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Abstract 

This study has evaluated the use of the P450 metalloenzymes CYP176A1, CYP101A1 and 

CYP102A1, together with engineered protein variants of CYP101A1 and CYP102A1, to 

alter the regioselectivity of 1,8- and 1,4-cineole hydroxylation. CYP176A1 was less 

selective for 1,4-cineole oxidation when compared to its preferred substrate, 1,8-cineole. 

The CYP102A1 variants significantly improved the activity over the WT enzyme for 

oxidation of 1,4- and 1,8-cineole. The CYP102A1 R47L/Y51F/A74G/F87V/L188Q mutant 

generated predominantly (1S)-6α-hydroxy-1,8-cineole (78% e.e.) from 1,8-cineole. 

Oxidation of 1,4-cineole by the CYP102A1 R47L/Y51F/F87A/I401P variant generated the 

3α product in >90% yield. WT CYP101A1 formed a mixture metabolites with 1,8-cineole 

and very little product was generated with 1,4-cineole. In contrast the 

F87W/Y96F/L244A/V247L and F87W/Y96F/L244A variants of CYP101A1 favoured 

formation of 5α-hydroxy-1,8-cineole (>88%, 1S 86% e.e.) while the F87V/Y96F/L244A 

variant generated (1S)-6α-hydroxy-1,8-cineole in excess (90% regioselective, >99% e.e.). 

The CYP101A1 F87W/Y96F/L244A/V247L and F87W/Y96F/L244A mutants improved the 

oxidation of 1,4-cineole generating an excess of the 3α metabolite (1S >99% e.e. with the 

latter). The CYP101A1 F87L/Y96F variant also improved the oxidation of this substrate but 

shifted the site of oxidation to the isopropyl group, (8-hydroxy-1,4-cineole). When this 8-

hydroxy metabolite was generated in significant quantities desaturation of C8-C9 to the 

corresponding alkene was also detected.  

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3 

 

Graphical Abstract 

 

 

Highlights 

CYP176A1 was less selective for 1,4-cineole oxidation compared to 1,8-cineole. 

CYP102A1 and CYP101A1 variants were used to generate (1S)-6α-hydroxy-1,8-cineole in 

excess (>90%). 

Other mutant forms of CYP101A1 were selective for 5α-hydroxy-1,8-cineole (>88%, 86% 

e.e.).  

Oxidation of 1,4-cineole by CYP102A1 and CYP101A1 mutants generated the 3α product 

in >90% yield. 

The CYP101A1 F87L/Y96F variant favoured 8-hydroxy-1,4-cineole formation.  

The formation of 8-hydroxy-1,4cineole was accompanied by desaturation to a C8-C9 alkene.  

 

 

Keywords: enzyme catalysis; cytochrome P450; cineole; hydroxylation, C-H bond oxidation 
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1. Introduction 

The monoterpenoid group of natural products are widespread, abundant and structurally 

diverse, and these attributes correlate with a wide range of biological functions [1, 2]. They 

make up the major proportion of many essential oils and have uses as flavours, fragrances 

and pheromones [1, 3, 4]. They also show antimicrobial and medicinal properties and have 

uses as pesticides, herbicides and components of pharmaceuticals [5, 6]. The parent 

monoterpenes are often easily accessible from natural oils but the hydroxylated or 

oxyfunctionalised forms usually occur in lower amounts [3, 7].  

The monoterpene 1,8-cineole 1 (1,3,3-trimethyl-2-oxabicyclo[2,2,2]octane) is the 

major component of eucalyptus oil, while 1,4-cineole 2 (4-methyl-1-propan-2-yl-7-

oxabicyclo[2.2.1]heptane) is found in some plant oils and is also present in lime juice (Fig. 

1) [8-10]. Both cineoles are achiral but a single hydroxylation usually leads to the generation 

of at least two stereogenic centres. The oxygenated derivatives of both are important chiral 

synthons, intermediates in the synthesis of herbicides (e.g. cinmethylin), antimicrobials and 

fragrances [7, 9, 11-20]. The chemical synthesis of hydroxylated cineole analogues is 

difficult and requires the use of highly reactive, non-environmentally friendly reagents that 

usually generate a mixture of racemic products. The use of metalloenzyme biocatalysts to 

selectively introduce oxygen into selected C-H bonds of the parent cineoles is very attractive 

as it would allow these reactions to be performed in a single step under ambient conditions 

[21-23]. 

There has been increasing attention to the use of metalloenzymes as biocatalysts for 

the discovery of new routes for the synthesis of hydroxylated terpene analogues for the 

production of antimicrobial and bactericidal agents or for the fragrance industry [5, 6, 24]. 

Of particular interest is the ability of such enzymes, especially the cytochromes P450 
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(P450s), to synthesise specific oxygenated molecules in a highly regio- and enantioselective 

fashion.  

The P450s are a superfamily of hemoprotein monooxygenases that are involved in 

hydroxylation, epoxidation, heteroatom dealkylations and other, more complex reactions 

[25-27]. The majority of P450 enzymes utilise a reactive high-valent iron-oxo radical cation 

intermediate, compound I (Cpd I), to insert one oxygen atom from dioxygen into unactivated 

carbon-hydrogen bonds. The catalytic cycle of the enzyme involves multiple steps. After 

initial substrate binding, the first electron transfer step reduces the ferric iron to the ferrous 

form. The electrons required for this and a subsequent reduction step are usually sourced 

from a nicotinamide cofactor (NADH or NADPH) and delivered via electron transfer 

proteins [28-30]. Oxygen rapidly binds to the ferrous form and is then activated by a second 

electron. Protein controlled delivery of protons facilitates dioxygen bond cleavage with 

generation of the reactive intermediate, Cpd I [31]. The pathway of the oxygen insertion 

reaction by Cpd I is accounted for by the radical rebound mechanism [32, 33]. In general, 

bacterial P450 enzymes tend to have an active site architecture that holds the physiological 

substrate in such a way that carbon-hydrogen bond hydroxylation occurs with high regio-, 

stereo-, and enantioselectivity. The ability of these enzymes to catalyse this reaction under 

ambient conditions offers advantages over traditional multistep or unselective organic 

synthesis routes [34-36]. Hence, the bacterial P450 enzymes, which are often soluble, highly 

active and selective, are well suited for biocatalytic applications [34-36]. P450s such as 

