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Abstract 

We use a two and three-dimensional cellular Potts model (CPM) to represent the behaviour of an 

epithelial cell layer and describe its dynamics in response to a microscopic wound and a single 

modified cell. The energy function of the CPM describes mechanical properties of the cells and it 

was found that the interaction between contractile tension on cell membranes and the adhesion 

interactions between cells and substrate surfaces play an important role in the cell morphology, the 

closure of a wound and extrusion of a cell in the monolayer. Our results suggest that, depending on 

the balance between cell-cell adhesion and junctional tension, mechanics of the monolayer can 

either correspond to a hard or a soft regime that determines cell morphology and polygonal 

organisation in the monolayer. 

 

The presence of a wound in a hard regime, where junctional tension is significant, or soft regime, 

where cell-cell adhesion dominates, can determine whether a wound will close or not. Theoretical 

approximations and simulations allowed us to determine the thresholds in the values of cell-cell 

adhesion and initial wound size that allow the system to lead to wound closure. Additional 

mechanisms, such as adhesion between the substrate and cells and apical perimeter contraction can 

shift where the threshold between the hard and soft regimes occurs. Overall, our results suggest that 

changes in the balance between contraction and adhesion around the site of injury determine 

whether or not non-monotonous wound closure occurs. 

 

The extrusion of a single cell is only present if that cell adhesion and contractile tension is modified 

to differ from that of its neighbours and the interaction of the neighbouring cells' cell-cell adhesion 

and contraction lead to remove the cell from the monolayer and close of the void left by the 

modified cell. Theoretical approximations and simulations give a clearer picture of the interaction 

between different mechanisms and the condition of which the cell needs to be extruded.   
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Chapter 1: Introduction and Literature Review 

1.1  INTRODUCTION  

Epithelial cells connect with one another using adhesive molecules to form protective layers 

(epitheliums, see Figure 1.1) that line the inside of the body of metazoic organisms. The failure of 

these epitheliums can lead to complications. During the development of an organism the failure of 

the epithelia can lead to problems in organ development; and the failure of the epithelia in a mature 

organism can lead to the development of epithelial carcinoma, severe asthma and other cancers 

(Chanez, 2005). As a protective layer, the epithelium can be damaged by the removal, death or 

transformation of cells. To maintain its protective function the epithelium is able to close up 

wounds (Abreu-Blanco, Verboon, Liu, Watts, & Parkhurst, 2012) and extrude dead, dying or 

transformed cells (Eisenhoffer et al., 2012) to maintain homeostasis in the monolayer. 

 

Figure 1.1. An example of an epithelium, where the fluorescent white in the image shows 

the curvature of the cells, provided by Institute for Molecular Bioscience (IMB) at the 

University of Queensland. 
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The aim of this thesis is to model the collective behaviour of epithelial cells in response to a 

microscopic wound (micro-wound), the extrusion of a single modified cell and the morphology of a 

cell cluster using a two and three-dimensional cellular Potts model (CPM). The CPM (Glazier & 

Graner, 1993; Graner & Glazier, 1992), also referred to as the Graner and Glazier Model or 

extended large Q-Potts Model, is a lattice-based cellular automata mathematical model used to 

simulate and investigate cell behaviour. Additional models that investigate cell behaviour include; 

vertex models (Fletcher, Osborne, Maini, & Gavaghan, 2013) and agent-based models (Landman & 

Fernando, 2011). These models that represent individual cells in a system will be referred to as 

discrete models. Models that represent the population densities of cells will be referred to as 

continuous models. Reaction diffusion equations, such as those implementing the Fisher-

Kolmogorov Equation (Fisher, 1937), are examples of continuous models that are alternatives to the 

discrete models. 

The use of the CPM to study cells includes a focus on their morphology, motility and 

behaviours to stimuli. Investigating wounds with the CPM has mostly focused on macro-wounds 

(hundreds of cells removed) and there is little to no literature describing the CPM to investigate 

micro-wounds (one to several cells removed). Further, the author could not identify any studies 

using the CPM to investigate the behaviour of the cells with the extrusion of a single modified cell. 

This thesis explores the behaviour of the simulated epithelium monolayer for a two-dimensional 

CPM (Chapter 2) and three-dimensional CPM (Chapter 4) when a single cell is removed, and the 

extrusion of a modified cell using a three-dimensional CPM (Chapter 4).  

The CPM is a model that minimises a global energy function which in turn produces cell-

like behaviours. We use this minimisation component to approximate the “configuration” of cells at 

the minimum energy with three cell aggregate cases: micro-wounds (Chapter 2 and 4), cell clusters 

(Chapter 3) and a single cell extrusion (Chapter 4). 
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1.2  EPITHELIAL CELLS 

Epithelial cells have been investigated for their morphology, cell proliferation, migration, 

transformed cells, contribution to embryonic development , wound healing, cell extrusions and the 

homeostasis of the epithelium (Abreu-Blanco et al., 2012; Arwert, Hoste, & Watt, 2012; 

Eisenhoffer & Rosenblatt, 2013; Gu & Rosenblatt, 2012; Gu et al., 2015; Hogan et al., 2009; P. 

Martin & Lewis, 1992; Monier et al., 2015; Naszai, Carroll, & Cordero, 2015; Osterfield, Du, 

Schupbach, Wieschaus, & Shvartsman, 2013; Pang, Daniels, & Buck, 1978; Schleich, Abdulla, 

Summers, & Houyel, 2013). 

The epithelium can consist of one or several layers of cells depending on its location in the 

body. The shape of the epithelial cells also depends on the location of the epithelium and can be 

classified as; squamous epithelial cells (flat cells), which cover surfaces such as blood vessels; 

cuboidal epithelial cells (as the name suggests cube-like or rounded shapes), which cover organs 

such as kidneys and glands; and columnar epithelial cells, which are found in areas such as the 

inside of the nose, intestines and taste buds. Packed layers of similar cell shapes can have either a 

single layer where the cells reach the basal lamina or be layered. In some parts the epithelium can 

be pseudostratified, which commonly occurs with columnar cells.  

The epithelial cells form the epithelium with tight junctions using various proteins and 

molecules to provide cell adhesion between neighbouring cells. Epithelial cadherin (E-cadherin) is a 

transmembrane protein that mediates homophilic cell-cell adhesion to form cohesive cell-cell 

junctions and creates the adhesion between the cells (X. Liang, Gomez, & Yap, 2015; Niessen, 

Leckband, & Yap, 2011; van Roy & Berx, 2008). Lateral surfaces of epithelial cells have E-

cadherin molecules distributed as clusters throughout the lateral surfaces where epithelial cells 

come into contact with one another (S. K. Wu, Budnar, Yap, & Gomez, 2014; S. K. Wu, Gomez, et 

al., 2014; Y. Wu, Kanchanawong, & Zaidel-Bar, 2015), see Figure 1.2. E-cadherin clusters also 

show distinct patterns of organisation within cell-cell contacts in simple polarised epithelia. In the 

apical region of contacts, E-cadherin clusters concentrate in a relatively immobile ring-like structure 

to form the adherens junctions, known as zonula adherens (ZA), see Figure 1.2. In contrast, within 

the lateral junctions located basal to the ZA, E-cadherin clusters undergo dynamic movements in 

the plane of the plasma membrane. These differences in cadherin motion reflect differences in the 

dynamic behaviour of the junctional actomyosin cytoskeleton (Moore et al., 2014; S. K. Wu, 

Gomez, et al., 2014).  

The cytoskeleton is a network of protein filaments that form the structural frame of the cells 

commonly responsible for the movement of cells. In particular, the actomyosin cytoskeleton refers 
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to the collection of actin and myosin protein in the cells. Actin is a structural protein found in many 

cells with two particular forms; the globule form (G-actin) and filaments (F-actin). The actin 

interacts with myosin when contraction between the F-actin and the G-actin occurs. Myosin itself is 

known as a motor protein using the nucleotide ATP (adenosine 5-triphosplate) as a chemical energy 

source to interact with F-actin to generate mechanical energy and movement. There are a number of 

myosin varying in their size and activities; however, they are all classified as motor proteins 

(Edelblum & Turner, 2015; Lowe & Anderson, 2015).   

 

Figure 1.2. An illustration of E-cadherin (green) clusters on the lateral surfaces of the 

connected cells and ring-like formations on the apical region of the cells. 

At cell junctions, cadherins mechanically couple the contractile cytoskeletons of 

neighbouring cells together, leading to the generation of junctional tension (Maître & Heisenberg, 

2013). This is reflected in the concentration of actomyosin at both the ZA and lateral cell-cell 

junctions. However, the cortical cytoskeleton at the ZA is able to generate strong, sustained 

contractile forces, whereas stress-induced turnover of cortical actin leads to the dissipation of 

contractile stress at the lateral junctions (S. K. Wu, Gomez, et al., 2014). As a consequence, 

junctional tension at the ZA (hereafter referred to as line tension) is greater than that at the lateral 

junctions. Junctional tension has been demonstrated experimentally in a variety of systems, from 

Drosophila (fruit fly) and Zebrafish embryos to cultured cells (Fernandez-Gonzalez, Simoes Sde, 

Roper, Eaton, & Zallen, 2009; Hutson et al., 2003; A. C. Martin, Gelbart, Fernandez-Gonzalez, 

Kaschube, & Wieschaus, 2010; Ratheesh et al., 2012). 

Changes in the line tension of the epithelium affects the morphology of the cells and the 

epithelial layer.  One example is the growth of the tubular eggshell appendages of the epithelial cell 

layer covering Drosophila melanogaster (common fruit fly) egg. These forces occur with the 
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collection of myosin and Bazooka protein (Baz), and are hypothesised to have a role in generating 

the forces in the apical sheet of the epithelium (Osterfield et al., 2013). 

The motility and migration of the epithelial cells is important for the movement of a single 

cell in the system and the interaction between both transformed and normal cells. Individual cells 

within aggregates of cells move randomly in the absence of chemical or adhesion gradients (Kabla, 

2012; Mombach & Glazier, 1996).  

There are a few experiments that can be used to investigate the motility of epithelial cells. 

One is the movement of epithelial cells up columns of varying sizes. Vedula et al. (2012) 

investigated epithelial cell migration and movement using the proliferation and growth of cells. It 

was found that cell migration through wide channels (100𝜇𝜇𝜇𝜇 or larger) produce large swirling 

motions and in narrower channels the cells migration is more directional with the contraction and 

relaxation of the cells to generate motility.  

A second experiment that can be used to investigate the motility of cells utilises scratch 

assays. This experiment is closely related to macro-wound healing behaviour. A scratch assay 

experiment (see Figure 1.3) takes an epithelia monolayer and removes a large number of cells from 

the epithelia with a “scratch” (Motegi et al., 2003). This leaves two edges to investigate the leading 

edge of the epithelia as it moves to fill the empty space left by the scratch (C. C. Liang, Park, & 

Guan, 2007). 

The cell behaviour is influenced by the adhesion and tensions within and on the cell 

junctions. Having discussed the structure of the epithelium and cells we now describe the two 

behaviours that maintain the integrity of the epithelium; wound healing and cell extrusion.  
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Figure 1.3. An example of a macroscopic wound scratch assay with an empty space in the 

centre and cell on either side. Adapted from “Role of the CD47–SHPS-1 system in 

regulation of cell migration,” by S. Motegi, H. Okazawa, H. Ohnishi, R. Sato, Y. Kaneko, H. 

Kobayashi, K. Tomizawa, T. Ito, N. Honma, H. Bühring, O. Ishikawa, T. Matozaki, 

2003, The EMBO Journal, 22(11), p. 2637. Copyright 2003 by John Wiley and Sons. 

Reprinted with permission.  
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1.2.1  Wound healing 

Epithelia must preserve their barrier integrity despite a range of challenges, including cell 

death, injury, infection and cell division (Gomez, McLachlan, & Yap, 2011). In all these instances, 

cadherin junctions must reorganise without compromising tissue integrity. One noteworthy example 

here is the case of wound healing, which can be separated into microscopic wounds (see Figure 

1.4a), where a small numbers of cells are damaged (e.g. one to several cells), or macroscopic 

wounds, where a much larger number of cells are damaged resulting in tissue injury (Sonnemann & 

Bement, 2011). We will only briefly discuss the large tissue injuries in relation to the mathematical 

modelling since this thesis is concerned with micro-injuries (micro-wounds). 

Complications with epithelia wound healing can lead to complications in the body. Iizuka 

and Konno (2011) review the biology of wound healing in the intestines, given that some 

inflammatory bowel diseases may result from problems with the barrier function of epithelial cells 

(Laukoetter, Bruewer, & Nusrat, 2006; Sturm & Dignass, 2008). The healing of microscopic 

wounds may involve multiple mechanisms (Bement, Forscher, & Mooseker, 1993; Brock, 

Midwinter, Lewis, & Martin, 1996; P. Martin & Lewis, 1992; Radice, 1980; Sonnemann & Bement, 

2011). One mechanism is the migration of cells from the edge of the wound into the injury space, a 

process that involves lamellipodial cell motility, which is the movement of the cells based on 

protrusions from the cell basal boundaries. A second mechanism entails the contraction of cells 

underlying the wound, which occurs when epithelia overlay other tissues, such as the epithelial 

tissue of the Drosophila (fruit fly) embryo. Thirdly, the cells at the margins of wounds can form an 

actomyosin ring (purse-string) that encloses the wound. Contraction of the purse-string then pulls 

neighbouring cells into the wound to drive wound closure (Abreu-Blanco et al., 2012; Antunes, 

Pereira, Cordeiro, Almeida, & Jacinto, 2013). The relative importance and coordination of these 

mechanisms differ depending on the system examined. 

Microscopic wounds must be repaired for tissue integrity to be maintained. Experiments 

examining these wounds in the epithelia create the injury by killing cells using laser ablation on a 

small cluster of cells within the epithelium. Time-lapse imaging has revealed that the area of 

microscopic wounds typically changes in a non-monotonic fashion, first opening and then closing 

(healing) over a period of 10 minutes to 1 hour, shown in Figure 1.4b from Abreu-Blanco et al. 

(2012). 

Unlike the scratch assay (see Figure 1.3), larger scale experiments examine wound healing 

with the removal of tissue from animals. While the experiments may vary, the experiments 

generally include surgically injuring a live animal, such as a rabbit’s ear, and observing the healing 
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of the wound over the next few days (Chien & Wilhelmi, 2012; Van Den Brenk, 1956). These 

studies on much larger wounds, more in line with tissue wounding, are mathematically modelled 

with continuous models. For example, Sherratt and Murray (1990) used reaction diffusion equations 

to compare and fit the experimental results of Van Den Brenk (1956). 

 

 

(a)      (b) 

Figure 1.4. a) An example of a microscopic wound healing in an epithelium from and b) a 

plot of a surface area of a wound against time, from Abreu-Blanco et al. (2012), showing an 

initial expansion and eventual closure of the wound. Adapted from “Drosophila embryos 

close epithelial wounds using a combination of cellular protrusions and an actomyosin purse 

string,” by M. T. Abreu-Blanco, J. M. Verboon, R. Liu, J. J. Watts and S. M. Parkhurst, 

2012, Journal of Cell Science, 125(24), p 2. Copyright 2012 by The Company of Biologists 

Ltd. Reprinted with permission. 
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1.2.2  Cell extrusion from epithelial layers 

In addition to wound healing, cell extrusion is another cellular mechanism that helps to 

maintain the integrity of the protective epithelial layer, see Figure 1.5a. Epithelial cells have a high 

turnover rate (Blanpain, Horsley, & Fuchs, 2007; Hooper, 1956; Pellettieri & Sanchez Alvarado, 

2007), allowing the protective layer to replace extruded cells in the system to keep the barrier 

operational. The extruded cells could be old, dead or dying cells, or be extruded by the natural 

process of apoptosis to maintain the homeostasis of the system (Andrade & Rosenblatt, 2011; 

Denning, Hatch, & Horvitz, 2012; Eisenhoffer et al., 2012; Marinari et al., 2012; Meghana et al., 

2011; Muliyil, Krishnakumar, & Narasimha, 2011; Rosenblatt, Raff, & Cramer, 2001). A diagram 

of the extrusion of a dying and live cell due to damage or overcrowding from Eisenhoffer and 

Rosenblatt (2013) is in Figure 1.5a. Disruption of the extrusion process can lead to a void forming 

in the epithelia which is a failure of the protection function of the epithelial barrier (Marshall, Lloyd, 

Delalande, Nathke, & Rosenblatt, 2011; Slattum, McGee, & Rosenblatt, 2009). 

Apoptosis is one of the ways in which the epithelia naturally turn-over cells in the system. 

Apoptosis is a process in which the cells are extruded from the epithelium. However, cells extruded 

by apoptosis are not necessarily dead cells but can be alive when extruded (Eisenhoffer et al., 2012; 

Marinari et al., 2012) and later die (Frisch & Francis, 1994; Reddig & Juliano, 2005; Taddei, 

Giannoni, Fiaschi, & Chiarugi, 2012). 

Cells can extrude both apically or basally (Hogan et al., 2009), and basal extrusion is 

referred to as delamination. Cells in vertebrates are typically extruded apically, while in Drosophila 

(fruit fly) the cells extrude basally (Marinari et al., 2012; Muliyil et al., 2011). Signalling pathways 

and molecular alterations can determine if a cell is extruded apically or basally (Slattum et al., 

2009). 

It was found that overcrowding in an epithelial layer can increase the amount of live cell 

extrusion (Eisenhoffer et al., 2012). Overcrowding is one mechanism that can influence the process 

of apoptosis; particularly the rate of the cell extrusion seems to be influenced by the pressure in the 

system or the number of cells in the system. Figure 1.5b from Marinari et al. (2012) shows the 

increase in the number of extruded cells over time for different pressure in the system due to 

overcrowding. 

An alternative to overcrowding causing the extrusion of cells from an epithelium is the 

formation of an actin and myosin IIA ring. This ring is formed around a cell by its neighbouring 

cells and the contraction of this ring ejects the cell from the epithelium (Slattum et al., 2009). 
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Typically, a cell, which is about to die, signals its neighbours by using sphingosine-1 phosphate 

(S1P) (Gu, Forostyan, Sabbadini, & Rosenblatt, 2011). 

Wang et al. (2011) suggest that intestinal epithelial shedding does not depend on the 

formation of the actomyosin ring in the live neighbourhood of cells. Apical cell deformations 

depend largely on the internal forces of the cells rather than the external cell forces generated by 

extension of neighbouring cells. An in vitro actomyosin ring is formed for extrusion, but in in vivo 

the cells are extruded much faster and leave a transient gap that eventually closes. 

The author could not identify any studies using the CPM to investigate the extrusion of cells, 

in particular the extrusion of only a single cell. However, there are studies that concentrate on the 

invasion of cells into cell clusters or a monolayer. 
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(a) 

 
(b) 

Figure 1.5. a) An illustration from Eisenhoffer and Rosenblatt (2013) of the extrusion of a 

live and apoptotic cell from the epithelium from the natural apoptosis process. Reprinted 

from “Bringing balance by force: live cell extrusion controls epithelial cell numbers,” by G. 

T. Eisenhoffer, J. Rosenblatt, 2013, Trends in Cell Biology, 23(4), p. 187. Copyright 2013 

by Elsevier. Reprinted with permission. b) Plot from Marinari et al. (2012) showing that 

overcrowding in the epithelium leads to an increase in the number of extruded cells 

(delamination). Reprinted from “Live-cell delamination counterbalances epithelial growth to 

limit tissue overcrowding,” by E. Marinari, A. Mehonic, S. Curran, J. Gale, T. Duke, B. 

Baum, 2012, Nature, 484(7395), p. 544. Copyright 2012 by Springer Nature. Reprinted with 

permission. 
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1.3  MATHEMATICAL MODELS OF CELLS 

Mathematical models are able to describe cell biology at various scales, for example the 

macro-scale of tissue where cells are un-identifiable, to the micro-scale of the inner workings of a 

single cell. In-between these two scales is the multicellular level, describing collections of cells 

identifiable from each other, which can number from one to a few thousand cells. The multicellular 

level can be simulated with different mathematical models. The cellular Potts model (CPM) 

represents the cells as a collection of pixels and applies an energy function to represent different 

system mechanisms, see Figure 1.6a. The vertex model is similar to the CPM but represents the 

cells as vertices and edges, to which equations of motion can be applied, see Figure 1.6b. Agent 

based models represent the cells as individual agents in a system with rules applied to their random 

motion (random walkers), see Figure 1.6c. Alternatively, diffusion equations and other continuous 

models commonly represent the population of cells rather than individually identifiable cells 

described by the models above. Other models may be a variation or combination of the models 

mentioned. 
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(a)      (b) 

 

(c) 

Figure 1.6. Visual representation of cells for three discrete models: a) cellular Potts model, 

b) vertex model and c) agent based (random walkers). 
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1.3.1  Cellular Potts model 

The CPM is a lattice-based cellular automata using label changing pixels developed in 1992 

by Grainer and Glazier (Graner & Glazier, 1992). The model was extended from the Potts model, 

developed by Potts (Domb & Potts, 1951), which is also an extension of the Ising model of 

magnetisation, developed by Ising in 1925 (Ising, 1925). The CPM represents the cells as groups of 

similarly labelled pixels on a set lattice and minimises a Hamiltonian function, 

𝐻𝐻 = � 𝐽𝐽�1 − 𝛿𝛿�𝜎𝜎(𝑖𝑖),𝜎𝜎(𝑗𝑗)��
�𝜎𝜎(𝑖𝑖),𝜎𝜎(𝑗𝑗)� neighbours

+ �𝜆𝜆�𝐴𝐴𝛼𝛼 − 𝐴𝐴𝑝𝑝�
2

𝛼𝛼

, 

otherwise referred to as an energy function. The energy function above contains two main 

mechanical representative components: a surface area interaction which refers to the Kronecker 

delta counting term which specifies an energy value, 𝐽𝐽, on the boundary of the pixels at position 𝑖𝑖 

and 𝑗𝑗 with labels, 𝜎𝜎; and an area constraint with an energy value 𝜆𝜆 for each cell, 𝛼𝛼, for the square 

difference between the cell area, 𝐴𝐴𝛼𝛼, and preferred area, 𝐴𝐴𝑝𝑝. The CPM was first used as a cell 

sorting model of two different cell types and the structures they would create (Graner & Glazier, 

1992). 

The CPM applies a Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, & 

Teller, 1953) to find a minimum energy configuration. The Metropolis algorithm was developed in 

1953 as a sampling method to investigate equations of state for substances consisting of interacting 

individual molecules (Metropolis et al., 1953). The algorithm is implemented by selecting a lattice 

site (pixel) and changing its label to one of its neighbours labels. If the change in energy function is 

negative the change is kept, and if the change is positive the change is kept with a probability of 

𝑒𝑒−∆𝐻𝐻 𝑇𝑇⁄  where 𝑇𝑇 represents a noise parameter and is commonly referred to as “temperature” in the 

CPM. This is repeated for all the lattice sites and once completed is commonly referred to as a 

Monte Carlo step (MCS). In order to simulate the behaviour of the cells many MCS (or iterations) 

are implemented to achieve a cell configuration with a minimum energy. 

The temperature parameter in the model adds noise into the system to adjust the model by 

enabling the movement of the cells, where low noise may direct the system to a cell configuration at 

a local minimum energy, while higher temperature values (high noise) can help the system reach a 

cell configuration at a global minimum energy. The temperature can be separated into three 

temperature ranges which change the cell formations. The temperature range 0 to Tn1 still has cells 

connected to one another, at Tn1 to Tn2 cells begin separating from one another and at larger than 

Tn2 the cells pixels begin to separate from one another (Glazier & Graner, 1993; Graner & Glazier, 
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1992). Although some models are able to identify the temperatures appropriate for the model, the 

temperature is dependent on the model and the energy components used in each model. The “speed” 

of the system can also be influenced by the temperature, as the system may reach equilibrium with 

fewer MCS at higher temperatures (Glazier & Graner, 1993; Graner & Glazier, 1992). The 

simulated cells can break down at very large temperatures and noise values due to the cell pixels 

separating from each other (Marée, Grieneisen, & Hogeweg, 2007; Schleich et al., 2013; Summers, 

Abdulla, & Schleich, 2014). 

The CPM is commonly set up as a sequential iteration to avoid inconsistent updates which 

may occur with parallelising. Parallelising the code involves separating the lattice into domains and 

each domain is updated simultaneously. Problems occur when two pixels (lattice sites) that are in 

contact, but in separate domains, attempt to change. While this problem may decrease the accuracy 

and MCS (iterations), it does not affect the final equilibrium solution achieved at the end of the 

simulation (Chen, Glazier, Izaguirre, & Alber, 2007; Tapia & D'Souza, 2011). 

The programming of the model is largely dependent on the proficiency and quality of the 

equipment. Chen et al. (2007) report that parallelising allows the model to handle 107 cells. Tapia 

and D'Souza (2011) reported the model being able to handle 2563 lattice sites and 106 cells with 25 

node clusters when using consumer-grade computer graphics cards. It has been suggested that this 

parallelisation of the model will be included in the open source code CompuCell3D. 

CompuCell3D (Swat et al., 2012) is a program, and code, available online to provide a 

common, up-to-date, code for similar cell studies by using a single source code in two and three-

dimensions. However, the usefulness of the code depends on the research and study for which the 

model is used (Swat et al., 2012). The program and code allow the application of a volume 

constraint, line tension/adhesion, and contraction on the cell perimeter and surface areas and also 

includes a variety of chemotaxis fields. The CompuCell3D code is also available to model cell 

morphology, cell sorting, tumour growth, the vascular system, and cell invasion into a monolayer 

(Shirinifard et al., 2009).  

Another collection of source code is the CHASTE (Cancer, Heart and Soft Tissue 

Environment) code (Mirams et al., 2013; Pitt-Francis et al., 2009) which is similar to the 

CompuCell3D, but focuses on including a wider range of models, including agent-based, vertex 

models and variations of these models. 

Given the CPM represents cells as groups of pixels it can be used to investigate the 

morphology of the cells, such as the morphology of embryo development (Merks & Glazier, 2005), 

tumour growth (Shirinifard et al., 2009), and vascular systems (Shirinifard et al., 2009). Any study 
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using the CPM allows the morphology of the cells and the effect on the cell shape from different 

mechanisms to be investigated. While the cell shape can be affected by mechanical components of 

the system, certain artefacts can arise in the models that use specific pixels (Marée et al., 2007). 

Typically, square or hexagonal pixel shapes are chosen to tessellate the area. For example, part of 

Marée et al. (2007) use the CPM to study cell shapes and artefacts resulting from the pixel shapes. 

In certain systems the cells can form hexagons with hexagonal pixels, whereas square pixels can 

form rectangular cells.  

In addition to studying the cell morphology, Marée et al. (2007) also used the CPM to study 

cell motility and movement with applied chemotaxis. Chemotaxis is commonly referred to as the 

extra external influence added to the simulated cells in the CPM using chemical and force fields. 

This influence is commonly added using diffusion or partial differential equations acting on the 

centre of mass of the simulated cells. These fields can either be fixed in the system or influenced by 

the movement of the cells. 

Chemotaxis is not the only mechanism to influence the cell motility. Alternatively, the 

motility can be included as an internal mechanism of the cell, such as including it as an additional 

term in the energy function. Kabla (2012) uses a two-dimensional CPM that focuses on the 

interaction between two “species” of cells and their motility. While maintaining the traditional 

energy function components of an area constraint and cell-cell surface junctional interactions, a 

motility mechanism was added to the function to influence the cell’s movement based on its 

movement history. The paper investigates the movement of the cells collectively, the influence of 

leading cells on the other cells in the monolayer and their influence on the invasion of cells in 

clusters of similar cell species.  

While the CPM is commonly used in two dimensions there are studies that require the 

model to be in three dimensions. Shirinifard et al. (2009) apply a three-dimensional CPM using a 

basic energy function of volume and surface area energy to simulate tumour growth and 

angiogenesis. The paper examines how tumour growth can affect blood vessel growth and 

deformation and the morphology of the tumour growing in such an environment. The study applied 

additional mechanisms such as chemical fields, chemotaxis, and the proliferation of cells for the 

tumour growth. 

While various authors suggest the CPM can simulate wound healing, common practice has 

been to investigate the closure of much larger wounds (Scianna, 2015) which can be compared with 

the scratch assay experiments mentioned previously. These wounds would be considered to be 



17 

macro-wounds on the cellular level; however, there is little to no literature on using the CPM to 

investigate the smaller micro-wounds of one to several cells in size, as examined in this thesis. 

1.3.2  Vertex model 

The vertex model has some similarities to the CPM. Cells are defined with vertices and 

edges, rather than pixels, and the system either applies a Hamiltonian energy function with 

simulated annealing similar to the CPM, or applies equations of motion and other mechanics. While 

the Hamiltonian energy function may be similar to the CPM, there are additional complications that 

the model needs to address. For example, vertices of the cells can interact to “combine” with one 

another, cells can come into situations where arrangement of two interacting vertices need a larger 

swap than is generated with the annealing, cells can disappear, or the edges of an individual cell can 

cross each other. 

The complications that can arise from the movement of the vertices are addressed with three 

main vertex operators or swaps that occur in order for the vertex model to form and break bonds 

(Fletcher et al., 2013; Honda & Eguchi, 1980; Nagai & Honda, 2001). There can be slight 

differences and variations to these operators depending on the variables in the vertex model. A T1 

swap (or edge rearrangement) occurs when two vertices are located within a minimum distance, 

𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚, from each other. The vertices are rearranged as shown in Figure 1.7a, from Fletcher et al. 

(2013), and placed at a separating distance, 𝑑𝑑𝑠𝑠𝑠𝑠𝑝𝑝, from one another. The separation distance is 

calculated by a coefficient, 𝑘𝑘, multiplied with the minimum distance where 𝑘𝑘 is referred to as the 

separation ratio. This swap can also occur on the boundary of the monolayer shown in Figure 1.7a. 

A T2 swap (or element removal) occurs when an enclosed area (usually triangular in shape) falls 

below a minimum area, 𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚. All vertices then combine and the area disappears. If the area 

represented a cell, the cell is removed from the simulation (see Figure 1.7b from Fletcher et al. 

(2013)). If the two vertices are only identified with one cell, then they combine into one single 

vertex if the distance between the vertices is less than 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 (see Figure 1.7b from Fletcher et al. 

(2013)). A T3 swap (or element intersection) occurs when free moving boundaries in a void interact 

with a different edge. This is particularly important when modelling wound closure so that the 

monolayer can reconnect with itself. Fletcher et al. (2013) refer to four different cases where this T3 

swap could happen and expresses them in Figure 1.7c. Each time there is an interaction, the vertices 

must be at least distance, 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚, away from any other vertices. If there is no space on the cell edge, 

then all vertices are moved so that they are distance, 𝑑𝑑𝑠𝑠𝑠𝑠𝑝𝑝, from each other. 

To avoid self-intersecting cells (a cell’s edges crossing), Fletcher et al. (2013) introduced a 

new kind of rearrangement, node switching. Node switching (or internal element intersection) 
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occurs when a cell’s vertices arrangement causes the cell edges to intersect with one another. If this 

occurs Fletcher et al. (2013) suggest that there is only a resolution if the intersection does not cause 

the cell to split into two cells (see Figure 1.7d). However, this situation will only happen for some 

force laws where cells can become concave (Fletcher et al., 2013). 

The vertex model commonly has straight edges between the vertices; however, Ishimoto and 

Morishita (2014) have included cell curvature using the assumption that there are fast and slow 

dynamics in the system. The curvature expressed in Ishimoto and Morishita (2014) identifies the 

edges of the cell to minimise tension in both cells that the edge belongs to. The model also assumes 

that the curvature edges are controlled by fast dynamics and the vertices by slow dynamics. Adding 

this curvature allows the T2 swap rearrangement to change, since the curvature allows the system to 

have a cell with a minimum of two vertices, whereas the cell would not be considered without this 

curvature. Slow dynamics involve the movement of the vertices in accordance with an energy 

function and fast dynamics involve the minimisation of the energy to apply the curvature of the 

edges given the “pressure” between the cells. The vertices move first and the curved edges of the 

cells are applied after. 

Working in three spatial dimensions, and representing the cells as a three-dimensional object, 

adds extra computational costs to the use of the vertex model (Fletcher et al., 2013), and together 

with the vertex rearrangements, T1, T2 and T3, the result is that only a smaller number of cells can 

be simulated in the system. 

Traditionally, the vertex model can be used in three dimensions by allowing the cells to 

contain the volume with vertices, edges and surfaces areas interacting with other cells. An 

alternative way to implement the vertex model is to include a two-dimensional sheet of epithelial 

cells which can move in three dimensions. Du, Osterfield, and Shvartsman (2014) use a two-

dimensional vertex model representing a sheet of epithelial cells in a three-dimensional 

environment. The paper investigates three-dimensional structures that can arise from the forces and 

mechanical properties of cells. These mechanical properties include cell area, membrane elasticity 

and line tension, which could also be referred to as adhesion between the cells, and a final term 

describing the bending of the sheet (membranes), also used in Seung and Nelson (1988). 

The application of the vertex model to study the biology of cells is similar to the CPM. 

Wyczalkowski, Chen, Filas, Varner, and Taber (2012) provide an overview of a wide variety of 

biological cell topics with a focus on morphogenesis and the mathematical models that can be used 

to investigate them, such as the vertex model and mechanical mechanism models. In many ways the 

cell representations of the two models are similar. Much like the CPM, the vertex models’ cell 
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shape representation allows it to be used to investigate the morphology of the simulated cells. 

However, unlike the CPM, the cell edges are represented with straight lines or surfaces and so the 

cell morphology falls into a classification of polygonal structures. Weliky and Oster (1990) 

investigate the rearrangement (morphology) of cells with an early iteration of the vertex model that 

uses a mechanical basis, namely the elastic tension in the cell membranes and the pressure in the 

cells. Farhadifar, Roper, Aigouy, Eaton, and Julicher (2007) on the other hand use a vertex model to 

investigate the morphology of a sheet using an energy function with an area constraint, perimeter 

contraction, proliferation and line tension or adhesion. The study investigates the polygonal shape 

of the cells influenced by the different mechanisms and the comparison to the shapes of actual 

epithelial cells. 

Y. Li, Naveed, Kachalo, Xu, and Liang (2011) use a model based on the vertex model to 

investigate topology changes and distortions in sheets of cells, but focus on the mechanical forces of 

pressure and tension with the addition of proliferation. The study found that the mechanical forces 

exert a larger influence than local proliferations on the behaviour of the cells. 

As mentioned previously, Nagai and Honda (2009) investigate micro-wounds using a vertex 

model with the implementation of equations of motion. The energy equation includes three main 

components: an area constraint for the cells, an interaction between cell junctions, and a negative 

linear wound area constraint. However, the use of a negative wound area term in the study 

facilitated the system closing the wound. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1.7. An example of the transitions of the vertices for the a) T1 (edge rearrangement), 

b) T2 (element removal), c) T3 (element intersection) and d) swaps to prevent self-

intersecting cell edges. Reprinted from “Implementing vertex dynamics models of cell 

populations in biology within a consistent computational framework,” by A. G. Fletcher, J. 

M. Osborne, P. K. Maini, D. J. Gavaghan, 2013, Progress in Biophysics & Molecular 

Biology, 113(2), p. 306-308. Copyright 2013 by Elsevier. Reprinted with permission.  
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1.3.3  Agent-based models 

Instead of identifying cell boundaries and shapes using the CPM and vertex models they can 

be described by the location of their centres and classified as single entities. These models are often 

referred to as agent-based models or otherwise as random walker models. The agent-based models 

apply rules and probabilities to the agent’s movements and random walks to replicate different 

mechanisms and properties of the cells. Random walker models can be expressed in any number of 

dimensions and as an on-lattice or off-lattice system; however, cells are restricted to three spatial 

dimensions.  

A basic random walk has an agent on a one-dimensional lattice at site 𝑖𝑖. The agent is given a 

probability to move from site i to either site 𝑖𝑖 + 1 or 𝑖𝑖 − 1 with equal probability of 0.5, the agent 

completes its move and the process starts again. Modelling a collection of cells would require more 

agents in the system and considering interactions between them. The exclusion process is a simple 

mechanism that prevents cells from occupying the same lattice site (Chowdhury, Schadschneider, & 

Nishinari, 2005). A cell’s movement from site 𝑖𝑖 to site j is rejected if site j already contains an agent. 

This type of exclusion assumes only the agent has no knowledge that another agent already 

occupies the site. Alternatively, the agent can ignore that particular movement and adjust its 

probabilities to select a different movement (Landman & Fernando, 2011). 

The exclusion process is only one of the rules that can be applied to the agents. Other rules 

can include the interacting connectivity between cells, such as the formation, breaking and 

maintaining of connections between agents (Deroulers, Aubert, Badoual, & Grammaticos, 2009; 

Fernando, Landman, & Simpson, 2010) as well as the movement based on population density 

surrounding the agents (Simpson, Landman, Hughes, & Fernando, 2010). 

Many variations of a random walk can be implemented by adding boundaries, obstacles or 

defining specific rules that the random walker must follow (Rudnick & Gaspari, 2010). An example 

of this is where agents do not have to follow the same rules as each other, and can be split into 

different “species” with different probabilities of movement. Simpson, Landman, and Hughes 

(2009) and Landman and Fernando (2011) look at two different “species” of agents and their 

interaction when diffusion occurs in different configurations. 

The random walker models provide one component able to be linked to continuous diffusion 

equations. A diffusion equation can be derived from the random walker probabilities using standard 

conservation arguments (Liggett, 1999). Providing the diffusion coefficient, from a linear or 

nonlinear diffusion, is positive, the quantitative connection between the discrete random walkers 

and continuous diffusion equations are similar (Fernando et al., 2010). This means that the 
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probabilistic rules that are applied to discrete agents can also be investigated in the diffusion 

equations that describe the populations of the cells. 

1.3.4  Diffusion and other models 

While there are variations to the discrete models discussed above, there are alternative 

models such as continuous diffusion models and hybrid models that combine different components 

of models to explain a natural phenomenon. Continuous diffusion models treat the populations of 

the cells as a density rather than as the individual cells in the discrete models, and the cell 

interaction is treated or assumed in the model as a diffusion coefficient or other such mechanisms.  

