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Abstract
Environmental factors such as sunshine hours, temperature and UV radiation (UVR) are known to influence seasonal fluctuations in vitamin D
concentrations. However, currently there is poor understanding regarding the environmental factors or individual characteristics that best
predict neonatal 25-hydroxyvitamin D (25(OH)D) concentrations. The aims of this study were to (1) identify environmental and individual
determinants of 25(OH)D concentrations in newborns and (2) investigate whether environmental factors and individual characteristics could
be used as proxy measures for neonatal 25(OH)D concentrations. 25-Hydroxyvitamin D3 (25(OH)D3) was measured from neonatal dried
blood spots (DBS) of 1182 individuals born between 1993 and 2002. Monthly aggregated data on daily number of sunshine hours, temperature
and UVR, available from 1993, were retrieved from the Danish Meteorological Institute. The individual predictors were obtained from the
Danish National Birth register, and Statistics Denmark. The optimal model to predict 25(OH)D3 concentrations from neonatal DBS was the one
including the following variables: UVR, temperature, maternal education, maternal smoking during pregnancy, gestational age at birth and
parity. This model explained 30% of the variation of 25(OH)D3 in the neonatal DBS. Ambient UVR in the month before the birth month was
the best single-item predictor of neonatal 25(OH)D3, accounting for 24% of its variance. Although this prediction model cannot substitute for
actual blood measurements, it might prove useful in cohort studies ranking individuals in groups according to 25(OH)D3 status.
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The most well-known source of vitamin D is through skin
synthesis induced by sun exposure. Studies from Northern
Europe have highlighted a marked seasonal fluctuation in
serum 25-hydroxyvitamin D (25(OH)D) concentrations among
adults and newborns, with values being lowest in late winter
and spring, because of less UV and skin-mediated vitamin D
synthesis during these seasons(1).
During gestation, the vitamin D stores of the fetus depend

entirely on those of its mother(2), and newborns’ 25(OH)D
concentrations are correlated with their mothers’(3). Vitamin D
insufficiency (25(OH)D <50 nmol/l) and deficiency (25(OH)D

<25 nmol/l) are common among otherwise healthy pregnant
women, especially in high-latitude countries such as Denmark
(56° North) where UV radiation (UVR) from the sun (and thus
vitamin D synthesis) is insufficient to produce vitamin D from
October to March(4–7). It has been estimated that 16–31% of
Danish women suffer from vitamin D insufficiency in early
pregnancy, of which 3·5–6·3% are vitamin D deficient(3,8–10).
Vitamin D insufficiency and deficiency during pregnancy have
been linked to many pregnancy-related health complications
and may also impair offspring health(11). The most evident poor
health outcome related to low vitamin D during fetal

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; 25(OH)D3, 25-hydroxyvitamin D3; CV, cross-validation; DBS, dried blood spots; GC, group component; UVR,
UV radiation.
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development and early life is the development of infancy and
childhood rickets(12). Apart from its role in Ca and phosphate
homoeostasis and bone mineralisation(13), vitamin D also has
extra-skeletal functions such as regulation of hormone secretion,
immune function and cellular proliferation and differentia-
tion(14,15). Exposure to low vitamin D in utero may therefore
predispose to a range of adverse health outcomes throughout
life(16).
The use of a proxy model may be of value when vitamin D