CYP101A1 (P450cam), CYP102A1 (P450BM3) and CYP176A1 (P450cin) have previously 

demonstrated their utility in catalysing the oxidation of a number of terpenes and are 

therefore, ideal candidates for exploring the oxidation products that could be generated from 

1,8- and 1,4-cineole [24, 37-41]. 
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CYP176A (P450cin) is an example of a bacterial P450 that has been shown to 

catalyse the enantiospecific hydroxylation of 1,8-cineole 1 to produce (1R)-6β-

hydroxycineole 3a (Scheme 1, Fig. 2). This P450 was initially identified in a bacterium 

thought to be Citrobacter braakii along with its redox partners, which included the FMN 

containing flavodoxin, cindoxin (Cdx) [42, 43]. When reconstituted with Escherichia coli 

flavodoxin reductase it is an NADPH dependent P450 system that efficiently catalyses the 

enantiospecific hydroxylation of 1,8-cineole [42, 44]. This is the first step in the 

biodegradation of cineole by the bacterium which can use this monoterpene as it sole source 

of carbon and energy [15]. Mutagenesis studies have demonstrated that a range of 

hydroxycineole isomers can be obtained from a number of single amino acid mutations of 

CYP176A1 around the heme containing active site (Fig. 2) [45-47]. In addition, CYP176A1 

is able to catalyse the less selective oxidation of other monoterpenes, such as both 

enantiomers of camphor [24, 43]. An in vivo system, comprising of P450cin and Cdx and the 

endogenous E. coli flavodoxin was constructed to enable larger scale metabolite generation 

using intact cells [24].  

The bacterial monooxygenase CYP101A1 (P450cam), from Pseudomonas putida, 

catalyses the stereospecific hydroxylation of (1R)-camphor to 5-exo-hydroxycamphor (Fig. 

2) [34, 48]. This oxidation, like that of 1,8-cineole by CYP176A1, is the first step in the 

utilisation of the substrate as an energy source by the bacterium. It obtains its electrons from 

NADH via a class I electron transfer system, comprising an FAD containing flavoprotein, 

putidaredoxin reductase, and a [2Fe-2S] ferredoxin, putidaredoxin [49, 50]. The WT enzyme 

has a limited substrate range outside of camphor but can oxidise other monoterpenes 

including 1,8-cineole, which is hydroxylated less selectively to (1S)-6α-hydroxycineole 3b 

and both enantiomers of 5α- and 5β-hydroxycineole 3c-d (Scheme 1) [40]. Mutations at 

residues in the active-site of CYP101A1 have been found to improve its affinity, activity and 
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selectivity toward other substrates, e.g. the monoterpenes (S)-limonene and (+)-α-pinene 

(Fig. 2) [34, 37, 39, 51-56]. The enzyme has also been altered to oxidise substrates as varied 

as small chain alkanes (<C5) and polycyclic aromatic hydrocarbons as large as pyrene [37, 

39, 52, 55, 57-61]. 

The P450 CYP102A1 (P450BM3), which was found in Bacillus megaterium, is a fatty 

acid hydroxylase that oxidises fatty acid substrates close to the omega terminus (Fig. 2) [62-

64]. This enzyme was the first example of a P450 in which the electron transfer partner 

domains are fused to the heme domain. Other members of the CYP102A subfamily have 

been found to have the same secondary structure properties [65-70] CYP102A1 has a high 

specificity for NADPH as the electron source,[71] and the enzyme has been shown to work 

as a dimer with very high monooxygenase activity [65-68, 72, 73]. It is soluble, easy to 

produce and the self-sufficient nature and high activity often make it the P450 of choice for 

biocatalytic applications. As such it has been used as a template for protein engineering and 

evolution studies to design efficient and selective oxidation biocatalysts [34, 39, 74-82]. 

CYP102A1 variants, which enhance the oxidation activity for unnatural substrates but do 

not alter the product regioselectivity have been identified [83-86]. Variants in which 

phenylalanine 87 and other residues in the enzyme active site have been modified, alter the 

substrate binding profile and product selectivity [76, 87-90]. For example, the GVQ variant 

(A74G/F87V/L188Q) of CYP102A1 has been reported to be a biocatalyst for the oxidation 

of hydrophobic organic molecules including alkyl napthalenes [83, 91] 

 The selective metalloprotein-catalyzed oxidation of cineoles to specific 

hydroxycineoles could generate new green chemistry routes to important molecules. 

Recently WT CYP101B1 from Novosphingobium aromativicorans was shown to generate 

predominantly (1S)-5α-hydroxy-1,8-cineole 3c with high activity [40]. Others have reported 

new bacterial enzymes of the CYP101J subfamily from Sphingobium yanoikuyae B2, which 
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can oxidise 1,8-cineole to form (1R)-6α-hydroxy-1,8-cineole 3b [92, 93]. Whole-cell 

microbial oxidation of 1,4-cineole 2 by Streptomyces griseus and other bacteria yielded 

mixtures of the 8- and 9-hydroxy-1,4-cineoles (5a and 5d) and isomers from hydroxylation 

at the 2-position [12, 17, 18]. Here we report results of oxidation of 1,8- and 1,4-cineole 

using mutant forms of CYP102A1 and CYP101A1 in order to investigate the potential use 

of these metalloenzymes as selective biocatalysts in the generation of specific 

hydroxycineoles. Metabolites from the oxidation of 1,4-cineole by CYP176A1 are also 

identified. In addition, whole-cell oxidation of both cineoles was used to compare the 

activity and selectivity of the different P450 enzymes.  
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2. Experimental Section 

2.1 General 

General reagents, 1,8-cineole 1 and 1,4-cineole 2 were from Sigma-Aldrich. Buffer 

components, NADPH, and isopropyl-β-D-thiogalactopyranoside (IPTG) were from Astral 

Scientific (Australia) or VWR. Production and purification of full-length CYP102A1 

variants for in vitro use were carried out as described previously [83, 94]. UV/Vis 

spectroscopy was performed on an Agilent Cary 60 spectrophotometer with temperature 

control at 30 °C. Gas chromatography mass spectrometry (GC-MS) analyses were carried 

out on a Shimadzu GC-2010 coupled to a GC-MS-QP2010S detector or a GC-17A coupled 

to a QP5050A MS detector. Both systems used a DB-5 MS fused silica column (30 m x 0.25 

mm, 0.25 µm) and helium as the carrier gas. The GC retention times are given in the figure 

legends and the methods in the supplementary material. Additional GC analysis and 

enantioselective chromatography were performed on a Shimadzu Tracera GC coupled to 

Barrier discharge Ionization Detector (BID) detector using a Supelcowax column (30 m x 

0.32 mm x 0.25 um) and a RT®-BDEXse chiral silica column (Restek; 30 m x 0.32 mm x 

0.25 um), respectively. Enantioselective GC analysis of the cineole metabolites was 

performed on Cyclodextrin-B column (25 m × 0.25 mm) on a Shimadzu GC-17A equipped 

with an FID.  