The Fisher-Kolmogorov equation (Fisher, 1937; Murray, 2002) is a reaction diffusion 

equation model that has been used to study a variety of biological mechanisms and behaviours, such 

as wound healing (Sherratt & Murray, 1990) and tissue repair (Cai, Landman, & Hughes, 2007). 

However, this equation has been included as part of modelling macro-wound healing rather than the 

focus of this thesis which is micro-wound healing. A simple one dimension representation of the 

equation is written as 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝑘𝑘𝜕𝜕(1 − 𝜕𝜕), 

where the variables and parameters represent the population density of cells, 𝜕𝜕, at a position, 𝑥𝑥, at 

time, 𝜕𝜕, with a cell diffusion coefficient, 𝐷𝐷, and cell proliferation rate, 𝑘𝑘. The equation is separated 

into two components, namely the diffusion term (containing the random motility of the cells) and 

the limiting proliferation growth term. Initially the model was used to represent the diffusion 

(spatial spread) of an advantageous gene through a cell population (Fisher, 1937). The propagation 

wave solutions to the Fisher-Kolmogorov equation and variants are quantitatively comparable to the 

propagation of the epithelial cells (or epithelium edges) into empty spaces, such as wounds (Maini, 

McElwain, & Leavesley, 2004; Sherratt & Murray, 1990).  

An application of the reaction diffusion model is presented in Sherratt and Murray (1990). 

In the study, wound healing is investigated where one case of the model is a linear Fickian diffusion 

with comparative equations to the Fisher-Kolmogorov equation above. While the study explains the 

model and its properties, the model is only compared to wound data from Van Den Brenk (1956). 

However, further studies using the diffusion model investigate the differences between embryo and 

adult wound healing, focusing on an actin cable closing the wound and the regulation of cell 

division, the effect of other auto-regulation of mitosis and the effect of wound shape on the results 

of the model (Sherratt, Martin, Murray, & Lewis, 1992; Sherratt & Murray, 1992).  
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On a population-scale the Fisher-Kolmogorov equation, model or other variations of the 

model, capture parts of the epithelium behaviour such as the shape and speed of a traveling wave of 

the epithelium closing edge of a wound assay. However, discrete models, such as random walkers, 

can also model these behaviours as well as other mechanics such as contact inhibition of cells with 

their neighbours (Cai et al., 2007). While one of the more important differences between the 

discrete and continuous equation is time, it is possible to extract population-scale continuum 

equations from the discrete models. One example of this is random walker derivation to a linear and 

nonlinear diffusion equation using transition probabilities (Cai et al., 2007; Liggett, 1999). The 

nonlinear diffusion equations derived from the contact rules, transition probabilities, of the random 

walker process can be nontrivial (Liggett, 1999). Another example is the CPM itself using transition 

probabilities of the cells changing from one state to another which can be equivalent to the Keller 

Segel model (Alber et al., 2007). However, these modifications are dependent on the various rules 

set for the cells’ motions and properties and can be nontrivial.  

These reaction diffusion models are not limited to the physical representation of cell 

populations but can also be implemented to represent the effects of other component concentrations 

of the epithelial cells. An example is the application to the intracellular dynamics of Mitogen 

Activated Protein Kinase (MAPK) which Posta and Chou (2010) represent with four 

concentrations: Epithelial Growth Factor, Epithelial Growth Factor Receptor, Reactive Oxygen 

Species, and protease. The model investigates the intracellular signalling of wound healing, 

specifically the activations of MAPK during the process.  

As an alternative to the continuous reaction diffusion equation models, the hybrid models 

incorporate the discrete representation of cells and other continuous model mechanics. Cumming, 

McElwain, and Upton (2010) present a general hybrid model framework that investigates macro-

wound healing and scarring based on the work of Dallon, Sherratt, Maini, and Ferguson (2000); 

Dallon, Sherratt, and Maini (1999, 2001) and McDougall, Dallon, Sherratt, and Maini (2006). Cells 

are represented as individual agents, similar to the random walker models. The cell movement and 

behaviour is based on their interaction with fibrin and collagen represented with a density for their 

concentration and a tensor for their orientation. The concentrations change with the influence of 

cells, other concentrations and other properties such as tPA concentration, TGF-Beta concentration, 

macrophages and fibroblasts. In addition to simulating the closure of a wound, the model also 

represents the scarring of the wound, associated with the orientation and invasion of collagen into 

the wound.  

Generating reaction diffusion equations can depend on what properties of the cell are of 

interest. Armstrong, Painter, and Sherratt (2006) developed a continuous model using adhesive 
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forces to replicate cell sorting behaviours for a single cell and multiple cell populations as an 

alternate to the discrete models such as the CPM. They classify the pattern formation of two 

interacting populations in four cases depending on the strengths of the adhesion. These cases 

include the mixing of both populations, engulfment of one population with another, partial 

engulfment, and complete cell sorting. This model has been used to investigate cellular invasion in 

cancer and tumour development (Painter, Armstrong, & Sherratt, 2010). The ideas in Armstrong et 

al. (2006) were expanded on by Gerisch and Chaplain (2008) who also use a continuous model, 

although it is based on Anderson, Chaplain, L. Newman, Steele, and Thompson (2000).  

As an alternative to representing the cells as continuous populations, or as the discrete 

models discussed above, the epithelium and cells can be considered to be elastic material. There are 

models and hybrid models developed around this concept. Abate et al. (2012) use vertex geometry 

to represent the cells and elasticity components rather than a Hamiltonian equation, to investigate a 

two-dimensional layer on different topologies. Tabatabai, Eby, and Singh (2011) present a 

mathematical model that focuses on differential equations and the size of the macro-wounds, rather 

than the morphology or shape of the wound and neighbouring cells. Shraiman (2005) investigates 

tissue growth and models the cells with a continuous approximation of the elastic strain energy of 

the cells. 
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1.4  SUMMARY 

While wound healing has been investigated with diffusion models for the larger cell 

population scale systems, it has rarely been applied to study the behaviour of smaller-scale wounds 

of around one to several cells. Although the vertex model from Nagai and Honda (2009) 

investigates a micro-wound, this applies mechanisms within the wound itself to close the wound 

rather than the interaction between the cells in the epithelium. Instead, we use the CPM as an 

alternative approach to the vertex model and apply an energy function containing the preferred cell 

area, perimeter contraction and the adhesion between the cells to examine how a monolayer of 

simulated cells will behave with a micro-wound in both two and three dimensions.  

The protective property of an epithelium not only closes wounds but also extrudes cells from 

its layers. The extrusion of cells has previously been investigated using continuous models 

measuring populations rather than the discrete models (Scianna, 2015); however, there are few 

studies that focus on the extrusion of a single cell. 

This thesis models the collective behaviour of epithelial cells using our own code developed 

for a two and three-dimensional cellular Potts model (CPM) rather than the available CompuCell3D 

and CHASTE source code. By using our own code we are able to examine the model in detail and 

introduce and manage additional mechanisms and measures that are not available in the published 

code. However, the difference between our code and the CompuCell3D and CHASTE source code 

is not the aim of the thesis. The two and three-dimensional CPMs are used to investigate the effect 

of the interaction between the adhesion and contraction of the cells on the behaviour of the epithelia 

during the closure of micro-wounds and the extrusion of a single cell. While there are components 

of biological cells, such as actin and myosin, that impact cell behaviour, there is a lack of biological 

data to directly compare to the CPMs. The models in this thesis are intended to motivate and allow 

further investigation into the mechanisms occurring in cell behaviour.  
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Chapter 2: Simulating Epithelial Wound Healing 
and Cell Islands Using a Two-Dimensional Cellular 
Potts Model 

2.1  INTRODUCTION 

The closure of a wound is fundamental function of the epithelial cells. To achieve wound 

closure the junctions of the cells are governed by proteins, such as actin, myosin and cadherins. 

These proteins lead to the generation of adhesion between cells and contraction of the junctions. 

The types of mechanisms used to close a wound include the migration of cells from the edge of the 

wound into the injury space, a process that involves lamellipodial cell motility. A second 

mechanism involves the contraction of cells underlying the wound, which occurs when epithelia 

overlay other tissues, such as the amnioserosa of the Drosophila embryo. Thirdly, the cells at the 

margins of wounds can form an actomyosin ring (purse-string) that encloses the wound. Contraction 

of the purse-string then pulls neighbouring cells into the wound to drive wound closure (Abreu-

Blanco et al., 2012; Antunes et al., 2013). The relative importance and coordination of these 

mechanisms differs depending on the model system tested and its developmental context. 

The cellular Potts model (CPM) developed by Glazier and Graner (1993) and Graner and 

Glazier (1992) and its off-lattice alternative, the vertex model (Fletcher, Osterfield, Baker, & 

Shvartsman, 2014; Nagai & Honda, 2001, 2009), are computational algorithms designed to 

represent cell organisation at small scales (from a few to hundreds of cells). They are particularly 

suited to study the dynamics of such systems in the presence of microscopic wounds. However, a 

potentially significant difference between the two models lies in their representation of cell edges. 

The CPM allows for arbitrary edges, whereas, by definition, the vertex model utilizes straight cell 

edges, or in certain variants curved boundaries with constant curvature (Ishimoto & Morishita, 

2014). We use the CPM to investigate microscopic wound repair and the interactions of adhesion 

and contraction that influence the repair process. Minimisation of the energy of the CPM using 

Metropolis Sampling leads to two different regimes, and the boundary between these regimes 

depends on the relative contribution of adhesion and line tension to the energy function of the 

system. When applied to microscopic wounds, the interaction between contractile junctional tension 

and adhesion between the cells plays an important role in determining whether a site of damage will 

monotonically increase and stay open or whether it will close and heal. Moreover, our theoretical 

analysis predicts that in the hard regime, there is a critical wound size above which the wound will 
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not close. Thus, our data suggest that changing the balance between contraction and adhesion at the 

cell-cell junctions is required for non-monotonic wound closure to occur. 

This chapter is an altered version of the Noppe, Roberts, Yap, Gomez, and Neufeld (2015) 

paper which models a micro-wound with a two-dimensional CPM and provides a geometrical 

approximation model to help understand some of the mechanisms influencing epithelial behaviour.  
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2.2  TWO-DIMENSIONAL CELLULAR POTTS MODEL 

We model the epithelial cell layer and micro-wounds in two dimensions using the CPM. The 

CPM represents the apical region of cells, the sites where the zonulae adherent are located, as 

collections of pixels on a lattice (Kabla, 2012; Szabo et al., 2010). Depending on which cell they 

belong to, each pixel is assigned a cell index 𝑗𝑗 (represented by different colours in Figure 2.1). The 

modelled cells evolve in time by randomly selecting a pixel, from a list without replacement, at the 

boundary between two cells and measuring the change in an “energy” function 𝐸𝐸 that would result 

if the pixel were reassigned to a neighbouring cell. If the energy decreases, 𝐸𝐸 ≤ 0, the index change 

is always allowed, whereas if the energy increases, 𝐸𝐸 > 0, the site index change is allowed with the 

probability 𝑒𝑒𝑥𝑥𝑒𝑒(−Δ𝐸𝐸 𝑇𝑇⁄ ), where 𝑇𝑇 is a temperature like parameter that controls the “noise” in the 

system. Each and every pixel is given the opportunity of an index change and this represents one 

Monte Carlo Step (MCS), which we refer to as a single iteration in the CPM. Changing the cell 

index of the pixels at the boundaries between neighbouring cells allows the cell boundaries to 

change. 

The pixels in the CPM ideally need to tessellate and contain an equal number of connecting 

edges. The two-dimensional CPM adopted in this thesis uses hexagonal shaped pixels (triangular 

lattice). Other two-dimensional pixel shapes could include the square pixels (square lattice), or the 

triangular pixels. Each of the pixel and lattice configurations can be found in Appendix A. Other 

tessellated configurations could be used; however, non-uniform shapes in the model would require 

identifying and classifying each edge of the pixels in the model. In addition, the choice of the pixel 

shape can lead to artefacts being created in the system. An example of an artefact is identifying a 

cell with a collection of pixels with a minimum perimeter (membrane length). A square lattice 

would form rectangular cells (preferably a square), the triangular pixels would form a triangular 

shape and hexagonal pixels would form a hexagonal shape. Another consideration when selecting 

pixel shapes is the connection between pixels. Square and triangular pixels have corners which are 

only in contact with the corners, but not edges, of other pixels. Square pixels are commonly said to 

be only have contact with other pixel edges. When using these pixels shapes a decision needs to be 

made about whether the corners of the pixels will be a form of contact. However, the hexagonal 

pixels do not require this classification because the pixels only connect with edges. 

An algorithm of the two-dimensional CPM is presented in Appendix B as additional 

material to explain the CPM algorithm described in this section. 
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Figure 2.1. Representation of cells as groups of pixels on a hexagonal lattice where pixels 

change their labels to one of their neighbours. The hexagons of a given colour represent 

pixels belonging to the same cell. 

To prevent the biologically unrealistic situation where a simulated cell may separate into 

multiple disconnected groups of pixels an additional constraint is added to the model to restrict 

pixel changes, specifically every cell is represented by a single connected pixel configuration. We 

refer to this as the “connection condition” in the model. Figure 2.2a is a diagram of a single pixel 

with its six neighbours; each pixel (site) is labelled with a number to identify it. Each of these pixels 

can be labelled with a cell label. Figure 2.2b is the simple initial example of a configuration of 

different labelled pixels, with labels A and B and blank pixels which can be labelled A or B or have 

a different cell label. 

Two neighbouring pixels are connected if they have the same cell label, for example pixels 5 

and 0 with label A in Figure 2.2b. Two neighbouring pixels are not connected if they have different 

labels, for example pixels 0 and 1 in Figure 2.2b. Non-neighbouring pixels do not share and edge, 

for example the pixels labelled B in Figure 2.2b. These two non-neighbouring pixels can be 

connected if there is an uninterrupted series of same labelled pixels connecting sites 1 and 3. For 

example, if site 2 has a label B then site 1 and 3 in Figure 2.2b are connected. Each cell is made up 
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of a single connected group of same label pixels, for example, pixels labelled A in Figure 2.2b can 

be defined as cell A. We use an initial configuration that satisfies the connection condition and 

apply an algorithm to the local pixel changes instead of checking the connection condition for every 

cell and pixel in the model. 

The changed pixel label and its neighbouring pixels are checked to identify if a cell has split 

as a result of the change. If two pixels have the same label and are connected by a same label path, 

then the change is accepted. If two pixels do not have a path connected with the neighbours they 

may still be connected by a longer path around the neighbouring pixels, see Figure 2.2c. However, 

if the pixel label changes to a label of non-neighbouring pixels then this change is cancelled, for 

example in Figure 2.2d these are the pixels with the label B. If the label pixel site 0 in Figure 2.2c 

changes from label A to label B in Figure 2.2d, the change is not accepted. This change splits cell A 

into two groups because in Figure 2.2c cell B must be connected by some path around the other 

pixels but when site 0 changes to label B the cell B now surrounds one of the groups of cell A with 

no possibility for there to be a path connecting the separate pixel groups of cell A. So the change of 

site 0’s label is cancelled. 

The case of a different cell labelled pixel in Figure 2.2e, label C at site 2, is possible but 

unlikely in this model. All the cells try to maintain the same area and shape. So cell B must encase 

cell C or A to connect site 1 and 3. We can ignore this case and treat it as similar to the previous 

case. If site 0 was to change to label B, then the change is cancelled. 

To simplify these cases, and identify them in the simulation code, we use the condition that 

if there are two similar labelled pixels (sites), and they are not connected by a path through the 

neighbours, for example in Figure 2.2b paths through sites 16543 or 123 for the pixels labelled B, 

then the change is cancelled. 

The dynamics of the model are driven by minimising a phenomenological energy 

determined by the cell configuration. We use the same form of the energy function that has been 

previously used in models of cell-cell interactions (Farhadifar et al., 2007). In particular, the vertex 

model (Farhadifar et al., 2007)  is based on a simplified representation of cells as polygons, and 

their shape is determined by tracking the movement of cell vertices. The total energy of a system of 

N-cells is defined in terms of the area 𝐴𝐴𝑗𝑗 and perimeter 𝐿𝐿𝑗𝑗 of jth cell through the sum, 
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The first term represents an energy cost for deviating from a preferred area 𝐴𝐴𝑝𝑝, i.e. the cells 

resist expansion or compression. The second term models the contractile line tension due to the 

apical actin ring around the perimeter of the cells, while the last term represents cell-cell adhesion, 

attributed to the presence of adhesion molecules like E-cadherin, and is proportional to the 

perimeter of the cells. The parameters 𝑘𝑘, Γ and 𝑆𝑆 determine the relative magnitude of the different 

contributions to the energy. 

Note that the adhesion term is assumed to be negative, i.e. the cells preferentially expand 

their boundaries shared with neighbouring cells. However, this expansion competes with the 

contractile tension that dominates when the perimeter becomes elongated. For the pixel-based CPM 

the adhesion interaction term is commonly expressed using the double sum, 

��1 − 𝛿𝛿𝜎𝜎(𝑖𝑖),𝜎𝜎(𝑗𝑗)�
𝑁𝑁

𝑖𝑖,𝑗𝑗

, 

where 𝜎𝜎 are the site labels and the Kronecker delta term prevents counting contributions to the 

energy from pixels that belong to the same cell. This term counts the number of pixels on the edges 

of the cells and we use this to compute the perimeter 𝐿𝐿𝑗𝑗. 

In order to eliminate “internal pressure” in the system we assume that the preferred cell area, 

𝐴𝐴𝑝𝑝, coincides with the total area of the simulation domain divided by the number of cells, 

𝐴𝐴𝑝𝑝 = 𝐴𝐴𝑇𝑇 𝑁𝑁⁄ , so that the cell layer is not compressed or stretched. 

The initial cell configurations of all simulations in this chapter without a wound were 

generated by creating a configuration of 44 approximately 5 × 5 square pixel cells on a 160 × 160 

pixel grid. This configuration was run with the parameters 𝑘𝑘 = 2, the 𝑆𝑆 and Γ ratio 𝛽𝛽 = 1 and 

𝑇𝑇 = 10. These simulations generated cell configurations similar to Figure 2.3b. Simulations used 

these configurations and included required parameter values for 𝑘𝑘, 𝑆𝑆, Γ and T to obtain the observed 

results. 
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(a)      (b) 

   

(c)     (d) 

 

(e) 

Figure 2.2. Diagrams of a single pixel with six neighbouring pixels surrounding it. a) Labels 

of the pixels (sites) with numbers from 0 to 6. b) The simple case of a configuration of two 

cells with label A and B. The case can change depending on the label of the empty pixel 

(sites). c-d) Shows a case of an initial pixel configuration in (c) and a change of 

configuration to (d) which would encase part of the cell A no matter how cell B is connected. 

This change is not allowed. e) Is a case which should not occur because cell B would have 

to encase cell A or C depending on how the pixel 1 and 3 are connected. 
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2.2.1  Hard and soft cell regimes 

First, we consider the steady state condition of a confluent monolayer of cells. We 

performed numerical simulations of the CPM and characterised the morphology and dynamic 

behaviour of cells in the stationary state. We found that the cell shape is determined primarily by 

the interaction between contraction (the second term in the energy formula) and adhesion (third 

term in the energy function). For high contractility values, cells exhibit straight contacts and 

polygonal shapes with a typical vertex number of 6. In contrast, when the adhesion term dominates, 

cells lose their regular pattern of organisation and cell contacts become more irregular and wavy. 

Examples of the model showing the two regimes are given in Figure 2.3. It has been shown that 

when contractility is inhibited, either by direct perturbation of the actin cytoskeleton (Caldwell et al., 

2014; Kovacs et al., 2011) or by disrupting the signalling pathways that regulate actomyosin 

(Gomez et al., 2015; Otani, Ichii, Aono, & Takeichi, 2006), cells exhibit these properties of 

junctional organisation, showing a good concordance with the results of our CPM model. 

The above-mentioned behaviour is similar to that of the vertex model with the same energy 

function that was described in Farhadifar et al. (2007). Differences between the two models arise; 

however, due to the different representation of the cell boundaries in the two models. The CPM 

allows for non-polygonal boundaries leading to the formation of irregular cell protrusions in the soft 

regime. 

To better study the role of the various model parameters and the transition between the hard 

(high contractility) and soft (low contractility) regimes of junctional organisation it is useful to 

theoretically analyse the model. The effect of competition between contractility (shortening) and 

adhesion (elongating) on the cell perimeter is best seen by combining the quadratic and linear terms 

of the cell perimeter and completing the square of Function 2.1 to give: 
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where 

𝐿𝐿𝑝𝑝 =
𝑆𝑆

2Γ
. 

The constant term, Γ𝑁𝑁𝐿𝐿𝑝𝑝2 2⁄ , can be neglected as it does not influence the behaviour of the system. 

This form of the energy function shows that, in addition to the preferred cell area, 𝐴𝐴𝑝𝑝, the cells also 

have a preferred cell perimeter, 𝐿𝐿𝑝𝑝, whose value is not prescribed, but arises from the competition 

between cell-cell adhesion and contractile line tension. 
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Depending on the geometry of the cells, the average/preferred cell area may correspond to 

different values of the cell perimeter length. Although the energy function stipulates a preferred 

perimeter, it has an upper and lower bound for a fixed cell area comprised of finite pixels. The 

upper bound corresponds to a long cell of single pixel width and is less relevant for cell modelling. 

More interesting is the lower bound, defined by the shortest boundary that can enclose a cell of 

given area. In a single cell problem this would be the circumference of a circle, in a regular tiling 

the Honeycomb conjecture (proven by Hales (2001) states that the minimum perimeter is given by 

that of a hexagon. The number of pixels along the perimeter of a hexagonal cell made up of 

hexagonal pixels (Figure 2.4) is 

𝐿𝐿𝑚𝑚 = 12𝑛𝑛 − 6, 

where 𝑛𝑛 is the number of pixel layers making up the cell, and the area of the hexagonal cell is 

𝐴𝐴𝑚𝑚 = 3𝑛𝑛2 − 3𝑛𝑛 + 1. 

We use this to calculate an approximation for the minimal perimeter, 

𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚 = 2�12𝐴𝐴𝑝𝑝 − 3. 

The model is highly dependent on whether the preferred cell perimeter, 𝐿𝐿𝑝𝑝, is larger or smaller than 

𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚 leading to a hard and a soft regime with qualitatively different behaviour. 

In the hard regime, the cells cannot reach their preferred perimeter, 𝐿𝐿𝑝𝑝, since 𝐿𝐿𝑝𝑝 ≤ 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚. So 

their perimeter is close to the minimum perimeter. In this case the energy minimum corresponds to 

the hexagonal tiling and contraction along the perimeters dominates, creating a tight configuration 

with mechanical tension maintained along the cell interfaces. Numerical simulations, with a 

relatively small temperature parameter, are consistent with a quasi-hexagonal tiling with 

fluctuations arising from defects along cell boundaries (Figure 2.3a). 

In the alternative case, where 𝐿𝐿𝑝𝑝 > 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚, we have a soft regime. Cell boundaries are loose 

and become wavier. The energy minimum is highly degenerate, i.e. there are infinitely many 

possible spatial configurations that satisfy both the area and perimeter constraints. The consequence 

of this degeneracy is that the junctions are very irregular (non-linear) in shape and mobile, even at 

low temperatures (Figure 2.3c, d). 

This interpretation is confirmed by computing the average cell perimeter attained by the 

cells (Figure 2.5a, b). In the hard regime this is approximately equal to 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚, whereas in the soft 
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regime the average cell perimeter is approximately 𝐿𝐿𝑝𝑝. Of note, the temperature in the system also 

plays a role in determining the cell shape in the model. In the hard regime increasing the 

temperature causes the cells to change from regular hexagons to more irregular cell shapes (Figure 

2.3b). 

Finally, we analysed the dynamics of cell-cell boundaries in the hard and soft regimes 

(Figure 2.5c). We found that the number of pixel changes per iteration is approximately constant in 

the hard regime. In contrast, as the simulations move to the soft regime the number of pixel changes 

increases with 𝐿𝐿𝑝𝑝, implying that cell boundaries in the soft regime are more dynamic than in the 

hard regime. S. K. Wu, Gomez, et al., (2014) experimentally found that contractile tension at the 

ZA is greater than that at the lateral junctions. A prediction of our model analysis is that these 

differences in tension will lead to differences in the dynamics of these regions. To test this, our 

collaborators at the IMB at UQ performed live cell imaging of cell-cell junctions at the apical and 

lateral junctions of cells. They found that, in qualitative agreement with the simulations, cell-cell 

boundaries at the lateral junctions are more curved and dynamic than those at the corresponding 

apical junctions (Figure 2.6). This further suggests that the balance between adhesion and 

contractility not only determines the amount of tension at the cell-cell junctions but also influences 

the plasticity of the cell-cell interface. 
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Figure 2.3. Distribution of the cells in the different regimes and kymographs showing the 

time evolution of cell junctions (at the location indicated by the black line): a) represents a 

very hard system of cells creating quasi-polygonal shapes close to a hexagon, 𝑆𝑆 = 1500 and 

Γ = 6 (𝛽𝛽 = 0.7480) at 𝑇𝑇 = 10; b) the cells are still in a hard regime, but with a higher 

temperature 𝑆𝑆 = 1500 and Γ = 6 (𝛽𝛽 = 0.7480) at 𝑇𝑇 = 500; c) example of cells in the soft 

regime, 𝑆𝑆 = 3000 and Γ = 6 (𝛽𝛽 = 1.4961) at low temperature 𝑇𝑇 = 10; d) soft regime at 

higher temperature, 𝑆𝑆 = 3000 and Γ = 6 (𝛽𝛽 = 1.4961) at 𝑇𝑇 = 500. All simulations use 

parameters 𝑘𝑘 = 2 and 𝑁𝑁 = 44 on a 160 × 160 hexagonal pixel grid. 
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Figure 2.4. Representation of a hexagonal cell created with 𝑛𝑛 = 6 hexagonal pixel layers. 
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(a)      (b) 

 

(c) 

Figure 2.5. Representation of the change from the hard to soft regime; a) average perimeter 

of the cells as a function of the adhesion coefficient S. The symbols represent simulations 

for different values of the line tension parameter Γ (Γ = 2, circles Γ = 4 squares, and Γ = 6 

triangles). b) Rescaling the adhesion coefficient on the horizontal axis (𝐿𝐿𝑝𝑝 = 𝑆𝑆 2Γ⁄ ) shows 

the comparison between cell perimeters and the preferred perimeter 𝐿𝐿𝑝𝑝. The perimeter is 

approximately constant in the hard regime (𝐿𝐿𝑝𝑝 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚⁄ < 1) but increases linearly in the soft 

regime (𝐿𝐿𝑝𝑝 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚⁄ > 1 ). c) Shows the number of pixel changes that occur in a single 

iteration. In the hard regime the cells have a fairly constant number of changes but that 

increases when the cells move into the soft regime. The other parameters are 𝑘𝑘 = 2 and 

𝑁𝑁 = 44 on a 160 × 160 hexagonal pixel grid. 
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Figure 2.6. Morphology of apical (ZA) and lateral cell-cell contacts within confluent 

epithelial cells. a) Cells expressing a plasma membrane targeted fluorescent reporter were 

imaged by confocal live cell microscopy. Images taken at various times during the movie 

are shown (times indicated in far right of each panel). Left and right panels correspond to 

different Z positions, one located to the top of the cells (apical junctions, left) and the other 

4mm below in the basal direction (basal junctions, right). Scale bar= 20𝜇𝜇𝜇𝜇. b) Kymographs 

showing the time evolution of the apical and basal cell junctions indicated by the arrows on 

the left panel. This figure was provided by the contributors from the Institute for Molecular 

Bioscience (IMB) at the University of Queensland. 
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2.3  WOUND IN THE SYSTEM 

2.3.1  Simulations and results 

Now we consider the dynamic behaviour of the system in response to a small injury or 

wound, so that 𝑀𝑀 adjacent cells are eliminated. In the model we remove the terms corresponding to 

the injured cells from the energy equation. Removal of these cells also affects the adhesion along 

the interface between the normal cells and the injury site. Accordingly, the adhesion term is now 

composed of two parts, one where a cell is connected to other neighbouring cells and the other 

where the cell is adjacent to a cell that is being removed and where there is no adhesion contribution 

to the energy. Thus, after completing the square in the energy Function (2.1) and grouping the terms 

corresponding to the cell boundaries along the injury, we obtain a new adhesion term that is 

proportional to the injury perimeter 𝐿𝐿𝑤𝑤, 
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Note, however, that compared to the Function (2.2) there is a new positive adhesion term, 

which arises as a consequence of the wound, represents an empty space within the sheet, denoting 

the absence of adhesion along its perimeter. 

If, after removing cells, the wound perimeter reaches zero, it implies that the system has 

evolved to a state where the wound closes completely. Reducing 𝐿𝐿𝑤𝑤 has competing energy costs 

involving the extension of cell area on the cells surrounding the wound and, in the hard regime, also 

requires an increase in their cell perimeter. 

Thus, we performed numerical simulations where first we let the system reach equilibrium 

before the wound was created. The simulations for different parameters show that the area of the 

injury can expand from its original value then reach a fluctuating steady state, or decrease to a 

smaller area and eventually close completely. These cases can be seen in Figure 2.7. In all cases the 

change is monotonic in time. In general the equilibrium wound size is determined by the 

competition between adhesion and apical contractile (line) tension. When the perimeter contraction 

coefficient Γ is kept constant the equilibrium wound size decreases as the adhesion coefficient is 

increased. Moreover, the wound closes spontaneously when the adhesion coefficient is larger than a 

certain threshold. This threshold in the adhesion parameter decreases when the contraction 

coefficient is reduced. Qualitatively, spontaneous wound closure occurs with weak perimeter 

contraction and/or strong adhesion, i.e. when the system is approaching the soft regime, a result that 

has been also suggested during the extrusion of dying cells (Kuipers et al., 2014). 
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Although the wound closure in the model is primarily determined by adhesion and 

contraction we found that the temperature parameter 𝑇𝑇 can also have some effect on the results of 

the simulations. When the temperature is too low the wound may not open or close to the 

equilibrium wound size that would be reached with higher values of 𝑇𝑇. This is because the system is 

unable to move easily between different states to reach the optimal configuration. This means that 

the noise amplitude must be taken into consideration, as it has to be large enough to change the 

system configuration but small enough to maintain realistic cell shapes over cellular time scales. 

The initial cell configurations of all simulations in this chapter with a wound were generated 

by creating a configuration of 44 approximately 5 × 5 square pixel cells on a 160 × 160 pixel grid.  

These simulations generated cell configurations similar to Figure 2.3b.  Simulations used these 

configurations and included required parameter values for 𝑘𝑘, 𝑆𝑆, Γ and T. Once an energy 

equilibrium was reached, the simulation would remove a cell from the system and continue the 

simulation to obtain the observed results. 

 

 (a)      (b) 

Figure 2.7. Injury size vs “time” (iteration) showing how the initial injury may expand or 

collapse given different parameter values for two different temperatures a) 𝑇𝑇 = 100 and b) 

𝑇𝑇 = 500. Each line represents a different combination of Γ and 𝑆𝑆, blue Γ = 6 and 𝑆𝑆 = 700 

(𝛽𝛽 = 0.3491), green Γ = 4 and 𝑆𝑆 = 700 (𝛽𝛽 = 0.5236), magenta Γ = 4 and 𝑆𝑆 = 900 

(𝛽𝛽 = 0.6732), cyan Γ = 6 and 𝑆𝑆 = 1500 (𝛽𝛽 = 0.7480) and red Γ = 5 and 𝑆𝑆 = 1500 

(𝛽𝛽 = 0.8976). All simulations have other parameters set as 𝑘𝑘 = 2 and 𝑁𝑁 = 44 on a 

160 × 160 hexagonal pixel grid. 
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2.4  GEOMETRIC REPRESENTATION OF CELLS FOR 
THEORETICAL ANALYSIS 

 In order to better understand the mechanisms that determine the closure threshold and the 

dependence of equilibrium wound area on the parameters of the model, we make several 

simplifying assumptions to rewrite the energy of the system as a function of a single variable, the 

wound perimeter, and then determine the energy minima corresponding to the equilibrium state. 

First, we assume that the area and perimeter of the cells are all identical: 𝐴𝐴𝑗𝑗 = 𝐴𝐴𝑐𝑐 and 𝐿𝐿𝑗𝑗 = 𝐿𝐿𝑐𝑐 for 

𝑗𝑗 = 1, … ,𝑁𝑁, so the energy becomes 
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Conservation of area links the wound area to the cell area, 𝐴𝐴𝑐𝑐, and total area, 𝐴𝐴𝑇𝑇 = 𝑁𝑁𝐴𝐴𝑝𝑝, through 

the relation 

𝐴𝐴𝑐𝑐 + (𝑁𝑁 −𝑀𝑀)𝐴𝐴𝑐𝑐 = 𝐴𝐴𝑇𝑇 . 

To proceed, we need to estimate the relationship between the area of the cells and their perimeter. 

This relationship depends on the shape of the cells but in general can be written in the form 

𝐴𝐴𝑐𝑐 = 𝑔𝑔𝐿𝐿𝑐𝑐2. For example, for a true hexagonal shape 𝑔𝑔 = 1 �4√3�⁄ , or for a circle 𝑔𝑔 = 1 4𝜋𝜋⁄ . For 

the hexagonal cell made of n hexagonal pixel layers, 

𝑔𝑔∗ =
3𝑛𝑛3 − 3𝑛𝑛 + 1

(12𝑛𝑛 − 6)2 =
1

48
+

1
4(12𝑛𝑛 − 6)2 , 

so for 𝑛𝑛 >>  1, 𝑔𝑔∗ ≈  1/48. 

 For simplicity we assume that the shape parameter of the wound and cells are approximately 

the same, so 𝐴𝐴𝑤𝑤 = 𝑔𝑔𝐿𝐿𝑤𝑤2. Using the area conservation 

𝐴𝐴𝑐𝑐 =
1

𝑁𝑁 −𝑀𝑀
�𝑁𝑁𝐴𝐴𝑝𝑝 − 𝐴𝐴𝑤𝑤�, 

the relationship between the linear dimensions of the wound and cells can be written as 

𝐿𝐿𝑐𝑐 = �
𝑁𝑁𝐴𝐴𝑝𝑝

𝑔𝑔(𝑁𝑁 −𝑀𝑀) −
𝐿𝐿𝑤𝑤2

𝑁𝑁 −𝑀𝑀
. 

Essentially this states that a reduction in the wound perimeter leads to a reduction in the wound area, 

the excess area is then equally shared among the live cells so that their perimeter grows (and vice 
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versa for an increase in the wound perimeter). This allows us to eliminate the live cell perimeter 

from the energy and write it as a function of the wound perimeter alone, 

𝐸𝐸(𝐿𝐿𝑤𝑤) =
𝑘𝑘

2(𝑁𝑁 −𝑀𝑀) �𝑀𝑀𝐴𝐴𝑝𝑝 − 𝑔𝑔𝐿𝐿𝑤𝑤2�
2 +

Γ𝐴𝐴𝑝𝑝
2𝑔𝑔

��
𝑁𝑁𝐴𝐴𝑝𝑝
𝑔𝑔

− 𝐿𝐿𝑤𝑤2 − 𝐿𝐿𝑝𝑝√𝑁𝑁 −𝑀𝑀�

2

+
𝑆𝑆
2
𝐿𝐿𝑤𝑤. 

By using a length scale unit, the cell perimeter corresponding to the preferred area, 𝐴𝐴𝑝𝑝, we 

introduce the non-dimensional variable 𝑙𝑙𝑤𝑤 = 𝐿𝐿𝑤𝑤�𝑔𝑔 𝐴𝐴𝑝𝑝⁄ , and the non-dimensional control parameter 

𝛽𝛽 = 𝐿𝐿𝑝𝑝�𝑔𝑔 𝐴𝐴𝑝𝑝⁄ = 𝑆𝑆�𝑔𝑔 �2Γ�𝐴𝐴𝑝𝑝�� , and the energy function becomes 

𝐸𝐸∗(𝑙𝑙𝑤𝑤) =
2𝐸𝐸
𝑆𝑆
�

𝑔𝑔
𝑁𝑁 −𝑀𝑀

=
𝜙𝜙𝑀𝑀2

𝑁𝑁 −𝑀𝑀�1 −
𝑙𝑙𝑤𝑤

2

𝑀𝑀 �
2

+
1

2𝛽𝛽 �
�𝑁𝑁 − 𝑙𝑙𝑤𝑤

2 − 𝛽𝛽√𝑁𝑁 −𝑀𝑀�
2

+ 𝑙𝑙𝑤𝑤, 

where 𝜙𝜙 = 𝑘𝑘𝑔𝑔1 2⁄ 𝐴𝐴𝑝𝑝3 2⁄ 𝑆𝑆⁄ . The equilibrium states of the system are represented by the minima of 

the energy function. We find that there are two cases. In the first case there are two minima: one 

corresponding to positive values of the wound perimeter, 𝑙𝑙𝑤𝑤, and the other one to negative 

(unphysical) values. In the other case there is only one energy minimum for negative values of 𝑙𝑙𝑤𝑤. 

Figure 2.8 shows the two cases. 

 

Figure 2.8. Plot of the energy function 𝐸𝐸(𝑙𝑙𝑤𝑤) with parameters 𝑆𝑆 = 700 and Γ = 8 

(𝛽𝛽 = 0.2618) (dashed line, right axis) and 𝑆𝑆 = 1500 and Γ = 8 (𝛽𝛽 = 0.5610) (solid line, 

left axis). Other parameters are 𝑘𝑘 = 2, 𝑁𝑁 = 44, 𝑀𝑀 = 1 and 𝑔𝑔 = 1 48⁄ . 

