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Highlights 16 

� First transformation tests in a controlled and realistic pilot sewer 17 

� Transformation of chemicals observed in both gravity and rising main sewers 18 

� Higher loss of biomarkers in the reactors than pilot sewers during the same HRT 19 

� Transformation kinetics deviate from zero- and first-order models in our tests  20 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

2 

ABSTRACT: 21 

 22 
Transformation of biomarkers (or their stability) during sewer transport is an important issue for 23 

wastewater-based epidemiology (WBE). Most studies so far have been conducted in the laboratory, 24 

which usually employed unrealistic conditions. In the present study, we utilized a pilot sewer 25 

system including a gravity pipe and a rising main pipe to investigate the fate of 24 pharmaceutical 26 

biomarkers. A programmable logic controller was used to control and monitor the system including 27 

sewer operational conditions and wastewater properties. Sequential samples were collected that can 28 

represent hydraulic retention time (HRT) of up to 8 h in a rising main and 4 h in a gravity sewer. 29 

Wastewater parameters and biomarker concentrations were analyzed to evaluate the stability and 30 

transformation kinetics. The wastewater parameters of the pilot system were close to the conditions 31 

of real sewers. The findings of biomarker transformation were also close to real sewer data with 32 

seventeen biomarkers reported as stable while buprenorphine, caffeine, ethyl-sulfate, methadone, 33 

paracetamol, paraxanthine and salicylic acid degraded to variable extents. Both zero-order and 34 

first-order kinetics were used to model the degradation of unstable biomarkers and interestingly the 35 

goodness of fit R2 for the zero-order model was higher than the first-order model for all unstable 36 

biomarkers in the rising main. The pilot sewer system simulates more realistic conditions than 37 

benchtop laboratory setups and may provide a more accurate approach for assessing the in-sewer 38 

transformation kinetics and stability of biomarkers. 39 

 40 

 41 

Keywords: Biomarker stability; Gravity sewer; PPCPs; Rising main; Transformation kinetics; 42 

Wastewater-based epidemiology;  43 
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1.  Introduction 44 

Wastewater-based epidemiology (WBE) is recognised as a complementary approach to traditional 45 

surveys in monitoring consumption of, or exposure to substances in the population (ACIC 2017, 46 

Castiglioni et al. 2014, Cyranoski 2018, EMCDDA 2018). Illicit drugs were the main targeted 47 

substances in previous WBE studies, but pharmaceutical biomarkers can also be analysed to 48 

estimate the real time population and access the population health status (Fattore et al. 2016, Gao et 49 

al. 2016, Ghosh et al. 2010, O'Brien et al. 2014). To provide accurate consumption/exposure 50 

estimates by WBE, researchers have to use biomarkers whose in-sewer loss is negligible or known 51 

(van Nuijs et al. 2018). Therefore, the stability of biomarkers has been raised as an important 52 

uncertainty in the early stage of the WBE method development (Castiglioni et al. 2013, van Nuijs 53 

et al. 2012) and studies to understand the biomarker transformation in the sewer and in the sample 54 

have been carried out in the past decade (McCall et al. 2016a). 55 

Transformation of biomarkers in the sewers is mostly investigated under laboratory conditions.  56 

Many laboratory experiments used bulk liquid wastewater in a container to represent the sewer 57 

conditions (Ostman et al. 2014, Senta et al. 2014), and other studies utilized sewer reactors that 58 

have biofilms (Gao et al. 2017, O'Brien et al. 2017, Ramin et al. 2017, Thai et al. 2014). These 59 

studies have found, for example, that the relatively fast degradation of cocaine and 6-60 

monoacetylmorphine compromised their usability as biomarkers in WBE. Hence, their 61 

transformation products that are more stable (benzoylecgonine and morphine) were used to 62 

estimate consumption of cocaine and heroin (Been et al. 2016, Du et al. 2017). These laboratory 63 

studies can sometimes underestimate the transformation due to the lack of sewer biofilms (Baker 64 

and Kasprzyk-Hordern 2011, Senta et al. 2014, van Nuijs et al. 2012) or overestimate the 65 

