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Abstract

Estimating the age-specific incidence of an emerging pathogen is essential for understanding its severity and transmission
dynamics. This paper describes a statistical method that uses likelihoods to estimate incidence from sequential serological
data. The method requires information on seroconversion intervals and allows integration of information on the temporal
distribution of cases from clinical surveillance. Among a family of candidate incidences, a likelihood function is derived by
reconstructing the change in seroprevalence from seroconversion following infection and comparing it with the observed
sequence of positivity among the samples. This method is applied to derive the cumulative and weekly incidence of A/H1N1
pandemic influenza in England during the second wave using sera taken between September 2009 and February 2010 in
four age groups (1–4, 5–14, 15–24, 25–44 years). The highest cumulative incidence was in 5–14 year olds (59%, 95% credible
interval (CI): 52%, 68%) followed by 1–4 year olds (49%, 95% CI: 38%, 61%), rates 20 and 40 times higher respectively than
estimated from clinical surveillance. The method provides a more accurate and continuous measure of incidence than
achieved by comparing prevalence in samples grouped by time period.
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Introduction

Rapid understanding of the severity profile and transmission

dynamics of an emerging pathogen is essential in order to

anticipate demands on health care resources and develop

appropriate public health interventions. While cases reported

through clinical surveillance systems, such as statutory notifications

or sentinel physician reporting schemes, may reflect the time

course of the wave of infection, they may not provide an accurate

measure of the infection rate in the population. For A/H1N1

(2009), the occurrence of asymptomatic infections or clinical cases

for which no medical care is sought can lead to gross

underestimation of the true incidence of infection [1,2] and

overestimation of severity [3], when using clinical surveillance

data.

We previously reported the results of a rapid serosurvey that

provided early estimates of the age-specific incidence of infection

with the A/H1N1 (2009) virus during the first wave in England

[2]. For this, age-specific incidence estimates were derived by

testing sequential serum samples grouped by calendar month and

comparing the prevalence of antibody to the H1N1 (2009)

influenza virus in that month with that in the same age-group in

baseline samples collected prior to its arrival in the United

Kingdom. This method has a number of limitations. First, the

monthly samples are distributed over a 30 day period during

which incidence may be changing, particularly at the height of the

wave. Second, the variable time to seroconversion across

individuals means that even if all samples were taken on the same

date they reflect incidence at different times in the previous weeks.

Third, derivation of incidence by comparing prevalence between

time points reduces the precision of the estimate for a given sample

size and may result in negative point estimates for groups in whom

incidence is low [2], unless a method is used that prohibits such

estimates.

We report the age-specific incidence of infection in the second

wave in England using a novel statistical method for analyzing

sequential serology data. In this example, we utilize information

on the temporal distribution of cases as estimated from clinical

surveillance data combined with information on seroconversion

interval and the exact timing of each serum sample to estimate
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incidence by week. Our method provides a better definition of the

age-specific incidence of an emerging pathogen over time-

information that is critical for the parameterization and validation

of predictive models and for assessing disease severity.

Materials and Methods

Serologic data
Serum samples were residual aliquots obtained from chemical

pathology and microbiology laboratories in eight regions in

England and sent to the Manchester Seroepidemiology Unit

(SEU), after being irreversibly unlinked from any patient

identifying information according to the standard SEU protocol

[4]. Due to limitations on the numbers of samples that could be

tested each month, continuous collection of sera throughout the

second wave was only carried out for those aged under 45 years

[5]. The analysis was therefore restricted to 2684 samples from

individuals aged 1 to 44 years taken from 1st September 2009 to

23rd February 2010. The information available for each sample

was date of collection, age, sex and collecting laboratory. Sera

were tested for antibody to H1N1 (2009) influenza virus by

haemagglutination inhibition (HI) using standard methods as

previously described [2,5] at the Respiratory Virus Unit at the

Centre for Infections Health Protection Agency, United Kingdom.

The starting dilution for the HI assay was 1:8 and sera were

titrated by doubling dilution to determine absolute end point titers

ending at a dilution of 1:16384. As used previously [2], the

threshold titre for positivity used in the analysis was $32, four

times the minimum level of detection. Comparison of the HI titer

distribution in pre-pandemic and post- pandemic sera from

children under 15 years of age showed this threshold to be a

highly specific marker of recent infection [5].