In the first case (identified by the dashed line in Figure 2.8) the two minima are separated by 

a local maximum. If the initial wound size, 𝑙𝑙𝑤𝑤, is larger than the local maximum the wound will 
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open to the local minimum. Alternatively, if the value of the initial wound size is lower than the 

maximum, then the wound will close to 𝑙𝑙𝑤𝑤 = 0. In the second case, no positive equilibrium 

solutions exist so the wound will always close from any initial size. The transition from case 1 to 

case 2 occurs when the control parameter 𝛽𝛽 is increased, i.e. the balance between adhesion versus 

apical line tension is modified in the favour of adhesion. In this case the energy minimum attains 

the same value as the maximum and disappears, leaving no equilibrium state with positive 𝑙𝑙𝑤𝑤, 

which indicates that the wound dimension decreases to zero. Physically the cells are driven by 

adhesion to “zip up” the wound, as the contractile resistance is insufficient to exert a countervailing 

force, 

𝑑𝑑𝐸𝐸∗(𝑙𝑙𝑤𝑤)
𝑑𝑑𝑙𝑙𝑤𝑤

=
4𝜙𝜙𝑀𝑀𝑙𝑙𝑤𝑤

3

𝑁𝑁 −𝑀𝑀
− �

4𝜙𝜙𝑀𝑀
𝑁𝑁 −𝑀𝑀

+
1
𝛽𝛽
� 𝑙𝑙𝑤𝑤 +

𝑙𝑙𝑤𝑤�1−𝑀𝑀
𝑁𝑁

�1 − 𝑙𝑙𝑤𝑤
2

𝑁𝑁

+ 1 = 0. 

A slightly simplified form of the equation for the energy derivative function can be obtained by 

using the assumption that 𝑁𝑁 >> 1 and, using Taylor expansion (in 1 𝑁𝑁⁄ ), we obtain the equation 

𝑑𝑑𝐸𝐸∗(𝑙𝑙𝑤𝑤)
𝑑𝑑𝑙𝑙𝑤𝑤

= −�
4𝜙𝜙

𝑁𝑁 −𝑀𝑀
+

1
𝛽𝛽𝑁𝑁

� 𝑙𝑙𝑤𝑤
3 + �

4𝜙𝜙𝑀𝑀
𝑁𝑁 −𝑀𝑀

+
1
𝛽𝛽
− 1� 𝑙𝑙𝑤𝑤 − 1 = 0. 

Thus, the equilibrium wound size corresponds to the positive root of a cubic equation of the form 

−𝑎𝑎𝑙𝑙𝑤𝑤
3 + 𝑏𝑏𝑙𝑙𝑤𝑤 − 1 = 0, 

where 𝑎𝑎 > 0 for any parameter combination. So, if 𝑏𝑏 < 0 no positive roots exist, i.e. the wound will 

always close. We let 𝜀𝜀 = 4𝑀𝑀 (𝑁𝑁 −𝑀𝑀)⁄ , which is a small positive number for 𝑁𝑁 >> 𝑀𝑀. Thus, a 

sufficient condition for wound closure is 

𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚
𝐿𝐿𝑝𝑝

< 1 − 𝜀𝜀 = 1 −
4𝑘𝑘𝑔𝑔1 2⁄ 𝐴𝐴𝑝𝑝2 3⁄ 𝑀𝑀
𝑆𝑆(𝑁𝑁 −𝑀𝑀) . 

This suggests that the wound in the simulations with cells in the soft regime, 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚 𝐿𝐿𝑝𝑝⁄ < 1, will 

always close if 𝑁𝑁 is sufficiently large. 

 Using the above expression for the energy as a function of wound size we can determine 

numerically the positive roots of the energy derivative function: 𝑑𝑑𝐸𝐸∗(𝑙𝑙𝑤𝑤) 𝑑𝑑𝑙𝑙𝑤𝑤⁄ = 0. Comparing 

these with results from the full numerical simulations of the CPM (Figure 2.9), we obtain a 

reasonable approximation of the equilibrium wound size and of the transition to possible wound 

closure when the parameters 𝑆𝑆 and Γ are varied. For example, for the particular case of Γ = 2, 

𝑆𝑆 = 200 and an initial wound 𝑙𝑙𝑤𝑤 = 1, the system corresponds to a hard regime in which the wound 
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will open and reach an equilibrium value of around ~1.2 (blue solid line). However, if the initial 

wound size is lower than 𝑙𝑙𝑤𝑤 = ~0.2 (blue dashed line), then the wound will start to collapse and 

eventually close. Thus, whether or not the wound size 𝑙𝑙𝑤𝑤 is larger or smaller than the location of the 

energy maximum, which corresponds to an unstable wound solution, will determine whether or not 

the wound will close or open. In addition, if we keep constant all the parameters but increase the 

adhesion coefficient 𝑆𝑆, the local maximum corresponding to 𝑙𝑙𝑤𝑤 disappears, implying that the wound 

will close independently of its initial size. 

We then used this theoretical approach to the equilibrium wound size and closure threshold 

to investigate the dependence on the number of cells, 𝑁𝑁. Varying the control parameter 

𝛽𝛽 = 𝐿𝐿𝑝𝑝 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚⁄ , which changes the relative strength of adhesion versus contraction, we found that the 

threshold for spontaneous wound closure from any initial size (i.e. when the open equilibrium 

wound state disappears) shifts towards higher adhesion values as 𝑁𝑁 is increased (Figure 2.10a) and 

approaches the boundary between the hard and soft regime, 𝛽𝛽 = 1, for large 𝑁𝑁. The equilibrium 

wound size also increases with the number of cells as 𝑙𝑙𝑤𝑤~√𝑁𝑁 (Figure 2.10b). This is because in the 

hard regime the cells contract their perimeter when a wound is created, which is then balanced by 

the increase of wound perimeter. Since the contractile tension term in the energy function is 

proportional to the number of cells, the equilibrium is reached for a larger wound size as the cell 

number increases. However, in real tissues, it is likely that the number of cells affected by the 

mechanical perturbation due to injury is limited to a finite neighbourhood of the wound (e.g. due to 

adhesion to underlying tissue), which was not taken into account in our theoretical analysis. 

 In addition to relaxing the tension in the tissue, by increased adhesion or reduced perimeter 

contraction, other mechanisms can also contribute to the process of wound closure. An example of 

this is the formation of a supra-cellular purse string that contracts the perimeter of the wound 

(Vedula et al., 2015). This mechanism can be easily included in the energy function as an extra term 

similar to the cell perimeter contraction term, 

Γ∗ 2𝐿𝐿𝑤𝑤2,⁄  

with a contraction strength of Γ∗. We can then use our theoretical approximation to determine the 

equilibrium wound size from the positive root of the energy derivative function. As expected, 

increasing the strength of the purse string, Γ∗, the wound closure threshold shifts further into the 

hard regime meaning that wound closure could be favourable even for a system in the hard regime 

(Figure 2.11). 
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Figure 2.9. Comparison of the theoretical approximation of equilibrium with the direct 

numerical results from the CPM simulations; showing the normalised wound area as a 

function of the adhesion coefficient 𝑆𝑆 for different values of the line tension parameter Γ. 

The solid line represents the local energy minimum and the dashed line is the local energy 

maximum. Other parameters are 𝑘𝑘 = 2 and 𝑁𝑁 = 44 on a 160 × 160grid of hexagonal pixels 

with one cell removed, 𝑀𝑀 = 1. 
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(a) 

 

(b) 

Figure 2.10. Equilibrium wound size obtained from the theoretical approximation: a) stable 

equilibrium wound size (solid line) and unstable equilibrium wound size (dashed line) 

against 𝛽𝛽 = 𝐿𝐿𝑝𝑝 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚⁄ . The parameters are Γ = 6, 𝑘𝑘 = 2, 𝐴𝐴𝑝𝑝 = 582 with one cell removed, 

𝑀𝑀 = 1, for different number of cells in the system 𝑁𝑁 = (50,100,1000,10000,100000); b) 

same as a) but the wound size, vertical axis, is rescaled as 𝑙𝑙𝑤𝑤 √𝑁𝑁⁄ .  
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Figure 2.11. Equilibrium wound size calculated from the theoretical approximation, with 

the addition of the contractile purse string around the wound. Stable equilibrium wound size 

(solid line) and unstable equilibrium wound size (dashed line) against 𝛽𝛽 = 𝐿𝐿𝑝𝑝 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚⁄ . The 

parameters are Γ = 6, 𝑘𝑘 = 2, 𝐴𝐴𝑝𝑝 = 582 and 𝑁𝑁 = 44 with one cell removed, 𝑀𝑀 = 1, for 

different strengths of the contraction of the wound perimeter Γ∗ = (0, Γ 4⁄ , Γ 2⁄ , Γ). 
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2.4  DISCUSSION 

We have used the CPM to describe an epithelium including simple mechanical 

representations of adhesion, contraction and pressure in the cells (Graner & Glazier, 1992; Kabla, 

2012; Szabo et al., 2010). Using these components, we find the cells occur in two regimes, either a 

hard regime where cell shape is governed by the contractile line tension, or in a soft regime, where 

the cell shape is determined by adhesion. This is similar to what has been described using a vertex 

model (Farhadifar et al., 2007). However, by implementing a CPM model we were able to obtain a 

more accurate representation of cell shapes when compared with the vertex model, particularly of 

the cell shapes that correspond to a soft regime. Additionally, our CPM model also allowed us to 

more precisely characterize the dynamics of cell boundaries, yielding simulations that are in 

agreement with previous experimental observations. In particular, we found that for steady state 

conditions apical junctions of cells exhibit properties that are well characterised by a hard regime in 

the model. The results demonstrate an advantage of the CPM approach compared to the use of 

vertex models. 

Using our cell representation with an added microscopic wound, we observe that the wound 

can increase (open) or decrease (close) its area depending on the relative balance between adhesion 

and line tension. Experimental data indicate that performing a micro-wound by laser irradiation 

leads to a rapid relaxation of the perimeter of the injured area (Antunes et al., 2013; Fernandez-

Gonzalez & Zallen, 2013) followed by the reorganisation of the junction around the injury.  

Combined with our theoretical analysis, these observations imply that for a wound to close it 

is necessary for the properties of the cells to change to favour the remodelling of the junctional 

organisation around the wound. Evidence in the literature suggests that the response of cells to the 

wounding process is complex and may involve different complementary and overlapping 

mechanisms that involve biochemical or mechanical signals (Abreu-Blanco et al., 2012; Anon et al., 

2012; Antunes et al., 2013; Brugues et al., 2014; Fernandez-Gonzalez & Zallen, 2013; Tamada, 

Perez, Nelson, & Sheetz, 2007). For example, it has been described that calcium waves around the 

wound site are able to propagate waves of myosin activation (contractility) that alter the 

morphology of the cells surrounding the wound, ultimately leading to the formation of a contractile 

purse string (Antunes et al., 2013). On the other hand, it has been shown that myosin II is required 

for cadherin accumulation at the ZA (Shewan et al., 2005; Smutny et al., 2010), which suggests that 

myosin can influence cell-cell adhesion as well as contributing to line tension in junctions. Another 

factor that may influence wound closure is lamellipodial motility, which allows cells bordering a 

wound to migrate into, and thereby close the wound (Abreu-Blanco et al., 2012; Anon et al., 2012). 
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Cadherin adhesion is also required for the development of higher and polarized traction forces 

within epithelial sheets (Mertz et al., 2013; Weber, Bjerke, & DeSimone, 2012). However, whether 

lamellipodial migration is coordinated or influenced by changes in cell-cell adhesion during wound 

healing is yet to be determined. Potentially, the complex interplay between these mechanisms may 

alter the properties of the cells surrounding a wound to ultimately favour the wound closure process. 

Our theoretical analysis allowed us to estimate the equilibrium wound size using some 

assumptions. We found that when adhesion is weaker than a critical value (or equivalently apical 

tension is above a certain threshold) an open wound represents the equilibrium state. However, the 

basin of attraction of the equilibrium state is limited by a minimum wound size (corresponding to 

the energy maximum) and wounds below this threshold close spontaneously. This can have several 

biological implications, particularly for microscopic defects in the monolayer on the scale of single 

cells. An interesting example occurs when individual cells undergo apoptosis within confluent 

epithelia. Under these conditions, the apoptotic cell contracts and reduces its apical area to 

eventually be extruded from the monolayer. Contraction of the dying cell (Brugues et al., 2014; 

Kuipers et al., 2014; Monier et al., 2015) alters the shapes of its neighbouring cells, as the 

neighbours are pulled by the dying cell through cadherin-based cell-cell adhesion (Grieve & 

Rabouille, 2014; Lubkov & Bar-Sagi, 2014). Thus, the active contraction of the dying cell could be 

required to reduce its apical area below a minimal threshold, allowing neighbouring cells to 

spontaneously heal the monolayer at the same time dying cells are being extruded. 

Similarly, the threshold in the wound size may have some relation to the purse string 

mechanism of wound closure in small wounds, where an actomyosin contractile ring is formed in 

the cells that border the wound (Abreu-Blanco et al., 2012; Antunes et al., 2013; Fernandez-

Gonzalez & Zallen, 2013). In this case the purse string contracts, thus reducing the wound size 

below the threshold that would allow it to close spontaneously even if an open wound equilibrium 

solution exists. However, for larger wounds, it is anticipated that higher forces could be required for 

this process to occur, which indeed can be facilitated if surrounding cells actively participate in the 

healing process as has been suggested recently (Kuipers et al., 2014). 

Our results thus indicate that for the above-mentioned cases, either a change in contractility 

that helps to reduce the area size of the wound or an increase in adhesion (or reduction in tension) 

will favour spontaneous wound closure regardless of the initial size of the wound. Moreover, as 

cells at steady state behave like those in a hard regime, our modelling data also propose that for 

wounds which are larger than a few cells, changes in the balance between contraction and adhesion 

is required for non-monotonous wound closure to occur. In particular, the properties of apical 
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junctions of cells needs to be modified in order to facilitate the remodelling required for efficient 

wound closure.  
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Chapter 3: Simulating Cell Islands with the CPM  

3.1  INTRODUCTION 

In this chapter we use the two-dimensional CPM, introduced in Chapter 2, to investigate the 

changes in the size and morphology of a simple cluster of connected cells we refer to as cell islands. 

These cell clusters are not a common occurrence in nature; however, they can be used in biological 

experiments to investigate the properties of cells, such as the tension in cell junctions (Coburn et al., 

2016), cancer growth (Aceto et al., 2014), and as an alternate to the free edge of an epithelial sheet. 

Cell island systems have been a component in CPM studies beginning with the 

investigations of cell sorting. The boundaries of cells with high energy contributions decrease in 

length allowing those cells with smaller contributions of energy to increase their boundary lengths, 

organising the cells in the cluster to change from high energy configurations to lower energy. The 

differences in the energy between the boundaries of the cells result in the organisation of the cells in 

the cluster into structures representative of biological cells (Glazier & Graner, 1993; Graner & 

Glazier, 1992). The properties of cell clusters can also be applied to the growth of certain cells, such 

as tumours. The growth of a cluster is affected by the stiffness parameter, i.e. more cells are 

contained in a cluster if there is less compressibility (greater stiffness). However, the cell 

organisation and morphology of the cluster can be greatly affected by the introduction of motility to 

the system (J. F. Li & Lowengrub, 2014). Differences in adhesion on the boundaries between the 

cells can lead to the deformation of the cluster. Parameters, such as adhesion, are dependent on the 

orientation differences between cells, for example, cell clusters can become elongated where cells 

align in orientation (Zajac, Jones, & Glazier, 2003).  

The geometry of the cell island is similar to that of the cell monolayer with a microscopic 

wound, see Chapter 2. In cell clusters the cells are surrounded by a free edge instead of the free 

edge surrounded by cells as in the case of the wound. 

In this chapter we simulate a single cell and cell islands with two or more cells with the two-

dimesional CPM with three mechanisims: an area constraint, a perimeter contraction, and adhesion 

between cells. The cell area and perimeter values, which influence the cell and cell island size and 

geometry, achieve an energy equilibrium that can be approximated by minimising the energy 

function. We compare the simulations and optimisation solutions of a simplified energy function 

with the application of various assumptions and constraints. The similarities and differences 
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between the simulations and optimisation solutions of the cells and cell island sizes and shapes from 

the CPM enegy function are discussed, together with their causes.  
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3.2  CPM SIMULATION OF A CELL ISLAND 

A cell island aggregate, see Figure 3.1, can occur as an artefact of the micro-wound case in 

Chapter 2. The artefact occurs in the simulation when the wound becomes larger than the size of the 

periodic boundaries of the system. In such a case the free edge of the wound “wraps” itself around 

the cells, compressing them to smaller proportions than their preferred area and perimeter. This 

change transforms the simulated micro-wound into the simulation of a cell island.  

 

Figure 3.1. An example of a CPM simulation of a cell island with 37 cells.  

The same energy function and mechanisms from the CPM simulations in Chapter 2 are 

applied to the cell island simulations. The CPM energy function for the cell island aggregate is the 

same as the energy function of the micro-wound, Function (2.3), except the variables are specific to 

the cell island case. This means the energy function for the cell island is written as  

 
𝐸𝐸 =

𝑘𝑘
2
��𝐴𝐴𝑗𝑗 − 𝐴𝐴𝑝𝑝�
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��𝐿𝐿𝑗𝑗 − 𝐿𝐿𝑝𝑝�
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𝑁𝑁

𝑗𝑗

+
𝑆𝑆
2
𝐿𝐿𝐼𝐼 + 𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝜕𝜕𝑎𝑎𝑛𝑛𝜕𝜕, ( 3.1 ) 

 

where 𝐿𝐿𝑝𝑝 = 𝑆𝑆 2Γ⁄  is the preferred cell perimeter, 𝐿𝐿𝐼𝐼 is the perimeter of the cell island and the third 

term arises due to the absence of adhesion around the boundary of the island. Even though the 

physical representation of the cell island system is different to that for the wound, the mechanisms 

of the area constraint, perimeter contraction, adhesion, and the application of the CPM does not 

change from Chapter 2.  

 The initial cell configurations of all simulations in this chapter for three dimensions were 

generated by creating a configuration of 25 10 × 10 × 5 pixel square prism cells in a sheet located 

in a 50 × 50 × 10 pixel system and a 50 × 50 × 5 empty region above the cell sheet.  These 

configurations were run with the parameters 𝑘𝑘 = 100, the 𝑆𝑆 and Γ ratio 𝛽𝛽 = 1 and 𝑇𝑇 = 2000 until 
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an energy equilibrium was reached. These simulations generated cell configurations with cross 

sections of the cells similar to Figure 4.3b. Once an energy equilibrium was reached the modified 

cell parameter values were adjusted and the simulation continued to run, obtaining the observed 

results. 
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3.3  APPLICATION OF THE MODEL TO A SINGLE ISOLATED 
CELL 

Before investigating cell islands, we consider a single cell case. Implementing the model 

with a single cell will include only two of the three mechanisms from the energy function, namely 

the area constraint and the perimeter contraction. The interaction between the two mechanisms in 

the single cell size and shape can be observed. 

In the simulations a single cell’s size and shape is determined by the interaction between the 

perimeter contraction parameter, Γ, area constraint parameter, 𝑘𝑘, and the preferred area, 𝐴𝐴𝑝𝑝. We 

understand that parameter 𝑘𝑘 maintains the cell area close to the preferred area and parameter Γ 

attempts to reduce the cell’s perimeter to zero. This means that increasing 𝑘𝑘 will make it more 

difficult for the cell area to differ from the preferred area and increasing Γ will decrease the cells 

perimeter and size. 

The equilibrium state of the single cell can be characterised by the cell area and perimeter. 

The simulation results are compared to an optimisation solution resulting from the optimisation 

problem described below.  

We assume all cells have a shape categorised by the cell area and perimeter. The cell 

perimeter squared cannot fall below a particular area, i.e. 𝐴𝐴 ≤ 𝑔𝑔𝐿𝐿2. The value of 𝑔𝑔 is the ratio of 

area and perimeter squared, 𝐴𝐴 𝐿𝐿2⁄ , of a defined shape, referred to as the minimum shape in Chapter 

2, and occurs when 𝐴𝐴 = 𝑔𝑔𝐿𝐿2. In an unrestrictive lattice the minimum shape is represented by a 

circle; however, in a restrictive lattice the cell is instead represented by a polygon. Due to the 

selection of hexagonal pixels the polygon is a “hexagon”, see Figure 2.4, to replicate the 

simulations, and the ratio is given as 𝑔𝑔 = 1 48⁄ .  

Only the interaction between the cell area constraint and cell perimeter contraction is 

expressed in the energy function for a single cell,   

 
𝐸𝐸(𝐴𝐴, 𝐿𝐿) =

𝑘𝑘
2
�𝐴𝐴 − 𝐴𝐴𝑝𝑝�

2
+
Γ
2
𝐿𝐿2. ( 3.2 ) 

Additionally, simple conditions are applied, namely that the cell area and perimeter are non-

negative and the inequality discussed previously between the cell area and perimeter, i.e.  𝐴𝐴 ≤ 𝑔𝑔𝐿𝐿2.  

 An optimisation problem can be expressed with the energy Function (3.2) and conditions 

giving the Lagrangian function 

 
𝐸𝐸∗(𝐴𝐴, 𝐿𝐿, 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3) =

𝑘𝑘
2
�𝐴𝐴 − 𝐴𝐴𝑝𝑝�

2
+
Γ
2
𝐿𝐿2 

+𝜆𝜆1(𝐴𝐴 − 𝑔𝑔𝐿𝐿2) + 𝜆𝜆2(−𝐴𝐴) + 𝜆𝜆3(−𝐿𝐿), 
( 3.3 ) 

with the use of Karush-Kuhn-Tucker (KKT) conditions (Lange, 2004). The KKT conditions are a 

generalisation of the equality conditions used with Lagrangian multipliers to incorporate the 
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inequalities of the problem. The Lagrangian Function (3.3) with these conditions results in the 

simultaneous equations 

 𝜕𝜕𝐸𝐸∗(𝐴𝐴, 𝐿𝐿, 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3)
𝜕𝜕𝐴𝐴

= 𝑘𝑘�𝐴𝐴 − 𝐴𝐴𝑝𝑝� + 𝜆𝜆1 − 𝜆𝜆2 = 0,  

 𝜕𝜕𝐸𝐸∗(𝐴𝐴, 𝐿𝐿, 𝜆𝜆1,𝜆𝜆2, 𝜆𝜆3)
𝜕𝜕𝐿𝐿

= 𝛤𝛤𝐿𝐿 − 2𝜆𝜆1𝑔𝑔𝐿𝐿 − 𝜆𝜆3 = 0, 
 

 𝜆𝜆1(𝐴𝐴 − 𝑔𝑔𝐿𝐿2) = 0,  

 𝜆𝜆2(−𝐴𝐴) = 0  

and  

 𝜆𝜆3(−𝐿𝐿) = 0.  

The results of these simulations equations need to satisfy the inequalities of  

 𝜆𝜆1 ≥ 0, 𝜆𝜆2 ≥ 0, 𝜆𝜆3 ≥ 0, (𝐴𝐴 − 𝑔𝑔𝐿𝐿2) ≤ 0,−𝐴𝐴 ≤ 0 and − 𝐿𝐿 ≤ 0.  

In this problem there are eight different cases including (𝜆𝜆1 = 0, 𝜆𝜆2 = 0, 𝜆𝜆3 = 0), (𝜆𝜆1 >

0, 𝜆𝜆2 = 0, 𝜆𝜆3 = 0), (𝜆𝜆1 = 0, 𝜆𝜆2 ≥ 0, 𝜆𝜆3 = 0), (𝜆𝜆1 = 0, 𝜆𝜆2 = 0, 𝜆𝜆3 ≥ 0), (𝜆𝜆1 ≥ 0, 𝜆𝜆2 ≥ 0, 𝜆𝜆3 = 0), 

(𝜆𝜆1 = 0, 𝜆𝜆2 ≥ 0, 𝜆𝜆3 ≥ 0), (𝜆𝜆1 ≥ 0, 𝜆𝜆2 = 0, 𝜆𝜆3 ≥ 0) and (𝜆𝜆1 ≥ 0, 𝜆𝜆2 ≥ 0, 𝜆𝜆3 ≥ 0). The only solution 

that satisfies the equations and inequalities is from the case (𝜆𝜆1 ≥ 0, 𝜆𝜆2 = 0, 𝜆𝜆3 = 0) and gives the 

solution of the cell area,  

 𝐴𝐴1 = 𝐴𝐴𝑝𝑝 −
Γ

2𝑔𝑔𝑘𝑘
, ( 3.4 ) 

and the solution of the cell perimeter,  

 
𝐿𝐿1 = �

𝐴𝐴
𝑔𝑔

= �
𝐴𝐴𝑝𝑝
𝑔𝑔
−

Γ
2𝑔𝑔2𝑘𝑘

. ( 3.5 ) 

These solutions show that the area of a single cell, 𝐴𝐴1, and perimeter of a single cell, 𝐿𝐿1, 

decrease with the perimeter contraction parameter Γ, see Figure 3.2a and 3.2c, respectively, and 

increase with the area constraint 𝑘𝑘, see Figures 3.2b and 3.2d, respectively. The cell can disappear 

when the area and perimeter equal zero for both the simulation and optimisation solutions, shown in 

Figure 3.3, when 𝐴𝐴𝑝𝑝 ≤ Γ (2𝑔𝑔𝑘𝑘)⁄ . 

The simulation results and the mathematical optimisation solutions above are qualitatively 

similar. However, a few differences between them are a result of the restrictions of the discretised 

lattice structure of the simulations. The main differences are observed in Figure 3.2c and 3.2d, 

showing the cell perimeter against the parameters 𝑘𝑘 and Γ, respectively. They show differences 

between the simulations and optimisation solution occur at comparatively small values of the 

contraction parameter of those values tested, such as Γ = 1. With “low” values of contraction the 

deviation of the cell’s perimeter requires less energy, and therefore the noise in the system distorts 

the cell’s shape more readily than a cell with a larger contraction parameter. This trend is also 
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replicated in the ratio 𝑔𝑔 = 𝐴𝐴 𝐿𝐿2⁄  against 𝑘𝑘 and Γ, shown in Figure 3.2e and 3.2f, respectively. The 

equilibrium results of the cell simulations and 𝑔𝑔 = 1 48⁄ , representing the “hexagonal” shape of the 

cell on the lattice (shown on the figure as a black line), display a large difference between them for 

“small” values of the contraction, such as Γ = 1. The values of 𝑔𝑔 from the simulation are smaller 

than 1 48⁄ , representing distorted shapes. These differences are similar to the differences in the 

perimeters because the ratio is calculated with the perimeter, 𝑔𝑔 = 𝐴𝐴 𝐿𝐿2⁄ . 

Furthermore, there is a difference between the simulation and the optimisation solution cell 

area, observed in Figure 3.3a, which is caused by the lattice and smaller preferred area. For 

simulations with an area constraint parameter  𝑘𝑘 = 3 and perimeter contraction parameter greater 

than 5, the simulation cell area results are greater than the optimisation solutions. The optimisation 

solutions tend towards zero while the simulation cell area increases as Γ increases. As the cell 

becomes smaller in the simulations there are situations where the decrease in the cell perimeter 

requires the cell to initially increase its perimeter. This means the cell can become fixed at a larger 

perimeter with larger perimeter contraction coefficient values and no longer decreases its perimeter 

to achieve the calculated equilibrium. This artefact can be eliminated by increasing the amount of 

noise, or for larger preferred area values as shown in Figure 3.2. However, the artefact of the cell 

perimeter, discussed above, is still observable in both situations. 
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(a)      (d) 

 
(b)      (e) 

 
(c)      (f) 

Figure 3.2. Plots, with the preferred area 𝐴𝐴𝑝𝑝 = 500, for a single cell simulated on a 

hexagonal pixel grid with the CPM showing the (a) mean cell area with the geometric 

solution from Equation (3.5), (b) mean cell perimeter with the geometric solution from 

Equation (3.4) and (c) ratio 𝑔𝑔 = 𝐴𝐴 𝐿𝐿2⁄  against the perimeter contraction, Γ, for different area 

constraint parameters, 𝑘𝑘; and the (d) mean cell area with the geometric solution from 

Equation (3.5), (e) mean cell perimeter with the geometric solution from Equation (3.4) and 

(f) ratio 𝑔𝑔 = 𝐴𝐴 𝐿𝐿2⁄  against the area constraint parameter, 𝑘𝑘, with different perimeter 

contractions, Γ. Each point is averaged over the last 50 of 1000 iterations and the 

simulations have a temperature of 𝑇𝑇 = 100.  
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(a)       (d) 

 
(b)       (e) 

 
(c)       (f) 

Figure 3.3. Plots, with the preferred area 𝐴𝐴𝑝𝑝 = 100, for a single cell simulated on a 

hexagonal pixel grid with the CPM showing the (a) mean cell area with the geometric 

solution from Equation (3.5), (b) mean cell perimeter with the geometric solution from 

Equation (3.4) and (c) ratio 𝑔𝑔 = 𝐴𝐴 𝐿𝐿2⁄  against the perimeter contraction, Γ, for different area 

constraint parameters, 𝑘𝑘; and the (d) mean cell area with the geometric solution from 

Equation (3.5), (e) mean cell perimeter with the geometric solution from Equation (3.4) and 

(f) ratio 𝑔𝑔 = 𝐴𝐴 𝐿𝐿2⁄  against the area constraint parameter, 𝑘𝑘, with different perimeter 

contractions, Γ. Each point is averaged over the last 50 of 1000 iterations and the 

simulations have a temperature of 𝑇𝑇 = 100. 
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3.4  IMPLEMENTATION OF THE CPM FOR TWO OR MORE 
CELLS  

Previously we discussed the effect on the morphology and size of a single cell from the 

CPM with only the area constraint and perimeter contraction mechanisms. However, cell islands 

cannot exist with only these two mechanisms in the model, given that the cells would not be 

attached to each other they would separate from one another at any time due to cell movement or 

change in the cell size. The adhesion mechanism is required to attach the cells together to form the 

cell island case.  

The introduction of adhesion with multiple cells influences both the size and shape of the 

cells and the cell island shape itself. This is understandable because the combination of the adhesion 

and perimeter contraction in the energy Function (3.1) now produces the preferred perimeter 

𝐿𝐿𝑝𝑝 = 𝑆𝑆 2Γ⁄  for the cells. The preferred perimeter in this cell island case is the total perimeter of a 

cell and not the partial perimeter of the interconnected junctions between cells. The preferred 

perimeter leads to the formation of the hard and soft regimes discussed in Chapter 2. 

3.4.1  Geometric optimisation problem for a cell island 

As with the single cell we can approximate the cell area and perimeter and, in addition, the 

cell island area and perimeter using the energy function. For an island with two or more cells we 

assume all cells have the same shape, area and perimeter, and all cells are connected to each other in 

the cluster. The area of the cell island is then the sum of 𝑁𝑁 cells’ areas, 𝐴𝐴𝐼𝐼 = 𝑁𝑁𝐴𝐴.  

Unlike the single cell, the cell island includes adhesion between the cell boundaries that is 

included in the energy function and as such we obtain the energy function, 

 
𝐸𝐸(𝐴𝐴, 𝐿𝐿, 𝐿𝐿𝐼𝐼) =

𝑁𝑁𝑘𝑘
2
�𝐴𝐴 − 𝐴𝐴𝑝𝑝�

2
+
𝑁𝑁Γ
2
�𝐿𝐿 − 𝐿𝐿𝑝𝑝�

2
+
𝑆𝑆
2
𝐿𝐿𝐼𝐼 + 𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝜕𝜕𝑎𝑎𝑛𝑛𝜕𝜕, ( 3.6 ) 

which is similar to energy Function (2.4) of the wound except instead of the wound perimeter there 

is the perimeter of the cell island. Additionally, there are the simple constraints that the cell area, 

cell perimeter, cell island area and the cell island perimeter are non-negative. The inequality 

between the cell area and perimeter, 𝐴𝐴 ≤ 𝑔𝑔𝐿𝐿2, discussed in the single cell case also holds and we 

will assume that this inequality is similar to the cell island area and cell island perimeter 𝐴𝐴𝐼𝐼 ≤ 𝑔𝑔𝐿𝐿𝐼𝐼2. 

An optimisation problem can be expressed with the energy Function (3.6) and conditions 

giving the Lagrangian function 

 
𝐸𝐸∗(𝐴𝐴, 𝐿𝐿, 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, 𝜆𝜆4, 𝜆𝜆5) =

𝑁𝑁𝑘𝑘
2
�𝐴𝐴 − 𝐴𝐴𝑝𝑝�

2
+
𝑁𝑁Γ
2
�𝐿𝐿 − 𝐿𝐿𝑝𝑝�

2
+
𝑆𝑆
2
𝐿𝐿𝐼𝐼 + 𝜆𝜆1(𝐴𝐴 − 𝑔𝑔𝐿𝐿2) 

+𝜆𝜆2�𝑁𝑁𝐴𝐴 − 𝑔𝑔𝐿𝐿𝐼𝐼2� + 𝜆𝜆3(−𝐴𝐴) + 𝜆𝜆4(−𝐿𝐿) + 𝜆𝜆5(−𝐿𝐿𝐼𝐼) + 𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝜕𝜕𝑎𝑎𝑛𝑛𝜕𝜕. 
( 3.7 ) 
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The Lagrangian Function (3.7) with the use of KKT conditions results in the simultaneous 

equations 

 𝜕𝜕𝐸𝐸∗(𝐴𝐴, 𝐿𝐿, 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, 𝜆𝜆4, 𝜆𝜆5)
𝜕𝜕𝐴𝐴

= 𝑘𝑘�𝐴𝐴 − 𝐴𝐴𝑝𝑝� + 𝜆𝜆1 − 𝜆𝜆2 = 0,  

 𝜕𝜕𝐸𝐸∗(𝐴𝐴, 𝐿𝐿, 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, 𝜆𝜆4, 𝜆𝜆5)
𝜕𝜕𝐿𝐿

= 𝛤𝛤𝐿𝐿 − 2𝜆𝜆1𝑔𝑔𝐿𝐿 − 𝜆𝜆3 = 0, 
 

 𝜕𝜕𝐸𝐸∗(𝐴𝐴, 𝐿𝐿, 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, 𝜆𝜆4, 𝜆𝜆5)
𝜕𝜕𝐿𝐿

= 𝛤𝛤𝐿𝐿 − 2𝜆𝜆1𝑔𝑔𝐿𝐿 − 𝜆𝜆3 = 0, 
 

 𝜆𝜆1(𝐴𝐴 − 𝑔𝑔𝐿𝐿2) = 0,  

 𝜆𝜆2�𝑁𝑁𝐴𝐴 − 𝑔𝑔𝐿𝐿𝐼𝐼2� = 0,  

 𝜆𝜆3(−𝐴𝐴) = 0,  

 𝜆𝜆4(−𝐿𝐿) = 0  

and  

 𝜆𝜆5(−𝐿𝐿𝐼𝐼) = 0.  

The results of these simultaneous equations need to satisfy the inequalities of  

 𝜆𝜆1 ≥ 0, 𝜆𝜆2 ≥ 0, 𝜆𝜆3 ≥ 0, 𝜆𝜆4 ≥ 0, 𝜆𝜆5 ≥ 0, 

  (𝐴𝐴 − 𝑔𝑔𝐿𝐿2) ≤ 0, �𝑁𝑁𝐴𝐴 − 𝑔𝑔𝐿𝐿𝐼𝐼2� ≤ 0,−𝐴𝐴 ≤ 0,−𝐿𝐿 ≤ 0 and − 𝐿𝐿𝐼𝐼  ≤ 0. 
 

In this problem there are 32 different cases depending on whether 𝜆𝜆𝑖𝑖 > 0 or 𝜆𝜆𝑖𝑖 = 0 for 

= 1, 2, 3, 4, or 5. There are only two cases that produce solutions that satisfy the equations and 

inequalities. The first case, (𝜆𝜆1 ≥ 0, 𝜆𝜆2 ≥ 0, 𝜆𝜆3 = 0, 𝜆𝜆4 = 0, 𝜆𝜆5 = 0), results in 𝐿𝐿 > 𝐿𝐿𝑝𝑝, 𝐴𝐴 = 𝑔𝑔𝐿𝐿2, 

𝑁𝑁𝐴𝐴 = 𝑔𝑔𝐿𝐿𝐼𝐼2 and the cubic equation  

𝐴𝐴
3
2 + 𝐴𝐴1𝐴𝐴

1
2 + �

𝑆𝑆
4𝑘𝑘�𝑔𝑔𝑁𝑁

−
𝑆𝑆

4𝑘𝑘�𝑔𝑔
� = 0. 

The second case, (𝜆𝜆1 = 0, 𝜆𝜆2 ≥ 0, 𝜆𝜆3 = 0, 𝜆𝜆4 = 0, 𝜆𝜆5 = 0), results in 𝐿𝐿 = 𝐿𝐿𝑝𝑝, 𝑁𝑁𝐴𝐴 = 𝑔𝑔𝐿𝐿𝐼𝐼2 and the 

cubic equation  

𝐴𝐴
3
2 − 𝐴𝐴𝑝𝑝𝐴𝐴

1
2 +

𝑆𝑆
4𝑘𝑘�𝑔𝑔𝑁𝑁

= 0. 

These equations show the results are divided between two cell regimes: the hard regime when 

𝐿𝐿 > 𝐿𝐿𝑝𝑝, and the soft regime when 𝐿𝐿 = 𝐿𝐿𝑝𝑝. These regimes can be identified with the ratio 

𝛽𝛽 = 𝐿𝐿𝑝𝑝 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚⁄ < 1 for the hard regime, and 𝛽𝛽 ≥ 1 for the soft regime. The length measurement, 

𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚, is calculated from the preferred area specified in Equation (2.5), see Chapter 2. The solutions 

of these cubic equations give the cell perimeter as 

 
𝐿𝐿 = �

√𝐴𝐴

�𝑔𝑔
𝛽𝛽 < 1

𝐿𝐿𝑝𝑝 𝛽𝛽 ≥ 1
,  ( 3.8 ) 
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cell island perimeter as 

 
𝐿𝐿𝐼𝐼 =

√𝑁𝑁𝐴𝐴

�𝑔𝑔
, ( 3.9 ) 

and cell area as 

 

𝐴𝐴 =
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 . ( 3.10 ) 

Note that the cell area and perimeter solutions for the cell island are the same as for the 

single cell system when there is no adhesion in the system, 𝑆𝑆 = 0. 

3.4.2  Simulation of a cell island with two cells 

Initially we observe the effect of adding cell-cell adhesion on a single boundary between the 

two cells, see Figure 3.4. There is a clear difference in the morphology of the cells between the hard 

and soft regimes at the extremes. While some of the observations of the hard and soft regimes of 

cells are similar to those discussed in Chapter 2, there are also differences observed in the cell 

island perimeter and changes observed in the cell size. 