transformation due to higher biofilm area to wastewater volume ratio (A/V) in sewer reactors (Gao 66 

et al. 2017, O'Brien et al. 2017). In addition, the impact of sewer operational parameters (pumping 67 

frequency, flow speed) can be difficult to replicate in laboratory settings. It is expected that real 68 

sewers and pilot sewer systems can overcome the abovementioned limitations to be used to 69 
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investigate the transformation of biomarkers (Gao et al. 2018, Jelic et al. 2015, Jin et al. 2015, Li et 70 

al. 2018). 71 

Real sewers have dynamic operational parameters (such as pumping frequency), diverse 72 

dimensions and wastewater compositions depending on the catchment characteristics (Hvitved-73 

Jacobsen et al. 2013). Studying biomarker transformation in a real sewer has the advantage of 74 

having the most realistic sewer conditions, but factors that can affect the transformation of 75 

chemicals, such as hydraulic retention time (HRT), biofilm area to wastewater volume ratio (A/V) 76 

and wastewater pH are usually difficult to monitor and/or control. To our best knowledge, studies 77 

on biomarker stability in real sewers have only been conducted in Spain, Switzerland and Australia, 78 

three in rising mains (Gao et al. 2018, Jelic et al. 2015, Li et al. 2018), and one in a gravity sewer 79 

(McCall et al. 2017). In addition, sampling in the real sewer experiments is usually limited to the 80 

start and the end of the pipe, resulting in a limited number of samples and narrow window of HRT, 81 

which made it difficult to evaluate the transformation kinetics. For the purpose of studying 82 

processes within sewers under realistic but variable and measurable sewer conditions, pilot sewers 83 

were developed (Jin et al. 2018, Shypanski et al. 2018). These pilot sewers are sections of real 84 

sewer pipes that are fed continuously with wastewater. They can maintain conditions as in real 85 

sewers and have the capability of controlling and monitoring parameters such as pumping 86 

frequency, flow rate and pH. In addition, multiple sampling points along the pipe can be 87 

constructed in the pilot sewers to provide more samples for in-depth investigations.  88 

In this study, we utilized a unique pilot sewer system to evaluate the stability of selected 89 

pharmaceutical and personal care (PPCP) biomarkers. The system contains both gravity sewer and 90 

rising main pipes and allows on-line control and monitoring of operational parameters and 91 

wastewater properties. The aims of this study include: i) characterise the hydraulics and 92 

bioactivities in both gravity sewer and rising main; ii) investigate the stability of a suite of PPCPs 93 

in a wide therapeutic category; iii) compare the biomarker transformation kinetics between the 94 

gravity sewer and rising main of the pilot system as well as with the data previously observed in 95 
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laboratory conditions and real sewers. 96 

2. Materials and methods 97 

2.1 Chemicals and Reagents 98 

Twenty-four PPCP parent and metabolites were selected due to their high use and presence in 99 

wastewater with the potential to serve as biomarkers. Additionally, the in-sewer stability of most of 100 

those biomarkers have been evaluated in laboratory settings and thus will facilitate the comparison 101 

of performances between laboratory and pilot systems for biomarker stability assessment. We 102 

investigated acesulfame, atenolol, atorvastatin, buprenorphine, carbamazepine, caffeine, 103 

citalopram, cotinine, codeine, ethyl-sulphate (EtS), gabapentin, hydrochlorthiazide, ibuprofen, 104 

iopromide, morphine, methadone, paracetamol, nicotine, naproxen, paraxanthine, trans-3'-105 

hydroxycotinine, salicylic acid, tramadol and venlafaxine. The properties of these biomarkers 106 

(category, formula, solubility, Log Kow, human excretion profile and structure) are presented in 107 

Table S1 and S2.1.  108 

2.2 The pilot sewer system 109 

The pilot system has two configurations, one for a gravity sewer (GS) and one for a rising main 110 

(RM) (Figure 1, Figure S1). Both sewer pipes were made of PVC with a length of 300 m. The 111 

system was operated with a programmable logic controller (PLC) that allowed the on-line control 112 

of pumping frequency and flow rate. Wastewater was pumped using a Loweara SHE50-12522 113 

