi-square if IIA is true.

Alternatively, when two choices are correlated with each other, we use the nested

logit model. Assume that in the set of all choices J , a nest n contains choices which are

correlated with each other with a correlation coefficient 1− λ. There are two nests in J

such that the two nests are mutually exclusive.

Figure 5.2: The Alternative Tree Structures for Nested Logit Models

Note: Figure (a) shows that individuals first make choices between work and study, while figure (b) shows that

individuals first make choices between domestic and overseas.

Figure 5.2 shows the alternative tree structures for nested logit models. Individuals

could make sequential decisions first between work and study or between domestic and

overseas, and then they choose the specific alternative within each nest. Given three

choices, the nested logit model releases the assumption of IIA. The probabilities between

the nests can be decomposed into the probabilities between nests and the conditional

probabilities given nest containing j (Koppelman and Bhat, 2006):

πij = πnπij|n = Pr(j ∈ n)Pr(Yi = j|j ∈ n) (5.5)

where the within-nest probability is determined by factors X that vary within nests

— factors affecting choosing between domestic study and oversea study within “study”
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or factors affecting choosing between work and domestic study within “domestic”:

πij|n =
exp(α0 + αjXi)∑
j∈n exp(α0 + αjXi)

(5.6)

The between-nest probability is determined by factors Z that vary across nests — factors

determining choosing between work and study or factors determining choosing between

domestic and overseas:

πn =
exp(γ0 + γjZi + λIVn)∑
n∈J exp(γ0 + γjZi + λIVn)

(5.7)

where IVn is the inclusive value of nest n:

IVn = ln
∑
j∈n

exp(α0 + αjXi) (5.8)

Using the nested logit model, we can not only release the assumption of IIA but also

examine the hypothesis of graduates choosing their whereabouts based on a sequential

decision-making process.

5.5 Results

5.5.1 Rural vs. Urban Graduates

In this section, we examine the impact of Hukou status on graduate outcomes. First,

we show the percentage of rural and urban Hukou by year in Figure 5.3. The rural

Hukou graduates decrease dramatically from more than 50% in 2008 to less than 25%

in 2015; while the percentage of rural residents, i.e. the urbanization rate in China only

sightly declines from more than 50% to less than 50% during 2008-2015 (NBS, 2016).

The sharp decrease in the proportion of rural graduates implies fewer opportunities for

rural students to be admitted to this highly-ranked university.

We also compare GPA, entrance exam score, household income and numbers of family

among rural and urban graduates (Table 5.5). Rural graduates on average live in house-

holds with 4.178 members which is more than the average among urban graduates (3.3

members). Although rural graduates had slightly higher CEES than urban graduates,

their GPA scores are lower than their urban counterparts. The difference is not significant

in CEES but significant in GPA.

Figure 5.4 shows the difference in average GPA and CEES between urban and rural

graduates during 2008-2015. In this figure, a positive value represents a higher average

score for urban graduates. The blue line represents the trend of the difference in GPA.

The red line represents the difference in CEES including both home and other provinces.
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Figure 5.3: Graduates’ Hukou Status by Year (Percentage)

Note: 1.The annual data referring to the percentage of urban residents in the home
province of the university and in China from 2008 to 2015 is from annual editions of
NBS.
2. The stacked chart is based on authors’ calculations.

Table 5.5: Rural vs. Urban Graduates

(1) (2) (3)
Rural Urban Difference

GPA 82.63 83.67 -1.034***
(4.993) (5.050) (-4.90)

CEES 614.4 610.4 4.073
(51.15) (57.63) (1.68)

HHincome 12432.4 36473.2 -24040.77***
(15577.5) (46141.3) (-14.49)

No. Family 4.178 3.300 0.878***
(1.076) (0.695) (24.54)

1 ”GPA” is Grade Point Average, ranging from 0 to 100.
2 ”CEES” is the score from the Chinese Entrance Exam, ranging from

0 to 700.
3 ”HHIncome” represents household annual income per effective

household member and ”No. Family” is the number of family mem-
bers.

4 For column (1) and (2), the coefficients represent the mean values
and the standard errors are in parentheses.

5 For column (3), the coefficients represent the difference of mean
between rural and urban graduates. t statistics in parentheses:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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The grey line represents the difference in CEES excluding other provinces. In general,

CEES and GPA have similar trends during the period. This indicates that a student with

a higher CEES is more likely to have a higher GPA in the university as well. In addition,

the score gap between urban and rural graduates increased during 2008-2015 except in

year 2013 even though the proportion of rural graduates decreased during that period.

Figure 5.4: Difference in GPA and CEES between Urban and Rural Graduates

Note: A positive value represents a higher average score for urban students.
Source: Authors’ calculation.

The biggest difference is in household income. Urban graduates’ households earn

more than three times as much as their rural counterparts. Figure 5.5 shows the change

in income gap between rural and urban households by year. In 2008, urban graduates’

households earned around two times as much as their rural counterparts. This gap became

more than three times higher in 2015.

The difference between rural and urban graduates can also be found in their where-

abouts. Figure 5.6 shows graduates’ whereabouts by Hukou status during 2008-2015

excluding those who were not sure about their whereabouts. In 2008, the percentage

of graduates who continued their studies in China is around 20% and 15% for urban

and rural graduates respectively. The percentage of overseas postgraduates is less than

5% for both Hukou statuses. The percentage of domestic postgraduates increases at the

same pace for students from rural and urban areas during 2008-2015. In contrast, the

percentages of overseas postgraduates only increase for graduates from urban areas. Dur-

ing the whole period, only 2.13% of rural graduates choose to undertake a postgraduate

course overseas compared to 21.39% urban graduates who choose an overseas postgrad-

uate course. This difference in whereabouts could indicate more opportunities available

for urban graduates than their rural counterparts.

Given all these differences between rural and urban graduates, we use multivariate

regression analysis in the next two sections to examine whether graduates’ academic
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Figure 5.5: Graduates’ Household Income by Hukou Status

Source: Authors’ calculation.

Figure 5.6: Postgraduates by Hukou in Graduates’ Whereabouts During 2008-2015 (Per-
centage)

Note: Those who were not sure about their whereabouts are excluded in this figure.
Source: Authors’ calculation.
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performance and whereabouts are affected by their Hukou and other factors.

5.5.2 Regression Analysis on College Admission

To study the relationship between circumstances and college admission, we regress the

CEE score (CEES) on circumstances. Suppose that before knowing the entry score of

this university, there are N students applying for this university. Given those students’

circumstances — the vector c, the relationship between circumstances and students’

CEES can be described in the following equation:

CEESi = αci + ε (5.9)

where α is a coefficient for circumstance variables and ε is an error term. Since the

university sets an entry score for admission, students’ CEES should not be dependent on

their circumstances. Therefore, the coefficients should be equal to 0.

However, circumstances could affect students’ CEES in the following three ways. First,

circumstances could affect CEES if the university sets different entry scores for different

students. For example, students could have a lower entry score if they belong to a minority

group. In addition, the entrance scores for students from art and science can be different.

