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Abstract 

G protein-coupled receptors (GPCRs) are the largest druggable class of proteins yet relatively 

little is known about the mechanism by which agonist binding induces the conformational 

changes necessary for G protein activation and intracellular signaling. Recently, the Kobilka 

group has shown that agonists, neutral antagonists and inverse agonists stabilise distinct 

extracellular surface (ECS) conformations of the β2-adrenergic receptor (AR) opening up new 

possibilities for allosteric drug targeting at GPCRs. The goal of this project is to extend these 

studies to define how the ECS conformation of the α1B-AR changes during agonist binding and 

develop an understanding of ligand entry and exit mechanisms that may help in the design of 

specific ligands with higher selectivity, efficacy and longer duration of action.  

Two parallel approaches were initiated to identify likely functional residues. The role of residues 

lining the primary binding site were predicted by online web server (Q-Site Finder) while 

secondary binding sites residues were predicted from molecular dynamics (MD) simulations. 

Predicted functionally significant residues were mutated and their function was established using 

FLIPR, radioligand and saturation binding assays. Despite the α1B-AR being pursued as a drug 

target for over last few decades, few specific agonists and antagonists are known to date. In an 

attempt to address this gap, we pursued ligand-based approach to find potential new leads. The 

outcomes of this research will help to understand the GPCR activation process. This research 

may open the door to the rational development of new modulators that can recognise the ECS of 

GPCRs in distinct conformational states. 

Chapter 1 provides an overview of the GPCR including the structure, function, pharmacology 

and regulation of Class A GPCRs with special reference to the α1-AR. The present work is an 

effort to address the issues pertaining to the activation of the α1-AR and how the binding of the 

known ligands affect the ECS of the receptor and stabilise specific conformations. The ligand-

based In Silico drug discovery approach is implemented to address rational development of leads 

which could be subtype specific. The use of computational tools has been shown to study the 

receptor for drug discovery and development. 

Chapter2 describes research to characterise the egress pathway of norepinephrine (NE), the 

endogenous α1-AR agonist. Using a homology model of the α1B-AR built from turkey-β1-AR as 

template, we performed molecular docking of NE at the orthosteric binding site. Validation of 

the docking model was performed using mutants generated from site directed mutagenesis and 
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testing those using radiolabelled, functional and binding studies to gain insights into the role 

played by the residues lining the egress pathway. Residues Trp121, Cys195, Tyr203 and Ser207 

were identified to be particularly involved and effect the simulations at two distinct positions 

which may probably regulate the access and egress of NE to- and from- the orthosteric binding 

site to the ECS. This study revealed that the negatively charged residues lining the extracellular 

loop 2 (ECL2) may also provide an allosteric site for the positively charged ligands by retaining 

them for some time and stabilising the ECS as inferred from our MD studies. 

Chapter 3 describes research to understand the activation process of the apo and NE-bound α1B-

AR using accelerated molecular dynamics (aMD). The receptors in both states were energy 

minimised, equilibrated and subjected to classical MD for a specific time frame. Residues known 

from the experimental studies to be involved in receptor activation were mutated individually 

along with additional double mutants to further characterise their role in activation process. This 

study identified single (W184A) and double mutant (Y223F-Y348F) in both the apo and NE-

bound α1B-AR that preferentially moved the receptor towards the active state. 

Chapter 4 describes virtual screening (VS) for novel modulators of the α1-AR. Using Rapid 

Overlay of Chemical Structures (ROCS), 17.9 million drug-like compounds were screened from 

the ZINC database. The initial results identified 80 “hits” which were confirmed by flexible 

docking to likely bind either at orthosteric or adjacent allosteric sites along the ligand 

binding/unbinding pathway. To validate the potential of this set of ligands to target the α1-AR, 12 

hits were selected for pharmacological evaluation across the three α1-AR subtypes. The results of 

our initial characterisation revealed that several ligands that docked in the orthosteric site of the 

α1B-AR activated all the three α1-AR subtypes confirming the potential of this approach to 

identify new α1-AR modulators. 

Chapter 5 provides an overall conclusions drawn from the above work done and future 

prospects. In summary, this study has revealed the critical involvement of residues in TM3, 

TM5, TM7, ECL1 and ECL2. This study identified two distinct positions; auxiliary site 1 and 

auxiliary site 2 which could act as allosteric sites and might be subtype specific.  aMD led to 

identification of single (W184A) and double mutant (Y223F-Y348F) that were close to receptor 

activation while VS identified leads which activated all the three α1-AR subtypes confirming the 

potential of this approach to identify new α1-AR modulators. 
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structures on 91 ligand–receptor complexes for 39 different receptors. 

The data are taken from http://gpcrdb.org/structure/statistics (2nd 

February 2017). 
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Chapter 1: Introduction 

1.1 GPCRs: An Overview 

GPCRs are seven transmembrane (7TM) proteins or heptahelical protein structures [1] which 

comprise of the largest receptor class in the human genome [2]. GPCRs are ubiquitous 

throughout the plant and animal kingdom [3].  They are the largest and most diverse group of 

membrane receptors [4, 5]. GPCRs are present in the genomes of bacteria, yeast, plants, 

nematodes and other invertebrate groups highlighting their early evolutionary origin [6].  

Genome sequence analysis led to the identification of >800 different human genes coding for the 

GPCR classes [7]. GPCRs are involved in numerous diseases and account for approximately 

25‒50% of all modern medicinal drugs [8]. However, these drugs target only ~30 members of 

the GPCR class mainly biogenic amine receptors [9]. So, there is an enormous potential to 

exploit the remaining family members including >100 orphan receptors [10] for which no 

ligands/modulators exists. 

GPCRs are widely distributed in different tissues and organs and thereby play a key role in 

diverse physiological processes such as neurotransmission, secretion, cellular metabolism and 

cellular differentiation [11]. GPCR members share the general mechanism of signal transduction 

by G proteins, β arrestins and other downstream effectors [12].  They respond to a wide variety 

of stimuli ranging from extracellular signals such as light and odorants to intracellular signals 

such as neurotransmitters, biogenic amines, lipids, proteins, ions, chemokine‟s, amino acids, 

hormones, nucleotides and many other sensory molecules and transduce binding events into 

intracellular reactions [13]. 

Crystallisation of GPCRs has been a challenge for decades thereby hampering molecular 

interpretation of biophysical and biochemical findings and rational drug discovery applications. 

The first membrane protein crystal structure was solved in 1985 by X-ray crystallography [14]. 

Since then more than 300 membrane protein structures have been solved along with bovine 

rhodopsin in 2000 [15]. The first high resolution crystal structure of the human β2-AR with a 

diffusible ligand [16] came out after 7 years of extensive and rigorous research and technology 

development (Table 1-1) followed by other class A GPCR crystal structures; β1-AR [16], 

adenosine A2A-R [17], chemokine CXCR4 [18], dopamine D3 [19] and histamine H1 [20] 

receptors. These structures represent diversity at various level of homology among the highly 

conserved 7TM helices in the GPCR classes. 
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GPCRs comprise of 7TM  helices connected by three intracellular (ICL) and three extracellular 

loops (ECL) [21] (Figure 1-1). Parts of the ECLs along with the N terminus are responsible for 

ligand binding. The length of the N terminus ranges from a short structure to large globular 

domain in rhodopsin like structures and other GPCR classes. The ICLs along with the C terminus 

interacts with downstream effectors G proteins in signaling [22]. The 7TMs are considered as the 

most highly conserved component among the GPCR classes. These TMs harbours important 

signature motifs characteristic of the GPCR classes including the D[E]RY motif in TM3, WxP 

motif in TM6 and NPxxY motif in TM7 [23]. These motifs contribute to GPCR internalisation 

and signal transduction. 

 

Figure 1-1: Model showing the 7TM topology of α1B-AR embedded in membrane lipids. 
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1.2 Classification of GPCRs 

GPCRs are often classified into different groups, subgroups and sub-subgroups based on the 

ligands they bind (Table 1-1) [24]. Although many classification approaches have been 

proposed, the GPCRs are classified mainly into six main classes (A, B, C, D, E and F) [25, 26] 

with limited sequence homology between the classes. All GPCRs classified into distinct classes 

share highly conserved 7TM domains with their structures containing four essential elements; 

three ECLs, three ICLs, and  an N and C terminus [2].  

The six classes could easily be distinguished on the basis of length and residues in the N 

terminus [27, 28]. The glycoprotein receptors of class A have N termini as long as some class B 

and the bitter taste receptors of family F have N termini similar size to many class A receptors 

but the smooth receptors of family F has a longer N terminus. The biggest is class A which 

accounts and codes for ~85% of the genes. Over half of class A GPCR genes are predicted to 

encode olfactory receptors while the remaining receptors are activated by known endogenous 

compounds or are classified as orphan receptors [10]. Phylogenetically, Class A is sub-divided 

into four main groups and 13 subgroups. The receptor of interest of this project α1B-AR belongs 

to class A GPCR. Class B receptors (Secretin receptor family) encoded by 15 genes in humans 

bind large peptides such as secretin, parathyroid hormone, glucagon, calcitonin, vasoactive 

intestinal peptide, growth hormone releasing hormone and pituitary adenylyl cyclase activating 

protein[29]. 

The Class C (Glutamate receptor) members have ligand recognition domain in the long N 

terminus and has structural similarity with the bacterial amino acid binding proteins such as 

leucine/isoleucine/valine binding protein (LIVBP). Glutamate binds by venus fly trap 

mechanism in a cavity formed by two lobes on the amino terminal domain containing the ligand 

binding site. The adhesion GPCRs contain high percentage of Ser and Thr residues in the N 

terminus which can function as O- and N- glycosylation sites [30]. Class D (Fungal mating 

pheromone receptors) members comprise of pheromone receptors which are used by organisms 

for chemical communication [31]. Class E, the cAMP receptors forms part of the chemotactic 

signaling system of slime moulds [32]. Class F, the frizzled receptor has approximately 200 

amino acids in the N terminus with conserved cysteine and the receptor control functions like 

cell fate, proliferation and polarity (Figure 1-2). Table 1-1 summarises GPCRs classification. 
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Table 1-1:  Classification of GPCR. 

Category Receptor Type 

Class A (or 1) Rhodopsin like 

Class B (or 2) Secretin receptor family 

Class C (or 3) Metabotropic glutamate/Pheromone 

Class D (or 4) Fungal mating pheromone receptors 

Class E (or 5) Cyclic AMP receptors 

Class F (or 6) Frizzled/smoothened 

 

 

Figure 1-2: GPCR network (Image Courtesy: GPCR network; http://gpcr.usc.edu.). 

 

http://gpcr.usc.edu/
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The bioinformatics methodology has classified GPCRs thereby providing functional information 

for new GPCRs in the whole „GPCR proteome‟ which is important for the development of novel 

drugs. Generally, the GPCR function is predicted on the basis of the hierarchical classification of 

the GPCR proteome but with the development of the state of art computational tools like 

alignment-free methods, statistical model methods and machine learning methods, GPCRs 

functions can be predicted irrespective of the classical hierarchical classification [33]. In 

hierarchical classification, the first stage is based on the discrimination of GPCRs from the non-

GPCRs followed by classification of the segregated GPCRs into class, subclass, sub-subclass, 

groups, and subgroups. They are further classified based on protein-protein interaction type: 

binding G protein type, oligomerised partner type etc. 
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1.3 Mechanism of GPCR Activation 

GPCRs are activated by a variety of signals in the form of external ligands and other signal 

mediators which leads to conformational changes and activation of G proteins and thereby 

transduce signals to downstream effectors [34-38]. Though major information about mechanism 

of action was based on rhodopsin structures [39, 40], recent crystal structures of ARs have 

provided new insights on GPCR activation mechanism. The receptor exists in an equilibration 

between  inactive and active conformations [41].  

The G protein is bound to the receptor in its inactive conformation [42, 43]. Once the ligand 

binds the receptor, conformational changes (bis-histidine metal ion-binding sites are generated 

between the cytoplasmic extensions of TM3 and TM6 in rhodopsin [44]; disruption of an ionic 

interaction between the highly conserved D(E)RY sequence at the cytoplasmic end of TM3 and 

an acidic residue at the cytoplasmic end of TM6 is observed upon activation in both rhodopsin 

and the β2-AR [45]) take place within the receptor which in turn activates the associated G 

protein [34, 46] (Figure 1-3). The receptor can now either activate another G protein or switch 

back to its inactive state.  
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Figure 1-3: (A) Model of TM3 (red) and TM6 (blue) from the β2-AR depicting the amino acids 
that comprise the ionic lock at the cytoplasmic end of these TM segments. (B) Close up view of 

the ionic lock and the modifications made to monitor conformational changes in this region [47] 
(Image courtesy: Kobilka, B. K. et al., Biochimica et Biophysica Acta (BBA)-Biomembranes; 
2007;1768;794-807). 

 
G proteins are heterotrimeric proteins consisting of three subunits Gα, Gβ and Gγ [48]. In the 

inactive state receptor, the G protein is irreversibly bound to Guanosine diphosphate (GDP). 

Upon receptor activation, the G protein exchanges one molecule of GDP for Guanosine 

triphosphate (GTP) on the heterotrimeric α-subunit and then dissociates from the receptor protein 

as a Gα monomer and Gβγ dimer which are now free to modulate the activity of other intracellular 

proteins. The GTP bound Gα subunit has the capability of slow hydrolysis of GTP to GDP which 

eventually regenerates the GDP bound Gα thus allowing re-association with the Gβγ dimer to 

form the stable inactive G protein [49, 50] (Figure 1-4). 

G protein signaling generates secondary messengers like cyclic adenylyl monocyclase (cAMP), 

calcium ions (Ca2+), Inositol triphosphate/Diacyl glycerol (IP3/DAG) which triggers further 

downstream processes. The phosphorylation of activated GPCRs by GPCR kinases leads to 

binding of activated GPCRs with high affinity to multifunctional scaffold proteins β-arrestins 

http://www.sciencedirect.com/science/journal/00052736
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[51, 52]. β-arrestins desensitise G protein signaling by preventing coupling of activated receptors 

with further G proteins and promote GPCR internalisation by nucleating the machinery required 

for clathrin-mediated endocytosis [53].  β-arrestins are also independent signal transducers, 

influencing signaling events such as the activation of mitogen-activated protein kinases that 

regulate the cytoskeleton, protein synthesis, cell migration and apoptosis, independent of G 

proteins [54]. 

 

Figure 1-4: Signal transduction in GPCRs [55] (Image courtesy: Kobilka K.B. et al, Nature; 
2009;459;356-363). 
 

Further downstream signal transduction depends on the type of G protein attached and activation 

by the receptor [56-58]. GPCRs activate four distinct subclasses of G proteins; Gs proteins 

stimulate adenylyl cyclase, Gi proteins inhibit adenylyl cyclase while Gβγ subunit of Gi G protein 

activate the G protein-coupled inwardly rectifying potassium (GIRK) channels, Gq/11 proteins 

activate phospholipase C-β (PLC-β) and G12/13 proteins activate Rho guanine-nucleotide 

exchange factors. In addition, β and γ subunits form heterotrimers with α subunits [59] and 

mediate effector coupling in their own right providing a diverse array of signaling responses.  
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There are 4 subclasses of Gα-proteins (Gαs, Gαi⁄o, Gαq⁄11 and Gα12⁄13) mediating three G protein 

dependent signaling pathways [60].The effector of the Gαs and Gαi⁄o pathways is adenylate 

cyclase [61] which catalyses the conversion of cytosolic adenosine triphosphate to cAMP [61]. 

The effector of the Gαq⁄11 pathway is PLC-β which catalyses the cleavage of phosphatidylinositol 

4,5-biphosphate into secondary messengers IP3/DAG [62]. IP3 elicits Ca2+ release from the 

endoplasmic reticulum while DAG diffuses along the plasma membrane and activates a Ser/Thr 

kinase; protein kinase C (PKC). The downstream effector of the Gα12⁄13-mediated signaling is the 

monomeric GTPaseRhoA which regulates intracellular processes such as formation of actin 

stress fibers, gene transcription and cell growth [63]. 

 

1.3.1 The Two-State Model of Receptor Activation vs. Multi-State Models of Receptor 

Activation 

Ternary complex model also known as the two-state model is the most widely used model to 

understand the mechanism of receptor activation [64]. This model is based on the principle that 

in the absence of agonists, receptors can spontaneously adopt an active conformation and couple 

to the G protein [65]. This model classifies the receptor into two states as active and inactive 

states with a sufficiently low energy barrier which leads to easy transformation of low fraction of 

receptors to pass from inactive to active state. This model has been superseded by theories which 

explain the incompetency of the two-state model to understand the complex mechanism of 

GPCR activation. 

This two-state model is replaced by multi-state model which explains and provides support and 

evidence of existence of multiple conformational states [66]. In the multistate model, the 

receptor is proposed to alternate spontaneously between multiple active and inactive 

conformations [67]. The observation that different constitutively active mutants of the α1B-AR 

are differentially phosphorylated and internalised, although they convey a similar agonist-

independent activity to the receptor supports the multi-state model [68, 69]. Fluorescence 

spectroscopy analysis of the purified β2-AR indicated that most ligands promote alterations in 

receptor structure consistent with the existence of multiple ligand-specific conformational states 

[70]. 
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1.3.2 Implications from Biophysical Studies on Receptor Activation Models 

The biophysical analyses of rhodopsin and β2-AR structures have provided novel insights into 

the critical conformational changes accompanying receptor activation. Rhodopsin covalently 

bounds an inverse agonist; cis-retinal and upon absorption of a photon isomerises to an agonist; 

trans-retinal within the binding pocket [71]. The efficient activation of rhodopsin by trans-retinal 

requires that cis-retinal is pre-bound and that cis-retinal can be rapidly converted to trans-retinal 

by photoisomerisation. 

In contrast to the rapid activation and slow inactivation kinetics observed for rhodopsin, 

spectroscopic analyses of the purified β2-AR labelled with a conformationally sensitive 

fluorophore revealed slow agonist-induced conformational changes (t1/2 ∼2–3 min) which is 

significantly slower than the predicted association rate of the agonist [72]. Biophysical studies 

has provided direct structural analyses of conformational change in the receptor molecule as an 

important first step toward a more profound understanding of GPCR function at a molecular 

level [38]. 
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1.4 GPCR Oligomers 

GPCRs are known to exist as dimers (or oligomers) and these dimers can play essential role in 

activation process for the glutamate family of GPCRs where ligand induced changes in the dimer 

interface of the amino terminal ligand binding domain has been demonstrated by crystallography 

[73]. The heterodimerisation between receptor subtypes suggested a potential level of receptor 

complexity that could account for unexpected pharmacological diversities. There are distinctive 

dimerisation interfaces or domains both within the TM helices [74] and also at the extracellular 

N terminus [75] or the intracellular C terminus [76] depending on the GPCR. The GPCRs are 

stabilised as dimers/oligomers via non-covalent interactions. Two modes of interaction have 

been described (Figure 1-5)  A) Contact dimerisation in which the relevant helix (helices) from 

one monomer contact(s) partner(s) in the other monomer stabilising the dimer pair; and B) 

Domain swapping in which several helices from each receptor are “swapped” in the dimer such 

that the functional monomer within the dimer contains helices contributed by both receptors [77]. 

As GPCRs are major pharmacological targets, the existence of dimers could have important 

implications for the development and screening of new drugs [78]. 

 

 

Figure 1-5: Potential GPCR dimer interfaces [77] (Image courtesy: GE Breitwieser et al., 
Circulation Res.; 2004;94;17-27). 
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1.5 GPCRs as Drug Targets 

The GPCRs comprises of over 800 7TM receptors for hormones, neurotransmitters, chemokines 

and ions in both central and peripheral nervous system. Not surprisingly, GPCRs are important 

targets for therapeutics [79] especially class A GPCRs. They are universally considered to be 

challenging drug targets primarily due to lack of stability of the 7TM receptor structure and the 

lack of information on how small molecules bind to and impact function of the 

receptor. Although drugs in the clinic currently target only about 10% of the known GPCRs, 

these drugs represent about 45% of current pharmaceuticals available [80-82]. Researchers have 

been immensely presented with the discovery of novel drugs by elucidation of X-ray structures 

of different class A, class B, class C and frizzled GPCR structures in the recent years thereby 

giving the opportunity to use these structures for drug design purposes. Most especially, the very 

recent structures of non-class A GPCRs may serve as invaluable templates for ligand design for 

very difficult target classes [83]. Structure based drug design (SBDD) for GPCRs is currently 

limited to virtual screening (VS) or to modeling a ligand of interest into a public domain X-ray 

structure of a GPCR (or homology model) [84]. 

GPCRs regulate wide variety of human physiological processes including growth, metabolism 

and homeostasis. GPCRs serve as drug targets for the treatment of a multitude of conditions that 

includes hypertension, pain, ulcers, allergies, alcoholism, obesity, glaucoma, psychotic disorders 

and HIV. The routinely used drugs targeting GPCRs includes angiotensin receptor blockers 

(ARBs) for hypertension, bronchodilators for asthma, antihistamines for allergy and H2 blockers 

for acid reflux. Several worlds‟ top 10 best-selling drugs including Advair Diskus (fluticasone 

propionate and salmeterol) and Abilify (aripiprazole) target GPCR. Table 1-2 and Table 1-3 list 

the commonly used drugs that targets GPCRs and top selling drugs that targets GPCRs.
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Table 1-2: Commonly used drugs targeting GPCRs. 

GPCR Class Drug(s) Indication 

Adrenoreceptor 

Alpha-1 alfuzosin, terazosin Benign prostate hyperplasia, high blood pressure 

Alpha-2 clonidine, bisoprolol, betaxolol High blood pressure 

Beta-1 metoprolol, atenolol High blood pressure 

Beta-2 albuterol, nadolol, penbutolol Asthma 

Acetylcholine Receptor 

M1, M2, M3, M4 and M5 tolterodine Overactive bladder 

M1, M2, M3, M4 and M5 atropine Poisoning 

M1 scopolamine Motion sickness; diarrhea 

Calcitonin calcimar Osteoporosis 

Dopamine 

D2 metoclopramide Heartburn 

D2 haloperidol, olanzapine Schizophrenia 

D2 ropinirole, pramipexole Parkinson‟s disease; Restless legs syndrome 

Histamine 

H1 loratadine, cetirizine Allergies 

H1 demenhydrinate Motion sickness 

H2 cimetidine, ranitidine Ulcers/heartburn 

5-HT (serotonin) 

5-HT1B trazodone Anxiety; depression 

5-HT1D sumatriptan Migraine headaches 

GLP-1 exenatide Type-2 diabetes 
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Opioid 

Mu fentanyl, codein, meperidine Pain 

Mu/kappa oxycodone Pain 

CysLT1 montelukast Asthma 

Prostaglandin E2 receptors misoprostol Gastric ulcers 

 

Table 1-3:  Top selling drugs that target GPCRs. 

Trade name Generic name Indication 

Plavix clopidogrel anti-clotting 

Abilify aripiprazole 
schizophrenia, bipolar 

disorders, depression 

Seroquel Quetiapine 
bipolar disorders, neuro-
degenerative disorders 

Singulair Montelukast asthma 

Zyprexa olanzapine schizophrenia 

Diovan valsartan blood pressure 
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1.6 GPCRs: Discovery and Structures 

To understand the structure-function relationship of GPCRs regulating signal transduction and 

their prevalence as therapeutic targets, detailed atomic structures of GPCRs has been sought for 

long [85]. The structural determination of bovine rhodopsin in 2000 [15] was a remarkable 

advancement in drug discovery which paved the way for understanding the molecular 

mechanism of closely related GPCRs by homology modeling [86]. The second breakthrough 

appeared in 2007 with crystallisation of the first human β2-AR [87] followed by structure 

elucidation of other class A members over the subsequent years.  

The crystal structures of rhodopsin, β2-AR share same overall design with a core structure 

composed of seven α-helical TM segments. The ligand binding cavity is formed by sidechains of 

amino acids from TM2-TM7. The ECL2 in β2-AR is a β-hairpin shaped structure and forms a lid 

over the binding cavity. The disulphide bridge between ECL2 and TM3 is highly conserved 

among all class A GPCRs from rhodopsin to β-AR to A2A-R [88, 89]. In β-AR, ECL2 is partly 

folded as α-helix and is further stabilised by additional disulphide bond found only in β1- and β2-

ARs [90]. A conserved aspartic acid residue in TM3 acts as an anchoring point for the positively 

charged amine group of the agonists in all the ARs. 

The crystal structures are known to exist in active or inactive states. The active state is defined as 

the state in which agonists stabilise the active receptor conformation which leads to G protein 

activation. The inactive state is defined as the state where inverse agonists and antagonists favors 

an inactive receptor state that reduces G protein signaling [91]. Mostly, the crystal structures 

elucidated so far have mostly captured the inactive states with few active state structures 

crystallised with nanobodies and G protein fusions by X-ray crystallography [92] and NMR 

spectroscopy [93]. This advancement in visualisation of GPCRs and their signaling complexes is 

the result of the technological advances in methodological development such as protein 

engineering, new detergents, lipid cubic phasebased crystallisation and microfocus synchrotron 

beamlines [94].  

GPCRs can thus be viewed as molecular engines that oscillate between the inactive and active 

states of which the inactive state being the most stable and the most highly represented. Agonist 

binding stabilises conformational states that bind and activate G proteins and other signaling 

molecules such as arrestins. The availability of multistate structural data facilitates the 

application of computational approaches to approximate active state binding pockets from 



41 
 

inactive state crystal structures enabling structure based docking studies to identify new agonists. 

The crystallisation of the active state of the β2-AR was a remarkable milestone in understanding 

the activation mechanism and different conformational states of the receptor.  

G proteins comprising of 4 subclasses of Gα-proteins (Gαs, Gαi⁄o, Gαq⁄11 and Gα12⁄13), relay signals 

from GPCRs to a wide array of downstream effectors [95]. Gs has a higher affinity for GTP than 

GDP and the β2-AR has an approximately 100-fold higher affinity for agonists in this agonist-

β2AR-Gs ternary complex [96]. Laurila et al., has shown that some specific antagonists like 

ARC239, chlorpromazine, prazosin, spiperone, spiroxatrine bind to the human α2A-AR with 10- 

to 100-fold lower affinity than to the α2B- and α2C-ARs [97]. This study showed that the TM1 has 

indirect conformational effects related to the charge distribution or overall shape of the binding 

pocket. Also, TM1 does not participate in specific side-chain interactions with amino acids 

within the binding pocket of the receptor or with ligands bound therein.  

The active state of GPCR is thus defined as a conformation that couples to and stabilises 

nucleotide-free G protein. This ternary crystal structure was solved by molecular replacement 

technique using Phaser [98]. The process of molecular replacement was carried out in the 

following order; the β and γ subunits from a Gi heterotrimer (PDB: 1GP2) [99], the Gs alpha 

RAS like domain (PDB: 1AZT) [100], the active-state β2-AR (PDB: 3P0G), a β2-AR binding 

nanobody (PDB: 3P0G) [101], T4 lysozyme (PDB: 2RH1) [102] and the Gsα helical domain 

(PDB: 1AZT). This milestone achieved followed the direct visualisation of a GPCR-β-arrestin 

complex (PDB: 4JQI, 5DGY) by electron microscopy [103, 104]. 

The rate of discovery of new GPCR crystal structures has accelerated in the recent years and has 

shed light on the differences in ligand binding patterns within class A GPCR [105-107]. 

Homology modeling is an automated comparative modeling of the three-dimensional (3D) 

protein structures from the experimentally determined structures of related family members as 

templates [108]. The possibility of building accurate class B and class C GPCR structures based 

on class A GPCR structures by homology modeling is ruled out due to structural differences. 

However, recent approaches in crystallisation techniques has ledto the elucidation of new class B 

and class C GPCR structures for drug discovery and rational drug design [109].  These structures 

provided unparalleled insights into the structural and functional diversity along with the class A 

GPCR structures like the molecular changes that the receptor undergo during activation, 

molecular signatures of the GPCR fold etc.  Table 1-4 lists the crystal structures resolved. 
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Table 1-4: Example of GPCR crystallised structures. 