2.2 Activity assays 

CYP102A1 in vitro NADPH turnovers were run at 30 °C in 1200 µL of 50 mM Tris, pH 7.4 

at 30 °C, containing 0.2 µM enzyme and 120 µg bovine liver catalase. The buffer was 

saturated with oxygen gas just before use and the assays were allowed to equilibrate for 1 

min prior to the addition of the appropriate cineole substrate (1 mM substrate from a 100 

mM stock in DMSO). To initiate the reaction NADPH was added, from a 20 mg mL–1 stock, 

to a final concentration of ~320 µM (equivalent to 2 AU). A period of 10 seconds was 
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allowed to elapse after NADPH addition, to enable the rate of consumption to become 

linear, before the absorbance at 340 nm was monitored. The reactions were allowed to run 

until all the NADPH was consumed. The NADPH turnover rate was derived using ε340 = 

6.22 mM−1 cm−1.  

2.3 In vivo metabolite generation and product identification  

The CYP101A1 variants were screened using a plasmid system pCWSGB++ (pCWori+ 

based) which contained the genes for PdR, Pdx and the relevant mutant as described 

previously (Table S1) [37, 39, 51, 55, 57, 58]. CYP176A1 was screened using the 

biscistronic system (also in pCWori+) containing P450 enzyme and Cdx which is supported 

by the endogenous flavoprotein reductase of the E. coli [24, 95]. The plasmids transformed 

in E. coli (DH5α) cells and a single colony was grown in 2 x YT medium containing 

ampicillin (100 µg mL−1) and the protein was produced by induction with IPTG [53]. After 

induction the cell pellet was harvested by centrifugation and resuspended in E. coli minimal 

medium (EMM; K2HPO4, 7 g, KH2PO4, 3 g, Na3citrate, 0.5 g, (NH4)2SO4, 1 g, MgSO4, 0.1 

g, 20% glucose, 20 mL and glycerol, 1% v/v per litre).  

To isolate and identify the cineole products, and to compare the CYP102A1 

turnovers a whole-cell oxidation system utilising the pET28 plasmid containing the 

CYP102A1 gene of interest was used. The plasmids were transformed into competent 

BL21(DE3) cells, grown in 2 x YT broth containing kanamycin (30 µg mL−1). Protein 

generation was induced by addition of IPTG and the cultures were allowed to continue for 

16 h before the cells were harvested by centrifugation. The cell pellet was washed and 

resuspended in EMM. The cineoles (2 mM from a 100 mM stock in ethanol) were added to 

the cells (50 ml in a 250 mL flask) the reactions were shaken at 150 rpm and 30 °C. A 

second aliquot of substrate was added after 6 hours and the reactions were allowed to 
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proceed for 16 hours. Aliquots of the turnover (1 mL) were taken and extracted with ethyl 

acetate for analysis by GC-MS.  

The CYP101A1 and CYP102A1 variants were transformed into the E. coli strain 

BL21(DE3) and grown in LB with the relevant antibiotics (see above). The cells were 

harvested, the biomass yield was recorded as the cell wet weight, before they were 

resuspended in EMM (50 mL in 250 mL flask). The reactions were performed in duplicate 

and analysed as described below. The concentration of P450 was determined by lysing the 

cells (via sonication) and recording the CO difference spectrum of the supernatant [96]. 

2.4 Product analysis 

After the NADPH consumption assays were completed with CYP102A1 variants or when 

analysing the whole-cell oxidation systems, 990 µL of the reaction mixture (including the 

cells in the case of whole-cell turnovers) was mixed with 10 µL of an internal standard 

solution (p-cresol, 20 mM stock solution in DMSO). The mixture was extracted with 400 µL 

of ethyl acetate and the organic extracts were used directly for GC-MS or GC analysis. 

Products were initially identified by matching the GC-MS mass spectra to those expected for 

the products (see supplementary material). To obtain the coupling efficiency products were 

calibrated against 1,8-cineole and 1.4-cineole using the assumption that isomeric products 

would give comparable responses. 

The supernatant (50 mL) from an in vivo turnover of the cineoles was extracted with 

ethyl acetate (3 x 50 mL), washed with brine (50 mL). The organic extracts were pooled, 

dried with magnesium sulphate, filtered and the solvent was removed by vacuum distillation 

and then under a stream of nitrogen. The products were purified by silica gel 

chromatography using a hexane/ethyl acetate stepwise gradient. The composition of the 

fractions was assessed by TLC and GC-MS and those containing a single major product 

were combined for characterisation. The purified product was dissolved in CDCl3 and the 
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organics characterised by NMR spectroscopy and GC-MS. When separation was not 

possible fractions were analysed by NMR and distinctive signals were matched to those of 

the metabolites reported in the literature. These NMR spectra were acquired on a Bruker AV 

at 500 MHz. 

 

2.5 NMR and MS data for 1,4-cineole products 

The distinctive NMR signals and MS fragmentation patterns used to characterise the 1,4-

cineole derivatives are shown below. These were purified from in vivo turnovers with 

enzymes discussed in this work or synthesised from such compounds as described. The 

oxidised 1,8-cineole derivatives have been identified previously and were characterised by 

comparison to previous literature or authentic standards using methods which have been 

previously described [24, 40, 42, 46, 95]. 

8-hydroxy-1,4-cineole 5a [12, 97] (oil) lit [98].  

1H NMR (CDCl3, 400 MHz): δ 1.25 (s, 6H, 9-CH3 & 10-CH3), 1.43 (s, 3H, 7-CH3).  

13C NMR (CDCl3, 100 MHz): δ 21.1, 25.3 (2 × CH3), 31.9 (2 × CH2), 37.5 (2 × CH2), 71.6, 

83.9, 91.7.  

GC-MS (m/z): 170 (M+, 7), 155 (4), 137 (7), 112 (13), 111 (39), 110 (18), 109 (12), 97 (10), 

95 (9), 93 (15), 85 (13), 83 (8), 79 (9), 69 (17), 67 (12), 59 (100), 55 (19), 43 (96). 