The second way is that students’ circumstances could directly affect their scores. For

example, a gender gap has been found in PISA test scores (González de San Román and

De La Rica, 2012). If distributions for each gender have the same variance but different

means for all applicants, the difference might also be found after admission. To check this

type of influence attributable to students’ circumstances, we also regress students’ GPA on

their circumstances. GPA represents the academic performances after admission. It has

no relationship with the admission and the selection problem. Therefore, the relationship

between circumstances and GPA is more likely to be the direct influence of circumstances

on academic performances.

The last way is that students with a certain circumstance might be more risk-taking

than other students. If two distributions for two different circumstances have the same

mean but different variances, a higher average score for the higher-variance distribution

could be found after admission. Students have been given their scores before applying

to colleges but they have not been given the entry score of each university until a couple

of days after they submit the college application form. Students with a lower score

could face more uncertainties when they apply to a top university. In consequence, their

circumstances might play a role in their risk-taking preferences.

Table 5.7 shows the results of regressing GPA and CEES on a number of socioeco-

nomic variables. We use GPA as dependent variables in Columns (1) to (3) and CEES

as dependent variables in Columns (4) to (6). Since each province has different exam

questions and the university gives different quotas to different provinces, we only use the
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observations from the home province in Columns (4) to (6). The summary statistics for

the home province is presented in Table 5.6. We rescale CEES from 0 to 100, the same

scale as the GPA.

Table 5.6: Summary Statistics for the Home Province

Statistic N Mean St. Dev. Min Max

Father’s income 1156 27126.42 29174.21 0 600000
Mother’s income 1038 21317.98 19871.03 0 360000
No. family members 1468 3.52 0.86 2 9
Imputed No. family members 1468 0.04 0.2 0 1
HHincome 1352 15678.61 24546.92 0 1247077
GPA 1463 84.32 4.74 29 94.74
CEES 1272 630.18 37.06 168.5 785.00
Year of graduation 1468 2008 2015
Female 1468 0.54 0.5 0 1
Ethnic Minority 1468 0.01 0.11 0 1
Single parent 1468 0.03 0.16 0 1
Urban Hukou 1468 0.62 0.48 0 1
Self-reported poverty 1468 0.16 0.37 0 1
Major in science 1468 0.51 0.5 0 1
Direct admission 1468 0 0.07 0 1
Unemployed 669 0.12 0.32 0 1
Failed postgraduate exam 525 0.06 0.24 0 1

1 Home Province is whether the graduates’ households are in the same province as the university.
2 Imputed No. family members is a dummy for the missing value of No. family members.
3 GPA is Grade Point Average during undergraduate study. CEES is Chinese Entrance Exam Score ranging

from 0 to 750.
4 Self-reported poverty is whether the graduates report that their families are in poverty.
5 Major in science is whether the graduates majored in science when they were in high school.
6 Direct admission is a dummy for those who were directly admitted by the university.
7 Failed postgraduate exam is a dummy for those who failed the entrance exam for postgraduates.
8 HHincome is household income per effective member.

Due to the correlation between graduates’ Hukou status and their household in-

come and parents’ occupation, we exclude household income and parents’ occupation

in Columns (1) and (4), add household income in Columns (2) and (5) and include both

household income and father’s occupation in Columns (3) and (6). In addition, we also

include year dummies in each regression to control for time varying heterogeneity such

as cohort effects and changes in university policies or practice.

In general, we find that graduates are more likely to achieve a higher GPA if they are

female, belong to the major ethnic group, come from the home province or have a higher

CEES. For CEES, females belonging to the major ethnic group are also likely to have a

higher score.

The average entry score of the minority is around 10 points (out of 100) lower than the

majority. This is due to China’s affirmative action policies giving preferential treatment to
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Table 5.7: The Regression Analysis on GPA and CEE Scores

(1) (2) (3) (4) (5) (6)
GPA GPA GPA CEES CEES CEES

Female 2.809∗∗∗ 2.753∗∗∗ 2.716∗∗∗ 0.534∗ 0.636∗∗ 0.599∗∗

(0.189) (0.197) (0.203) (0.291) (0.307) (0.300)
Minority -2.257∗∗∗ -1.970∗∗∗ -1.859∗∗∗ -9.603∗ -9.453∗ -10.34∗∗

(0.532) (0.540) (0.556) (4.995) (4.967) (5.249)
Single 0.314 0.418 2.059∗∗ -0.551 -1.145 -0.130

(0.519) (0.536) (0.966) (1.762) (1.841) (1.062)
Home Province 2.277∗∗∗ 2.292∗∗∗ 2.234∗∗∗

(0.206) (0.215) (0.221)
Urban Hukou 0.0252 -0.158 0.00137 -0.836∗∗ -0.334 -0.186

(0.221) (0.255) (0.336) (0.349) (0.380) (0.497)
CEES 0.105∗∗∗ 0.109∗∗∗ 0.104∗∗∗

(0.0181) (0.0196) (0.0203)
No. Family 0.0281 0.0394 0.0116 0.173 0.0476 0.0452

(0.114) (0.116) (0.119) (0.209) (0.219) (0.204)
Missing No. Family 0.222 0.545 0.712 -1.668∗ 0.979 0.664

(0.600) (2.109) (2.186) (0.912) (1.179) (1.147)
Science 0.237 0.227 0.260 1.675∗∗∗ 1.678∗∗∗ 1.792∗∗∗

(0.203) (0.210) (0.215) (0.268) (0.275) (0.281)
Log HHincome 0.184 0.115 -0.659∗∗∗ -0.582∗∗

(0.125) (0.143) (0.156) (0.198)
Retired -2.811∗∗ -1.123

(1.220) (2.289)
Constant 68.99∗∗∗ 66.99∗∗∗ 68.40∗∗∗ 86.36∗∗∗ 92.32∗∗∗ 90.91∗∗∗

(1.631) (2.131) (2.376) (1.072) (1.857) (2.657)
Year Dummy Yes Yes Yes Yes Yes Yes
Major Yes Yes Yes No No No
Father’s Occupation No No Yes No No Yes
No. Significant Occupation 1 0
Observations 2229 2068 1964 1243 1168 1126
Adjusted R2 0.264 0.264 0.260 0.130 0.131 0.137
1 Standard errors in parentheses.
2 ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001.
3 All observations are used in Columns (1) to (3). Only observations from Home Province Province are used in Columns (4)

to (6).
4 GPA is Grade Point Average during undergraduate study. CEES is Chinese Entrance Exam Score transformed to 0 to 100.

135



minorities. Also, difference in CEES between science and art majors is due to universities

in China setting different entry scores for science and arts students.

Interestingly, household income has a negative effect on CEES even though there is

no policy for the university to explicitly give special considerations to those with lower

household income. In addition, the coefficient of Hukou status is significant if household

income is excluded in the model. This implies that the effect of Hukou status can be

explained by the difference in household income. Different from CEES, GPA is not

affected by Hukou status and household income. The coefficients of Hukou status and

household income are not significant in all cases. Regarding father’s occupation, only the

coefficient of being a university teacher is significant, which means that graduates whose

father is a university teacher are more likely to have a higher GPA.