2.2kw and a SHE50-16075 7.5 kW 3 phase pump for the gravity line and pressure line respectively. 114 

Both pumps were equipped with a Hydrovar variable frequency drive for flow control. Each line 115 

was fitted with an inline magnetic resonance flow meter covering the expected flow ranges for each 116 

pump (IFM SM2000 (5-600 LPM) ). Both GS and RM were conditioned for a year by pre-screened 117 

influent wastewater from the Luggage Point wastewater treatment plant (WWTP) in Brisbane, 118 

Australia. Pre-tests examining the biofilms in the removable pipe section (Figure S2)  indicated 119 
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that mature biofilms had developed in both GS and RM pipes. 120 

Gravity sewer (GS): The GS pipe has a diameter of 225 mm (A/V of ~27 m-1) with a slope of 121 

0.56%. There is a recirculation pump together with a 250 L recirculation tank that can recirculate 122 

the wastewater in a closed circuit. The recirculation mode was achieved by stopping the wastewater 123 

feed from the Equalization tank, so there would be no influent flow entering the system and no 124 

effluent was discharged. The recirculation mode was used to achieve a longer HRT that is 125 

important for kinetic studies and represent the mean residence time in a WWTP catchment. The re-126 

circulation pump was running at 125 L/min and the HRT of the wastewater per circulation circle 127 

was approximately 20 min resulting in a 21% filling of the pipe. The online monitoring of the flow 128 

tracer rhodamine was conducted with a portable Cyclops®-7 Submersible Rhodamine Sensor 129 

coupled with a Cyclops® Explorer. Temperature and pH were measured on-site using a portable 130 

pH/temperature meter (TPS Aqua-pH/Temp). Bioactivity indicators including methane, sulfate 131 

(SO4-S) and sulfide (H2S) were analysed offline. In addition, volatile fatty acids (VFAs), chemical 132 

oxygen demand (COD), total suspended solids (TSS) in wastewater samples were also analysed 133 

offline. Detailed information is presented in the Supplementary Information (S2.2). 134 

Rising main (RM): The RM pipe has a diameter of 100 mm (A/V of 40 m-1) (Shypanski et al. 135 

2018). The feed pump was programmed to run for 1 min every 1 h at a flow rate of 236 L min-1  136 

(0.51 m/s) to push the “spiked wastewater plug” approximately 30 m forward in the pipe. There 137 

were multiple sampling points in the middle of each 30 m of the pipe, and samples were taken in 138 

the sampling points aiming to catch the “spiked wastewater plug” for HRT up to 8 h. 139 

2.3 The properties of wastewater 140 

The wastewater used in this study was the influent of WWTP serving a large urban catchment, so it 141 

can be considered as typical domestic wastewater. The temperature was 21-24 ºC across all 142 

experiments. The pH was stable at around 7.0 across all the experiments, similar to the observation 143 

in other studies (Table S2). We were unable to measure dissolved oxygen levels in our GS 144 
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experiments due to practical reasons. However, under the same re-circulation mode in other 145 

experiments, it was in the range of 0.5-2 mg/L which should be comparable to our experiments 146 

(Shypanski 2018). TSS in the GS experiments was 500 to 800 mg/L with some fluctuation. Volatile 147 

suspended solids (VSS) in GS were steady around 500 mg/L, while in the RM, TSS ranged from 148 

300 - 600 mg/L, and VSS was around 200 mg/L (Figure S3). The higher TSS and VSS in GS 149 

indicate there was some erosion of the sediments in GS. A detailed comparison of the sewer and 150 

wastewater parameters in this study and other studies is summarized in Table S2.  151 