3ββββ-hydroxy-1,4-cineole 5b [12] (oil, major component in a mixture). 

1H NMR (CDCl3, 400 MHz): δ 0.91 & 1.00 (2 × dd, J = 6.9 & 0.7 Hz, 2 × 3H, 9-CH3 & 10-

CH3), 1.45 (s, 3H, 7-CH3), 1.70 (td, J = 12.2 & 3.4 Hz, 1H), 2.18 (dd, J = 13.3 & 6.9 Hz, 

1H), 2.36 (septet, J = 6.9 Hz, 1H), 3.89 (ddd, J = 9.3, 6.8 & 2.0 Hz, 1H).  

GC-MS (m/z): 170 (M+, 7), 155 (1), 139 (1), 137 (3), 127 (8), 125 (6), 111 (8), 109 (8), 86 

(54), 84 (43), 71 (58), 43 (100). 

2ββββ-hydroxy-1,4-cineole 5c [12] [13] (solid, major component in a mixture).   



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 

 

1H NMR (CDCl3, 400 MHz): δ 0.94 & 0.95 (2 × d, J = 6.9 Hz, 2 × 3H, 9-CH3 & 10-CH3), 

1.40 (s, 3H, 7-CH3), 2.04 (m, 2H), 3.73 (t, J = 7.5 Hz, 1H). 

13C NMR (CDCl3, 100 MHz): δ 16.4, 18.18, 18.21, 32.60, 32.63, 32.9, 45.2, 76.9, 85.6, 88.8 

GC-MS (m/z): 170 (M+, 4), 153 (4), 137 (2), 127 (6), 125 (9), 112 (17), 109 (10), 97 (13), 95 

(10), 86 (10), 83 (19), 71 (23), 43 (100). 

9-hydroxy-1,4-cineole 5d [12, 97] (oil, mixture) [97]. 

1H NMR (CDCl3, 400 MHz): δ 0.83 (d, J = 7.0 Hz, 10-CH3), 1.43 (s, 3H, 7-CH3), 3.48 (dd, 

J = 11.2 & 4.2 Hz, 1H), 3.70 (dd, J = 11.1 & 9.6 Hz, 1H). 

GC-MS (m/z): 170 (M+, 14), 155 (1), 141 (11), 139 (12), 137 (3), 123 (13), 111 (38), 97 

(10), 95 (18), 93 (17), 91 (7), 87 (35), 83 (15), 81 (13), 79 (19), 69 (29), 67 (28), 55 (52), 43 

(100). 

2αααα-hydroxy-1,4-cineole 5e [99] (oil, major component in a mixture from whole-cell oxidation 

system)  

1H NMR (CDCl3, 400 MHz): δ 0.901 & 0.905 (2 × d, J = 6.9 Hz, 2 × 3H, 9-CH3 & 10-CH3), 

1.37 (s, 3H, 7-CH3), 1.93 (sept, J = 6.8 Hz, 1H), 2.05 (m, 1H), 2.28 (ddd, J = 12.3, 8.6, & 5.7 Hz, 

1H), 3.90 (m, 1H) 

GC-MS (m/z): 170 (M+, 4), 153 (3), 140 (1), 137 (2), 127 (5), 125 (10), 112 (18), 111 (7), 97 

(12), 95 (9), 83 (18), 81 (14), 71 (23), 58 (27), 43 (100) 

3αααα-hydroxy-1,4-cineole 5f mp. 81 – 82 °C (lit. [100] mp. 56 °C); [α]D
23

 17° (c 0.14, 

CHCl3), lit. [100] [α]D 2.5° (c 0.5, CHCl3).  

1H NMR (CDCl3, 500 MHz): δ 0.98 & 0.99 (2 × d, J = 6.9 Hz, 2 × 3H, 9-CH3 & 10-CH3), 

1.34 (s, 3H, 7-CH3), 1.38 (dd, J = 12.5 & 3.1 Hz, 1H, 2-CH), 1.46 – 1.59 (m, 3H, OH, 5-CH 

& 6-CH), 1.75 (m, 1H, 6-CH), 1.98 – 2.06 (m, 2H, 8-CH & 2-CH), 2.25 (ddd, J = 11.8, 9.4 

& 4.3 Hz, 1H, 5-CH), 4.17 (dddd, J = 9.6, 4.6, 3.1 & 1.6 Hz, 1H, 3-CH). 

13C NMR (CDCl3, 125 MHz): δ 17.9, 18.3, 21.7, 25.3, 32.3, 37.3, 47.9, 74.9, 83.0, 90.4 
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GC-MS (m/z): 170 (M+, 8), 137 (2), 128 (1), 127 (8), 125 (9), 111 (9), 109 (7), 97 (6), 95 

(4), 87 (22), 86 (55), 71 (55), 43 (100). 

HR-MS (C10H19O2): Found 171.1374 (Calculated 171.1385). 

Crystallography of 3α-hydroxy-1,4-cineole, 5f, was performed as described in the 

supplementary material.  

 

2.6 Synthesis of 1,4-cineole derivatives 

3-keto-1,4-cineole 7b 

A solution of tetrapropylammonium perruthnate (1.3 mg, 0.004 mmol) and 4-methylmorpholine 

N-oxide (10.1 mg, 0.086 mmol) in dry methylene chloride (0.25 ml) was added dropwise to a 

solution of 3-hydroxy-1,4-cineole (5 mg, 0.018 mmol) dissolved in dry methylene chloride (0.25 

ml). The resulting mixture was stirred at room temperature for 1 hr before filtering through a 

silica plug and concentrating under a gentle stream of N2 to give a clear oil (4.8 mg, 96%).  

1H NMR (500 MHz, CDCl3): δ 2.22 (m, 2H, 6-CH2), 2.18-2.12 (sept, J = 7 Hz, 1H, 8-CH), 1.88 

(td, J = 12.4, 4.5 Hz, 1H, ax 3-CH), 1.80-1.75 (m, 1H, ax 2-CH), 1.74 – 1.65 (m, 1H, eq 2-CH), 

1.64 – 1.57 (m, 1H, eq 3-CH), 1.55 (s, 3H, 7-CH3), 1.06 (d, J = 6.9 Hz, 1H, 10-CH3), 1.05 (d, J = 

7.0 Hz, 1H, 9-CH3).  

13C NMR (125 MHz, CDCl3): δ 214.18, 91.85, 81.42, 51.24, 35.54, 28.29, 28.23, 21.54, 17.57, 

17.35.  