Given these results, we cannot conclude that students with a higher household income

have a low CEES on average because GPA does not show the same relationship with

household income. This negative relationship might be due to the fact that students

from rich families might have better options than those from poor families given the same

CEES. For example, if students from rich families fail to enter the top university, they

can choose to go overseas, paying more money to buy better education; while students

from poor families cannot afford to do the same and thereby have to accept going to a

low-rank university. Therefore, the negative relationship appears if students with better

household economic conditions are more likely to apply to top universities given a lower

CEE score.

To check this, we ran a quantile regression on CEES at 0.1, 0.3, 0.5, 0.7 and 0.9

quantiles. The results are shown in Table 5.8. We found that the lower the quantile,

the bigger the negative effects of household income. This could imply that the closer the

students’ CEES is to the entry score, the more risk averse the students are if they have

a low household income. This result is an indirect evidence of differences in risk-taking

performances for students with different household income. This explanation could be

more concrete if we can get data from those who fail to be admitted to this university.

One possible explanation of the differences in risk-taking performances is the difference

in family expectations given different economic background. Ashraf et al. (2017) find that

both poor and rich families have high expectations on the education of their children.

However, it is still not clear how different these expectations are between poor and rich

families. Studies on a household survey might be necessary to find out these differences.

In summary, we found that circumstances could affect students’ admission in a highly-

ranked university. Some circumstances, such as belonging to a minority group, are due

to the government’s affirmative action policies. Some circumstances directly affect stu-

dents’ CEES scores. For example, females have higher scores on average than males.

Most interestingly, students with high household income might have higher risk-taking

performance when applying to a highly-ranked university.
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Table 5.8: The Quantile Regression on CEES

(1) (2) (3) (4) (5)
0.1Q 0.3Q 0.5Q 0.7Q 0.9Q

lninchh percap -0.659∗ -0.484∗∗∗ -0.412∗∗∗ -0.351∗∗∗ -0.0505
(0.397) (0.108) (0.0925) (0.114) (0.0897)

Observations 1168 1168 1168 1168 1168
1 Standard errors in parentheses.
2 ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

5.5.3 Regression Analysis on Graduates’ Whereabouts

5.5.3.1 Results from the Multinomial Regression Model

Table 5.9 is the result of a multinomial logit regression model. The baseline choice is

work and those who were not sure about their whereabouts are excluded in the regression

analysis. The coefficients reported in Table 5.9 are the odd ratio, that is the ratio of

the probability of choosing domestic postgraduate (or oversea postgraduate) to that of

choosing working.

We also conducted Small-Hsiao and Hausman tests and found that they were not

significant in both models, which indicates that the IIA cannot be rejected. Therefore,

these choices are likely to be independent of each other.

Table 5.9: Graduates’ Whereabouts (Multinominal Regression Model)

(1) (2) (3) (4) (5)
Domestic postgraduate
Urban Hukou 1.523∗∗∗ 1.457∗∗∗ 1.212 1.442∗ 1.745∗∗

Log HHincome 1.042 0.955 1.021 1.222
Oversea Postgraduate
Urban Hukou 6.872∗∗∗ 3.212∗∗∗ 1.518 1.959∗ 1.934∗

Log HHincome 3.175∗∗∗ 2.685∗∗∗ 2.594∗∗∗ 4.442∗∗∗

Year Dummy Yes Yes Yes Yes Yes
Mother’s Occupation No No Yes No No
Father’s Occupation No No No Yes Yes
Observations 2452 2271 2008 2155 2080
Pseudo R2 0.239 0.273 0.286 0.289 0.656
AIC 3708.2 3274.3 2942.3 3107.1 5505.4
Loglikelihood -1822.1 -1603.2 -1417.1 -1499.5 -2702.7
1 Exponentiated coefficients.
2 ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001.
3 Coefficients except Hukou status and household income are omitted in this table.
4 Column (1) represents the baseline model. Column (2) to (4) show the results from the alternative

models where variables such as household income and parents’ occupation are included. Column (5)
is the model using the inverse propensity score weight.

In Column (1) we exclude household income and parents’ occupation and add house-

hold income in Column (2). We use father’s occupation and mother’s occupation in
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Columns (3) and (4) respectively.

Comparing the R-squared statistics, we find that including household income signif-

icantly improves the R-squared statistics. This implies that household income is crucial

for understanding graduates’ whereabouts. In contrast, including parents’ occupation

slightly increases the R-squared statistics. In addition, we find that Columns (3) and

(4) have similar R-squared statistics, which means that father’s and mother’s occupation

help explain similar variation of graduates’ whereabouts. Given the log likelihood and

Akaike information criterion (AIC), we find that the model with household income and

mother’s occupation performs better than other models.

Regarding graduates’ Hukou status, urban Hukou graduates are more likely to choose

doing postgraduates than their rural counterparts. The coefficients of urban Hukou are

significant at the 5% level in Columns (1) and (2) but not in Columns (3) and (4). This

might be due to the correlation between urban Hukou and other circumstances.

Since Hukou status is correlated with other circumstances, the difference in gradu-

ates choices between the two Hukou statuses does not reflect the pure effect of Hukou

status. If we consider the effect of Hukou status as a treatment effect, respondents in

the dataset are not randomly assigned to two groups classified according to their Hukou

status. Therefore, to show the pure effect of Hukou status on graduates’ whereabouts,

we weighted the regression by the inverse propensity score. We calculated the propensity

score based on the following logistic regression:

P (hukou = 1|z) = σ(θ′z) (5.10)

where hukou is a dummy variable for Hukou status. It equals 1 when Hukou status

is urban. The logistic function is σ(), θ is the coefficients and z is a vector of variables

related to Hukou status. We use female, minority, the number of family members, father’s

occupation and household income per effective members in z.

The predicted probability of urban Hukou given z is the propensity score p. Then the

inverse propensity score weight is:

ipw =

1
p

if hukou = 1

1
1−p if hukou = 0

(5.11)

The results from the weighted regression are presented in column (5).

After weighting the regression by the inverse propensity score, the coefficients of urban

Hukou become significant again. According to this weighted regression, we find that

urban Hukou graduates are 1.745 times more likely to choose domestic postgraduates

and 1.934 times more likely to choose oversea postgraduates than their rural counterparts

respectively. This indicates that Hukou status plays an important role in the choice of a

postgraduate degree.
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Household income also affects graduates’ choices. The results show that a 1% increase

in household income would increase the probability of choosing oversea postgraduates by

at least 2.594 times, although this increase is not significant and has no impact on the

probability of choosing a domestic postgraduate course. This difference suggests that a

higher household income brings a graduate more opportunity to pursue an oversea study

but has no effect on the choice of domestic postgraduate.

Since there are only 12 rural graduates who chose to study overseas, we did regressions

on rural and urban graduates respectively and merged domestic and oversea postgraduate

into one category. The results of graduates choosing postgraduate are shown in Table

5.10. For urban graduates, we assume either a three-choice model using a multinomial

regression (Column (1) and (2)) or a two-choice model using a logistic regression (Column

(3) and (4)); while for rural graduates (Column (5) and (6)), we only assume a binary

choice between work and postgraduate study. Since we focus on choices between work

and postgraduate study in Table 5.10, we omit the results from oversea postgraduate

study in column (1) and (2).