Protein Name Ligand PDB Resolution (Å) Year 

 

 

Adenosine A2A receptor 

CGS21680 4UG2 2.60 2015 

Ergotamine 4IB4 2.70 2013 

ZM241385 3EML 2.60 2008 

UK-432097 3QAK 2.71 2011 

ZM241385 4EIY 1.80 2012 

Beta-1 Adrenergic receptor Cyanopindolol 2VT4 2.70 2008 

Cyanopindolol 4BVN 2.10 2014 

 

 

Beta-2 Adrenergic receptor 

Carazolol 2RH1 2.40 2007 

Timolol 3D4S 2.80 2008 

Alprenolol 3NYA 3.16 2010 

ICI 118,551 3NY8 2.84 2010 

Compound 1 3NY9 2.84 2010 

Nanobody 3P0G 3.50 2011 

CCR1 chemokine receptor  2LNL NMR 2012 

 

 

CCR5 chemokine  

receptor  

vMIP-II 4RWS 3.10 2015 

CVX15 3OE0 2.90 2010 

IT1t 3ODU 2.50 2010 

IT1t (I222) 3OE6 3.20 2010 

IT1t (P1) 3OE8 3.10 2010 

IT1t (P1) 3OE9 3.10 2010 

CCR5 Chemokine Receptor  4MBS 2.71 2013 

D3 Dopamine receptor Eticlopride 3PBL 2.89 2010 

Bovine rhodopsin Retinal 1U19 2.20 2004 

Opioid receptor Naltrindole 4N6H 1.80 2013 

peptide 4RWA 3.28 2015 

Glucagon receptor (GLR)  4L6R 3.30 2013 

Histamine receptor H1 Doxepin 3RZE 3.10 2011 

Kappa opioid receptor  4RWA 3.28 2015 
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JDTic 4DJH 2.90 2012 

 

M2 Muscarinic receptor 

 3UON 3.00 2012 

Iperoxo 4MQS 3.50 2013 

Iperoxo and 

LY2119620 

4MQT 3.70 2013 

M3 Muscarinic receptor  4DAJ 3.40 2012 

Tiotropium 4U15 2.80 2014 

Neurotensin receptor  4GRV 2.80 2012 

Lysozyme 4BWB 3.57 2014 

Nociceptin opioid receptor (ORL-

1) 

Compound-24 4EA3 3.01 2012 

Protease-activated receptor 1 

(PAR1) 

 3VW7 2.20 2012 

P2Y purinoceptor 12 AZD1283 4NTJ 2.62 2014 

Sphingosine 1-phosphate receptor 

1 

ML056 3V2W 3.35 2012 

3V2Y 2.80 2012 

5-hydroxytryptamine receptor 1B dihydroergotamine 4IAQ 2.80 2013 

ergotamine 4IAR 2.70 2013 

Smoothened Receptor LY2940680 4N4W 2.80 2014 

Cyclopamine 4O9R 3.20 2014 

Class B GPCR  4K5Y 2.98 2013 

 4L6R 3.30 2016 

Class C G protein-coupled 

metabotropic glutamate receptor 

 4OR2 2.80 2014 

 4OO9 2.60 2014 

Free fatty acid receptor 1 (FFAR1) TAK-875 4PHU 2.33 2014 

Sphingosine 1-phosphate receptor  3V2W 3.35 2012 

 3V2Y 2.80 2012 
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1.7 GPCRs Modulators 

Endogenous ligands bind to the orthosteric binding site in GPCRs which initiates the signaling 

process. However drugs targeting the orthosteric sites have limitations of selectivity, clinical 

efficacy and undesirable effects on receptor regulation [110, 111]. Allosteric modulators that 

bind at sites other than the orthosteric site provide opportunities to target topographically distinct 

sites present on many GPCRs [112, 113]. Targeting these sites with synthetic small molecules is 

now an emerging approach to develop receptor subtype selective leads as new therapeutics [113-

115]. 

Such allosteric modulators have the potential to exhibit improved physicochemical profiles, 

selectivity, specificity, efficacy and safety (improved pharmacological profile). Studies on GPCR 

activation have shown existence of multiple active states which can be stabilised by different 

ligands targeting both orthosteric and allosteric sites at once [116-118]. Recent studies have 

demonstrated that linking orthosteric and allosteric ligands can yield  bitopic ligands with 

improved subtype selectivity and affinity [117, 118]. 

Identification, development and discovery of these allosteric and bitopic ligands that can stabilise 

distinct conformational states may help us to better understand the role of  distinct conformations 

in signaling and generating structure-function relationships [119]. To reduce the false-positive 

rates; state of the art computational techniques are useful in discovery of these new class of 

modulators [120]. Both allosteric and bitopic ligands possess advantages over orthosteric 

ligands, so their discovery is a new and novel approach in drug design.  
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1.8 Adrenergic Receptors 

ARs belongs to class A GPCRs which respond to catecholamines, particularly NE and 

epinephrine (E) [121, 122]. They function primarily by increasing or decreasing the intracellular 

production of secondary messengers such as cAMP and/or IP3/DAG [61]. Sometimes, the 

activated G protein itself operates on K+ (potassium) or Ca2+ channels or increases prostaglandin 

production [123]. 

ARs have been classified into two types α and β-ARs on the basis of two distinct rank orders of 

potencies of adrenergic agonists [124] (Table 1-5). α and β-ARs share a high degree of amino 

acid identity between each other especially within the TMs forming the ligand binding pocket 

(68   77% identity for α1-AR, 79   82% for α2-AR and 63   73% for β-AR) [125]. 

 

Table 1-5: Classification of adrenergic receptors [126]. 

Parameters α β 

Rank order of potency of Agonists E ≥ NE > 

Isoprenaline (Iso) 

Iso > E > NE 

Antagonist Phenoxybenzamine Propranolol 

Effector pathway IP3/DAG↑, cAMP↓, 

K+ channel ↑ 

cAMP↑.Ca2+ channel ↑ 

 

1.8.1 α Adrenergic Receptors 

The α-ARs upon activation triggers a complex range of autonomic responses [126]. Theyare 

subdivided into α1 and α2 subtypes based on the pharmacological action rather than anatomical 

location (Table 1-6). Molecular cloning has further identified three subtypes of α1 receptors (α1A, 

α1B and α1D) [127-129] and α2 receptors (α2A, α2B and α2C) [130, 131]. The evolutionary distance 

between the α1A-AR and α1B-AR is relatively nearer and their sequence similarity is relatively 

higher within the three α1-AR subtypes compared to the evolutionary distance with the α2-AR 

subtypes. α2A-AR and α2C-AR shows high sequence similarity within the α2-AR subtypes [132]. 

 

 

 

 



46 
 

Table 1-6: α-AR localisation, function, ligands and effector pathway influenced [133, 134]. 

Parameters α1 α2 

Location Postjunctional on 

effector organs 

Mostly prejunctional on nerve 

endings and postjunctional on 

blood vessels 

Functions  Gland-secretion, 

Gut-contraction, 

Liver-glycogenolysis, 

Heart-arrhythmia 

Transmitter release inhibition, 

Vasoconstriction, 

↓ Central sympathetic flow, 

↓ Insulin release 

Selective agonist Phenylephrine, 

Methoxamine 

Clonidine 

Selective Antagonist Prazosin Yohimbine 

Effector pathway IP3/DAG ↑, Ca
2+ ↑, 

Phospholipase A2 ↑-PG 

release 

cAMP ↓, 

K+ channel ↑, IP3/DAG ↑ 

Ca2+ channel ↑ or ↓, 

 

1.8.1.1 α1 Adrenergic Receptors 

The α1-ARs are activated by E released from the adrenal medulla and NE released from 

sympathetic nerve endings. They associate with the Gq heterotrimeric G proteins and triggers 

downstream signaling processes by increasing IP3 production [135]. The subtypes mediate many 

effects of the sympathetic nervous system including different and sometimes opposing 

physiological effects for eg., the α1A-AR promotes automaticity and arrhythmias during 

myocardial ischemia whereas the α1B-AR activates Na+/K+ pump leading to cell 

hyperpolarisation thus decreasing the propensity for abnormal heart rhythms [135, 136]. 

There are many drugs available in the market which exerts their effects through α1-ARs but they 

are not subtype specific and selective. Non-selective α1-AR agonists and antagonists have been 

used for a long time for the treatment of various diseases like controlling the cardiovascular, 

respiratory and neuronal functions, digestion, pupil dilation and contraction, energetic 

metabolism and endocrinal functions. The lack of information about the structure of the receptors 

has limited the development of subtype-selective compounds and this in turn has hindered our 
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understanding of the roles of each subtype (α1A, α1B and α1D) in physiology and disease [137]. 

The subtype differences observed because of sequence differences in the subtypes are mainly 

due to non-conserved residues in the TM spanning domain. However, there are only few 

subtype-selective drugs available that can differentiate between the subtypes with ≥100 fold 

affinity [138-140].  

Because α1-AR crystal structure has not been defined experimentally, protein structure prediction 

using different methods like de novo or ab initio modeling [141] and comparative modeling 

(such as threading and homology modeling) can be used to overcome these limitations [142, 

143]. To design selective drugs, an understanding of subtype differences in the ligand binding 

pockets and an insight into the architecture of α1-ARs would be invaluable. Therefore, molecular 

modeling studies may provide some insights into the structural requirements of receptor binding 

which may be of great value to discover new and more selective compounds. 

The homology models of the α-ARs [144] and ligand docking has been described by many 

research groups using low resolution cryo-electron microscope [145] and X-ray structure [146] 

of bacteriorhodopsin as templates [147]. Since bacteriorhodpsin is not a GPCR, significantly 

improved bovine rhodopsin (BRh) based homology models were developed [15]. A combination 

of molecular modeling methods and experimental data has provided useful insights into the 

process of ligand binding and the superiority of BRh based model to study human ARs [148, 

149].However, BRh shares only ~22% sequence identity with α1-ARs [150] which pose 

limitations but since the overall structure is conserved (7TMs), it is still useful and sufficient to 

generate predictive models. 

In 2007, the first human GPCR crystal structure of β2-AR [102] was resolved by Brian Kobilka‟s 

group. Hence, it is advisable to use β2-AR for homology model building of α1-AR due to the 

close evolutionary relationship between the two receptors and the higher resolution crystal 

structure as β2-AR shares a total degree of sequence identity (~35% with α1-AR and ~40% in the 

TM helical regions) which are more acceptable values for developing homology models.  

Although the α1-AR orthosteric binding pocket residuehave been defined mostly  experimentally 

[138, 151, 152], key interactions between the receptor and ligand are expected to be similar to 

those of the β-ARs  as both receptors are activated by the catecholamines, NE and E. Studies on 

the α1-AR have shown key points of interaction to occur  between Asp125 in the TM3 with that 

of the protonated amine of the agonists, and between two serine residues Ser207 and Ser208 in 
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TM5 which form hydrogen-bonds with the meta- and parahydroxyl groups of the catechol ring 

moiety of ligands [138]. These critical binding contacts with the natural ligands are conserved 

within and between the α- and β-AR subtypes [153]. 

Putative agonist and antagonist binding sites have been proposed based on the mutagenesis 

studies for β2-AR which commensurates with the agonist and antagonist bound active and 

inactive states [154, 155]. Experimental analysis found that Asp125, Asn344 and Ser207 play an 

important role in both agonist and antagonist binding. However, Ser208, Ser211 and Asn279 are 

involved in agonist binding in α1B-AR [137]. The ligand binding residues proposed for α1-AR are 

almost similar to β2-AR (Figure 1-6) [156] due to the higher identity between residues in the TM 

region (Figure 1-7). 

 

 

Figure 1-6: Serine–hydroxyl interactions between the β2- and α1A-AR [152] (Image Courtesy: 
Perez, D. M et al., J. Biochem. Phamacol.; 2007;73:1051-1062). 
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Mutagenesis studies on α- and β-ARs have shown that the protonated amine of catecholamines 

forms an electrostatic interaction with an aspartic acid residue on TM3 (Asp106) [157]. The 

catechol ring forms aromatic/hydrophobic interactions with phenylalanine residues in TM4 

(Phe163) and TM5 (Phe187) while the catechol hydroxyl groups form hydrogen bonds with 

serine residues in TM5 (Ser188 with meta-hydroxyl and Ser192 with para-hydroxyl) [158]. 

 

 

Figure 1-7: Sequence alignment between the α1A-AR and the β2-AR for the TM5 serine residues 
involved in hydrogen bonding with the catechol hydroxyls [152] (Image Courtesy: Perez, D. M. 
et al., J. Biochem. Phamacol.; 2007;73:1051-1062). 

In contrast, extracellular site residues show higher diversity which might be helpful in ligand 

selectivity for GPCRs (Figure 1-8). 

 

 

Figure 1-8: Residues involved in agonist binding in the α1-ARs. The view is looking down upon 
the extracellular face of the binding pocket[152](Image Courtesy: Perez, D. M. et al., J. 

Biochem. Phamacol.; 2007;73:1051-1062). 
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Binding of agonist and antagonist to the receptor leads to receptor activation and inactivation in a 

multi-step process at the molecular level. The inactive state of rhodopsin like GPCRs is 

stabilised by salt bridge formation between TM3 and TM6 at the cytoplasmic end also known as 

“ionic lock” (Arg3.50-Glu6.30) (Figure 1-9) [123, 159]. Activation of rhodopsin like GPCRs 

suggests rotation of TM3 and TM6 helices. Furthermore, activation of ARs by agonist implicate 

rotamer toggle of various hydrophobic amino acids surrounding Pro6.50 also known as the 

“rotamer toggle switch” [160].   

 

 

Figure 1-9: Molecular 3D representations of the interaction of TM3 and TM6 at their 

cytoplasmic ends and the effects of 6.30 mutations [44] (Image Courtesy: Juan A. Ballesteros et 
al., J. Biol. Chem.; 2001;276:29171-29177). 
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Activation/inactivation mechanism is further influenced by the change in interaction pattern 

between the E(D)RY and NPxxY motifs respectively. Scheer et al., suggested that the Arg3.50  is 

constrained in a polar pocket formed by residues in TMs 1, 2, and 7 in the inactive state based on 

α1B-ARsimulations [66]. Arginine shifts out of the polar pocket upon protonation of the adjacent 

Asp3.49 leading to long range conformational changes. The conserved aspartic acid in TM2 

(Asp2.50, Asp79 in β2-AR) was predicted to be the ionic counterpart of the arginine in the inactive 

state. Ballesteros et al., proposed that the ionic counterpart of Arg3.50 in the inactive state could 

be the adjacent Asp3.49 and that in the active state Asp3.49 is protonated and Arg3.50 interacts 

instead with Asp2.50 [161]. In the inactive state, Arg3.50 not only interacts with Asp3.49 but also 

with Glu6.30 and this ionic interaction between the cytoplasmic ends of TM6 and TM3 is an ionic 

lock that maintains the receptor in the inactive state. 

The binding mode of antagonists to α1-AR is affected by mutations at Asn106. Two conserved 

phenylalanine residues on TM7; Phe308 and Phe312 are known to form π–π stacking 

interactions with almost all α1A-AR antagonists [162]. Three set of consecutive residues on ECL 

2; Gln177, Ile178 and Asn179 forms interaction with selective α1A-AR antagonists (WB-4101 

and phentolamine) [137]. 

 

1.8.2 β-Adrenergic Receptors 

In contrast to α-ARs, β-ARs respond to circulating catecholamines that regulate heart functions 

[163]. Congestive heart failure is the condition associated with up- and down- regulation of the 

β-ARs by change in expression and functions [164]. Three β-AR subtypes (β1, β2 and β3) have 

been classified pharmacologically at the molecular level. β1- and β2-AR share 54% homology, 

while β3-AR shares 51% and 46% identity with β1- and β2-AR [165]. 

β-ARs activate the Gs protein which in turn activates adenylyl cyclase thereby increasing the 

concentration of intracellular cAMP which activates protein kinase A and phosphorylates 

cellular proteins [35, 166]. β-ARs are involved in many patho-physiological conditions like 

increased chronotropy and ionotropy in heart, increased renin secretion (β1); Bronchodialation, 

uterine relaxation, hyperglycaemia and lipolysis in liver and vasoconstriction (β2); and lipolysis 

and regulation of bodyweight (β3) [167]. 
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1.9 Adrenergic Modulators Classification 

Broadly, adrenergic modulators can be classified into two groups (adrenergic agonists and 

adrenergic antagonists) based on their mode of action, pharmacological activity, selectivity for 

specific subtypes, chemically and level of therapeutic response. 

 

1.9.1 Adrenergic Agonists 

Adrenergic modulators are classified as agonists due to their ability of binding and activating the 

receptor that leads to downstream signaling process. These act on both α- and β-ARs [168] and 

their subtypes [3, 13, 166]. Adrenergic agonists are broadly classified based on their 

pharmacological activity and their ability to bind with the receptor as:  

a) Direct acting- on each adrenoceptor and its subtypes;  

b) Mixed acting- on both the adrenoceptor like ephedrine (α1, α2, β1, β2 and releasing agents) 

and  

c) Indirect acting- by releasing agents such as amphetamine, tyramine; uptake inhibitors like 

cocaine; MOA inhibitors like selegiline [169] and COMT inhibitors like entacapone 

[170].  

Direct acting could be selective; acting specifically on particular subtype and non-selective; 

acting on either subtypes [171].  

Compounds which show selectivity for the α1A-AR subtype include 5-methyl-urapidil, 

niguldipine, oxymetazoline, A-61603, SNAP5089, KMD-3213 and RS17053. Compounds 

selective for the α1B-AR subtype include espisperone, respisperone, risperidone and the 

compound AH11110A. α1D-AR subtype specific ligands include compounds BMY7378 and 

SKF105854. The following table provides few examples of adrenergic agonists (Table 1-7): 

Table 1-7: Examples of Adrenergic agonists. 

Selective Agonists Non-Selective Agonists 

α1 Phenylephrine α1, α2 Oxymetazoline 

α2 Clonidine β1, β2 Isoproterenol 

β1 Dobutamine α1, α2, β1, β2 Epinephrine 

β2 Terbutaline α1, α2, β1 Norepinephrine 

β3 BRL 37344, CGP 12177  

 



53 
 

1.9.2 Adrenergic Antagonists 

These modulators antagonise the receptor action of adrenaline and related drugs by blocking the 

receptor [172]. Adrenergic antagonists are competitive against either α- or β-ARs or both α- and 

β-ARs. Adrenergic antagonists are therefore classified as α adrenergic blocking drugs and β 

adrenergic blocking drugs. 

 

1.9.2.1 α Adrenergic Blocking Drugs 

α Adrenergic blocking drugs are chemically classified into two types as 

a) Non-equilibrium (B-haloalkylamines: Phenoxybenzamine) or  

b) Equilibrium type.  

Equilibrium is further subdivided into three subtypes based on their subtype specificity and 

chemically as follows [173-175] (Table 1-8): 

Table 1-8: Table listing α adrenergic blocking drugs. 

α1 Selective Prazosin, Terazosin, Doxazosin, Tamsulosin 

α2 Selective Yohimbine 

Nonselective Ergot Alkaloids Ergotamine, Ergotoxine 

Hydrogenated Ergot 

Alkaloids 

Dihydroergotamine, Dihydroergotoxine 

Imidazolines Phentolamine 

Chlorpromazine 

 

1.9.2.2 β Adrenergic Blocking Drugs 

β adrenergic blocking drugs are classified as cardioselective (β1) such as metoprolol, atenolol, 

acebutolol, bisoprolol and nonselective (β1 and β2) drugs. Nonselective β1 and β2 is further 

subdivided into three categories based on their intrinsic sympathomimetic activities and 

additional α blocking activity (Table 1-9) [176]. 
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Table 1-9: Table listing β adrenergic blocking drugs. 

With Intrinsic Sympathomimetic Activity Propranolol, Sotalol, TImolol 

Without Intrinsic Sympathomimetic Activity Pindolol 

Additional α Blocking Activity Labetalol, Carvedilol 

 

1.9.3 Therapeutic Classification of Adrenergic Drugs 

Adrenergic drugs are also classified therapeutically [172] into various classes as summarised in 

Table 1-10: 

Table 1-10: Table classifying adrenergic drugs based on their therapeutic action. 

Pressure Agents NE, Ephedrine, Dopamine, Phenylephrine, Methoxamine 

Cardiac Stimulants E, Dobutamine, Isoprenaline 

Bronchodilators Isoprenaline, Salbutamol, Salmeterol, Formoterol 

Nasal Decongestants Phenylephrine, Xylometazoline, Oxymetazoline, Naphazoline 

CNS Stimulants Amphetamine, Methamphetamine, Dezamphetamine 

Anorectics Fenfluramine, Sebutramine, Dexfluramine 

Uterine relaxant and 

Vasodilators 

Ritodrine, Isoxsuprine, Salbutamol, Terbutaline 
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1.10  1-AR in Health and Disease 

1-ARs belongs to well-studied family of class A GPCRs that mediate smooth and cardiac 

muscle contraction and thus play important physiological roles in vasculature, prostate, heart, gut 

and gall bladder [177-180]. The 1-AR expression is tissue specific with 1A-AR mostly found 

in liver, heart and cerebral cortex; 1B-AR mostly in liver, heart and cerebral cortex and 1D-AR 

mostly in bladder along with prostate and blood vessels. 1-ARs are also present in the brain and 

spinal cord [181] and are upregulated in nociceptors following chronic constriction of the sciatic 

nerve in rats [182]. Blood vessels are important targets for 1-AR drugs. Given this broad 

distribution it is not surprising that 1-AR antagonists are important for the treatment of 

hypertension and benign prostatic hyperplasia while 1-AR agonists have potential in a range of 

other 1-AR-related diseases including heart failure [183]. 
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1.11 Homology Modeling of Membrane Proteins 

The biochemical function of a protein at the molecular level can be inferred from its 3D structure 

[85]. However, the number of experimentally determined crystal structures is much less than the 

number of available GPCR protein sequences [184]. As of February 2018, the number of crystal 

structures deposited in the protein data bank [185] are 137,692, which is relatively very small 

when compared with more than 6 million sequences held in the uniprot knowledge database 

[186]. Homology modeling or comparative protein structure modeling is a tool to build the 3D 

structure of a protein from its amino acid sequence based on sequence similarity and alignment 

with a protein (template) whose crystal structure is known and deciphered [187]. 

De novo or ab initio methods have also been developed to determine 3D structures for a protein 

where a suitable template is not available or because of very low sequence identity between the 

template and target structure [86]. Although de novo or ab initio methods can be used without 

the need of a homologous template structure, it falls short in terms of accuracy when compared 

to comparative structures [184]. Therefore, homology modeling is the method of choice to build 

reliable 3D in silico models of a protein in all cases where template structures are known [188]. 

Homology models have many applications in VS, docking, designing site-directed mutagenesis 

experiments or in rationalising the effects of sequence variations [189].  

Homology modeling generally consists of four steps.  

1) Template identification for modeling the protein of interest.  

2) Mapping corresponding residues of the target with the template by sequence alignment and 

sometimes manually. 

 3) 3D model generation and  

4) Evaluation of quality of generated models [141, 190].  

The smaller the root mean square deviation between template and target structure is, the better 

and more accurate is the model. Therefore, structures with greater than 50% sequence identity 

are considered reasonable while the structures with less than 30% sequence identity (twilight 

zone) are unreliable as the relationship between sequence and structure similarity gets 

increasingly dispersed [150]. 

The accuracy of the protein structure model is a crucial step in the whole process which depends 

on the evolutionary distance between the target and template structures [191]. Scoring functions 

such as statistical potential of mean force have been developed to estimate the overall accuracy 
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[192]. The stereo-chemical plausibility of the generated models can be assessed using the tools 

such as PROCHECK and WHATCHECK [193]. One way to improve accuracy is to subject the 

built homology models to MD simulations thereby improving their RMSD to the experimental 

structure [194]. 

This technique also comes with certain limitations as of availability of homologous templates 

[195] i.e., only regions of the protein corresponding to an identified template can be modeled 

accurately. Modeling oligomeric proteins or structural changes caused by insertion, deletion, 

mutation and fusion proteins cannot be modeled accurately by comparative modeling. There are 

many programs and online web servers available for homology modeling. SWISS-MODEL has 

been the first automated modeling server publicly available [188]. In the meantime, similar 

services have been developed by other groups, e.g., ModPipe, ESyPred3D, 3D-JIGSAW or M4T 

[196]. Programs such as Homology and WHAT-IF can be run locally on a computer. 

Commercial packages like Schrodinger and Discovery Studio also provide a range of modules 

like PRIME for effective homology modeling [197].  

Homology models have demonstrated that their accuracy in building and predicting the 3D 

structures of proteins from their amino acid sequences is comparable to the structures obtained 

through X-ray crystallography [198]. Initially, GPCR models were based on the 

bacteriorhodopsin template [39]. Later on, crystal structure of BRh was used as a template for 

the homology modeling with the availability of experimental information and thus all efforts 

were based on this structure [15, 199]. Homology modeling with BRh had a limitation of 

availability of high resolution GPCR structures and showed a lower sequence identity of 21% 

and lower TM identity of 26% compared to α1-ARs. Thereafter, homology modeling to derive 

structural models of class A GPCR was carried out based on the crystal structure of the human 

β2-AR with high resolution and showed a sequence identity of 29    31% and TM identity of 37     

43% compared to α1-ARs [200].  

Jayaraman et al., performed homology modeling and docking studies of human α2-AR subtypes 

based on crystal structure of human dopamine D3 receptor as it showed highest TM identity in 

comparison to available crystal structures [201]. These models were in accordance with the 

experimental findings and suggested role of important residues in binding and showed correct 

orientation of the conserved residues involved in binding. 
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In another study by Pedretti et al., homology model of α1A-AR was constructed followed by 

molecular docking of endogenous agonist NE and antagonist WB-4101. The homology model 

was constructed by using rhodopsin structure (PDB: 1F88) as template. The results were in 

concordance with the mutagenesis data thereby confirming the approach used and identified key 

binding residues interacting with agonist and antagonist [202] (Figure 1-10; Figure 1-11). 

 

Figure 1-10: Main interactions in α1a-AR–NE complex [202]. (Image Courtesy: Pedretti et al., 

Biochem. Biophys. Res. Comm.; 2004;319:493-500). 

 

Figure 1-11: Main interactions in α1A-AR–WB-4101 complex [202]. (Image Courtesy: Pedretti 

et al., Biochem. Biophys. Res. Comm.; 2004;319:493-500). 
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Halip LO et al, demonstrated key interactions between ligands and α2-ARs and compared the 

predicted results with the experimental results by homology modeling and docking. The 3D 

homology model of three α2-AR subtypes were constructed using X-ray structure of the β2-AR 

(PDB: 2RH1) as template [142]. Although the squid rhodopsin has the highest sequence 

similarity with α2-ARs, the β2-AR structure (PDB code: 2RH1) was chosen as structural template 

because it belongs to class A GPCR and binds a biogenic amine like α2-ARs. The study analysed 

the similarities and differences between the ECLs and binding sites of three α2-AR subtypes. The 

results from this study could be used for VS of chemical databases to identify α2-AR subtype 

specific ligands. 

Lupei Du and Minyong Li modeled the interactions between α1-ARs and their antagonists by use 

of ligand-based (pharmacophore identification and QSAR modeling) and structure-based 

(comparative modeling and molecular docking) approaches. These computational approaches 

helped to understand the structural basis of antagonist binding and the molecular basis of 

receptor activation [203]. 
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1.12 Molecular Dynamics of Membrane Proteins 

The structural determination of the high-resolution membrane proteins comparable to globular 

and soluble proteins lags with the realisation that the dynamics of these systems require large 

conformational sampling space over long time-scale [204]. Computational tools in particular MD 

have become indispensable and as an alternate source to improve our current mechanistic 

knowledge of membrane protein structure and dynamics [205].This limits our understanding of 

the physiological functions and the structure-function relationship of the GPCRs [206].  

MD simulation is a technique which generates the atomic trajectories for a system of number of 

particles (N) for a specific interatomic potential with a certain initial condition (IC) and boundary 

condition (BC) [207]. It is a computer simulation of physical movements of atoms and molecules 

wherein they are allowed to interact for a given period of time which gives a view of motion of 

the atoms [208] (Figure 1-12).  The macroscopic properties of a system are explored through 

microscopic simulations such as calculating changes in the binding free energy of a drug 

candidate or to examine the energetics and mechanisms of conformational change. The 

connection between microscopic simulations and macroscopic properties is made via statistical 

mechanics [209].  

MD simulations provide the means to solve the equation of motion of the particles and evaluate 

these mathematical formulas. These are being increasingly partnered with wet lab experiments 

because simulations can track system behavior across a vast spatiotemporal domain length that 

can be scaled up to thousands of Angstroms with atomic precision and timescales scaled to 

milliseconds [210].  

The classical MD simulation method is based on Newton‟s second law or the equation of 

motion,  

F=m*a, where 

F is the force exerted on the particle,  

m is its mass and 

a is its acceleration [211].  

From knowledge of the force on each atom, the acceleration of each atom can be determined in 

the system. Integration of the equations of motion then yields a trajectory which describes the 

positions, velocities and accelerations of the particles as they vary with time. From this 

trajectory, the average values of properties are determined. The method is deterministic; once the 
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positions and velocities of each atom are known, the state of the system can be predicted at any 

time in the future or the past.  

 

Figure 1-12: A typical classical MD simulation system with protein embedded in lipid bilayers. 

The biological systems studied using all-atom MD simulations can be very large comprising 

millions of atoms. MD simulations can be used for studying membrane proteins which present 

particular challenges for experimental methods like X-ray crystallography and NMR 

spectroscopy for receptor crystallization [210]. MD simulations have provided detailed 

information on the fluctuations and conformational changes of proteins and nucleic acids.  These 

methods are now routinely used to investigate the structure, dynamics and thermodynamics of 

biological molecules and their complexes. They are also used in the determination of structures 

from X-ray crystallography and NMR experiments. The limitation of MD simulations is that it is 

time consuming and computationally expensive [212]. 