GC-MS (m/z): 168 (M+, 1), 140 (30), 126 (18), 97 (18), 71 (100), 69 (64), 55 (25), 43 (88), 41 

(44). 

2-keto-1,4-cineole 7a 

A solution of tetrapropylammonium perruthnate (1 mg, 0.003 mmol) and 4-methylmorpholine 

N-oxide (9.4 mg, 0.08 mmol) in dry methylene chloride (0.25 ml) was added dropwise to a 

solution of 3-hydroxy-1,4-cineole (1 mg, 0.006 mmol) dissolved in dry methylene chloride (0.25 
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ml). The resulting mixture was stirred at room temperature for 1 hr before filtering through a 

silica plug and concentrating under a gentle stream of N2 to give a clear oil (1 mg, 100%).  

GC-MS (m/z): 168 (M+, 1), 140 (49), 107 (35), 97 (39), 83 (26), 69 (29), 55 (59), 43 (100), 41 

(27) 

8-dehydro-1,4-cineole 6 

Freshly distilled POCl3 (10 µL, 0.11 mmol) was added to a solution of 8-hydroxy-1,4-cineole 

(10 mg, 0.059 mmol) dissolved in pyridine (0.2 ml) before stirring for 24 hours at RT. The 

reaction as quenched with H2O (1 ml) and extracted with ethyl acetate (2 x 1 ml). The organic 

layer was then washed with copper sulfate (2 x 1 ml), and brine (2 x 1 ml) before drying with 

magnesium sulfate and concentrating under a gentle stream of N2 to afford the product as a clear 

oil (3 mg, 30%). 

1H NMR (500 MHz, CDCl3): δ 4.98 (dq, J = 1.8, 0.9 Hz, 1H, 10-CH2), 4.83 – 4.80 (m, 1H, 10-

CH2), 1.82 (dd, J = 1.5, 0.9 Hz, 3H, 9-CH3), 1.81-1.66 (m, 9H, 2,3,5,6-CH2) 1.49 (s, 3H, 7-CH3). 

GC-MS (m/z): 152 (M+, 60), 123 (87), 109 (79), 79 (59), 69 (100), 67 (41), 43 (93), 41 (63). 
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3. Results 
 
3.1 1,4-Cineole  

Identification of the products of P450 catalysed oxidation of 1,4-cineole 2 was achieved by 

isolation and characterisation (NMR and mass spectrometry). In vivo oxidation reactions 

were used to prepare pure or highly enriched samples of 5a-f (Scheme 2). These samples 

allowed identification of the products of in vitro turnover by GC-MS analysis via retention 

time and mass spectral fragmentation comparisons. In the case of 5f, an X-ray structure was 

obtained for the product isolated from 1,4-cineole oxidation with F87W/Y96F/L244A 

(WFA) CYP101A1 and allowed the determination of its absolute configuration as (1S).  

 
3.1.1 CYP176A1 Oxidation: 1,4-Cineole 2 
 
CYP176A1 catalyses the selective oxidation of 1,8-cineole 1 to (1R)-6β-hydroxycineole 3a 

and possesses a high binding affinity for 1,8-cineole (Kd = 0.7 µM) which also has the 

ability to induce a complete shift of the ferric heme from the low spin to the high spin form 

[42, 43]. Based on these properties of CYP176A1, 1,4-cineole was examined as a potential 

substrate. Binding studies were not possible with 1,4-cineole as it contains a small amount of 

1,8-cineole that binds preferentially to CYP176A1 hindering quantitative analysis. Catalytic 

oxidation of 1,4-cineole by CYP176A1 generated two major products that were identified as 

2β-hydroxy-1,4-cineole 5c and 8-hydroxy-1,4-cineole 5a (Fig. 3 and Scheme 2). Low levels 

of a third metabolite, which was assigned as 3β-hydroxy-1,4-cineole 5b, was also detected 

(Fig. 3 and Scheme 2). Very low levels of a turnover product were also observed in the GC-

MS and this was subsequently identified as 6 (vide infra).  

 

3.1.2 CYP101A1 Oxidation: 1,4-Cineole 2 

Two other enzymes, CYP101A1 and CYP102A1, and their mutants were then assessed to 

determine if these P450s could selectively oxidise 1,8- and 1,4-cineole. Firstly, WT 
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CYP101A1 oxidation of 1,4-cineole using a whole-cell system resulted in low yields and 

non-selective oxidation (Fig. 4). The two major products observed were subsequently 

identified (vide supra) as 8-hydroxy-1,4-cineole 5a and 3α-1,4-hydroxycineole 5f. However, 

mutants of CYP101A have been used to improve the yield and selectivity of monoterpene 

oxidation as was demonstrated with pinene and limonene [37, 51]. A library of eighteen 

members of CYP101A1 mutant enzymes (Table S1), member of which have been screened 

for the oxidation of terpenes and other hydrophobic substrates and have been cloned into a 

whole-cell oxidation system along with the physiological electron transfer partners, Pdx and 

PdR, was screened for selective catalysts for 1,4-cineole oxidation [37, 51, 52, 55, 101, 102]. 

 Oxidation of 1,4-cineole with select CYP101A1 mutants improved the product yields 

and several showed high levels of regioselectivity. The CYP101A1 F87W/Y96F/L244A 

(WFA) mutant was greater than 90% selective for oxidation at the 3α position 5f (Fig. 4, 

Scheme 2). This product was isolated in pure form and an X-ray structure of a single crystal 

not only confirmed its relative configuration but also revealed its absolute configuration as 

(1S). The optical rotation of the isolated product indicated that the bulk material was indeed 

significantly optically enriched ([α]D
23

 17°, lit. [100] [α]D 2.5°; see supplementary material 

for more details). Several minor products were identified based on their MS fragmentation 

pattern, NMR spectra, and GC-MS retention time comparison with authentic standards (vide 

supra). These included 2α- 5e, 2β- 5b, 3β- 5c, 8-hydroxy- 5a, 9-hydroxy- 5d and 3-keto-

1,4-cineole 7b (the latter only from large scale whole-cell turnovers) (Fig. 4, Experimental 

and Supplementary material).  