The results in Table 5.10 show that for urban graduates, the two-choices model has

lower AIC and loglikelihood than the three-choices model. This indicates that the two-

choices model performs better than the three-choices model. Comparing the explanatory

variables, we find that some factors influencing a postgraduate study are different be-

tween rural and urban graduates. The effect of GPA on a postgraduate degree is higher

for rural than urban graduates. Rural graduates are 38% to 41% more likely to choose a

postgraduate if their GPAs increase by 1%. In contrast, the figures for urban graduates

are around 26%. In addition, the number of family members only affects urban gradu-

ates but not rural graduates. Urban graduates are 22% to 27% less likely to choose a

postgraduate if they have one or more family members.

Household income and parents’ occupations also have a different impact on choosing a

postgraduate degree depending on whether graduates are rural or urban. Rural graduates’

whereabouts are more related to the father’s occupation. Rural graduates are more likely

to choose a postgraduate if the father is a teacher. Given the father’s occupation, the

coefficient of household income becomes not significant. For urban graduates, household

income is still a significant factor even though father’s occupation is given.

Mother’s occupation is more related to urban graduates’ whereabouts than rural grad-

uates’ whereabouts. Some occupations such as administrator, professionals and teachers

including university teachers are highly significant and positively related to the choice to

undertake a postgraduate course. These effects are not found in urban graduates.

In addition, some occupations of urban parents are not found among rural counter-

parts. No rural parent is a civil servant, university teacher or retired. This might indicate

that rural parents have a lower social status and welfare than their urban counterparts.

In summary, given the results from the multinomial regression and the logistic regres-
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Table 5.10: Graduates’ Choosing Domestic Postgraduate (Rural vs. Urban)

(1) (2) (3) (4) (5) (6)
MNL MNL Logit Logit Logit Logit
Urban Urban Urban Urban Rural Rural

Female 0.943 0.889 0.979 0.931 0.873 0.860
Minority 0.917 1.034 1.367 1.514 0.974 1.095
Single 1.179 0.395 0.993 0.524 0.446 1.425
Home Province 1.273 1.167 1.315∗∗ 1.228 0.99 1.055
GPA 1.357∗∗∗ 1.377∗∗∗ 1.267∗∗∗ 1.265∗∗∗ 1.418∗∗∗ 1.381∗∗∗

No. Family 0.805∗ 0.88 0.730∗∗∗ 0.773∗∗ 1.029 0.990
Missing No. Family 6663004.4 3.748 2.493
Log HHincome 0.991 0.777∗ 1.351∗∗∗ 1.215∗ 1.164 1.280∗

Parents Occupation Father Mother Father Mother Father Mother
Administrator 1.167 2.672∗ 1.238 2.600∗ 1.109 0.598
Civil Servant 0.71 1.739 1.062 2.182
Manual Worker 1.092 2.249 0.855 1.943 1.039 1.583
Other Professionals 1.222 3.331∗∗ 1.165 2.905∗∗ 0.842 1.228
Other Teacher 1.339 4.108∗∗∗ 1.033 2.873∗∗ 2.931∗∗ 1.471
Passed Away 7.92E-008 4.172 0.169 2.834 2.577 1.014
Retired 3.096 3.129 1.835 3.086∗

Self-employed 1.606 1.967 1.058 1.357 0.979 0.559

Unemployed 0.246 0.805 0.24 0.862 0.588 3.577
University teacher 1.553 12.48∗∗∗ 2.078 10.24∗∗∗

Year Dummy Yes Yes Yes Yes Yes Yes
Observations 1378 1270 1377 1270 775 735
Pseudo R2 0.245 0.239 0.253 0.254 0.274 0.257
AIC 2303.6 2161.5 1463.1 1344.7 738.6 721.3
ll -1099.8 -1030.7 -706.6 -647.4 -346.3 -337.6
1 Exponentiated coefficients.
2 “MNL” stands for the multinomial logit regression and “Logit” represents the two-choice logit regression.
3 ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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sion, we find that Hukou status and parents’ socioeconomic status have large effects on

graduates’ whereabouts. A urban graduate with rich parents or parents who are teachers

is more likely to study towards a postgraduate degree. In addition, an oversea post-

graduate is different from a postgraduate in the home country. An oversea postgraduate

heavily relies on household income while a domestic postgraduate does not and urban

graduates have more opportunities to study overseas than their rural counterparts.

5.5.3.2 Results from the Nested Logit Model Given the Whereabouts are

Correlated

Table 5.11 shows the results from the nested model. Graduates first make choices

between nests — work and study (Columns (1) and (3)), or staying in China and going

oversea (Columns (2) and (4)), and the final within-nest decision is made based on either

household income (Columns (1) and (2)) or GPA (Columns (3) and (4)).

Table 5.11: Graduates’ Whereabouts (Nested Logit Model)

(1) (2) (3) (4)
Postgraduate Domestic Postgraduate Domestic

Female 1.032 0.805 1.034 0.806
Minority 1.257 0.521∗∗ 1.259 0.520∗∗

Single 0.791 1.790 0.783 1.780
Home Province 1.325∗∗∗ 0.835 1.327∗∗∗ 0.836
No. Family 0.807∗∗∗ 2.710∗∗∗ 0.806∗∗∗ 2.698∗∗∗

Missing No. Family 2.445 0.272 2.427 0.271
Urban Hukou 1.592∗∗∗ 0.397∗∗∗ 1.597∗∗∗ 0.396∗∗∗

GPA 1.254∗∗∗ 1.013
Log HHincome 1.267∗∗∗ 0.425∗∗∗

Domestic postgraduate
Log HHincome 0.134∗∗∗ 0.297∗∗∗

GPA 0.756∗∗∗ 0.974
Work
Log HHincome 0.217∗∗∗ 0.530∗∗∗

GPA 0.663∗∗∗ 1.038∗∗

Observations 6801 6801 6801 6801
AIC 3708.0 3976.2 3673.1 3991.5
Loglikelihood -1836.0 -1970.1 -1818.6 -1977.8
1 Exponentiated coefficients.
2 ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
3 Year Dummies are used as independent variables in each regression.

Comparing AIC and log likelihood for each model, we find that models with nests

between work and study perform significantly better than models with nests between

staying in China and going overseas. This might indicate that graduates are more likely

to choose between study and work first and consider domestic and oversea study after

their first decision.
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Regarding explanatory variables, household income is an important factor in all model

specifications. Higher household income is especially important for those who choose

going overseas for postgraduate study. Another crucial factor is urban Hukou which

positively affects the choice of study. These findings are consistent with the results from

the nested logit model and the multinomial regression model.

The results from GPA are different for the nested logit model compared to the multi-

nomial regression model. GPA is not significant if graduates make decisions between

domestic and overseas first. This implies that GPA or personal academic performances

have little impact on the decision to go overseas. Instead, it is family backgrounds and

economic wellbeing that determine the decision to go overseas.

Generally, the nested logit model show results similar to the multinomial regression

model, which increases the robustness of our main findings. In addition, the nested logit

model indicates that graduates are more likely to make a decision between work and

study than between domestic and overseas postgraduate study.