Many studies on membrane proteins, ion channels and transporters have appeared in the 

literature emphasising the role of MD simulations in activation and inactivation mechanism, flow 

of ions and other transporters through ion channels, egress route of agonist and antagonists from 

the binding cavity [213-215]. MD simulations have been successfully applied to study the GPCR 

functioning and activation mechanism [205, 216]. GPCRs bind with an array of ligands which 

promotes the receptor to active and inactive states. The binding of ligands to GPCRs is of crucial 
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importance in understanding the drug-binding pathways through MD simulations for rational 

drug design that identifies the important residues lining the pathway which could then be used 

for SBDD.  Previous studies on the activation mechanism of β1- and β2-AR [217, 218], the 

process of ligand binding to the Src protein kinase [219], accelerated dynamics on M2 and M3 

muscarinic receptors for enhanced sampling of the active states [220, 221] have shed light on the 

structure-function relationship thereby increasing our understanding of the rational drug design 

process [222].  The application of MD simulations to GPCRs is illustrated below in following 

examples. 

Tikhonova IG. et al., demonstrated the role of biased agonists in the β2-AR bound to the β-

arrestin and the empty receptor to further characterise the receptor conformational changes 

caused by biased agonists with aMD simulations aMD [223]. aMD simulations captured the 

known microscopic characteristics of the inactive states such as the ionic lock and water clusters. 

Simulations with the G protein biased agonist salbutamol involved perturbations of the network 

of interactions within the NPxxY motif.  

Sahane G. et al., provided molecular insights into the dynamics of pharmacogenetically 

important N terminal variants of the human β2-AR. The N terminal region of the arginine variant 

showed greater dynamics compared to the Gly variant which lead to differential placement. 

Further, the position and dynamics of the N terminal region affects the ligand binding site 

accessibility. This study revealed the key differences between the variants providing a molecular 

framework towards understanding the variable drug response in asthma patients [224]. 

Nygaard R. et al., have shown evidence for conformational states which are not observed in 

crystal structures as well as substantial conformational heterogeneity in agonist- and inverse-

agonist-bound preparations by NMR spectroscopy [41]. This study revealed that an agonist alone 

does not stabilise a fully active conformation suggesting that the conformational link between the 

agonist binding pocket and the G protein coupling surface is not rigid. 

Chan H. C. S. et al, investigated the impact of ligands on β2-AR through a total of 12*100ns 

MD simulations. This study generated the molecular fingerprints that exemplified propensities 

of protein-ligand interactions [225]. Further the ligands exhibited a distinct mode of 

interaction with TM5 and TM6 thereby altering the shape and eventually the state of the 

receptor. This study provided insightful prospectives into GPCR targeted structure based drug 

discoveries. 
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Deupi et al., has shown the use of steered molecular dynamics (SMD) simulation to describe in 

atomic detail the unbinding process of two inverse agonists which have been co-crystallised with 

β1- and β2-AR subtypes along four different channels [226]. These compounds access the 

orthosteric binding site of β-ARs from the extracellular water environment. This study also 

identified the presence of secondary binding sites located in the ECL2 and ECL3 and TM7 

where ligands are transiently retained by electrostatic and van der Waals interactions. 

Ab Initio modeling and MD Simulation was employed by De Benedetti. PG. et al., to build an 

activation model of the α1B-AR [227]. A combined approach of MD simulation and mutagenesis 

was used to determine the structural and dynamic features characterising the inactive and active 

states of α1B-AR.  

Results from microsecond MD simulations and community network analysis of the β2-AR-Gs 

complex with Gαs in the open and closed conformations revealed strong allosteric 

communication between the β2-AR and Gβγ mediated by Gαs in a study by Xianqiang S. et al 

[228]. Further the complex is stabilised differently in the open and closed conformations.  

Spijker P. et al., predicted the 3D structure of the human β2-AR and the binding site of several 

agonists and antagonists bound to β2-AR [229]. The apo-β2-AR shows less dynamic flexibility 

whereas the antagonist bound β2-AR structure is quite rigid in the MD simulations. This MD 

validation for the structure predictions of GPCRs in explicit lipid and water environment 

suggested that these methods can be trusted for studying the activation mechanism and the 

design of subtype specific agonists and antagonists. This study identified that antagonist-protein 

simulations differ substantially from the dynamics of the apo-protein and of the agonist-β2-AR 

systems. 
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1.13 Virtual Screening of Membrane Proteins 

Drug discovery is a process of identification of initial hits that are optimised to improve the 

potency, selectivity, metabolic stability and oral bioavailability that led to potential leads as 

agonists, antagonists and inverse agonists [230]. This process of identification of initial hits in 

the drug discovery pipeline can be categorised into two main types; HTS and VS. HTS has a 

very low hit rate of 0.1% against one or few therapeutic targets [231] whereas VS has emerged 

as an important tool over HTS in terms of cost incurred in discovering new molecules which can 

therefore be implemented as the starting point in drug discovery campaigns. HTS is technology-

driven and hampered by phenomena like limited solubility or aggregation while VS is 

knowledge-driven with a loophole to discriminate true hits from non-binders and this critically 

relies on the capacity of extracting knowledge from existing data [231]. 

The number of putative compounds with a molecular weight <500Da is estimated to be around 

10200 of which approximately 1060 are assumed to be drug-like compounds [232]. A complete 

sampling of such a large chemical space is impossible. Therefore, it is assumed that molecules 

with similar structures and properties exhibit similar biological activity and that molecules being 

located closely together in chemical space tend to be functionally related. For screening such a 

large chemical space, techniques encompassing data mining, machine learning or physics-based 

methods are used for VS. 

The process of VS can be classified into two types; 

a) Classical VS in which one or more chemical database is screened for hits against a few 

specific targets. This screening is focused on specific regions of the chemical space 

encompassing a chemical moiety to be necessary for hits to form interactions with the amino 

acids in the proteins;  

b) Inverse virtual screening is a process in which a large protein library is screened against one 

or few small molecules. This practice of inverse VS is uncommon (Figure 1-13). 
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Figure 1-13: Classical and inverse VS flow [231] (Image Courtesy: Scapozza L. et al., Methods; 

2015;71;44-57). 

 

Ligand and structure-based VS approaches were developed to help identify small molecule 

ligands for proteins of interest (Figure 1-14). Structure-based VS utilise the structural 

information of the protein as target and include methods like molecular docking [233], structure 

based pharmacophores [234] and de novo design [235]. Ligand-based VS use the chemical 

structure of known bioactive molecules to identify new active molecules against a particular 

target [236]. These approaches are often combined in either hierarchical or parallel manner to 

take advantage of the strength and avoid the limitations associated with individual methods 

(Figure 1-15).  

 

 

Figure 1-14: Flow-chart of a target-based virtual screening procedure and analysis [231] (Image 
Courtesy: ScapozzaL. et al., Methods; 2015;71;44-57). 



66 
 

 

Figure 1-15: Integration of ligand and structure-based approaches. (A) Hierarchical virtual 

screening, (B) Parallel virtual screening (PVS) [230] (Image Courtesy: Kumar A. et al., Methods; 
2015;71;26-37). 

 
In hierarchical VS, several filters using ligand and structure-based approaches are sequentially 

applied to reduce a large screening library to a number small enough for experimental testing. 

Some of the VS studies are discussed to demonstrate the successful application of VS in small 

molecule drug discovery. 

Chris de Graaf and Didier Rognan used selective structure-based VS to retrieve full and partial 

agonists of the β2-AR. In this study, the X-ray structure of the ground state receptor could not 

distinguish true ligands with different functional effects thereby modifying this structure to 

reflect early conformational events in receptor activation that led to a receptor model which was 

able to selectively retrieve full and partial agonists by structure-based VS [237]. 

Chris de Graaf et al., described a VS method that combines energy based docking scoring 

function with a molecular interaction fingerprint (IFP) to identify new ligands based on GPCR 

crystal structures. This approach resulted in the experimental validation of 53% of the β2-AR and 

73% of the histamine receptor hits with up to nanomolar affinities and potencies [238]. Costanzi 

S. et al., evaluated the applicability of ligand-based and structure-based models to quantitative 

affinity predictions and VS for ligands of the β2-AR [239].  
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Saxena A.K. described the hierarchical VS (HVS) study consisting of pharmacophore modeling, 

docking and VS to identify novel high affinity and selective β3-AR agonists [240]. The focused 

virtual library was generated using the structure-based insights gained from the earlier reported 

comprehensive study focusing on the structural basis of β-AR subtype selectivity of 

representative agonists and antagonists. This study led to the identification of potential virtual 

leads as novel highaffinity and selective β3-AR agonists. 
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1.14 Project Overview 

GPCRs are the largest class of proteins. Despite the recent progress in evolution of large number 

of crystal structures relatively little is understood about the structure-function relationships and 

the correlation of conformational changes required for G protein activation and intracellular 

signaling. GPCR structure-function studies have mainly focused on the conserved 7TM residues 

with the role of residues lining the ECS being poorly defined despite their potential to 

allosterically modulate the GPCR signaling. 

Kobilka group revealed the synergy between the stabilisation of the distinct ECS conformations 

and orthosteric binding site of the β2-AR with the agonists, neutral antagonists and inverse 

agonists opening up new possibilities for allosteric drug targeting at β2-AR [241]. Comparison of 

the orthosteric binding sites of the β1- AR and β2-AR revealed that 15 of 16 (94%) residues are 

identical [87, 242]. In contrast 22 of 39 residues (56%) differ in ECL2 and ECL3 although their 

backbone structure domain is similar (Figure 1-16). This difference in residues at the ECS could 

provide allosteric drug targeting sites specific to the β1- and β2-AR. 

 

Figure 1-16: A) The ECS of β2-AR showing ECL2, ECL3 and inverse agonist carazolol (green); 
B) Intramolecular and ligand binding interactions [243] (Image courtesy: Bokoch M. P. et al., 

Nature; 2010;463;108-112). 

Phe193 in ECL2 forms a favorable edge-to-face interaction with the tricyclic aromatic ring of 

carazolol in the β2-AR crystal structure attributed to conformational change by inverse agonist 

carazolol. MD simulations has shown that the Phe193 adopts the trans conformation pointing 

towards TM5 in the presence of carazolol but it has increased mobility and is able to assume 

multiple conformations in the alprenolol-bound state. 
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Figure 1-17: MD simulations of inverse agonist (carazolol) and neutral antagonist (alprenolol) in 
complex with the β2-AR [243] (Image courtesy: Bokoch M. P. et al., Nature; 2010;463;108-112). 

 
However, the agonists induced conformations differ from those that are induced by inverse 

agonists in that the Lys305–Asp192 salt bridge is weakened in the β2-AR active state. Further, 

the extracellular end of TM6 and TM7 moves upon activation. The TM6 motion necessitates a 

lateral displacement of TM7 that reorients the Lys305 salt bridge in agreement with NMR 

spectroscopy (Figure 1-18).  This study provided direct evidence for the three distinct 

conformations of the β2-AR ECS; a) one for an unliganded receptor or a neutral antagonist; b) 

one for an inverse agonist and c) one for an agonist. 



70 
 

 

Figure 1-18: Model of β2-AR activation by formoterol [243] (Image courtesy: Bokoch M. P. et 
al., Nature; 2010;463;108-112). 
 

Ragnarsson L. et al., established the specific ECS molecular interactions between the refined 

NMR structure of ρ-TIA (a conopeptide from the piscivorous Conus Tulipa) and homology 

model of the α1B-AR derived from the turkey β1-AR [243, 244]. Fourteen residues were 

identified on the ECS of the α1B-AR that influenced ρ-TIA binding. ρ-TIA binding was 

dominated by a salt bridge and cation-π interaction between Arg4-ρ-TIA and Asp327 and 

Phe330 respectively and a T-stacking-π interaction between Trp3-ρ-TIA and Phe330. Water-

bridging hydrogen bonds between Asn2-ρ-TIA and Val197, Trp3-ρ-TIA and Ser318, and the 

positively charged N terminus and Glu186, were also identified (Figure 1-19). These 

interactions revealed that peptide binding to the ECS on TM6 and TM7 at the base of ECL3 are 

sufficient to allosterically inhibit agonist signaling at GPCR. 
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Figure 1-19: Docking of ρ-TIA analogs and ρ-TIA to the α1B-AR and mutants [244] (Image 

courtesy: Ragnarsson. L. et al., J. Biol. Chem.; 2013;288:1814-1827). 

In another study Ragnarsson L. et al., systematically mutated all ECS residues of the α1B-AR to 

alanine (Figure 1-20). This study provided contribution of residues in ECL1 and ECL2 affecting 

NE potency and/or affinity at the α1B-AR to function [140]. Half (24 of 48) of the ECS mutations 

significantly decreased NE potency in an inositol 1-phosphate assay. Most of the mutations 

reduced NE affinity (17) determined from [3H] prazosin displacement studies whereas four 

mutations at the entrance to the NE binding pocket enhanced NE affinity. 
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Figure 1-20: Structure and ECS of α1B-AR. (A) Top view of α1B-AR showing the backbone for 

mutated ECS in green, with the disulfide bond between ECL2 and TM3 in yellow. The cleft 
between ECL2 and TM6 and TM7, where agonists access the orthosteric binding site, is further 

illustrated in B. (B) Top view of α1B-AR in the same orientation as (A), with the surface of ECS 
residues colored by type, with nonpolar side chains in white, polar side chains in green, 
positively charged side chains in red, and negatively charged side chains in blue. Non-ECS 

residues are shown in yellow [140] (Image courtesy: Ragnarsson L. et al., J. Biol. Chem.; 
2015;878:121-129). 

This study found that most of the residues lining ECL1 and ECL2 contributed significantly to 

α1B-AR affinity and/or efficacy. The ECS residues either lined the entrance to the NE binding 

pocket or they lay outside the entrance which might modulate NE function at allosteric sites. In 

contrast to the majority of ECL1 and ECL2 mutations affecting α1B-AR function, only L323A in 

ECL3 decreased NE affinity whereas the K324A and P326A mutants associated with TM7 

significantly reduced NE potency.  

The role of ECL3 in receptor activation is in agreement with results from a study on the 

adenosine A1 receptor [245]. Residues lining the upper lip of the entrance to the NE binding 

pocket reduced NE affinity whereas mutant residues lining the lower lip mostly enhanced NE 

affinity. These residues directly influence the NE binding kinetics as these residues are present at 

the entrance to the NE binding pocket. This study provided insights into potency of NE that can 

be attributed to effects on NE affinity. This is due to the residues lining the NE entrance pocket 

present around ECL1 and ECL2 or from effects on signaling efficacy that arise mostly through 

buried or structurally significant residue. 
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The goal of this project is to extend these studies to define how the ECS conformation of the α1B-

AR changes during agonist activation. An understanding of ligand entry and exit mechanisms 

may help in receptor subtype selectivity of ligand binding and design of specific drugs with 

higher efficacy and longer duration of action. Two parallel approaches were initiated to define 

the role of residues lining the primary and secondary binding sites. Residues predicted from 

binding site server lining the orthosteric site were mutated experimentally for their role in 

signaling while the role of residues at secondary site were predicted from MD simulations.  

Moreover, only a few specific agonists and antagonists are known till date for the above 

receptor. Therefore, a ligand basedor structure based approach will help in finding possible new 

leads. The outcomes of this research will help to understand the GPCR activation process. This 

research is expected to open the door to the rational development of new modulators that can 

recognise the ECS of GPCRs in distinct conformational states. 

Here, we built the homology model of the α1B-AR and carried out MD simulations with docked 

agonist (NE) to understand the activation process. Moreover, we were also interested in studying 

the putative ligand binding residues in the active site and the importance of the ECS in agonist 

binding. Previous studies on the β2-AR have shown that the orthosteric binding site is accessed 

by the ligand through an opening on the ECS [246, 247]. Conversely, in opsin structures the 

same binding site is accessed through TM helices [248]. The ECL2 in opsin forms a β hairpin 

structure thus folding into the TM core and covering the ligand binding pocket. While in the β2-

AR structure, the same loop forms a two and a half turn short α helix slightly displaced away 

from the orthosteric binding site thereby providing a pathway and entrance to the binding pocket 

[249].  

The crystal structure provides only a static view of the ligand-receptor bound state [41] but lacks 

the dynamics and information about the access and exit of ligands from the receptor during its 

activation and inactivation process [156]. In addition, there is a high sequence similarity among 

the three α1 subtypes [250]; therefore a subtle difference in residues lining the orthosteric binding 

pocket may influence the access and exit routes and thereby play a vital role in the receptor 

subtype selectivity of ligand binding. Our MD results are in consonance with the known 

information regarding the activation and inactivation processes of the GPCR.  

Further, we investigated the process of receptor activation by aMD simulations on the apo and 

NE-bound form of the built homology model. Similar to the approach, the residues known from 
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the experimental studies to be involved in receptor activation were mutated individually along 

with some double mutants to further characterise their role. Surprisingly, we found few single 

and double mutants which are of pivotal importance in activation process. At last, we decided to 

perform VS of the known modulator (NE) for α1-AR to come out with new leads which could be 

subtype specific. This process led to identification of new leads which activated all the three α1-

AR subtypes confirming the approach of this process to identify new α1-AR modulators. 
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1.15 Aim and Objectives 

The aim of this project is to study the changes in ECS conformation of the α1B-AR upon agonist 

binding and understand the activation process computationally and to use this information to 

rationally identify new modulators. 

The specific outcomes to be achieved include: 

1. To develop a new molecular model that describes the conformational changes during agonist 

activation of 1-AR (Chapter 2). 

2. To characterise the egress pathway of NE from the orthosteric binding site to identify 

additional contributions to NE affinity (Chapter 2). 

3. To determine the effects of selected ECS residues on agonist binding and NE signaling 

(Chapter 2, 3). 

4. To understand the activation process of the 1B-AR in both apo and NE- bound form 

(Chapter 3). 

5.  Use these models to help identify new modulators acting at ECS conformations of the 1-

AR (Chapter 4). 
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Chapter 2: Role of the Extracellular Surface as a Secondary Site for Agonist Interactions at 

the α1B Adrenoceptor: A Molecular Dynamics Study 

2.1 Introduction 

GPCRs are the largest class of proteins [1]. α1-ARs are members of the class A GPCRs that are 

activated by the catecholamines E and NE released from the adrenal medulla and sympathetic 

nerve endings respectively [2]. α1-ARs are present post-junctionally on effector organs and 

contribute to glycogenolysis in the liver, arrhythmias in the heart, secretion from glands and 

contraction of the gut [3]. Three α1-ARs (α1A, α1B and α1D) have been pharmacologically 

characterized [4, 5] but their roles are still not fully understood due to the lack of structure-

function relationship of selective agonists and antagonists that can distinguish between each of 

the subtypes [6-8]. 

The mechanism by which agonist binding induces the conformational changes in α1-ARs 

necessary for G protein activation and intracellular signaling are inferred from the recent work of 

the Kobilka laboratory which has shown that agonists, neutral antagonists and inverse agonists 

stabilise distinct ECS conformations of the β2-AR [9, 10]. Kobilka demonstrated the role of 

ligand-specific conformational changes around the ECS of the β2-AR by NMR spectroscopy. A 

more detailed understanding of the contributions played by ECS residues in agonist activation is 

expected to identify new possibilities for allosteric drug targeting at GPCRs [11, 12] (Figure 2-

1). 

The crystallised 7TM structures harbors conserved structural motifs common to all class A 

GPCRs members; D(E)RY on TM3, CWxP(Y/F/L) on TM6 and NPxxY on TM7 [13]. The Arg 

residue in D(E)RY motif forms a cytoplasmic salt bridge (ionic lock) with Glu on TM6 (Arg135-

Glu247, PDB ID 1F88) in the inactive class A GPCRs [14]. This ionic lock contributes to an 

energy barrier limiting transitions from the inactive to active-state rhodopsin [15]. The Tyr in the 

NPxxY motif form a structurally important hydrogen bond with the Asn on TM2 (Y306-N73 in 

PDB ID 1F88) specific to rhodopsin [16].  

The extracellular disulphide bond between TM3 and ECL2 is important for ligand binding and 

activation in many GPCRs including rhodopsin [17], CXCR4 [18], β2-AR [19], muscarinic 

receptors [20], gonadotropin releasing hormone receptor [21] and thyrotropin releasing hormone 

receptor [22]. This disulphide bond constrains ECL2 close to TM3 to form part of the entrance 

cavity for ligand binding in non-rhodopsin class A crystal structures. 
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Figure 2-1: Comparison of the overall architecture of GPCR crystal structures between 
subfamilies [23] (Image courtesy: Lewis R. J. et al., Biochem. Pharmacol.; 2013;85;153-162). 

 
The orthosteric binding sites are positioned deep (rhodopsin) or shallow (CXCR4) into the 7TM 

structures (Figure 2-2). A common feature of the orthosteric binding sites in all determined 

crystal structures of class A GPCR is their high rigidity as evidenced by their relatively low 

crystallographic B-factors (higher crystallographic resolution tends to correlate with lower B-

factor) and the negatively charged surface present in all other class A GPCRs except the 

positively charged H1R [24]. These features contribute to the challenge of designing selective 

orthosteric drugs that target only specific GPCR subtypes. Superimposition of the orthosteric 

binding sites reveals extensive structural and sequence overlap of class A GPCRs. 

 
Figure 2-2: Location of the orthosteric binding site in rhodopsin (flanked by residues in green) 
and CXCR4 (residues flanked in brown) [23] (Image courtesy: Lewis R. J. et al., Biochem. 

Pharmacol.; 2013;85;153-162). 
 

Figure 2-3 reveals a high degree of structural conservation despite the low overall protein 

sequence identity of nine class A GPCRs across four different subclasses in complex with a wide 
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variety of orthosteric ligands. For clarity, only the extracellular regions of TM6, TM7 and ECL3 

are shown in the left panel and all ECLs are removed in the rotated view. This information can 

be used to shed light on possibilities to develop subtype selective allosteric modulators that act at 

less conserved structural motifs.  

 
 

Figure 2-3: Residues lining the ECL and orthosteric site of class A GPCR members 

superimposed on the backbone of β2-AR [23] (Image courtesy: Lewis R. J. et al., Biochem. 
Pharmacol.; 2013;85;153-162). 

 
The route ligands follow to enter the orthosteric binding site is of crucial importance to 

understand the importance of ECS residues in receptor activation [9, 10, 25]. Studies on β-ARs 

have revealed that specific residues in the ECS were important to ligand entry and exit [25]. 

These results were supported by random accelerated MD (RAMD) studies [26] that suggest the 

ligands access the primary binding site via the ECS in contrast to TM helices as observed in 

rhodopsin [13, 14, 27] where ECL2 covers the entrance to the binding pocket [10]. Thus, it is 

plausible to suggest an importance of the ECS as a secondary site for ligand binding. Though 

recent progress in crystal structure evolution has provided an atomistic view of the ligand-

receptor interactions, insights into the detailed receptor-ligand interactions are still not known. 

The detailed process by which the ligand dissociates from its receptor and the pattern it follows 

during dissociation remains hidden. 

Deupi et al., demonstrated in atomic detail the molecular basis of ligand binding/unbinding 

events by SMD simulation; the unbinding process of two inverse agonists (cyanopindolol and 

carazolol) which were co-crystallised with β1-AR and β2-ARs subtypes. This study revealed that 

these compounds are likely to access the orthosteric binding site of β-ARs along four different 

channels (C1, C2, C3 and C4, Figure 2-4c) from the extracellular water environment there by 
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suggesting the presence of secondary binding sites located in the ECL2, ECL3 and TM7 where 

ligands are transiently retained by electrostatic and van der Waals interactions (Figure 2-4). 

 

Figure 2-4: Extracellular molecular surfaces of the a) β1-AR,b) and β2-AR and c) embedded in a 
lipid bilayer[28] (Image courtesy: Deupi X. et al., PloS one; 2011;6;e23815). 
 

Charged residues in ECL2 (Asp217 and Asp356 in β1-AR) and ECL3 (Asp192 and Lys305 in β2-

AR) separate the C1 and C2 channel from each other.This study identified that in the process of 

ligand entry Phe218 in β1-AR and Phe193 in β2-AR serve as a floodgate by removing the water 

solvent shell around the compounds during binding. 

Guo D .et al., investigated the molecular basis of ligand dissociation process (antagonist 

ZM241385) in the A2A-R [29]. This study identified the characteristic mutant receptors that alter 

the ligand dissociation rate while only marginally influencing its binding affinity demonstrating 

that even receptor features with little contribution to affinity might prove critical to the 

dissociation process. Further, the antagonist ZM241385 follows a multistep dissociation pathway 

there by consecutively interacting with distinct receptor regions, a mechanism that may also be 

common to many other GPCRs (Figure 2-5). 
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Figure 2-5: MD simulation of ZM241385 passes through multiple distinct consecutive steps 
represented by three superimposed snapshots: red (initial pose, 0ns), green (28ns), and magenta 

(32ns) [29] (Image courtesy: Guo D. et al,, Mol. Pharmacol.; 2016;89;485-491). 
 

In this study antagonist ZM241385 follows a multistep dissociation pathway from the A2A-R 

first breaking the hydrogen bond network formed by the triad of Glu169 in ECL2, Thr256 in 

TM6 and His264 in TM7 and transiently contacting the hydrophobic pocket above Tyr271 in 

TM7 consisting of Ile66 and Ser67 in TM2 and Leu267 in TM7 before moving further away 

from the binding pocket into the extracellular domain and bulk solvent (Figure 2-6). 
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Figure 2-6:Amino acid residues in A2A-R interacting with ZM241385 during its dissociation 

process [29] (Image courtesy: Guo D. et al., Mol. Pharmacol.; 2016;89;485-491). 
 

Craik D. J. et al., delineated the unbinding pathway of α-conotoxin ImI from the α7 nicotinic 

acetylcholine receptor [30]. This study identified three exit routes using RAMD simulations. Of 

the three exit routes that involved smallest perturbation in conformation had three subpathways 

which were studied by SMD simulation. The two subpathways correlated well experimentally 

indicating that these two subpathways are sampled more frequently. 

In the present study, we used a turkey β1-AR (PDB ID: 2YCW) [31, 32] derived homology 

model of hamster α1B-AR and SMD to find the egress pathway of NE from the orthosteric 

binding site of the α1B-AR (Figure 2-7). This study led to the identification of residues on the 

ECS of α1B-AR and two potential secondary sites; first at the entrance of the orthosteric binding 

site around TM5 and ECL2 and second around ECL1 which might be subtype specific.  
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Figure 2-7: Role of MD in delineation of binding/unbinding pathway [33] (Image courtesy: 
Mortier J. et al., Drug Discov. Today; 2015;20;686-702). 

 
The residues identified during egress were subsequently mutated and the resulting mutant 

receptors were then subjected to experimental determination of the ligand‟s affinity. An analysis 

of these results suggests that aromatic residues may play a key role in stabilising specific ECS 

conformations of the receptor with potential to differentially interact with NE. This multi-step 

process of ligand dissociation from the receptor could be speculated to be common to other 

members of the class A GPCR. 
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2.2 Material and Methods 

2.2.1 Homology Modeling 

The hamster α1B-AR sequence retrieved from SwissProtKB/TrEMBL database [34, 35] (primary 

accession number: P18841) was subjected to a NCBI BLASTp [36] search against Protein Data 

Bank (PDB) (Figure 2-8). The crystal structure of the turkey β1-AR at 3.0Å resolution (PDB ID: 

2YCW) was selected as template for homology modeling of the hamster α1B-AR due to its high 

(31.4%) sequence identity using the program MODELLER 9.10 [37]. Secondary structure 

prediction of the TM helices as well as the ICLs and ECLs prediction was performed with the 

PSIPRED server (http://bioinf.cs.ucl.ac.uk/psipred/psiform.html). 

MODELLER (ver.9.10) used for homology modeling of hamster α1B-AR is a computer program 

that models 3D structures of proteins and their assemblies by satisfaction of spatial restrains. Ten 

crude models were generated initiallyby the automated class in MODELLER and the model with 

the lowest DOPE score and molpdf score was selected for further ligand modeling. PROCHECK 

programme was used to validate the stereochemistry using Ramachandran plot.  

The loops in the initial crude homology model showed steric clashes as observed from the 

ERRAT plot were subjected for loop modeling by Modeller Loop class and validated by ERRAT 

plot. This gives the measure of the structural error at each amino acid residues in the 3D structure 

model which should be below 95% cut-off value. Some of the amino acid residues of hamster 

α1B-AR that formed secondary structure had an error value more than 95% cut-off value. 10 

models generated from loop modeling were validated by PROCHECK and ERRAT plot. Binding 

site for NE docking in the resulting model was predicted by Q-SiteFinder [38]. Energy 

minimisation was performed on the crude models and default settings were used in Modeller for 

model building.   

http://bioinf.cs.ucl.ac.uk/psipred/psiform.html
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Figure 2-8: Comparison of hamster α1B-AR sequences with α-ARs, β-ARs, muscarinic, dopamine, histamine and opioid receptors 

obtained from UniProt [39] (Image courtesy: Ragnarsson L. et al., J. Biol. Chem.; 2013;288;1814-1827). 
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2.2.2 Molecular Docking 

Molecular docking is a computationally intensive structure-based VS technique which 

generates and scores putative protein-ligand complexes according to their calculated binding 

affinities. It has been successfully used for identifying active compounds by filtering out 

those that do not fit into the binding sites. In the absence of the structural information of the 

target, a homology model can be constructed and used for molecular docking analysis. 

In the present study, molecular docking was performed with the developed homology model 

of hamster α1B-AR using Genetic Optimisation for Ligand Docking (GOLD) program. For 

the purpose of docking, homology model structure of hamster α1B-AR was prepared with the 

structure preparation tool available in AutoDock and GOLD. Hydrogen atoms were added 

and Gasteiger-Hückel charges were appropriately assigned. 