measurements are lacking and thus need to be estimated.
Environmental factors such as sunshine hours, temperature and
UVR might explain seasonal fluctuations in vitamin D con-
centrations, but few studies have investigated the influence of
these environmental factors during pregnancy on neonatal
vitamin D concentrations. Most of these studies concerned season
of birth in relation to cord blood measures of vitamin D(17,18). In
addition, some studies have used self-reported maternal intake of
25(OH)D or UVR exposure during pregnancy(19–21) as well as
season of birth as proxies of maternal or offspring 25(OH)D
status in relation to the development of diseases in infancy and
adulthood(22–24). However, currently there is poor understanding
regarding the environmental factors or individual (maternal and
offspring) characteristics that best contribute to determine neo-
natal 25(OH)D concentrations. Previous studies describing the
determinants of neonatal 25(OH)D were based on either relative
small samples <300 individuals or used cord blood 25(OH)D
concentration(21,25–30). Only one previous study used 25(OH)D
from dried blood spots (DBS) obtained from 259 children(25).
Hence, there is a need for large cohort studies based on repre-
sentative samples of the population using objective measure-
ments of neonatal 25(OH)D. Furthermore, no previous studies
have included measured bright sunshine hours and temperature
as environmental proxies of 25(OH)D status among neonates. In
Denmark, a relative low temperature might further prevent
individuals from exposing their skin to the sun even when there
is a high UV index and bright sunshine. Therefore, we hypothesised
that UVR would be the main predictor of the neonatal 25-
hydroxyvitamin D3 (25(OH)D3) variation and that temperature
would be an additional important environmental determinant.
We hypothesised that bright sunshine hours would be highly
correlated to UVR and therefore be a minor additional
environmental predictor. We also hypothesised that adding
individual maternal and offspring characteristics would further
improve the proxy model.
Therefore, using DBS from a large sample of Danish new-

borns, the aims of this study were to (1) identify environmental
and individual determinants of 25(OH)D concentrations in
newborns and (2) investigate whether these environmental
factors and individual characteristics combined could be used
as proxy measures for neonatal 25(OH)D concentrations.

Methods

25(OH)D3 was measured from neonatal DBS from a random
sub-sample of the Danish population of 2873 individuals, born
between 1 May 1981 and 31 December 2002, retrieved from the
Biological Specimen Bank for Neonatal Screening (BSBNS)-

Statens Serum Institute (SSI) in Denmark. Inclusion criteria were
children born in Denmark, being alive 1 week after birth, and
who had sufficient biological material from the DBS for the
vitamin D analyses. Individuals were identified through the
Danish Civil Registration system. No restriction on type of birth
(multiple births) or gestational age was applied.

As part of a national routine screening programme for con-
genital disorders among neonates in Denmark, a heel prick is
taken within 5–7 d after birth (until 2009 and within 48–72 h
after birth thereafter). The blood samples were collected on
filter paper and subsequently stored at –20°C in a locked freezer
at SSI(31). To assess the 25(OH)D status, one 3·2mm punch was
taken halfway from the centre of the blood spot. A modified
version of Eyles and colleagues’ method(32) of the highly sen-
sitive liquid chromatography tandem MS method (LC–MS/MS)
was used to measure the concentration of 25(OH)D. It has
previously been reported that 25(OH)D measurements from
archived DBS are highly correlated with cord blood among
neonates as well as with sera or plasma in adults(33,34). Sample
degradation occurring during 13–34 years storage time is unli-
kely, as studies have shown that, regardless of temperature and
light exposure, storage times of 25(OH)D for up to 40 years do
not bias inter-individual variation in concentrations for a given
birth cohort(32,35). Natural dietary sources of 25(OH)D2 are
scarce and, in Denmark, vitamin D supplements come in the
form of 25(OH)D3. Accordingly, more than 90% of 25(OH)D2

measured in the DBS were below the detection limit of 3 nmol/l
and were therefore excluded from these analyses. All measured
concentration levels for intra-assay and inter-assay analyses had
acceptable precision, as the variability coefficient for intra-assay
and inter-assay variation for 25(OH)D3 ranged 7–12 and
7–20%, respectively. There was no exclusion of the
results based on the detection limit for 25(OH)D3, which was
4 nmol/l. The concentration of 25(OH)D3 is reported in nmol/l
and the following formula, which takes into account the
neonatal haematocrit fraction for capillary blood, was used to
approximate the sera values: serum (25(OH)D3) nmol/l=DBS
(25(OH)D3) nmol/l× 1/(1 – 0·61 (the Hct fraction))(32,36). The
SSI laboratory participates in the vitamin D external quality
assessment scheme with the equivalent-serum method(37).