5.5.4 The Effect of Hukou Status and Parents’ Occupation on Graduates

Choices: An Alternative Approach

From the regression analysis, we found that Hukou status and parents’ occupation

are two determinants of graduates’ choices. In this subsection, we identified the effect of

Hukou status and parents’ occupation on graduates choices using the stochastic domi-

nance approach (Lefranc et al., 2008). Assume that graduates’ choices follow the criteria

of first-order stochastic dominance (FSD) and second-order stochastic dominance (SSD).

The definitions of stochastic dominance are as follows:

Definition 5.5.1 For two different vectors of circumstances c, c′ ∈ C where c 6= c′, c

first-order stochastic dominance (FSD) c′ for choice j, i.e. c %FSDj
c′ iff:

F (pj|c) ≤ F (pj|c′), ∀pj ∈ R+ (5.12)

where F (pj|c) is the cumulative distribution of probabilities pj of choosing option j. c, c′

are vectors of circumstances belonging to the set of all possible vectors of circumstances C.
In other words, c %FSDj

c′, when graduates with circumstances c have higher probabilities

in choosing j than graduates with circumstances c′.

However, the first-order stochastic dominance does not consider individuals’ risk-

averse preference. Given two circumstances, individuals might prefer circumstances which

provide more predictable probabilities in choosing to choose j than a less predictable

probabilities. To take the risk-averse preference into account, we used the second-order

stochastic dominance (SSD) (Lefranc et al., 2008)
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Table 5.12: Lorenz Dominance Test (Domestic Postgraduate)

Father Farmer/Worker Adminstrator Teacher
Farmer/Worker - < <
Adminstrator - - <

Teacher - - -
Hukou Rural Urban
Rural - <
Urban - -
Mother Farmer/Worker Adminstrator Teacher

Farmer/Worker - < <
Adminstrator - - =

Teacher - - -
Hukou Rural Urban
Rural - <
Urban - -

1 > The row dominates the column.
2 < The row is dominated by the column.
3 = The row neither dominates nor is dominated by the column.

Definition 5.5.2 For two different vectors of circumstances c, c′ ∈ C where c 6= c′, c

second-order stochastic dominance (SSD) c′ for choice j, i.e. c %SSDj
c′ iff:∫ 1

0

F (pj|c)dx ≤
∫ 1

0

F (pj|c′)dx,∀pj|c ∈ R+ (5.13)

The SSD is equivalent to generalized Lorenz dominance (GLD)(Lefranc et al., 2008).

Formally:

∀pj|c ∈ R+, c �SSD c′ ⇔ ∀π ∈ [0, 1]GLF (·|c)(π) ≥ GLF (·|c′)(π) (5.14)

where GLF (·|c)(π) is the value of the generalized Lorenz curve at π for the distribution of

F (·|c).

Based on the definition of stochastic dominance and the results from multinomial

regression, we conducted Lorenz dominance tests. The results are shown in Table 5.12

and Table 5.13. Table 5.12 shows Lorenz dominance tests on the probabilities of choosing

domestic postgraduates and Table 5.13 shows Lorenz dominance tests on the probabilities

of choosing overseas postgraduates. We use the estimators in columns (3) and (4) of Table

5.9 and three categories of parents’ occupations: farmers and manual workers; government

officers, administrators and civil servants; and teacher. We find that students with parents

who are farmers and manual workers are Lorenz dominated by the other two occupations

in choosing both domestic and overseas postgraduates. Teachers dominate the other two

occupations in domestic postgraduates but are dominated by administrators in overseas

postgraduates.

We also compare two Hukou statuses: rural and urban. We find that rural Hukou is
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Table 5.13: Lorenz Dominance Test (Oversea Postgraduate)

Father Farmer/Worker Adminstrator Teacher
Farmer/Worker - < <
Adminstrator - - >

Teacher - - -
Hukou Rural Urban
Rural - <
Urban - -
Mother Farmer/Worker Adminstrator Teacher

Farmer/Worker - < <
Adminstrator - - >

Teacher - - -
Hukou Rural Urban
Rural - <
Urban - -

1 > The row dominates the column.
2 < The row is dominated by the column.
3 = The row neither dominates nor is dominated by the column.

dominated by urban in both domestic and overseas postgraduates. These results suggest

that graduates’ choices are substantially affected by circumstances such as Hukou status

and parents’ occupations.

Figure 5.7 shows the cumulative distribution of probabilities on father’s occupation

and Hukou status. The figures in the first row show the cumulative distributions of

three different occupations for each choice. Students with a father who is a farmer or a

worker are less likely to choose domestic or overseas postgraduates. A father who is an

administrator is more likely to send his children overseas.

The figures in the second row show the cumulative distributions on Hukou status.

Rural students are more likely to choose work but less likely to choose domestic and over-

seas postgraduates than their urban counterparts. These results are consistent with what

we find in the multinomial regression analysis and suggest the influence of circumstances

on graduates’ choices.

5.6 Conclusion

This essay uses graduates’ administrative data from one university in China during

2008 to 2015. Through the analysis of this dataset, we find a widening gap in admission

to tertiary education and its outcome between rural and urban residents. In particular,

the proportion of rural graduates decreased from 50% in 2008 to less than 25% in 2015;

the rate of the decrease is much faster than the rate of increase in urbanization rate —

from less than 50% to more than 50%. This finding is consistent with other research on

educational inequality in China such as Connelly and Zheng (2003), Wang et al. (2013)
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Figure 5.7: The Cumulative Distributions of Probabilities on Father’s Occupation and
Hukou status

(a) Domestic Postgraduate (b) Oversea Postgraduate

(c) Work (d) Domestic Postgraduate

(e) Oversea Postgraduate (f) Work
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and Zhang et al. (2015).

However, there are differences between this study and other related research. For

example, the longitudinal data in this thesis highlights the increase of educational in-

equality for a longer period when focused on tertiary education. This thesis shows a

decrease in the share of rural students in highly-ranked colleges. In contrast, the study

by Wang (2014) reports an increase in the share of rural students in lower-quality colleges.

Both studies show a widening rural-urban gap in college enrolment though in different

perspectives.

The rural-urban gap in China could be due to unequal allocations of educational re-

sources (Wang, 2014) and the restriction on the education of rural migrants’ children

(Zhang et al., 2015). This thesis detected another factor — the economic conditions of

households. Having a higher household income could be an advantage for students when

it comes to enrollment in a highly-ranked university even when they did not perform well

in the college entrance examination. We find that, for those who have already been ad-

mitted to this university, the entrance score is negatively related to household income. In

contrast, when estimating a similar regression on GPA, the relationship between house-

hold income and academic performance disappears. These results provide evidence that

students with a higher household income might have more options in choosing universi-

ties than their lower-household-income counterparts. Due to the lack of data on those

who failed admission to universities, this thesis cannot examine the impact of household

income on university admission.

Household income is also a main determinant of graduate outcomes. Graduates with a

high household income are more likely to enroll for a postgraduate degree. The household

income of graduates choosing an overseas postgraduate program is significantly higher

than those who choose to do a domestic postgraduate program or to work. This finding is

supported by research on educational expenditure in China. Qian and Smyth (2011) find

that household income has significant effects on expenditures on domestic and overseas

education. Students with a higher household income are more likely to go overseas for

education with financial support.