Docking of NE to the orthosteric binding site of hamster α1B-AR was performed with 

AutoDock [40] and GOLD [41]. In AutoDock, the grid maps were prepared using the 

AutoGrid utility with 54*52*48 points which is sufficiently large to accommodate all active 

site residues and grid spacing was set to 0.375Å. Docking parameters were kept as per 

following; number of individuals in the population was set to 150, maximum number of 

energy evaluations was set to 2500000, maximum number of generations was set to 2700 and 

number of genetic algorithm (GA) runs was set to 20. A docking pose of NE which showed 

the lowest binding energy was selected for MD simulation studies. 

In GOLD two scoring functions; Gold Score fitness function and Chem Score fitness function 

was used to estimate the efficiency of docking. For each of the five independent GA runs, a 

maximum number of 100000 GA operations were performed on a set of five groups with a 

population size of 100 individuals. Operator weights for crossover, mutation, and migration 

were set to 95, 95 and 10 respectively. Default cut off values of 2.5Å and 4.0Å was employed 

for hydrogen bonds and van der Waals distance. GA docking was terminated when the top 

three solutions had an RMSD within 1.5Å. The best ranked solutions were always among the 

first 10 GA runs and the conformations of NE based on the best fitness score were further 

analysed. 
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2.2.3 Molecular Dynamics Simulations 

All MD trajectories were calculated using NAMD2.9 [42, 43]. The protein was internally 

hydrated using SOLVATE program [44]. To imitate the membrane environment, the modeled 

hamster α1B-AR was inserted into the phospholipid bilayer generated from membrane builder 

module of VMD 1.9 [45]. The membrane consisted of 184 molecules of 1-palmitoyl-2-

oleoyl-sn-glycerol-3-phosphatidylcholine (POPC) and was equilibrated for 0.5ns. The system 

was neutralised by adding chloride ions and additional sodium and chloride ions were added 

to a final concentration of 0.15mol/L. 

The parameters for NE were partly obtained from the work published on β2-AR by Spijker. et 

al., [46] and remaining were derived from parameters already present in the CHARMM force 

field [47] for similar chemical groups. Temperature control was maintained at 310K with 

Langevin dynamics and a damping constant of 5ps−1; applied to non-hydrogen atoms. 

Periodic boundary conditions were used with the Nosé-Hoover Langevin piston method [48] 

(piston period 200fs, decay rate 50fs) to maintain a constant pressure of 1.013Bar. 

The Particle-mesh Ewald algorithm [49] was used to account for long-range electrostatic 

effects (grid resolution <1Å). The van der Waals interactions were determined using a 

Leonard–Jones function. The cut off radius for including atoms in the nearest-neighbor list 

was set to 13.5Å. 1-2 and 1-3 interactions were excluded while 1-4 interactions were scaled 

by multiplication with a predefined factor. All other non-bonded interactions were calculated 

using a switching function to smooth the interactions to zero between 10 and 12Å. The 

integration time steps were 2, 1, and 2fs for bonded, nonbonded and long-range electrostatic 

interactions respectively. The lengths of all chemical bonds were constrained by the SHAKE 

algorithm [50] involving hydrogen atoms at their equilibrium values while the SETTLE 

algorithm [51] was used to set the water geometry restrained rigid. The system was first 

minimised for lipids and water (1ns) while keeping the protein and ligand fixed followed by 

an all-atom conjugate gradient minimisation of the entire system during which protein was 

relaxed and allowed to move freely. After this the system was equilibrated for 10ns at 310K 

and constant pressure. 
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2.2.3.1 Steered Molecular Dynamics Simulations 

The process of NE dissociation from the orthosteric binding site of the hamster α1B-AR was 

studied by SMD [52] implemented in NAMD2.9. Simulations were carried out using NPT 

ensemble with a constant number of molecules, temperature and pressure with periodic 

boundary conditions after equilibrating the system for 10ns to ensure system is 

thermodynamically stable. The initial structures for the simulations were the snapshots that 

were taken randomly from the equilibration states during conventional MD. The direction of 

the applied forces was defined with respect to the centre of mass of the NE (catechol moiety). 

SMD simulations were performed at constant velocity of 10Å/ns and the spring constant was 

set to 250pN/Å. The exponent for harmonic constraints applied to the Cα atoms of helix was 

set to a value of 2. The process was repeated 5 times for 5ns until the NE was displaced 

towards ECS. The potential of mean force (PMF) was calculated according to Jarzynski‟s 

equation [53]. 

 

2.2.4 Site-Directed Mutagenesis 

The site directed mutagenesis reactions were carried out using the QuikChangeTM 

Mutagenesis kit (Stratagene Cloning Systems, La Jolla, CA, USA) following the 

manufacturer‟s instructions with the hamster α1B‐AR vector (a kind gift from Prof. Bob 

Graham, Victor Chang Cardiac Research Institute, Sydney, Australia) as template to produce 

mutant cDNAs. Sense and antisense oligonucleotide primers (Sigma Aldrich, Sydney, 

Australia) were designed to produce the following mutations in the α1B‐AR; C129A, F117A, 

A204G, A204T, S208A, F212A and Y338A. TOP‐10 E.coli cells (invitrogen) were 

transformed with wildtype (WT) and mutant cDNA and plated onto LB plates containing 

ampicillin and incubated at 37ºC for 16‐20 hrs. Plasmid preparation was performed using a 

Miniprep and High Speed Maxi kit (Invitrogen). Purified cDNA was used to confirm all 

mutations by sequencing at the Australian genome Research Facility. 

 

2.2.5 Transient Expression of α1B-AR and Membrane Preparation 

COS‐1 cells (ATCC, Manassas, VA) were cultured in Dulbecco‟s modified Eagle‟s medium 

(DMEM) supplemented with 5% fetal bovine serum (FBS) in a humidified incubator at 37ºC 

and 5% CO2. Cells were transiently transfected with purified plasmid DNA encoding WT or 

mutant hamster α1B‐AR using FuGENE HD (Roche) (6μg DNA/25cm2, 36μg DNA/145 cm2) 

following the manufacturer‟s protocol. Cell membranes were prepared 48h post transfection 
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wherein cells were harvested and homogenised by Polytron homogeniser in HEM buffer 

(20mM HEPES, 1.5mM EGTA, 12.5mM MgCl2, pH 7.4) mixed with complete protease 

inhibitor. The homogenate was centrifuged at 2000rpm for 10 min (RCF/G-Force, 45) and 

resulting supernatant was centrifuged at 14000rpm for 30 mins (RCF/G-Force, 6586) at 4°C. 

The pellet was re-suspended in HEM buffer with 10% v/v glycerol stored at ‐80°C. BCA 

protein assay kit was used to determine the protein concentration following manufacturer‟s 

protocol.  

 

2.2.6 FLIPR Assay Measuring Intracellular Ca2+ Responses 

On the day of the assay cells were loaded with the Calcium 4 No‐wash dye (Molecular 

Devices) by diluting the lyophilised dye in physiological salt solution and incubated for 30 

min at 37°C in a 5% humidified CO2 incubator. Intracellular Ca2+ responses were measured 

in response to increasing concentrations of agonist (NE) (10pM–100μM), in a Fluorometric 

Imaging Plate Reader (FLIPR) (Molecular Devices, Sunnyvale, CA) using a cooled CCD 

camera with excitation at 470–495nM and emission at 515–575nM. Camera gain and 

intensity were adjusted for each plate to yield a minimum of 1000 arbitrary fluorescence units 

(AFU) baseline fluorescence. Prior to addition of NE, 10 baseline fluorescence readings were 

taken followed by fluorescent readings every second for 300s. Concentration‐response curves 

were established by plotting DeltaF/F0 values where F0 is the base‐line level of fluorescence 

and Delta F is the change in fluorescence from the baseline level against agonist 

concentration using Prism (GraphPad Software). 

 

2.2.7 Radioligand Binding Assay 

The affinity of the NE at the α1B-AR mutants was determined using the radiolabeled α1-AR 

antagonist [3H] prazosin (0.5nm). Reactions were carried out in a round bottom 96 well plate 

with radioligand, membranes from α1B‐AR‐transfected COS‐1 cells (5μg of protein) and 

increasing concentration of NE (10pM - 10μM) in HEM buffer. Saturation binding assays 

were also performed to determine the Kd value for prazosin at each of the mutant. The assays 

were performed in triplicates in a total reaction volume of 150μl. The membranes were 

incubated for 60 mins at room temperature followed by harvesting onto Whatman GF/B filter 

mats pretreated with 0.6% polyethyleneimine using a TomTec harvester. Beta plate scintillant 

was then applied and the filter bound radioactivity was then measured using 

WallacMicroBeta. 
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2.2.8 Statistics and Data Analysis 

Sigmoidal curves for the calculation of EC50 were fitted to individual data points by nonlinear 

regression using the software package Prism (GraphPad Software, San Diego, CA).The NE 

signaling efficiency was calculated as the NE pEC50 value minus the NEKi value with 

additional adjustment for the significantly reduced expression levels (observed only for the 

C118A mutant). Bmaxvalues were determined from two 12-point saturation binding 

experiments with 95% confidence intervals overlapping WT values were considered not 

significantly different fromWT, otherwise these experiments were performed in triplicate. 
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2.3 Results and Discussion 

2.3.1 Homology Modeling 

A 3D structure of the hamster α1B-AR was built by homology modeling [37]. Hits retrieved 

from the BLASTp [36] search were compared for %identity and %similarity. Turkey-β1-AR 

(PDB ID: 2YCW) [31, 54] was selected as template for model building (31.4% identity and 

47.9% similarity). The residues comprising the TM regions of GPCRs were found to be 

relatively conserved upon sequence alignment between the hamster α1B-AR and turkey β1-AR 

(Figure 2-9). 

 

Figure 2-9: Sequence alignment between hamster α1B-AR and turkey β1-AR (grey bars 

showing the % identity between the residues in α1B-AR and turkey β1-AR; * represent the 
similar residues). 

 

The structural superposition of the Cα atoms of the hamster α1B-AR with that of the turkey 

β1-AR for 268 Cα atom pairs resulted in a root mean square deviation (RMSD) of 0.22Å 

(Figure 2-10).  
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Figure 2-10: Superimposition of Cα backbone of hamster α1B-AR (cyan) with the X-ray 
crystal structure of turkey-β1-AR (PDB ID: 2YCW) (magenta) and RMSD calculated. 

The homology model of hamster α1B-AR showed an ERRAT quality factor of 85.38%. 

Ramachandran plot (93.7%, 6.3%, 0.0%, and 0.0%) indicated that 100.0% of the residues in 

the α1B-AR model are either in the most favored or in the additionally allowed regions with 

no residues in generously allowed or disallowed regions (Figure 2-11) [55]. 
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Figure 2-11: Ramachandran plot showing the percentage of residues in the favored and 

allowed region while Errat plot displays the steric clashes with an overall quality factor of 

85.38. 
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2.3.2 Molecular Docking 

Binding site for NE docking in the hamster α1B-AR model as predicted by Q-SiteFinder is 

shown in Figure 2-12. Binding site analysis of the modeled hamster α1B-AR identified 

similarity in residues lining the orthosteric binding pocket with that of the turkey β1-AR 

(Asp125, Val122, Tyr207, Ser211, Ser215, Trp303, Phe306 and Phe307). Therefore, we 

proceeded with the modeled structure for docking studies of NE in the orthosteric binding site 

by AutoDock and GOLD software. Docking was evaluated based on two criteria;  

(i) Binding pose and  

(ii) Scoring function.  

Binding pose was evaluated based on consistency with experimentally determined NE 

interactions while the scoring function considered the lowest energy value for AutoDock and 

highest GOLD Score function for GOLD as parameters of docking efficiency. 

 

Figure 2-12: Binding site prediction in the hamster α1B-AR model by Q-SiteFinder. One 
orthosteric site (red) and two auxiliary sites were predicted in ECL1 (Cyan) and ECL2 

(Yellow). 
 

Molecular docking of NE revealed formation of strong hydrogen bond interactions with 

Asp125, Glu199 and Ser207 of the α1B-AR with both AutoDock and GOLD (Figure 2-13) 

which is consistent with interactions observed for ligand binding in orthosteric sites of related 

GPCR co-crystal structures including cyanapindolol bound turkey-β1-AR [33] and carazolol 

bound β2-AR [14] (RMSD 0.245 and 0.119) suggesting correct docking of NE in the binding 

cavity. Additionally, NE was seen to form a strong hydrogen bond with Val197 in ECL2 and 
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weak hydrogen bonds with residues Glu186, Leu314, Ser315, Leu333 and Pro335 in some of 

the binding poses as observed with AutoDock. Water mediated hydrogen bond between the N 

terminal positive charge of ρ-TIA and Glu-186, Asn-2-ρ-TIA and the backbone Val-197, was 

observed in a study by Ragnarsson et al. However, hydrogen bond formation between Asn-2-

ρ-TIA and the backbone of Val-197 was not validated via mutational approaches [39]. 

 

 

Figure 2-13: Docked pose of NE into hamster α1B-AR obtained from A) AutoDock (Ligand: 

Silver color) and B) GOLD (Ligand: Green color) (Side view). 
 
NE also formed hydrogen bonds with the backbone of the Cys129 in TM3, Ala204 in TM5 

and other short-range contacts like van der Waals and hydrophobic interactions with Trp184, 

Tyr203, Trp307 and Phe311 in some of the docking poses as observed with GOLD. The best 

pose has a docking score of 38.40 (DOPE and molpdf score). In the docking poses evaluated, 

NE consistently docked in tilted position (% occurrence ±5%) with the catechol moiety 

forming hydrogen bonds with residues in TM5 and terminal amine side chain forming 

hydrogen bond with TM3. 
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2.3.3 Molecular Dynamics 

2.3.3.1 Stability of Trajectories 

The trajectory for the whole system was analysed for total energy, potential energy, 

temperature and pressure (Figure 2-14).  

 

Figure 2-14: The equilibrated system of NE with hamster α1B-AR obtained after 10ns 

showing   constant level of Volume, Temperature, Total Energy and Potential Energy. 

The Figure 2-14 shows the curve for total energy with respect to number of frames for all the 

structures during a 10ns equilibration run which includes equilibration with protein 

constrained and relaxed. The system is stabilised at an average total energy of -

98,000Kcal/mol at 310K and 1.013bar. The RMSD stability for the whole system and three 

ECLs was also analysed to study the effective conformational sampling. The RMSD plot 

shows that the whole system is stable at an average value of 2.7Å after approximately 6ns 

while the three ECLs have relatively higher average RMSD of 25Å, 30Å and 40Å for ECL1, 

ECL2 and ECL3 probably because the loops are exposed to the solvent at extracellular side. 
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2.3.4 Route Preference for NE Dissociation 

A docking pose of NE which showed the highest Gold Score fitness function and lowest 

binding energy was selected for MD simulations studies. Initially the receptor was embedded 

in a lipid bilayer and equilibrated for 10ns. After equilibration, forces were applied on the 

centre of mass of the catechol group of NE. Before performing the actual simulation, the 

direction of the pulling vector was determined based on position and orientation of the ligand 

in the binding site.  

The most preferable route was found to be in +z direction (Figure 2-15) towards the ECS 

(Figure 2-16) and not from the TM helices as observed in rhodopsin. The process of ligand 

dissociation from the orthosteric binding site to ECS also suggests the probable entry route 

for NE. The ligand is found to be retained in the receptor along with extracellular solvent to a 

distance of ~15Å from the orthosteric binding site.  

 

 

Figure 2-15: The dissociation process of NE from the orthosteric site in +z direction as 

observed by visual molecular dynamics pluggin (VMD). 
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Figure 2-16: The binding cavity and the NE egress pathway. A) Position 1 represents the 

orthosteric binding site; B) Position 2 (ECL2) represents the auxiliary site 1 and c) Position 3 
(ECL1) represent the auxiliary site 2. 
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2.3.5 Force Profile of NE during Dissociation 

The force profile of NE pulling experiments is shown in Figure 2-17. The initial force 

required to pull NE from the orthosteric binding site averages to ~600pN which is considered 

to be an average value in ligand diffusion SMD experiments showing that initially large 

amount of force is required to break the strong  hydrogen bonds between the NE and Asp125 

in TM3 and Ser207 in TM5. Position 1 represents the orthosteric binding site while position 2 

represent the auxiliary site 1 (at ECL2) and position 3 represent the auxiliary site 2 (at 

ECL1). An overlap between the orthosteric binding site and auxiliary site 1 (at ECL2) is also 

observed along the egress pathway where NE interacts with Tyr203, Ser207 and Ser208 

residues in TM5. 

 

Figure 2-17: Force (averaged) vs Time. Plot showing the force profile of NE SMD 
simulation run at different time intervals along with three characteristic positions 1, 2 and 3. 

Highlighted position 1 in red color corresponds to orthosteric site similar to NE docking pose. 

The positive slope found in the potential of mean force (PMF) profile (Figure 2-17) and an 

increased force required to pull NE characterises secondary retention sites of NE while 

exiting from the orthosteric site. The positively charged NE is attracted by the negatively 

charged residues lining the ECS which may account for ligand binding affinity at these sites. 
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Figure 2-18: PMF plot obtained from adaptive biasing force (ABF) simulation of NE during 
egress pathway. Highlighted position 1 in red color corresponds to orthosteric site similar to 

NE docking pose and an overlap site between the orthosteric and auxiliary site 1 (ECL2). 
 
As shown in Figure 2-17, NE encounters the biggest energy barrier at the beginning of the 

simulations wherein the force required to move NE from the cavity averages to 500‒600pN 

during the first 0.4ns and thereafter force decreases gradually as NE move towards ECS. At 

this position, NE completely dissociates from the orthosteric binding site and is shown to be 

interacting with the residues Tyr203, Ser207 and Ser208 in TM5.  

Our results infer a characteristic pi-pi interaction between side chain of Trp184 in ECL2 and 

Tyr203 in TM5 (Figure 2-19) while hydroxyl group of Tyr203 forms a weak hydrogen bond 

with amine side chain of NE. At this point, catechol ring of NE flips its position by 

approximately 180º while still maintaining weak interactions with Tyr203. As the ligand is 

displaced further, a strong interaction with Glu194 and Val197 in the ECL2 and a salt bridge 

between the tertiary amine side chain of the NE and Ser207 in TM5 deters further exit of NE. 

Trp121 in TM3 is at ~3Å to NE and forms intermolecular hydrogen bonds with Val98 in 

TM2 and stabilises the protein. At this point, NE is stabilised at the interface of ECL1 and 

ECL2 by Cys195 in ECL2 and Gly109 in ECL1 along with a weak salt bridge formed 

between the amine side chain and Glu194 in ECL2 which retains NE at this auxiliary site.
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Figure 2-19: Egress route of NE along the position 2 (auxiliary site 1; ECL2 (highlighted in red color)) interacting with residues Cys195, 
Val197, Thr198, Glu199 and Glu200 along with its respective position as represented in Force averaged vs time and PMF plot. 
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A characteristic weak pi-pi interaction is observed along the egress pathway between catechol 

moiety of NE and phenyl ring of Tyr110 in ECL1 which accounts for a short energy barrier 

and a small force required to break the subsequent interactions (Figure 2-20). This position is 

further stabilised by weak interactions between ligand and residues in ECL1, ECL2 and TM2. 

As the ligand moves along during simulation, the distance between ligand and ECL1 further 

decreases and an increment in force is required to overcome the energy barrier formed by 

strong hydrogen bond between Cys195 and the β-hydroxyl group of NE. Further, a salt 

bridge between Gly109 and a tertiary amine side chain and a T-pi interaction between 

catechol moiety of NE and phenyl ring of Tyr110 hinders the egress. 

 

 

Figure 2-20: Egress route of NE along the position 3 (auxiliary site 2; ECL1 (highlighted in 

red color)) interacting with residues Gly109 and Tyr110 with its position in Force averaged 
vs time and PMF plot. 
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2.3.6 Characterisation of Residues Lining the ECS 

From the results obtained, it can be inferred that the positively charged NE is attracted by the 

negatively charged residues lining the ECS which may account for ligand binding affinity at 

these sites. Because the ECS is flanked by negative side chains, these help in strong NE 

binding interactions and hence an extra force is required to break these interactions setting 

NE free. Thus, these sites may also act as secondary sites for NE retention during its egress 

from the orthosteric binding site and probably it can be inferred that same route is followed 

by NE whileentering into the orthosteric binding site. The various residues interacting with 

NE during egress are listed in Table 2-1. 

Table 2-1: List of residues in different regions of TM and ECLs interacting with NE during 

egress pathway as predicted from docking and MD studies. 
 

 

The route preferred by NE during egress is in conjunction with the results obtained from 

PDBSUM for crude homology model implying that the egress pathway is same, before and 

after refining the model and after performing SMD simulations. The refinement of crude 

homology model was done for steric clashes and loop refinement after initial homology 

model was obtained. Figure 2-21 shows a characteristic path taken by NE in which position 1 

represents the primary site where NE originally binds in the orthosteric site. Position 2 

(auxiliary site 1) represents the probable constriction site for ligand entry and exit surrounded 

by residues from TM4, TM5 and ECL2 while position 3 (auxiliary site 2) is located in 

between ECL1 and ECL2. 
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Figure 2-21: Likely egress route for NE from the orthosteric binding site to ECS highlighting 
position 1 as orthosteric or primary binding site; position 2 as auxiliary site 1 between TMV 

and ECL2 and position 3 as auxiliary site 2 at ECL1. 
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2.3.7 Characterisation of Egress Pathway Residue Effect on Prazosin Affinity at α1B-AR  

Prazosin binds in the orthosteric pocket below the ECS of the α1B-AR and was used to 

evaluate the expression levels and structural integrity of the ECS mutants. There was no 

change in prazosin Kd for the mutants in the TMs adjoining ECL1, TM2, and TM3. In ECL2, 

no mutants significantly affected prazosin affinity. Alanine mutations in ECL3 and the ECS 

residues in the adjoining TM6 and TM7 had no significant effect on prazosin affinity. Bmax 

values were generated for all mutants. 

To determine the contribution of the residues for NE binding identified from SMD of NE 

from α1B-AR, we mutated these residues to the alanine and glycine across the extracellular 

portions of associated TM helices. To further confirm the stability of the protein for any 

conformation changes and structural integrity, Kd value was calculated for antagonist 

prazosin (Figure 2-22) which binds in the site like NE and other agonists. COS-1 cells were 

used for the expression of the WT and the mutants which were tested initially for their 

affinity to bind with the antagonist prazosin.  

As shown in Figure 2-22, no significant changes in the Kd value for prazosin compared to 

WT (Kd = 0.85 ± 0.197 (3), nM) was observed for Y110A, F117A, Y121A, C129A, 

W184A,C195A, V197A, T198A, E199A, E200A, Y203A, A204G, A204T, S207A, S08A 

and F212A. The prazosin Kd increased by 10 fold for G109A and decreased by 8 fold for 

Y338A. Table 2-2 summarises the pharmacological characterisation of WT and α1B-AR 

mutants showing Prazosin Kd. and Bmax determined from saturation binding assays. 
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Figure 2-22: Effect of α1B-AR mutants on prazosin Kd. A comparison of WT and α1B-AR mutants Kd for prazosin determined from saturation 

binding curves where nonspecific binding was determined in the presence of 10nM phentolamine. Values are means ± S.E. of 2–4 separate 
experiments for mutants and n=6 for WT, each performed in triplicate. 
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2.3.8 Characterisation of NE Efficacy 

The binding site mutations predicted from egress pathway and Q‐SiteFinder studies were also 

assessed for altered signaling using the FLIPR platform. These residues were Asp125, 

Trp184 at orthosteric site (Position 1), Cys195, Val197, Thr198, Glu199, Glu200 and Ala204 

at auxiliary site 1 (position 2), Gly109, Tyr110, Phe117 and Trp121 at auxiliary site 2 

(position 3) (Figure 2-21) plus Cys129, Ser208, Phe212 and Tyr338 predicted from Q-

SiteFinder surrounding the orthosteric binding site. Mutation of D125A resulted in total loss 

of function for NE alike in a study by Hwa et al., [56], while potency decreased by 1000 folds 

for W121A, C195A and Y203A compared with the WT (5 ± 0.69 (7), nM) α1B-AR receptor. 

The F212A and Y338A mutants showed a 100 fold decrease in NE potency and Y110A, 

C129A, W184A, T198A, E200A, A204G, A204T, S207A mutants reduced NE potency by 10 

fold. In contrast, G109A, F117A, V197A, E199A and S208A mutants had no effect on 

signaling as shown in Figure 2-23. These residues line the orthosteric binding site and ECS 

with Gly109, Tyr110 in ECL1; Phe117, Trp121, Asp125, Cys129 in TM3; Trp184, Cys195, 

Val197, Thr198, Glu199, Glu200 in ECL2; Tyr203, Ala204, Ser207, Ser208, Phe212 in TM5 

and Tyr338 in TM7. 

Weak interactions between residues lining the ECL2 and NE present in position 2 may 

account for smaller change (<10 fold reduction) implying mutation of these residues does not 

have a major influence on NE binding and less force is required to extract the NE from the 

position 2. Similarly, weak pi‐pi and T‐pi interactions between the catechol ring of NE and 

phenolic ring of Tyr110 in ECL1 along with formation of a very weak hydrogen bond 

between Trp121 and Val98 in TM2 present around the orthosteric binding site may account 

for greater reduction in NE potency. 
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Figure 2-23: Bar graph showing NE potency at mutated a1B-AR. Comparison of NE EC50 values for WT and α1B-AR mutants in response to 

increasing concentrations of NE in transiently transfected COS-1 cells. Values are means ± S.E.M. of 7 separate experiments for WT and three 
to four separate experiments for each mutant (each performed in triplicate). 
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Previous studies on the mutation of residues in ECL1, ECL2, TM3, TM5 and TM7 have 

revealed their functional importance in receptor activation [7, 11, 19, 28, 39, 56]. Mutation of 

the D125A in TM3 conserved to class A GPCRs leads to complete loss of the activity while 

mutation of S207A in TM5 reduces NE affinity by 100 fold. Ser207 forms hydrogen bond 

with the hydroxyl group of the NE while Asp125 forms hydrogen bond with the amine group 

of the NE [56]. Residues conserved in the NPxxY motif of TM7 are significant for receptor 

activation by formation of hydrogen bond between the Tyr223 (TM5) and Tyr338 (TM7) 

[57]. Table 2-2 summarises the pharmacological characterisation of WT and mutant α1B-ARs 

showing NE EC50 determined measuring Ca2+ in response to increasing concentrations of NE 

in a FLIPR assay. 
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2.3.9 Characterisation of NE Affinity at α1B-AR Mutants 

To evaluate the effects of mutants on NE binding, the affinity of NE (Ki) was determined 

from the radioligand binding experiments. Similar to loss of activity for D125A in signaling 

assay, NE did not bind to the receptor when Asp125 was mutated to alanine. This is evident 

in a study by Cotechhia S [57] where mutation of Asp125 to alanine profoundly impaired the 

ability of the hamster α1B-AR to bind antagonists. Similar results were obtained by 

Ragnarsson et al., [39]. In contrast to D125A, the affinity for W184A, Y203A and S207A is 

significantly decreased by 17-, 67- and 168 folds in position 1 of egress pathway compared to 

the WT (21.5 ± 0.66 (4) µm). This could be referred as an initial step in egress pathway of 

NE where NE initially forms strong hydrogen bond with Asp125 and Ser207 and as it moves 

out of the binding site, a strong pi-pi interaction between the Trp184 and Tyr203 and a 

hydrogen bond formation between the Tyr203 and NE leads to retention of NE at this 

secondary site, part of which overlaps with the primary orthosteric binding site. 

The residues at auxiliary position 1 in ECL2 (Cys195, Val197, Thr198, Glu199, Glu200 and 

Ala204) has mixed change in NE affinity. Mutation of V197A resulted in increased affinity 

for NE by 2- fold whereas affinity drop observed for C195A, T198A, E200A and A204G was 

160-, 11-, 5- and 18-fold respectively as shown in Figure 2-24. The affinity remains 

unaffected for E199A compared to WT. The results support the signaling data where 

mutation of C195A results in breaking of disulphide bond with C118 that provides stability to 

ECL2 and ECS. The ECL2 along with upper half of TM2, TM3, TM5 and TM7 has mixed 

ratio of hydrophilic and hydrophobic residues which imparts specific physio-chemical nature 

to the receptor.  
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Figure 2-24: Comparison of Ki values for α1B-AR mutants in response to increasing concentrations of NE (n=4). Comparison of NE Ki values 

for WT and a1B-AR mutants. The affinity of NE at the WT receptor and α1B-AR mutants was determined from displacement of the radiolabeled 
α1-AR antagonist [3H] prazosin (0.5nM) using membranes from α1B-AR–transfected COS-1 cells (5µg protein) and increasing concentrations of 
NE. Values are means ± S.E.M. of 4 separate experiments for WT and two to three separate experiments for each mutant (each performed in 

triplicate). 