Ethical review
Approval for the unlinked anonymous testing of sera from the

SEU collection was obtained from the National Research Ethics

Service (NRES reference number 05/Q0505/45).

Time course of the second wave
Information on the distribution of clinical cases of H1N1 (2009)

by age group and week in England between August 2009 and

February 2010 was obtained from the weekly estimates of the

number of clinical cases made by the Health Protection Agency

(HPA) during the course of the pandemic, as previously described

[6]. Briefly, these estimates used health care consultation rates by

age for influenza-like-illness (ILI) adjusted for the estimated

proportion of patients with ILI seeking health care, and the

proportion consulting in whom H1N1 (2009) infection was

laboratory-confirmed by a validated PCR assay [7].

Distribution of seroconversion interval
For estimation of the distribution of seroconversion intervals

(here defined as the time taken to reach an HI titer of $32) in days

since symptom onset, serum samples from named patients with

suspected pandemic influenza sent to the Respiratory Virus Unit

by clinicians for HI antibody testing as part of their clinical work

up were cross checked against the database of individuals with

PCR confirmed infection held by the Respiratory Virus Unit. This

provided a data set of individuals with serum samples taken at

various intervals after onset of a confirmed infection. The date of

onset of symptoms was obtained by follow up via the patient’s

general practitioner if not supplied with the serum sample or

available via the national database established by the HPA early in

the pandemic to facilitate tracking of confirmed cases. This linkage

yielded 115 HI titers from patients with known dates of sample

and symptom onset for analysis.

Not all infected individuals attain a titer of $32 by HI [2,5]. We

assume that the distribution A(t) of the seroconversion interval t,

following infection, is given by a mixture distribution where Sfinal

is the probability of ever seroconverting conditional on infection,

and conditional on seroconversion, the time from infection to

seroconversion is Weibull. We thus need to evaluate three

parameters to evaluate the interval to seroconversion distribution,

Sfinal and the two parameters from the Weibull distribution.

Parameters for the Weibull function describing the time from

infection to seroconversion were sampled using Markov Chain

Monte Carlo (MCMC) and a simple Metropolis-Hasting algo-

rithm with uniform priors for the three parameters. To assess

convergence, several chains with different starting values were run

in parallel. Iterations were stopped when enough samples were

generated to see agreement between the estimates from the

different chains [8]. We assumed that seroconversion interval and

proportion seroconverting did not differ by age group [5].

Derivation of the incidence
We start, for an age group i, with a family of possible incidence

curves Ik
i (t) parameterized by k. The aim of the method is to assess

from the sequence of serologic samples which incidence curves are

the most likely to have generated the observed sequence of

seropositivity in the samples by working out their posterior

distribution. We assume in this paper that the incidence is

constructed from the proportion of cases by week over time based

on the normalized HPA clinical case estimates multiplied by an

unknown cumulative incidence. We thus restrict the estimation of

the incidence curves for the different age groups to one parameter,

the cumulative incidence i.e. the final proportion in the age group

that was infected during the second wave. The final result of the

calculation is then a posterior distribution of cumulative incidences

based on a likelihood function given by the sequence of positivity

observed in the samples and a prior distribution for the cumulative

incidences. We assume these priors to be uniform over [0,1].

To estimate when the people developing symptoms will

achieve an HI titer of $32), the distribution A(t) of intervals

from onset of symptoms to seroconversion is needed. Knowing

this distribution, the number of people who seroconvert at time s

after onset of symptoms (or at an equivalent time after exposure if

they are asymptomatic) is given by
Ð s

0
Ik

i (s{u)A(u) du; summing

all the people who had onset of symptoms at time s-u weighted by

the proportion of them who seroconvert in an interval of time u.