Monthly aggregated data on daily number of bright sunshine
hours recorded by Campbell–Stoke sunshine recorders(38),
average temperature recorded from thermometers placed 2m
above ground level in a ventilated screen or in a thermometer
cabin(39), and UVR recorded from Brewer spectrophotometer(40),
available since 1993, were retrieved from the Danish Meteoro-
logical Institute(39). The standard erythemal dose (SED, J/m2) was
used as the UVR unit. SED is a weighted measure of ambient
UVR using an erythemal response function to give biologically
effective UVR and is independent of skin tone(41). Temperature
was measured in °C.

Maternal characteristics age at delivery, education level,
parity and smoking status during pregnancy; and offspring
characteristics birth date, birth weight, gestational age at birth
and sex were obtained from the Danish Medical Birth Register
(DMBR)(42) via Statistics Denmark.

From 1991, binary (smokers or non-smokers) categorisation
of maternal smoking status during pregnancy was started from
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manually collected data. Electronic data collection started in
1997 and further categories were added as follows: unknown,
mother not smoking, mother smokes, mother stopped smoking in
the first trimester, mother stopped smoking after the first
trimester, mother smoked up to 5, 6–10, 11–20 or >20 cigarettes/d.
Combining this information, maternal smoking was dichotomised
into ever smoking (women who ever smoked during their preg-
nancy) v. never smoking (women who did not smoke during their
pregnancy) or unknown. Ethnicity was defined based on the
mother’s place of birth and was dichotomised into European and
non-European origin. Hence, children with fathers with non-
European origin were considered European if mothers were of
European origin. Maternal education was categorised into school,
high school and university as the highest education achievement
level. Parity was dichotomised into primiparous and multiparous.
Estimation of parity was based on summarised estimates of total
births and the actual birth, as the DMBR only included information
on live and still births before 1996. Maternal age at time of delivery
was categorised as follows: <20, 20–24·9, 25–29·9, 30–34·9, 35–
39·9 and >40. Season of birth was defined based on the seasonal
variation in serum 25(OH)D concentration among individuals from
countries in northern latitudes(43,44): winter – born between
November and January; spring – born between February and
April; summer – born between May and July; autumn – born
between August and October. Year of birth included 1993–2002.
Gestational age at birth was based on gestational weeks (37–
44 weeks). Birth weight in grams was used and categorised as
follows: <2500, 2500–4000 and >4000.

Ethics

The Danish National Committee on Biomedical Research Ethics
and Steering committee of the BSBNS granted permissions to
access and analyse the DBS samples from the BSBNS (J. no.
H-3-2011-126). Permission from the Danish Data Protection
Agency was granted to merge biobank information with the
other individual-level information from the Danish Adminis-
trative registers. (J. no. 2012-41-116).

Statistical methods

Forward selection of covariates based on the mean squared
error (MSE) and subsequent cross-validation (CV) was used to
determine the best predictive model based on the available
data. Hence, each covariate was included by forward selection
and at each selection step the covariate giving the highest
reduction in the MSE of the previous model was included. The
models resulting from the forward selection process were
compared by estimating their out-of-sample performance using
ten rounds of 5-fold CV for each model, and the model with the
lowest CV error was chosen as the final model(45).
The base model was a linear mixed model, with partition of

the residual variance into a between-group component (GC)
and a within-GC, with individuals grouped by year of birth and
in the month before the month of birth. UVR in the month
before the month of birth was used in this study as the half-life
of 25(OH)D during pregnancy is around 21 d(46). To allow for a
possible non-linear relationship between SED and 25(OH)D3,

the forward selection algorithm had both a linear model and a
restricted cubic spline model, with a single knot at the median value
of UVR (210 SED) among the candidate models.

As 25(OH)D3 standard deviations increased proportionally
with the mean (online Supplementary Fig. S1a and b), a generalised
linear model with γ distribution (where standard deviations are
proportional to the mean) was used as sensitivity analysis.

We used R version 3.5.0(47). To generate the descriptive
tables, we used the ‘Hmisc’ package(48); and to fit the mixed
models, we used the ‘lme4’ package(49).