 The F87L/Y96F (LF) variant switched the selectivity of 1,4-cineole oxidation to 

favour (<85%) hydroxylation on the isopropyl substituent to give 8-hydroxy-1,4-cineole 5a 

(Fig. 4, Scheme 2). Minor products were assigned as 2β- 5b, 2α- 5e, 9-hydroxy- 5d and 2-

keto-1,4-cineole 7a (the latter only from large scale whole-cell turnovers) (Fig. 4, 
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Experimental and Supplementary material). In addition, there was also a significant increase 

in the minor metabolite at 4.15 min which possesses a MS consistent with a desaturation 

product (Fig. 4). Given that the increased level of this metabolite correlated with an increase 

in 8-hydroxy-1,4-cineole 5a production across the range of mutants tested, we tentatively 

assigned this as the alkene between the C8 and C9 of 1,4-cineole 6 (Scheme 2). A standard 

sample of 6 was synthesised from 5a by dehydration with POCl3/pyridine and used to 

confirm the structure of this metabolite by comparison of GC-MS retention time and 

fragmentation pattern.  

3.1.3 CYP102A1 Oxidation: 1,4-Cineole 2 

The second enzyme that was examined for specific oxidation of 1,4- and 1,8-cineole was 

CYP102A1. CYP102A1 and different variants of CYP102A1 (6 variants in total, details in 

Table S1) tested for 1,4- and 1,8-cineole oxidation [83, 94]. The addition of polyfluorinated 

carboxylic acid decoy molecules (PFCs) as a method to improve the activity was also 

investigated [66, 94, 103-105]. The activity of WT CYP102A1 for both cineoles was low 

(Product Formation Rate (PFR); < 0.2 nmol(nmol-CYP)−1min−1; henceforth abbreviated to 

min−1). The rate accelerating mutants and the use of the PFC decoy molecules did not 

significantly enhance the oxidation of either cineole (data not shown; these combination had 

previously been shown to improve the activity of alkylbenzenes and cycloalkanes) [66, 94]. 

Only variants that contained a mutation at the F87 active site residue showed significant 

product formation for either cineole (Fig. 5).  

The CYP102A1 R47L/Y51F/A74G/F87V/L188Q (RLYFGVQ) and the 

A74G/F87V/L188Q (GVQ) variants improved the oxidation of 1,4-cineole, as compared to 

wild type, but two products were formed in roughly equal amounts and arose from 

hydroxylation at the 2α 5e and the 3α 5f positions (Fig. 5 and Scheme 2). The CYP102A1 

R47L/Y51F/F87A/I401P (RLYFAIP) variant essentially generated 3α-hydroxy-1,4-cineole 
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5f as a single product (>90%). The PFR of 529 ± 48 min−1 (Table S2) was significantly 

faster than with any of the other CYP102A1 variants that were tested with 1,4-cineole. This 

presumably arises as the extra space created by the F87A mutation creates more space for 

the cineole to bind closer to the heme. Two minor products were formed in roughly equal 

amounts and these arose from hydroxylation at the 3β 5c and 2α 5e positions.  

3.2 1,8-Cineole 1  

3.2.1 CYP101A1 Oxidation 

Previously we have shown that CYP101A1 from a P. putida was able to oxidise 1,8-cineole 

1 to generate three major products; (1S)-6α- 3b and 5α- 3c and 5β-hydroxycineole 3d in a 

18:68:14 ratio. The latter two metabolites were also enriched in the (1S) enantiomer. A small 

amount of the 5-ketocineole 4 product was also generated (Fig. 6). In this study, the WT 

CYP101A1 oxidation of 1,8-cineole was found to be consistent with that reported previously 

(Fig. 6) [40]. The results obtained from screening the mutant libraries revealed that the 

selectivity of 1,8-cineole oxidation was altered in different CYP101A1 variants. For 

example the F87V/Y96F/L244A (VFA) variant showed a strong preference for oxidation at 

the 6α position (90%) to give (1S)-6α-hydroxycineole 3b in essentially >99% e.e. 

Hydroxylation at the 5α and β positions made up the remainder of the observed products 

(8% and 2%, respectively, Fig. 6, Scheme 3). The F87W/Y96F/L244A/V247A (WFAL) 

variant hydroxylated 1,8-cineole to generate 5α-hydroxy-1,8-cineole 3c as the major product 

(88%) with the minor products consisting of 6α-hydroxy-1,8-cineole 3b (10%) and 5β-

hydroxy-1,8-cineole 3d (2%, Fig. 6, Scheme 2). The WFA variant was again more selective 

for oxidation at the 5α position (3c, 90%) with only 5β 3d being detected as the minor 

product but the overall yield was lower (Fig. 6, Scheme 2). The optical purity of the 5-

hydroxycineoles could not be determined directly by enantioselective GC [9, 40]. However, 

oxidation to the 5-ketocineole 4 allowed analysis by enantioselective GC and showed that 
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the major compound from the WFAL variant produced was the (1S) enantiomer in 86% e.e. 

The other mutants tested either resulted in lower yields or poorer selectivity after GC/GC-

MS analysis (data not shown). 

3.2.2 CYP102A1 Oxidation 

The catalytic turnover of 1,8-cineole with WT CYP102A1 produced extremely small 

quantities of oxidation products. However, the CYP102A1 RLYFGVQ mutant with 1,8-

cineole generated 6α-hydroxy-1,8-cineole 3b as a single product (>98%), as did the GVQ 

mutant), with a PFR of 103 ± 25 min−1 (Fig. 5, Scheme 3 and Table S2). Enantioselective 

GC analysis indicated that this was again the (1S) isomer in 78% e.e.. The RLYFAIP variant 

was less selective for oxidation of 1,8-cineole generating significant quantities of 5α-

hydroxy-1,8-cineole 3c alongside the major product 6α-hydroxy-1,8-cineole 3b (Fig. 5). The 

5β-hydroxy metabolite 3d made up the majority of the remainder of the oxidised 1,8-

cineole.  

3.3 Comparison of different bacterial P450 systems for cineole oxidation 

Bacterial P450 enzyme systems are currently preferably used for biocatalytic reactions due 

to their ease of production and high activity levels. The use of whole-cell oxidation systems 

is a convenient method to generate larger scale quantities of metabolites. A direct 

comparison of the three systems studied here is complex due to differing requirements in 

cofactor usage (NADPH vs. NADH), electron transfer partner systems (ferredoxin vs. 

flavodoxin, fused single systems vs. three component system) and plasmid systems 

(pCWori+ bicistronic and tricistronic vs. pET28 systems). However, it is useful to compare 

the relative amount of product obtained for the most selective systems for 1,4- and 1,8-

cineole oxidation. All the samples were tested in BL21(DE3) cells.  