This assumes that all people who seroconvert through infection

are initially seronegative (HI titer ,32). The change of

seroprevalence pk
i (t) of antibody in age group i is then given by

summing over the course of the epidemic (starting at t = 0) all the

individuals who seroconverted and adding them to the pre-

epidemic baseline p0
i :

pk
i (t)~

ðt

0

ðs

0

Ik
i (s{u)A(u) du dszp0

i ð1Þ

Then, assuming that samples are drawn at random from the

population for whom we wish to derive incidence, i.e. the

population of England, and that there is no spatial heterogeneity,

the probability of having a positive sample at time t is given by

pk
i (t).

Assuming independence of the samples, the likelihood of

observing the data D given the incidence Ik
i is given by:

Estimating H1N1 Pandemic Influenza Seroincidence
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L(Djk,i)~Pj[Jz pk
i (tj)Pj[J{ 1{pk

i (tj)
� �

ð2Þ

with Jz denoting the set of positive samples, J{ the set of

negative samples and tj the time of collection of sample j. Following

Bayes’ theorem, the probability of incidence Ik
i given the observed

data is proportional to L(Djk,i) times the prior probability of the

incidence (we assume 0-1 uniform priors for the rest of the study).

Algorithm to compute incidences incorporating
uncertainty

To draw a sample from the posterior distribution of the

cumulative incidences (in each age group, so i is fixed) while taking

into account the uncertainty from the interval to seroconversion,

we used a rejection sampling algorithm. The algorithm will lead to

the correct distribution as soon as the acceptance rate is

proportional to the likelihood function [9]. We thus employed

the following algorithm:

1. Generate a sample H~fh1,:::,hNg of distributions of the

parameters for the interval to seroconversion distribution using

MCMC.

2. Draw a value from H and from the prior of the cumulative

incidence (uniform over [0,1])

3. Accept the sample with a probability
L(Djk,i)

M
, with M a

constant such that Mw max (L(Djk,i))

4. Repeat until the required number of samples is achieved.

Given that the evaluation of our likelihood function only

depends on one parameter, it is straightforward to find a constant

M such that Mw max (L(Djk,i)). For this, we have computed the

likelihood for a grid of values of cumulative incidences and

samples of H and have taken M as twice the maximum value

found. The bigger the value of M, the lower the probability of

acceptance will be, but the smaller the value of M the bigger the

risk of numerical inaccuracies. The value of the likelihood function

has been checked during the analysis to be below the chosen value

of M. More sophisticated approaches could be taken to choose a

more optimal value of M though the value chosen demonstrated

computational efficiency for our purpose.

We apply this method to find the cumulative incidence in the

age-groups 1–4, 5–14, 15–24 and 25–44 years during the second

wave of H1N1 (2009) in England using the distribution of cases by

week from clinical surveillance data to describe the temporal

variation of the incidence. The seroprevalence is reconstructed by

integrating Equation 1, with a time step of one day, the weekly

cases being spread uniformly over the week. The candidate final

cumulative incidences are assigned a likelihood function depend-

ing on the sequence of positivity of the samples in each age group

by using Equation 2. As the prior distributions of the cumulative

incidences are uniform over [0,1], to find the posterior distribution

of the incidences, the likelihood function is renormalized so that it

sums to one. The baseline seroprevalence was defined as the

proportion positive among the 1272 samples taken during the last

two weeks of the first wave and the first two weeks of the second

wave (August 17th to September 13th 2009).There were significant

differences in prevalence of antibody to H1N1(2009) virus between

regions in the samples collected in September and October 2009

(consistent with the different attack rates between regions in the

first wave [2]). However, these regional differences were

considerably reduced by February 2010 [5] and for this

methodological example data have been combined across regions

for all time points.

Estimation of total number of infections and comparison with

estimates derived from clinical surveillance.

For estimation of the total number of infections by age in the

second wave, the final cumulative incidence was multiplied by the

number of individuals in that age group in England, as obtained

from the Office of National Statistics Mid 2008 population [10].

These numbers were then compared with the cumulative number

of clinical cases in each age group as estimated by the HPA during

the second wave [6].

Results

The distribution of clinical cases in the second wave by week

was similar in the four age groups, though with an earlier peak in

the 5–14 and 15–24 year olds (Figure 1). The drop in clinical

incidence in the 5–14 year olds in November coincided with

school closure for half term.