Results

UVR data were available from February 1993 only, therefore the
sample was reduced from 2873 individuals to 1387 individuals
born between February 1993 and December 2002. Individuals
born preterm (<37 gestational weeks) were further excluded as
preterm births might be due to underlying causes that may
influence maternal and fetal pregnancy outcomes and vitamin D
concentrations (n 50) (Fig. 1). In addition, no seasonal pattern
could be seen among neonates of non-European origin (defined
according to maternal place of birth in the DMBR), therefore they
were excluded from the analyses (n 139) (Fig. 1). After further
exclusion of sixteen individuals with missing information on
some of the covariates, a total of 1182 individuals were included
in the analyses (Fig. 1). The mean 25(OH)D3 concentration was
30·1 (SD 19·8) nmol/l and median 25·6 (range 0·5–110) nmol/l
when corrected for the haematocrit fraction. Maternal and off-
spring characteristics are presented in Table 1.

Vitamin D concentrations were higher among individuals
born in summer and autumn and lower in winter and spring
months P< 0·001 (Fig. 2). Month of birth explained 24% of
neonatal 25(OH)D3. The greatest correlation was between UVR
and sunshine hours (r 0·93), followed by UVR and temperature
(r 0·86) and sunshine hours and temperature (r 0·80).

Assessment of the fitted spline (Fig. 3) showed that association
between UVR and 25(OH)D3 was not linear and suggested a
continuous increase in neonatal 25(OH)D3 with increased UVR.

Based on the available data and according to re-sampling
method for model selection, the preferred model to predict
25(OH)D3 concentrations from neonatal DBS was the one
including the group-level variables UVR (as a cubic spline) and
temperature, together with the following individual-level variables:
maternal education, maternal smoking during pregnancy, gesta-
tional age at birth and parity. This model explained 30% of the
variation of 25(OH)D3 in the neonatal DBS with ambient UVR in
the month before the month of birth, accounting for 24·5% of the
neonatal 25(OH)D3 variance (Tables 2, 3 and Fig. 4).

The model was better at predicting between-group variation of
neonatal 25(OH)D3 compared with within-group variation
(grouped by year of birth and the month before the month
of birth). Group-level determinants, UVR and temperature,
explained more than 60% of the between group-level variation
(standard deviation basal model: 10·6nmol/l to standard deviation
prediction model (model 6): 4·3nmol/l), while individual-level
determinants (maternal education, maternal smoking during
pregnancy, gestational age at birth and parity) explained <0·5%.
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The within-group variation only reduced by 0·6% when both
group-level and individual-level determinants were included in the
model (standard deviation basal model: 16·5 to standard deviation
prediction model (model 6): 15·9nmol/l) (Table 2). As 25(OH)D3

standard deviations increased proportionally with the mean
(online Supplementary Fig. S1a and b), this suggests that our
prediction model might be better at predicting 25(OH)D3 during
winter and spring compared with summer and autumn. However,
sensitivity analysis using generalised linear model with γ distribu-
tion showed similar results (data not shown).

Discussion

This study examined the environmental and individual pre-
dictors of 25(OH)D concentrations measured from neonatal

DBS among a representative sample of neonates born in Denmark.
Our findings showed as expected a seasonal pattern of vitamin D
concentration, with higher values in summer and autumn and lower
values in winter and spring. Ambient UVR in the month before the
month of birth was the best predictor of neonatal 25(OH)D3,
accounting for 24% of its variance. Neonatal 25(OH)D3 con-
centration was further determined by other factors such as
ambient temperature, maternal education, maternal smoking
during pregnancy, gestational age at birth and parity. The final
model explained 30% of neonatal 25(OH)D3 concentration from
DBS. The model best predicted between-group (grouped by year
of birth and in the month before the month of birth) variation of
neonatal 25(OH)D3 compared with within-group variation, and
individual-level determinants explained only a small proportion
of the between group-level variation. Our findings might be
explained by the natural yearly and monthly variation in ambient
UVR and temperature. Furthermore, our findings suggest that the
individual-level determinants included in the model might only
have a marginal influence on neonatal 25(OH)D3 concentration.
Our findings suggest that less than a third of neonatal 25(OH)D3

concentration could be predicted by our model. Hence, this
model might prove useful in cohort studies assessing the asso-
ciation between neonatal vitamin D and disease outcomes for
ranking individuals in groups according to 25(OH)D3 status.
However, it cannot substitute actual blood measurements as a
tool for evaluating individual vitamin D status, as only a pro-
portion of the variation in 25(OH)D3 could be appraised(20).