134 
 

In position 3 of egress route, the NE affinity for G109A is increased by 3 folds whereas 

affinity remains unchanged for Y110A and decreases for F117A and W121A by 2- and 39-

folds respectively. Trp121 in TM3 around the orthosteric site forms intermolecular hydrogen 

bond with backbone of Val98 in TM2 and imparts additional stability to the binding site 

network residues. G109A and Y110A adjacent to each other in ECL1 do not have effect on 

potency but affinity increases for G109A by 3-folds. At this position, Tyr110 forms a weak 

T-pi stacking interaction with NE and Gly109 forms a salt bridge with amine side chain of 

NE during egress.  

Phe117 located at tip of TM3 is in close proximity to NE egress pathway and therefore 

mutation of Phe117 to alanine reduces affinity. Additionally predicted residues from Q-Site 

finder lining the orthosteric binding site contributes differently to the binding affinity. 

C129A, S208A, F212A and Y338A have reduced affinity for NE by 8-, 10-, 4- and 2-folds 

respectively. Table 2-2 summarises the pharmacological characterisation of WT and mutant 

α1B-ARs showing NE Ki determined from radioligand binding assays. 
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Table 2-2: Pharmacological characterisation of WT and mutant α1B-ARs showing Bmax determined from saturation binding assays, Prazosin Kd, 
NE Ki determined from radioligand binding assays and NE EC50 determined measuring Ca2+ in response to increasing concentrations of NE in 

FLIPR with NE efficiency = pEC50 – pKi [58]. 
Mutants

a 
Bmax %  of WT Prazosin Kd (nM) NE EC50 (nM) NE Ki (µM) Efficiency 

 (Log Scale) 

α1B-WT 100 0.85 ± 0.19 (3) 5 ± 0.69 (7) 21.5 ± 0.66 (4) 3.61 ± 0.33 (4) 

D125A - - - - - 

W184A 77.00 ±16.00 (2) 0.72 ± 0.11 (3) 69 ± 0.82 (6) 354.8 ± 0.88 (3) 3.70 ± 0.13 (3) 

Y203A 146.25 ±21.07 (4) 1.92 ± 0.39 (3) 12547 ± 0.90 (6) 1433.9 ± 0.93 (3) 2.05 ± 0.07 (3) 

S207A 170.5 ±17.50 (2) 0.99 ± 0.05 (3) 169 ± 0.81 (6) 3613.2 ± 0.58 (3) 4.32 ± 0.32 (3) 

C195A 38.50 ±25.50 (2) 1.00 ± 0.28 (3) 9632 ± 0.87 (6) 3440.8 ± 0.86 (3) 2.55 ± 0.11 (3) 

V197A 46.00 ±27.00 (2) 0.69 ± 0.02 (3) 10 ± 0.59 (6) 10.0 ± 0.78 (3) 2.97 ± 0.33 (3) 

T198A 112.75 ±2.29 (4) 1.26 ± 0.16 (3) 30 ± .0.85 (6) 229.0 ± 0.95 (3) 3.87 ± 0.09 (3) 

E199A 113.00 ±58.00 (2) 1.06 ± 0.00 (3) 2 ± 0.89 (6) 16.5 ± 0.88 (3) 3.78 ± 0.10 (3) 

E200A 56.00 ±18.00 (2) 0.59 ± 0.06 (3) 31 ± 0.79 (6) 103.1 ± 0.87 (3) 3.51 ± 0.16 (3) 

A204G 121.63 ± 20.34 (2) 2.22 ± 0.03 (2) 105 ± 0.42 (4) 383.1 ± 0.67 (3) 3.56 ± 0.53 (3) 

A204T 10.89 ± 38.25 (2) 0.41 ± 0.07 (3) 43 ± 0.49 (6) 58.0 ± 0.77 (3) 3.12 ± 0.53 (3) 

G109A 49.67 ±11.85 (3) 0.08 ± 0.01 (3) 3 ± 0.93 (7) 6.6 ± 0.70 (3) 3.34 ± 0.18 (3) 

Y110A 3.67 ±0.33 (3) 0.43 ± 0.03 (3) 12 ± 0.70 (3) 29.7 ± 0.88 (3) 3.37 ± 0.20 (3) 

F117A 62.77 ± 31.53 (2) 4.59 ± 0.37 (2) 50 ± 0.84 (4) 45.7 ± 0.79 (3) 2.95 ± 0.16 (3) 

W121A 240.00 ±15.70 (2) 2.39 ± 0.35 (3) 3530 ± 0.79 (6) 831.7 ± 0.98 (3) 2.38 ± 0.11 (3) 

C129A 6.92 ± 59.59 (2) 0.14 ± 0.02 (2) 29 ± 0.91 (3) 168.9 ± 0.92 (3) 3.75 ± 0.07 (3) 

S208A 172.3 ± 32.63 (2) 2.83 ± 0.61 (2) 4 ± 0.74 (3) 205.4 ± 0.78 (3) 4.65 ± 0.22 (3) 

F212A 12.04 ± 66.27 (2) 3.99 ± 0.01 (2) 311 ± 0.82 (3) 76.6 ± 0.88 (3) 2.39 ± 0.13 (3) 

Y338A 17.69 ± 20.29 (2) 6.54 ± 0.36 (2) 372 ± 0.85 (3) 35.8 ± 0.63 (4) 1.98 ± 0.26 (4) 
a
Values are the mean ± S.E.M., with the number (n) of separate experiments indicated for each mutant.
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2.3.10 Characterisation of NE Signaling Efficiency 

NE signaling efficiency for the WT and other mutants was obtained by subtracting the effect 

of pKi from pEC50 (pEC50 - pKi). Efficiency characterises the effectiveness of NE for 

receptor activation on the individual mutants (Figure 2-25). In position 1, Y203A showed 

reduced efficiency by 36-folds and S207A had an increase in efficiency by 5-folds when 

compared with WT (log 3.61 ± 0.33 (4)) while in position 2, C195A, V197A, T198A and 

A204T decreased signaling efficiency by 11-, 2-, 4- and 3-folds while rest of the mutants 

remained unaffected. Position 3 mutants also had effect on efficiency where F117A and 

W121A reduced efficiency by 5- and 17-folds respectively. Other predicted residues also 

affected efficiency where F212A and Y338A decreased efficiency by 17- and 43-folds and 

S208A increased efficiency by 11-folds. Table 2 summarises the pharmacological 

characteristion of WT and mutant α1B-ARs showing NE efficiency = pEC50 – pKi. 

We addressed the exit pathway of NE from the homology model of hamster α1B-AR, the most 

prevalent drug target involved in many diseases. At the time we conducted our study, no 

crystal structure of α1B-AR was available in the repository hence to study the ligand 

dissociation process we built the homology model of hamster α1B-AR from turkey β1-AR 

based on the sequence similarity. The successful implementation of the MD simulations in 

the biological systems has been known and cited many times in the literature. 
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Figure 2-25: Plot showing NE signaling efficiency for α1B-AR mutants. To characterise how effectively NE activated WT and mutant receptors, 

NE efficacy was calculated as the NE pEC50 value minus the NE Ki value (pEC50 - pKi) for NE at WT and α1B-AR mutants. Values are means ± 
S.E.M. of 7 separate experiments for WT and three separate experiments for each mutant (each performed in triplicate).
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MD simulations have been used to study structure-activity relationship at the atomistic level 

along with association and dissociation of ligand from its drug target. This study helped us to 

identify the residues that would have gone unnoticed in a more classical site directed 

mutagenesis study with a primary emphasis on loss- or gain-of-affinity mutations [39, 58]. These 

residues form transient interactions with NE that contribute to the energetic barriers along the 

dissociation pathway which may further influence the global conformation of the receptor. 

Interestingly, the mutants involved in the ligand dissociation process are located in two 

topographically different clusters at auxiliary sites 1 and 2 apart from the orthosteric binding site. 

Docking studies of the fenoterol derivatives with β2-AR indicated that the ligand carazolol and 

BI-167107 bind to the orthosteric site and their pattern of the interaction is very similar to that of 

the BI-167107 molecule originally co-crystallised with β2-AR (active conformation). The 3,5-

dihydroxyphenyl group of fenoterol interacts with serines (Ser203, Ser204, Ser207) located at 

TM5 while the protonated amine group of the ligand is involved in formation of the ionic bridge 

with the carboxyl group of Asp113 (TM3) [59-61]. Carazolol closely interacts in β2-AR with TM 

polar residues like Asp113 (TM3), Asn312 (TM7), Tyr316 (TM7), Ser203 (TM5) and Ser207 

(TM5) similar to that observed with docking of NE in our hamster α1B-AR homology model 

(Asp125 (TM3), Tyr203 (TM5) and Ser207 (TM5)) [25]. 

The crystal structure of carazolol bound β2-AR provided static view of β2-AR-ligand bound state 

but lacks information about how a ligand diffuses in and out of the receptor or any 

conformational changes of the receptor accompanying ligand binding and dissociation. The 

residues lining the orthosteric pocket are mostly conserved among the GPCRs except for 

residues that line the ECLs which are non-conserved and thus might be responsible for subtype 

selectivity. ECL2 not only plays specific role in allosterism [62], ligand recognition, ligand 

specificity [63] and receptor activation process [64, 65] but studies have shown that ECL2 is 

critical to the ligand binding kinetics due to its conformational flexibility [62, 66]. The 

interactions broken along the path of NE exit may create resistance for NE dissociation as well as 

the obstacles for NE entry. RAMD simulations have suggested that ligands access the orthosteric 

binding site of the β2-AR mainly through an opening at the ECS. 

Ting Wang and Yong Duan have shown that carazolol exited from the binding pocket of β2-AR 

through the opening on the ECS via diverse routes; the ECS opening (pathway A i.e., the 

putative entrance), the cleft between TM4 and TM5 (pathway B), the cleft between TM5 and 
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TM6 (pathway C), the cleft between TM1 and TM2 (pathway D), the cleft between TM1 and 

TM7 (pathway E) and the cleft between TM6 and TM7 (pathway F) [25]. The amino acid 

differences at the entrance/exit, to and from the ligand-binding pocket may contribute to the 

receptor subtype-selectivity of ligand-binding in the β-AR subfamily. 

The residues at the ECS of β2-AR suggests the existence of an electronegative funnel that attracts 

positively charged ligands into the orthosteric binding site [67] similar to that observed in our 

hamster α1B-AR model where electronegatively charged ECS attracts the positively charged NE. 

The initial force peaks to remove ligands from the orthosteric binding site via extracellular 

channels C1 or C2 in β2-AR were on average ∼600pN, like extraction of NE from the α1B-AR 

orthosteric pocket (Figure 2-4; 2-17). The force required for pulling ligands from the rhodopsin 

is double compared to α- and β-ARs for channels other than extracellular route (via TMs 1 and 7 

or TMs 5 and 6) [68].  

Similar to unbinding of cyanopindolol by disruption of the initial interactions (electrostatic 

interaction with Asp113  (TM3) and hydrogen bonds with Ser207 (TM5) and Asn312 (TM7) and 

breaking of interactions with Asp125  (TM3) and Ser207 (TM5) in α1B-AR homology model), 

the maximal force  fall as the ligands displace further from the orthosteric binding site towards 

the exit channels [69]. The process of ligand extraction shows two retention sites at ∼0.9ns and 

∼1.5ns in both β1- and β2-AR identical to the auxiliary position 1 (ECL2) and auxiliary position 

2 (ECL1) as observed in our α1B-AR homology model. In the final steps of the simulations, 

ligand drifted apart from the receptors with no further retention and the force decays to zero. 

During dissociation, ligands (carazolol and cyanopindolol) are retained in the boundary with the 

extracellular solvent (∼9–15Å from the orthosteric binding site) in both β1-AR and β2-AR while 

NE is placed at ~13Å from the centre of mass of the protein and is displaced by ~10-13Å 

towards the ECS during the force pulling experiment as depicted by PMF plot (Figure 2-18). 

These retention sites serve as secondary binding pockets during ligand entry and exit process in 

the ARs. The residues Asp192 in ECL2 and Lys305 in TM7 forms a salt bridge and separates the 

two subcavities in β2-AR [70]. Similar to this, a strong salt bridge is observed in the hamster α1B-

AR homology model between the Glu106 in TM1 and Lys331 in TM7.  

A systematic alanine scan of the ECL and TM mutants was performed to help understand the 

role of these residues in class A GPCR function and the contribution of these residues to NE 

potency, affinity and signaling efficiency. This study identified that ECS residues contributed 
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significantly to the α1B-AR affinity and efficiency. These residues lined the entrance to the 

orthosteric binding site where they might affect the NE function allosterically or its access to the 

binding pocket. Tikhonova I. G. et al., compared the unbinding process of β1- and β2-selective 

antagonists from β1- and β2-AR by applying SMD simulations and have shown the potential for a 

kinetic basis of antagonist selectivity [70]. 

Clark et al., [71] and Peeters et al., [72, 73] demonstrated the role of residues in ECL1, ECL2 

and ECL3 in A2A-R activation including the structurally important WxFG motif similar to 

WVLG motif in ECL1 of α1B-AR. The adjoining ECL1 mutant Y110A reduced potency but not 

efficacy. ECL1 is critical to maintain the structural scaffold of class A GPCRs [74], and 

mutations in ECL1 affect affinity and efficacy that distorts the ECS confirmation. ECL2 is least 

conserved loop in sequence and structure and participates in the orthosteric binding pocket of 

rhodopsin [14] andbinding of dopamine to the dopamine receptor [75]. ECL2 influence the 

agonist versus antagonist function in human-rat P2Y4 receptor [76] and point mutations in ECL2 

produced constitutively active receptors [64] or inhibitory effects on signaling when ECL2 

flexibility was affected [62]. 

11 of the 16 mutants in ECL2 of the α1B-AR reduces NE potency including 9 mutants that reduce 

NE affinity (W184A, K185A, E186A, N190A, D191A, D192A, C195A, T198A and E200A) and 

four that reduce NE efficacy (N190A, C195A, G196A and V197)  [58]. Hwa et al, swapped three 

of the residues (G196Q, V197I and T198N) in ECL2 of α1B-AR to the corresponding residues in 

α1A-AR and showed these residues influence the antagonist selectivity between the three α1-AR 

subtypes [77].  In our model of hamster α1B-AR, these residues are present at the auxiliary site 1 

and might influence the access of NE to the orthosteric binding pocket. 

ECL2 is further stabilised by intramolecular interactions in addition to being anchored to the 

extracellular end of TM3 via conserved cysteine bond that may promote stabilisation of the 

inactive state [78]. Therefore the conserved disulfide bond between the C118A and C195A 

mutants (TM3 and ECL2) affect the NE and agonist potency as shown by Ragnarsson et al., [39] 

in hamster α1B-AR model and other class A GPCRs [18-22, 79-83]. The effect of these mutations 

can be clustered in various regions based on their affinity and signaling efficiency like at the start 

of ECL1, mutants tend to reduce NE affinity while mutants across ECL2 reduce efficacy. 

Disruption of the disulfide bond between Cys118 and Cys195 enhances the ρ-TIA affinity but 

has no effect on prazosin affinity and reduces NE potency [39]. 
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In the unbound WT-α1B-AR, Asp125 in TM3 forms a salt bridge with Lys331 in TM7 equivalent 

to what has been established for the rhodopsin receptor but not observed in our α1B-AR model 

[56]. Mutation of Asp125 has shown specific radioligand binding as demonstrated by Perez et 

al., [56] on α1B-AR similar to mutation in α2-AR [84] and β2-AR [85]. Specific radioligand 

binding has also been shown for similar aspartic acid counterion mutations in the serotonin 

receptor [86]. Substitution of a serine or asparagine for the conserved Asp113 in TM3 of the β2-

AR resulted in a reduction of affinity by 10,000-fold for selective AR agonists and antagonists 

[87]. A functional response in α1A-ARs was observed between AR agonists and specific serine 

residues in TM5 [88]. The ability to constitutively activate α1B-ARs by substituting many types 

of amino acids at multiple and diversified positions in the protein suggests the importance of 

maintaining the basal conformation of the WT receptor [56, 89]. 

The MD simulation of NE egress from the α1B-AR provides support to the experimental 

observations and our speculation of unbinding process of the ligand which is a multi-step 

process. The atomic-level descriptions of the process as observed in this study will deepen our 

understanding of ligand-GPCR interactions and will lay the structural foundation for future 

rational design of drugs with optimised binding kinetics. 
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Chapter 3: Characterisation of α1B-AR upon Agonist Binding by Computational Approach 

3.1 Introduction 

α1-AR function through catecholamine, particularly NE and E primarily by increasing or 

decreasing the intracellular production of secondary messengers such as cAMP or IP3/DAG [1]. 

α1-AR are present post-junctionally to the effector organs and regulates secretion from the gland, 

gut contraction, glycogenolysis in liver and arrhythmias in the heart [2]. They represent 

important targets for drugs for the treatment of a broad spectrum of diseases including benign 

prostatic hyperplasia, hypertension and anxiety disorders [3, 4].  

TMs of the functionally active crystal structures of the class A GPCRs known till date like opsin 

(active metarhodopsin II (3PQR)) [5], β2-AR (active G protein-bound (3SN6) [6], active-like 

nanobody bound (3POG)) [7]; A2A-R (agonist UK432097 bound (3QAK) [8]) internally 

rearranges towards the cytoplasmic side that leads to cascade of bond swapping and bond 

forming events [9, 10] (Figure 3-1).  

 

Figure 3-1: Comparison of active and inactive GPCR crystal structures [11] (Image courtesy: 

Libin ye et al., Nature; 2016;533;265-268). 
 
Rhodopsin was the first GPCR to be crystallised initially in an inactive state with an inverse 

agonist 11-cis-retinal and provides a unique structural framework to study GPCR activation.The 

ligand (blue) in the inactive (a–c) and active (d–f) conformation of rhodopsin, the β2-AR and 

A2A-R is embedded in a binding pocket located mainly between TM3, TM5, TM6 and TM7 
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(Figure 3-2). The binding of agonists induces related conformational changes around the 

interhelix interfaces that result into rotation of TM6 and rearrangement of TM5 and TM7.  

 

Figure 3-2: Conserved features of agonist-induced activation in three different G protein-
coupled receptors through a transmission switch in the TM3–TM5–TM6 helix interfaces [12] 
(Image courtesy: Deupi et al., Curr. Opin. Struct. Biol.; 2011;21;541-551). 

 
In rhodopsin, A2A-R and to some extent in β2-AR, rotation of TM6 is accompanied by a 

translocation of Trp6.48 [13] located close to the base of the binding pocket. In the inactive state, 

the retinal β-ionone ring in the case of rhodopsin (panel a) or a ribose ring that is a key feature of 

most A2A-R antagonists (panel c) occupies the position where Trp6.48 will move upon activation 

(panels d + f). Hence, translocation of Trp6.48 may be concluded as a common feature of GPCR 

activation. One helix turn towards the cytoplasmic side of TM6, sits the conserved Phe6.44 that in 

all active-state structures moves towards TM5 where it leads to rearrangement of Leu5.51 close to 

Pro5.50. Also, relocation of Ile/Leu3.40 away from Pro5.50 further contributes to these changes in the 

local structure which can be transmitted through TM5 [12]. Figure 3-3 outlines the agonist 

induced activation process. 

http://www.sciencedirect.com/science/journal/0959440X
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Figure 3-3: Conceptual overview of agonist-induced activation in class A GPCRs [12] (Image 

courtesy: Deupi et al., Curr. Opin. Struct. Biol.; 2011;21;541-551). 
 

In the active state, salt bridge is broken between the D3.49(E)RY motif in TM3 and Glu6.50 in 

TM6 with an outward movement of TM6 by ~3 to 8Å (Figure 3-4). The cytoplasmic end of 

TM6 in active β2-AR is tilted outward by 14Å and 11Å when coupled with the G protein [6] and 

its mimetic nanobody [7]. However, a smaller TM6 movement (∼6–7Å) is observed in ligand-

free opsin [5]. Ballesteros et al., predicted disruption of ionic lock between TM3 and TM6 in β2-

AR that leads to constitutive activation of the receptor. Mutation of Glu6.50 in TM6 to glutamine 

or alanine (E268Q or E268A) and mutation of aspartic acid in DRY motif to asparagine (D130N) 

or combination of these mutants D130N/E268Q or D130N/E268A caused elevation of basal 

agonist-independent cAMP accumulation in transiently transfected COS-7 cells as compared 

with the WT receptor [14]. 

http://www.sciencedirect.com/science/journal/0959440X
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Figure 3-4: Structure alignment of active and inactive GPCR structures with an outward 
movement of TM by 3-8 Å [15] (Image courtesy: Srivastava A. et al., Nature; 2014;1-

4).Structures are aligned based on equivalent residues in TM helices A) On the basis of the 
compendium of activation states of β2-AR and hGPR40 (grey) TM5 and TM6 adopt an 

orientation most like the inactive (antagonist bound) state and B) A comparison with structurally 
similar peptide-binding receptors, NTSR1 (active-like 4GRV in green) and PAR1 (inactive 
3VW7 in magenta), suggests receptor subclasses may have a significant impact on TM5 and 

TM6 orientation regardless of activation state. 
 

Scheer et al., suggested that in α1B-AR, protonation of the Asp3.49 adjacent to Arg3.50 shifts Arg3.50 

out of the polar pocket formed by the TMs 1, 2 and 7. This shift leads to long range 

conformational changes [16]. An ensemble of different conformations characterise α1-AR to be 

constitutionally active and thus possess a certain degree of basal activity without binding to an 

agonist [17]. Cotecchia reported constitutive activity of the wild type α1A- and α1B-AR when the 

receptors were overexpressed in COS-7 cells [17]. The spontaneous activity of the α1B-AR was 

greater than that of the α1A-AR expressed at similar levels (3–4pmol/mg of protein) [18]. For the 

wild type α1D-AR, constitutive activity and internalisation was reported for the receptor 

expressed in rat fibroblasts [19, 20]. Experimentally, mutation of the aspartate of the D(E)RY 
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motif in TM3 and Glu2896.30 in TM6 markedly increased the constitutive activity of the α1B-AR 

[21].  

Single molecule spectroscopy experiments [22] have demonstrated that even in the absence of 

ligands, β2-AR exists in equilibrium between a number of discrete conformational states [23]. 

Agonist binding promotes activation by shifting this equilibrium toward the active states 

although binding of G protein is required for their full stabilisation. Fluorescence resonance 

energy transfer (FRET) experiments can detect distinct conformational changes induced by E 

and NE and allows the calculation of activation kinetics [24]. This change in conformations leads 

to receptor activation and deactivation based upon binding of an agonist and inverse agonist 

while binding of an antagonist blocks binding of other ligands to the receptor with no signaling 

[25, 26].  

Despite availability of the few active structures, most GPCRs lack active-state crystal structures. 

However, a lot has been inferred from mutagenesis, fluorescent labeling and other biophysics 

experiments. These experiments provided more valid information of the dynamic process than a 

frozen snap shot of the receptor that has been manipulated to stabilise a specific confirmation for 

crystallisation (chapter 1, Nygarrd et al.,). The activation mechanism is accompanied by 

questions which need to be resolved to understand the process of receptor activation like how 

ligand binding at ECS triggers signaling at intracellular G protein coupling site? how many 

conformational states are required before activation? how the active conformational state transits 

with other active states or remain stables during activation? 

Many computational studies have been undertaken to study the GPCR activation mechanism [27-

34] but the goal could not be attained despite of the use of supercomputers. Inactive 

conformations along with transitions were observed for the active structure of β2-AR on 

microsecond level timeframe by cMD in a study by Dror et al., [35]. In a similar study on M2 

muscarinic receptor, binding of antagonist tiotropium to the extracellular vestibule of the apo 

form of the receptor was observed but the structure remained inactive.  

Miao et al., demonstrated the use of aMD on M2 muscarinic receptor to study receptor activation 

[33]. They observed direct activation of the ligand-free (apo) form of the M2 receptor through 

hundreds of nanosecond aMD simulations. The receptor activation was characterised by 

formation of a hydrogen bond between the Tyr2065.58 – Tyr4407.53 and outward movement of 

cytoplasmic end of TM6 by ~6Å (Figure 3-5), which is in agreement with previous GPCR 
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studies where TM6 has been suggested to be a switch for the conformational transitions of the 

M5 receptor between inactive and active states [36].  

 

 

Figure 3-5: A highly dynamic transition network identified in the M2 receptor [33] (Image 
courtesy: Miao Y. et al., Proc. Nat. Acad. Sci.; 2013;110:10982-10987). 

 
The activated M2 receptor resembles the ligand-free opsin as its G protein–coupling site can 

accommodate the GαCT peptide [5]. The intermediate conformations observed for M2 receptor 

were different from the β2-AR [37] as two different processes were simulated i.e., the 

deactivation of β2-AR from the G protein/nanobody-coupled conformation and the activation of 

the M2 receptor in a ligand-free form. An allosteric pathway of M2 activation was further 

demonstrated by examination of conformational changes of key residues and TM domains in the 

aMD simulation (Figure 3-6). 

 

 

Figure 3-6: An allosteric activation pathway of the M2 receptor derived from aMD simulations 

[33] (Image courtesy: Miao Y. et al., Proc. Nat. Acad. Sci.; 2013;110:10982-10987). 
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The M2 receptor exists in a conformational equilibrium of the inactive, intermediate and active 

states. The side chain of Tyr2065.58 reorients from the initial position between TM3 and TM6 to 

the lipid-exposed side of TM6 resulting in an alternative intermediate conformation. During final 

transition to the active sate, Tyr2065.58 and Tyr4407.53 relocate the side chains toward each other 

forming hydrogen bond and the cytoplasmic end of TM6 tilts outward by ∼6 Å [33]. 

aMD is a sampling technique in NAMD where energy barriers are reduced to increase the 

transitions between the low energy states by addition of boost potential to the energy surface 

[38]. In the present study, we performed aMD on the homology model of the α1B-AR  (template: 

2YCW-Turkey β1-AR [39]) to identify the active conformation on both NE-free (apo) and NE-

bound α1B-AR model. Parameter selected for receptor activation was the hydrogen bond 

formation between the Tyr223-Tyr348. 
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3.2 Material and Methods 

3.2.1 Classical Molecular Dynamics Simulations 

The homology model of α1B-AR derived from the crystal structure of Turkey β1-AR (PDB: 

2YCW resolved at 3.0Å, from chapter 2) was used for all the simulations. All MD trajectories 

were calculated using NAMD2.9 [40]. The protein was internally hydrated using SOLVATE 

program [41]. To imitate the membrane environment, the modeled hamster α1B-AR was inserted 

into the phospholipid bilayer generated from membrane builder module of VMD1.9 [42]. The 

membrane consisted of 184 molecules of POPC and was equilibrated for 0.5ns. The system was 

neutralised by adding chloride ions and additional sodium and chloride ions were added to a final 

concentration of 0.15mol/L.  

The parameters for NE were partly obtained from the work published on β2-AR by Spijker. et al., 

[43]  and remaining were derived from parameters already present in the CHARMM force field 

[44] for similar chemical groups. Temperature control was maintained at 310K with Langevin 

dynamics and a damping constant of 5ps−1 was applied to non-hydrogen atoms. Periodic 

boundary conditions were used with the Nosé-Hoover Langevin piston method [45] (piston 

period 200fs, decay rate 50fs) to maintain a constant pressure of 1.013Bar.  

The Particle-mesh Ewald algorithm [46] was used to account for long-range electrostatic effects 

(grid resolution <1Å). The van der Waals interactions were determined using a Lennard–Jones 

function. The cut off radius for including atoms in the nearest-neighbor list was set to 13.5Å. 1–2 

and 1–3 interactions were excluded while 1–4 interactions were scaled by multiplication with a 

predefined factor. All other non-bonded interactions were calculated using a switching function 

to smooth interactions to zero between 10 and 12Å. The integration timesteps were 2, 1, and 2fs 

for bonded, non-bonded and long-range electrostatic interactions respectively. The lengths of all 

chemical bonds were constrained by the SHAKE algorithm [47] involving hydrogen atoms at 

their equilibrium values while the SETTLE algorithm [48] was used to set the water geometry 

restrained rigid. The system was first minimised for lipids and water (1ns) while keeping the 

protein and ligand fixed followed by an all-atom conjugate gradient minimisation of the entire 

system during which protein was relaxed and allowed to move freely. After this, the system was 

equilibrated for 10ns at 310K and constant pressure. 

The simulation was carried out both on the apo form and the ligand bound form of the α1B-AR 

homology model along with periodic boundary conditions. Out of the two disulphide bonds in 
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the crystal structure of the turkey β1-AR, one disulphide bond between Cys118 – Cys195 was 

maintained in all the simulations. This disulphide bond is maintained in all the class A GPCRs 

structures and forms an integral part of activation and signaling [6, 49-52]. 

 

3.2.2 Accelerated Molecular Dynamics 

aMD implemented in NAMD is an acceleration simulation which adds boost potential and 

surpass low energy barriers. In our study, we performed aMD in two different ways:  

(1) Dihedral aMD: in which boost potential is applied to all the dihedral angles in the system 

(parameters: Edihed and αdihed) and  

(2) Dual-Boost aMD: in which boost potential is applied to all atoms in the system along with 

dihedral angles.  

We performed aMD simulations starting from the final structure of 100ns cMD. Initially, 

dihedral aMD simulations was set up on both the apo and NE-bound form of the α1B-AR model 

where  

Edihed = Vdihed_avg + λ*Vdihed_avg and  

Acceleration factor αdihed = λ*Vdihed_avg/5 in which 

Vdihed_avg = average dihedral energy calculated from the 100ns cMD and 

λ= adjustable acceleration parameter. 