 
Figure 3.4. Plot of two cells with increasing adhesion from 𝑆𝑆 = 100, 200, 300, 400, 500 

and 1000. Other parameters are  𝑘𝑘 = 2, Γ = 2 and 𝐴𝐴𝑝𝑝 = 100 on a hexagonal pixel grid. 

 

𝑆𝑆 
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When 𝛽𝛽 < 1, a hard cell regime occurs. In a hard cell regime cells are stiff polygonal shapes 

and in the case of hexagonal cell pixels the cells themselves form hexagonal shapes. In the very 

hard regime in Figure 3.4, when 𝑆𝑆 = 100 the pair of cells are stiff with a hexagonal shape and a 

small connected edge between them. A much larger perimeter is seen on the free edge boundary. 

This is opposite to the concept of the cell island boundary having a minimum perimeter and affects 

the comparison between the simulation and the geometric solutions below. When increasing the 

value of adhesion and creating softer regimes, the interconnected cell boundary grows while still 

maintaining a polygonal shape. However, the two-cell island forms a hexagonal shape rather than 

two distinct hexagons.  

When 𝛽𝛽 ≥ 1, a soft regime occurs and the cell boundaries are more malleable, forming a 

more diverse collection of shapes. In softer regimes the boundary between the cells deforms, and 

the shapes of the cells are no longer polygonal. Larger adhesion values lead to the interconnected 

cell boundary deforming so that the total cell perimeter can achieve the larger preferred perimeter 

while using the minimum amount of cell edges connected to empty space, forming a hexagonal cell 

island. The deformations of the cells in the very soft regime, Figure 3.4 with 𝑆𝑆 = 1000, form 

tendril features inside the islands, the same tendril features seen in Chapter 2.  

With no adhesion, 𝑆𝑆 = 0, between the cells, the cells would form hexagonal shapes and the 

system would be the same as above with only the area constraint and perimeter contraction. This 

system is the same as the single cell case. 

The solutions of the cell perimeter, cell island perimeter and cell area in Equation (3.8), 

(3.9) and (3.10), respectively, are split into two expressions depending on the cell regime. AS in 

Chapter 2 the cell systems can be distinguished between the hard and soft regimes by the cell 

perimeter (Figure 3.5a). If a cell is in the hard regime the cell perimeter does not achieve the 

preferred cell perimeter. Instead the perimeter is larger than 𝐿𝐿𝑝𝑝 and is approximately 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚 (Figure 

3.5a). In a complete epithelial sheet the perimeter would be expected to be 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚. However, cells in 

the island case are able to shrink and as such the cells can be smaller than 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚, which is suggested 

in predictions of the cell perimeter solution, Equation (3.8) shown in Figure 3.5a when 𝛽𝛽 < 1. The 

difference in perimeter depends on how strong the area constraint parameter is. In the soft regime 

the preferred cell perimeter is reached.  

While Figure 3.5a shows the mean perimeter of a two-cell island system for simulations 

with different parameters, Figure 3.5b shows the plot of the mean cell area. In the hard regime the 

simulation reveals that the cells’ areas are smaller than the preferred area; however, the “softer” the 

regime the smaller the difference between the cell area and 𝐴𝐴𝑝𝑝. This is expected, because when the 

influence of the difference in perimeter is lowered in the energy, the cell perimeter becomes closer 

to the preferred perimeter, and the change in area becomes dominant. However, the cell never 
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reaches the preferred area, instead when in the soft regime the cell area is reduced further and the 

softer the system the smaller the cell area becomes.  

Qualitatively there are similarities in the behaviour and patterns between the equilibrium of 

the simulations and the geometric solutions to the geometric optimisation problem in Figure 3.5a, b, 

and e. However, this is not the case with the plot of the cell island perimeter in Figure 3.5d. The 

island perimeters in the simulations are larger than the geometric solutions in the hard regime by a 

factor of 1.2. Although, in the soft regime it appears that the simulation and geometric solutions 

begin to converge. This difference occurs because of the assumptions placed on both the cells and 

island and their shapes. As shown in Figure 3.4, when the two-cell island is in the hard regime the 

border of the island has an irregular edge, in this case two hexagon cells with a connected edge. 

Whereas in the soft regime, the two cells create a single hexagon to minimise the energy 

contribution of the cell island boundary, and as a result the cell island has a “smoother” edge. These 

edges are formed with the interaction between the cell boundaries and cell island boundary and 

change depending on the value of the regime parameter, 𝛽𝛽.  

Figure 3.5c shows the progression of the shape ratio, 𝑔𝑔, of the cells and Figure 3.5f shows 

the shape ratio of the island, 𝑔𝑔𝐼𝐼. We observe that in the hard regime the cell shape ratio is close to 

the value  1 48⁄  , representing “hexagons”, and decreases in softer regimes. This is a numerical 

representation of the system changing from “hexagonal” shapes in the hard regime, to shapes with a 

more malleable boundary with tendrils in the soft regime. However, for harder systems the island 

shape ratio begins smaller than  𝑔𝑔 = 𝐴𝐴 𝐿𝐿2⁄ , the “hexagonal” ratio, and for softer systems the value is 

closer to the “hexagonal” ratio.  

Ideally the difference between the simulations and the geometric solutions could be rectified 

by expressing 𝑔𝑔𝐼𝐼 as a function of the parameter 𝛽𝛽 or adhesion, 𝑆𝑆. However, this would require the 

simulation results beforehand to estimate the correction, although an approximated value can be 

added if needed. 

Understandably, in Figure 3.5, the larger the contraction the smaller the cell will attempt to 

become. However, the parameter 𝑘𝑘 can counter this cell behaviour as seen in Figure 3.5a which 

shows that the system “forces” the cell to follow the predicted approximations more closely given 

that it tries to keep the cell at the preferred area from which the predictions are taken. 

Other artefacts in the simulations can occur for a “small” value of the preferred area. In 

Figure 3.6 the simulations and geometric solutions are similar to Figure 3.5. The cell perimeter 

follows a similar pattern as seen before. However, in Figure 3.6b, when adhesion is large, 𝛽𝛽 > 2, 

the plot shows the difference increasing between the simulations and analytic solution, and the 

simulations show the cell area is larger than predicted. This effect is similar to the one shown in 

Figure 3.3 and occurs when the preferred cell perimeter is much larger than the preferred area, 
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given the number of pixels. At some value, in Figure 3.6b this is 𝛽𝛽 > 2, the perimeter of the system 

has a greater influence than the area in the energy equation. Given the area of the cells increase, the 

cell island area also increases, seen in Figure 3.6e, and hence the cell perimeter also increases, seen 

in Figure 3.6c, instead of following the geometry model behaviour. The energy cost of increasing 

the area is smaller than the energy change when increasing the cell perimeter to reach the preferred 

perimeter. All these differences can be attributed to the cells themselves which are intertwined 

tendril shapes, seen in Figure 3.4. The simulated cell’s size will increase to reach the preferred 

perimeter due to the restrictions of the lattice.  
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(a)        (d) 

 
(b)        (e) 

 
(c)       (f) 

Figure 3.5. Plots, with the preferred area 𝐴𝐴𝑝𝑝 = 500, for two-cell island simulated on a 

hexagonal pixel grid with the CPM showing the (a) mean cell perimeter with the geometric 

solutions from Equation (3.8), (b) mean cell area with the geometric solutions from 

Equation (3.10) and (c) ratio 𝑔𝑔 = 𝐴𝐴 𝐿𝐿2⁄  against parameter 𝛽𝛽, for different perimeter 

contractions, Γ; and the (d) mean cell island perimeter with the geometric solutions from 

Equation (3.9), (e) mean cell island area with the sum of the geometric solutions of cell area 

and (f) ratio 𝑔𝑔𝐼𝐼 = 𝐴𝐴𝐼𝐼 𝐿𝐿𝐼𝐼2⁄  against parameter 𝛽𝛽, for different perimeter contractions, Γ. Each 

measurement of the cell is averaged over the two cells for the last 50 of 1000 iterations and 

the island measurements are averaged over the last 50 of 1000 iterations. The simulations 

have a temperature of 𝑇𝑇 = 200 and area constraint parameter, 𝑘𝑘 = 2.  
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(a)       (c) 

 

(b)       (d) 

Figure 3.6. Plots, with the preferred area 𝐴𝐴𝑝𝑝 = 100, for two cell-island simulated on a 

hexagonal pixel grid with the CPM showing the (a) mean cell perimeter with the geometric 

solutions from Equation (3.8) and (b) mean cell area with the geometric solutions from 

Equation (3.10) against parameter 𝛽𝛽, for different perimeter contractions, Γ; and the (c) 

mean cell island perimeter with the geometric solutions from Equation (3.9) and (d) mean 

cell island area with the sum of the geometric solutions of cell area from Equation (3.10) 

against parameter 𝛽𝛽, for different perimeter contractions, Γ. Each measurement of the cell is 

averaged over the two cells for the last 50 of 1000 iterations and the island measurements 

are averaged over the last 50 of 1000 iterations. The simulations have a temperature of 

𝑇𝑇 = 200 and area constraint parameter, 𝑘𝑘 = 2. 
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3.4.3  Simulation of cell islands with more than two cells 

Islands with more than two cells follow the same characteristics as the two-cell island case; 

however, the structure of the island and the organisation of the cells are different. In the hard regime, 

𝛽𝛽 < 1, see Figure 3.7a, the cell boundaries are rigid and as such the cell island boundaries are also 

rigid. In the soft regime, 𝛽𝛽 ≥ 1, see Figures 3.7b and 3.7c, the cell boundaries are malleable, even 

forming tendrils in Figure 3.7c, and as a result the cell island boundary is much more regular. 

Aspects of the cell island morphology are best exhibited with a larger number of cells. Not 

only can the boundaries of a cell island be rigid in a hard regime, but the formation and optimal 

equilibrium configurations of the cell island can be difficult to achieve depending on the initial 

placement of the cells. Without an increase in fluctuation, from increased “noise”, on the cells’ 

boundaries, the cells become fixed and their configuration may not achieve the expected form. 

Softer, more malleable cells change their shape to geometrically pack themselves to achieve a 

minimum perimeter of the island, forming a “hexagonal” shape seen in Figure 3.7b. This is 

particularly evident on the edge of the island. In the soft regime we observe that there are physical 

differences between the outer layer of cells in contact with the empty space, see Figure 3.7b, 

compared to the cells surrounded by other cells. The outer layer of cells form “wedges” to fit the 

circular shape of the island, and the cell island is not restricted by this, forming any shape the 

parameters will allow. 

A change in the number of cells in the simulations or geometric solutions has no significant 

effect on the average cell and cell island perimeter, in Figures 3.8a and 3.8d, respectively. Figure 

3.8a plots the average cell perimeter against 𝛽𝛽, and shows that the number of cells in the island does 

not affect the cell perimeter, as the value of the cell perimeter is similar for different numbers of 

cells in an island. Also, Figure 3.8d plots the average cell island perimeter divided by the square 

root of the number of cells in the islands against 𝛽𝛽, and, as with the average cell perimeters, the 

value of the rescaled cell island perimeters are similar for different numbers of cells in the islands. 

However, the difference between the simulation values and the geometric solutions seen in Figure 

3.5d is also seen in Figure 3.8d. 

There is a small difference in the cell and cell island areas as 𝛽𝛽 increases between the 

different numbers of cells in the cell islands, in Figures 3.8b and 3.8e. Figure 3.8b plots the average 

area of the cells in the cell islands and Figure 3.8e plots the rescaled value of the cell island area 

divided by the number of cells in the cell islands.  The average area of the cells in the cell islands 

and the rescaled value of the cell island areas are equivalent. These figures suggest that systems 

with a smaller number of cells in the cell islands will have smaller cell areas than systems with cell 

islands containing a larger number of cells, especially for larger values of 𝛽𝛽 (i.e. soft cell regimes). 

This is most likely due to the cell island perimeter tending to a minimum contracting the boundary 
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of the cell island. We note that in Figures 3.8b and 3.8e there is a larger difference between the 

simulation and geometric solution values of the cell area when 𝛽𝛽 ≥ 4. This artefact is similar to the 

divergence between the simulation and geometric solution values in Figures 3.6b and 3.6d, which 

were caused by the perimeter mechanisms influencing the cells more than the area constraint 

mechanism for a “small” preferred area, 𝐴𝐴𝑝𝑝 = 100. The divergence occurs here but at a larger value 

of  𝛽𝛽 for a larger preferred area, 𝐴𝐴𝑝𝑝 = 500. This suggests that the artefact occurs for any value of 

𝐴𝐴𝑝𝑝 in the simulation of the cell island, but the value of 𝛽𝛽 the artefact occurs at depends on the value 

of 𝐴𝐴𝑝𝑝. 

Given that the cell perimeters are similar and the differences in the cell areas is small for 

different numbers of cells in cell islands, the shape ratio of cells, 𝑔𝑔, plotted in Figure 3.8c against 𝛽𝛽, 

is similar for cells in cell islands containing different numbers of cells. Figure 3.8f plots the shape 

ratio of the cell islands, 𝑔𝑔𝐼𝐼, against 𝛽𝛽 for cell islands containing different numbers of cells and 

shows that they are similar for any island size. The behaviour of both of these shape ratios is the 

same as the behaviour of the shape ratios of the islands with two cells in Section 3.4.2. 
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(a) 𝑆𝑆 = 1000       (b) 𝑆𝑆 = 2000 

 

(c) 𝑆𝑆 = 5000 

Figure 3.7. Example of cell islands a) in the hard regime (Γ = 6, 𝑆𝑆 = 1000, 𝛽𝛽 < 1) b) the 

soft regime (Γ = 6, 𝑆𝑆 = 2000, 𝛽𝛽 > 1), and c) very soft regime (Γ = 6, 𝑆𝑆 = 5000, 𝛽𝛽 > 1). 

Each simulation has the parameters 𝑘𝑘 = 2 and 𝑇𝑇 = 500. 
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(a)       (d) 

 
(b)       (e) 

 
(c)       (f) 

Figure 3.8. Plots, with the preferred area 𝐴𝐴𝑝𝑝 = 500, for cell islands simulated on a 

hexagonal pixel grid with the CPM showing the (a) mean cell perimeter with the geometric 

solutions from Equation (3.8), (b) mean cell area with the geometric solutions from 

Equation (3.10) and (c) ratio 𝑔𝑔 = 𝐴𝐴 𝐿𝐿2⁄  against parameter β, for different number of cells in 

the cell islands, 𝑁𝑁; and the (d) mean cell island perimeter with the geometric solutions from 

Equation (3.9), (e) mean cell island area with the sum of the geometric solutions of cell area 

and (f) ratio 𝑔𝑔𝐼𝐼 = 𝐴𝐴𝐼𝐼 𝐿𝐿𝐼𝐼2⁄  against parameter 𝛽𝛽, for different number of cells in the cell 

islands, 𝑁𝑁. Each measurement of the cell is averaged over the cells for the last 50 of 1000 

iterations and the island measurements are averaged over the last 50 of 1000 iterations. The 

simulations have a temperature of 𝑇𝑇 = 200 and area constraint parameter, 𝑘𝑘 = 2.  
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3.5  DISCUSSION 

The cell and cell island size are strongly influenced by the interacting mechanisms of the 

cell area constraint and perimeter contraction, and the cell and cell island shapes are influenced by 

the interacting mechanisms of the cell perimeter contraction and adhesion. 

In Chapter 2 a geometric representation was developed from the simulated system; however, 

in this case we consider an optimisation approximation of the energy function. These geometric 

solutions are comparable to the simulation results, with a few differences.  

The cell island can still be separated into a hard and soft regime as described for the 

epithelial layer in Chapter 2; however, with the addition of “empty space” cells can become smaller 

and hence the perimeters can become smaller than the calculated minimum perimeter, 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚. This 

behaviour is the same as the wound case in Chapter 2. Although there can be a decrease of the cell 

perimeter, the perimeter is still larger than the preferred perimeter, 𝐿𝐿𝑝𝑝, and the cells follow the same 

behaviour, with stiff polygon shapes in the hard regime and malleable cell perimeters in the soft 

regime.   

The different shapes of cells in the hard and soft regimes affect the perimeter of the free 

edge of the cell island and that of epithelial cell aggregates. The hard systems create stiff cells with 

a small number of fluctuations compared to the soft systems. This results in a cell island boundary 

with irregular edges created by the tiling of the cells. In addition, the cells have difficulty attaining 

the preferred perimeter due to the small number of fluctuations. These outcomes can be countered 

by increasing the noise of the system. Comparatively, softer systems create smoother boundaries 

due to the malleable nature of the cell boundaries. This difference between cells and the system 

edges in the simulation of the hard and soft regimes is the reason for the difference in results 

between the simulations and the geometric  solutions, since the optimisation assumes specific cell 

and cell island shapes. 

An unexpected result from the investigation of the cell island case is the behaviour of the 

cell island in a soft regime. Both the simulations and geometric solutions show the cell island will 

become smaller in softer regimes. However, it was found that the cells themselves follow this 

pattern as well. In addition, the cell area never reaches the preferred area of 𝐴𝐴𝑝𝑝, and the larger the 

contraction or the number of cells, the larger the decrease of the relative area. This result is due to 

only one mechanism acting on the perimeter of island, namely the perimeter contraction mechanism.   
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Chapter 4: The Three-Dimensional CPM and 
Single Cell Extrusion from an Epithelium 

4.1  INTRODUCTION 

In this chapter we investigate the extrusion of a modified cell, defined as a cell with 

different parameter values to its neighbours, from an epithelium using a three-dimensional CPM. 

The three-dimensional CPM is an extended version of the two-dimensional CPM from Chapter 2. 

The addition of the third dimension, height, allows the extruded cell in the simulations to interact 

with all its surrounding neighbours in the epithelium and provides space for the cell to extrude into, 

which a two-dimensional model does not.  

Epithelial cells have a high turnover rate that is essential for the upkeep of the protective 

epithelial layer (Blanpain et al., 2007; Hooper, 1956; Pellettieri & Sanchez Alvarado, 2007). This 

turnover or replenishment requires dead or dying cells to be extruded from the layer. Biological 

experiments show that certain factors, such as overcrowding in the system, can affect the rate of cell 

extrusion (Marinari et al., 2012). In addition, an actomyosin ring can form around the cell 

neighbours to extrude a cell by squeezing it out of the epithelium (Slattum et al., 2009). While 

pressure due to overcrowding can cause cells to extrude, this chapter focuses on the reorganisation 

of cells, the main use of the CPM, to extrude a modified cell out of the epithelium.  

Much like the two-dimensional CPM in Chapters 2 and 3 a geometric model of the cells can 

be implemented in three dimensions. These geometric models do not have to be derived from the 

CPMs but apply similar mechanisms of adhesion and contraction as energy components. Hannezo, 

Prost, and Joanny (2014) present a geometric model which describes epithelial cells and epithelium 

in three dimensions. These geometric models can be altered to generate additional information 

about the model and cells. As such the model presented in Hannezo et al. (2014) is examined and 

conditions are applied to generate information about the homeostasis state of the epithelium, 

focusing on the changes of the number of cells relative to the adhesion and contraction mechanism 

in the model. The extrusion of cells from the epithelium can be associated to the changes in the 

capacity of the epithelium to achieve homeostasis. 

The extrusion of a single modified cell can be thought as an alternate form of the two-

dimensional micro-wound healing case in Chapter 2. In the micro-wound case a cell is removed 
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from the system and the neighbouring cells need to fill the opening; whereas in the case of the 

extrusion of a cell, a cell is still located in the position that would otherwise be an opening.  

When the two-dimensional CPM represents the epithelium as a horizontal cross-section, or a 

top down view, of the cells and cell layer it does not include a space for the modified cell to move 

into if extruded. For the two-dimensional CPM to account for the lack of space changes need to be 

made to the modified cell’s mechanisms, such as the area constraint from Function (2.1). Ultimately 

this problem becomes a wound closure problem similar to that in Chapter 2 but with the addition of 

a modified cell occupying the wound.  

Alternatively, when the two-dimensional CPM represents the epithelium as a vertical cross-

section, space is available for the extrusion of a modified cell. However, the representation of the 

two-dimensional CPM restricts the number of neighbours interacting with the selected cell to two 

rather than the potential six in the horizontal representation. Again, the parameters of a selected cell 

would need to change; however, the area constraint can remain and only the mechanisms affecting 

the junctions and boundaries of the cell would need to change, specifically the contact of the cell 

boundaries.  

Unlike the two-dimensional CPM, the three-dimensional CPM includes space for the 

modified cell to move into if extruded and allows the selected cell to interact with all possible 

neighbours in the epithelium. Given the extrusion of a modified cell is an alternative to the micro-

wound case, this chapter investigates a micro-wound scenario as well as the extrusion of a modified 

cell. In particular, we will focus on the CPM simulations with the interactions between the adhesion 

and contraction mechanisms that lead to the closure of a micro-wound and the extrusion of a single 

modified cell. 
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4.2  THE THREE-DIMENSIONAL CPM 

A three-dimensional CPM emulates cells as a collection of connected voxels (three-

dimensional pixels). The voxels tessellate the area and are ideally the same shape, for example 

cubes; hexagonal prisms shown in Figure 4.1a with the respective lattice in Figure 4.1b; and 

rhombic dodecahedrons shown in Figure 4.1c and respective lattice in Figure 4.1d. Each shape has a 

different number of surfaces connected to the neighbouring voxels: the cube has six connections; 

the hexagonal prism has eight and the rhombic dodecahedron has ten. Similarly to the pixel shape 

of two-dimensional models, the voxels can also be connected by their edges and corners to other 

voxels and the implementation of the models must consider whether these connections should 

influence the mechanisms. Artefacts in the shape of the cells can arise depending on the three-

dimensional lattice structure. Ideally the dodecahedron can be used to remove the influence of 

corners; however, for this chapter we have selected hexagonal prism pixels, consistent with the two-

dimensional model, to expand the model and mechanisms from Chapter 2. 

The representation of the cell interaction mechanisms of the three-dimensional model is 

incorporated differently to that of the two-dimensional model.  While the two-dimensional models 

incorporate the area and perimeter of the cells and their pixels, the three-dimensional model uses the 

volume and surface area, respectively. The energy Function (2.1) can be generalised for the 3D 

model as  
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The first term represents volume constraint (analogous to the area constraint in the two-dimensional 

model) with the cell volume, 𝑉𝑉𝑗𝑗, the preferred volume, 𝑉𝑉𝑝𝑝, and a strength parameter 𝑘𝑘. The second 

term represents a cell surface area contraction with the total cell surface area, 𝐴𝐴𝑗𝑗, and a strength 

parameter Γ. The third and final term represents the adhesion with 𝛿𝛿𝑖𝑖,𝑗𝑗 identifying the surface area 

connection between pixels (voxels) 𝑖𝑖 and 𝑗𝑗 and the strength parameter 𝑆𝑆. 

The metropolis algorithm of the model does not change from the two-dimensional CPM. 

The cells and their boundaries evolve over time by randomly selecting a voxel on the boundary of 

the cells and measuring the change in the “energy” function, ∆𝐸𝐸, that would result if the voxel were 

reassigned to a neighbouring cell label. If the energy decreases, ∆𝐸𝐸 <  0, the index 𝑗𝑗 will change, 

whereas if the energy increases, ∆𝐸𝐸 >  0, the change is allowed with the probability 𝑒𝑒𝑥𝑥𝑒𝑒(−∆𝐸𝐸/𝑇𝑇), 

where 𝑇𝑇 is a temperature-like parameter that controls the “noise” in the system. Each and every 
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pixel has the opportunity for an index change and this represents the Monte Carlo Step (MCS), 

which we refer to as a single iteration in the CPM. 

 

(a)      (b) 

      

(c)      (d) 

Figure 4.1. a) Three-dimensional hexagonal prism pixels configuration, and b) the 

corresponding lattice. c) Three-dimensional dodecahedron pixels configuration, and d) the 

corresponding lattice. 
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Unlike the two-dimensional CPM in Chapter 2, a connection condition is not included in the 

three-dimensional model. The “paths” of connected voxels, with the same label, no longer split or 

encase other cells since there is an extra spatial dimension. By excluding a connection condition, 

voxels of a cell can separate from the main group and can result in cells breaking apart or 

“disintegrating” in a very soft or noisy system. We will avoid these parameter regimes in this 

chapter when investigating the three-dimensional model. 

The epithelial layer is modelled and simulated in three dimensions using the CPM as a 

collection of pixels in a three-dimensional lattice. For simplicity the “hexagonal prism” voxels, 

shown in Figure 4.1a, were chosen. The hexagonal prism pixels can extend the mechanisms and 

results from Chapter 2 into three dimensions.  

The energy of the system with N-cells is expressed in the function 
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𝑁𝑁

𝑗𝑗

𝑆𝑆
2
�𝐴𝐴𝑗𝑗,𝑐𝑐−𝑐𝑐 −
𝑁𝑁

𝑗𝑗

𝛼𝛼
2
�𝐴𝐴𝑗𝑗,𝑐𝑐−𝑏𝑏 +
𝑁𝑁

𝑗𝑗

Γ𝑡𝑡
2
�𝐿𝐿𝑗𝑗,𝑡𝑡

2
𝑁𝑁

𝑗𝑗

, ( 4.1 ) 

with summation terms related to the 𝑗𝑗𝜕𝜕ℎ cell volume, 𝑉𝑉𝑗𝑗, total surface area, 𝐴𝐴𝑗𝑗, surface area in 

contact with other cells, 𝐴𝐴𝑗𝑗,𝑐𝑐−𝑐𝑐, surface area in contact with the substrate, 𝐴𝐴𝑗𝑗,𝑐𝑐−𝑏𝑏, and the apical (top) 

perimeter of the cells, 𝐿𝐿𝑗𝑗,𝑡𝑡 (see Figure 4.2). 

The first term in Function (4.1) represents an energy cost for deviating from a preferred 

volume, 𝑉𝑉𝑝𝑝, i.e., the cells resist expansion or compression. The second term represents the cortical 

contraction around the membrane of the cells. The third term represents the cell-cell adhesion, 

attributed to the presence of adhesion molecules, such as E-cadherin, and is proportional to the 

surface area in contact with the cells. The fourth term represents the adhesive connection of the 

cells to the substrate, with a strength parameter 𝛼𝛼, and the final term is the apical ring contraction 

proportional to the perimeter of the top of the cells, with a strength parameter of Γ𝑡𝑡. 

The apical perimeter contraction term requires an average height for each cell. The average 

height for a cell is calculated by averaging all the cell pixel heights where their top surface is 

connected to an empty pixel. The apical perimeter of the cell is the perimeter on the layer closest to 

the average height. 

Note that the cell-cell and cell-substrate adhesion terms are assumed to be negative, i.e., the 

cells preferentially expand their boundaries shared with neighbouring cells or substrate. However, 

these adhesion terms compete with the contractile surface tension that dominates when the 

perimeter becomes elongated. 
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Unlike the energy Function (2.1) in the two-dimensional CPM the three dimensional CPM 

cannot be expressed in a similar way as Function (2.2) given the differences parameters and related 

surface areas. Even when completed there is not information that can be observed from the resulting 

function.  
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(a)      (b) 

 

(c)      (d) 

 

(e) 

Figure 4.2. Representations of components that contribute to the energy described in the 

three-dimensional CPM: a) the volume, 𝑉𝑉𝑗𝑗, b) the total surface area, 𝐴𝐴𝑗𝑗, c) the surface area in 

contact with a neighbouring cell, 𝐴𝐴𝑗𝑗,𝑐𝑐−𝑐𝑐, d) the surface area in contact with the substrate, 

𝐴𝐴𝑗𝑗,𝑐𝑐−𝑏𝑏, and e) the apical perimeter contraction of the cell, 𝐿𝐿𝑗𝑗,𝑡𝑡 . 
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4.3  THE HARD AND SOFT REGIME IN THE THREE-
DIMENSIONAL CPM 

The two-dimensional CPM (Noppe et al., 2015) and vertex model (Farhadifar et al., 2007) 

use three components in the energy function, namely: the area constraint (similar to the volume), 

perimeter contraction (similar to surface area), and adhesion between cells. This competition 

between contraction and adhesion results in the cell behaviour falling into two regimes: the “hard” 

regime and “soft” regime. The cells exist in either the hard regime, where cells are stiff and 

boundaries do not fluctuate frequently which creates fixed cell shapes (see Figure 4.3a), or the soft 

regime, where cells develop elongated boundaries (see Figure 4.3b).  

The connection between cells operates differently in three dimensions. The cell-cell 

adhesion and total surface area contraction are the main contributors for determining the cell regime 

and in three dimensions we will use the same classification. However, the apical perimeter 

contraction and the cell substrate adhesion are mechanisms that could also influence the cell regime. 

The three-dimensional cell regimes are identified with a similar parameter to that in two dimensions, 

𝛽𝛽 = Γ/(2𝑆𝑆𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚), where 𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚 is the minimum surface area for a cell given the preferred volume, 

the height, ℎ, and shape dependent on the lattice structure. Hexagonal prism pixels create a 

“hexagonal” prism shaped cell, see Figure 4.2, to find the minimum surface area,  

 
𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚 = 2ℎ�

12𝑉𝑉𝑝𝑝
ℎ

− 3 +
2𝑉𝑉𝑝𝑝
ℎ

,  

where the area is expressed in two terms. The first term represents the lateral surface area and the 

second term represents the top and bottom surface area. 

If 𝛽𝛽 < 1 the system is in the hard regime and the cell’s surface area is close to the minimum 

cell surface area of 𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚. For a temperature (noise) of 𝑇𝑇 = 2000 in Figure 4.4a the cells achieve 

this minimum area; however, for a higher temperature of 𝑇𝑇 = 20000 the cells overcome the volume 

constraint and can reduce in volume and hence can reduce in surface area below 𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚. The 

shrinking of the cell is comparable to the observations of the cell islands in Chapter 3 where there 

are empty pixels surrounding the islands in the simulations. The volume constraints can also be 

overcome by other mechanisms, such as contraction, and strong fluctuations.  
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(a)      (b) 

 
(c)      (d) 

Figure 4.3. Distributions of simulated three-dimensional cells in different regimes viewed in 

horizontal cross-section. a) Represents a hard regime of cells creating quasi-polygonal 

shapes (approximating a hexagon) on the apical pixel layer, 𝑆𝑆 = 20000 and Γ = 50 

(𝛽𝛽 = 0.3663). This distribution is similar on each pixel layer of the monolayer. b) 

Represents a soft regime of cells on the apical pixel layer, 𝑆𝑆 = 65000 and Γ = 50 

(𝛽𝛽 = 1.1905). This distribution is similar on each pixel layer of the monolayer. c-d) 

Represent the apical and basal pixel layer, respectively, of a soft cell regime, 𝑆𝑆 = 65000 

and Γ = 50 (𝛽𝛽 = 1.1905), with the addition of an apical perimeter contraction of Γ𝑡𝑡 = 300. 

All simulations use parameters 𝑘𝑘 = 100, 𝛼𝛼 = 2𝑆𝑆, 𝑉𝑉𝑝𝑝 = 500  with 𝑁𝑁 = 25 cells on a 

50 × 50 × 10 hexagonal layered pixel grid. 

The cells are represented in three dimensions with distinctly different pixel layers on the top 

and the bottom of the cell monolayer. Figure 4.4b shows a plot of the ratio of the average apical, 𝐿𝐿𝑡𝑡, 

and basal, 𝐿𝐿𝑏𝑏, cell perimeters calculated for the top and bottom pixel layers of the cells. Similarly to 

Figure 4.4a, low noise in the system allows the cells in the hard regime to achieve the “minimum 

perimeter”, expressed as 
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𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚 = 2�

12𝑉𝑉𝑝𝑝
ℎ

− 3,  

and for a higher temperature, 𝑇𝑇 = 20000, the cell perimeters deviate slightly from this “minimum 

perimeter”. However, in a very hard system fewer basal layer cell perimeters drop below 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚, 

except in one case where the top perimeter, 𝐿𝐿𝑡𝑡, is zero, suggesting that the cells have shrunk in 

height. 

If 𝛽𝛽 > 1 the system is in the soft regime and the cells are able to achieve the preferred cell 

surface area, 𝐴𝐴𝑝𝑝, and the preferred cell volume, 𝑉𝑉𝑝𝑝, with different cell configurations. This is 

observed in Figure 4.4a, where at a low temperature, 𝑇𝑇 = 2000, the cells follow the preferred cell 

surface area closely, and for a higher temperature, 𝑇𝑇 = 20000, the system still follows the trend; 

however, with a slightly larger surface area. The difference of the simulated cell volume between 

the two temperatures is due to the amount of fluctuations. A low temperature has a small amount of 

fluctuations which means that the area is close to the value of 𝐴𝐴𝑝𝑝 and a high temperature has more 

fluctuations increasing the surface area and will have a value larger than 𝐴𝐴𝑝𝑝. 

Given the cells are represented in three dimensions we can observe differences in the apical 

and basal pixel layers of the cells. Figure 4.4b is a plot of the ratio of the average apical, 𝐿𝐿𝑡𝑡, and 

basal, 𝐿𝐿𝑏𝑏, cell perimeter. As the system becomes “softer”, 𝛽𝛽 increases, and the apical perimeter 

becomes smaller than the basal perimeter. This difference occurs because the apical surface of the 

cells are in contact with empty space, with only the surface area contraction applied, whereas the 

basal surface area is in contact with the substrate with both contraction and substrate adhesion 

applied. The addition of a cell-substrate adhesion constraint allows for greater flexibility in the 

junctions connecting the boundaries of the cells. However, by removing the basal adhesion from the 

system in Figure 4.4c there is no change in the behaviour of the cell perimeter from Figure 4.4b. 

This suggests that the only other difference between the apical and basal layers is that the basal 

layer is connected to a boundary rather than empty space above the apical pixel layer. 

Although the substrate adhesion does not affect the regime of the cells, other mechanisms 

can, such as an apical perimeter contraction. Applying the apical perimeter contraction term to the 

cells in the system provides another property differentiating the apical and basal layers. Figure 4.4d 

shows the apical and basal layer perimeters with the addition of an apical perimeter contraction of 

Γ𝑡𝑡 = 300. In the hard regime some of the apical layer perimeters are close to zero, while the basal 

layer is closer to the “minimum perimeter”, showing that the cells have shrunk, or are attempting to 

shrink, in height. In the soft regime there is a clear difference in the apical and basal layer 

perimeters, where the apical perimeter remains at approximately 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚 and the basal layer increases, 
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following the trend of the preferred cell perimeter. This is shown in Figure 4.3c and 4.3d; the apical 

pixel layer of the cells with the apical perimeter contraction appears to have the stiff polygonal 

shapes similar to the hard regime (see Figure 4.3c), and the basal pixel layer the cells have 

malleable boundaries which is characteristic of the soft regime (see Figure 4.3d). The difference in 

the apical and basal layers of the epithelial cells is also evident in biological experiments, such as in 

Figure 2.6, which shows a tight quasi-polygonal packing on the top while dynamically moving cell 

protrusions forming on the substrate. 

The apical contraction can separate the connection of the cells on the apical layer if the 

surface contraction term, Γ𝑡𝑡 , is too strong (see Figure 4.5). While the exact value at which this 

would occur is unknown, we choose to add this mechanism at varying strengths until the separation 

of cells occurs. The cell-substrate adhesion attaches the cell to the substrate and will provide the 

cells with greater coverage of surface area on the substrate when there is an adjacent empty space 

for the cells to move into. 

The initial cell configurations of all simulations in this chapter for three dimensions were 

generated by creating a configuration of 25 10 × 10 × 5 pixel square prism cells in a sheet located 

in a 50 × 50 × 10 pixel system and a 50 × 50 × 5 empty region above the cell sheet.  These 

configurations were run with the parameters 𝑘𝑘 = 100, the 𝑆𝑆 and Γ ratio 𝛽𝛽 = 1 and 𝑇𝑇 = 2000 until 

an energy equilibrium was reached. These simulations generated cell configurations with cross 

sections of the cells similar to Figure 4.3b. The three dimensional simulations used these 

configurations and included required parameter values to obtain the observed results. 
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(a)      (b) 

 
(c)      (d)  

Figure 4.4. Plots of the differences between a hard and soft regime. a) Ratio of the average 

total cell surface area of all the cells at the final iteration of a single simulation with the 

minimum total surface area against 𝛽𝛽. Two temperatures are represented, 𝑇𝑇 = 2000 

(circles) and 𝑇𝑇 = 20000 (squares). b) Ratio of the average apical (green) and basal (blue) 

pixel layer cell perimeter of all the cells at the final iteration of a single simulation with the 

minimum perimeter against 𝛽𝛽. Two temperatures are represented, 𝑇𝑇 = 2000 (circles) and 

𝑇𝑇 = 20000 (squares). c) Ratio of the average apical (green) and basal (blue) pixel layer cell 

perimeter of all the cells at the final iteration of a single simulation with the minimum 

perimeter against 𝛽𝛽, with the removal of substrate adhesion, 𝛼𝛼 = 0. d) Ratio of the average 

apical (green) and basal (blue) pixel layer cell perimeter of all the cells at the final iteration 

of a single simulation with the minimum perimeter against 𝛽𝛽, with the addition of apical 

perimeter contraction, Γ𝑡𝑡 = 300. All simulations have the parameters 𝑘𝑘 = 100, Γ = 50, 

𝛼𝛼 = 2𝑆𝑆, 𝑉𝑉𝑝𝑝 = 500  with 𝑁𝑁 = 25 cells on a 50 × 50 × 10 hexagonal layered pixel grid. 
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Figure 4.5. Example of a simulation with a large apical contraction which results in cells 

separating from each other. From left to right the figure shows pixel layers 6, 5, 4, 3, 2 and 1 

of the simulations with the figures (i), (ii), (iii), (iv), (v) and (vi), respectively. Layer 5 is the 

top and layer 1 is the bottom of the monolayer. The parameters for this example are 

 𝑘𝑘 = 100, Γ = 50, 𝑆𝑆 = 65000 (𝛽𝛽 = 1.1905), 𝛼𝛼 = 2𝑆𝑆, 𝑇𝑇 = 20000 and Γ𝑡𝑡 = 800 with 

𝑁𝑁 = 25 cells on a  50 × 50 × 10 hexagonal layered pixel grid. 
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4.4  GEOMETRIC MODEL 

Similarly to the two-dimensional models, the three-dimensional CPM can be simplified to a 

geometric representation model. These geometric models can be used to understand the behaviour 

of simulated cells in the CPM. Hannezo et al. (2014) presents one example of a geometric model 

using the geometric representation of cells in an epithelium with an energy function similar to those 

seen in the CPM and vertex models. Hannezo et al. (2014) expressed the energy for a single cell in 

an epithelium as 

 
𝐸𝐸 =

𝑘𝑘
𝑉𝑉𝑜𝑜

(𝑉𝑉 − 𝑉𝑉0)2 + 𝑆𝑆𝑏𝑏𝐴𝐴𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 − 𝑆𝑆𝑏𝑏𝐴𝐴𝑏𝑏𝑏𝑏𝑡𝑡 + Γ𝑏𝑏𝑃𝑃𝑏𝑏𝑝𝑝 . ( 4.2 ) 

The energy function of the geometric model contains: a volume constraint with the cell 

volume,  𝑉𝑉, a preferred volume, 𝑉𝑉0, a strength parameter 𝑘𝑘; a perimeter contraction around the 

apical perimeter of the cell, 𝑃𝑃𝑏𝑏𝑝𝑝, with the strength parameter Γ𝑏𝑏; an adhesion term between the cell 

and the substrate on the basal surface area, 𝐴𝐴𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏, with a parameter 𝑆𝑆𝑏𝑏; and an adhesion (or 

negative tension) on the lateral surface of the cells, 𝐴𝐴𝑏𝑏𝑏𝑏𝑡𝑡, which is assumed to be in contact with the 

other cells, with the parameter 𝑆𝑆𝑏𝑏. The volume constraint is the same as the terms in the CPM. The 

lateral and surface area adhesion is the same as the cell-cell adhesion in the CPM and the basal 

surface area tension is the same as the substrate adhesion in the CPM. There is no surface area 

contraction term in the CPM and the model in Hannezo et al. (2014). Therefore, the apical 

perimeter contraction would instead be an additional mechanism.  The main difference between the 

two energy functions is that there is no surface area contraction, which leads to extremes of the cell 

morphology. 