With lower household income, rural graduates have fewer opportunities in their where-

abouts after graduation. Graduates with a rural Hukou are much less likely to choose

to study for a postgraduate degree after graduation than their urban counterparts, let

alone for an overseas postgraduate. However, the lack of opportunities for rural graduates

is not because of their lower academic performance in college. Instead, rural graduates

have similar GPAs to their urban counterparts. In addition, the academic performance in

college is uncorrelated with graduates’ Hukou status and household income. This means

that GPA can represent individuals’ effort on academic performance which is independent

of circumstances. Although GPA affects graduates’ whereabouts, it fails to explain why

rural graduates exclude the choice of studying overseas.
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Based on these findings, we conclude that inequality of opportunity in tertiary ed-

ucation in China has significantly escalated in the last decade. Students who entered

highly-ranked universities relied more on their circumstances such as family backgrounds,

parents’ socioeconomic status and Hukou status. They also faced unequal opportunity

when they graduated. Having similar academic performances, graduates with urban

Hukou and wealthy parents had more opportunities in their whereabouts.

Since our data is from a highly-ranked university, this study only focuses on the

admission and graduates’ outcome in highly-ranked universities. The admission and

graduates’ outcome in a low-quality university might be a different story. Nevertheless,

using this dataset, this paper sheds light on reasons and highlights the trend of inequality

of opportunity in tertiary education and addresses the issues of rural-urban inequality in

China.
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Chapter 6

Conclusion

6.1 Summary and Findings

The main objective of this thesis is to improve the empirical methodology in mea-

suring inequality of opportunity, and to apply the new methodologies to gain better

understanding of inequality of opportunity in China. Specifically, we study inequality of

opportunity in terms of income and education in China. The measurement of inequality

of opportunity in income shows that income is not fairly distributed as it is influenced by

circumstances. To study the educational inequality of opportunity, we examine whether

students’ opportunities to access a highly-ranked university and their opportunities af-

ter graduation are fair and not determined by circumstances. Ideally, equal opportunity

holds when the rate of enrolment and the graduate outcomes are identical for those with

different circumstances.

We address several empirical issues in three main essays. One issue is the independence

between circumstances and effort assumed by most of the literature. This assumption

simplifies the approach to measure inequality of opportunity, but at the cost of potentially

underestimating the extent of inequality. In Essays I and II, we identify two different

ways in which circumstances could be affected by effort. First, different types, which

are groups with individuals sharing the same circumstances, could have different effort

distributions. Second, circumstances can have different effects on income for different

levels of effort.

In Essay I, we capture the effect of circumstances on effort through differences in

variances across types. Variances in income distributions imply that there are differences

in individual effort among individuals with the same circumstances. We use Maximum-

Likelihood Estimation to parameterize both mean and variance for each income distribu-

tion conditional on the circumstances. This method allows us to estimate not only the

overall effect of circumstances on income but also the effect of each circumstance vari-

able such as gender, ethnicity and parents’ socioeconomic status on income. We believe

that measures showing the effect of each circumstance variable are more useful for policy
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consideration than a composite measure. Circumstances contributing more to income

inequality should be given greater attention and be prioritized in policy design.

In Essay II, we address the effect of circumstances on effort by examining the het-

erogeneous effects of circumstances on income between different levels of effort. Most

literature assumes a homogeneous effect of circumstances on income and an unobserved

effort due to data limitation. Inequality of opportunity still can be measured (Ferreira

and Gignoux, 2008) without knowing effort. However, without information on effort, the

measure could be biased if the effects of circumstances on income differ across levels of

effort. To identify this heterogeneous effect, we use a latent-class model in which each

level of effort is represented by a class so that levels of effort can be estimated even

though they cannot be observed. To allow for heterogeneity, the effects of circumstances

on income are parameterized separately for each level of effort.

Using two different approaches to identifying the correlation between circumstances

and effort, we find that the heterogeneous effect between types accounts for about 20%

of income inequality and the heterogeneous effect of circumstances on income between

levels of effort accounts for about 29%. These figures imply that neglecting the impact of

circumstances on effort could lead to a significantly underestimated measure of inequality

of opportunity.

In terms of the measure of inequality of opportunity, we use both an ex-post measure

— a measure requiring the same outcome for those who exert the same degree of effort,

and an ex-ante measure — a measure requiring the same average outcome for those with

different circumstances. The former measure emphasises the respect for individual effort

while the latter measure pays more attention to compensating the disadvantaged. These

two measures correspond to two basic principles with regard to equal opportunity: the

reward principle and the compensation principle (Fleurbaey, 2008). However, these two

principles can lead to controversial results (Fleurbaey and Peragine, 2013). A measure

consistent with the reward principle might suggest that a larger proportion of income

inequality should be respected while a measure consistent with the compensation principle

might indicate that a larger proportion of income inequality should be compensated. In

Essay II, we find some evidences of the incompatibility between the ex-ante and ex-post

measure. Results show that inequality of opportunity is about 41% when using an ex-

post measure compared to 48% when using an ex-ante measure. These results suggest

that more of income inequality should be respected (100% − 41% = 59%) if using an

ex-post measure and more of income inequality should be compensated (55%) if using

an ex-ante measure. Considering that there are unobserved circumstances and effort, the

real gap between the ex-ante and ex-post measures could be higher. This inconsistent

result between the ex-ante and ex-post approach needs more investigation in any future

study.

In Essay III, we develop an approach to measure inequality of opportunity in the
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access to a highly-ranked university and its graduate outcomes. This study is different

from most empirical literature in measuring inequality of opportunity in that graduate

outcome is a categorical variable. In the empirical literature, the outcome of interest is

either a continuous variable such as income or a binary variable such as having tertiary

education or not. A categorical variable is different from a continuous variable in that it

sometimes cannot be directly ranked. High income or having tertiary education clearly is

an advantage over low income or not having tertiary education. In contrast, a categorical

variable could have no order but options related to individual choices and preferences. In

Essay III, there are three whereabouts for graduates: work, postgraduate study in China,

or oversea postgraduate. Inequality of opportunity exists if these graduates’ whereabouts

are affected by circumstances. To evaluate inequality of opportunity given graduate

outcomes, we use stochastic dominance (Lefranc et al., 2008) to examine the effect of

circumstances on the categorical outcome. There is inequality of opportunity if the dis-

tributions of graduates outcomes, given one circumstance, is second-order stochastically

dominated by the distributions of graduates outcomes given other circumstances.

6.2 Policy Implication

By addressing these issues and improving the methodology, we closely examine in-

equality of opportunity in China in both income and education on the basis of the con-

ventional framework developed by Roemer (1998). In Essay I, unfair income inequality

accounts for about 50% of total income inequality if the impact of circumstances on effort

is considered. In Essay II, unfair income inequality accounts for about 48% to 56% of

total income inequality. These figures suggest a large proportion of income inequality is

unfair and due to circumstances such as gender, ethnicity, the Hukou Status and parents’

socioeconomic backgrounds.