Previous prediction models of maternal or neonatal 25(OH)D
concentrations found higher prediction than ours, explaining
between 40(20) and 43%(25) of the total 25(OH)D variance. This
difference might relate to the different variables included in the
prediction models, distinct study population characteristics,
differences in sample sizes and potentially different analytical
methods used.

The strengths of the present study include the large sample
of individuals randomly selected among the entire Danish
population and measurements of neonatal biological 25(OH)D3

from DBS as well as the use of the high-quality register data
from the DMBR. The use of the resampling method with MSE
and CV guaranteed, to some degree, that the best model could
be selected preventing overfitting. Furthermore, 25(OH)D3

concentrations were measured using the validated modified
version of Eyles and colleagues’ method(32) of the highly sensitive
LC–MS/MS.

The study also has limitations. Data on sunshine hours,
temperature and UVR in the month before the month of birth
obtained from the DMI were group-level determinants aggregated
monthly; therefore, within-month variation including inter- and
intra-individual exposure variations could not be assessed.
Furthermore, pure UVB measurements, which are responsible
for vitamin D skin synthesis, were only available from 2015.
Therefore, it was only possible to include UVR in our model.
However, as UVR measurements correlate very closely to vitamin D
synthesis, it is not expected that the use of UVB instead of UVR
would have greatly influenced our predictive model(50).

It has been reported that breastfed infants are at an increased
risk of vitamin D deficiency compared with formula-fed
infants(51). As DBS were collected within 7 d after birth, the

All individuals born in Denmark
during 1981–2002 from Statistics

Denmark 1 360 466

Random subcohort for individuals
born during 1981–2002 sampled

for analyses and delivered to
Statens Serum Institute to find

dried blood spot cards
3585

Excluded due to unavailable
vitamin D analysis result*: 712

Individuals with vitamin D results
2873

Exclusion of DBS from individuals
born before 1993†: 1486

Individuals with vitamin D results
included in the descriptive

analyses
1387

Exclusion of individuals:
Non-European origins‡: 139
Born preterm§: 50
Missing covariates: 16

Individuals with vitamin D results
included in analyses:

1182

Fig. 1. Flow chart of study population. * Dried blood spot (DBS) cards were
either not found, there was insufficient material for analysis or the analysis
failed. † UV radiation data were available from February 1993 from the Danish
Meteorological Institute. ‡ No seasonal pattern could be seen among offspring
of non-European individuals. § Individuals born preterm (<37 gestational
weeks) were excluded as preterm births might be due to underlying causes that
may influence maternal and fetal pregnancy outcomes and vitamin D
concentrations.
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concentration of 25(OH)D3 between breastfed and formula-fed
infants could differ. In the present study, data about breast-feeding
were not available; however, in Denmark <5% of infants are not
being breastfed at the time of hospital discharge(52). Therefore, as
our sample is representative of the Danish population, we expect
similar rates in our cohort. Furthermore, supplementation with
vitamin D is first recommended from 2 weeks of age(53); therefore,
25(OH)D concentration from neonatal DBS is not expected to be
affected by supplementation.
Vitamin D dietary intake from supplements and dairy pro-

ducts has previously been identified as a determinant of
vitamin D status in pregnant women and neonates(28);
therefore, including these variables in the model would
potentially have added to the explanation of a bigger pro-
portion of the neonatal 25(OH)D variation. Furthermore,

maternal body weight has been identified as a determinant of
vitamin D status in pregnant women and neonates in some(28)

but not all studies(20) (pregnant women only). Therefore, it is
unclear whether including this variable would have influenced
our prediction model.