2.4 Chemical spiking and sampling 152 

Standards (unlabelled) of the selected biomarkers in methanol were dissolved in fresh wastewater 153 

and spiked into the system to achieve quantifiable concentrations and at the same time to remain at 154 

a realistic concentration in the upstream of a catchment (Table S4). HRT In the GS experiments, 155 

the biomarker mixture, together with the flow tracer rhodamine mixed with raw wastewater, was 156 

spiked into the recirculation tank. Every 15 min after spiking, a 100 mL wastewater sample was 157 

taken from the recirculation tank until 4 h after spiking. In the RM experiment, 1 L of spiked 158 

wastewater was pumped into the system in the first pumping event, using a peristaltic pump 159 

synchronized with the major feed pump. The rhodamine probe was moved according to the 160 

pumping event, to the sampling port where the spiked wastewater plug was expected, to 161 

continuously monitor the real-time rhodamine signals. Samples were taken every 15 min at 162 

different sampling points to catch the spiked plug (in the middle of each layer, Figure 1). The last 163 

sample was taken 8 h after the first sample. To avoid the interference of UV light to the stability 164 

from the rhodamine sensor,  samples were taken before the inlet of rhodamine probe. 165 

2.5 Sample preparation and chemical analysis 166 

Wastewater samples were acidified to pH 2 on site using 2 M HCl immediately after sampling. A 167 

ten mL sample was filtered onsite using a regenerated cellulose syringe filter and a 1 mL filtered 168 

sample was pipetted into a 2 mL brown glass injection vial. Ten µL of 1 mg/L labelled analogue 169 
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mixture was added to each 1 mL sample in the injection vial. The samples were frozen after 170 

collection and stored in a freezer at -20℃ and were analysed within two weeks. The concentration 171 

of biomarkers in the sample was determined by liquid chromatography coupled with tandem mass 172 

spectrometry (LC-MS/MS) consisting of a Shimadzu Nexera HPLC system (Kyoto, Japan) and a 173 

Sciex API 5500 mass spectrometer (Ontario, Canada) equipped with an electrospray (Turbo V) 174 

interface. For all analytes except EtS, a 7 µL sample was injected into a 2.6 micron 50 x 2.0 mm 175 

Phenomenex Kinetek Biphenyl column (Torrance, CA, USA) run at 45oC with a flow rate of 0.3 176 

mL/min. A linear gradient of the mobile phase was used, starting at 5% B, ramped to 100% B in 177 

10.0 min, then held at 100% B for 4.5 min followed by equilibration at 5% B for 4.0 min (A = 178 

0.1% formic acid in MilliQ water, B = 0.1% formic acid in methanol). The mass spectrometer was 179 

operated in the positive/negative ion switching mode with scheduled multiple reaction-monitoring 180 

(sMRM) using nitrogen as the collision gas. Detailed mass spectrometer parameters can be found 181 

in Gao et al. (2017). EtS was analysed by the same LC-MS/MS system with a 1.7 micron 50 x 2.0 182 

mm Phenomenex EVO C18 column (Torrance, CA, USA) run at 45℃. A flow rate of 0.27 mL/min 183 

mobile phase with a linear gradient was used, starting at 0% B, ramped to 100% B in 3.0 min, then 184 

held at 100% B for 2.0 min, followed by equilibration at 0% B for 4.0 min (A = 5 mM dihexyl 185 

ammonium acetate in MilliQ water, B = 5 mM dihexyl ammonium acetate in methanol). A 50 mm 186 

x 2 mm, 3 micron Gemini NX C18 column (Phenomenex) was inserted between the pumps and the 187 

autosampler. Detailed mass spectrometer parameters can be found in Gao et al. (2018). The 188 

quantification was carried out using internal calibration method with 1/x weighing. Satisfactory 189 

correlation coefficient (r>0.99) within the calibration range was achieved from 0.1 to 50 µg/L. 190 

Method performance data including accuracy and precision is provided in Table S4. 191 

2.6 Data processing 192 

Transformation was calculated using the concentration (unspiked biomarkers) or concentration 193 

ratio of biomarker to rhodamine (spiked biomarkers) in the investigated HRT to their initial value 194 
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when the experiments started. The detailed calculation method is provided in the S2.3. The 195 

triplicate transformation results were combined to investigate the transformation. Stable biomarkers 196 

in the pilot sewers were defined as having less than 20% loss during the experiments (McCall et al. 197 