We do not limit our study to providing a rough and general figure for indicating

inequality of opportunity in China. Instead, we identify types associated with lack of

opportunity — the opportunity-deprivation profile purposed by Ferreira et al. (2011).

For example, Ferreira et al. (2011) found that ethnic minority is the most important

reason for the deprivation of opportunities in Brazil. In China, our findings suggest

that geographic factors such as the Hukou status and residential provinces are the most

important factors for deprived opportunities. These findings indicate substantial rural-

urban inequality and regional disparity in China. A rural household earns about half of

the income an urban household does, and rich provinces have an average income over

four times that of poor provinces.

More importantly, our findings suggest that geographic factors play an increasingly

important role in education. In the third essay, we find that the proportion of students

from rural areas attending a highly ranked university decreased from more than 50% in
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2008 to about 20% in 2015. Even when rural students have entered and completed a

bachelor degree in a highly-ranked university, they are still less likely to study towards a

postgraduate degree. These findings are in line with researches on rural-urban inequality

in educational opportunity (e.g. Wang et al. 2013, and Zhang et al. 2015). The difference

is that our study emphasizes inequality of opportunity in graduate outcomes for graduates

studying at the same highly-ranked university. Distribution unfairness not only exists in

the labour market and the access of education; it also affects the decisions of individuals

to invest in their own human capital. This rising inequality in educational opportunity

might lower the intergenerational mobility in the next generation in China.

6.3 Future Research

The focus of this thesis is mainly on improving the empirical methods and measuring

inequality of opportunity in China in terms of income and education. However, the

improvement is limited by the data we used. For example, we used the China Family

Panel study for Essay I and II, but this dataset only contained two waves at the time we

worked on these two essays. Future improvement on the empirical methods can be made

by using a panel model based on a dataset with a longer period. In Essay III, our data

is the administrative data from one highly ranked university. The result will be more

concrete if data from other universities become available.

In addition, this thesis contributes less to the theoretical aspect of inequality of op-

portunity. For example, our study points out that circumstances could affect effort in

different ways and the biases due to omitting these effects are identified empirically. On

the contrary, we do not claim that these effects must be compensated. Future research

could clarify whether these different types of effects of circumstances on effort should be

considered unfair or not.

151



Bibliography

Afridi, F., Li, S. X., and Ren, Y. (2015). Social identity and inequality: The impact of

China’s hukou system. Journal of Public Economics, 123:17 – 29.

Alain, T., Sandy, T., Florence, J., and Marion, D. (2010). Inequality of opportunities in

health in France: a first pass. Health Economics, 19(8):921–938.

Almas, I., Cappelen, A. W., Lind, J. T., Sø rensen, E. O., and Tungodden, B. (2011).

Measuring unfair (in)equality. Journal of Public Economics, 95:488–499.

Arneson, R. (1989). Equality and equal opportunity for welfare. Philosophical Studies,

56(1):77–93.

Ashraf, M. A., Liu, S., Ismat, H. I., and Tsegay, S. M. (2017). Choice of higher education

institutions: Perspectives of students from different provinces in China. Frontiers of

Education in China, 12(3):414–435.

Awaworyi, S. and Mishra, V. (2014). Returns to education in China: A meta-analysis.

Monash Economics Working Papers 41-14, Monash University, Department of Eco-

nomics.

Balczar, C. F. (2015). Lower bounds on inequality of opportunity and measurement error.

Economics Letters, 137:102 – 105.

Barry, B. (2005). Why Social Justice Matters. Themes for the 21st century. Wiley.

Becker, G. S. and Lewis, H. G. (1974). Interaction between quantity and quality of

children. In Economics of the family: Marriage, children, and human capital, pages

81–90. UMI.

Becker, G. S. and Tomes, N. (1986). Human capital and the rise and fall of families.

Journal of Labor Economics, 4(3):S1–39.

Bertaut, C. and Starr-McCluer, M. (2000). Household portfolios in the United States.

Finance and Economics Discussion Series 2000-26, Board of Governors of the Federal

Reserve System (U.S.).

152



Biao, X. (2007). How far are the left-behind left behind? a preliminary study in rural

China. Population, Space and Place, 13(3):179–191.

Björklund, A., Jäntti, M., and Roemer, J. E. (2012). Equality of opportunity and the

distribution of long-run income in Sweden. Social Choice and Welfare, 39(2):675–696.

Bossert, W. (1995). Redistribution mechanisms based on individual characteristics. Math-

ematical Social Sciences, 29(1):1–17.

Bourguignon, F., Ferreira, F. H. G., and Menndez, M. (2007). Inequality of opportunity

in Brazil. Review of Income and Wealth, 53(4):585–618.

Brunori, P., Ferreira, F. H. G. F. H. G., and Peragine, V. (2013). Inequality of oppor-

tunity, income inequality and economic mobility: Some international comparisons. In

IZA Discussion Paper No.7155, number 7155.

Brunori, P., Peragine, V., and Serlenga, L. (2012). Fairness in education: The italian

university before and after the reform. Economics of Education Review, 31(5):764 –

777.

Cameron, A. and Trivedi, P. (1990). The information matrix test and its implied alter-

native hypotheses. Papers 372, California Davis - Institute of Governmental Affairs.

Carroll, C. D. (1998). Why do the rich save so much? NBER Working Papers 6549,

National Bureau of Economic Research, Inc.

Checchi, D. and Peragine, V. (2010). Inequality of opportunity in Italy. Journal of

Economic Inequality, 8(4):429–450.

Checchi, D., Peragine, V., and Serlenga, L. (2010). Fair and unfair income inequalities

in europe. IZA Discussion Papers 5025, Institute for the Study of Labor (IZA).

Chen, C.-N., Tsaur, T.-W., and Rhai, T.-S. (1982). The Gini coefficient and negative

income. Oxford Economic Papers, 34(3):473–478.

Chen, Y. and Cowell, F. A. (2015). Mobility in China. Review of Income and Wealth,

63(2):203–218.

Clarke, G. R. (1995). More evidence on income distribution and growth. Journal of

Development Economics, 47(2):403 – 427.

Cohen, G. A. (1989). On the currency of egalitarian justice. Ethics, 99(4):906–944.

Connelly, R. and Zheng, Z. (2003). Determinants of school enrollment and completion of

10 to 18 year olds in China. Economics of Education Review, 22(4):379–388.

153



Corak, M. (2013). Income inequality, equality of opportunity, and intergenerational mo-

bility. Journal of Economic Perspectives, 27:79–102.

Cowell, F. A. (1985). Measures of distributional change: An axiomatic approach. The

Review of Economic Studies, pages 135–151.

Cowell, F. A. (2000). Measurement of inequality. Handbook of Income Distribution,

1:87–166.

Cragg, J. G. (1971). Some statistical models for limited dependent variables with appli-

cation to the demand for durable goods. Econometrica, 39(5):829–844.

Dawkins, R. (2006). The Selfish Gene: 30th Anniversary Edition. ISSR library. OUP

Oxford.

Deb, P. (2008). Finite mixture models. Summer North American Stata Users’ Group

Meetings 2008 7, Stata Users Group.

Deb, P. and Trivedi, P. K. (1997). Demand for medical care by the elderly: a finite

mixture approach. Journal of Applied Econometrics, 12(3):313–336.