Distribution of time to seroconversion
The posterior mean values for the scaled Weibull distribution

parameters are Sfinal = 0.87 [0.77, 0.94], shape = 2.42 [1.44,

4.26] and scale = 12.87 [9.55, 16.98]. This means that, among

those who do seroconvert (87%), 50% will have seroconverted

by the 12th day and 95% by the 21st day (Figure 2). The

posterior covariance matrix for the parameters (Sfinal , shape and

scale) is:

1:9e{3 {5e{3 2:8e{2

{5e{3 0:55 {0:51

2:8e{2 {0:51 3:66

0
B@

1
CA:

Estimated cumulative incidence in the second wave
Posterior distributions for the estimated cumulative incidence

are shown in Figure 3 for the four age groups in the analysis. The

accuracy of the estimate depends on the number of samples. Even

in the 1–4 year age group where there is a limited number of

samples (n = 274 over a 6 month period, Table 1), the distribution

is relatively well localized. The estimated cumulative incidence is

highest among 5–14 year olds with around 59% of individuals in

this age group, representing some 3.5 million children, likely to

have been infected in England in the second wave (Table 1).

Children aged 1 to 4 years have the second highest cumulative

incidence (49%) with 1.21 million likely infections. In the older age

groups, cumulative incidence is still high (35% and 25% in the 15–

24 and 25–44 year age groups respectively resulting in an

estimated 2.4 and 3.7 million infections respectively. When

compared with the number of clinical cases estimated by the

HPA method in the second wave [6], the estimated number of

infections were between 43 and 21 fold higher depending on the

age group (Table 1).

Change in seroprevalence and seroincidence during the
second wave

For each age-group, the observed proportions (with 95% CI) of

samples with HI titers $32 when grouped by week are shown in

Figures 4a–d. Also shown is the estimated cumulative seroprev-

alence and estimated cumulative seroincidence by day, each

starting from the baseline at the beginning of the second wave. In

contrast to the observed weekly seroprevalences, the estimated

cumulative seroprevalence increases monotonically.

Estimating H1N1 Pandemic Influenza Seroincidence
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Discussion

A key element of the contingency planning for an influenza

pandemic in the United Kingdom has been the development and

validation of real time transmission models that can predict the

future impact on health care resources and evaluate the optimal

deployment of interventions such as school closure and vaccina-

tion [1,11,12]. Accurate and timely measures of the age-specific

incidence of infection as the pandemic evolves are essential for

model development and parameterization and are ideally obtained

from sequential serologic surveys. Estimates of the number of

infections are also essential for assessing severity as fatality and

hospitalization rates may be overestimated if denominators are

based on cases accessing health care [3,13]. The method described

here facilitates the generation of incidence data by the novel

application of a likelihood-based estimation to the analysis of

sequential serologic data. A similar likelihood approach has been

used recently for the estimation of the final attack rates but without

using surveillance data to obtain a continuous incidence curve

necessary for example to do modeling in real time [14].

Figure 2. Estimation of the interval to seroconversion. a) Proportion of individuals with HI titer ,32 by interval since symptom onset: blue
lines and points show the proportion in four-day intervals with confidence intervals and the red curve show the fitted parametric inverse cumulative
distributions with the 95% CI (credible intervals) and b) distribution of the time to seroconversion since symptoms with 95% CI.
doi:10.1371/journal.pone.0017074.g002

Figure 1. Proportion of clinial cases by week. Proportion of clinical cases by week for the second wave for four age-groups (1–4, 5–14, 15–24,
25–44 years) derived from clinical surveillance data.
doi:10.1371/journal.pone.0017074.g001

Estimating H1N1 Pandemic Influenza Seroincidence
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The use of serologic data to estimate incidence of infection requires

an antibody assay that is a sensitive and specific marker of the

immune response to recent infection. The HI test developed by the

HPA had high specificity [5] and as no other influenza viruses were

circulating during the second wave in England the issue of the

development of cross reactive antibodies,which may occur with

exposure to antigenically-related influenza viruses, did not arise. The

HPA HI test has been extensively used to measure antibodies induced

by H1N1 (2009) vaccines [15,16] and detected antibodies at a titer of

$32 in 88% of individuals with confirmed infection tested more than

21 days after symptom onset. Some of the samples with a low HI titer

had antibodies to the H1N1 (2009) virus detected by micro-

neutralization assay, consistent with an immune response to recent

infection. The micro-neutralization is a more sensitive assay than HI

as it measures antibodies to other neutralizing epitopes in addition to

the haemagglutinin antigen. However, it is a more time consuming

assay to perform and would not be suitable for the rapid generation of

serologic data for estimation of sero-incidence.