The influence on the prediction of factors such as outdoor
activity, tanning beds use, sun exposure habits, skin colour, use
of sunscreen and clothing habits known to influence maternal
vitamin D skin synthesis could not be assessed in this study as
such data were not available. Results from two studies from the
UK have suggested that fair-skinned individuals need 9min of
daily sunlight at lunchtime from March to September, for 25(OH)D
concentrations to remain >25nmol/l throughout the winter and
without causing erythema (sun burnt), while dark-skinned indi-
viduals need approximately 25min(54,55). In the study by Smith

Table 1. Maternal and offspring characteristics

Variables (n 1232) Mean 25(OH)D3 (nmol/l) SD P

Offspring sex Male 611 30·6 20·0 0·33
Female 571 29·5 20·0

Offspring month of birth January 85 21·9 12·4 <0·001
February 100 20·6 15·6
March 102 21·0 15·1
April 93 18·6 13·5
May 116 28·3 16·6
June 96 37·6 18·1
July 115 46·7 23·1
August 111 44·9 19·4
September 102 36·9 19·4
October 84 28·8 17·4
November 104 24·3 15·3
December 74 23·8 18·0

Offspring year of birth 1993 97 30·2 20·9 <0·001
1994 146 30·7 20·3
1995 136 34·2 19·8
1996 119 26·5 16·3
1997 124 25·6 17·8
1998 116 22·9 13·3
1999 124 30·0 19·3
2000 111 32·2 19·0
2001 119 36·5 24·1
2002 90 31·8 22·3

Offspring birth weight (g) <2500 19 32·9 23·4 0·78
2500–3999 889 29·9 19·8
>4000 274 30·5 19·5

Offspring gestational age 37 23 35·5 25·4 0·08
at birth (weeks) 38 85 28·2 16·0

39 202 31·1 20·3
40 310 31·9 20·5
41 305 30·1 20·6
42 187 27·0 17·4
43> 70 27·3 18·5

Maternal age at time of <25 170 24·6 18·0 <0·001
delivery (years) 25–29·9 450 31·4 20·2

30–34·9 393 32·0 20·5
>35 169 27·7 17·3

Maternal education School 248 24·7 17·9 <0·001
High school 610 31·0 20·0
University 308 32·3 19·9
Unknown 16 31·9 22·7

Maternal smoking during Yes 272 25·1 18·2 <0·001
pregnancy No 858 31·8 20·1

Unknown 52 27·6 18·5
Parity Primiparous 507 31·7 19·8 0·01

Multiparous 675 28·8 19·7

25(OH)D3, 25-hydroxyvitamin D3.
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et al.(25), maternal clothing and sun exposure habits explained
4% of neonatal 25(OH)D variance; and in another study, the use
of sunscreen and skin pigmentation were described as possible
determinants of maternal 25(OH)D deficiency (defined as

<50nmol/l)(21). Therefore, these variables may be expected to
explain a small proportion of neonatal 25(OH)D3 concentration
and inclusion in our prediction model would have strengthened
our model.

A recent genome-wide association study meta-analysis of serum
25(OH)D among European individuals validated three 25(OH)D
risk loci (GC, 7-dehydrocholesterol reductase (NADSYN1/DHCR7)
and CYP2R1) previously identified, and identified two new loci
(Sec23 homolog A, coat protein complex II component and
amidohydrolase domain containing 1). The study reported that
there was a modest overall heritability in serum 25(OH)D among
European individuals due to the common genome-wide SNP of
7·5%(56). In the Danish population, the 25(OH)D risk loci in GC
and 25-hydroxylase (CYP2R1) were associated with serum 25(OH)
D concentrations(57); and in Hungary, selected SNP (NADSYN1,
DHCR7, GC, CYP2R1 and CYP24A1) accounted for 13·1% of the
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Fig. 2. Neonatal 25-hydroxyvitamin D3 (25(OH)D3) variations by month and
year of birth among a random sample of infants born between 1993 and 2002
in Denmark.
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Fig. 3. UV radiation (standard erythemal dose (SED, J/m2)) and neonatal
25-hydroxyvitamin D3 (25(OH)D3) among a random sample of infants born
between 1993 and 2002 in Denmark.