Assuming that 𝑘𝑘 → ∞ then the volume of the cell will remain unchanged and 𝑉𝑉 = 𝑉𝑉0. Given 

this property and assuming the cell has the same shape with only varying height, ℎ, and radius, 𝑟𝑟, 

they can be expressed as ℎ = 2𝑉𝑉0 �√3𝑟𝑟2�⁄  (Hannezo et al., 2014). 

Energy Function (4.2) only produces two types of extreme cell shapes dependent on apical and 

basal adhesion (or tension). Large flat disk cell when 𝑆𝑆𝑏𝑏 < 0 and 𝑆𝑆𝑏𝑏 > 0 or very tall thin cell 

depending on 𝑆𝑆𝑏𝑏 > 0 and 𝑆𝑆𝑏𝑏 < 0. In order to avoid these extreme shapes and allow for the existence 

of an energy minimum at a finite value of 𝑟𝑟, Hannezo et al. (2014) added stabilising terms 𝑟𝑟4 and 2
𝑟𝑟2

 

which are expressed as the confinement energy of the cytoplasmic components. These terms are 

based on the confinement of a solution of non-adsorbing Gaussian polymers to a thickness ℎ 

requiring an energy 𝐴𝐴
ℎ2

 (Gennes, 1979) and 2𝐴𝐴
𝑟𝑟2

 when the cell is tall. The coefficient 𝐴𝐴 in the terms is 

dependent on the properties of the polymer (Hannezo et al., 2014). These stabilisation terms are 
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added because biological cells cannot be indefinitely compressed (Coulombe & Wong, 2004; 

Manning, Foty, Steinberg, & Schoetz, 2010) and the cell nucleus is a rigid object that is deformed 

when cells are confined (Versaevel, Grevesse, & Gabriele, 2012). While in this model cell volume 

is kept constant, without the stabilisation terms the cells have strong deformations creating highly 

anisotropic very flat or very thin elongated shapes.  

In Hannezo et al. (2014) the unit length and unit energy are provided as 4
1 6⁄

3
𝑉𝑉0
1 3⁄  and 

31 3⁄

4
𝐴𝐴

𝑉𝑉0
2 3⁄ . By rescaling the parameters 2

1 3⁄

31 6⁄
𝑆𝑆𝑏𝑏𝑉𝑉0

4 3⁄

𝐴𝐴
→ 𝑆𝑆𝑏𝑏, 2

1 6⁄ 45 6⁄ 𝑆𝑆𝑙𝑙
𝐴𝐴𝑉𝑉0

2 3⁄ → 𝑆𝑆𝑏𝑏 and 2
5 3⁄ 31 3⁄ Γ𝑎𝑎

𝐴𝐴
→ Γ𝑏𝑏 the energy 

for a single cell can be expressed as a function expressed with only the radius, 

 𝐸𝐸(𝑟𝑟) = 𝑆𝑆𝑏𝑏𝑟𝑟2 −
𝑆𝑆𝑏𝑏
𝑟𝑟

+ Γ𝑏𝑏𝑟𝑟 + 𝑟𝑟4 +
2
𝑟𝑟2

, ( 4.3 ) 

and the energy for the epithelium is expressed as 𝐸𝐸𝑠𝑠𝑝𝑝 = 𝑁𝑁𝐸𝐸(𝑟𝑟). 

Hannezo et al. (2014) provided an alternate stabilising mechanism introducing components 

with terms in the energy equation which are similar to the CPM representation of cell surface area 

contraction. This mechanism applies active regulation of the tensions, and expands them to the first 

orders to achieve preferred basal and lateral surface areas, 𝐴𝐴𝑏𝑏0  and 𝐴𝐴𝑏𝑏𝑏𝑏𝑡𝑡0 , respectively: 

 𝑆𝑆𝑏𝑏 = 𝑆𝑆𝑏𝑏0 + 𝛿𝛿1(𝑟𝑟2 − 𝐴𝐴𝑏𝑏0),  

and 

 𝑆𝑆𝑏𝑏 = 𝑆𝑆𝑏𝑏0 + 𝛿𝛿2 �
𝑉𝑉0
𝑟𝑟
− 𝐴𝐴𝑏𝑏𝑏𝑏𝑡𝑡0 � .  

It is noted that this results in the same terms as introduced in the other stabilising method. If we take 

the preferred areas to zero these stabilising terms produce the surface area contraction terms in the 

energy equations similar to the CPM. However, these surface area contractions are different to 

Function (4.1) since they split the surface area up into lateral and basal components whereas the 

CPM function uses the total surface area of the cell. 

The cells in the model can have three typical morphologies derived from the parameter in 

Function (4.3): squamous (flat), cuboidal and columnar (Hannezo et al., 2014). If the basal surface 

tension is dominant (𝑆𝑆𝑏𝑏 < 0 and |𝑆𝑆𝑏𝑏| ≫ 1) the cells are squamous with 𝑟𝑟 ≈ �−𝑆𝑆𝑏𝑏 2⁄ ≫ 1, if the 

lateral cell-cell adhesion is dominant (𝑆𝑆𝑏𝑏 > 0 and |𝑆𝑆𝑏𝑏| ≫ 1) the cells are columnar with 

𝑟𝑟 ≈ 4 𝑆𝑆𝑏𝑏⁄ ≪ 1, if the lateral cell-cell contraction is dominant (𝑆𝑆𝑏𝑏 < 0 and |𝑆𝑆𝑏𝑏| ≫ 1) the cells are 

squamous with a 𝑟𝑟 ≈ (−𝑆𝑆𝑏𝑏 4⁄ )1 5⁄ ≫ 1 and if the apical perimeter is dominant (Γ𝑏𝑏 ≫ 1) the cells are 

also columnar with 𝑟𝑟 ≈ 2 �Γ𝑏𝑏⁄ ≪ 1 (Hannezo et al., 2014).  



89 

4.4.1  Extrusion results from the geometric model equilibrium with a fixed area 

While the purpose of the geometric model is not to represent the extrusion of cells from the 

epithelium but rather the morphology of the cells in an epithelium with their height and radii, we 

can modify the model to provide some information about the extrusion of cells. We do this by 

observing whether the number of cells corresponding to the energy minimum increases, or 

decreases, when parameters are varied. If we assume that the epithelium, with 𝑁𝑁 cells, is contained 

in a fixed surface area, 𝐴𝐴𝑇𝑇, and the radii can be represented as the function of this area, 

𝑟𝑟 = �2𝐴𝐴𝑇𝑇 3√3⁄ (𝑁𝑁)
1
2, the energy can be expressed as a function of the number of cells in the 

epithelium, 

 
𝐸𝐸𝑠𝑠𝑝𝑝(𝑁𝑁) =

2𝑆𝑆𝑏𝑏𝐴𝐴𝑇𝑇
3√3

− 𝑆𝑆𝑏𝑏�
3√3
2𝐴𝐴𝑇𝑇

𝑁𝑁
3
2 + Γ𝑏𝑏�

2𝐴𝐴𝑇𝑇
3√3

𝑁𝑁
1
2 +

4𝐴𝐴𝑇𝑇2

27
𝑁𝑁−1 +

3√3
𝐴𝐴𝑇𝑇

𝑁𝑁2, ( 4.4 ) 

and is plotted in Figure 4.6a. The equilibrium values corresponding to the energy minima are given 

by the root of the derivative of the energy function, 

 𝜕𝜕 �𝐸𝐸𝑠𝑠𝑝𝑝(𝑁𝑁)�
𝜕𝜕𝑁𝑁

= −
3√274 �𝐴𝐴𝑇𝑇

2√2
𝑆𝑆𝑏𝑏𝑁𝑁

1
2 +

1
2
�2𝐴𝐴𝑇𝑇3

3√3
Γ𝑏𝑏𝑁𝑁

−1
2 −

4𝐴𝐴𝑇𝑇2

27
𝑁𝑁−2 +

6√3
𝐴𝐴𝑇𝑇

𝑁𝑁, ( 4.5 ) 

and is plotted in Figure 4.6b. Note that the cell adhesion to the substrate, 𝑆𝑆𝑏𝑏, is not in Function (4.5) 

because the fixed surface area, 𝐴𝐴𝑇𝑇, of the substrate will always be covered by cells. This means that 

the energy contribution of the substrate adhesion will remain the same regardless of the number of 

cells.   

 The roots of Function (4.5), the number of cells to give a minimum energy of Function (4.4), 

are plotted in Figure 4.6c and Figure 4.6d, with varying lateral cell adhesion, 𝑆𝑆𝑏𝑏, and apical 

perimeter contraction, Γ𝑏𝑏. Figure 4.6c plots the number of cells to provide the minimum energy in 

the system against the lateral cell adhesion. Even with the restricted area, the cells follow the same 

trend as the rest of the model with changing lateral adhesion. However, we observe the change in 

the number of cells in the monolayer rather than the change of the cell shape. When the lateral cell-

cell adhesion is dominant (𝑆𝑆𝑏𝑏 > 0 and |𝑆𝑆𝑏𝑏| ≫ 1) the number of cells is large, indicating that a large 

number of narrow, columnar cells are generated to fit in the fixed area, see Figure 4.6c. This means 

that the monolayer provides more capacity for the cells, such as those generated from cell 

proliferation. However, when contraction of the lateral cell cortex is dominant (𝑆𝑆𝑏𝑏 < 0 and 

|𝑆𝑆𝑏𝑏| ≫ 1) there is a smaller number of cells, see Figure 4.6c, indicating that the cells are very wide. 

Considering that the volume is constant for the cells, the cells are therefore also thin flat cells. This 



90 

suggests that cells would be extruded from the monolayer when lateral contraction increases to 

achieve the smaller equilibrium number of cells. 

The cell shape behaviour of a system with a varying number of cells and a fixed area is 

different to a system with a fixed number of cells with a varying area. Figure 4.6d plots the roots of 

the Equation (4.4), the number of cells that provides the minimum energy in the system, against the 

apical perimeter contraction. The figure shows that when the apical perimeter contraction is 

increased there are fewer cells in the system. As mentioned previously, a small number of cells 

indicate the cells are flat and wide. In Hannezo et al. (2014), increasing the apical perimeter 

contraction resulted in the cells having a columnar shape with a smaller radius. The reason for the 

difference between the results is due to the fixed area and the apical perimeter contraction energy 

components in our implementation of the model. Given that the apical perimeter contraction term is 

positive, increasing Γ𝑏𝑏 would lead to decreasing cell perimeter (radius) which in turn decreases the 

energy contribution of the term for a single cell. In the monolayer, if the cells decrease their apical 

perimeters, which makes space for additional cells in the fixed area, the energy contribution of the 

apical perimeter contraction is also decreased; however, the additional cells would introduce 

additional energy, in particular the apical perimeter contraction energy. The increase of energy from 

the additional cells would be greater than the decrease of energy from the shrinking cells. So, no 

cells are added and some cells are removed to minimise the energy when the perimeter contraction 

parameter is increased in the fixed area system shown in Figure 4.6d. 
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(a)       (b) 

 

(c)       (d) 

Figure 4.6. a) The plot of the energy function, Function (4.4), against the number of cells, 𝑁𝑁, 

with the roots represented by the red points with (i) S𝑏𝑏 = 1 and Γ𝑏𝑏 = 1, (ii) S𝑏𝑏 = 1 and 

Γ𝑏𝑏 = 1, and (iii) S𝑏𝑏 = 1 and Γ𝑏𝑏 = 1; b) The plot of the energy derivative, Function (4.5), 

against the number of cells, N, with the roots represented by the red points with (i) S𝑏𝑏 = 1 

and Γ𝑏𝑏 = 1, (ii) S𝑏𝑏 = 1 and Γ𝑏𝑏 = 1, and (iii) S𝑏𝑏 = 1 and Γ𝑏𝑏 = 1; d) the plot of the roots 

(number of cells) of the derivative with (i) Γ𝑏𝑏 = 1, (ii) Γ𝑏𝑏 = 1 and (iii) Γ𝑏𝑏 = 1; and c) the 

plot of the roots (number of cells) of the derivative with (i) S𝑏𝑏 = 1, (ii) S𝑏𝑏 = 1 and (iii) 

S𝑏𝑏 = 1. The total area for all plots is 𝐴𝐴𝑇𝑇 = 10. 
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4.5  MICRO-WOUND IN AN EPITHELIUM 

The extrusion of a single cell is similar to the closure of a micro-wound where a cell 

occupies the void of the wound. A void is introduced into the system by replacing a cell in the 

monolayer with an empty space. The results from the two-dimensional CPM in Chapter 2 suggest 

that if cells are in a “hard” regime the void will stay open and if the cells are in a “softer” regime 

they can close the void. The transition value, 𝛽𝛽𝑐𝑐, represents the sudden change from an open to a 

closed system. The cell-cell adhesion and total surface area contraction are the main contributors for 

determining the cell regime and as a result the closure of the wound.  

The initial cell configurations of all simulations in this chapter for three dimensions were 

generated by creating a configuration of 25 10 × 10 × 5  pixel square prism cells in a sheet located 

in a 50 × 50 × 10 pixel system and a 50 × 50 × 5 empty region above the cell sheet.  These 

configurations were run with the parameters k=100, the 𝑆𝑆 and Γ ratio 𝛽𝛽 = 1 and 𝑇𝑇 = 2000 until an 

energy equilibrium was reached. These simulations generated cell configurations with cross 

sections of the cells similar to Figure 4.3b. Once an energy equilibrium was reached, the simulation 

would remove a cell from the system and continue the simulation to obtain the observed results. 

4.5.1  Numerical results for the three-dimensional CPM  

In three dimensions we use the same classification as the two-dimensional model; however, 

the apical perimeter contraction and the cell substrate adhesion are mechanisms that not only 

influence the cell regime but also the closure of the wound. This leads to three different cases to 

consider: the case without substrate adhesion and apical contraction; the addition of the substrate 

adhesion; and the addition of apical contraction. All the terms are added to the energy Function 4.1. 

With no substrate adhesion or apical contraction the cells are only influenced by the 

adhesion between the cells and the total perimeter contraction of the cells. However, this is not 

comparable to the two-dimensional CPM. In three dimensions the contraction not only affects the 

surface inside the wound and the surface area of connected cells, but also the apical surface area 

above the cells and the basal surface area connected to the substrate. The contraction effect on the 

apical and basal surface areas acts as an extra contraction “force” on the cells. While not a direct 

replication of this effect, in two dimensions it would be similar to adding a term (Γ 2⁄ )∑ 𝐴𝐴𝑗𝑗𝑁𝑁
𝑗𝑗  to the 

system decreasing the preferred area, the opposite of adding the substrate adhesion to the cells. 

With no cell-substrate adhesion the cells are not attached to the substrate. The energy contribution 

of the cell surface area connected to the substrate is similar to the energy contribution of the cell’s 

apical surface area connected with empty space above. The only difference between the apical and 
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basal surfaces of the epithelium is that one is in contact with a surface and the other is in contact 

with the empty space which can invade the monolayer. In Figure 4.7c the value of the wound’s 

relative horizontal cross-sectional area for each pixel largely becomes indistinguishable. However, 

in the hard system the monolayer can shrink in height. The apical pixel layer of the monolayer 

shrinks from layer five to layer four. Moreover, the pixels without a cell label in the empty space fill 

layer five in the simulation leaving a ratio of the horizontal cross-section area of the wound at pixel 

layer five as 𝐴𝐴𝑝𝑝 𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚⁄ = 25. 

The addition of the substrate adhesion connects the cells to the substrate and assists in 

closing the wound. To reduce the systems energy the substrate adhesion increases the amount of 

substrate surface covered by the cells and the only available uncovered substrate is located in the 

wound. The change in the basal layer of the cells connected to the substrate will increase in size and 

position, and in order to maintain a preferred shape the other layers of the cells will follow the same 

behaviour and in turn close the wound.  Substrate adhesion is introduced in Figures 4.7a and 4.7b 

with the relative values of 𝛼𝛼 = 2𝑆𝑆 and 𝛼𝛼 = 𝑆𝑆, respectively. These simulations show that the 

transition value, 𝛽𝛽𝑐𝑐, shifts toward the hard regime, meaning less soft cell regime is required to close 

the wound. Also, the addition of the substrate adhesion leads to a difference between the apical and 

basal layers of the epithelium. Figure 4.7a clearly shows a larger difference between the wound 

apical and basal areas (or all layers below the apical) than seen with weaker substrate adhesion 

(Figures 4.7b and 4.7c).  

Adding the apical contraction to the system will change the regime of the cells on the apical 

pixel layer. The apical layer of the epithelium will increase the size of the wound compared to the 

other layers. As we consider the regime of the apical pixel layer to be harder, the closure of the 

wound will be hindered. Figure 4.7d shows the wound size of simulations with the addition of the 

apical contraction. Comparing these simulation results with Figure 4.7a we observe the trend and 

effects of changes of parameters stated above. The apical perimeter contraction shifts the transition, 

𝛽𝛽𝑐𝑐, closer to the soft regime, hindering the closure of the wound, requiring the cells to be “softer” in 

order to close the wound. However, the apical contraction hinders the apical layer of the cells from 

closing the wound. The lower pixel layers are only influenced by the deformation of the apical layer 

of the cells. The value of Γ𝑡𝑡 cannot be increased uncontrollably because this parameter can 

dominate the system and the adhesion between the cells lose influence in the system and separate 

the cells from each other. This is the same artefact as seen with a complete epithelium in Figure 4.5. 

Chapter 2 specified a particular mechanism of perimeter contraction around a wound. In 

three dimensions this would be represented by the surface area of the wound or the perimeter of the 
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different layers of the wound. However, the identification of the surface area of the wound is 

difficult, as is the apical perimeter of the wound, given that the cells can change height. Rather, we 

introduce a perimeter contraction on the basal layer, 𝐿𝐿𝑖𝑖𝑏𝑏,𝑐𝑐−𝑣𝑣, of the wound, 

 Γ𝑏𝑏
2
�𝐿𝐿𝑖𝑖𝑏𝑏,𝑐𝑐−𝑣𝑣

2
𝑁𝑁

𝑖𝑖

,  

with a strength parameter, Γ𝑏𝑏. It must be mentioned that the cells can become detached from each 

other in the “harder” regime and any new voids created will contribute to the perimeter contraction 

term. However, this occurs at the extreme values of the hard regime and we are only concerned with 

the simulations near the transition point 𝛽𝛽𝑐𝑐. Figure 4.8 shows a plot of the simulations with the basal 

perimeter contraction on the substrate of the wound, comparable to the simulations in Figure 4.7a. 

The basal perimeter contraction has the opposite effect compared to the apical perimeter contraction 

of the cells. The basal perimeter contraction shifts the transition from open to closed for the lower 

layer of the wound into a “harder” cell regime, whereas the apical cell contraction increases the 

transition value of the apical layer of the wound hindering its closure. 
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(a)      (b) 

 
(c)      (d) 

Figure 4.7. Plots of the equilibrium value of the average horizontal cross-section wound 

area over the last 100 iterations of a single CPM simulation of 2000 iterations  against 

different cell regimes, 𝛽𝛽 at five pixel layers: a) simulations with a substrate adhesion 𝛼𝛼 = 2𝑆𝑆 

and apical perimeter contraction of Γ𝑡𝑡 = 0; b) a reduction in the substrate adhesion, 𝛼𝛼 = 𝑆𝑆, 

and apical perimeter contraction of Γ𝑡𝑡 = 0; c) the removal of the substrate adhesion, 𝛼𝛼 = 0, 

and apical perimeter contraction of Γ𝑡𝑡 = 0; and d) the inclusion of an apical perimeter 

contraction, Γ𝑡𝑡 = 300, on the cells and substrate adhesion 𝛼𝛼 = 2𝑆𝑆. Other parameters for the 

simulations include: 𝑘𝑘 = 100, Γ = 50, 𝛼𝛼 = 2𝑆𝑆, 𝑉𝑉𝑝𝑝 = 500  with 𝑁𝑁 = 25 cells on a 

50 × 50 × 10 hexagonal layered pixel grid. 
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Figure 4.8. Plot of the equilibrium value of the average horizontal cross-section wound area 

over the last 100 iterations of a single CPM simulation of 2000 iterations against different 

cell regimes, 𝛽𝛽, at five pixel layers adding a basal perimeter contraction to the wound, 

Γ𝑏𝑏 = 300. Parameters for the simulations include 𝑘𝑘 = 100, Γ = 50, 𝛼𝛼 = 2𝑆𝑆, 𝑉𝑉𝑝𝑝 = 500  with 

𝑁𝑁 = 25 cells on a 50 × 50 × 10 hexagonal layered pixel grid. 

  



97 

4.5.2  Cylindrical representation of cells and wound 

To generate a geometric model for approximating the morphology of the equilibrium state 

of the cells and wound we use the same approximation method applied in Chapter 2. Cells are 

represented as geometrical shapes and the following assumptions are applied. All cells are assumed 

to be similar and have the same shape. Both the cell and wound shapes are initially assumed to be 

cylinders with variable radii 𝑅𝑅 and 𝑅𝑅∗, respectively, and a fixed height, ℎ, see Figure 4.9. Although 

the cells are able to shrink in the extreme simulated cases, i.e. a very hard regime, we wish to focus 

on the transition from an open to a closed wound configuration. The area is therefore assumed to be 

conserved for each pixel layer of the system. 

 
(a)      (b) 

Figure 4.9. a) Cylindrical representation of the cells with volume, 𝑉𝑉; height, ℎ; and top, 𝐴𝐴𝑡𝑡, 

bottom, 𝐴𝐴𝑏𝑏, and lateral surface areas, 𝐴𝐴𝑠𝑠. b) The geometrical representation of a wound as a 

cylindrical hole in the monolayer with radius 𝑅𝑅∗. 

Following on from the geometric representation of the two-dimensional model in Chapter 2 

we express the energy function with a single variable. First, we assume that the surface area and 

volume of the cells are identical, i.e. the volume, 𝑉𝑉, total surface area, 𝐴𝐴, the apical surface area, 𝐴𝐴𝑡𝑡, 

and basal surface area, 𝐴𝐴𝑏𝑏, the lateral surface area, 𝐴𝐴𝑠𝑠, and the apical cell perimeter, 𝐿𝐿𝑡𝑡. In addition 

to the cell parameters, there are the values for the wound such as the surface area of the cells in 

connection with the wound, 𝐴𝐴𝑠𝑠∗, and the perimeter of the wound on the substrate, 𝐿𝐿𝑏𝑏∗ . Each of these 

parameters are expressed with either the radii of the cells or the radii of the wound. 

The cell and wound radii can be expressed by each other by assuming there is a conservation 

of horizontal area on the layers of the epithelial sheet linking the cells and wound, 

 𝐴𝐴𝑇𝑇 = (𝑁𝑁 − 1)𝐴𝐴𝑚𝑚 + 𝐴𝐴𝑚𝑚∗ ,   

where 𝑛𝑛 = 𝜕𝜕 or 𝑏𝑏, and with a constant horizontal area of the system, 𝐴𝐴𝑇𝑇 = �𝑁𝑁𝑉𝑉𝑝𝑝� (𝜋𝜋ℎ)⁄ , which is 

the sum of the cells, 𝐴𝐴𝑚𝑚, and wound horizontal area, 𝐴𝐴𝑚𝑚∗ . This allows the cell radius to be expressed 

with the wound radius, 
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𝑅𝑅(𝑅𝑅∗) = � 𝑁𝑁𝑉𝑉𝑝𝑝

𝜋𝜋ℎ(𝑁𝑁 − 1) −
𝑅𝑅∗2

𝑁𝑁 − 1
,  

 allowing the function to be expressed with either the cell or wound radii variable. 

The energy function can be expressed with a single variable, namely the radius of the cells, 

 
𝐸𝐸(𝑅𝑅∗) =

𝑘𝑘(𝑁𝑁 − 1)
2

�𝑉𝑉(𝑅𝑅∗) − 𝑉𝑉𝑝𝑝�
2

+
Γ𝑁𝑁
2
�𝐴𝐴(𝑅𝑅∗)�

2
−
𝑆𝑆(𝑁𝑁 − 1)

2
𝐴𝐴𝑠𝑠(𝑅𝑅∗) +

𝑆𝑆
2
𝐴𝐴𝑠𝑠∗(𝑅𝑅∗)

−
𝛼𝛼(𝑁𝑁 − 1)

2
𝐴𝐴𝑏𝑏(𝑅𝑅∗) +

Γ𝑡𝑡(𝑁𝑁 − 1)
2

𝐿𝐿𝑡𝑡(𝑅𝑅∗)2 +
Γ𝑏𝑏
2
𝐿𝐿𝑏𝑏∗ (𝑅𝑅∗)2, 

(4.6) 

with the expressions for the volume of the cylinder as 

 
𝑉𝑉(𝑅𝑅∗) = 𝜋𝜋ℎ �

𝑁𝑁𝑉𝑉𝑝𝑝
𝜋𝜋ℎ(𝑁𝑁 − 1) −

𝑅𝑅∗2

𝑁𝑁 − 1
� ;  

the total surface area as 

 
𝐴𝐴(𝑅𝑅∗) = 2𝜋𝜋ℎ�

𝑁𝑁𝑉𝑉𝑝𝑝
𝜋𝜋ℎ(𝑁𝑁 − 1) −

𝑅𝑅∗2

𝑁𝑁 − 1
+ 2𝜋𝜋 �

𝑁𝑁𝑉𝑉𝑝𝑝
𝜋𝜋ℎ(𝑁𝑁 − 1) −

𝑅𝑅∗2

𝑁𝑁 − 1
� ;  

the lateral surface area of cells as 

 
𝐴𝐴𝑠𝑠(𝑅𝑅∗) = 2𝜋𝜋ℎ�

𝑁𝑁𝑉𝑉𝑝𝑝
𝜋𝜋ℎ(𝑁𝑁 − 1) −

𝑅𝑅∗2

𝑁𝑁 − 1
;  

the lateral surface area of the wound as 

 𝐴𝐴𝑠𝑠∗(𝑅𝑅∗) = 2𝜋𝜋ℎ𝑅𝑅∗;  

the cell surface area in contact with the substrate as 

 𝐴𝐴𝑏𝑏(𝑅𝑅∗) = 2𝜋𝜋𝑅𝑅∗2;  

the perimeter of the wound at the substrate as 

 𝐿𝐿𝑏𝑏∗ (𝑅𝑅∗) = 2𝜋𝜋𝑅𝑅∗;  

and the apical perimeter of the cells as 

 
𝐿𝐿𝑡𝑡(𝑅𝑅∗) = 2𝜋𝜋�

𝑁𝑁𝑉𝑉𝑝𝑝
𝜋𝜋ℎ(𝑁𝑁 − 1) −

𝑅𝑅∗2

𝑁𝑁 − 1
.  
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Results of the micro-wound geometric model 

The plot of energy Function (4.6) shows two distinct cases, seen in Figure 4.10. The 

function can either have a local minimum where the wound is open, 𝑅𝑅∗ > 0, or a global minimum 

when the wound is closed, 𝑅𝑅∗ = 0. We do not examine the non-physical values of 𝑅𝑅∗ < 0, which 

we can observe in Figure 4.10, as having smaller energies than positive local minimum values.  

 

Figure 4.10. Plot of the energy function for hard and soft regimes showing the transition, 

similar to the two-dimensional case, where the local real minimum and maximum no longer 

occur so that the system will tend to close the wound. i) = 30000 (𝛽𝛽 = 0.7952), ii) 

𝑆𝑆 = 40000 (𝛽𝛽 = 1.0603) and iii) 𝑆𝑆 = 50000 (𝛽𝛽 = 1.3254). Other parameters include 

𝑘𝑘 = 100, Γ = 50, 𝛼𝛼 = 2𝑆𝑆, 𝑉𝑉𝑝𝑝 = 500  with 𝑁𝑁 = 25 cells. 

The trends of the minimum energy from Function (4.6) are similar to the two-dimensional 

wound case in Chapter 2. However, there are differences in the results due to the three-dimensional 

representation of the cells and the addition of the substrate adhesion and the apical contraction. It is 

important to note that the system has a local maximum, and if the wound size starts below this local 

maximum, the wound closes. However, the wound could also close in the simulation given the 

random fluctuations of the pixels occurring on the boundaries of the simulated cells. The plots in 

Figure 4.11 show the position of these local minima for varying cell regimes, 𝛽𝛽, indicating a 

transition value, 𝛽𝛽𝑐𝑐, between an open wound and a closed wound. 

Substrate adhesion, 𝛼𝛼, has an effect on the transition point between an open and closed 

wound. The transition point shifts to a “softer” regime, meaning only much “softer” systems of cells 

can close the wound. In particular, with no adhesion the transition point in simulations is shifted 

into the “hard” regime in Figures 4.7b and 4.7c. Figure 4.11a plots the wound radius for the local 

minimum of energy for a system with substrate adhesion similar to the cell-cell adhesion, 𝛼𝛼 = 2𝑆𝑆 
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(black) and decreased adhesion 𝛼𝛼 = 𝑆𝑆 (green) and 𝛼𝛼 = 0 (red). Similarly to the simulations, the 

transition point between the open and closed wound shifts to a “softer” regime. 

The cylindrical representation of the cells and wound will not show the same behaviour at 

different “pixel” layers of the monolayer as the simulations. So, the addition of apical contraction 

will affect the lateral surface area of the cells directly. Figure 4.11b shows a plot of the radius of the 

local minima against 𝛽𝛽 with added apical contraction for the geometric representation. The 

cylindrical geometry only provides one variable and cannot show the difference between the apical 

and basal layers. However, the plot does show that when the apical contraction increases the 

transition value shifts to a “softer” regime, similar to the simulations results.  

The addition of the basal perimeter contraction of the wound in the geometrical 

representation is different to that in the simulations. This is similar to the application of the apical 

contraction that affects the lateral surface of the wound directly. Figure 4.11c on the other hand 

shows that adding the basal contraction at the perimeter of the wound shifts the transition point 

further into the “hard” regime, similar to the basal layers of the simulations, meaning that the 

system can more easily close the wound. 

We can use the geometric energy function of the cells to derive an approximation for the 

open or closed transition value, 𝛽𝛽𝑐𝑐. Initially we find the zero of the derivative of the energy function 

with respect to the radius of the wound, 

 
0 =

𝑑𝑑𝐸𝐸
𝑑𝑑𝑅𝑅∗

= 4 �
𝜋𝜋2ℎ2𝑘𝑘

2(𝑁𝑁 − 1) +
2Γ𝜋𝜋2

𝑁𝑁 − 1
�𝑅𝑅∗3

+ 2 �
−𝜋𝜋ℎ𝑘𝑘𝑁𝑁𝑉𝑉𝑝𝑝
𝑁𝑁 − 1

+ 𝑘𝑘𝑉𝑉𝑝𝑝𝜋𝜋ℎ − 2Γ𝜋𝜋2ℎ2 −
4𝜋𝜋Γ𝑁𝑁𝑉𝑉𝑝𝑝
ℎ(𝑁𝑁 − 1)�𝑅𝑅

∗

+
�
−4πΓN𝑉𝑉𝑝𝑝𝑅𝑅∗

𝑁𝑁 − 1 + 4Γ𝜋𝜋2ℎ𝑅𝑅∗3
𝑁𝑁 − 1 + 𝑆𝑆𝜋𝜋ℎ𝑅𝑅∗ − Γ𝑡𝑡𝜋𝜋𝑅𝑅∗�

� 𝑁𝑁𝑉𝑉𝑝𝑝
𝜋𝜋ℎ(𝑁𝑁 − 1) −

𝑅𝑅∗2
𝑁𝑁 − 1

− 8Γ𝜋𝜋2ℎ𝑅𝑅∗�
𝑁𝑁𝑉𝑉𝑝𝑝

𝜋𝜋ℎ(𝑁𝑁 − 1) −
𝑅𝑅∗2

𝑁𝑁 − 1
, 

( 4.7 ) 

giving the value of the wound radius. 
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(a)      (b) 

 

(c)      (d) 

Figure 4.11. Plots of the root of Equation (4.6) where a) the substrate adhesion is varied 

with different values as a function of 𝑆𝑆, 𝛼𝛼 = 2𝑆𝑆, (black) to 𝛼𝛼 = 𝑆𝑆 (green) and 𝛼𝛼 = 0 (red); 

b) includes an apical perimeter contraction representing Γ𝑡𝑡 = 0 (black), Γ𝑡𝑡 = 500 (green), 

and Γ𝑡𝑡 = 5000 (red) with a substrate adhesion of 𝛼𝛼 = 2𝑆𝑆; c) includes the addition of the 

basal perimeter contraction on the wound Γ𝑏𝑏 = 0 (black) Γ𝑏𝑏 = 500 (green), and Γ𝑏𝑏 = 5000 

(red) with a substrate adhesion of 𝛼𝛼 = 2𝑆𝑆; and d) includes the addition of the basal 

perimeter contraction on the wound 𝑁𝑁 = 25 (black) 𝑁𝑁 = 1000 (green), and 𝑁𝑁 = 108 (red) 

with substrate adhesion of 𝛼𝛼 = 0. Other parameters include 𝑘𝑘 = 100, Γ = 50, 𝑉𝑉𝑝𝑝 = 500 

with 𝑁𝑁 = 25 unless otherwise stated. 
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The values of the zeroes of the derivative in Equation (4.7) cannot be simply expressed 

algebraically. Therefore, we simplify the expression for an infinitely large system where 𝑁𝑁 → ∞ 

which results in 

0 = �
−8Γ𝜋𝜋𝑉𝑉𝑝𝑝

ℎ
− 12Γ𝜋𝜋2ℎ�

𝑉𝑉𝑝𝑝
𝜋𝜋ℎ

− 4Γ𝜋𝜋2ℎ2 + 𝑆𝑆𝜋𝜋ℎ�
𝜋𝜋ℎ
𝑉𝑉𝑝𝑝

+ 𝛼𝛼𝜋𝜋 − 2Γ𝑡𝑡𝜋𝜋�
𝜋𝜋ℎ
𝑉𝑉𝑝𝑝

+ 4𝜋𝜋2Γ𝑏𝑏�𝑅𝑅∗ − 𝑆𝑆𝜋𝜋ℎ. 

Small changes in the number of cells in the system do not change the results greatly except 

for increasing the wound size. However, for much larger changes in the number of cells the 

transition value will shift to a much softer regime. Figure 4.11d shows the positive local minimum 

value for similar systems of the red plot in Figure 4.11a with no substrate adhesion for 𝑁𝑁 = 25, 

𝑁𝑁 = 1000 and 𝑁𝑁 = 108 with increasing values of 𝛽𝛽𝑐𝑐. 

The local minimum when applying the limit is 

 
𝑅𝑅∗ =

𝑆𝑆𝜋𝜋ℎ

8Γ𝑉𝑉𝑝𝑝
ℎ + 12Γ𝜋𝜋2ℎ�

𝑉𝑉𝑝𝑝
𝜋𝜋ℎ + 4Γ𝜋𝜋2ℎ2 − 𝑆𝑆𝜋𝜋ℎ�𝜋𝜋ℎ𝑉𝑉𝑝𝑝

− 𝛼𝛼𝜋𝜋 + 4𝜋𝜋2Γ𝑡𝑡 − 4𝜋𝜋2Γ𝑏𝑏

, 
 

where �𝑉𝑉𝑝𝑝 (ℎ𝜋𝜋)⁄ = 𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚. The system is closed if 𝑅𝑅∗ ≤ 0 and open if 𝑅𝑅∗ >  0. For the system to be 

open the expression 

8Γ𝑉𝑉𝑝𝑝
ℎ

+ 12Γ𝜋𝜋2ℎ�
𝑉𝑉𝑝𝑝
𝜋𝜋ℎ

+ 4Γ𝜋𝜋2ℎ2 − 𝑆𝑆𝜋𝜋ℎ�
𝜋𝜋ℎ
𝑉𝑉𝑝𝑝

− 𝛼𝛼𝜋𝜋 + 4𝜋𝜋2Γ𝑡𝑡 − 4𝜋𝜋2Γ𝑏𝑏 > 0, 

and the transition occurs when it switches to zero or a negative value. This equation is rearranged to 

find the value of 𝛽𝛽𝑐𝑐, 

 

𝛽𝛽𝑐𝑐 =

4𝑉𝑉𝑝𝑝
𝜋𝜋ℎ2

�𝑉𝑉𝑝𝑝
𝜋𝜋ℎ + 6

𝑉𝑉𝑝𝑝
ℎ + 2𝜋𝜋ℎ�

𝑉𝑉𝑝𝑝
𝜋𝜋ℎ

𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚
−

𝛼𝛼
2Γℎ𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚

�𝑉𝑉𝑝𝑝
𝜋𝜋ℎ

+
2𝜋𝜋Γ𝑡𝑡
Γℎ𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚

�𝑉𝑉𝑝𝑝
𝜋𝜋ℎ

−
2𝜋𝜋Γ𝑏𝑏
Γℎ𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚

�𝑉𝑉𝑝𝑝
𝜋𝜋ℎ

 , ( 4.8 ) 

where 𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚 is the total surface area of a cylinder with a radius 𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚 and height ℎ. Assuming there is 

no adhesion or apical cell or basal wound perimeter contraction, shown in Figure 4.11d, the value of 

transition is 𝛽𝛽𝑐𝑐 = 3.2568.  