The value for acceleration factor λ = 0.3, was chosen from the previous studies by Miao et al 

[33] on M2 muscarinic receptor to maintain the α-helix secondary structure during the 

simulations. For both the apo and NE-bound form of α1B-AR dihedral aMD simulations was 

started from the final structure of the 100ns cMD with same atomic velocity at 310K 

Later, dual-boost aMD simulations was performed on the apo and NE-bound form of the α1B-AR 

like dihedral aMD from the final structure of 100ns cMD along with input parameters (Edihed, 

αdihed; Etotal, αtotal) where  

Edihed = Vdihed_avg + 0.3*Vdihed_avg,  

αdihed = 0.3*Vdihed_avg/5,  

Etotal = Vtotal_avg + 0.2*Natoms and  

αtotal = 0.2*Natoms. 

Etotal = total energy of the system  

Vtotal_avg = average total energy calculated from the 100ns cMD 
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Natoms = total number of atoms in the system (including lipids ions and water)  

αtotal = total acceleration of the system 

We carried out only one simulation each on the apo and NE-bound form with the same atomic 

velocity initialisation at 310K. A 75ns production run was performed for the apo-α1B-AR and 

50ns for the NE-bound form of the receptor. Additionally, we performed 10ns dihedral and dual 

boost aMD on a set of 27 mutants in both the apo and NE-bound form of the α1B-AR proposed to 

be involved in receptor activation. These residues were experimentally tested in our lab by 

Ragnarsson et al., [53, 54] and the consequences of these mutations were assessed using aMD. 

Each of these residues was mutated with MUTATOR pluggin implemented in NAMD2.9. The 

mutated form of the α1B-AR was then energy minimised and equilibrated for 0.5ns each followed 

by a 5ns cMD production run. The final structure obtained from the 5ns production run was used 

as starting structure for all the 10ns dihedral and dual-boost aMD. 
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3.3 Results and Discussion 

We performed 100ns cMD on the apo and NE-bound forms of the α1B-AR homology model 

followed by dihedral and dual boost aMD simulations. In the cMD run for 100ns with the apo- 

α1B-AR (Figure 3-7A and 3-7B), the receptor does not deviate from the α1B-AR homology 

model. However, substantial fluctuations were observed in full length ECL2 followed by ECL3, 

while ECl1 remained fairly stable during full simulation run. In contrast, the NE- bound α1B-AR 

model showed high fluctuations in ECL2 for first 50ns with an average RMSD reaching to 3.5Å 

after which fluctuations became stable. No distinct fluctuations were observed for ECL1 and 

ECL3. 

 

A) 
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Figure 3-7: RMSD of the Cα atoms calculated from the 100ns cMD for the protein, ECL1, 

ECL2 and ECL3 for A) apo- α1B-AR and B) NE- α1B-AR. 
 

In Dihedral aMD on apo- α1B-AR for 75ns (Figure 3-8A), the three ECL‟s showed variable 

fluctuations during the simulation run with an overall average RMSD of 1.5Å. ECL1 remained 

stable throughout the simulation with an RMSD around 0.5Å while ECL3 showed initial 

fluctuations with an RMSD of 1.5Å and ECL2 was initially stable and fluctuated in the later part 

of simulation. Then, we performed dihedral aMD on the NE-bound form of the α1B-AR (Figure 

3-8B). In contrast to the apo-form, ECL2 showed markedly high fluctuations in 50ns run with 

RMSD averaging to ~2Å implying enhanced sampling is obtained by dihedral aMD while fewer 

fluctuations were observed for the ECL1 and ECL2 which remained stable 

B) 
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Figure 3-8: A) RMSD of the Cα atoms in apo-α1B-AR calculated from the 75ns dihedral aMD 
for the protein, ECL1, ECL2 and ECL3. B) RMSD of the Cα atoms in NE-α1B-AR calculated 

from the 50ns dihedral aMD for the protein, ECL1, ECL2 and ECL3. 
 

Increased dynamics was observed in the ECS of the receptor in NE-bound form than the apo-

form in dihedral aMD, but the receptor maintained a similar conformation to the apo-α1B-AR 

(starting model after cMD) showing active conformation is not attained. In contrast in a study by 

Miao et al., on M2 muscarinic receptor [33], markedly higher fluctuations were observed for the 

A) 

B) 
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ECL3 than ECL2 in dihedral aMD in the apo and QNB-bound form of the receptor. This 

difference can be attributed to the different simulation process where an antagonist QNB was 

bound to the M2 receptor while we simulated agonist NE bound to the α1B-AR homology model. 

The apo form showed more fluctuations in the ligand binding domain of the TM helices 3, 4, 5 

and 6. Also, the receptor maintained inactive conformation similar to the X-ray structure at 

microsecond level Anton simulation [55] with antagonist tiotropium.  

Next, we performed dual-boost aMD restarting from the final structure of the 100ns cMD which 

provides better sampling than dihedral aMD. Enhanced sampling provides insights in the 

identification of the receptor intermediates and actives which are distinct from the inactive 

conformation of the receptor. The apo-form of the receptor remained inactive in a 75ns 

simulation run despite sampling of the larger conformational space. Although, significant 

fluctuations (RMSD 5Å) were observed for ECL2 compared to dihedral aMD, ECL1 and ECL3 

were almost stable throughout the simulation (Figure 3-9A) with ECL1 (RMSD 1Å) more stable 

than ECL3 (RMSD 2Å) because of the short length which imparts less flexibility to ECL1. 

In the NE-bound form of the α1B-AR, higher fluctuations were observed for ECL2 (RMSD 4Å) 

like that of dihedral aMD in a 50ns run (Figure 3-9B) while ECL1 remained stable compared to 

smaller fluctuations observed in dihedral aMD. ECL3 was initially stable for 20ns with an 

RMSD averaging to 1Å while fluctuations were observed for later part of the simulation (RMSD 

2Å). Despite fluctuations observed in the ECS, the receptor maintained an inactive conformation 

during the simulation process suggesting that the agonist NE does not surpass the energy barriers 

in a 50ns run that leads to conformational transition of the receptor to pass from inactive to 

active-state. Significant fluctuations in the RMSD of the ECL2 suggest the role of this loop in 

maintaining the specific conformation necessary for receptor activation.  
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A)  

 

B)  

 

Figure 3-9: A) RMSD of the Cα atoms in apo-α1B-AR calculated from the 75ns dual-boost aMD 

for the protein, ECL1, ECL2 and ECL3. B) RMSD of the Cα atoms in NE-α1B-AR calculated 
from the 50ns dual-boost aMD for the protein, ECL1, ECL2 and ECL3. 
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3.3.1 Activation Process of α1B-AR 

A series of dihedral and dual-boost aMD simulations were carried out on the α1B-AR in apo and 

NE-bound form to provide insights into the process of receptor activation. Receptor activation is 

characterised by formation of hydrogen bond between Tyr227 (TM5) and Tyr338 (TM7); ~6Å 

outward movement of the cytoplasmic end of the TM6 and breaking of the ionic lock between 

TM3 and TM6. We analysed the hydrogen bond formation between Tyr223 and Tyr348 as the 

primary criteria for receptor activation as observed in activation of M2 muscarinic receptor by 

Miao et al., [7] where Tyr2065.58 and Tyr4407.53 forms hydrogen bond in the G protein-coupling 

site towards the intracellular domain. The active structures reported for opsin, β2-AR bound to 

Gs protein or nanobody, A2A-R are characterised by rearrangement of TM5, TM6 and TM7 

while the side chains of Tyr5.58 and Tyr7.53 relocate towards each other in the intracellular pocket 

of M2 receptor compared to the inactive structures [5, 52, 56, 57]. 

In apo-form of the α1B-AR, Tyr (-OH) – Tyr (-OH) distance shows varied degree of fluctuation 

from 8Å-30Å during 75ns run in dual-boost aMD while no fluctuations were observed for 

dihedral aMD (Figure 3-10A). The Tyr (-OH) – Tyr (-OH) distance remained stable around 15Å 

in dihedral aMD suggesting receptor remained inactive during the whole process with a similar 

conformation to that of the starting structure. The side chains of the two Tyr residues move to 

and fro between the lipid side of the membrane and center of protein during the simulation 

because of which TM5 and TM7 are not close enough for hydrogen bond formation and thus an 

increased RMSD is observed.  

In NE-α1B-AR, Tyr (-OH) – Tyr (-OH) distance showed varied fluctuation from 8Å-17Å during 

50ns run in dual-boost aMD while the Tyr (-OH) – Tyr (-OH) distance remained stable around 

15Å in dihedral aMD (Figure 3-10B) suggesting a similar conformation to that of the starting 

structure. In dual-boost aMD, the distance between Tyr223 and Tyr348 initially decreased from 

15Å to 8Å over first 20ns and then increased to 15Å and became stable at 15ns. Further, the 

distance decreased to around 10Å and became stable till 50ns. 
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A) 

 

B)    

 

Figure 3-10: Distance between the side chain oxygen atoms of Tyr223 and Tyr348 for dihedral 

and dual-boost aMD for A) apo-α1B-AR. B) NE-α1B-AR.  
 

Additionally, we carried out dihedral and dual-boost aMD on the apo and NE-bound form of the 

27 α1B-AR mutants (Y110A, W111A, L113A, G114A, R115A, C118A, V126A, P180A, L181A, 

G183A, W184A, K185A, N190A, C195A, G196A, T198A, E200A, Y203A, S207A, Y223F, 

F310A, F311A and Y348F) including 4 double mutants (C118A-C195A, Y223F-N344A, 

Y223F-Y348F and N344A-Y348F). These mutants were experimentally tested in our laboratory 



169 
 

by Ragnarsson et al., and were found to influence the NE affinity, potency and efficiency [53, 

54]. Some of these residues were present at allosteric site 1 (ECL2) and 2 (ECL1) along with an 

overlap between the allosteric site 1 and 2 in TM5 and affected the NE egress pathway from the 

orthosteric binding pocket to the ECS as described in chapter 2. The double mutant C118A-

C195A is a conserved disulfide bond anchoring ECL2 to TM3 while Y223F-Y348F is shown to 

affect signaling efficiency. 
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A) 
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B) 

 

Figure 3-11: Distance between the side chain oxygen atoms of Tyr223 and Tyr348 for apo-α1B-AR mutants for A) Dual-Boost and B) 

Dihedral aMD. 
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Some of the mutants identified from the experimental analysis by Ragnarsson et al., [53, 54] 

affect affinity and are believed to play role in receptor activation [20, 21]. Initially 5ns cMD 

simulations were carried out followed by 10ns aMD (Dual-Boost and Dihedral) from the final 

structure obtained from cMD. We observed mixed results for these mutants in dihedral and dual-

boost aMD simulations (Y223F-Y348F in apo- and NE-bound α1B-AR moved close to receptor 

activation for dual-boost and dihedral aMD while L181A and W184A in apo-α1B-AR for dual-

boost aMD, N190A in NE-α1B-AR for dual-boost aMD and Y203A in apo-α1B-AR for dihedral 

aMD (Figure 3-11)) were found moving close to activated state based on distance between 

Tyr223 (TM5) -Tyr348 (TM7). 

The Tyr223 (-OH) – Tyr348 (-OH) distance for most of the mutants in apo-α1B-AR remained 

stable during simulation. For mutants W111A, L181A, G183A, W184A, Y203A F310A, F311A 

and Y223F-Y348F, the distance between the Tyr223 and Tyr348 is reduced from ~15Å-~8Å for 

dual-boost aMD and for N190A, Y223F-Y348F the phe- distance reduced from ~15Å to ~5Å. 

This suggests internal rearrangement of the TM helices at the cytoplasmic end which rendered 

the side chain of two tyrosine residues close to each other suggesting movement of receptor 

towards active state. 

The Tyr223 (-OH) – Tyr348 (-OH) distance for C118A showed decrease from ~15Å-7Å in dual-

boost and dihedral aMD for apo-α1B-AR and ~17Å-8Å in dual-boost aMD for NE-α1B-AR in a 

10ns simulation run. Mutation of C195A lead to a decrease in Tyr223 (-OH) – Tyr348 (-OH) 

distance in apo-α1B-AR in dual-boost aMD. The distance remained stable at ~13Å in apo- and 

NE-α1B-AR in dihedral aMD.  Double mutation of C118A-C195A did not have a major impact 

on the Tyr223 (-OH) – Tyr348 (-OH) distance for NE-bound dual-boost and dihedral aMD 

where the two tyrosine residues are stabilised at 15Å while in the apo-α1B-AR, the distance is 

reduced to ~6-7Å (Figure 3-12) suggesting receptor move towards active state but does not 

achieve activation.  

The overall conformation of the receptor was found to be the same during the simulation 

suggesting inactive-state of the α1B-AR is maintained during the simulation process. C195 in the 

ECL2 formed disulfide bond with C118 in the TM3. Mutation of C195 to alanine breaks the 

disulfide bond and thereby renders the thiol-group of C118A free. C118 in TM3 is closer to 

orthosteric binding site which might induce conformational changes to the α1B-AR. NE had 

significantly reduction in potency at the C118A and C195A mutants by 285 and 1645-folds 



173 
 

(chapter 2). C118A mutant in TM3 leads to reduced expression and the largest reductions in NE 

potency arising from reductions in both NE affinity and efficacy while mutation of C195A in 

ECL2 reduces NE potency, affinity and efficacy. This reduction in NE affinity and efficacy by 

C118A and C195A mutants indicates that this disulfide bridge stabilises a conformation that 

facilitates both NE access to its binding site and NE signaling as shown previously for α1B-AR 

by Ragnarsson et al., [53] and other class A GPCRs [58-68]. 
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A) 

 

B) 

 

Figure 3-12: Distance between the side chain oxygen atoms of Tyr223 and Tyr348 of apo- and NE-α1B-AR mutants; C118A, C195A 

and double mutant C118A-C195A for A) Dual-Boost and B) Dihedral aMD. 
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A) 
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B) 

 

Figure 3-13: Distance between the side chain oxygen atoms of Tyr223 and Tyr348 for NE- α1B-AR mutants for A) Dual-Boost and B) 
Dihedral aMD. 
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An initial reduction in the distance between tyrosine and phenylalanine residues in dual-boost 

aMD on Y348F of NE-α1B-AR was observed from 19Å to 7Å followed by an increase from 7Å 

to ~23Å while it remains stable in dihedral aMD at ~8Å. Similar stability was observed in apo-

α1B-AR at ~20Å for dual-boost and dihedral aMD. Y110A remained stable around ~12Å with 

minimum distance between Tyr223 (-OH) – Tyr348 (-OH) reaching ~7Å in dual-boost aMD in 

NE-α1B-AR with a maximum distance of ~16Å in dihedral aMD. Higher fluctuations were 

observed for Y110A in apo-α1B-AR (Figure 3-13). 

Dual-boost dynamics on N190A mutant of NE-α1B-AR showed a significant decrease in the 

Tyr223 (-OH) – Tyr348 (-OH) distance from ~16Å to 6Å while no such changes were observed 

for N190A in other simulations. Similarly, change was observed for the W184A in apo-α1B-AR 

where the distance between tyrosine residues reduced from 17Å to ~4Å leading to formation of 

weak hydrogen bond between Tyr223 (-OH) – Tyr348 (-OH) at 4.45Å (Figure 3-14). This 

contradicts with our experimental results where NE potency and affinity was reduced by 10 and 

17-folds with no change in signaling efficiency compared to WT [54] (chapter 2). The reduced 

distance suggests intracellular rearrangement of TMs which moves the receptor towards active-

state. The side chain of Tyr223 initially positioned towards lipid interface between TM5 and 

TM6 and the side chain of Tyr348 oriented towards TM2 flips towards each other moving the 

receptor towards active state along with an outward movement of TM6 by ~4Å. The distance 

between tyrosine residues reduced significantly for L181A in apo-α1B-AR for dual-boost aMD 

and Y203A in apo-α1B-AR for dihedral aMD from ~18Å to ~6Å and ~ 15Å to ~6Å respectively. 

NE potency and affinity for Y203A mutant was reduced by 1000 and 67-folds respectively while 

signaling efficacy is reduced by 36-folds (data not published) (Figure 3-15). There was no 

indication of any increased basal activities for any of the mutants tested that would be indicative 

of a constitutively active mutant. 



178 
 

A) B) 

 

Figure 3-14: A) Reduction in Tyr223 (TM5) – Tyr348 (TM7) distance from 13.49Å to 4.45Å in dual-boost aMD between apo-α1B-
AR (Cyan) and W184A mutant apo-α1B-AR (Yellow) in a 10ns run. Tyrosine residues for apo-α1B-AR and W184A mutant apo-α1B-

AR are shown in Blue and Silver. B) Outward movement of TM6 of W184A mutant by ~3.75Å. 
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Figure 3-15: Reduction in Tyr223 (TM5) – Tyr348 (TM7) distance from 14.11Å to 6.64Å in 

dual-boost aMD between apo-α1B-AR (Cyan) and Y203A mutant apo-α1B-AR (Yellow) in a 10ns 
run. Tyrosine residues for apo-α1B-AR and Y203A mutant apo-α1B-AR are shown in Blue and 

Silver. 
 
Double mutant Y223F-Y348F showed a significant decrease in Phe223– Phe348 distance in both 

dual-boost and dihedral dynamics in apo and NE-bound receptor where both the tyrosine 

residues were mutated to phenylalanine. Hence for this mutant, distance is calculated between 

the C-delta atoms of phenylalanine thereby forming covalent network. Thus, the Phe223 - 

Phe348 C-delta distance significantly decreased to 4.75Å in dihedral aMD for apo-α1B-AR; 
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5.96Å in NE-α1B-AR; 6.25Å in dual-boost aMD for apo-α1B-AR; and 7.11Å in dual-boost aMD 

for NE-α1B-AR. 

Dihedral and dual-boost aMD on other α1B-AR mutants did not show any significant changes and 

maintained inactive conformations like that of the starting structure. Almost similar window was 

observed for the Tyr223 (-OH) – Tyr348 (-OH) distance for few mutants in the apo-α1B-AR from 

~25Å to ~4Å and for the NE-α1B-AR from ~28Å to ~6Å. This implies that the mutants in the 

apo-α1B-AR induced conformational changes like the NE-α1B-AR moving the receptor towards 

active-state by surpassing low energy barriers despite reduction in potency and affinity. This 

effect could be attributed to the active/inactive state which is not as clear cut and easy to explain 

as once thought [69, 70]. The results from our lab (data not published) shows that the classic 

view that active receptor has increased signaling and high affinity may not always be true. The 

recent papers show that there are several active receptor states and several inactive receptor 

states [37, 71, 72]. Table 3-1 lists the mutants close to receptor activation based on Tyr223 (-

OH) – Tyr348 (-OH) distance. 

 

Table 3-1: List of the mutants close to receptor activation based on Tyr223 (-OH) – Tyr348 (-
OH) distance. 

 

Apo-α1B-AR NE-α1B-AR 

Dual-Boost aMD Dihedral aMD Dual-Boost aMD Dihedral aMD 

W111A (6.61 Å)  N190A (6.11 Å)  

L181A (6.29 Å)  Y348F (7.21 Å) Y348F (7.15 Å) 

W184A (4.45 Å)    

Y203A (6.64 Å) Y203A (6.43 Å) Y203A (6.43 Å)  

Y223F-Y348F (6.25 Å) Y223F-Y348F (4.75 Å) Y223F-Y348F (7.11 Å) Y223F-Y348F (5.96 Å) 
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In this study, direct activation of the apo and NE-α1B-AR was not observed over the nanosecond 

time scale, but few mutants could be seen moving to active state over a time scale of 10ns (Table 

3-1). This activation process at atomistic level is of pivotal importance in understanding the 

structure-function relationship. The receptor activation is characterised by formation of a 

hydrogen bond between the intracellular domains of TM5 and TM7 (Tyr223–Tyr348) which is 

in consonance with the results observed in previous studies for the active structures of rhodopsin 

[5, 52] and β2-AR [56, 57]. 

The α1B-AR is known to have basal activity [73, 74] which shifts the receptor from inactive to 

active state. When the receptor transitions from the inactive to the intermediate state and from 

intermediate to the active state, structural transitions within the TM helices occurs particularly 

with TM5, TM6 and TM7 which are known to play key role in the activation process [14, 33, 36, 

52, 74]. During final transition to the active sate, Tyr223 and Tyr348 relocate the side chains 

toward each other forming hydrogen bond interaction and the cytoplasmic end of TM6 tilts 

outward by ∼6Å [33].  

The mutant receptor moved towards the active state in the apo-α1B-AR rather than agonist bound 

NE-α1B-AR although few mutants in NE-α1B-AR were found to be close to receptor activation 

based on Tyr223-Tyr348 distance. This correlates with the fact that α1B-AR is known to have 

constitutive activity [73, 74]. With agonist NE bound in the orthosteric binding site, the 

equilibrium between inactive and active state is shifted more towards the active state where the 

TM helices are connected to each other via non-covalent interactions. In contrast, the network of 

the apo-α1B-AR in the intracellular domains is significantly weakened during the receptor 

activation which could further facilitate the association of the G protein and additional 

stabilisation of the receptor in active conformation. It could be argued that the mutants moving 

close to receptor activation might be constitutively active and that NE is inhibiting this activation 

but our functional assays on this receptor do no support this because normally we don‟t pick such 

constitutively active mutant receptors in our assay. 

The ligand binding pocket in the ECS and the G protein-coupling site in intracellular domain are 

correlated with each other as exemplified in the activation of the M2 receptor. The intracellular 

domain of TM6 that shows large-scale outward movement is highly correlated with the 

extracellular domains of TM5, TM6 and TM7 surrounding the ligand binding site. Such changes 

have been justified by the conformational changes triggered by the Trp4006.48 transmission 
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switch in M2 receptor. We propose similar movement of Trp307 in TM6 to be the transmission 

switch in our homology model of hamster α1B-AR. 

Relocation of Trp400 in TM6 towards Phe195 and Val199 in TM5 was found to be the key 

conformational change during activation of M2 receptor consistent with the previous structural 

studies on rhodopsin and A2A-R that suggests the conserved Trp400 to be a transmission switch 

which links agonist binding to the movement of the intracellular domains of TM5 and TM6 

during process of GPCR activation [12]. Though, we could not observe direct activation of the 

α1B-AR, relocation of Trp307 towards TM3 and formation of strong hydrogen bond between 

Asp125 in TM3 and Tyr338 in TM7 in W184A mutant be an intermediate state towards receptor 

activation. The second key observation for M2 receptor activation includes replacement of 

hydrogen bond interaction between Tyr430 in TM7 and Asp103 in TM3 with Tyr426 in TM7 

that resembles breaking of a Lys7.43 – Glu3.28 salt bridge in rhodopsin and relocation of Ser7.42 and 

His7.43 coordinated by Thr3.36 during agonist binding of A2A-R. These residues and interactions 

are known to play important roles in receptor activation. 

The intracellular domain of TM7 is also correlated to its extracellular counterpart in M2 receptor 

in which Tyr4307.43 flips from the ligand-binding cavity to the TM7-TM2 interface, which 

coincides with displacement of the NPxxY motif in the intracellular domain of TM7. Tyr338 in 

TM7 of W184A α1B-ARmutant flips from TM7-TM2 interface towards TM3 and forms 

hydrogen bond with Asp125 in TM3. This rearrangement of extracellular domain in our 

homology model could act as a step towards receptor activation (Figure 3-16). Y338A mutant 

reduces NE potency and affinity for NE by 100 and 2-folds which results in reduction in 

signaling efficiency by 43-folds (chapter 2). This suggests the possible role of Tyr338 in receptor 

activation.
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A) 

 

B) 

 

Figure 3-16: Rearrangement of A) Tyr338 in homology model of hamster α1B-AR and B) W184A mutant from TM7-TM2 interface 
towards TM3. 
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A triad of Asp125 in TM3, Trp307 in TM6 and Tyr338 in TM7 in the ligand binding pocket 

(Figure 3-17) of extracellular domain of the homology model of hamster α1B-AR rearranges in 

Y203A mutant which might play a role in receptor activation as observed by reduction in 

Tyr223-Tyr348 distance to 6.64Å from 13.49Å compared to WT-α1B-AR. However, Y203A 

mutant is shown to have reduction in signaling efficiency by 36-folds and have a reduced 

potency and affinity of 1000 and 67-folds (chapter 2). This contradicts the fact that despite 

reduction in potency and affinity, Y203A mutant is shown to move the receptor towards active 

state but does not activate the receptor. These correlated motions between the ligand-binding 

pocket and intracellular domains of TM3, TM5, TM6 and TM7 might regulate GPCR activation. 

 

Figure 3-17: Triad of residues in TM3, TM6 and TM7 in Y203 mutant in the ligand binding 
pocket. 

 
In summary, aMD on mutants induced the receptor towards active-state in significantly shorter 

simulation time compared to classical simulations. This study establishes the application of aMD 

to the study of activation process which will be highly useful for designing GPCR mutation 

studies and engineering small molecules for receptor-selective therapeutics [75]. Further, aMD 

shortens the simulation time significantly without predefined reaction coordinates as in 

metadynamics and ABF calculations. Thus, aMD is of extensive use to study the receptor 

activation process. 



185 
 

3.4 References 

1. Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB: The G protein-coupled 

receptors in the human genome form five main families. Phylogenetic analysis, 

paralogon groups and fingerprints. Molecular pharmacology 2003, 63(6):1256-1272. 

2. Tripathi K: Essentials of medical pharmacology : JP Medical Ltd; 2013. 

3. Garc  a-Sáinz JA, Vázquez-Prado J, Villalobos-Molina R: α1-adrenoceptors: Subtypes, 

signaling and roles in health and disease . Archives of medical research 1999, 

30(6):449-458. 

4. Michelotti GA, Price DT, Schwinn DA: α1-adrenergic receptor regulation: Basic 

science and clinical implications. Pharmacology & therapeutics 2000, 88(3):281-309. 

5. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauß N, Choe H-W, Hofmann KP, Ernst 

OP: Crystal structure of opsin in its G protein-interacting conformation. Nature 

2008, 455(7212):497-502. 

6. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae 

PS, Pardon E, Calinski D: Crystal structure of the β2-adrenergic receptor-Gs protein 

complex. Nature 2011, 477(7366):549-555. 

7. Rasmussen SG, Choi H-J, Fung JJ, Pardon E, Casarosa P, Chae PS, DeVree BT, 

Rosenbaum DM, Thian FS, Kobilka TS: Structure of a nanobody-stabilised active 

state of the β2-adrenoceptor. Nature 2011, 469(7329):175-180. 

8. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, Tate CG: 

Agonist-bound adenosine A2A receptor structures reveal common features of 

GPCR activation. Nature 2011, 474(7352):521-525. 

9. Gether U, Kobilka BK: G protein-coupled receptors II. Mechanism of agonist 

activation. Journal of biological chemistry 1998, 273(29):17979-17982. 

10. Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H, Shaw DE: 

Pathway and mechanism of drug binding to G protein-coupled receptors. 

Proceedings of the national academy of sciences 2011, 108(32):13118-13123. 

11. Ye L, Van Eps N, Zimmer M, Ernst OP, Prosser RS: Activation of the A2A adenosine 

G protein-coupled receptor by conformational selection. Nature 2016, 533(7602):265-

265. 



186 
 

12. Deupi X, Standfuss J: Structural insights into agonist-induced activation of G 

protein-coupled receptors. Current opinion in structural biology 2011, 21(4):541-551. 

13. Ballesteros JA, Weinstein H: Integrated methods for the construction of three-

dimensional models and computational probing of structure-function relations in G 

protein-coupled receptors. Methods in neurosciences 1995, 25:366-428. 

14. Ballesteros JA, Jensen AD, Liapakis G, Rasmussen SG, Shi L, Gether U, Javitch JA: 

Activation of the β2-adrenergic receptor involves disruption of an ionic lock between 

the cytoplasmic ends of transmembrane segments 3 and 6. Journal of biological 

chemistry 2001, 276(31):29171-29177. 

15. Srivastava A, Yano J, Hirozane Y, Kefala G, Gruswitz F, Snell G, Lane W, Ivetac A, 

Aertgeerts K, Nguyen J: High-resolution structure of the human GPR40 receptor 

bound to allosteric agonist TAK-875. Nature 2014, 513(7516):124-127. 

16. Scheer A, Fanelli F, Costa T, De Benedetti P, Cotecchia S: Constitutively active 

mutants of the α1B-adrenergic receptor: Role of highly conserved polar amino acids 

in receptor activation. The EMBO journal 1996, 15(14):3566-3578. 

17. Cotecchia S: Constitutive activity and inverse agonism at the α1-adrenoceptors. 

Biochemical pharmacology 2007, 73(8):1076-1083. 

18. Rossier O, Abuin L, Fanelli F, Leonardi A, Cotecchia S: Inverse agonism and neutral 

antagonism at α1A- and α1B-adrenergic receptor subtypes. Molecular pharmacology 

1999, 56(5):858-866. 

19. Garc  a-Sáinz JA, Torres-Padilla MaE: Modulation of basal intracellular calcium by 

inverse agonists and phorbol myristate acetate in rat‐1 fibroblasts stably expressing 

α1D‐adrenoceptors. FEBS letters 1999, 443(3):277-281. 