2016a). Pearson correlation was applied to the degradation of unstable biomarkers and bioactivity 198 

indicators and wastewater parameters. The transformation of unstable biomarkers in the pilot 199 

sewers was fitted to both zero-order and first-order kinetics models. The statistical analysis was 200 

performed using GraphPad Prism 7.03. 201 

We found that the goodness of fit R2 is higher in the zero-order model for all the unstable 202 

biomarkers (see Table 3 in later section). Therefore, the A/V normalized transformation 203 

coefficients Kbio (m·h-1) was calculated using Equation 1. 204 

Kbio = 	

�����

�
	�		



�/
                                                                                     Equation 1 205 

Kbio is the transformation coefficient in zero-order kinetics, m·h-1 ; 206 

C0 is the initial concentration of biomarker (for unspiked biomarkers) treated as 100%, or the 207 

concentration ratio of biomarker to rhodamine (for spiked biomarkers) treated as 100% at T0; 208 

Cj is the concentration of biomarker at t (h)  relative to the concentration in T0 in percentage or the 209 

concentration ratio of biomarker to rhodamine in sample collected at time t (h) relative to the 210 

biomarker/rhodamine ratio in T0; 211 

Kww is the transformation coefficient in control sewer reactor in zero-order kinetic,  h-1 . 212 

 213 

3.  Results and discussion 214 

3.1 Characterization of the pilot sewers and wastewater 215 

In the GS experiments, sulfate concentrations (SO4-S) remained constant during the 4 h HRT and 216 

the sulfide decreased from 17 mgS/L to less than 0.5 mgS/L in the first 2 h (Figure S3). This 217 

indicated that the sulfate reducing activity was negligible and some sulfide may have been oxidized 218 
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to sulfate. In addition, the intensive turbulence created by recirculation accelerated the release of 219 

hydrogen sulfide (H2S) into the sewer atmosphere. The dissolved sulfide concentration in the feed 220 

wastewater was attributed to the fact that the head works of the Luggage Point WWTP receives 221 

discharges from several large RM. However, no evidence has been identified that such sulfide 222 

concentration would inhibit the biological activities. Therefore, the impact of high initial sulfide 223 

concentration to the biomarker transformation should be limited (Sharma et al. 2014). There was 224 

no significant methane formation and the VFAs decreased by approximately 30%, which indicated 225 

that the aerobic and anaerobic bioactivities consumed VFAs. In the RM experiments, in contrast, 226 

significant formation of sulfide was observed together with >50% decrease of sulfate, indicating 227 

strong sulfate reducing activities. In addition, the formation of approximately 30 mg COD/L 228 

methane also suggests strong methanogens activities. The decrease of VFAs was much lower in the 229 

RM compared to the GS, suggesting the overall consumption rate of VFAs in strict anaerobic 230 

conditions could be slower than in aerobic conditions. There could also be formation of VFAs in 231 

RM due to anaerobic fermentation. Activities of sulfate reducing bacteria (1.16±0.45 g S m-2 d-1) 232 

and methanogens (3.27±0.39 g COD m-2 d-1) in the RM were comparable to the laboratory RM 233 

reactor and the real RM (Table S2) (Gao et al. 2017, Li et al. 2018, Thai et al. 2014). 234 

3.2 Hydraulic aspects in pilot sewers 235 

In the GS, rhodamine concentrations from the initial spike at 0 hours fluctuated substantially in the 236 

first 1.5 h (Figure S4). The concentration of the spiked biomarkers also fluctuated during the same 237 

period, indicating similar mixing behaviour of spiked rhodamine and biomarkers.  238 

In the RM, there was some degree of diffusion and dispersion for the spiked biomarkers and 239 

rhodamine during the transportation from upstream to downstream of the pipes. The mixing and 240 

diffusion were mainly driven by the turbulence created by the pumping event, and the upstream 241 

plugs (close to the pump) were affected more than the downstream plugs.  242 

3.3 Transformation of biomarkers in pilot sewers  243 

Seven out of twenty-four biomarkers were unstable in the experimental sewer conditions. 244 
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Seventeen biomarkers were stable including acesulfame, atenolol, atorvastatin, carbamazepine, 245 

citalopram, codeine, cotinine, trans-3'-hydroxycotinine, gabapentin, hydrochlorothiazide, 246 

ibuprofen, iopromide, morphine, nicotine, naproxen, tramadol and venlafaxine. These biomarkers 247 