While this solution does not provide the transition values for systems for finite cell numbers 

in Figures 4.11a, 4.11b and 4.11c, the solution demonstrates the influence of different mechanisms 

on the transition values. The first term of the transition value, represented in Equation (4.8), consists 

of only the geometric components of the cells and does not include other mechanisms. Additional 
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mechanisms, represented in the second, third and fourth terms in Equation (4.8), can alter the 

transition value. Substrate adhesion, represented with the parameter 𝛼𝛼, will decrease the transition 

value to represent a softer cell regime. The apical perimeter contraction, represented with the 

parameter Γ𝑡𝑡, will increase the transition value to represent a harder cell regime. Finally, the basal 

wound perimeter contraction, represented with the parameter Γ𝑏𝑏,  will decrease the transition value 

to represent a softer cell regime.  



104 

4.5.3  Truncated cone cell and wound representation 

The cylindrical representation of the system only indicates whether the wound is open or 

closed and does not show the differences between the top and bottom of the layers. Instead, a 

truncated cone geometrical representation of the cells and wound, shown in Figure 4.12, can 

separate the layers and shows how the apical and basal layers behave. This means the cells and 

wound are represented by two variables, 𝑅𝑅𝑡𝑡 and 𝑅𝑅𝑏𝑏, that measure the top and bottom radii of the 

cells, and 𝑅𝑅𝑡𝑡∗ and 𝑅𝑅𝑏𝑏∗ , measuring the top and bottom radii of the wound. 

 

(a)      (b) 

Figure 4.12. a) The geometric representation of the cells as a truncated cone.  b) The 

vertical segment of the geometric representation of the wound in the monolayer as a 

truncated cone. 

Excluding the geometrical representations, all other assumptions for the truncated cone are 

the same as in the cylindrical case, namely the height is fixed at ℎ, and the cells and wound are 

assumed to be connected to one another. The conservation of area on each layer links the cells and 

wound, meaning the energy function has an interchangeable pair of variables similar to the 

cylindrical geometry. The energy function is expressed with 𝑅𝑅𝑡𝑡∗ and 𝑅𝑅𝑏𝑏∗ , 

𝐸𝐸(𝑅𝑅𝑡𝑡∗,𝑅𝑅𝑏𝑏∗) =
𝑘𝑘(𝑁𝑁 − 1)

2
�𝑉𝑉(𝑅𝑅𝑡𝑡∗,𝑅𝑅𝑏𝑏∗) − 𝑉𝑉𝑝𝑝�

2
+
Γ𝑁𝑁
2
�𝐴𝐴(𝑅𝑅𝑡𝑡∗,𝑅𝑅𝑏𝑏∗)�

2
−
𝑆𝑆(𝑁𝑁 − 1)

2
𝐴𝐴𝑠𝑠(𝑅𝑅𝑡𝑡∗,𝑅𝑅𝑏𝑏∗)

+
𝑆𝑆
2
𝐴𝐴𝑠𝑠∗(𝑅𝑅𝑡𝑡∗,𝑅𝑅𝑏𝑏∗) −

𝛼𝛼(𝑁𝑁 − 1)
2

𝐴𝐴𝑏𝑏(𝑅𝑅𝑡𝑡∗,𝑅𝑅𝑏𝑏∗) +
Γ𝑡𝑡(𝑁𝑁 − 1)

2
𝐿𝐿𝑡𝑡(𝑅𝑅𝑡𝑡∗)2 +

Γ𝑏𝑏
2
𝐿𝐿𝑏𝑏∗ (𝑅𝑅𝑏𝑏∗)2, 

with the expressions for the volume of the truncated cone as 

 𝑉𝑉(𝑅𝑅𝑡𝑡∗,𝑅𝑅𝑏𝑏∗) =
1
3
𝜋𝜋ℎ�𝑅𝑅𝑡𝑡(𝑅𝑅𝑡𝑡∗)2 + 𝑅𝑅𝑏𝑏(𝑅𝑅𝑏𝑏∗)2 + 𝑅𝑅𝑡𝑡(𝑅𝑅𝑡𝑡∗)𝑅𝑅𝑏𝑏(𝑅𝑅𝑏𝑏∗)�; ( 4.9 ) 

the total surface area as 
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𝐴𝐴(𝑅𝑅𝑡𝑡∗,𝑅𝑅𝑏𝑏∗) = 𝜋𝜋�𝑅𝑅𝑡𝑡(𝑅𝑅𝑡𝑡∗) + 𝑅𝑅𝑏𝑏(𝑅𝑅𝑏𝑏∗)���𝑅𝑅𝑡𝑡(𝑅𝑅𝑡𝑡∗) − 𝑅𝑅𝑏𝑏(𝑅𝑅𝑏𝑏∗)�

2
+ ℎ2 + 𝜋𝜋𝑅𝑅𝑡𝑡(𝑅𝑅𝑡𝑡∗)2

+ 𝜋𝜋𝑅𝑅𝑏𝑏(𝑅𝑅𝑏𝑏∗)2; 
( 4.10 ) 

the lateral surface area of cells as 

 
𝐴𝐴𝑠𝑠(𝑅𝑅𝑡𝑡∗,𝑅𝑅𝑏𝑏∗) = 𝜋𝜋�𝑅𝑅𝑡𝑡(𝑅𝑅𝑡𝑡∗) + 𝑅𝑅𝑏𝑏(𝑅𝑅𝑏𝑏∗)���𝑅𝑅𝑡𝑡(𝑅𝑅𝑡𝑡∗) − 𝑅𝑅𝑏𝑏(𝑅𝑅𝑏𝑏∗)�

2
+ ℎ2; ( 4.11 ) 

the lateral surface area of the wound as 

 
𝐴𝐴𝑠𝑠∗(𝑅𝑅𝑡𝑡∗,𝑅𝑅𝑏𝑏∗) = 𝜋𝜋(𝑅𝑅𝑡𝑡∗ + 𝑅𝑅𝑏𝑏∗)�(𝑅𝑅𝑡𝑡∗ − 𝑅𝑅𝑏𝑏∗)2 + ℎ2; ( 4.12 ) 

the cell surface area in contact with the substrate as 

 
𝐴𝐴𝑏𝑏(𝑅𝑅𝑏𝑏∗) = 2𝜋𝜋 �

𝑁𝑁𝑉𝑉𝑝𝑝
𝜋𝜋ℎ(𝑁𝑁 − 1) −

𝑅𝑅𝑏𝑏∗
2

𝑁𝑁 − 1
�
2

; ( 4.13 ) 

the perimeter of the wound at the substrate as 

 𝐿𝐿𝑏𝑏∗ (𝑅𝑅𝑏𝑏∗) = 2𝜋𝜋𝑅𝑅𝑏𝑏∗ ; ( 4.14 ) 

and the apical perimeter of the cells as 

 
𝐿𝐿𝑡𝑡(𝑅𝑅𝑡𝑡∗) = 2𝜋𝜋�

𝑁𝑁𝑉𝑉𝑝𝑝
𝜋𝜋ℎ(𝑁𝑁 − 1) −

𝑅𝑅𝑡𝑡∗
2

𝑁𝑁 − 1
. ( 4.15 ) 

Results of the micro-wound geometric model 

This representation of the cells can lead to three different equilibrium states for the wound 

rather than two from the cylindrical representation. The wound can remain open where 𝑅𝑅𝑡𝑡∗ > 0 and 

𝑅𝑅𝑏𝑏∗ > 0; an equilibrium, at an energy minimum, is shown in plots of a hard system, 𝛽𝛽 = 0.2651, in 

Figure 4.13a. The void of the wound can have the shape of an inverted cone where 𝑅𝑅𝑡𝑡∗ > 0 and 

𝑅𝑅𝑏𝑏∗ = 0; an equilibrium, at an energy minimum, is shown in plots of a much “softer”, but still hard, 

system, 𝛽𝛽 = 0.7952, in Figure 4.13b. Finally, the wound can be closed where the minimum occurs 

at 𝑅𝑅𝑡𝑡∗ = 0 and 𝑅𝑅𝑏𝑏∗ = 0; this is shown in plots of a “soft” system, 𝛽𝛽 = 1.3254, in Figure 4.13c. 

A truncated cone geometrical representation of the cells allows for the separation of the 

apical and basal layer of the epithelium and as such the addition of the substrate adhesion and the 

apical contraction behaviours can be observed. The plots in Figure 4.14 show that the top and 

bottom radii of the wound can differ, similarly to simulated plots in Figure 4.7. Figure 4.14a shows 

that decreasing the substrate adhesion from 𝛼𝛼 = 2𝑆𝑆 (black) to 𝛼𝛼 = 𝑆𝑆 (green) and 𝛼𝛼 = 0 (red) 

demonstrates a similar behaviour to that from the simulations. As the substrate adhesion decreases, 

the transition value moves to a “softer” regime and the apical and basal radii values move closer 
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together and are the same when 𝛼𝛼 = 0. Adding an apical contraction, from Γ𝑡𝑡 = 0 (black) to 

Γ𝑡𝑡 = 500 (green) and Γ𝑡𝑡 = 1000 (red) in Figure 4.14b shows that the top radius of the wound 

deviates from the bottom radius and the transition value shifts to a “softer” regime. However, 

adding a basal contraction, from Γ𝑏𝑏 = 0 (black) to Γ𝑏𝑏 = 500 (green) and Γ𝑏𝑏 = 1000 (red), on the 

wound perimeter in Figure 4.14c shifts the basal radius away from the top radius, and the transition 

value of the wound at the bottom layer moves further into the “hard” regime, meaning that the base 

of the wound can be closed more easily. 

We also note that there is a discontinuity in the apical radii plots in Figure 4.14 which occurs 

when the basal radii drops to zero. The drop of the basal radii coincides with the disappearance of 

the two other critical points observed in Figure 4.13a on the basal radii axis.   
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(a)      (b) 

 
(c) 

Figure 4.13. Contour plots for the energy function of the truncated cone geometric 

representation of cells and wound. A black point represents the local minimum energy. a) 

Open wound in a hard regime, Γ = 50 and = 10000 (𝛽𝛽 = 0.2651), b) a partially open 

wound in a softer regime, Γ = 50 and 𝑆𝑆 = 30000 (𝛽𝛽 = 0.7952), and c) a closed wound in 

a soft regime, Γ = 50 and 𝑆𝑆 = 50000 (𝛽𝛽 = 1.3254). Other parameters include 𝑘𝑘 = 100, 

𝛼𝛼 = 2𝑆𝑆, 𝑉𝑉𝑝𝑝 = 500 and with 𝑁𝑁 = 25 cells. 
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(a)      (b) 

 

(c) 

Figure 4.14. Plots of the local minima values of the horizontal cross section wound area for 

the apical (solid line) and basal (dashed line) layers of the energy function with a truncated 

cone geometric representation of cells and wound. a) Represents a reduction of the substrate 

adhesion 𝛼𝛼 = 2𝑆𝑆 (black) to 𝛼𝛼 = 𝑆𝑆 (green) and 𝛼𝛼 = 0 (red). b) Includes an apical perimeter 

contraction representing Γ𝑡𝑡 = 0 (black), Γ𝑡𝑡 = 500 (green), and Γ𝑡𝑡 = 1000 (red). c) With the 

addition of the basal perimeter contraction on the wound Γ𝑏𝑏 = 0 (black), Γ𝑏𝑏 = 500 (green), 

and Γ𝑏𝑏 = 1000 (red). Other parameters include 𝑘𝑘 = 100, Γ = 50,  𝛼𝛼 = 2𝑆𝑆, 𝑉𝑉𝑝𝑝 = 500 and 

with 𝑁𝑁 = 25 cells. 
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4.6  MODELLING OF SINGLE CELL EXTRUSION 

The extrusion of cells from a monolayer due to the pressure in the system or the increase of 

cell proliferation that leads to pressure to extrude cells has been discussed previously. In 

simulations this increased pressure would be attributed to increasing the preferred volume or 

increasing the number of cells in the simulations. However, we wish to examine the reorganisation 

of the cells to extrude only a single modified cell in the absence of any pressure in the system. 

The initial cell configurations of all simulations in this chapter for three dimensions were 

generated by creating a configuration of 25 10 × 10 × 5 pixel square prism cells in a sheet located 

in a 50 × 50 × 10 pixel system and a 50 × 50 × 5 empty region above the cell sheet.  These 

configurations were run with the parameters 𝑘𝑘 = 100, the 𝑆𝑆 and Γ ratio 𝛽𝛽 = 1 and 𝑇𝑇 = 2000 until 

an energy equilibrium was reached. These simulations generated cell configurations with cross 

sections of the cells similar to Figure 4.3b. Once an energy equilibrium was reached the modified 

cell parameter values were adjusted and the simulation continued to run, obtaining the observed 

results. 

4.6.1  Numerical results for the three-dimensional CPM 

A single cell in the epithelial layer can be identified as a modified cell, e.g. due to genetic 

mutation such as in cancer cells. The modified cell parameter strengths are varied from the non-

modified neighbouring cells. However, the volume constraint, 𝑘𝑘, and the total surface area 

contraction, Γ, are kept constant. The cell-cell adhesion, cell-substrate adhesion and the apical 

perimeter contraction are represented by 𝑆𝑆, 𝛼𝛼 and Γ𝑡𝑡 for the non-modified cell and 𝑆𝑆∗, 𝛼𝛼∗ and Γ𝑡𝑡∗ for 

the modified cell.  

An additional lateral (cell-cell) surface area contraction, with the parameter strength Γ∗, 

Γ∗

2
�𝐴𝐴𝑠𝑠,𝑐𝑐−𝑐𝑐�

2
, 

and a basal perimeter contraction, 

Γ𝑏𝑏
2
�𝐿𝐿𝑠𝑠,𝑏𝑏�

2
, 

are added to the modified cell. These extra mechanisms are included in the energy Function (4.1) to 

create, 
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E =

𝑘𝑘
2
��𝑉𝑉𝑗𝑗 − 𝑉𝑉𝑝𝑝�

2
𝑁𝑁

𝑗𝑗

+
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2
�𝐴𝐴𝑗𝑗2
𝑁𝑁

𝑗𝑗

−
S
2
�𝐴𝐴𝑗𝑗,𝑐𝑐−𝑐𝑐
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𝑗𝑗

−
𝑆𝑆∗

2
𝐴𝐴𝑠𝑠,𝑐𝑐−𝑐𝑐 −

𝛼𝛼
2
�𝐴𝐴𝑗𝑗,𝑐𝑐−𝑏𝑏

𝑁𝑁

𝑗𝑗

−
𝛼𝛼∗

2
𝐴𝐴𝑠𝑠,𝑐𝑐−𝑏𝑏 +

Γ𝑡𝑡
2
��𝐿𝐿𝑗𝑗,𝑡𝑡�

2
𝑁𝑁

𝑗𝑗

+
Γ𝑡𝑡∗

2
�𝐿𝐿𝑠𝑠,𝑡𝑡�

2
+
Γ∗

2
�𝐴𝐴𝑠𝑠,𝑐𝑐−𝑐𝑐�

2
+
Γ𝑏𝑏
2
�𝐿𝐿𝑠𝑠,𝑏𝑏�

2
. 

( 4.16 ) 

The cell-substrate adhesion is removed from the modified cell, 𝛼𝛼∗ = 0, assuming that the extruding 

cell will have detached from the substrate. 

Initially, the simple case is examined where the modified cell has only the volume constraint 

and the total surface area contraction. The volume constraint attempts to maintain a preferred 

volume for the cell and the total surface area contraction attempts to force the cell to attain a 

minimum surface area. These two mechanisms are the minimum required for the cell in the 

monolayer because without the volume constraint the surface area contraction will shrink the cell to 

a minimum surface area, 𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚, and volume of zero. Without the surface area contraction the 

volume constraint will keep the cell at a particular volume, although the cell pixels may become 

separated from each other. The mechanisms complement each other and operate as opposing 

“forces”. 

If the modified cell is only subject to the volume constraint and surface area contraction, the 

modified cell’s only contribution to the energy is the space it occupies in the epithelial layer. The 

modified cell can exit the layer in two ways. The time taken for the modified cell to leave the 

epithelial layer can be unpredictable. The modified cell itself can hinder the closing of the layer, or 

the modified cell can leave the layer at any point with no added assistance. The modified cell is 

either “pushed” out by the neighbouring cells thus “closing the wound”, or it leaves the monolayer 

by itself allowing the neighbouring cells to close the wound that is left. Since the modified cell is 

not attached to its neighbours by adhesion and the energy contribution is the same whether the cell 

is connected to other cells or not, the system is the same as the wound case. 

Adding cell-cell adhesion to the modified cell attaches it to its neighbouring cells in the 

epithelial layer. The modified cell adhesion, 𝑆𝑆∗, is represented as a ratio with the non-modified cell 

adhesion, 𝑆𝑆∗ 𝑆𝑆⁄ . Figure 4.15 illustrates the change in the adhesion ratio and the effect on the 

modified cell. When 𝑆𝑆∗ 𝑆𝑆⁄ = 0 the cell is not connected to any of its neighbouring cells in the 

monolayer and can leave at any time, as mentioned in the case above. Gradually increasing the 

adhesion, such that 0 < 𝑆𝑆∗ 𝑆𝑆⁄ ≪ 1, allows the modified cell to extrude while weakly attached to the 

neighbouring cells. The modified cell is less likely to extrude from the layer when increasing the 

ratio 𝑆𝑆∗ 𝑆𝑆⁄  , but with 𝑆𝑆∗ 𝑆𝑆⁄ < 1, see Figure 4.15. When the ratio is equal to one, the modified cell-

cell adhesion is the same as that of the neighbouring cells and it does not extrude from the layer. 
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However, due to the lack of substrate adhesion in the modified cell, neighbouring cells with 

substrate adhesion are able to manoeuvre in-between the modified cell and the substrate. When 

𝑆𝑆∗ 𝑆𝑆⁄ > 1, the neighbouring cells enclose the modified cell within the epithelial layer. A stronger 

modified cell-cell adhesion makes the modified cell “softer” than its neighbours since 

𝛽𝛽∗ = 𝑆𝑆∗ 2(Γ𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚)⁄ > 𝛽𝛽 = 𝑆𝑆 2(Γ𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚)⁄ , and this creates the potential for the modified cell to break 

apart since there is no connection condition. This behaviour can only be rectified by increasing the 

cortical contraction of the modified cell. In contrast, the modified cell is “harder” than its 

neighbours when 𝑆𝑆∗ 𝑆𝑆⁄ < 1, since 𝛽𝛽∗ < 𝛽𝛽. 

 

Figure 4.15. Examples of vertical cross-sections of simulations on the left and right of the 

figure of the effect of the mechanisms on the modified cell (black). The illustration in the 

figure generalises the effect on the modified cell (orange), of decreasing modified cell 

adhesion, 𝑆𝑆∗ 𝑆𝑆⁄ , and alternatively increasing the additional modified cell contraction, Γ∗ Γ⁄ . 

An additional “lateral” contraction is added on the surface area of the modified cell 

connected to the neighbouring cells to assist the extrusion of the modified cell. The strength of the 

lateral contraction, Γ∗, is represented as a ratio of lateral contraction to the total surface area 

contraction, Γ∗ Γ⁄ . A ratio of Γ∗ Γ⁄ = 0 describes the case above with an adhesion ratio 𝑆𝑆∗ 𝑆𝑆⁄ = 1. 

Increasing the ratio Γ∗ Γ⁄  from zero results in a “hardening” of the modified cell on the surface area 

connected to neighbouring cells. A lack of adhesion between the modified cell and the substrate 

may allow neighbouring cells to manoeuvre themselves between the modified cell and the substrate. 

Further increasing the ratio Γ∗ Γ⁄  eventually results in the modified cell being partially extruded and, 
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eventually, completely extruded from the epithelial layer. These three “phases”, namely, minimal 

change, partial change, and total extrusion, illustrated in Figure 4.15, are similar to three of the four 

outcomes attained with adhesion changes, as described previously. 

The modified cell can retract from its neighbouring cells faster than the neighbouring cells 

can close the empty space if the ratio Γ∗ Γ⁄  is large enough, resulting in the modified cell detaching 

from the neighbouring cells. However, the gradual encroachment and joining between the 

neighbouring cells can eventually result in the extrusion of the modified cell. 

In combination, the modified cell-cell adhesion and the extra lateral contraction of the 

modified cell affects the strength of the parameters required to extrude the cell. The combinations of 

the two parameters are shown in the three phase diagrams in Figure 4.16. The phase diagrams in 

Figure 4.16 represent the condition of the modified cell for each a simulation where the modified 

cell is extruded (red) or not extruded (blue) from the monolayer. Other values in-between these 

outcomes represent a partial extrusion (green). The number of layers closed below the modified cell 

determines the state of the extrusion. For a five pixel-high monolayer there are several outcomes. 

Starting from the substrate: the “no change” case represents all pixel layers of the modified cell 

remaining; the “partial or non-extrusion” case represents the removal of different incremental pixel 

layers of the modified cell specifically the modified cell pixel layers 1 to 4; and finally the 

“modified cell extruded” from the monolayer represents the removal of all 5 layers of the modified 

cell. The extruded cell can be classified as being either “attached” or “detached” from the epithelial 

layer. Detachment occurs for very weak values of the modified cell-cell adhesion and high “lateral” 

contraction. 

A modified cell can be extruded from the monolayer if the modified cell-cell adhesion is 

low, or if there is a sufficiently strong additional lateral contraction. The combination of both 

mechanisms can complement each other, i.e. a lower adhesion requires a smaller contraction to 

extrude the cell. Figure 4.16a plots the condition of the modified cell showing that with low 

modified cell adhesion and larger contraction the cell can extrude and if not the cell is only partially 

extruded.  

The modified cell can only be extruded from the system if the neighbouring cells are able to 

close the resulting wound. A simulation with a regime that is unable to close a wound will be 

unable to extrude the cell. This is shown by the phase diagrams in Figure 4.16b, which drops the 

substrate adhesion, and Figure 4.17b, which shows systems that could close the wound in a soft 

regime cannot in a harder regime. This pattern is similar to the wound case. Alternatively, changing 

other parameters that hinder the system from closing the wound, such as halving the substrate 
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adhesion represented in Figure 4.16b, will also prevent the modified cell from extruding for any 

combination of modified cell-cell adhesion and additional lateral contraction values. 

Adding an apical contraction to the cell perimeter adjusts the regimes between the apical and 

basal layer of the cells, with the apical layer behaving “harder” than the basal layer. The apical 

contraction perimeter of neighbouring cells can hinder the closure of a wound as seen in the 

previous Section 4.5 and largely only affects the apical layer of the cells. The transition between the 

open and closed wound can shift to a “softer” regime requiring “softer” cells to close the wound. 

The phase diagram in Figure 4.16c shows that the extrusion of the cell is also hindered with the 

addition of the apical perimeter contraction of Γ𝑡𝑡 = 300 to simulations. Comparing the phase 

diagram in Figure 4.16a to the phase diagram in Figure 4.16c, with the added apical contraction, 

shows the modified cell only partially extrudes in Figure 4.16c, whereas it would extrude in Figure 

4.16a without the apical perimeter contraction. 

A strong apical perimeter contraction can force the cells to separate from each other. If the 

modified cell adhesion is small compared to the neighbouring cell adhesion, only the modified cell 

will detach from its neighbouring cells. However, the basal layer of the neighbouring cells can 

invade the space occupied by the modified cell. In such cases, it appears that the system can form “a 

bowl” (or void) which the modified cell can occupy. Running the simulations with strong apical 

contraction shows the system creates this “bowl” for the cell to sit in instead of extruding the cell. 

This “bowl” case occurs in systems shown in the phase diagrams in Figure 4.16c when there is low 

modified cell adhesion and large additional modified cell contraction. The “bowl” case is identified 

as a partial extrusion case. The weaker the apical perimeter contraction the less likely for the “bowl” 

case to exist. This can occur whether the apical perimeter contraction is applied to the modified cell 

or not. 

The phase diagrams in Figure 4.16 show only one regime value 𝛽𝛽 = 1.1902 for the 

monolayer. However, by changing the value of beta Figure 4.17a shows a system for a soft regime 

and Figure 4.17b for a hard regime. While there is little to no difference in Figure 4.17a compared 

to Figure 4.16a, a hard system shown in Figure 4.17b demonstrates that the modified cell does not 

extrude for a similar range of values for S∗ S⁄   and Γ∗ Γ⁄ . This suggests that the regime condition has 

an effect on the extrusion of the modified cell. 
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(a)      (b) 

 
(c) 

Figure 4.16. Phase diagrams comparing the modified cell adhesion ratio, S∗ S⁄ , and 

additional modified cell contraction ratio, Γ∗ Γ⁄  . Each marker represents a single simulation 

and a modified cell is identified as an extruded cell in the diagram with a red marker, 

partially extruded with a green marker, and not extruded with a blue marker. a) Represents 

the base case, b) represents a reduction in the substrate adhesion, 𝛼𝛼 = 𝑆𝑆, and c) includes an 

apical perimeter contraction, Γ𝑡𝑡 = 300, for all the cells. The base case parameters include 

𝑘𝑘 = 100, 𝑆𝑆 = 65000 (𝛽𝛽 = 1.1905), Γ = 50, 𝛼𝛼 = 2𝑆𝑆, 𝑉𝑉𝑝𝑝 = 500 and ℎ = 5 with 𝑁𝑁 = 25 

cells on a 50 × 50 × 10 hexagonal layered pixel grid. 
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(a)      (b) 

Figure 4.17. Phase diagrams comparing the modified cell adhesion ratio, S∗ S⁄ , and 

additional modified cell contraction ratio, Γ∗ Γ⁄ . Each marker represents a single simulation 

and a modified cell is identified as an extruded cell in the diagram with a red marker, 

partially extruded with a green marker, and not extruded with a blue marker. a) Represents a 

soft system, 𝑆𝑆 = 90000 and Γ = 50 (𝛽𝛽 = 1.6484), and b) represents a hard system, 

𝑆𝑆 = 30000 and Γ = 50 (𝛽𝛽 = 0.5495). Other parameters include 𝑘𝑘 = 100, 𝛼𝛼 = 2𝑆𝑆, 

𝑉𝑉𝑝𝑝 = 500  with 𝑁𝑁 = 25 cells on a 50 × 50 × 10 hexagonal layered pixel grid. 

Similar to the wound case in the Section 4.5 we examine, in Figures 4.18 and 4.19, the 

horizontal cross-sectional area of the modified cell against different values of 𝛽𝛽. The extrusion of 

the modified cell in the hard and soft regimes is similar to the open and closed wound case. Rather 

than the showing the cross-sectional area of the wound from the five pixel layers of the monolayer 

in Figure 4.7, Figures 4.18 and 4.19 show the cross-sectional area of the modified cell in the same 

five pixel layers against different regimes, 𝛽𝛽, in the system. When the modified cell does not 

occupy a pixel layer of the monolayer the area, 𝐴𝐴𝑖𝑖,will be zero.  

Figure 4.18a presents systems with parameters, Γ∗ Γ⁄ = 0, and 𝑆𝑆∗ 𝑆𝑆⁄ = 1. The cell does not 

extrude since the cross-sectional area of all the layers of the cells does not reduce to zero. However, 

the simulations in the soft regime show that the area of the bottom of the modified cell does reduce 

to zero, meaning the modified cell lifts off the substrate but no other changes occur. Note that the 

top apical layer in the hard regime also reduces to zero. This occurs because the modified cell has 

shrunk and does not necessarily mean that the cell has been enclosed in the monolayer by other 

cells. In either case the modified cell does not extrude. Figure 4.18b shows that by reducing the 

modified cell adhesion of the modified cell, represented by the ratio 𝑆𝑆∗ 𝑆𝑆⁄ , to 0.2, the cell can 

extrude in the soft regime. As the modified cell adhesion becomes weaker the extrusion of the 
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modified cell is comparable to the wound case, where soft cell regimes can extrude the modified 

cell and harder cell regimes cannot extrude a modified cell. The partial extrusion of the modified 

cell, where the modified cell has extruded from four of the five pixel layers of the monolayer, can 

also be seen in Figure 4.18c, with a modified cell adhesion of S∗ S⁄ = 1, which shows the effect of 

the additional lateral contraction, Γ∗ Γ⁄ = 6. The full extrusion of the modified cell was seen in the 

phase diagram in Figure 4.16a with stronger lateral contraction. Figures 4.18a, 4.18b and 4.18c 

show when the modified cell adhesion is decreased, seen between Figures 4.18a and 4.18b, or when 

the additional lateral contraction is added and increased, seen between Figures 4.18a and 4.18c, the 

extrusion of the modified cell is similar to the closure of a wound in Section 4.5. Softer cell regimes 

are able to extrude the modified cell and harder cell regimes cannot. This suggests that, in the 

simulations, the extrusion of the modified cell is closely related to the closure of the wound. 

Additional parameters and changes, such as the addition of an apical perimeter contraction, 

the reduction of the substrate adhesion and the additional of the modified cell basal perimeter 

contraction, can also affect the extrusion of the modified cell and are shown in the plots in Figure 

4.19. Figure 4.19a plots similar systems to those plotted in Figure 4.18b, except additional apical 

contraction, Γ𝑡𝑡 = 300, is applied to the cells surrounding the modified cell. The simulations in the 

soft regime that were able to extrude a cell in Figure 4.18b now only partially extrude the modified 

cell in Figure 4.19a, where the modified cell only occupies the upper pixel layers and is removed 

from the lower pixel layers. Figure 4.19b also plots similar systems to those plotted in Figure 4.18b, 

except the substrate adhesion is 𝛼𝛼 = 𝑆𝑆. The systems that showed an extruded modified cell in 

Figure 4.18b are not able to extrude the modified cell in Figure 4.19b, as the modified cell still 

occupies all the pixel layers in the monolayer of cells. This is similar to the effect in the micro-

wound simulations with a decreased substrate adhesion seen by comparing Figure 4.7a, 4.7b and 

4.7c. Finally, Figure 4.19c plots simulations similar to Figure 4.18a, except basal perimeter 

contraction, Γ𝑏𝑏 = 300, is added to the modified cell. Figure 4.18a showed that all simulations did 

not extrude the modified cell with the modified cell only being removed from basal pixel layer, 𝐴𝐴1. 

However, with the addition of the basal perimeter contraction in Figure 4.19c the modified cell is 

shown to be partially removed in soft regime systems with the modified cell only occupying the 

apical pixel layer of the monolayer of cells. This is similar to the wound closure in Figure 4.8. The 

values of the wound cross-sectional area in Figure 4.8 suggest that the apical pixel layer was still 

open, 𝐴𝐴𝑖𝑖 𝐴𝐴𝑝𝑝⁄ = 25, but this represents the monolayer of cells decreasing in height since the empty 

space of the empty space representing the wound covers the entire monolayer’s horizontal cross-

section area in the simulation, which means the wound did close. Whereas in Figure 4.19c the 

modified cell still occupies the apical pixel layer.  
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(a)      (b) 

 
(c) 

Figure 4.18. Plots of the equilibrium values of the average horizontal cross-section 

modified cell area over the last 100 iterations of a single CPM simulation of 2000 iterations 

against different cell regimes, 𝛽𝛽 at five pixel layers. a) Plots the cases with a modified cell 

ratio of  𝑆𝑆∗ 𝑆𝑆⁄ = 1 and no additional lateral contraction, Γ∗ Γ⁄ = 0. b) Plots the cases with no 

additional lateral modified cell contraction ratio, Γ∗ Γ⁄ = 0, and a low modified cell ratio to 

𝑆𝑆∗ 𝑆𝑆⁄ = 0.2. c) Plots the cases with a larger additional modified cell contraction ratio to 

Γ∗ Γ⁄ = 6 and a low modified cell adhesion ratio of 𝑆𝑆∗ 𝑆𝑆⁄ = 1. Other parameters are 

𝑘𝑘 = 100, Γ = 50, 𝛼𝛼 = 2𝑆𝑆, 𝑉𝑉𝑝𝑝 = 500 with 𝑁𝑁 = 25 cells on a 50 × 50 × 10 hexagonal 

layered pixel grid. 
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(a)      (b) 

 
(c) 

Figure 4.19. Plots of the equilibrium values of the average horizontal cross-section 

modified cell area over the last 100 iterations of a single CPM simulation of 2000 iterations 

against different cell regimes, 𝛽𝛽 at five pixel layers. The plots represents cases with a larger 

additional modified cell contraction ratio to Γ∗ Γ⁄ = 6 and a low modified cell ratio to 

𝑆𝑆∗ 𝑆𝑆⁄ = 0.2, with a) the inclusion of an apical perimeter contraction of Γ𝑡𝑡 = 300 and 

substrate adhesion of 𝛼𝛼 = 2𝑆𝑆, on the cells; b) a reduction in the substrate adhesion to 𝛼𝛼 = 𝑆𝑆; 

and c) the inclusion of a basal perimeter contraction of Γ𝑏𝑏 = 300 and a substrate adhesion of 

𝛼𝛼 = 2𝑆𝑆, on the modified cell to the case with a modified cell ratio, 𝑆𝑆∗ 𝑆𝑆⁄ = 1. Other 

parameters are 𝑘𝑘 = 100, Γ = 50, 𝑉𝑉𝑝𝑝 = 500 with 𝑁𝑁 = 25 cells on a 50 × 50 × 10 

hexagonal layered pixel grid. 
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4.6.2  Spherical representation of an extruded modified cell for theoretical analysis 

The geometric representation of the modified cell system draws on the concepts of the 

geometric representation of the system with an empty wound; however, instead of a wound there is 

a modified cell that is allowed to leave the monolayer. All non-modified cells are represented as 

truncated cones with the apical and basal layers of the cells represented by radii 𝑅𝑅𝑡𝑡 and 𝑅𝑅𝑏𝑏, 

respectively. The modified cell on the other hand is represented by two shape components: a 

truncated cone, with the apical and basal radii represented by 𝑅𝑅𝑡𝑡∗ and 𝑅𝑅𝑏𝑏∗  in the monolayer; and a 

sphere, with the radius 𝑅𝑅𝑜𝑜𝑡𝑡∗  , representing the extruded component of the modified cell, see Figure 

4.20. As the geometric representation is considered to be a simplified representation of the extrusion 

of the modified cell, we consider these two shape components to be separate from each other. While 

other shapes can be used to represent the extruded component of the modified cell, the sphere is 

selected as it can be defined by a single variable, the radius. The radius of the sphere can be 

expressed as 

𝑅𝑅𝑜𝑜𝑡𝑡∗ = � 3
4𝜋𝜋

𝑉𝑉𝑝𝑝 −
1
4

(𝑅𝑅𝑡𝑡∗2 + 𝑅𝑅𝑡𝑡∗𝑅𝑅𝑏𝑏∗ + 𝑅𝑅𝑏𝑏∗2)ℎ
3

, 

with two additional assumptions. Firstly, the height of the monolayer is fixed. Secondly, the volume 

of the modified cell, 𝑉𝑉∗, will always have a place to occupy, i.e. the volume of the sphere is fixed at 

𝑉𝑉𝑝𝑝.  

The energy function of this geometric model is derived from Function (4.16) and is 

expressed with the modified and non-modified cell terms with the geometry represented above, 

where the modified components are represented with “*”, 
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( 4.17 ) 

 

The non-modified cell’s apical, basal and lateral surface areas are represented with 𝐴𝐴𝑡𝑡, 𝐴𝐴𝑏𝑏 and 𝐴𝐴𝑠𝑠, 

respectively, and the total surface area, 𝐴𝐴, as a summation of all three surface area components. The 

modified cell’s apical, basal and lateral surface areas of the truncated cone are represented by 𝐴𝐴𝑡𝑡∗, 

𝐴𝐴𝑏𝑏∗  and 𝐴𝐴𝑠𝑠∗, respectively, and the sphere surface area is represented by 𝐴𝐴𝑜𝑜∗ . Unlike the non-modified 

cells, the modified cell’s total surface area is a combination of the truncated cone and the sphere. 
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The sphere radius must always be non-negative, 𝑅𝑅𝑜𝑜𝑡𝑡∗ ≥ 0. A heavy-side step function, 𝜂𝜂, is used to 

remove the sphere if 𝑅𝑅𝑜𝑜𝑡𝑡∗ < 0. The total surface area of the modified cell is given by 

A∗ = 𝐴𝐴𝑠𝑠∗ + 𝐴𝐴𝑡𝑡∗ + 𝐴𝐴𝑏𝑏∗ + 𝐴𝐴𝑜𝑜∗ �𝜂𝜂(𝑅𝑅𝑜𝑜𝑡𝑡∗ )�. 