All the systems generated similar levels of cell biomass (13-16 grams of cell wet 

weight per litre of culture). The amount of P450 detected in the tricistronic CYP101A1 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

21 

 

systems (10 – 97 nM) was generally lower than for the CYP102A1 systems (86 – 107 nM, 

Table S3). There was greater variation in the amount of P450 in each of the CYP101A1 

systems, with, for example, the LF variant (97 nM) being formed in significantly greater 

quantities than either the WFA or VFA mutants (10 - 14 nM, Table S3). 

After 16 hours of reaction, the level of 6α-hydroxy-1,8-cineole 3b formed with the 

GVQ and RLYFGVQ CYP102A1 variant was ∼2.25 ± 0.4 mM (4 mM substrate was added 

in total to each turnover). The RLYFFAIP variant generated 3α-hydroxy-1,4-cineole 5f at 

similarly high levels (2.0 ± 0.1 mM when tested under the same conditions). In line with the 

lower levels of P450 production, the amount of hydroxylated metabolites were lower in the 

CYP101A1 whole-cell oxidation reactions. The LF variant system generated 470 µM 8-

hydroxy-1,4-cineole 5a (plus additional minor products), while the WFA variant generated 

up to 1 mM of 3α-hydroxy-1,4-cineole 5f from 1,4-cineole. The VFA CYP101A1 variant 

produced 1 mM of 6α-hydroxy-1,8-cineole 3b metabolite but the levels of the 5α 

hydroxylated 1,8-cineole 3c formed by the WFA variant were considerably lower (∼250 

µM). For comparison, the amount of (1R)-6β-hydroxy-1,8-cineole 3a generated using the 

CYP176A1 whole-cell oxidation system under the same conditions was ∼650 µM. This 

could potentially be due to low levels of the endogenous E. coli flavodoxin reductase which 

is used in this system to transfer electrons from NADPH to cindoxin. 

Overall the whole-cell turnover of the cineoles with the CYP102A1 variants seems to 

be better than with CYP101A1 variants. With 1,8-cineole the WT CYP101A1 system could 

generate similar levels of the mixture of the three hydroxyl cineoles formed (> 2.5 mM) 

suggesting that with further optimisation either system could be used for larger scale 

selective metabolite generation (Fig. 6). 
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4. Discussion 

The ability to use engineered variants of the metalloproteins CYP101A1 and CYP102A1 to 

alter the regioselectivity of 1,8- and 1,4-cineole hydroxylation could lead to new routes for 

enantioselectively functionalised cineole analogues. The isolated CYP176A1 enzyme and a 

Rhodococcus bacterium have been reported to be capable of the preparative enantioselective 

oxidation of 1,8-cineole to (1R)-6β-hydroxy-1,8-cineole 3a [9, 42]. The non-selective 

oxidation of 1,4-cineole by this enzyme and the fact that small levels of 1,8-cineole 

impurities preferentially bind to enzyme over the 1,4-analogue, highlights that CYP176A1 

has evolved for the selective binding and oxidation of 1,8-cineole. This is perhaps 

unsurprising as this enzyme is responsible for the first step in the utilisation of 1,8-cineole as 

a carbon source. (1R)-6α-Hydroxy-1,8-cineole 3b formation has also been reported from the 

oxidation of 1,8-cineole by Bacillus cereus [106]. A number of regioselective 

transformations of 1,8-cineole have also been reported but without any enantioselectivity 

data. For example, 6α-hydroxy-1,8-cineole 3b is generated from biotransformations using 

the fungi Cladosporium cladosporioides [9]. Mixtures of products are reported for other 

biological oxidations of 1,8-cineole and 1,4-cineole [9].  

 Importantly, from screening just a small library of mutants, regioselective (and in 

some cases enantioselective) catalysts for the production of compounds arising from 

oxidation at the C3 and the C8 positions of 1,4-cineole and the C5 and C6 positions of 1,8-

cineole were obtained in this study. This significantly expands upon the range of metabolites 

which can be selectively generated from 1,4- and 1,8-cineole using biotransformations. For 

both 1,4-and 1,8-cineole there was a preference for the CYP101A1 and CYP102A1 variants 

for oxidation on the α (or endo) face of the substrate whereas CYP176A1 is unusual in that it 

shows a preference for the exo (or β) face. The endo face would be considered to be less 

sterically hindered in both substrates. In CYP176A1 there is a specific hydrogen bond 
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between its asparagine 242 and the ether oxygen of 1,8-cineole which helps orientate the 

substrate for hydroxylation at a specific C-H bond (Fig. 2); mutation of this residue results in 

a significant increase in oxidation from the endo face [40]. 

For 1,8-cineole, CYP176A1 specifically generates the (1R)-6-hydroxycineole 

enantiomeric series whilst the CYP101A1 and CYP102A1 mutants found here generate the 

complementary (1S)-6-hydroxycineole series in good to excellent e.e. Two different 

CYP101A1 mutants were able to selectively hydroxylate the C5 position of 1,8-cineole with 

the WFA mutant yielding the (1S) compounds in high e.e. A lack of standards prevented 

complete determination of the enantiomeric purity of the hydroxycineoles produced from 

1,4-cineole oxidation except in the case of 5f formed via CYP101A1 mediated oxidation 

which was shown crystallographically to be the (1S) isomer in good e.e.   

A significant improvement in yield as well as specificity was achieved for both the 

best CYP102A1 mutants. The small-scale CYP101A1 mutant screens produced catalysts 

with enhanced selectivity for metabolites including the enantiospecific production of the 

6α− and 5α− isomers. The CYP101A1 LF mutant, which produces enhanced levels of the 

desaturated alkene product of 1,4-cineole 6, will be a useful starting point for mutations to 

specific catalysts of this unusual P450 catalysed transformation. 

Using CYP101A1 and CYP102A1 as biocatalysts has several advantages over 

isolating new enzymes. Both have been structurally characterised and the electron transfer 

proteins are well established. We have also shown that both systems are capable of oxidising 

cineole in good yields in non-optimised whole-cell oxidation systems in shake flasks. In 

addition, they have been extensively engineered and it has been shown that highly 

enantioselective hydroxylations are possible with evolved variants of both. Therefore, the 

variants of these enzymes used here will provide a good basis for further studies to enhance 
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the enantioselectivity, regioselectivity and activity of P450 catalysed biooxidations of 

cineole derivatives with these metalloenzymes. 
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1,4-Cineole Nomenclature Footnote 

Nomenclature footnote: The nomenclature of the hydroxy 1,4-cineoles is relatively consistent 

within the literature but in IUPAC nomenclature the oxygen atom is labelled as position 7. 