We assumed that HI antibodies developed in response to

infection remain at a titer of $32 for at least 7 months such that

individuals infected in August 2009 would still be seropositive if

tested in February 2010. Given that this threshold is a correlate of

Figure 3. Posterior distribution of the cumulated incidences. Estimated cumulated incidence distributions for age-groups 1–4, 5–14, 15–24,
25–44 years during the second wave.
doi:10.1371/journal.pone.0017074.g003

Table 1. Baseline percentage of samples with HI titer $32 before the start of the second wave, number of samples tested and
estimated cumulative incidence (with 95% credible intervals) over the second wave of H1N1 (2009) infection in England starting
from September 1st 2009 according to age group.

Age group and number
of samples (n) tested
September 2009 to
February 2010

Prevalence
of HI
titers$32
before the
2

nd
wave

Estimated cumulative
incidence over the 2nd

wave

Population
size (2008) in
thousands

Estimated infections in
thousands from serology

Estimated clinical
cases in thousands
from surveillance
data **

Number of
infections per
estimated clinical
case

mean 95% CI* mean 95% CI

1–4 years, n = 274 9.8% 49 38, 61 2,462 1,210 935; 1,510 28 43

5–14 years, n = 840 14% 59 52, 68 5,904 3,500 3,080; 4,030 170 21

15–24 years, n = 604 15.3% 35 28, 43 6,862 2,430 1,950; 2,980 102 24

25–44 years, n = 966 12.3% 25 20, 31 14,417 3,670 2,930; 4,510 133 28

*CI, credible intervals,
**as described in reference 6.
doi:10.1371/journal.pone.0017074.t001
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protection it seems reasonable to assume that HI titers would be

maintained at this level in individuals with naturally-acquired

immunity. Generation of data on the kinetics of decay of HI

antibodies would ideally require sequential samples from a cohort

with known date of infection and followed up for antibody

persistence. In our seroconversion data set there was no evidence

of a decline in titers with time since onset after the seroconversion

peak at 10 days though we had few individuals with samples taken

.3 months after infection. However, if our method was applied to

estimate cumulative incidence over a more extended period, for

example from a baseline at the start of the first wave in April 2009,

and if titers were shown to decline below the HI threshold within

this time, a sero-reversion factor could be incorporated using the

knowledge of the kinetics of the antibody decay curve.

In applying the method to the serologic data from the second

wave, we assumed the incidence to be zero at baseline and that the

baseline prevalence was accurately known. The likelihood

estimation method though can still be applied if the baseline

seroprevalence at the start of a pandemic wave is unknown.

Providing that there are sufficient samples taken through the

course of the pandemic, the baseline could be estimated as part of

the parameter estimation. In this instance, the likelihood function

measures the chance of observing the data given the incidence

curve derived from clinical surveillance data, starting from the

candidate pandemic baseline. By adding a new quantity to

estimate the uncertainty will be increased on the other parameters

estimated (e.g. the total incidence) though this might reduce the

overall error.

Our method removes the possible negative changes in incidence

due to sampling variability when the number of sera tested and

change of seroprevalence between two months are small. Its

accuracy as a population measure will however depend on the

Figure 4. Changes in seroprevalence and cumulative incidence over time. Estimated changes in seroprevalence and cumulative incidence
compared with proportion with HI titer $32 by week by age group a) 1–4 years, b) 5–14 years c) 15–24 years d) 25–44 years.
doi:10.1371/journal.pone.0017074.g004

Estimating H1N1 Pandemic Influenza Seroincidence
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representativeness of the sera included in the survey. Ideally sera

that are obtained by random population sampling should be used

rather than sera obtained from individuals bled for other purposes.