were also observed to be stable in other studies as indicated in Table S5. Therefore, they can be 248 

considered stable in a real catchment if the average HRT in the catchment is comparable to or 249 

shorter than the HRT values mentioned in Table S5.  250 

3.3.1 Transformation of biomarkers in the GS  251 

Most of the investigated biomarkers were stable in the GS (Figure 2). The degradation of seven 252 

unstable biomarkers, buprenorphine, caffeine, EtS, methadone, paracetamol, paraxanthine and 253 

salicylic acid is shown in Figure 3. Paracetamol had the highest degradation rate with 254 

approximately 50% loss in 4 h with a zero-order transformation coefficient of 0.4185 m·h-1 255 

followed by methadone and caffeine (Table 1). The loss of biomarkers in the pilot GS is relatively 256 

lower compare with GS reactors in the same HRT as demonstrated in Table 2. 257 

 Fast degradation has been observed for many of those biomarkers in laboratory batch experiments. 258 

The in-sewer loss of biomarkers in the laboratory GS reactor was higher than the pilot GS for all 259 

unstable biomarkers in the same HRT. This can be partially attributed to the higher A/V in 260 

laboratory GS reactor (65.4 m-1 for the GS reactor and ~27 m-1 for pilot GS) as shown in Table S5. 261 

Although there is both formation and consumption of VFAs in the GS, the overall decrease in 262 

VFAs showed high correlation with the degradation of unstable biomarkers (Table S6). Therefore, 263 

VFAs can be considered a prediction factor for the degradation of unstable biomarkers. The soluble 264 

COD (sCOD), had lower correlations with the degradation of unstable biomarkers, although its 265 

decrease has been observed in other studies (McCall et al. 2016b, Ramin et al. 2017). The 266 

correlation between the degradation of unstable biomarkers in GS is not as good as in RM, 267 

indicating that the transformation of biomarkers in GS could be attributed to more diverse biota in 268 

the biofilm.  269 

For a given length and diameter, GSs usually generate much shorter HRT than RMs because there 270 
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is a minimum flow speed of 0.6 m/s for self-cleaning and the GSs flow is continuous. Therefore, 271 

the extent of transformation of biomarker in a single GS pipe can be relatively small due to the 272 

short HRT in the pipe. However, this study suggests that for a whole sewer catchment, especially 273 

large ones with considerable proportion of GSs (with diverse diameters and A/V), where the 274 

average HRT can be several hours, the in-sewer loss cannot be neglected for unstable biomarkers. 275 

3.3.2 Transformation of biomarkers in the RM 276 

The unstable biomarkers observed in GS were also unstable in RM (Figure 3). Caffeine had the 277 

highest loss of 65% over 8 h and a transformation coefficient of 0.1923 m·h-1. EtS lost up to 23% 278 

over 5 h HRT in the real RM (Gao et al. 2018), while in the pilot RM, the loss was 19%, which is 279 

slightly lower than the real sewer, despite its A/V ratio being 1.5 times higher. Nicotine, cotinine 280 

and trans-3'-hydroxycotinine were stable in the pilot RM, in contrast with the observed formation 281 

in the real RM. The possible reason is that the feed of the pilot sewers is the influent of the WWTP 282 

where the amount of conjugates of nicotine metabolites is limited compared to the wastewater in 283 

upstream RM monitored by Gao et al (2018). It also suggested that the significant degradation 284 

observed for cotinine and trans-3'-hydroxycotinine in the laboratory RM reactor was an over-285 

estimation (Banks et al. 2018). Formation of 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrolidine 286 

(EDDP) was not observed despite the considerable level of methadone degradation. This is in 287 

agreement with the observation in laboratory reactors and real sewers (Gao et al. 2017, Li et al. 288 