However, this oxygen is frequently not assigned an atom number in the literature. To be 

consistent, we will employ the established literature numbering as shown. To discuss 

stereochemistry we have employed the descriptors α and β. The α descriptor is used to define 

the substituents that sit below the plane that passes through C2, C3, C5 and C6, while the β 

descriptor defines substituents above this plane. 1,4-Cineole is an achiral, meso compound; 

however, hydroxylation of either of the methylene bridges will produce enantiomeric compounds 

and generate three new stereogenic centres at C1, C4 and the hydroxylated carbon. Hence, a 

carbon atom that, following hydroxylation, generates the R-C1 isomer is defined as a pro-R 

carbon and a carbon atom that produces the S-C1 isomer is a pro-S carbon. 
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Scheme 1 CYP176A1 mediated oxidation of 1 produces a single enantiomer (1R)-6β-

hydroxy-1,8-cineole 3a; CYP101A1 catalysed oxidation of 1 generates a mixture of isomers 

that include (1S)-6α-hydroxycineole 3b and both enantiomers of 5α- and 5β-hydroxycineole 

3c-d. A small amount of over-oxidation was also observed producing both enantiomers of 5-

ketocineole 4 [40].  

Scheme 2 Products arising from the catalytic turnover of 1,4-cineole with: CYP176A1; 

CYP101A1 LF; CYP101A1 WFA; and CYP102A1 RLYFFAIP.  

Scheme 3 Products arising from the turnover of 1,8-cineole with CYP101A1 and 

CYP102A1 their variants. For the WFAL and VFA mutant forms there were additional 

minor products (<1% total) with masses consistent with that of the 5-keto metabolite (4) and 

other hydroxylated and ketone products (data not shown). 

Figure 1 Chemical structures of 1,8-cineole 1 and 1,4-cineole 2. 

Figure 2 (a) Active site of Cytochrome CYP176A1 P450cin with 1,8-cineole bound (PDB ID: 

1T2B). The Asn242 residue has a hydrogen bonding interaction with the ether oxygen of 1,8-

cineole. (b) Active site of Cytochrome CYP101A1 with camphor bound (PDB ID: 3WRH). (c) 

Active site of Cytochrome CYP102A1 (P450BM3) with palmitoleic acid bound (PDB ID: 

1FAG). Residues of interest in this work are highlighted in cyan  

Figure 3 GC-MS analysis of the in vivo turnover of 1,4-cineole 2 by CYP176A1. The 

substrates and products are labelled as follows; 1,4-cineole (4.0 min), 8-hydroxy-1,4-cineole 

5a (6.0 min; 8-hydroxy), 3β-hydroxy-1,4-cineole 5b (6.85 min; 3β), 2β-hydroxy-1,4-cineole 

5c (7.15 min; 2β), 6β-hydroxy-1,8-cineole 3a (7.5 min; 6β-1,8), which is present in the 1,4-

cineole turnover due to 1,8-cineole impurity, (1,8- RT 4.3 min; 1,8). The desaturation 

product 6 is labelled (#, RT 4.15 min). A potential ketone metabolite of unknown origin was 

labelled. $ (m/z = 168.05, RT 7.1 min). 
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Figure 4 GC-MS analysis of the in vivo turnover of 1,4-cineole by different variants of 

CYP101A. The chromatograms have been offset along the y axis for clarity. From lowest to 

highest the variants are: WT CYP101A1; WFAL; and LF. The products are labelled as 

follows: 8-hydroxy-1,4-cineole 5a (6.0 min; 8-hydroxy); 3β-hydroxy-1,4-cineole 5b (6.85 

min; 3β); 2β-hydroxy-1,4-cineole 5c (7.15 min; 2β); 3α-hydroxy-1,4-cineole 5f (7.3 min; 

3α); 2α-hydroxy-1,4-cineole 5e (7.65 min; 2α); and 9-hydroxy-1,4-cineole 5d (8.25 min; 9-

hydroxy). The 1,4-cineole desaturation product, 6, has been labelled (#, 4.15 min). 

Impurities and products arising from the turnover of 1,8-cineole (1,8) have been labelled *. 

Note the WFA variants gives a similar distribution to WFAL but has been omitted from this 

graph for clarity. 

Figure 5 GC-MS analysis of the in vitro turnover of 1,4-cineole (left) and 1,8-cineole (right) 

by different variants of CYP102A1. The chromatograms have been offset along the x and y 

axes for clarity. From lowest to highest the variants are for 1,4-cineole: WT CYP102A1 

(light grey); R19 (grey); GVQ (dark grey); and RLYFFAIP (black). For 1,8-cineole they are: 

WT CYP102A1 (grey); RLYFFAIP (dark grey); and RLYFGVQ (black). The products are 

labelled as follows: 1,4-cineole; 3β-hydroxy-1,4-cineole 5b (3β), 3α-hydroxy-1,4-cineole 5f 

(3α), and 2α-hydroxy-1,4-cineole 5e (2α); 1,8-cineole; 6α-hydroxy-1,8-cineole 3c (6α), 5α-

hydroxy-1,8-cineole 3b (5α) and 5β-hydroxy-1,8-cineole 3d (5β). Impurities have been 

labelled * and $. Note the retention times are slightly different to those reported previously 

due to the use of a different instrument/column.  

Figure 6 GC-MS analysis of the in vivo turnover of 1,8-cineole by different variants of 

CYP101A1. In the top chromatogram is the turnover of 1,8-cineole by the WT CYP101A1 

enzyme. The bottom graph is the analysis of the turnover of 1,8-cineole by the: VFA (grey 

solid line); WFAL (black line – dashes and dots); and WFA (black solid line) mutants. 

These chromatograms have been offset along the y axis for clarity. The products are labelled 
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as follows: 6α-hydroxy-1,8-cineole 3b (RT 7.7 min; 6α); 5α-hydroxy-1,8-cineole 3c (5α, 

RT 7.9 min; 5α); and 5β-hydroxy-1,8-cineole 3d (RT 8.2 min; 5β). 
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Scheme 1  
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Scheme 2 
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Scheme 3 
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Figure 1  
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Figure 2 
      (a) 
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