However, use of residual aliquots of opportunistically available

samples seems a good proxy in the case of an emerging infection

such as pandemic influenza where there are high population attack

rates that are largely age-dependent. More relevant is whether the

change in the proportion with positive titers only reflects

acquisition of antibody from infection. In the United Kingdom,

vaccination with the A/H1N1 (2009) strain began in late

November 2009 for individuals in clinical risk groups in whom

the consequences of infection were shown to be more severe [17],

and from January 2010 was recommended for all children under 5

years of age [18]. However, the impact of vaccination in our data

set is likely to be small due to the low uptake rates [5] and has not

been taken into account in this methodological paper. Another

group where changes in seroprevalence may not reflect their own

infection are young infants in whom the detection of H1N1

antibody in the first few months of life may result from pre-natal

acquisition of maternal antibody rather than post-natal infection.

For this reason we excluded infants under 1 year of age from our

incidence analyses.

In addition to factors such as vaccination or antibody decay

which may influence the change in seroprevalence, there are likely

to be factors such as changes over time in the propensity to consult

or changes in proportion of patients tested for infection as the

pandemic evolves that will influence the shape of the incidence

curve derived from clinical or laboratory-based surveillance data.

Theoretically the shape of the incidence curve does not need to be

defined though in practice this might be difficult to implement

because of the large increase in parameter space needed to

describe the numerous putative incidences. Incorporating such

additional factors would require a more complex set of parameters

to be estimated in order to derive sero-incidence. For this MCMC

could be used with the likelihood function from Equation 2 to

draw a sample from the parameter space and then the parameters

can be evaluated from the sampled distribution.

Due to the necessary lag times in sample collection and testing,

generation of seroincidence data will inevitably have a built-in

delay. However, to be useful for policy makers, ‘‘real time’’

predictive models require more timely estimates of how incidence

is changing, particularly in the early stages of the pandemic. This

will require the use of clinical surveillance data derived from

individuals accessing health care which can be available daily if

required. While such data may accurately reflect the time course of

the pandemic, it will underestimate the true incidence of infection

and requires the use of a scaling factor for model parameterization

reflecting an estimate of the consultation rate per infection, as

described by Baguelin et al. [1]. Moreover, estimation of the

infection rate using clinical surveillance data is difficult until the

epidemic peaks when the depletion of susceptibles can then be

relatively accurately calculated providing there is an independent

measure of the basic reproductive ratio R0. The method presented

in this paper provides an improved tool to estimate incidence

earlier in an emerging epidemic, thus allowing earlier estimation of

the scaling factor that needs to be applied to the clinical

surveillance data used for model updating. As more serologic

data become available, revised estimates of the scaling factor can

then be produced using a Bayesian framework (the current

estimate is used as prior and the new samples provide a new

likelihood function).

Our estimated number of infections in the second wave were 20

to 40 fold higher than the number of clinical cases estimated by the

HPA, based on ILI consultations in individuals with confirmed

H1N1 (2009), scaled up by the estimated proportion of patients

with ILI who seek health care [6]. The difference between the

clinical case estimates and our infection estimates will reflect both

the proportion of infections that are asymptomatic and the real

proportion of patients with ILI seeking health care. The fold

difference between infections and the HPA clinical case estimates

was around 10 in the first wave [1,2]. Since the symptomatic/

asymptomatic ratio is unlikely to have changed between the first

and second waves, these fold differences are consistent with the

suggestion that there was a lower propensity to consult in the

second than the first wave [19].

In summary, our likelihood-based estimation method provides a

more accurate measure of incidence than achieved by comparing

prevalence in samples grouped by time period. It allows the

generation of a continuous curve that describes how incidence is

changing over the course of the pandemic and removes the

possibility of generating negative incidence estimates by sampling

error. It also obviates the need for pre-pandemic samples to

establish the antibody prevalence at baseline. The method has

potential for further development to incorporate and estimate the

effect of other variables influencing changes in antibody

prevalence, such as vaccination or waning immunity after

infection. It has general applicability to any sequential serologic

data set obtained over a period of changing incidence.
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