As with the geometric representation of the wounds in two and three dimensions, we assume 

the pixel layers of the epithelium have a conserved area. This means that the apical and basal radii 

of the non-modified cells, (𝑅𝑅𝑡𝑡,𝑅𝑅𝑏𝑏), and modified cell, (𝑅𝑅𝑡𝑡∗,𝑅𝑅𝑏𝑏∗), are related by Equation (4.6), where 

𝑅𝑅𝑡𝑡∗ and 𝑅𝑅𝑏𝑏∗  represent the modified cell instead of the wound. This means the energy function can be 

expressed with the modified cell pair of variables, 
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( 4.18 ) 

The non-modified cell volume is expressed with Function (4.9), surface areas with 

Functions (4.10), (4.11) and (4.13), and perimeter with Function (4.15). The modified cell volume 

is expressed with function  

𝑉𝑉(𝑅𝑅𝑡𝑡∗,𝑅𝑅𝑏𝑏∗) =
1
3
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2 + 𝑅𝑅𝑡𝑡∗𝑅𝑅𝑏𝑏∗� +

4
3
𝜋𝜋𝑅𝑅𝑜𝑜∗

3, 

basal perimeter with Function (4.14), and surface areas with Functions (4.12) and 

𝐴𝐴𝑏𝑏∗ (𝑅𝑅𝑏𝑏∗) = 2𝜋𝜋𝑅𝑅𝑏𝑏∗
2, 

and the total surface area of the modified cell is represented as 

𝐴𝐴∗(𝑅𝑅𝑡𝑡∗,𝑅𝑅𝑏𝑏∗) = 𝜋𝜋(𝑅𝑅𝑡𝑡∗ + 𝑅𝑅𝑏𝑏∗)�(𝑅𝑅𝑡𝑡∗ − 𝑅𝑅𝑏𝑏∗)2 + ℎ2 + 𝜋𝜋𝑅𝑅𝑡𝑡∗
2 + 𝜋𝜋𝑅𝑅𝑏𝑏∗

2 + 4𝜋𝜋𝜂𝜂(𝑅𝑅𝑜𝑜𝑡𝑡∗ )2. 
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Figure 4.20. Geometric representation of the modified cell as a truncated cone inside the 

monolayer, with radii of 𝑅𝑅𝑡𝑡∗ and 𝑅𝑅𝑏𝑏∗  , and a sphere representing the extruded component, 

with radius 𝑅𝑅𝑜𝑜𝑡𝑡∗ . 
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Results of the modified cell geometric model 

Energy Function (4.16) is expressed with the apical and basal radii of the modified cell and 

is plotted in Figure 4.21 as a contour plot. The figure highlights three states of the modified cell, 

namely, a non-extruded modified cell (𝑅𝑅𝑡𝑡∗ > 0,𝑅𝑅𝑏𝑏∗ > 0) in Figure 4.21a, a partially extruded 

modified cell or inverted cone (𝑅𝑅𝑡𝑡∗ > 0,𝑅𝑅𝑏𝑏∗ = 0) in Figure 4.21b, and an extruded modified cell 

(𝑅𝑅𝑡𝑡∗ = 0,𝑅𝑅𝑏𝑏∗ = 0) in Figure 4.21c. 

 
(a)      (b) 

 
(c) 

Figure 4.21. Contour plots for the energy Function (4.17) of the spherical geometric 

representation of the modified cell. A black point represents the local minimum energy 

function. a) An non-extruded modified cell, with 𝑆𝑆∗ 𝑆𝑆⁄ = 0.5 and = 1000 (𝛽𝛽 = 0.0265), b) 

a partially extruded modified cell, with 𝑆𝑆∗ 𝑆𝑆⁄ = 0.5 and 𝑆𝑆 = 60000 (𝛽𝛽 = 1.5905), and c) 

an extruded modified cell, with 𝑆𝑆∗ 𝑆𝑆⁄ = 0.1 and 𝑆𝑆 = 60000 (𝛽𝛽 = 1.5905). Other 

parameters include Γ = 50, 𝑘𝑘 = 100, 𝛼𝛼 = 2𝑆𝑆, 𝑉𝑉𝑝𝑝 = 500 and ℎ = 5 with 𝑁𝑁 = 25 cells. 
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Changing the relative strengths of the modified cell adhesion changes how the modified cell 

interacts with the neighbouring cells. If the modified cell adhesion is the same as the other cells in 

the system, the modified cell itself should have little or no change. However, given that the 

adhesion to the substrate is absent the basal radius would reduce to zero. Decreasing the relative 

value of the modified cell’s adhesion means that the cell itself would become “harder” than the 

neighbouring cells, but the lower adhesion would reduce the surface area in contact with other cells 

and can extrude the modified cell. Figure 4.22a shows these different cases of the modified cell’s 

extrusion by plotting the apical (solid line) and basal (dashed line) radii of the modified cell, where 

𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚 (or 𝑅𝑅𝑝𝑝) is the radius of a cylindrical cell with a volume 𝑉𝑉𝑝𝑝 and height ℎ. The black line in the 

plot represents a system with an adhesion ratio 𝑆𝑆∗ 𝑆𝑆⁄ = 1, the green 𝑆𝑆∗ 𝑆𝑆⁄ = 0.5, and red 

𝑆𝑆∗ 𝑆𝑆⁄ = 0.1. The figure shows a similar result to the simulations, namely, that decreasing the 

modified cell adhesion will facilitate extruding the modified cell for “soft” cell regimes. As the 

modified cell adhesion gets closer to zero the plots and system become similar to the wound system. 

However, unlike the wound case, the radii of the modified cell does not increase much above the 

ratio 𝑅𝑅 𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚⁄ = 1. This is due to the assumption of the fixed volume of the modified cell. If the 

modified cell is not extruded, then the largest volume the cell can have is 𝑉𝑉𝑝𝑝, from which 𝑅𝑅𝑝𝑝 is 

derived. The wound does not have this restriction and the wound can be larger as is evident in the 

hard regime in Figure 4.14. 

The addition of the extra cortical contraction around the modified cell would create a harder 

cell and the surface area of the cell would decrease. We expected that this change would be similar 

to the change in the relative modified cell adhesion; however, this is not the case. Figure 4.22b 

shows plots of the relative radii of the modified cell against the regime, 𝛽𝛽, with changing values of 

additional contraction on the modified cell. The black line represents the contraction ratio Γ∗ Γ⁄ = 0, 

green line Γ∗ Γ⁄ = 4 and red line Γ∗ Γ⁄ = 8. The plot shows that the increase in the modified cell’s 

additional lateral contraction can assist with the modified cell extrusion; this reduction is shown by 

the reduction in the modified cell’s apical radius. There is a difference between the simulations and 

the geometric model related to the connection between the modified cell and its neighbouring cells. 

The geometric model assumes that the cells are connected to each other, whereas in the CPM the 

cells can detach from each other so long as there are empty spaces connected to the junctions. So, in 

the geometric model the contraction of the modified cell can not only “shrink” the modified cell, 

but the “shrinking” of the modified cell “pulls” other neighbouring cells with it. However, in the 

simulations, large contraction parameters can separate the cells from one another, see Figure 4.4. In 

particular, with the additional lateral contraction of the modified cell, the modified cell can separate 

from its neighbours.  
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The behaviour of the modified cell in the geometric model when both the modified cell 

adhesion and additional lateral contraction are changed is observed in the phase diagrams in Figures 

4.23 and 4.24. These phase diagrams include the three cases of the modified cell extrusion: the non-

extrusion case represented by the blue points, the partial extrusion represented by the green points, 

and the extrusion of the modified cell represented by the red points. While the geometric model 

phase diagrams have clear differences compared to the simulation phase diagrams in Figures 4.16 

and 4.17, the main behaviour of the modified cell in the geometric model is similar to the 

simulations of changes in the modified cell adhesion and additional lateral contraction.  

When the modified cell adhesion decreases the modified cell is able to extrude. The system 

with a cell regime of 𝛽𝛽 = 1.7230 and a substrate adhesion of 𝛼𝛼 = 2𝑆𝑆 in Figure 4.23a shows there is 

a divide represented by as a gradient between the three modified cell extrusion cases when 

Γ∗ Γ⁄ ≤ 2. However, when Γ∗ Γ⁄ > 2 there is a distinct threshold, at 𝑆𝑆∗ 𝑆𝑆⁄ = 0.8, between only the 

partial extrusion and extrusion of the modified cell. This threshold is a clear difference between the 

geometric model and the simulation data shown in Figure 4.16a where no such threshold is 

observed.  

Changing the substrate adhesion of the system in Figure 4.23a from 𝛼𝛼 = 2𝑆𝑆 to 𝛼𝛼 = 0 shown 

in Figure 4.23b does “hinder” the extrusion of the modified cell. Some of the modified cell partial 

extrusion and extrusion cases change to non-extrusion cases when Γ∗ Γ⁄ ≤ 2. Therefore, systems 

with Γ∗ Γ⁄ ≤ 2 require the modified cell adhesion ratio to be smaller for the modified cell to extrude. 

When Γ∗ Γ⁄ > 2 there is still a threshold at 𝑆𝑆∗ 𝑆𝑆⁄ = 0.8, but this threshold is between non-extrusion 

and extrusion instead of partial-extrusion and extrusion of the modified cell.  

Reducing the cell substrate adhesion to zero makes the apical and basal layers appear similar. 

This similarity can be seen in Figure 4.25a, which plots the apical (solid line) and basal (dashed 

line) radii of the modified cell against the cell regime, where the system with no substrate adhesion 

(red) has the same value for the apical and basal radii. 

Different cell regimes in the simulations change the behaviour of the modified cell in the 

phase diagram. Although, in simulations there was little change in softer regimes, in the hard 

regimes hindering the modified cell extrusion. The geometric model does not follow the behaviour 

of the modified cell simulations, except when Γ∗ Γ⁄ = 0. 

The cell regime of the systems in Figure 4.23 is 𝛽𝛽 = 1.7230  and Figure 4.24a shows a 

harder cell regime system than Figure 4.23a with 𝛽𝛽 = 0.7952. Unlike the simulations, the modified 

cell extrusion in the geometric model is not hindered, except when Γ∗ Γ⁄ = 0. When Γ∗ Γ⁄ = 0 the 
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plot in Figure 4.24a shows that the adhesion ratio of the modified cell must be decreased further to 

extrude the modified cell. For the systems where Γ∗ Γ⁄ > 0 we find that there is a divided by a 

gradient similar to Figure 4.23a but there is no distinct threshold of 𝑆𝑆∗ 𝑆𝑆⁄  between two modified cell 

extrusion cases. Although the geometric model behaviour is different than the simulation in this 

case, reducing the substrate adhesion to zero in Figure 4.24b does confirm that a reduction in the 

substrate adhesion hinders the extrusion of the modified cell.  

The cell regime of the system in Figure 4.23a is 𝛽𝛽 = 1.7230 and Figure 4.24c shows a 

softer cell regime system with 𝛽𝛽 = 2.3857. Unlike the simulations there is an observable difference 

in the behaviour of modified cell extrusion in the geometric model. A distinct threshold exists 

between the two cases of the extruded modified cell and the partially extruded cell, although it is 

shifted from Γ∗ Γ⁄ ≈ 0.8 to Γ∗ Γ⁄ ≈ 0.7. There is also a gradient observed between the non-extruded 

cell and partially extruded cases. Again, reducing the substrate adhesion to zero in this regime in 

Figure 4.24d shows the extrusion of the modified cell is hindered in a similar way to Figure 4.23b. 

Adding the apical perimeter contraction of the non-modified cells, Γ𝑡𝑡 = 500, and the basal 

perimeter contraction of the modified cell, Γ𝑏𝑏 = 300, to the systems shown in the phase diagram in 

Figure 4.23a are shown in the phase diagrams in Figures 4.23c and 4.23d, respectively. These phase 

diagrams show no significant quantitative change to the modified cell extrusion behaviour with the 

addition of either mechanism. In simulations, the adding of the apical perimeter contraction of the 

non-modified cells showed a clear change of behaviour of the modified cell. Systems where the 

modified cell extruded, in Figure 4.16a, would only partially extrude when the apical perimeter was 

added to the non-modified cells, in Figure 4.16c. Figure 4.25b, which plots the apical (solid line) 

and basal (dashed line) radii of the modified cell against the cell regime, does show that no apical 

perimeter contraction and an apical perimeter contraction of Γ𝑡𝑡 = 500 have the same radii. 

However, for a much larger apical perimeter contraction of Γ𝑡𝑡 = 5000 there is a difference. The 

plot is similar to the plot of the lateral contraction of  Γ∗ Γ⁄ = 8 (red) in Figure 4.22b.  

The addition of the basal perimeter contraction to the modified cell shows very little change 

in Figure 4.23d. This is different to the results of the CPM simulations where there was some 

change to the basal pixel layer of the modified cell between Figures 4.18a and 4.19c. While there 

are no observed changes in phase diagram in Figure 4.23d, there is an observable change in plot of 

the modified cell radii in Figure 4.25c, which plots the apical (solid line) and basal (dashed line) 

radii of the modified cell against 𝛽𝛽. The change in Figure 4.25c shows that adding the basal 

perimeter contraction to the modified cell can “close” the basal layer. Increasing the strength of the 
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basal perimeter contraction does not affect the system a lot because once the basal layer of the 

modified cell is “closed” the cell is no longer affected by the basal perimeter contraction.   

One possible reason for the difference between the geometric model and simulations is the 

classification of the lateral contraction of the modified cell. The geometric model assumes that all 

the cells are connected to one another and, as such, a stronger lateral contraction on the modified 

cell would pull the cells in to “close” the gap that would be left behind after extrusion. However, 

softer cells in the lateral contraction case have difficulty reaching their preferred cell surface area 

leading to the results seen in the figures discussed above. 

The geometric model produces some results that differ compared to the CPM simulation. 

While changes in adhesion give similar results, the results with changing lateral contraction have 

greater differences partially due to the connectivity assumptions between the cells. The assumption 

of connectivity for the geometric model affects the modified cell’s extrusion more significantly than 

for the wound system; however, this assumption of connectivity is needed to model the modified 

cell in the geometric model. 

Comparing the geometric modified cell case to the geometric representation of the wound 

shows that some of the plots in Figures 4.22 and 4.25 have similarities to the wound plots in Figure 

4.14. In particular when the basal radii drop to zero, the discontinuity seen in the apical radii in 

Figure 4.14 is also observed in Figures 4.22 and 4.25. While most plots in Figures 4.22 and 4.25 

also show the apical radii decreasing then dropping to zero, seen in Figure 4.14, some plots in 

Figure 4.22 show the apical radii increasing when the adhesion increases. This is caused by the 

presence of the modified cell in the monolayer and the modified cell having a similar cell-cell 

adhesion as its neighbours. When increasing the adhesion the cells rearrange to cover a larger 

surface area between each other. For the modified cell this is achieved by forming a cone 

(𝑅𝑅𝑡𝑡∗ > 0,𝑅𝑅𝑏𝑏∗ = 0), due to the lack of substrate adhesion. 
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(a)      (b) 

Figure 4.22. Plots of the apical (solid line) and basal (dashed line) modified cell radii at the 

local minima of the energy function with a spherical geometric representation of the 

extruded modified cell, against the regime of the system, 𝛽𝛽. a) Represents changes to the 

modified cell adhesion with the ratios of 𝑆𝑆∗ 𝑆𝑆⁄ = 1 (black), 𝑆𝑆∗ 𝑆𝑆⁄ = 0.5 (green) and 

𝑆𝑆∗ 𝑆𝑆⁄ = 0.1 (red). b) Represents changes to the modified cell’s additional contraction, 

Γ∗ Γ⁄ = 0  (black), Γ∗ Γ⁄ = 4  (green) and Γ∗ Γ⁄ = 8 (red). Other parameters are 𝑘𝑘 = 100, 

Γ = 50, 𝛼𝛼 = 2𝑆𝑆, 𝑉𝑉𝑝𝑝 = 500 and ℎ = 5 with 𝑁𝑁 = 25 cells. 
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(a)      (b) 

 

(c)      (d) 

Figure 4.23. Phase diagrams comparing the modified cell adhesion ratio, 𝑆𝑆∗ 𝑆𝑆⁄ , and 

additional modified cell contraction ratio, Γ∗ Γ⁄ , for the spherical representation of the 

modified cell. An extruded cell in the diagram is identified with the red marker, partially 

extruded with a green marker, and not extruded with a blue marker. a) Represents a the 

systems with a substrate adhesion of 𝛼𝛼 = 2𝑆𝑆, b) represents a reduction in the substrate 

adhesion, 𝛼𝛼 = 0, c) has a substrate adhesion of 𝛼𝛼 = 2𝑆𝑆 and includes an apical perimeter 

contraction, Γ𝑡𝑡 = 500, for all the cells, and d) has a substrate adhesion of 𝛼𝛼 = 2𝑆𝑆 and 

includes the basal perimeter contraction, Γ𝑏𝑏 = 300, for the modified cell. Other parameters 

include parameters include 𝑘𝑘 = 100, 𝑆𝑆 = 65000, Γ = 50 (𝛽𝛽 = 1.7230), 𝑉𝑉𝑝𝑝 = 500 and 

ℎ = 5 with 𝑁𝑁 = 25 cells. 
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(a)      (b) 

   

(c)      (d) 

Figure 4.24. Phase diagrams comparing the modified cell adhesion ratio, 𝑆𝑆∗ 𝑆𝑆⁄ , and 

additional modified cell contraction ratio, Γ∗ Γ⁄  , for the spherical representation of the 

modified cell. An extruded cell in the diagram is identified with the red marker, partially 

extruded with a green marker, and not extruded with a blue marker. a) Represents a harder 

system with cell-cell adhesion, = 30000 (𝛽𝛽 = 0.7952), and substrate adhesion, 𝛼𝛼 = 2𝑆𝑆. b) 

Represents the harder system with cell-cell adhesion, = 30000 (𝛽𝛽 = 0.7952), and a 

substrate adhesion, 𝛼𝛼 = 0. c) Represents a softer system with cell-cell adhesion, = 90000 

(𝛽𝛽 = 2.3857), and substrate adhesion, 𝛼𝛼 = 2𝑆𝑆. d) Represents the softer system with cell-

cell adhesion, = 90000 (𝛽𝛽 = 2.3857), and substrate adhesion, 𝛼𝛼 = 0. Other parameters 

include 𝑘𝑘 = 100, Γ = 50, 𝑉𝑉𝑝𝑝 = 500 and ℎ = 5 with 𝑁𝑁 = 25 cells. 

  



130 

 

 

(a)       (b) 

 

(c) 

Figure 4.25. Plots of the apical (solid line) and basal (dashed line) modified cell radii at the 

local minima of the energy function with a spherical geometric representation of the 

extruded modified cell, against the regime of the system, 𝛽𝛽. a) Represents systems with 

changes to the substrate adhesion 𝛼𝛼 = 2𝑆𝑆 (black), 𝛼𝛼 = 𝑆𝑆 (green) and 𝛼𝛼 = 0 (red). b) 

Represents systems with 𝛼𝛼 = 2𝑆𝑆 and changes to the additional apical perimeter contraction 

with Γ𝑡𝑡 = 0 (black), Γ𝑡𝑡 = 500 (green) and Γ𝑡𝑡 = 5000 (red). c) Represents systems with 

𝛼𝛼 = 2𝑆𝑆 and changes to the additional cell basal perimeter contraction with Γ𝑏𝑏 = 0 (black) 

and Γ𝑏𝑏 = 500 (green) and Γ𝑏𝑏 = 5000 (red). Other parameters are 𝑘𝑘 = 100, Γ = 50, 

𝑉𝑉𝑝𝑝 = 500 and ℎ = 5 with 𝑁𝑁 = 25 cells. 
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4.6.3  Hemispherical representation of an extruded modified cell for theoretical analysis 

Rather than representing the extruded component of the modified cell as a sphere we can 

instead represent it with a hemisphere, with a radius of 𝑅𝑅𝑜𝑜𝑡𝑡∗ . The hemisphere is connected to the 

truncated cone component of the modified cell inside the monolayer, see Figure 4.26. The change of 

the geometry and position of the extruded component of the modified cell in the geometric model 

does influence the results. As with the spherical model, all non-modified cells are represented as 

truncated cones with the same height, ℎ, and radii (𝑅𝑅𝑡𝑡 and 𝑅𝑅𝑏𝑏). Also, all cells in the model are 

assumed to be connected by their lateral surfaces. By assuming the height, h, and volume of the 

modified cell, 𝑉𝑉∗, are fixed, the radius 𝑅𝑅𝑜𝑜𝑡𝑡∗  can be expressed as a function of the modified cell’s 

radii, 𝑅𝑅𝑡𝑡∗ and 𝑅𝑅𝑏𝑏∗ . Assuming the modified cell’s volume will always find a space to fill, it is fixed at 

𝑉𝑉𝑝𝑝, and the radius of the hemisphere is expressed as 

𝑅𝑅𝑜𝑜𝑡𝑡∗ = �𝑉𝑉𝑝𝑝
𝜋𝜋
−

1
3

(𝑅𝑅𝑡𝑡∗2 + 𝑅𝑅𝑡𝑡∗𝑅𝑅𝑏𝑏∗ + 𝑅𝑅𝑏𝑏∗2)
3

. 

 

Figure 4.26. Geometric representation of the modified cell. A truncated cone represents the 

modified cell inside the monolayer, and a connected hemisphere represents the extruded 

component of the modified cell. 

By attaching the hemisphere to the truncated cone the modified cell can take four shapes. 

The first is where the modified cell is only represented as a truncated cone in the monolayer and the 

cell has not extruded at all. The second is where there is a hemisphere, but its radius is smaller than 

the apical surface of the truncated cone. The third is the hemisphere with a larger radius than the 

apical surface of the truncated cone. Finally, only the hemisphere is present representing an 

extruded modified cell. 
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The total surface area of the modified cell is a combination between the two shape 

components, 

A∗ = 𝐴𝐴𝑏𝑏∗ + 𝐴𝐴𝑠𝑠∗ + |𝐴𝐴𝑡𝑡∗ − 𝐴𝐴𝑜𝑜𝑡𝑡∗ | + 𝐴𝐴ℎ𝑡𝑡∗ . 

Where 𝐴𝐴𝑜𝑜𝑡𝑡∗  represents the area of the hemisphere in contact with the monolayer and 𝐴𝐴ℎ𝑡𝑡∗  

represents the remaining surface area of the hemisphere. In order to account for the common surface 

area between the hemisphere and the truncated cone only the absolute value of the difference 

between the apical surface of the modified cell truncated cone and the surface of the hemisphere in 

contact with the monolayer contributes to the total surface area of the modified cell.  

To account for the common surface area between the hemisphere and the truncated cone of 

the modified cell we introduce a Heaviside step function, 

η(𝑥𝑥) = �𝑥𝑥 𝑥𝑥 > 0
0 𝑥𝑥 ≤ 0. 

Following these additions, the energy function becomes Function (4.17) where the 

expressions describing the modified and unmodified cell terms are separated, and where the surface 

area of the modified cell is included in the total surface area contraction and the cell-cell adhesion. 

The surface area of the hemisphere in contact with the apical surface of the neighbouring cells 

contributes to the modified cell-cell adhesion. 

The energy function is expressed with either the radii of the unmodified cells, 𝑅𝑅𝑡𝑡 and 𝑅𝑅𝑏𝑏, or 

the modified cell, 𝑅𝑅𝑡𝑡∗ and 𝑅𝑅𝑏𝑏∗ , given the assumption of a conservation of the total area in a cross-

section of the monolayer. This is the same function, Function (4.18), as the spherical geometric 

model except with the changes to the total surface area of the modified cell,  

𝐴𝐴∗(𝑅𝑅𝑡𝑡∗,𝑅𝑅𝑏𝑏∗) = 𝜋𝜋(𝑅𝑅𝑡𝑡∗ + 𝑅𝑅𝑏𝑏∗)�(𝑅𝑅𝑡𝑡∗ − 𝑅𝑅𝑏𝑏∗)2 + ℎ2 + 𝜋𝜋𝑅𝑅𝑏𝑏∗
2 + 𝜋𝜋𝜂𝜂�𝑅𝑅𝑡𝑡∗

2 − 𝑅𝑅𝑜𝑜𝑡𝑡∗
2� + 2𝜋𝜋𝜂𝜂(𝑅𝑅𝑜𝑜𝑡𝑡∗ )2, 

 and the addition of adhesion from the hemisphere, 𝑆𝑆∗ 𝜂𝜂(𝐴𝐴𝑡𝑡∗ − 𝐴𝐴𝑜𝑜𝑡𝑡∗ ) 2⁄ . All other measurements are 

the same as expressed in the spherical geometric model. 

 

 

 

 



133 

Results of the modified cell geometric model 

Much like the other energy functions above expressed with the apical and basal radii of the 

modified cell the energy function of the hemispherical geometry is shown as contour plots in Figure 

4.27. These contour plots show the three states of the modified cell: non-extruded in Figure 4.27a 

with the radii 𝑅𝑅𝑡𝑡∗ > 0 and 𝑅𝑅𝑏𝑏∗ > 0, an inverted cone in Figure 4.27b with the radii 𝑅𝑅𝑡𝑡∗ > 0 and 

𝑅𝑅𝑏𝑏∗ = 0, and an extruded cell in Figure 4.27c, with radii 𝑅𝑅𝑡𝑡∗ = 0 and 𝑅𝑅𝑏𝑏∗ = 0. 

 

(a)      (b) 

 

(c) 

Figure 4.27. Contour plots for the energy of the hemispherical geometric representation of 

the modified cell. A black point represents the local minimum energy for the hemispherical 

model energy function. a) A non-extruded modified cell, 𝑆𝑆∗ 𝑆𝑆⁄ = 1, b) a partially extruded 

modified cell, 𝑆𝑆∗ 𝑆𝑆⁄ = 0.5, and c) an extruded modified cell, 𝑆𝑆∗ 𝑆𝑆⁄ = 0.1. Other parameters 

include Γ = 50, 𝑆𝑆 = 60000 (𝛽𝛽 = 1.5905), 𝑘𝑘 = 100, 𝛼𝛼 = 2𝑆𝑆, 𝑉𝑉𝑝𝑝 = 500 and ℎ = 5 with 

𝑁𝑁 = 25 cells. 
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Much like the simulations and the spherical geometric model, the reduction of the modified 

cell adhesion and the additional lateral contraction can assist in extruding the modified cell. Figure 

4.28 plots phase diagrams similar to the ones seen in the simulations and the spherical 

representation of the modified cell. The red represents the extrusion of the modified cell, the green 

represents the partial extrusion of the modified cell and the blue is no extrusion of the modified cell. 

Initially we compare Figure 4.28a, at a cell regime of 𝛽𝛽 = 1.7230, with the plot of the spherical 

representation of the modified cell, Figure 4.23a, and the simulations, Figure 4.16a. The 

hemispherical model follows a similar behaviour as seen in the spherical model and the CPM 

simulations, specifically, lowering the modified cell adhesion or increasing the additional lateral 

modified cell contraction can extrude the modified cell. However, the thresholds between the states 

of the modified cell of the hemispherical model are different to the spherical model and the CPM 

simulations. In the hemispherical model the threshold shows a non-linear relationship between the 

modified cell adhesion and additional lateral contraction separating the partial extrusion and 

extrusion of the modified cell, and the threshold separating the partially extruded and the non-

extruded modified cell appears “linear”. However, these are different to the CPM simulations and 

the spherical model. The threshold in the CPM simulations shows a linear relationship between the 

modified cell adhesion and additional lateral contraction separating the partial extrusion and 

extrusion of the modified cell. In the spherical model there is a distinct threshold at a specific 

modified cell adhesion value separating the two modified cell states. 

The changes and addition of other parameters in the hemispherical model have a similar 

effect on the behaviour of the modified cell as shown in the spherical model. From the CPM 

simulations we know that reducing the substrate adhesion hinders the extrusion of the cells. Figure 

4.28b plots the phase diagram of different states of the modified cell where there is no substrate 

adhesion. Comparing the phase diagram in Figure 4.28b with the phase diagram that contains a 

substrate adhesion of 𝛼𝛼 = 2𝑆𝑆 in Figure 4.28a, shows that mainly the partial extruded modified cells 

are hindered, i.e. the modified cell is in a non-extrusion state, and only the modified cell at (0.15,0) 

in the extruded state in Figure 4.28a is hindered in Figure 4.28b. However, there was a larger effect 

on the modified cell in the CPM simulations, in Figure 4.16b, and the spherical model, in Figure 

4.23b.  

Apical contraction, Γ𝑡𝑡 = 500, is added to the hemispherical model in the phase diagram in 

Figure 4.28c. Comparing this phase diagram to the phase diagram with no apical contraction in 

Figure 4.28a shows there is little to no change in the system. However, we do see at (0.15,0) the 

modified cell changes from an extruded state to a partial extruded state and within the non-extruded 

cell states there are some partially extruded cells.  
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The addition of the basal perimeter contraction to the modified cell in the hemispherical 

model has similar modified cell behaviour as the spherical model where there is no change to the 

modified cell behaviour. Comparing simulations with a basal perimeter contraction of Γ𝑏𝑏 = 500 in 

Figure 4.28d to systems without basal perimeter contraction in Figure 4.28a shows there is no 

change in the phase diagram.  

Changing the cell regime will change the how the modified cell behaves in the 

hemispherical model. A softer cell regime can either extrude or hinder the extrusion of the modified 

cell depending on the modified cell’s cell-cell adhesion and additional lateral contraction. The cells 

in the phase diagram in Figure 4.30a have a softer regime than those in the phase diagram in Figure 

4.28a. Systems with low modified cell adhesion, for example a ratio less than 0.35, and low 

additional lateral contraction, for example less than 4, would have a partially extruded modified cell 

in Figure 4.28a; however, in Figure 4.30a the modified cell is extruded. In comparison the systems 

with higher modified cell adhesion ratio, such as 0.7 and 0.75, that were able to extrude in Figure 

4.28a are only partially extruded in the softer system in Figure 4.30a. This change also occurs 

between the partial extruded cell and the non-extruded cell systems. 

A harder system has the opposite effect of the softer cell regimes. Some of the low modified 

cell adhesion, for example a ratio less than 0.35, and low additional lateral contraction, for example 

less than 2, that extrude in the phase diagram in Figure 4.28a only partially extrude in the harder 

regime in the phase diagram in Figure 4.30b. Also, for the systems that have a partially extruded 

modified cell in Figure 4.28a with a large additional lateral contraction, larger than 6, and adhesion 

ratio close to one, larger than 0.6, can extrude in the harder regime system in Figure 4.30b. 

The effect of the change of the cell regime on the modified cell for different points in the 

phase diagrams can be seen in Figure 4.29 that plots the radius of the apical (solid line) and basal 

(dashed line) layers of the modified cell. Figure 4.29a plots the radii of the modified cell for the 

minimum energy from the energy function of hemispherical model against different cell regimes 

when the 𝑆𝑆∗ 𝑆𝑆⁄ = 1 and Γ∗ Γ⁄ = 0. As the cell regime becomes softer, 𝛽𝛽 increases, the apical radius 

of the modified cell increases and the basal radii decreases; however, the cell never extrudes or 

partially extrudes when 𝛽𝛽 < 2. 

Reducing the adhesion ratio of the systems in Figure 4.29a to 𝑆𝑆∗ 𝑆𝑆⁄ = 0.2 in Figure 4.29b 

shows softer cell regimes are able to partially extrude (𝑅𝑅𝑡𝑡∗ > 0 and 𝑅𝑅𝑏𝑏∗ = 0) and completely extrude 

(𝑅𝑅𝑡𝑡∗ = 0 and 𝑅𝑅𝑏𝑏∗ = 0) a modified cell. However, the radii of the modified cell are in the partial 

modified state which is unexpected.  
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 Increasing the additional modified cell lateral contraction ratio of the systems in Figure 

4.29a to Γ∗ Γ⁄ = 6 in Figure 4.29c shows harder cell regimes are able to extrude (𝑅𝑅𝑡𝑡∗ = 0 and 

𝑅𝑅𝑏𝑏∗ = 0) rather than the softer cell regime. The softer the cell regime is the larger modified cell radii 

become, and both the apical and basal radii are equivalent in Figure 4.29c. This is the opposite 

result from the expectation based on the simulations and the spherical geometric model. 

We can also show that changing other parameters does have an effect on the modified cell at 

different regimes. Comparing Figure 4.29b with a substrate adhesion of 0.2 with the system in 

Figure 4.31a which has no substrate adhesion, “hinders” the extrusion of the cell and other than 

decreasing the modified cell adhesion a softer cell regime would be needed to extrude the cell. The 

addition of apical perimeter contraction to the system in Figure 4.31b shows little to no difference 

to the systems without any apical perimeter contraction in Figure 4.29b. Adding a basal perimeter 

contraction to the modified cell in the systems in Figure 4.31c shows little difference to the systems 

with no basal perimeter contraction on the modified cell in Figure 4.29b. Except there is a 

difference between the non-extruded cell and the extruded cell state in the harder regime, i.e. the 

basal radius of the modified cell disappears in harder regimes,  and the curve of the non-extruded 

cell state does not change as it does in Figure 4.29b.  

We also observe that while the plots in Figures 4.29 and 4.31 are largely different to the 

plots of the geometric wound case in Figure 4.14 and spherical representation for the modified cell 

in Figures 4.22 and 4.25, there are still discontinuities occurring when the basal radii drop to zero. 

Figure 4.31a shows that there is also an additional discontinuity which is different to the one above. 

This discontinuity occurs when the system shifts into a soft regime. The values before the 

discontinuity are constant representing a cylinder with volume 𝑉𝑉𝑝𝑝 = 500 and the discontinuity 

suddenly occurs, in the soft regime, when the cell partially extrudes. 
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(a)      (b) 

 

(c)      (d) 

Figure 4.28. Phase diagrams comparing the modified cell adhesion ratio, 𝑆𝑆∗ 𝑆𝑆⁄ , and 

additional modified cell contraction ratio, Γ∗ Γ⁄ , for the hemispherical representation of the 

modified cell. An extruded cell in the diagram is identified with the red marker, partially 

extruded with a green marker, and not extruded with a blue marker. a) Represents a phase 

diagram with a substrate adhesion of 𝛼𝛼 = 2𝑆𝑆, no apical perimeter contraction, Γ𝑡𝑡 = 0, and 

no basal modified cell perimeter contraction, Γ𝑏𝑏 = 0; b) represents a phase diagram with no 

substrate adhesion, 𝛼𝛼 = 0, no apical perimeter contraction, Γ𝑡𝑡 = 0, and no basal modified 

cell perimeter contraction, Γ𝑏𝑏 = 0;  c) represents a phase diagram with a apical perimeter 

contraction of Γ𝑡𝑡 = 500, no substrate adhesion, 𝛼𝛼 = 0, and no basal modified cell perimeter 

contraction, Γ𝑏𝑏 = 0; and d) represents a phase diagram with a basal modified cell perimeter 

contraction of Γ𝑏𝑏 = 500, noapical perimeter contraction, Γ𝑡𝑡 = 0, and no substrate adhesion, 

𝛼𝛼 = 0. Other parameters include 𝑘𝑘 = 100, 𝑆𝑆 = 65000, Γ = 50, 𝛽𝛽 = 1.7230, 𝑉𝑉𝑝𝑝 = 500 and 

ℎ = 5 with 𝑁𝑁 = 25 cells. 
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(a)      (b) 

 

(c) 

Figure 4.29. Plots of the apical (solid line) and basal (dashed line) modified cell radii at the 

local minima of the energy function with a spherical geometric representation of the 

extruded modified cell, against the regime of the system, 𝛽𝛽. a) Represents systems of the 

modified cell with an adhesion ratio of 𝑆𝑆∗ 𝑆𝑆⁄ = 1 and modified cell’s additional contraction 

of Γ∗ Γ⁄ = 0. b) Represents the modified cell systems of the modified cell with an adhesion 

ratio of  𝑆𝑆∗ 𝑆𝑆⁄ = 0.2 and modified cell’s additional contraction of Γ∗ Γ⁄ = 0. c) Represents 

systems of the modified cell with an adhesion ratio of 𝑆𝑆∗ 𝑆𝑆⁄ = 1 and modified cell’s 

additional contraction of Γ∗ Γ⁄ = 6. Other parameters include 𝑘𝑘 = 100, Γ = 50, 𝛼𝛼 = 2𝑆𝑆, 

𝑉𝑉𝑝𝑝 = 500 and ℎ = 5 with 𝑁𝑁 = 25 cells. 
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(a)       (b) 

Figure 4.30. Phase diagrams comparing the modified cell adhesion ratio, 𝑆𝑆∗ 𝑆𝑆⁄ , and 

additional modified cell contraction ratio, Γ∗ Γ⁄ , for the spherical representation of the 

modified cell. An extruded cell in the diagram is identified with the red marker, partially 

extruded with a green marker, and not extruded with a blue marker. a) Represents a softer 

system with cell-cell adhesion, = 90000 (𝛽𝛽 = 2.3857), and substrate adhesion, 𝛼𝛼 = 2𝑆𝑆. b) 

Represents a hard system with cell-cell adhesion, = 30000 (𝛽𝛽 = 0.7952), and substrate 

adhesion, 𝛼𝛼 = 2𝑆𝑆. Other parameters include 𝑘𝑘 = 100, Γ = 50, 𝛼𝛼 = 2𝑆𝑆, 𝑉𝑉𝑝𝑝 = 500 and 

ℎ = 5 with 𝑁𝑁 = 25 cells. 
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(a)      (b) 

 

(c) 

Figure 4.31. Plots of the apical (solid line) and basal (dashed line) modified cell radii at the 

local minima of the energy function with a spherical geometric representation of extruded 

modified cell, against the regime of the system, 𝛽𝛽. a) Represents systems with a reduced 

modified cell adhesion with the ratio of 𝑆𝑆∗ 𝑆𝑆⁄ = 0.2, and a reduced substrate adhesion, 

𝛼𝛼 = 0. b) Represents systems with a reduced modified cell adhesion with the ratio of 

𝑆𝑆∗ 𝑆𝑆⁄ = 0.2, substrate adhesion 𝛼𝛼 = 2𝑆𝑆, and an added apical perimeter contraction of 

Γ𝑡𝑡 = 500. c) Represents systems with a reduced modified cell adhesion with the ratio of  

𝑆𝑆∗ 𝑆𝑆⁄ = 0.2, substrate adhesion 𝛼𝛼 = 2𝑆𝑆, and an added basal contraction perimeter 

contraction to the modified cell of Γ𝑏𝑏 = 500. Other parameters include 𝑘𝑘 = 100, Γ = 50, 

𝑉𝑉𝑝𝑝 = 500 and ℎ = 5 with 𝑁𝑁 = 25 cells. 
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4.7  DISCUSSION 

The three-dimensional CPM has been used to describe a monolayer of epithelial cells, 

including mechanical representations of adhesion, contraction and a volume constraint of the cells 

(Glazier & Graner, 1993; Graner & Glazier, 1992; Kabla, 2012). The combination of cell-cell 

adhesion and surface area contraction results in the cells in the three-dimensional CPM existing in 

two different regimes, namely, the hard and soft regime. This is similar to the regimes that exist in 

the two-dimensional vertex model (Farhadifar et al., 2007) and two-dimensional CPM (Noppe et al., 

2015), with the combination of surface area contraction and cell-cell adhesion. In a hard regime the 

cell shape is governed by contraction and in a soft regime the cell shape is determined by cell-cell 

adhesion. Unlike the two-dimensional CPM, the three-dimensional CPM can include localised 

mechanisms which can affect the regimes between the apical and basal pixel layers of the cells in 

the monolayer. One of these mechanisms includes the apical perimeter contraction which causes the 

apical pixel layer of the cells to occur in a harder cell regime than the basal pixel layer of the cells. 