20. McCune DF, Edelmann SE, Olges JR, Post GR, Waldrop BA, Waugh DJ, Perez DM, 

Piascik MT: Regulation of the cellular localisation and signaling properties of the 

α1B-and α1D-adrenoceptors by agonists and inverse agonists . Molecular pharmacology 

2000, 57(4):659-666. 

21. Greasley PJ, Fanelli F, Rossier O, Abuin L, Cotecchia S: Mutagenesis and modeling of 

the α1B-adrenergic receptor highlight the role of the helix 3/helix 6 interface in 

receptor activation. Molecular pharmacology 2002, 61(5):1025-1032. 



187 
 

22. Bockenhauer S, F rstenberg A, Yao XJ, Kobilka BK, Moerner W: Conformational 

dynamics of single G protein-coupled receptors in solution. The journal of physical 

chemistry 2011, 115(45):13328-13338. 

23. Deupi X, Li X-D, Schertler GF: Ligands stabilize specific GPCR conformations: But 

how? Structure 2012, 20(8):1289-1290. 

24. Reiner S, Ambrosio M, Hoffmann C, Lohse MJ: Differential signaling of the 

endogenous agonists at the β2-adrenergic receptor. Journal of biological chemistry 

2010, 285(46):36188-36198. 

25. Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, 

Choi H-J, Thian FS, Kobilka TS: Ligand-specific regulation of the extracellular 

surface of a G protein-coupled receptor. Nature 2010, 463(7277):108-112. 

26. Huber T, Menon S, Sakmar TP: Structural basis for ligand binding and specificity in 

adrenergic receptors: Implications for GPCR-targeted drug discovery. Biochemistry 

2008, 47(42):11013-11023. 

27. Borhani DW, Shaw DE: The future of molecular dynamics simulations in drug 

discovery. Journal of computer-aided molecular design 2012, 26(1):15-26. 

28. Bucher D, Grant BJ, Markwick PR, McCammon JA: Accessing a hidden conformation 

of the maltose binding protein using accelerated molecular dynamics . PLoS 

computational biology 2011, 7(4):e1002034. 

29. Gasper PM, Fuglestad B, Komives EA, Markwick PR, McCammon JA: Allosteric 

networks in thrombin distinguish procoagulant vs. anticoagulant activities . 

Proceedings of the national academy of sciences 2012, 109(52):21216-21222. 

30. Markwick PR, Pierce LC, Goodin DB, McCammon JA: Adaptive accelerated 

molecular dynamics (Ad-AMD) revealing the molecular plasticity of P450cam. The 

journal of physical chemistry letters 2011, 2(3):158-164. 

31. Wereszczynski J, McCammon JA: Nucleotide-dependent mechanism of Get3 as 

elucidated from free energy calculations . Proceedings of the national academy of 

sciences 2012, 109(20):7759-7764. 

32. Miao Y, Caliman AD, McCammon JA: Allosteric effects of sodium ion binding on 

activation of the M3 muscarinic G protein-coupled receptor. Biophysical journal 

2015, 108(7):1796-1806. 



188 
 

33. Miao Y, Nichols SE, Gasper PM, Metzger VT, McCammon JA: Activation and 

dynamic network of the M2 muscarinic receptor. Proceedings of the national 

academy of sciences 2013, 110(27):10982-10987. 

34. Miao Y, Nichols SE, McCammon JA: Free energy landscape of G protein coupled 

receptors explored by accelerated molecular dynamics. Physical chemistry chemical 

physics 2014, 16(14):6398-6406. 

35. Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, 

Chae PS, Dror RO: Structure and dynamics of the M3 muscarinic acetylcholine 

receptor. Nature 2012, 482(7386):552-556. 

36. Spalding TA, Burstein ES, Henderson SC, Ducote KR, Brann MR: Identification of a 

ligand-dependent switch within a muscarinic receptor. Journal of biological 

chemistry 1998, 273(34):21563-21568. 

37. Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Xu H, Borhani DW, Shaw DE: 

Activation mechanism of the β2-adrenergic receptor. Proceedings of the national 

academy of sciences 2011, 108(46):18684-18689. 

38. Nelson MT, Humphrey W, Gursoy A, Dalke A, Kalé LV, Skeel RD, Schulten K: 

NAMD: A parallel, object-oriented molecular dynamics program. International 

journal of high performance computing applications 1996, 10(4):251-268. 

39. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, 

Leslie AG, Tate CG, Schertler GF: Structure of a β1-adrenergic G protein-coupled 

receptor. Nature 2008, 454(7203):486-491. 

40. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, 

Kale L, Schulten K: Scalable molecular dynamics with NAMD. Journal of 

computational chemistry 2005, 26(16):1781-1802. 

41. Grubmüller H: SOLVATE v. 1.0. Theoretical biophysics group. Institute for medical 

optics, ludwig-maximilians university, munich 1996. 

42. Humphrey W, Dalke A, Schulten K: VMD: Visual molecular dynamics. Journal of 

molecular graphics 1996, 14(1):33-38. 

43. Spijker P, Vaidehi N, Freddolino PL, Hilbers PA, Goddard WA: Dynamic behavior of 

fully solvated β2-adrenergic receptor embedded in the membrane with bound 



189 
 

agonist or antagonist. Proceedings of the national academy of sciences 2006, 

103(13):4882-4887. 

44. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M: 

CHARMM: A program for macromolecular energy, minimisation and dynamics 

calculations. Journal of computational chemistry 1983, 4(2):187-217. 

45. Tu K, Tobias DJ, Klein ML: Constant pressure and temperature molecular dynamics 

simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine 

bilayer. Biophysical journal 1995, 69(6):2558-2562. 

46. Darden T, York D, Pedersen L: Particle mesh Ewald: An N⋅  log (N) method for Ewald 

sums in large systems. The journal of chemical physics 1993, 98(12):10089-10092. 

47. Allen MP, Wilson MR: Computer simulation of liquid crystals . Journal of computer-

aided molecular design 1989, 3(4):335-353. 

48. Miyamoto S, Kollman PA: SETTLE: An analytical version of the SHAKE and 

RATTLE algorithm for rigid water models . Journal of computational chemistry 1992, 

13(8):952-962. 

49. Peeters M, Van Westen G, Li Q, IJzerman A: Importance of the extracellular loops in 

G protein-coupled receptors for ligand recognition and receptor activation. Trends 

in pharmacological sciences 2011, 32(1):35-42. 

50. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi 

H-J, Kuhn P, Weis WI, Kobilka BK: High-resolution crystal structure of an 

engineered human β2-adrenergic G protein–coupled receptor. Science 2007, 

318(5854):1258-1265. 

51. Rosenbaum DM, Rasmussen SG, Kobilka BK: The structure and function of G 

protein-coupled receptors. Nature 2009, 459(7245):356-363. 

52. Park JH, Scheerer P, Hofmann KP, Choe H-W, Ernst OP: Crystal structure of the 

ligand-free G protein-coupled receptor opsin. Nature 2008, 454(7201):183-187. 

53. Ragnarsson L, Wang C-IA, Andersson Å, Fajarningsih D, Monks T, Brust A, Rosengren 

KJ, Lewis RJ: Conopeptide ρ-TIA defines a new allosteric site on the extracellular 

surface of the α1B-adrenoceptor. Journal of biological chemistry 2013, 288(3):1814-

1827. 



190 
 

54. Ragnarsson L, Andersson Å, Thomas WG, Lewis RJ: Extracellular surface residues of 

the α1B-adrenoceptor critical for G protein–coupled receptor function. Molecular 

pharmacology 2015, 87(1):121-129. 

55. Shaw DE, Grossman J, Bank JA, Batson B, Butts JA, Chao JC, Deneroff MM, Dror RO, 

Even A, Fenton CH: Anton 2: Raising the bar for performance and programmability 

in a special-purpose molecular dynamics supercomputer. Proceedings of the 

international conference for high performance computing, networking, storage and 

analysis 2014;41-53. 

56. Rasmussen SG, Choi H-J, Fung JJ, Pardon E, Casarosa P, Chae PS, DeVree BT, 

Rosenbaum DM, Thian FS, Kobilka TS: Structure of a nanobody-stabilised active 

state of the β2-adrenoceptor. Nature 2011, 469(7329):175-180. 

57. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae 

PS, Pardon E, Calinski D: Crystal structure of the β2-adrenergic receptor-Gs protein 

complex. Nature 2011, 477(7366):549-555. 

58. Dixon R, Sigal I, Candelore M, Register R, Scattergood W, Rands E, Strader C: 

Structural features required for ligand binding to the β-adrenergic receptor. The 

EMBO journal 1987, 6(11):3269-3275. 

59. Dohlman HG, Caron MG, DeBlasi A, Frielle T, Lefkowitz RJ: Role of extracellular 

disulfide-bonded cysteines in the ligand binding function of the β2-adrenergic 

receptor. Biochemistry 1990, 29(9):2335-2342. 

60. Fraser C: Site-directed mutagenesis of β-adrenergic receptors. Identification of 

conserved cysteine residues that independently affect ligand binding and receptor 

activation. Journal of biological chemistry 1989, 264(16):9266-9270. 

61. Karnik SS, Sakmar TP, Chen H-B, Khorana HG: Cysteine residues 110 and 187 are 

essential for the formation of correct structure in bovine rhodopsin. Proceedings of 

the national academy of sciences 1988, 85(22):8459-8463. 

62. Karnik SS, Khorana HG: Assembly of functional rhodopsin requires a disulfide bond 

between cysteine residues 110 and 187. Journal of biological chemistry 1990, 

265(29):17520-17524. 

63. Kurtenbach E, Curtis C, Pedder E, Aitken A, Harris A, Hulme E: Muscarinic 

acetylcholine receptors. Peptide sequencing identifies residues involved in 



191 
 

antagonist binding and disulfide bond formation. Journal of biological chemistry 

1990, 265(23):13702-13708. 

64. Noda K, Saad Y, Graham RM, Karnik SS: The high affinity state of the β2-adrenergic 

receptor requires unique interaction between conserved and non-conserved 

extracellular loop cysteines. Journal of biological chemistry 1994, 269(9):6743-6752. 

65. Zhou H, Tai H-H: Expression and functional characterisation of mutant human 

CXCR4 in insect cells: Role of cysteinyl and negatively charged residues in ligand 

binding. Archives of biochemistry and biophysics 2000, 373(1):211-217. 

66. Perlman JH, Wang W, Nussenzveig DR, Gershengorn MC: A disulfide bond between 

conserved extracellular cysteines in the thyrotropin-releasing hormone receptor is 

critical for binding. Journal of biological chemistry 1995, 270(42):24682-24685. 

67. Cook JV, Eidne KA: An intramolecular disulfide bond between conserved 

extracellular cysteines in the gonadotropin-releasing hormone receptor is essential 

for binding and activation. Endocrinology 1997, 138(7):2800-2806. 

68. Lin SW, Sakmar TP: Specific tryptophan UV-absorbance changes are probes of the 

transition of rhodopsin to its active state . Biochemistry 1996, 35(34):11149-11159. 

69. Dror RO, Mildorf TJ, Hilger D, Manglik A, Borhani DW, Arlow DH, Philippsen A, 

Villanueva N, Yang Z, Lerch MT: Structural basis for nucleotide exchange in 

heterotrimeric G proteins. Science 2015, 348(6241):1361-1365. 

70. Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z, Hilger D, Lerch MT, Kobilka 

TS, Thian FS, Hubbell WL: Structural insights into the dynamic process of β2-

adrenergic receptor signaling. Cell 2015, 161(5):1101-1111. 

71. Sena Jr DM, Cong X, Giorgetti A, Kless A, Carloni P: Structural heterogeneity of the 

μ-opioid receptor’s conformational ensemble in the apo state. Scientific reports 

2017,7: 1-7. 

72. Latorraca NR, Venkatakrishnan A, Dror RO: GPCR dynamics: Structures in motion. 

Chemical reviews 2016, 117(1):139-155. 

73. Mhaouty-Kodja S, Barak LS, Scheer A, Abuin L, Diviani D, Caron MG, Cotecchia S: 

Constitutively active α1B-adrenergic receptor mutants display different 

phosphorylation and internalisation features. Molecular pharmacology 1999, 

55(2):339-347. 



192 
 

74. Porter JE, Hwa J, Perez DM: Activation of the α1B-adrenergic receptor is initiated by 

disruption of an interhelical salt bridge constraint. Journal of biological chemistry 

1996, 271(45):28318-28323. 

75. Kappel K, Miao Y, McCammon JA: Accelerated molecular dynamics simulations of 

ligand binding to a muscarinic G protein-coupled receptor. Quarterly reviews of 

biophysics 2015, 48(04):479-487. 

 

 

 

 

 

 

 

 

 



193 
 

 

 

 

Chapter 4 
 

 

 

 

 

 

 

 

 



194 
 

Chapter 4: Virtual Screening of the α1-AR Modulators 

4.1 Introduction 

GPCRs have been predominantly classified as the leading class of target proteins [1, 2] for three 

reasons [3] 

a) GPCRs are known to be involved widely in most cellular processes, 

b) GPCRs are located on the cell surface where they are accessible to drug binding and  

c)Clinical mutations in GPCRs are associated with various pathologies ranging from asthma and 

allergies to Parkinson‟s disease [4, 5].  

However, fairly little is known about the mechanism by which agonist binding [6] induces the 

conformational changes [7] essential for G protein stimulation and intracellular signaling [8, 9]. 

GPCRs are increasingly associated with a high attrition rate in translating fundamental 

preclinical discoveries into the clinic [10].  In part, this may reflect a failure to appreciate and 

capture novel paradigms associated with drug action at GPCRs. Indeed, it is now well 

established that GPCRs possess spatially distinct and druggable allosteric sites that can be found 

at extracellular, TM-spanning or intracellular domains [11].  

Targeting GPCR allosteric sites has the potential to lead to novel modes of GPCR subtype 

selectivity, signal-pathway-selective (biased) modulation [12] and importantly a “saturability” to 

the allosteric effect that can be exploited to “fine-tune” drug responsiveness [13]. However, 

many of these theoretical advantages of allosteric drugs have yet to be optimally explored in the 

context of disease [14-17] and this represents a significant next step for the field. Excitingly, 

structural biology studies have started to identify the molecular mechanisms that underlie the 

pharmacological effects of allosteric modulators [18] and are facilitating structure-based 

allosteric drug discovery at this important receptor family [19, 20]. 

Kobilka group has shown the role of agonists, neutral antagonists and inverse agonists in 

stabilising dissimilar ECS conformations of the β2-AR initiating innovative prospects for 

allosteric drug targeting at GPCRs [21]. Preliminary results from experimental studies in our lab 

have identified an agonist induced bond swap that initiates a cascade of conformational changes 

that appears to explain the link between NE binding and α1B-AR signaling [22-24]. Ragnarsson 

et al ., predicted a highly ordered ECL2 with several intramolecular interactions, a salt bridge 

and a conserved disulfide bond but no well-defined secondary structure in the homology model 

of the hamster α1B-AR built from the crystal structure of the turkey-β1-AR (PDB: 2VT4) [25]. 
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Breaking this structurally important disulfide bond facilitated binding of the α1B-AR selective 

allosteric antagonist, ρ-conotoxin-TIA despite reducing NE potency, affinity and efficacy [22]. 

Previous studies on rhodopsin activation have shown that ECL2 is displaced from the retinal 

binding site as a consequence of re-arrangements in the hydrogen bond network connecting 

ECL2 with the extracellular ends of TM4, TM5 and TM6. Together with a movement of TM5 

which breaks the highly conserved ionic lock (E/DRY), these conformational shifts cause 

receptor activation 

α1-AR are part of a larger AR family all activated by the catecholamines; E and NE [26, 27, 28]. 

α1B-AR mediates many effects of the sympathetic nervous system [29]. Activation of α1-AR 

activates Na+/K+ pumps that lead to cell hyperpolarisation and decreases the propensity for 

abnormal heart rhythms [30, 31]. Hence, α1-AR play role in maintaining cardiac contractility 

under pathological conditions such as ischaemia or pathological hypertrophy that are associated 

with decreased β1-AR function [32-34] and control and regulate blood pressure [35]. However, 

limited agonists and antagonists are known for the α1-AR despite their importance in patho-

physiological condition and are not subtype specific [36-38]. The lack of subtype-selective 

agonists has limited our understanding of the characteristic structural features which requires the 

design and development of subtype-selective compounds [39]. Therefore, a rational drug design 

approach is of tremendous importance to help find the probable subtype specific new leads. 

The dominant technique for the identification of new lead compounds in drug discovery is the 

physical screening of large libraries of chemicals against a biological target (HTS). VS is an 

alternative approach to computationally screen large libraries of chemicals for compounds that 

complement targets of known structure and experimentally test those that are predicted to bind 

well. It accesses many possible new ligands which can be purchased and tested. VS or In silico 

screening is a new approach attracting increasing levels of interest in the pharmaceutical industry 

as a productive and cost-effective technology in the search for novel lead compounds [40] 

(Figure 4-1).  

VS as aninitial step in rational drug design [41] approach has emerged as a cost and time 

effective method for screening of millions of compound databases in recent years compared to 

traditional HTS [42, 43]. VS has been identified as an in silico method for the evaluation of the 

molecular properties of different scaffolds for binding affinity, interaction energy etc., and 

prioritises databases as actives/in-actives against a particular target [44]. Two fundamental 
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methods for VS are illustrated in the literature; ligand based similarity searching [21, 45] and 

structure based docking [46-48]. Ligand based VS is most widely used when 3D structure of the 

receptor/target is not known and hence all the pharmacophoric information is extracted from the 

known active molecule for the receptor [21]. Screening methods use one or more bioactive 

template for lead identification which overlooks the active hits with dissimilar structure resulting 

in false negative rate [49]. 

 

Figure 4-1: Overview of virtual screening process [50] (Image courtesy: Kalliokoski T et al., 

Dissertations in health sciences; 2010,22:1-174). 
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4.1.1 Concept of Virtual Screening 

The basic goal of the VS is the reduction of the enormous virtual chemical space of small 

organic molecules to synthesise and/or screen against a specific target protein to a manageable 

number of the compounds that inhibit a highest chance to lead to a drug candidate [51]. Many 

drug candidates fail in the clinical trials because of the reasons unrelated to the potency against 

intended drug target. Pharmacokinetic & toxicity issues are blamed for more than half of the 

failure in the clinical trials [52] (Figure 4-2). Therefore, VS evaluates the drug likeness of the 

same molecules independent of their intended drug target. VS has been used to describe a 

process of computationally analysing large compound collections in order to prioritise 

compounds for synthesis or assay [53]. In our work, we have focused on receptor–ligand 

interactions based on molecular docking and scoring functions as a means of yielding the most 

detailed model in a way in which a given ligand will bind to a receptor and this will be the most 

informative basis to assess which ligands are useful candidates for assay. 
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Figure 4-2: The drug development process [54] (Image courtesy: O‟Driscoll C et al., 

Proceedings of horizon symposium; Charting Chemical Space 2004, 1-4). 
 
VS of the interactions against the homology modeled receptors [55, 56] and known actives have 

accelerated the drug discovery process. The hits identified can then be validated for their activity 

by standard cell based assays. Previous VS studies on class A GPCR members such as 

Adenosine A2A-receptor [57], β2-AR [58], Chemokine CXCR4 receptor [59], Dopamine D1 and 

D2 receptor [60] and Histamine H1 receptor [61] have successfully screened selective agonists 

and antagonists. 

In this study, VS of the NE like compounds was performed based on the shape similarity from 

commercially available ZINC database [62]. However, VS of NE like compounds may result in 

false negative hits. The rate of false negative screened hits is nullified by validating the VS 
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process by a set of known compounds that are active on α1-AR. The screened compounds were 

subjected to Lipinski‟s rule of five for drug like properties followed by docking of the resulting 

hits. The hits retrieved were analysed based on the scoring function [63, 64] for their binding 

affinity and number of hydrogen bonds formed while docking and were validated experimentally 

for their potency. This research is expected to open the door to the rational development of new 

modulators that can recognise the ECS of α1-AR. 
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4.2 Material and Methods 

4.2.1 Virtual Screening 

Rapid Overlay of Chemical Structures (ROCS) software [65] was used for the screening of drug-

like compounds library obtained from ZINC database [62]. ROCS make use of shape-based 

superimposition method which screens the molecule that is similar in shape to that of the query 

molecule. The method does not require any structural information for the screening. In ROCS, 

solid body optimisation method is used to maximise the volume overlap between the query and 

database molecules and an atom-centered Gaussian model is used to compute the geometric 

overlap when molecules are aligned [66].  

The molecules screened are ranked according to shape coefficient, color coefficient and 

combined Tanimoto coefficient which integrates both shape and color scoring function. Each of 

these scoring function ranges from 0-1 where 0 is dissimilarity and 1 is maximum similarity and 

for combined Tanimoto coefficient the score ranges from 0-2. In this study, we used combined 

Tanimoto coefficient to rank the screened hits [67]. NE was used as a query for the screening of 

drug like compounds library as α1-AR are activated by catceholamines; E and NE [28]. 

However, α1B-AR selective pharmacophore would have been more appropriate to screen the α1B-

AR subtype-specific modulators but we chose to use NE as a common chemical entity to screen 

the database for the α1-ARs and testing the screened hits against all the three α1-AR (α1A-AR, 

α1B-AR and α1D-AR) subtypes. NE contains conformers and therefore multi-conformer query 

generated by OMEGA [68, 69] software implemented in OpenEye package was used for the 

screening.  

 

4.2.2 Database Selection & Preparation 

Drug like compounds database was downloaded from the Zinc database which is commercial 

database for the millions of synthesised compounds. The compounds in drug like database are 

already sorted for the Lipinsky‟s rule of five [52]. This database contains >17 million 

compounds which were then expanded into a set of 3D conformers by OMEGA with 0.5rms and 

erange 5 kcal/mol after initial screening. OMEGA generates 3D conformations of the molecules 

which are most likely to be in bioactive conformation. OMEGA makes use of connection table 

method for generating initial set of the 3D conformers for a given molecule [68]. 
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4.2.3 Molecular Docking 

Docking studies were carried out to study the binding mode of screened potential library 

members against the α1B-AR homology model (chapter 2) by FRED software implemented in 

OEDocking module of OpenEye package [70, 71]. The screened hits were tested by a blind 

docking strategy in the ECS that included both the orthosteric binding pocket and the auxiliary 

site 1 and auxiliary site 2 identified during the egress pathway of NE in chapter 2. FRED is a 

rigid docking tool for ultrahigh-throughput docking of >1 million compounds in single run. The 

receptor was prepared with receptor preparation graphical user interface of OEDocking module. 

The receptor grid was set to 37.32Å*34.42Å*36.62Å with other default parameters to 

sufficiently accommodate the ECS and orthosteric binding site to dock screened hits.  

FRED systemically examines all the best possible receptor-hits pose [72] and screens them for 

shape complementarily and chemical features and ranks the hits based on Chemgauss4 scoring 

function [70]. The cut-off score was set to 7Å after visual inspection of the binding pose of hits 

to the receptor. The top screened hits from FRED docking were further subjected for flexible 

docking with AutoDock. In AutoDock, the grid maps were prepared using the AutoGrid utility 

with 54*52*48 points which is sufficiently large to accommodate all active site residues and grid 

spacing set to 0.375Å. Docking parameters were kept as per following: number of individuals in 

the population was set to 150, maximum number of energy evaluations was set to 2500000, 

maximum number of generations was set to 2700 and number of GA runs was set to 20.  

 

4.2.4 Transient Expression of α1-AR 

COS‐1 cells (ATCC, Manassas, VA) were cultured in Dulbecco‟s modified Eagle‟s medium 

(DMEM) supplemented with 5% fetal bovine serum (FBS) in a humidified incubator at 37ºC and 

5% CO2. Cells were transiently transfected with purified plasmid DNA encoding WT α1A‐AR, 

α1B‐AR and α1D‐AR using FuGENE HD (Roche) (18μg DNA/75cm2) following the 

manufacturer‟s protocol [22]. 

 

4.2.5 FLIPR Assay Measuring Intracellular Ca2+ Responses 

On the day of the assay, cells were loaded with the Calcium 4 no‐wash dye (Molecular Devices) 

by diluting the lyophilised dye in physiological salt solution and incubating for 30 min at 37°C in 

a 5% humidified CO2 incubator. Intracellular Ca2+ responses were measured in response to 
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increasing concentrations of agonist (NE) and test compounds (12) (10µM–100μM) in FLIPR 

(Molecular Devices, Sunnyvale, CA) using a cooled CCD camera with excitation at 470–495nM 

and emission at 515–575nM. Camera gain and intensity were adjusted for each plate to yield a 

minimum of 1000 arbitrary fluorescence units (AFU) baseline fluorescence. Prior to addition of 

NE/test compounds, 10 baseline fluorescence readings were taken followed by fluorescent 

readings every second for 300s. Further, intracellular Ca2+ responses were measured in response 

to second addition of agonist (NE) (100μM) to ascertain the characteristic behaviour of 

compounds as agonists and partial agonists. Concentration‐response curves were established by 

plotting DeltaF/F0 values, where F0 is the base‐line level of fluorescence and Delta F is the 

change in fluorescence from the baseline level against agonist concentration using Prism 

(GraphPad Software). 
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4.3 Results and Discussion 

VS of the drug-like database compounds led to identification of hits which might acts as 

potential leads for α1-AR. A detailed workflow of the procedure from compounds source to the 

screened hits and their experimental activity is outlined in Figure 4-3. Molecular modeling and 

experimental studies suggests that agonist NE and antagonist prazosin might partly have similar 

binding sites and residues in the receptor although prazosin‟s binding pocket extends above that 

of NE and include residues from the ECS [73]. Taking this information in account, NE was used 

as a 3D query to search the drug like compounds database that resulted in hits with similar 

chemical and pharmacophoric features. The drug like compounds database is already screened 

for Lipinsky‟s rule of five to ensure the resultant hits to be potential leads.  
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Figure 4-3: A detailed workflow of the procedure from compounds source to the screened hits 

and their experimental activity. 
 

To proceed with our hypothesis of finding probable modulators based on NE structure, we made 

use of a similarity searching method implemented in ROCS which makes use of Gaussian based 

function as an algorithm for identification of molecular volume. This overlaps the query with the 

database compounds and screen compounds that overlay well with volume as measure of 
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similarity and mismatches compounds with dissimilar volume. ROCS is a shape based 

superimposition method that search 3D chemical space of multi-conformer ensembles based on 

shape screening followed by chemical features 

Based on the experimental studies on α1B-AR, we chose NE as our starting query for VS which 

binds in the similar pocket as that of antagonist prazosin [73, 74]. NE was downloaded from 

ZINC database and subjected to energy minimisation using MMFF94 force-field in ChemBio3D 

with an RMS gradient of 0.01 and iterations set to 500. The minimised structure was used for 

shape based screening of ~17 million drugs like compounds database. Drug like database 

downloaded from zinc incorporates compounds that follow Lipinsky‟s rule of five and might be 

potential subtype-specificα1-AR leads. The compounds in the database have a molecular weight 

between >=150 and <= 500, number of hydrogen bond donors <=5, number of hydrogen bond 

acceptors <=10, number of rotatable bonds <= 7, xlogP <=5 and polar surface area <=150Å2. 

The potential library members were ranked based on Tanimoto coefficient which is a measure of 

shape and color coefficients.  

In ROCS, after performing shape alignment, color force field is implemented to screen chemical 

features like the query and to further refine hits from shape based superimpositions based on 

chemical similarity. The color score is a measure of the actual score of the hit divided by the 

color score of the query molecule. The hits ranked are measure of both shape and chemical 

complementary and each of them ranges from 0 to 1. The final score ranges from 0 to 2 with 0 as 

a measure of dissimilarity and 2 as the maximum similarity. After initial screening, a total of 

42,349 hits were obtained which were then expanded into a set of conformers by OMEGA tool 

implemented in Openeye toolkit. The torsional sampling ranges from 5° to 60° with energy cut 

off set to 5Kcal/mole. OMEGA generates 3D conformers of a molecule from the SMILE format 

by using connection tables. 
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Compound 1 Compound 2 Compound 3 Compound 4 

Compound 5 Compound 6 Compound 7 Compound 8 

Compound 9 Compound 10 Compound 11 Compound 12 

Figure 4-4: Chemical structure of 12 screened hits from virtual screening. 

 
OMEGA generated ~1 million conformers for the initial hits which were then subjected to rigid 

docking in FRED tool of OEDocking. The receptor was prepared for the hydrogen atoms, energy 

minimised and grid generated across the orthosteric binding site and upper half of the ECS to 

ensure free binding of the hits in different regions of the receptor. Docking hits were ranked 

according to Chemgauss4 scoring function with a cut-off value of -9 which resulted in 1165 hits. 

These were visually inspected for their binding in the orthosteric site and ECS along with their 

interactions to the residues (Asp125 and Ser207) and we clustered top 20 hits into 4 groups as 
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hits interacting like NE (position 1, chapter 2), hits interacting with either of the residues 

(Asp125 and Ser207) in binding site (position 1, chapter 2), hits forming interactions with 

residues in ECS only (position 3, chapter 2) and hits which form interactions with residues both 

in orthosteric binding site and ECS (position 2, chapter 2). 12 of these were secured from the 

vendors and were tested for their activity on α1-AR subtypes. Figure 4-4 depicts the chemical 

structures of the 12 screened hits. 