Deb, P. and Trivedi, P. K. (2013). Finite mixture for panels with fixed effects. Journal

of Econometric Methods, 2(1):35–51.

Deutsch, J., Pi Alperin, M. N., and Silber, J. (2018). Using the shapley decomposition

to disentangle the impact of circumstances and efforts on health inequality. Social

Indicators Research, 138(2):523–543.

Deutsch, J. and Silber, J. (2007). Decomposing Income Inequality by Population Sub-

groups: A Generalization, pages 237–253.

Deutsch, J. and Silber, J. (2008). Earnings functions and the measurement of the deter-

minants of wage dispersion: extending the blinderoaxaca approach. In Work, Earnings

and Other Aspects of the Employment Relation, volume 28, pages 371–427. Emerald

Group Publishing Limited.

Devooght, K. (2008). To each the same and to each his own: A proposal to measure

responsibility-sensitive income inequality. Economica, 75(298):280–295.

Dias, P. R. (2009). Inequality of opportunity in health: evidence from a UK cohort study.

Health Economics, 18(9):1057–1074.

Donni, P. L., Rodrguez, J., and Dias, P. R. (2015). Empirical definition of social types

in the analysis of inequality of opportunity: a latent classes approach. Social Choice

and Welfare, 44(3):673–701.

154



Du, Z., LI, R., He, Q., and ZHANG, L. (2014). Decomposing the rich dad effect on

income inequality using instrumental variable quantile regression. China Economic

Review, 31:379 – 391.

Duan, N. (1983). Smearing estimate: A nonparametric retransformation method. Journal

of the American Statistical Association, 78(383):605–610.

Dworkin, R. (1981a). What is equality ? part 2 : Equality of resources. Philosophy and

Public Affairs, 10(4):283–345.

Dworkin, R. (1981b). What is equality? part 1: Equality of welfare. Philosophy and

Public Affairs, 10(3):185–246.

Eriksson, T., Pan, J., and Qin, X. (2014). The intergenerational inequality of health in

China. China Economic Review, 31:392 – 409.

Eriksson, T. and Zhang, Y. (2012). The Role of Family Background for Earnings in Rural

China. Frontiers of Economics in China, 7(3):465–477.

Ferreira, F. H. G. and Gignoux, J. (2008). The measurement of inequality of opportunity:

theory and an application to Latin America. World Bank Policy Research Working

Paper 4659.

Ferreira, F. H. G. and Gignoux, J. (2014). The measurement of educational inequality:

Achievements and opportunity. The World Bank Economic Review, 28(2):210.

Ferreira, F. H. G., Gignoux, J., and Aran, M. (2011). Measuring inequality of opportunity

with imperfect data: the case of Turkey. The Journal of Economic Inequality, 9(4):651–

680.

Ferreira, F. H. G., Lakner, C., Lugo, M. A., and Ozler, B. (2014). Inequality of opportu-

nity and economic growth : a cross-country analysis. Policy Research Working Paper

Series 6915, The World Bank.

Ferreira, F. H. G., Lanjouw, P., and Neri, M. (2003). A robust poverty profile for Brazil

using multiple data sources. Revista Brasileira de Economia, 57:59 – 92.

Fleurbaey, M. (2008). Fairness, Responsibility, and Welfare. OUP Oxford.

Fleurbaey, M. and Bossert, W. (1996). Redistribution and compensation. Social Choice

and Welfare, 13(3):343–355.

Fleurbaey, M. and Peragine, V. (2013). Ex ante versus ex post equality of opportunity.

Economica, 80(317):118–130.

155



Fleurbaey, M. and Schokkaert, E. (2009). Unfair inequalities in health and health care.

Journal of Health Economics, 28(1):73 – 90.

Foguel, M. and Veloso, F. (2014). Inequality of opportunity in daycare and preschool

services in Brazil. The Journal of Economic Inequality, 12(2):191–220.

Foley, D. K. (1967). Resource allocation and the public sector. Yale Economic Studies,

7(1):45–98.

Foster, J. E. and Shneyerov, A. A. (2000). Path independent inequality measures. Journal

of Economic Theory, 91(2):199–222.
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González de San Román, A. and De La Rica, S. (2012). Gender gaps in PISA test scores:

The impact of social norms and the mother’s transmission of role attitudes.

Hambrick, D. and Tucker-Drob, E. (2014). The genetics of music accomplishment: Ev-

idence for geneenvironment correlation and interaction. Psychonomic Bulletin & Re-

view, pages 1–9.

Hannum, E. and Wang, M. (2006). Geography and educational inequality in China.

China Economic Review, 17(3):253 – 265. Symposium on Inequality, Market Develop-

ment, and Sources of Growth in China under Accelerating ReformTechnology, Human

Capital, and Economic Development.

Hardoon, D. (2017). An economy for the 99%: Its time to build a human economy that

benefits everyone, not just the privileged few.

Harsanyi, J. (1976). Can the maximin principle serve as a basis for morality? a critique

of John Rawlss theory. 12:37–63.

Harsanyi, J. C. (1953). Cardinal utility in welfare economics and in the theory of risk-

taking. Journal of Political Economy, 61:434.

Harsanyi, J. C. (1955). Cardinal welfare, individualistic ethics, and interpersonal com-

parisons of utility. Journal of Political Economy, 63:309.

Hausman, J. and McFadden, D. (1984). Specification tests for the multinomial logit

model. Econometrica: Journal of the Econometric Society, pages 1219–1240.

156



Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica,

47(1):153–161.

Hufe, P. and Peichl, A. (2015). Lower Bounds and the Linearity Assumption in Parametric

Estimations of Inequality of Opportunity. IZA Discussion Papers, (9605).

Israeli, O. (2007). A shapley-based decomposition of the r-square of a linear regression.

The Journal of Economic Inequality, 5(2):199–212.

ISSP (2009). Issp 2009 ”social inequality iv” - za no. 5400.

http://www.gesis.org/issp/modules/issp-modules-by-topic/social-inequality/2009/.

ISSS (2014). The development of people’s well being 2014. Technical report.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures

of local experts. Neural computation, 3(1):79–87.

Jann, B. et al. (2008). The Blinder-Oaxaca decomposition for linear regression models.

The Stata Journal, 8(4):453–479.

Jusot, F., Tubeuf, S., and Trannoy, A. (2013). Circumstances and efforts: How important

is their correlation for the measurement of inequality of opportunity in health? Health

Economics, 22(12):1470–1495.

Kanbur, R. and Wagstaff, A. (2014). How useful is inequality of opportunity as a pol-

icy construct? Working Papers 338, ECINEQ, Society for the Study of Economic

Inequality.

Kanbur, R. and Zhang, X. (1999). Which regional inequality? the evolution of rural–

urban and inland–coastal inequality in China from 1983 to 1995. Journal of Compar-

ative Economics, 27(4):686–701.

Knight, J. and Song, L. (1993). The spatial contribution to income inequality in rural

China. Cambridge Journal of Economics, 17(2):195–213.

Kolm, S.-C. (1973). super-équité. Kyklos, 26(4):841–843.
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