Table 2. Prediction model selection*

Model df MSE CV error Between-group SD Within-group SD R2 (%)

Base 1179 390·7 391·4 10·6 16·5 0
1 1177 294·8 296·8 4·7 16·5 24·5
2 1174 285·7 289·4 4·7 16·2 26·8
3 1173 281·3 285·3 4·2 16·2 27·9
4 1171 277·9 282·4 4·4 16·1 28·8
5 1165 274·9 283·2 4·3 16·0 29·6
6 1164 273·0 281·2 4·3 15·9 30·1
7 1161 270·6 282·1 4·2 15·9 30·7
8 1159 270·3 283·2 4·3 15·9 30·8
9 1158 270·0 283·1 4·2 15·9 30·8

MSE, mean square error; CV, cross-validation; R2, explained variation without conditioning on group level parameters.
* Base model by year of birth and in the month before the month of birth; model 1: model 0 +UVR; model 2: model 1 + education; model 3: model

2 + temperature; model 4: model 3 +maternal smoking during pregnancy; model 5: model 4 + gestational age at birth; model 6: model 5 + parity;
model 7: model 6 +maternal age at delivery; model 8: model 7 + birth weight; model 9: model 8 + sex.

Table 3. Multivariable model of factors predicting 25-hydroxyvitamin D3

(25(OH)D3) (nmol/l) concentration from neonatal dried blood spots

Variables Estimate

Intercept 25·3
Maternal smoking during pregnancy No Ref.

Yes –4·7
Unknown –3·5

Maternal education School Ref.
High school 5·6
University 7·2
Unknown 4·8

Parity Primiparous Ref.
Multiparous –2·9

Gestational age at birth (weeks) 37 Ref.
38 –4·9
39 –4·2
40 –3·5
41 –4·7
42 –7·3
43> –8·8

Temperature residuals (°C) Continuous 2·1*
UVR spline term 1 (SED) Continuous 17·1†
UVR spline term 2 (SED) Continuous 32·7†

Ref., referent values; UVR, UV radiation; SED, standard erythemal dose.
* Standardised to mean zero and standard deviation one: one standard deviation=
3·1°C.

† The spline basis was bases on SED values standardised to mean zero and
standard deviation one. One standard deviation=291·4 SED.
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variance of total 25(OH)D levels(58). In Australia, the study by
Smith et al.(25) reported that 5·2% of the predicted variance in
neonatal 25(OH)D from DBS could be explained by infant
genetic variants GC (rs2282679) and DHCR7 (rs12785878).
Therefore, including information on genetic variance would
also have most likely improved our model.
Information about maternal smoking status was missing for

more than 40% of individuals and reporting bias may have
occurred. Therefore, the true effect of smoking on neonatal
25(OH)D concentration might have been underestimated.
However, results from different studies suggest a non-significant
inverse association between maternal smoking and maternal
and neonatal 25(OH)D concentrations(21,28,59). Therefore,
maternal smoking during pregnancy might only marginally
predict offspring 25(OH)D concentration at birth.
A high correlation (r ≥ 0·83) between maternal and neonatal

vitamin D concentrations has been previously reported, with
maternal vitamin D concentration explaining between 69 and
77% of the neonatal one(3,60). Maternal 25(OH)D was not
available in this study. However, the environmental factors and
individual characteristics (UVR, temperature, parity, gestational
age at birth, maternal education and maternal smoking during
pregnancy) included in this study can be thought of as both
maternal and offspring’s proxies of 25(OH)D concentrations. As
our model explained 30% of neonatal 25(OH)D3 concentration,
determinants other than the ones included in our model must
play a significant role in both maternal and neonatal 25(OH)D3

concentrations.
Finally, the present results might only be generalised to

populations living at high latitudes (56° North) and with fair skin.

Conclusion

Ambient UVR in the month before the month of birth was the
best predictor of neonatal 25(OH)D3, accounting for 24% of its
variance. Neonatal 25(OH)D3 concentration was further deter-
mined by maternal and offspring characteristics, but the final
model explained an additional 6% of neonatal 25(OH)D3 only,

leaving 70% of the variation to be explained by other genetic
and environmental factors and individual characteristics. Hence,
although this model cannot substitute actual blood measure-
ments, it might prove useful in cohort studies for ranking indi-
viduals in groups according to 25(OH)D3 status.
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