2018). Similarly with the GSs, within the same HRT in RMs, the overall loss of unstable 289 

biomarkers was higher in the reactor than in the pilot RM (Table 3). For most unstable biomarkers, 290 

their transformation had a strong Pearson correlation coefficient (>0.9) with each other (Table S7), 291 

indicating the transformation of these biomarkers is likely attributable to similar processes. In 292 

addition, the degradation of biomarkers also had good Pearson correlation (absolute value) with 293 

anaerobic sewer bioactivity indicators such as the methane formation and sulfate reduction, which 294 

suggests that the transformation of biomarkers could directly or indirectly relate to the methanogen 295 

and sulfate reducing activities.  296 
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Some discrepancies with previous studies was noticed, for example, citalopram was observed to 297 

have some degradation in the 7.6 km real RM (Jelic et al 2015), but was stable in the pilot RM for 298 

up to 8 h. In the real WWTP catchment, RMs are often only used where the construction of GSs is 299 

not feasible. As a result, there is a much higher proportion of GSs than RMs for most of the 300 

catchments globally. Nevertheless, this study suggests that the loss of biomarkers in the RMs 301 

should be taken into account. 302 

3.4 Transformation kinetics and comparison with previous transformation studies 303 

Most of the biomarker transformations had some level of deviation from both first-order and zero-304 

order kinetics as the goodness of fit R2 was less than 0.8, especially in GS (Table 3). This could be 305 

attributed to the complexity of the mass transfer in the sewers and the relatively short HRT in GS. 306 

In GS, only paracetamol has an R2 value greater than 0.8, and both zero-order and first-order 307 

kinetics can describe the degradation well, with R2 values of 0.96 and 0.86 respectively. In RM, 308 

zero-order kinetics have good R2 (> 0.8) for the transformation of buprenorphine, caffeine, ethyl-309 

sulphate, methadone paracetamol and paraxanthine. In contrast, under more controlled laboratory 310 

conditions and higher A/V, the R2 value was much higher in the sewer reactors (Gao et al. 2017, 311 

O'Brien et al. 2017, Thai et al. 2014).  312 

In previous real sewer studies, the data obtained were usually not sufficient to establish 313 

transformation kinetics. In some cases, e.g. nicotine metabolites, the deconjugation process can 314 

also interfere with the degradation assessment (Gao et al. 2018). Overall, we see the comparability 315 

of data from this study with data obtained from previous real sewer experiments (Table S5), 316 

reflecting the realistic condition of the pilot sewer system used in this study and the advantage of 317 

using pilot system for kinetic study. A summary of advantages and disadvantages of different sewer 318 

settings is presented in Table S8. If investigating the biomarker stability under realistic and 319 

variable sewer conditions is the aim, pilot sewer system is a good platform although the cost to 320 

build and maintain the system is much higher than simple laboratory reactors.   321 
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3.5 Implications for wastewater-based epidemiology 322 

This study examined the in-sewer stability of selected PPCP biomarkers. The stable biomarkers 323 

identified can be further evaluated against the criteria proposed by Daughton 2012. If they meet the 324 

other requirements, they can be used for reliable consumption estimations and provide temporal 325 

and geographical profiles as well as estimate the real-time population. For unstable biomarkers, 326 

however, if they can meet all the other requirements as Daughton suggested, they can still be used 327 

as biomarkers in WBE if catchment specific correction factors can be used. Preferably, such 328 

correction factors are derived from modeling work based on the understanding of transformation 329 

kinetics and the catchment characteristics (Li et al. 2018, McCall et al. 2017, Ramin et al. 2017).  330 

4 Conclusion  331 

Our study demonstrated that the pilot sewer system is a good platform for the evaluation of 332 

biomarker stability. It provides more realistic sewer conditions than laboratory studies, and the 333 

operational parameters can be controlled for a kinetic study. Among the biomarkers tested, 334 

seventeen were stable, while seven were unstable in both GS and RM, with a realistic level of loss 335 

compared to the sewer reactor data. In reality, the level of loss of unstable biomarkers is dependent 336 

on the proportion of GS and RM in the catchment, and HRT. In RM, the transformation of 337 

biomarkers correlated well with bioactivity indicators including the sulfate reduction, methane 338 

generation and VFAs decrease, which could be used as prediction factors for in sewer loss. 339 
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Tables 

 

 

Table 1 A/V normalized transformation coefficients Kbio 

Biomarker Kbio  m·h
-1 

 

 
GS RM 

Buprenorphine 0.1193 0.0488 

Caffeine 0.1263 0.1923 

EtS 0.1185 0.1113 

Methadone 0.2322 0.0823 

Paracetamol 0.4185 0.1815 

 Note: Paraxanthine was not calculated due to the lack of Kww in the control 

reactor; Salicylic acid was not shown since the Kww value in control reactor is 

higher than the overall K in the pilot system. 