As with the two-dimensional case, if apical perimeter contraction is too large it can also cause the 

cells to separate from one another in the simulations. However, the substrate adhesion does not 

affect the cell pixel layer cell regimes. 

Representing a wound with a void in the three-dimensional CPM and geometric models 

reaffirms the results of the two-dimensional CPM in Chapter 2. The size of a wound can increase 

(open) or decrease (close) depending on the relative balance between cell-cell adhesion and surface 

area contraction. Other mechanisms, such as the substrate adhesion, apical contraction and basal 

perimeter contraction of the wound, can influence the degree to which the wound closes. 

Decreasing the substrate adhesion shifts the transition value, 𝛽𝛽𝑐𝑐, to a softer regime, and with no 

substrate adhesion both the apical and basal layers of the cells behave similarly. Adding apical 

perimeter contraction to the cells can “harden” the apical cell regime; however, increasing the 

apical perimeter contraction will hinder the wound closure process. Increased contraction around 

the wound will help to close the wound (Noppe et al., 2015). While a contraction around the 

wound’s lateral surface area would be a suitable mechanism to add to the system, it is difficult to 

apply the contraction on only the surface of the wound in the CPM. Instead the contraction is added 

to the basal perimeter of the wound facilitating the closure of the wound. The contraction of the 

basal perimeter of the wound works in the opposite way to the apical perimeter contraction of the 

cells. The basal adhesion shifts the transition value further into the hard regime for the lower levels 

of the cell and the other pixel layers above follow suit, meaning that the lower pixel layers of the 

wound are easier to close. However, the apical layer of the wound behaves differently and has a 

larger transition value, 𝛽𝛽, than the lower pixel layers of the simulated monolayer. 
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Comparing the wound to a modified cell extruding from a monolayer, an extruded cell is 

related to a closed wound and a non-extruded cell is related to an open wound. Unlike the wound 

case, changes in the monolayer regime, 𝛽𝛽, do not extrude the modified cell as the wound is able to 

be either open or closed. Instead, the changes to the mechanisms of the modified cell, such as the 

modified cell adhesion and the additional lateral contraction, are able to extrude the modified cell in 

different cell regimes comparable to the closure of the wound. Hard cell regimes still hinder the 

extrusion of the modified cell but softer cells regimes are able to extrude the modified cell from the 

monolayer. The modified cell is able to be extruded by either decreasing the modified cell’s 

adhesion or adding and increasing the contraction on the modified cell’s lateral surface area 

connected to the neighbouring cells. Both mechanisms can work together as shown in the phase 

diagrams. There is a difference in the way the mechanisms behave between the simulations and the 

geometric models.  

Changes in substrate adhesion affect the extrusion of the modified cell. Decreasing the 

substrate adhesion hinders the extrusion of the modified cell, similar to the hindering of wound 

closure. Adding apical contraction does not change the extrusion of the modified cell. Finally, 

applying contraction on the basal layer of the modified cell affects only the basal pixel layer of the 

modified cell. Once the basal pixel layer has been “closed”, then the basal pixel layer no longer 

contributes to the energy.  

The modified cell geometric models and CPM simulations have similarities between them, 

such as the increase of the apical radius (horizontal cross-section area) and decrease of the basal 

radius (horizontal cross-section area) of the modified cell as 𝛽𝛽 increases seen in Figures 4.18a, 

4.22a and 4.29a. However, there are different behaviours, in particular at some of the regime 

extremes, indicating how differently the mechanisms affect the extrusion in these cases. The true 

biological cell behaviour would most likely be somewhere within the results achieved from these 

models. Moreover, the use of other models, such as the vertex model, may assist in further testing 

these mechanisms and behaviours. 
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Chapter 5: Discussion 

This thesis uses our own code of a two and three-dimensional CPM to simulate epithelial 

cells and their collective behaviour in three aggregate cases: the introduction of a micro-wound in a 

monolayer of cells, the equilibrium state of a cluster of cells, and the extrusion of a single modified 

cell from a monolayer.  

Wound healing and cell extrusion are essential behaviours of the epithelium in order to form 

and maintain protective layers around the body’s internal organs. The malfunction of these 

epithelial cells can lead to a number of biological complications, such as intestinal diseases (Iizuka 

& Konno, 2011), embryo development problems (P. Martin & Lewis, 1992; Osterfield et al., 2013), 

and even cancer-related growths (Arwert et al., 2012; Gu et al., 2015; Hogan et al., 2009; Kajita et 

al., 2014). While biological experiments on epithelial cells provide important results, mathematics 

can generate insights into the behaviour of cells through the use of models such as the CPM, vertex 

model and other discrete and continuous models. 

The adhesion and the tensions of the junctions between cells in the epithelium are important 

components for the behaviour of epithelial cells relating to their geometry and their response to 

wounding and the extrusion of cells. The adhesion and tensions in the cells are associated with the 

changes in the molecules and proteins of the epithelial cells, such as concentration of acto-myosin. 

The CPM applies mechanisms, such as the adhesion and contraction, in the energy functions in 

order to mimic the biological cell behaviours within the epithelium.  

We determined that the interaction between the adhesion and cell perimeter contraction in 

the two-dimensional CPM affect the cell morphology. This is replicated in the three-dimensional 

CPM with the mechanisms of cell adhesion and cell surface area contraction. Using the parameters 

of adhesion, S, and contraction, Γ, the cells can be classified into two cell regimes based on 

parameter 𝛽𝛽, which is a normalised ratio of adhesion and contraction. A hard cell regime occurs 

when 𝛽𝛽 < 1 and a soft cell regime occurs when 𝛽𝛽 > 1. In the hard cell regime the cells are 

dominated by the contraction terms creating rigid polygonal cell structures. In two dimensions the 

cell perimeter is approximately fixed at a constant value based on the preferred area and in three 

dimensions the surface area of the cells is also approximated by an almost constant value based on 

the preferred volume. Cells in the soft cell regime are dominated by the adhesion interaction 

between neighbouring cells, creating flexible and malleable cell boundaries. In two dimensions the 

cell perimeter achieves a preferred perimeter and in three dimensions the cell surface area achieves 
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a preferred surface area. These preferred perimeters and surface areas are both ratios between the 

adhesion and contraction of the cells, 𝑆𝑆 2Γ⁄ . 

The addition of a mechanism, such as the apical perimeter contraction in the three-

dimensional CPM, can change the behaviour of the pixel layers within the monolayer of cells. 

Adding the apical perimeter contraction can make the soft cells mimic hard cell structures on the 

apical pixel layer while retaining the behaviour of the soft cells on the basal pixel layer. However, 

other mechanisms, such as the substrate adhesion, do not affect the cell regime of the basal or apical 

pixel layer in the monolayer of cells. 

We observed that the interaction between the adhesion and contraction of the cells can also 

affect the closure of a micro-wound. Cells in a very hard regime cannot close the wound; however, 

cells in a softer regime are able to close the wound by “zipping” the junctions between 

neighbouring cells together and expanding the cells into the void represented by the empty wound. 

The transition between an open and closed wound occurs at a transition value of the cell regime, 𝛽𝛽𝑐𝑐.  

The transition value, 𝛽𝛽𝑐𝑐, can vary with changes to and the addition of other mechanisms. In 

two dimensions the transition value is seen to decrease with the addition of a contractile perimeter 

ring around the wound in the geometric model, meaning that cells in harder regimes are able to 

close the wound. In three dimensions (Chapter 4) the removal of substrate adhesion hinders wound 

closure, such that a softer cell regime is required for the wound to close. The addition of an apical 

contraction mechanism creates a much greater difference between the transition values of the apical 

and basal pixel layers of the wound. We noted that additional mechanisms would assist the closure 

of the micro-wound, such as the inclusion of a contractile ring around the wound. This was 

demonstrated with the geometric representation results of the two-dimensional CPM and the results 

of the three-dimensional CPM for the simulations, as well as the three-dimensional geometric 

approximations.  

The simulated wound in the CPM opens or closes monotonically depending on the cell 

regime. Biological experimental data and information show there is an initial increase in the wound 

size and then a gradual closure of the wound. This could suggest the monolayer in a system with a 

micro-wound has a gradual change in the value of cell regime parameter, 𝛽𝛽, (or other mechanisms 

such as substrate adhesion) to eventually shift the transition value to allow closure of the wound. 

Nagai and Honda (2009) investigated a similar micro-wound situation with a vertex model; 

however, the wound closure was driven by a positive linear term of the wound area rather than the 

interaction between the adhesion and contraction of the cells. 
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The extrusion of a modified cell using the three-dimensional CPM uses similar adhesive and 

contraction mechanisms to the micro-wound case. The modified cell will not extrude if it has the 

same adhesion and contraction parameters as its neighbouring cells. However, the cell will extrude 

as the adhesion value trends to zero if the system is in a regime with the mechanism which enables 

it to close a wound in the micro-wound case and the modified cell adhesion is decreased. When the 

modified cell adhesion is zero, the cell is no longer connected to the monolayer and the system is 

similar to the micro-wound case, except with an object occupying the void of the wound that can 

leave on its own or be pushed out by the neighbouring cells. The other mechanism to consider is an 

additional contraction added to the modified cell on the surface areas that are in contact with its 

neighbouring cells. The modified cell can extrude with a large enough contraction, providing the 

neighbouring cells can close the void that would be left behind (reminiscent of the wound case). If 

the neighbouring cells do not close the void created by the contracted modified cell, the modified 

cell will detach from the monolayer and sit within the void.  

The mechanisms for extrusion of the modified cell are similar to those for the closure of a 

wound. Decreasing the substrate adhesion of neighbouring cells hinders the extrusion of the 

modified cell. Adding the apical perimeter contraction term can alter the “closure” of the 

neighbouring cells when extruding the modified cell. This can create a “bowl” effect where the cells 

neighbouring the modified cell create a “bowl” where the basal pixel layer is “closed” but the top 

pixel layer is open and the modified cell sits inside this “bowl”. These results from the three-

dimensional CPM simulation suggest that the modified cell will only extrude if the system can close 

a void. However, we noted there is a difference between this finding with the CPM and the results 

from the geometric model. 

The geometric model is an approximation of the results of the CPM. Rather than running 

multiple CPM simulations, the aim of the geometric model is to generate results more rapidly so as 

to provide an understanding of the system more quickly. In the two-dimensional case the geometric 

model shows a quantitative similarity between the CPM and geometric model for the closure of a 

micro-wound for all the behaviours of the cells and wound. However, there are differences between 

the measurements of the cell island perimeter in the geometric model and the CPM in the two-

dimensional case of a cell island. The difference occurs in the hard cell regime and is a result of the 

assumption of fixed cell island geometry in the geometric model. This difference can be amplified 

because, while we can tile the system to the optimal configuration in the geometric model, the cells 

in the CPM within a hard cell regime may not be able to move into the optimal configurations and 

are fixed in position.  



146 

We find three-dimensional geometric models result in further differences with the outcomes 

of the CPM from the addition of more components and assumptions than the two-dimensional 

geometric models. The geometric representation of the horizontal cross-section of the cells in three 

dimensions is simpler when compared to the two-dimensional geometric model; however, the 

geometric representation contains the additional complexities of a third spatial dimension. The 

three-dimensional geometric model for a wound case provides reasonable qualitative information 

on the behaviour of the cells and the wound using a cylindrical geometry or more complicated 

segmented cone geometry.  

Different cell geometries can produce different patterns of cell behaviour. This is seen in the 

geometric representation of the extruded component of the modified cell. While some of the 

behaviours from the three-dimensional CPM are replicated in the geometric model, there are some 

clear differences. These similarities and differences are represented in the phase diagrams of the 

CPM, spherical geometric model and the hemispherical geometric model. Both the spherical and 

hemispherical geometric models show that decreasing the modified cell adhesion or increasing the 

modified cell additional lateral contraction can extrude the modified cell from the monolayer, 

similar to the CPM. However, a key difference in how the modified cell behaves is noted when the 

cell regime of the system changes; while the hardening of the cell regime should hinder the 

extrusion of the modified cell, in the hemispherical model representation this only occurs with a low 

value of additional modified cell lateral contraction.   

The connection of the cells is another mechanism that affects the behaviour of CPM and the 

geometric models of the modified cell differently. In the three-dimensional CPM cells are able to 

detach from one another, whether occurring randomly in the simulation or due to strong contraction 

mechanisms. However, in the geometric models it is assumed that the cells are always connected to 

each other and therefore do not detach. This assumption partially explains the different behaviours 

between the CPM and geometric models at large contraction values. The assumption of a 

connection between the cells in the geometric models means that the contraction mechanisms of a 

cell will pull the junctions of neighbouring cells, whereas in the CPM the adhesion is the only 

mechanism connecting the cells and therefore the cells can detach from one another at certain 

contraction strengths if there is empty space adjacent to the cells. 

While there are differences between the behaviour of cells from the geometric models and 

the CPM, the geometric models provide insight into the energy functions and mechanisms of the 

CPM without the need to run the simulations, especially those with a larger system sizes. 
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The CPM provides one example of a discrete model to investigate biological mechanisms. 

To date, the CPM has largely been applied to simulate the behaviour of the epithelium as a whole. 

In terms of the epithelial response to a wound the CPM has been used to simulate large wounds, 

such as in the scratch assay experiments. In this thesis we have examined the closure of micro-

wounds and the extrusion of a single cell. While the CPM provides an insight into the possible 

involvement of different cell mechanisms, the application of the CPM is restricted by the simplicity 

in which the parameters are applied. For example, the actual values of the parameter strengths, such 

as adhesion and contraction, are not measurable values in biological cells. This does not mean the 

mathematical model cannot connect with biological experiments, since cell shape, tension and 

motility are a few cell properties that can be measured biologically and be compared with the CPM. 

Investigating the properties of cells with a range of mathematical models helps to build an 

understanding of cell behaviour and allows biologists to better design and focus experiments. As 

insufficient biological data was found to allow direct comparisons, the models in this thesis are 

intended to motivate and allow further investigation into the mechanisms involved in cell behaviour. 

Future investigations of cell micro-wound healing and cell extrusion requires a combination of 

multiple mathematical models to more quantitatively reflect the biological measurements 

determined from both physical and chemical cell property changes observed in experiments. 
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Appendix A 

                   
(a)      (b) 

  
(c)      (d) 

     
(e)      (f) 

Figure A.1. a) An example of hexagonal pixels. b-c) Shows cells with a number of pixel 

“layers” 𝑛𝑛 = 2 and 𝑛𝑛 = 3 respectively surrounding the centre. This can be used to find the 

minimum perimeter and area perimeter ratio, 𝑔𝑔, for the geometric approximations. d) A two-

dimensional lattice representation for the organisation of the hexagonal pixel organisation. 

e-f) The two-dimensional lattice representation for the organisation of the hexagonal pixels 

for coding.  

𝑖𝑖, 𝑗𝑗 

𝑖𝑖 + 1, 𝑗𝑗 + 1 

𝑖𝑖 + 1, 𝑗𝑗 − 1 
𝑖𝑖, 𝑗𝑗 − 2 

𝑖𝑖, 𝑗𝑗 + 2 

𝑖𝑖 − 1, 𝑗𝑗 + 1 

𝑖𝑖 − 1, 𝑗𝑗 − 1 

𝑖𝑖,  𝑗𝑗 𝑖𝑖 + 1, 𝑗𝑗 

𝑖𝑖 + 1, 𝑗𝑗 − 1 𝑖𝑖,  𝑗𝑗 − 1 

𝑖𝑖, 𝑗𝑗 + 2 

𝑖𝑖 − 1, 𝑗𝑗 

𝑖𝑖 − 1, 𝑗𝑗 − 1 

𝑖𝑖,  𝑗𝑗 

𝑖𝑖 + 1, 𝑗𝑗 + 1 

𝑖𝑖 + 1, 𝑗𝑗 

𝑖𝑖, 𝑗𝑗 − 1 

𝑖𝑖, 𝑗𝑗 + 1 𝑖𝑖 − 1, 𝑗𝑗 + 1 

𝑖𝑖 − 1, 𝑗𝑗 
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(a)      (b) 

 
(c)      (d) 

 
(e) 

Figure A.2. a) An example of square pixels. b-c) Shows larger rectangular cells with the 

number of pixels on the side 𝑛𝑛 = 2 and 𝑛𝑛 = 3, respectively. This can be used to find the 

minimum perimeter and area perimeter ratio, 𝑔𝑔, for the geometric approximations. d) A two-

dimensional lattice representation for the organisation of the square pixel organisation. e) A 

two-dimensional lattice representation for the organisation of the square pixel organisation 

with a connecting the corner pixels to the central (𝑖𝑖, 𝑗𝑗) pixel site.  

𝑖𝑖, 𝑗𝑗 𝑖𝑖 + 1, 𝑗𝑗 − 1 

𝑖𝑖, 𝑗𝑗 − 1 

𝑖𝑖, 𝑗𝑗 + 1 

𝑖𝑖 − 1, 𝑗𝑗 + 1 

𝑖𝑖, 𝑗𝑗 
𝑖𝑖 + 1, 𝑗𝑗 

𝑖𝑖 + 1, 𝑗𝑗 + 1 

𝑖𝑖 + 1, 𝑗𝑗 − 1 𝑖𝑖, 𝑗𝑗 − 1 

𝑖𝑖, 𝑗𝑗 + 1 𝑖𝑖 − 1, 𝑗𝑗 + 1 

𝑖𝑖 − 1, 𝑗𝑗 

𝑖𝑖 − 1, 𝑗𝑗 − 1 
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(a)      (b) 

 
(c) 

Figure A.3. a) An example of square pixels. b-c) Shows larger triangular cells with the 

number of pixels on the side 𝑛𝑛 = 2 and 𝑛𝑛 = 3, respectively. This can be used to find the 

minimum perimeter and area perimeter ratio, 𝑔𝑔, for the geometric approximations. 

Compared to other pixel representations there is a difference between the other pixel 

representations because the pixels have a different orientation. This will give two 

representations of the lattice system. 
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(a)      (b) 

 
(c)      (d) 

Figure A.4. a-b) Two different representations of the two-dimensional lattice representation 

of the triangular pixels. c-d) The two different representations of the two-dimensional lattice 

representation of the triangular pixels for coding. 

  

𝑖𝑖,  𝑗𝑗 

𝑖𝑖 + 1, 𝑗𝑗 − 1 

𝑖𝑖, 𝑗𝑗 + 2 

𝑖𝑖 − 1, 𝑗𝑗 − 1 𝑖𝑖,  𝑗𝑗 𝑖𝑖 + 1, 𝑗𝑗 − 1 

𝑖𝑖, 𝑗𝑗 + 2 

𝑖𝑖 − 1, 𝑗𝑗 − 1 

𝑖𝑖,  𝑗𝑗 

𝑖𝑖 + 1, 𝑗𝑗 + 1 

𝑖𝑖, 𝑗𝑗 − 1 

𝑖𝑖 − 1, 𝑗𝑗 + 1 

𝑖𝑖,  𝑗𝑗 𝑖𝑖 + 1, 𝑗𝑗 + 1 

𝑖𝑖, 𝑗𝑗 − 1 

𝑖𝑖 − 1, 𝑗𝑗 + 1 
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(a) 

 
(b) 

Figure A.5. a-b) Representations of the two-dimensional lattice representation of the 

triangular pixels including connections with the corners for preferred coding. 

  

𝑖𝑖,  𝑗𝑗 

𝑖𝑖 + 1, 𝑗𝑗 − 2 

𝑖𝑖 − 2,  𝑗𝑗 + 1 

𝑖𝑖 − 1,  𝑗𝑗 − 2 

  

  

  

  

  

  

  

  

  

    

    

𝑖𝑖,  𝑗𝑗 + 1 

𝑖𝑖 + 1, 𝑗𝑗 − 1 

𝑖𝑖 + 2, 𝑗𝑗 

𝑖𝑖 + 2, 𝑗𝑗 + 1 

𝑖𝑖 − 2,  𝑗𝑗 

𝑖𝑖, 𝑗𝑗 − 3 

𝑖𝑖 − 1,  𝑗𝑗 − 1 

𝑖𝑖 − 1, 𝑗𝑗 + 2 𝑖𝑖 + 1,  𝑗𝑗 + 2 

𝑖𝑖,  𝑗𝑗 

𝑖𝑖 + 1, 𝑗𝑗 − 1 

𝑖𝑖 − 2,  𝑗𝑗 + 1 

𝑖𝑖 − 1,  𝑗𝑗 − 1 

  

  

  

  

  

  

  

  

      

    

𝑖𝑖,  𝑗𝑗 + 1 

𝑖𝑖 + 1, 𝑗𝑗 

𝑖𝑖 + 2, 𝑗𝑗 

𝑖𝑖 + 2, 𝑗𝑗 + 1 

𝑖𝑖 − 2,  𝑗𝑗 

𝑖𝑖,  𝑗𝑗 − 1 

𝑖𝑖 − 1,  𝑗𝑗 

𝑖𝑖 − 1, 𝑗𝑗 + 2 𝑖𝑖 + 1,  𝑗𝑗 + 2 
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(a) 

 
 (b) 

Figure A.6. a-b) Representations of the two-dimensional lattice representation of the 

triangular pixels including connections with the corners for preferred coding. 

 

  

𝑖𝑖,  𝑗𝑗 

𝑖𝑖 + 1, 𝑗𝑗 − 1 

𝑖𝑖 − 1,  𝑗𝑗 + 1 

𝑖𝑖 − 1,  𝑗𝑗 − 2 

  

  

  

  

  

  

  

  

  

    

    

𝑖𝑖,  𝑗𝑗 + 1 

𝑖𝑖 + 1, 𝑗𝑗 

𝑖𝑖 + 2,  𝑗𝑗 − 2 

𝑖𝑖, 𝑗𝑗 − 1 

𝑖𝑖 − 2,  𝑗𝑗 

𝑖𝑖,  𝑗𝑗 + 3 

𝑖𝑖 − 1,  𝑗𝑗 − 1 

𝑖𝑖 − 1, 𝑗𝑗 + 2 𝑖𝑖 + 1,  𝑗𝑗 + 2 

𝑖𝑖,  𝑗𝑗 

𝑖𝑖 + 1, 𝑗𝑗 − 1 

𝑖𝑖 − 2,  𝑗𝑗 − 1 

𝑖𝑖 − 1,  𝑗𝑗 − 1 

  

  

  

  

  

  

  

  

  

    

    

𝑖𝑖,  𝑗𝑗 + 1 

𝑖𝑖 + 1,  𝑗𝑗 
𝑖𝑖 + 2, 𝑗𝑗 

𝑖𝑖 + 2, 𝑗𝑗 − 1 

𝑖𝑖 − 2,  𝑗𝑗 

𝑖𝑖,  𝑗𝑗 − 1 

𝑖𝑖 − 1,  𝑗𝑗 

𝑖𝑖 − 1, 𝑗𝑗 + 2 𝑖𝑖 + 1,  𝑗𝑗 + 2 
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Appendix B 

Algorithm 1: Pseudo-code of the 2D Cellular Potts Model algorithm used in Chapter 2 

𝑘𝑘, the area constraint parameter 

Γ, the perimeter contraction parameter 

𝑆𝑆, the adhesion parameter 

𝐸𝐸1,𝐸𝐸2, the energy values for the system without or without the pixel label change. 

𝑛𝑛, the number of columns of hexagonal pixels 

𝜇𝜇, the number of hexagonal pixels inside the columns 

𝑁𝑁, the number of cells in the system 

𝜕𝜕𝑒𝑒𝑛𝑛𝑑𝑑, the number of iterations of the CPM 

𝐶𝐶𝑠𝑠𝑏𝑏𝑣𝑣𝑠𝑠, a variable to save the changed pixel label 

𝐶𝐶, a 𝑛𝑛 × 2𝜇𝜇 array of the pixel labels. The empty space is labeled, 0, and cells, 1, 2, … ,𝑁𝑁 

𝑃𝑃, a 1 × (𝑁𝑁 + 1) array of the perimeter of the empty space, 0, and cells, 1, 2, … ,𝑁𝑁 

𝐴𝐴, a 1 × (𝑁𝑁 + 1) array of the area of the empty space, 0, and cells, 1, 2, … ,𝑁𝑁 

𝑆𝑆𝑖𝑖𝜕𝜕𝑒𝑒𝐶𝐶, a 2 × 𝑛𝑛𝜇𝜇 array of the position of all the sites in the system, (𝑖𝑖, 𝑗𝑗) 

𝑁𝑁𝑒𝑒𝑖𝑖𝑔𝑔, a 1 × 6 array to collect the different labeled neighbours of the selected site 

𝑇𝑇𝑃𝑃, a 1 × (𝑁𝑁 + 1) array of the temporary perimeter change of the empty space, 0, and cells 

1, 2, … ,𝑁𝑁  

INPUT the initial configuration of the cells in the system in 𝐶𝐶 

CALCULATE the perimeter, 𝑃𝑃, of the empty space and the cells in the initial configuration 

CALCULATE the area, 𝐴𝐴, of the empty space and the cells in the initial configuration 

CALCULATE energy of the system, 𝐸𝐸1 

FOR 𝜕𝜕 = 1 to 𝜕𝜕𝑒𝑒𝑛𝑛𝑑𝑑 
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 Randomise the list of the cell sites, 𝑆𝑆𝑖𝑖𝜕𝜕𝑒𝑒𝐶𝐶, to a new array, 𝑅𝑅𝑆𝑆𝑖𝑖𝜕𝜕𝑒𝑒𝐶𝐶, keeping the pairs (𝑖𝑖, 𝑗𝑗) 

together 

 FOR 𝑘𝑘 = 1 to 𝑛𝑛𝜇𝜇 

  𝑖𝑖 ← 𝑅𝑅𝑆𝑆𝑖𝑖𝜕𝜕𝑒𝑒𝐶𝐶1,𝑘𝑘 

  𝑗𝑗 ← 𝑅𝑅𝑆𝑆𝑖𝑖𝜕𝜕𝑒𝑒𝐶𝐶2,𝑘𝑘 

  𝐶𝐶𝑠𝑠𝑏𝑏𝑣𝑣𝑠𝑠 ← 𝐶𝐶𝑖𝑖,𝑗𝑗 

  IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗+2 OR 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 OR 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 OR 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗−2 OR 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 

𝐶𝐶𝑖𝑖−1,𝑗𝑗−1 OR 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖−1,𝑗𝑗+1 THEN  

Select a new site  

  ENDIF 

  FOR 𝑐𝑐 = 0 to 𝑁𝑁  

𝑇𝑇𝑃𝑃𝑐𝑐 ← 0  

  ENDFOR 

  𝑖𝑖𝑚𝑚𝑠𝑠𝑖𝑖𝑛𝑛 ← 0 

IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗+2 THEN 

 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 + 1 

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗+2 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗+2 + 1  

𝑖𝑖𝑚𝑚𝑠𝑠𝑖𝑖𝑛𝑛 ← 𝑖𝑖𝑚𝑚𝑠𝑠𝑖𝑖𝑛𝑛 + 1  

𝑁𝑁𝑒𝑒𝑖𝑖𝑔𝑔𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛 ← 𝐶𝐶𝑖𝑖,𝑗𝑗+2  

  ENDIF 

  IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 THEN 

 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 + 1 

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 + 1  
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𝑖𝑖𝑚𝑚𝑠𝑠𝑖𝑖𝑛𝑛 ← 𝑖𝑖𝑚𝑚𝑠𝑠𝑖𝑖𝑛𝑛 + 1  

𝑁𝑁𝑒𝑒𝑖𝑖𝑔𝑔𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛 ← 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1  

  ENDIF 

IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 THEN 

 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 + 1 

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 + 1  

𝑖𝑖𝑚𝑚𝑠𝑠𝑖𝑖𝑛𝑛 ← 𝑖𝑖𝑚𝑚𝑠𝑠𝑖𝑖𝑛𝑛 + 1  

𝑁𝑁𝑒𝑒𝑖𝑖𝑔𝑔𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛 ← 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1  

  ENDIF 

  IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗−2 THEN 

 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 + 1 

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗−2 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗−2 + 1  

𝑖𝑖𝑚𝑚𝑠𝑠𝑖𝑖𝑛𝑛 ← 𝑖𝑖𝑚𝑚𝑠𝑠𝑖𝑖𝑛𝑛 + 1  

𝑁𝑁𝑒𝑒𝑖𝑖𝑔𝑔𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛 ← 𝐶𝐶𝑖𝑖,𝑗𝑗−2  

  ENDIF 

  IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖−1,𝑗𝑗−1 THEN 

 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 + 1 

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖−1,𝑗𝑗−1 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖−1,𝑗𝑗−1 + 1  

𝑖𝑖𝑚𝑚𝑠𝑠𝑖𝑖𝑛𝑛 ← 𝑖𝑖𝑚𝑚𝑠𝑠𝑖𝑖𝑛𝑛 + 1  

𝑁𝑁𝑒𝑒𝑖𝑖𝑔𝑔𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛 ← 𝐶𝐶𝑖𝑖−1,𝑗𝑗−1  

  ENDIF 

  IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖−1,𝑗𝑗+1 THEN 
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 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 + 1 

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖−1,𝑗𝑗+1 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖−1,𝑗𝑗+1 + 1  

𝑖𝑖𝑚𝑚𝑠𝑠𝑖𝑖𝑛𝑛 ← 𝑖𝑖𝑚𝑚𝑠𝑠𝑖𝑖𝑛𝑛 + 1  

𝑁𝑁𝑒𝑒𝑖𝑖𝑔𝑔𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛 ← 𝐶𝐶𝑖𝑖−1,𝑗𝑗+1  

  ENDIF 

  SET the 𝐶𝐶𝑖𝑖,𝑗𝑗 to one of the elements in  𝑁𝑁𝑒𝑒𝑖𝑖𝑔𝑔 

IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗+2 

 IF 𝐶𝐶𝑖𝑖,𝑗𝑗+2 = 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 

IF �𝐶𝐶𝑖𝑖,𝑗𝑗+2 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1� AND �𝐶𝐶𝑖𝑖,𝑗𝑗+2 ≠ 𝐶𝐶𝑖𝑖−1,𝑗𝑗+1 OR 𝐶𝐶𝑖𝑖,𝑗𝑗+2 ≠

𝐶𝐶𝑖𝑖−1,𝑗𝑗−1 OR 𝐶𝐶𝑖𝑖,𝑗𝑗+2 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗−2�  THEN  

Do not keep the change pixel label 𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝐶𝐶𝑠𝑠𝑏𝑏𝑣𝑣𝑠𝑠 

ENDIF 

   ENDIF 

 IF 𝐶𝐶𝑖𝑖,𝑗𝑗+2 = 𝐶𝐶𝑖𝑖,𝑗𝑗−2 

IF �𝐶𝐶𝑖𝑖,𝑗𝑗+2 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 OR 𝐶𝐶𝑖𝑖,𝑗𝑗+2 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1� AND �𝐶𝐶𝑖𝑖,𝑗𝑗+2 ≠

𝐶𝐶𝑖𝑖−1,𝑗𝑗+1 OR 𝐶𝐶𝑖𝑖,𝑗𝑗+2 ≠ 𝐶𝐶𝑖𝑖−1,𝑗𝑗−1�  THEN  

Do not keep the change pixel label 𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝐶𝐶𝑠𝑠𝑏𝑏𝑣𝑣𝑠𝑠 

ENDIF 

   ENDIF 

IF 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 = 𝐶𝐶𝑖𝑖−1,𝑗𝑗−1 

IF �𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 OR 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 OR 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠

𝐶𝐶𝑖𝑖,𝑗𝑗−2� AND �𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠ 𝐶𝐶𝑖𝑖−1,𝑗𝑗+1 �  THEN  

Do not keep the change pixel label 𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝐶𝐶𝑠𝑠𝑏𝑏𝑣𝑣𝑠𝑠 
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    ENDIF 

   ENDIF 

  ENDIF 

IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 

 IF 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 = 𝐶𝐶𝑖𝑖,𝑗𝑗−2 

IF �𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1� AND �𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗+2  OR 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠

𝐶𝐶𝑖𝑖−1,𝑗𝑗+1 OR 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠ 𝐶𝐶𝑖𝑖−1,𝑗𝑗−1�  THEN  

Do not keep the change pixel label 𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝐶𝐶𝑠𝑠𝑏𝑏𝑣𝑣𝑠𝑠 

    ENDIF 

   ENDIF 

 IF 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 = 𝐶𝐶𝑖𝑖−1,𝑗𝑗−1 

IF �𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗−2 OR 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠ 𝐶𝐶(4)� AND �𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠

𝐶𝐶𝑖𝑖,𝑗𝑗+2 OR 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠ 𝐶𝐶𝑖𝑖−1,𝑗𝑗+1�  THEN  

Do not keep the change pixel label 𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝐶𝐶𝑠𝑠𝑏𝑏𝑣𝑣𝑠𝑠 

    ENDIF 

   ENDIF 

 IF 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 = 𝐶𝐶𝑖𝑖−1,𝑗𝑗+1 

IF �𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 OR 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗−2 OR𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠

𝐶𝐶𝑖𝑖−1,𝑗𝑗−1� AND �𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗+2�  THEN  

Do not keep the change pixel label 𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝐶𝐶𝑠𝑠𝑏𝑏𝑣𝑣𝑠𝑠 

    ENDIF 

   ENDIF 

  ENDIF 

IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 
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 IF 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 = 𝐶𝐶𝑖𝑖−1,𝑗𝑗−1 

IF �𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗−2� AND �𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 OR 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 ≠

𝐶𝐶𝑖𝑖,𝑗𝑗+2 OR 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 ≠ 𝐶𝐶𝑖𝑖−1,𝑗𝑗+1�  THEN  

Do not keep the change pixel label 𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝐶𝐶𝑠𝑠𝑏𝑏𝑣𝑣𝑠𝑠 

ENDIF 

   ENDIF 

 IF 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 = 𝐶𝐶𝑖𝑖−1,𝑗𝑗+1 

IF �𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗−2 OR 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 ≠ 𝐶𝐶𝑖𝑖−1,𝑗𝑗−1� AND �𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 ≠

𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 OR 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗+2�  THEN  

Do not keep the change pixel label 𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝐶𝐶𝑠𝑠𝑏𝑏𝑣𝑣𝑠𝑠 

    ENDIF 

   ENDIF 

  ENDIF 

IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗−2 

 IF 𝐶𝐶𝑖𝑖,𝑗𝑗−2 = 𝐶𝐶𝑖𝑖−1,𝑗𝑗+1 

IF �𝐶𝐶𝑖𝑖,𝑗𝑗−2 ≠ 𝐶𝐶𝑖𝑖−1,𝑗𝑗−1� AND �𝐶𝐶𝑖𝑖,𝑗𝑗−2 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 OR 𝐶𝐶𝑖𝑖,𝑗𝑗−2 ≠

𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 OR 𝐶𝐶𝑖𝑖,𝑗𝑗−2 ≠ 𝐶𝐶𝑖𝑖−1,𝑗𝑗−1�  THEN  

Do not keep the change pixel label 𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝐶𝐶𝑠𝑠𝑏𝑏𝑣𝑣𝑠𝑠 

ENDIF 

   ENDIF 

  ENDIF 

IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗+2 THEN 

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 − 1  
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𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗+2 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗+2 − 1  

  ENDIF 

  IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 THEN  

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 − 1  

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖+1,𝑗𝑗+1 − 1  

  ENDIF 

IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 THEN  

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 − 1  

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖+1,𝑗𝑗−1 − 1  

ENDIF 

  IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖,𝑗𝑗−2 THEN  

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 − 1  

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗−2 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗−2 − 1  

  ENDIF 

  IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖−1,𝑗𝑗−1 THEN  

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 − 1  

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖−1,𝑗𝑗−1 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖−1,𝑗𝑗−1 − 1  

  ENDIF 

  IF 𝐶𝐶𝑖𝑖,𝑗𝑗 ≠ 𝐶𝐶𝑖𝑖−1,𝑗𝑗+1 THEN  

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗 − 1  

𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖−1,𝑗𝑗+1 ← 𝑇𝑇𝑃𝑃𝐶𝐶𝑖𝑖−1,𝑗𝑗+1 − 1  

  ENDIF 
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CALCULATE the new perimeter, 𝑃𝑃, of the empty space and the cells in the initial 

configuration using the local change array 𝑇𝑇𝑃𝑃 

CALCULATE the new area, 𝐴𝐴, of the empty space and the cells in the initial 

configuration 

CALCULATE energy of the system, 𝐸𝐸2 with the new values of perimeter, 𝑃𝑃,and 

area, 𝐴𝐴 

GET a random number, 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑, from a uniform distribution between 0 and 1 

IF  𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑 > 𝑒𝑒𝑥𝑥𝑒𝑒((𝐸𝐸1 − 𝐸𝐸2) 𝑇𝑇⁄ ) 

Do not keep the pixel label change 𝐶𝐶𝑖𝑖,𝑗𝑗 ← 𝐶𝐶𝑠𝑠𝑏𝑏𝑣𝑣𝑠𝑠 

CALCULATE the previous perimeter of the empty space and the cells using 

𝑇𝑇𝑃𝑃 

CALCULATE the previous area of the empty space and the cells 

  ELSE 

   𝐸𝐸1 ← 𝐸𝐸2 

ENDIF 

 ENDFOR 

ENDFOR 
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