 

 

 

 

Table 2 Loss of biomarkers in pilot sewers and laboratory sewer reactors in the same HRT 

  GS pilot GS reactor Pilot RM 6h RM reactor 6 h 

Buprenorphine 18±10%/2h 26±3%/2h 32±18% 61±6% 

Methadone 21±7%/2h 25±9%/2h 31±14% 61±7% 

Caffeine 19±7%/3h 37±6%/3h 51±4% 94±2% 

EtS 12±6%/3h 27±4%/3h 29±7% 98±1% 

Paracetamol 38±6%/3h 88±5%/3h 40±4% 99±1% 

Salicylic acid 16±9%/3h 53±11%/3h 33±8% 94±3% 
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Table 3 Transformation kinetics of unstable biomarkers in pilot sewers and in laboratory sewer reactors 

Biomarker 

 Pilot GS 

  

 Pilot RM  

Zero-order 

  

First-order Zero-order   First-order 

Slope R
2
 half-life h R

2
 Slope R

2
   

  

  

  

  

  

  

  

  

half-life h R
2
 

Buprenorphine -7.01±1.83 0.62 1.0 0.42 -5.74±0.45 0.88 5.0 0.65 

Caffeine -3.75±0.50 0.78 10.0 0.46 -8.03±0.38 0.96 14.7 0.90 

Ethyl-sulphate -3.53±0.37 0.86 8.59 0.50 -4.78±0.27 0.94 ~1012 0.72 

Methadone -8.94±1.48 0.78 1.27 0.62 -5.96±0.45 0.90 4.2 0.69 

Paracetamol -11.9±0.59 0.96 18.43 0.86 -7.86±0.29 0.97 ~1461 0.86 

Paraxanthine -5.01+0.64 0.80 4.86 0.19 -4.98+0.44 0.86 ~403 0.62 

Salicylic acid -6.92+0.93 0.79 ~1048 0.58 -4.34+0.54 0.76 ~1011 0.58 

 

  

  

  

 GS reactor 
  

  

  

  

  

  

  

  

  

RM sewer reactor 

Zero-order   First-order Zero-order   

  

  

  

  

  

  

  

  

First-order 

Slope R2 
  

  

  

  

  

  

  

half-life h R2 Slope R
2
 half-life h R

2
 

Buprenorphine -5.32±0.62 0.92 4.4 0.79 -5.59±1.51 0.7 1.1 0.86 

Caffeine -4.10±0.50 0.92 ~2000 0.55 -8.88±1.09 0.92 4.3 0.84 

EtS -8.60±0.55 0.96 3.77 0.96 -15.24±3.00 0.77 1.27 0.90 

Methadone -5.17±0.61 0.92 3.8 0.86 -5.67±1.58 0.68 1.1 0.88 

Paracetamol -8.31±0.96 0.69 1.46 0.92 -6.74±1.20 0.60 0.77 0.99 

Paraxanthine NA  NA  NA  NA   

Salicylic acid -8.79±0.66 0.85 2.63 0.95 -7.49+1.14 0.64 1.3 0.93 

Note: sewer reactor data was extracted from Gao et al. (2017), Banks et al. (2018) and O’Brien et al. (2017). 
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Figures 

 

 

Figure 1. Layout of the pilot gravity sewer (a) and rising main (b) 
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Figure 2. Profile of stable biomarkers in the pilot sewers 
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 Figure 3. Transformation of unstable biomarkers in the pilot sewer (the filled area is the 95% confidence interval bands) 
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Highlights 

� First transformation tests in a controlled and realistic pilot sewer 

� Transformation of chemicals observed in both gravity and rising main sewers 

� Higher loss of biomarkers in the reactors than pilot sewers during the same HRT 

� Transformation kinetics deviate from zero- and first-order models in our tests  
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