The effect of the resultant 12 hits as potential leads was measured on COS-1 cells transfected 

with WT-α1A‐AR, WT-α1B‐AR and WT-α1D‐AR. The effect was measured for increase in 

intracellular Ca2+ response with FLIPR and data was analysed by GraphPad PRISM 6.0. The hits 

obtained were chemically diverse to ensure the coverage of chemical space with different 

pharmacophoric features. The results of initial characterisation revealed that the hits that docked 

in the orthosteric site of the 1B-AR (Figure 4-5) activated all the 1-AR subtypes confirming 

the potential of this approach to identify new 1-AR GPCR modulators. Figure 4-5 shows the 

docked pose and binding mode of all the 12 hits in the orthosteric site A) Side view, B) Top 

view, C) Binding mode of top hits 1, 4, 5, 7, 10 and 12 along with cirazoline and oxymetazoline 

selective drugs for α1-AR, D) Docked pose of NE, E-J) Individual docked pose of compounds 1, 

4, 5, 7, 10 and 12, K) Cirazoline docking pose and L) Oxymetazoline docking pose.
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L) 

 

Figure 4-5: Docking poses for 12 selected leads identified to bind within the orthosteric site of the 1-AR A) Side view, B) Top view, C) Overlay of 1, 4, 5, 
7, 10 and 12 (yellow) with the binding mode of cirazoline (red) and oxymetazoline (blue), D) NE docking pose, E–J) individual docking poses for compounds 
1, 4, 5, 7, 10 and 12, K) Cirazoline docking pose and L) Oxymetazoline docking pose. 

Cirazoline 
Oxymetazoline 
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The chemical structures of the α1-AR selective agonists NE, cirazoline and oxymetazoline are 

shown in Figure 4-6. The 12 hits docked in the orthosteric site and partially with ECS 

making interaction with residues at both sites. The pharmacophoric and chemical features of 

these hits are like existing α1-AR agonists. A detailed SAR study of these hits could further 

lead to improvement in the functionality to these receptors. Further, the screened hits show 

the importance of the imidazole functional group to be the main chemical moiety present in 

the α1-AR modulators. We did not test these hits on the β1- or β2-AR, dopamine or 5-HT 

receptors. Thus, their selectivity only to the α1-ARs was established. 

 

 

 
 

 

 

 

 

Figure 4-6: Chemical structures of the α1-AR agonists NE, Cirazoline and Oxymetazoline. 
 

The hits were tested for agonist activity and initial FLIPR screening identified 3 hits: 

compound 7, 10 and 12. Compound 10 is shown to have weak potency for α1B-AR with 

effects on α1A and α1D-AR. For figure 4-7 compound 10 has an EC50 of approx. 1µM and 

compound 12 has an EC50 of approx. 10µM.  Compound 10 is a full agonist while compound 

12 is a weak partial agonist. Compound 7 (5.24 ± 0.56 (nM), n=3), compound 10 (5.83 ± 0.57 

(nM), n=3) and compound 12 (6.15 ± 0.23 (nM), n=3) are weak agonists for α1A-AR while 

Compound 10 (5.49 ± 0.74 (nM), n=3) and compound 12 (7.52 ± 0.86 (nM), n=3) have 

similar potency on α1D-AR. Compound 10 is a weak agonist for α1B-AR with an EC50 value 

4.66 ± 0.61 (nM), n=3. Compound 7 and 12 have no activity on α1B-AR subtype. Figure 4-7 

shows the agonist concentration response curve at WT-1-AR subtypes measuring calcium 

accumulation using the FLIPR in response to increasing concentrations of NE and 

compounds 7, 10 and 12 in transiently transfected COS-1 cells. 

VS and FLIPR assays lead to the identification of 3 compounds 7, 10 and 12 as agonist on α1-

ARs subtypes. However, we did not test these hits for the antagonistic activity on α1-AR 

subtypes. Compound 10 is weak agonist for α1A-and α1B-AR subtypes while it is full agonist 

for α1D-AR subtype. Compound 12 is weak agonist for α1A- AR and α1D-AR and compound 7 

is weak agonist for α1A-AR subtype. Figure 4-8 shows the bar graph for potency of 

compounds 7, 10 and 12 compared with NE at α1-AR WT subtypes for agonists.  

Cirazoline Norepinephrine Oxymetazoline 
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Figure 4-7: Representative agonist concentration-response curves at WT 1-AR subtypes measuring calcium accumulation using the FLIPR in 
response to increase concentrations of NE and compounds 7, 10 and 12 in transiently transfected COS-1 cells. Data are means ± SEM of a 

representative experiment performed in triplicate showing NE, 7, 10 and 12. 
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Figure 4-8: Bar graph showing potency of compounds 7, 10 and 12 compared with NE at α1-AR WT subtypes for agonists. 
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In this study, we examined the implications of using a homology model of the α1B-AR for the in 

silico VS of modulators as agonists. α1-ARs are known targets for treating diseases like 

hypertension and benign prostatic hypertrophy which marks their importance to be relatively 

high in disease control. Due to lack of crystal structures, computer-aided drug design technique 

was employed for the ligand-based modeling and VS. Drug discovery based on crystal structures 

of rhodopsin, β-AR has been reported in the literature [75-78].  

Most of class A GPCR ligands bind inside the TM bundle (Figure 4-9) but some ligands have 

shown binding at atypical sites commonly referred as allosteric sites or auxiliary sites. MD 

simulations of ligand entry into β2-AR revealed a transient vestibule on the ECS [79] which 

constitute an allosteric site for the muscarinic M2 receptor positive allosteric modulator (PAM) 

LY2119620 [80]. The FFA1 receptor agonist TAK875 binds from the orthosteric site between 

TM3 and TM4 and extends [81] into the membrane while the P2Y1 antagonist BPTU [82] and 

the glucagon receptor antagonist MK-0893 [83] bind at the interface between the exterior surface 

of the TM bundle and cell membrane. However, studies have revealed intracellular ligand 

binding to several chemokine receptors including CCR4, CCR5, CXCR1, CXCR2, and CX3CR1 

[84] 
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Figure 4-9: Depth of ligand binding in the TM pocket for the GPCR classes A, B, C and F. The 

deepest and most superficial ligand pair is displayed for each class. The histamine H1 receptor 
(with light green doxepin, PDB: 3RZE) is displayed as transparent white cartoon and was used 

for the superposition of the other structure complexes for; class A: CXCR4-vMIP-II (dark green, 
PDB: 4RWS), B: CRF1R-CP-376395 (pink, PDB: 4K5Y), C: mGlu1-FITM (pink, PDB: 4OR2) 
and mGlu5-mavoglurant (magenta, 4OO9), and F: smoothened receptor-SANT-1 (purple, PDB: 

4N4W) and smoothened receptor-cyclopamine (blue, PDB: 4O9R) [85] (Image courtesy: Munk 
C. et al., Curr. Opin. Pharmacol.; 2016;30;51-58). 

 
GPCRdb contains 13.304 mutations for 57 receptors from 10,192 publications (Figure 4-10). 

Rhee et al., provided a web resource containing 390 GPCR manually annotated literature 

mutations for 38 receptors and comparative sequence alignments [86]. TinyGrap database in its 
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published release contained 10,500 GPCR mutations from 1400 articles [87]. Three functional 

regions for ligand binding, G protein coupling and signal transduction have been identified in a 

study by Madabushi et al., which agreed with over 200 function-altering in vitro mutants [88]. A 

minimal ligand binding pocket has been defined within a network of correlated mutations 

identified by multiple sequence and structural analysis of GPCRs through evolutionary tracing 

technique [89]. 

 

Figure 4-10: Structural and mutagenesis ligand interaction data in GPCRdb across the GPCR 
classes, ligand types and receptor families. Colour scheme; blue: structure complex data, orange: 

mutagenesis data, and green: both data types [85] (Image courtesy: Munk C. et al., Curr. Opin. 
Pharmacol.; 2016;30;51-58). 

 
The endogenous bioamines, adrenaline, dopamine, histamine, and serotonin have a common 

generic pharmacophore binding site described in the literature for the natural ligands and 

analogues [90-92]. Mutagenesis experiments paired with several analyses have identified ligand 

binding (Figure 4-11) and efficacy-mediating residues for the serotonin, 5-HT2A, dopamine D2, 
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and glutamate receptors [93-95]. Four positions (6.44, 6.48, 7.45, and 7.46) were found to be 

conserved in most class A GPCRs indicating that they are likely to have a general function. 12 

positions identified for the generic binding site comprised 12 residues on TM3 (3.32, 3.33, 3.37, 

and 3.40), TM5 (5.42, 5.43, 5.46, and 5.47), TM6 (6.51 and 6.52) and TM7 (7.42 and 7.43) [96].  

Figure 4-11 reveals endogenous ligand binding sites are identical in three dopaminergic 

receptors (DRD2−4/D2−4) and six adrenoceptors (ADRB1−3/β1−3, ADRA1B,D/α1B,D, and 

ADRA2B/α2B); this is plausible given the high structural similarity of the ligands dopamine and 

adrenaline. However, selectivity of some compounds is achieved through differences in the 

binding site conferred by the next shell of amino acids through differences in passage of the 

ligands through the ECLs into the binding site or for drug like molecules through binding to 

additional residues that do vary between the receptors. In drug design, lead compounds can be 

inferred from nearest neighbors and tree topologies can be used to provide predictions for off-

target activity for compounds. The specific ligand binding site of the aminergic ligand family 

shows the value of identification of the specific residues that are in contact with the ligand. This 

has important implications for drug design because if the binding sites can be identified for 

privileged structures, it provides a very useful paradigm for lead generation and optimisation as 

well as prediction of likely off-target activities whether they are wanted (mixed pharmacology) 

or unwanted (side effects). 
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Figure 4-11: Dendogram and alignment of the human aminergic receptors based on the residue 

positions in the aminergic binding site as defined by evolutionary trace analysis. Receptors have 
been named using both the official Gene and IUPHAR conventions. The amino acids are color-

coding according to physicochemical properties. The residue positions are indexed using 
Ballesteros−Weinstein numbering [96] (Image courtesy: David E et al., J. Med. 
Chem.; 2009;52;4429-4442). 

 
Bremner et al., has shown high binding selectivity of ligands as antagonists for α1-AR and were 

reported to have three features, (i) A basic nitrogen that is accessible and can easily be 

protonated at physiological pH (ii) An aromatic ring (iii) A preferably nonaromatic ring [97]. 

But, the difference between these subtypes was in the distances and angles between features of 

their pharmacophore (Hypotheses) generated by means of Catalyst software. However, Barbaro 

et al., excluded the above three features and proved that the typical pharmacophore (hypothesis) 

for the α1-AR antagonist of antihypertensive lead drugs consists of five constraint features 

namely: (i) one positive ionisable portion (ii) one hydrogen bond acceptor and (iii) three 

hydrophobic features [98, 99]. 

Greene et al., stated that the α1-agonist binding pocket is located in the TM domain near the 

extracellular face and that an aspartate side chain in the TM3 binds the hydrogen of the 
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protonated amine of both agonists and antagonists [100]. Close to this residue is also a large 

hydrophobic pocket containing conserved aromatic (hydrophobic) and serine/cysteine (hydrogen 

bond acceptor) residues suggesting that the α1-AR agonist hypothesis consists of only three 

features and hence their ligands will be less firmly held to it than with the antagonist. Guimares 

and Daniel concluded that ideal α1-AR agonist hypothesis contains three features namely; 

positive ionisable (PI), hydrogen bond acceptor (HBA) and only one hydrophobic feature (HY) 

[101]. Ismail et al., reported the constraint dimensions between the three features in the 

generated α1-AR agonist hypothesis [102]. 

The role of imidazoquinazoline derivatives have been widely demonstrated in diverse biological 

activities including the anti-hypertensive activities through a selective α1-antagonistic 

mechanism [103-105]. It was also reported that the arylpiperazinyl alkyl moiety was the key 

element in defining α1-antagonist activity [106-110]. Accordingly new series of various 

substituted imidazo[5,1-b]quinazolines linked to arylpiperazine ring systems were designed 

[102]. The molecular simulation studies of these compounds revealed that some of these 

compounds have shown high fitting affinity with lower conformational energies with α1-agonist 

hypothesis while others have high fitting affinity and low conformational energies with the α1-

antagonist hypothesis when compared to the respective lead compounds. 

Evers A. and Klabunde T. performed structure-based VS for antagonists of the homology model 

of the α1A-AR generated using bovine rhodopsin as structural template [20]. A crude 

topographical interaction model was derived through mutational studies and comparative affinity 

determinations based on ligand binding [28, 92, 111-116] and additional mutational studies 

performed on close relatives of the biogenic amine binding receptor family [92, 117-131]. This 

led to identification of essential amino acids involved in agonists and antagonist recognition.  

The discovery of novel ligands derived from structure-based design is reported in work by 

Becker et al., [132] by using ab initio in silico GPCR models generated by the predict method for 

blind in silico screening when applied to a set of five different GPCR drug targets leading to a 

selection of <100 "virtual hit" compounds. Previous studies on β2-AR and rhodopsin have 

claimed the use of inactive structures resulting in identification of antagonists or inverse agonists 

while the use of active-state homology models retrieves partial/full agonists. Evers et 

al., generated a homology model for the α1A-AR and docked∼23 000 ligands resulting in 24 

ligands binding in the submicromolar range [20, 133]. The hit rates achieved with these models 
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were like those typically reached when the target protein is a crystal structure suggesting that 

docking into rhodopsin-based GPCR models is indeed a feasible approach for the identification 

of novel ligands. Varady et al.. performed VS for the D3 receptor using homology model of this 

receptor. Out of 20 experimentally tested compounds, eight showed Ki values better than 1μM 

[134]. 

Radestock et al., investigated the combination of two reported techniques for the improvement of 

homology model-based VS for antagonists of the metabotropic glutamate receptor (mGluR) 

subtype 5 ligands (i) ligand-supported homology modeling and (ii) ligand-receptor interaction 

fingerprint-based similarity (IFS) search [55]. The 3D pharmacophore models of the α1A-AR, 

5HT2A and D2 receptors have already been successfully used in another study to discriminate 

between the binders and the non-binders of these receptors [135]. The performance of the ligand-

based Feature Tree, Catalyst 3D pharmacophore and Partial Least Square-Discriminant Analysis 

(PLS-DA) models in identifying known antagonists is remarkable. The method suggested is an 

improvement over the generally used ligand-based VS and could result in high enrichment rate 

of the true hits. 

The top 1% of the ranked hits from the ligand-based VS strategies achieves excellent hit rates of 

active compounds.  Furthermore, ligand-based VS procedures frequently outperform the VS 

based on docking if sufficient ligand information for the generation of relevant models is 

available which depends critically on the amount and quality of ligand information. The 

homology models are most illustrative to understand how ligands of different chemotypes 

potentially bind to the receptors validated by mutational and ligand SAR data. The modeled 

complexes provide a conclusive view on the molecular recognition process in the binding 

pockets. Molecular docking might reveal a novel scaffold with a “new” binding modeby 

addressing additional interaction sites in the protein that has not been used by known ligands. 

VS is a modeling technique employed when no or limited information is available about the 

ligands which holds true for most of the GPCRs for which only the endogenous ligand is known.  

Further, due to high sequence and structural similarity between the α1-AR subtypes, it represents 

a challenge for drug design for selectivity and specificity. The combined use of ROCS, VIDA 

and FRED played an important role in compound identification and selection.  

The selection of hits is essential in VS of the compounds from large pool of database. Here, we 

virtually screened the drug-like compound repository from ZINC database and tested the top-
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scored compounds in an experimental assay. The results of our initial characterisation revealed 

that several ligands that docked in the orthosteric site of the α1B-AR activated the α1-AR 

subtype‟s confirming the potential of this approach to identify new subtype GPCR 

modulators.The approach used can in principle be applied to any member of the GPCR family 

with known ligand information and site-directed mutagenesis data. This approach helped us in 

identifying hits which could be potential leads and be α1-subtype specific.The current study 

shows that the homology model of the α1B-AR is suitable for retrieving the α1-AR partial/full 

agonists. Thus, there is not one optimal VS strategy for GPCRs but the chance of being 

successful in VS increases if different VS approaches are employed in parallel or in combination 

with each other. 
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Chapter 5: Conclusion & Future Perspectives 

5.1 Conclusions 

GPCRs comprise of the largest class of membrane proteins in humans with more than 800 

members [1] which act as gatekeepers to signal transduction in eukaryotes [2]. They are encoded 

by about 26% of the human genome [3] and represent a majority of present as well as potential 

future drug targets [4]. They demonstrate common appearance in architecture with 7TM helices 

(Figure 1); classified into 5 classes and subclasses and are the largest target class of 

approximately ~30-40% of FDA-approved marketed drugs[5]. GPCRs are flexible chemical 

sensors that harmonise cellular reaction with extracellular stimuli [6]. In view of their importance 

in physiology and disease conditions an understanding of structure and function is of key 

significance in drug discovery for researchers in the basic and applied sciences[7]. 

 

Figure 5-1: A schematic diagram of the general structure of GPCRs[8] (Image courtesy: Clark 

T. Beilstein J. Org. Chem.; 2017;13;1071-1078). 
 

GPCRs are the most heavily investigated drug targets in the pharmaceutical industry [9]. 

Incredible and remarkable efforts has been put forward by both industry and academia to 

understand the GPCR structure and function [10]. The process of GPCR activation has evolved 

from the classical inactive-active two-state model to a complex view of GPCR conformational 

ensembles associated with ligands, allosteric modulators, ions and downstream signaling proteins 

[11, 12]. Conformational flexibility of GPCRs has paused challenges in crystallisation and 
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limited our understanding to delineate their function and elucidate the structure-function 

relationship [13].  

Breakthroughs with recent advancement in technology such as X-ray crystallography have 

surmounted the hitch of GPCR crystallisation and resulted in high-resolution structures of over 

30 GPCRs providing structural basis for drug design and functional studies (Figure-2) [6, 14]. 

This evolvement has ushered new era to gain and comprehend insights into receptor-ligand 

binding and enabled wide applications of computational approaches in GPCR research which led 

to several groundbreaking studies in the last few years [15, 16]. While a large fraction of human 

GPCRs has yet to be crystallised, molecular modeling plays a pivotal role in the simulation of 

these GPCRs [8, 17]. This pipeline progress is inquisitive to exploit information in biophysics, 

pharmacology, molecular biology and computational queries [18]. Advance evidence on 

receptors and their connections and communications within and between receptors has been 

characterised by X-ray crystallography, NMR spectroscopy, Biochemistry, Biophysics and 

Bioinformatics. Here, we have provided brief overview on class A GPCR structure and functions 

in reference to α1-AR with a focus on the applications and perspectives of molecular modeling in 

GPCR ligand design. 
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Figure 5-2: The cumulative number of different GPCRs for which X-ray structures were 
available in a given year. The data represent a total of 174 structures on 91 ligand–receptor 

complexes for 39 different receptors. The data are taken from 
http://gpcrdb.org/structure/statistics (2nd February 2017) [8] (Image courtesy: Clark T. Beilstein, 
J. Org. Chem.; 2017;13;1071-1078). 

 
In addition to GPCRs exploitation in specific labs, GPCR network was established in 2010 as 

part of a much larger network to study significant biological and biomedical complications. As a 

consequence, leveraging through modeling has become more reliable and will further improve as 

additional experimental structures are determined [19]. The first successful structural elucidation 

of β2-AR and the adenosine A2A-R by GPCR network led to progress of set-up with feedback 

loops that could be used as a prototype for the structural resolution of other GPCR structures 

through wet-lab and computational techniques [20-23]. The structures elucidated could be 

leveraged to understand the structures of related GPCRs through comparative analysis and 

homology-based modeling of structures and their related complexes [24].  

X-ray structures of different class A, class B, class C and frizzled GPCRs spanning large sections 

of the phylogenetic tree have been published [19]. This gives opportunity to pharmaceutical 

http://gpcrdb.org/structure/statistics
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researchers to use these structures for drug design purposes. The recent structures of non-class A 

GPCRs may serve as invaluable templates for ligand design for the difficult target classes. 

Although both classes (B and C) are attractive drug target families, very few small molecule 

drugs targeting class B or C GPCRs are in the market. This reflects the impact of their apparently 

highly demanding binding sites in terms of druggability. During the past few years, 

crystallography of GPCRs has experienced exponential growth resulting in the determination of 

the structures of distinct receptors (9 of them in 2012 alone) [25].  

The structures obtained from structural biology techniques were in inactive conformation in 

conjunction with inverse agonists that reduce basal activity or neutral antagonists that maintain 

basal activity. The adrenergic, rhodopsin and adenosine receptor systems are also described by 

agonist-bound active-state structures including a structure of the receptor-G protein complex for 

the β2-AR. Crystallisation of the agonist-bound active-state structures of β2-AR revealed subtle 

changes in the binding pocket associated with an 11Å outward movement of the cytoplasmic end 

of TM6 and rearrangements of TM5 and TM7 that are remarkably similar to those observed for 

opsin, an active form of rhodopsin. These structure provides insights into the process of agonist 

binding and activation [22]. 

For class A receptors, some structures with approved marketed drugs are available. These 

include the complexes of: maraviroc in CCR5, tiotropium in M3 receptor, adenosine in A2A-R, 

carvedilol in β1-AR, doxepin in H1 receptor (H1-R), ergotamine in 5HT1B as well as 

5HT2B receptors and voraxapar in the protease-activated receptor PAR-1. In addition to the new 

X-ray structures from classes B and C, a first structure of an agonist bound M2 receptor structure 

with allosteric modulator as well as two very high-resolution structures of A2A-R and δ-opioid 

receptors (δ-OR) were reported providing first insight into the allosteric regulation, biased 

signaling and solvent networks in GPCRs. 

Structural difference ensues between the receptors based on the sequence composition  for eg., 

ECL2 forms a β-hairpin lid at the ligand binding pocket in rhodopsin unlike other class A 

structures [26]. GPCRs are known to bind ligands of diverse shape and size in a pocket at the 

extracellular side of the TM helices [27] (Figure 4-7; Chapter 4). Different ligands are known to 

bind topologically equivalent residues up to an extent in TM3, TM6 and TM7 at positions 3.32, 

3.33, 3.36, 6.48, 6.51 and 7.39 [28]. Additional details revealed by high-resolution structures 

illustrated the receptors as allosteric machines that are controlled not only by ligands but also by 
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ions, lipids, cholesterol and water. H2O molecules facilitates indirect contact between the ligand 

and receptor [29] such as A2A-R, β1-AR, CXCR4, δ-OR, κ-OR, PAR-1 and sphingosine-1-

phosphate receptor 1 (S1P1). X-ray structures show water mediated contacts between the ligands 

and receptor [30].  

A crystal structure of the A2A-R bound to an antagonist contained three distinct water clusters 

which were visible at 1.8Å [31] on the extracellular face in the TM core and at the intracellular 

face near the E/DRY motif. Water molecules in the central TM region are coordinated to a 

Na+ ion that may play a role in receptor activation. In the agonist bound A2A-R, the ligand 

induced change in TM3 prevents binding of water molecules [23, 32]. Thus, the presence of 

water and activation-induced changes in conformation which alters receptor hydration may be 

common feature in GPCRs [33-36]. The high degree of involvement of water molecules in 

GPCR ligand binding makes rational ligand design very difficult without corresponding to X-ray 

structure. This is because the SAR is greatly changed when a bridging water entity is replaced. 

The knowledge that water location is crucial in GPCRs has led to studies which explicitly 

investigate the thermodynamic properties of water molecules in GPCR X-ray structures to 

answer the question; Can specific water molecules be replaced by ligand atoms? [37]. 

Biochemical and biophysical techniques such as NMR and hydrogen-deuterium exchange 

coupled with mass spectrometry provided complementary insights into ligand-dependent 

dynamic equilibrium between different functional states. This wealth of data helped redefine our 

knowledge of how GPCRs recognise such a diverse array of ligands and how they transmit 

signals across the cell membrane. It also shed light on structural basis of GPCR allosteric 

modulation and biased signaling. A new class of ligands termed bitopic or dualsteric ligands 

have been reported to target at both orthosteric and allosteric sites simultaneously [38, 39]. The 

development of bitopic ligands is based on the combination of high affinity (via orthosteric sites) 

and high selectivity (via allosteric sites). Moreover, some recent reports [40, 41] showed that 

bitopic ligands possess either orthosteric or allosteric properties under different conditions. Both 

allosteric modulators and bitopic ligands of GPCRs possess advantages over orthosteric ones, so 

the discovery of allosteric modulators or bitopic ligands of GPCRs has become a new strategy in 

drug design. 

The biogenic amine binding class of GPCRs has provided excellent targets for the treatment of 

several CNS diseases such as schizophrenia (mixed D2/D1/5HT2), psychosis (mixed D2/5HT2A), 
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depression (5HT1) or migraine (5HT1). This GPCR subfamily has also proven to provide 

druggable targets for other disease areas such as allergies (H1), asthma (β2), ulcers (H2), or 

hypertension (α1 antagonist, β1 antagonist) [42]. The α1-ARs subdivided into the α1A, α1B and 

α1Dsubtypes [43] are involved in blood pressure maintenance by modulating the vascular muscle 

tone. α1-AR antagonists such as indoramin and prazosin are employed as antihypertensitive 

agents. In addition, α1A antagonists such as alfuzosin and prazosin are effective in the 

management of benign prostatic hypertrophy. 

Crystal structures provide robust structural framework for computational modeling of receptor 

dynamics, ligand docking and structure and ligand based virtual screening processes. 

Computational approach like homology modeling, molecular dynamics, molecular docking, 

pharmacophore mapping, structure and ligand based virtual screening are used to study ligand-

receptor interactions in the drug discovery and development process [44] (Figure 5-3). MD 

simulations have become an essential technique among all tools available to design new drugs. 

Initially developed to investigate molecular models with a limited number of atoms, computers 

now enable investigations of large macromolecular systems with a simulation time reaching the 

microsecond range [45].  

MD techniques are being increasingly applied to GPCRs to study protein dynamics, explore 

druggability and optimise lead compounds [46]. MD simulations allow the exploration of 

allosteric and cryptic binding pockets [47], understanding the mechanisms of allosteric 

modulation [48], discovery of allosteric modulators for the μ opioid receptor [49], fragment-

based drug discovery by SILCS (Site Identification by Ligand Competitive Saturation) [50]. MD 

simulations which are frequently an integral part of these modeling protocols allows refinement 

and exploration of GPCR structures to a degree that is not possible with static models alone. 

Despite the best efforts of the pharmaceutical industry to design novel GPCR targeting drugs, 

attrition rates along R&D pipelines remain high with many candidates eventually failing to 

demonstrate sufficient efficacy in clinical trials [51].  
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Figure 5-3: Schematic summarisation of interaction maps derived from structural models and 

MD data that can be used to provide synthesis recommendations [52] (Image courtesy: Heifetz 
A., Biochemistry; 2013;52;8246-8260). 
 

The biogenic amine binding receptors represents a challenge for ligand design with respect to the 

problem of selectivity considering the high sequence (and probably structural) similarity of the 

ligand binding site. Due to lack of crystal structures, computer-aided drug design for GPCRs was 

achieved by applying ligand-based modeling techniques [53, 54]. Literature survey revealed 

generation of many GPCR models which were mainly used to explain the binding of known 

GPCR agonists/antagonists [55-59].  A large amount of GPCR ligand binding site data is 

available from mutagenesis and structures which can be used to direct new mutagenesis 

experiments to the positions that are most likely to have an effect on ligand binding. The 

orthosteric pocket present in TMs is very well suited for drug design with a blend of polar and 

lipophilic areas (Figure 5-4) [60]. Mutants designed to discriminate between these molecules 

can provide more unambiguous elucidation of affinity and selectivity for receptor residue 

hotspots [28]. 
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Figure 5-4: Ligand-binding pockets of mGluR5, CRF1R, mGluR1, SMO, H1R, β2AR, μ-OR 

and CCR5. Receptors are shown in cartoon and surface representations. Ligands are shown as 
yellow sticks [61] (Image courtesy: Zhang D. Mol Cells.; 2015;38;836–842.). 

 

The ligand interactions may unlock a rational design of ligands with the exact desired 

pharmacological activity that is agonism versus antagonism as well as potentially biased agonism 

by the ligand interaction fingerprints approach which has been shown to discriminate agonists 

from antagonists based on their receptor interactions as well as increase the hits rate from VS 

[62]. Similar ligands are likely to have similar binding sites. Thus, it would be interesting to 

implement a mutation design for ligands of interest. Another intriguing outlook is to extend the 

concept of data-driven mutation design to other functional sites, that is the binding sites of G 

proteins [63, 64], β-arrestin [65] and dimerisation interfaces [66]. 

The use of VS processes has substantiated high hit rates in the identification of new ligand 

chemotype as lead compounds as well as in lead optimisation through virtual screen libraries 

(e.g. the ZINC database is a free database of ∼80 million commercially available compounds) by 

docking compounds into receptor models and then scoring the best fit using computational 

programs such as AutoDock, GOLD, GLIDE (Schrödinger, LLC) [67, 68]. Virtual screen hit 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625064/


248 
 

rates of 3–10% have been reported for a range of GPCR targets including the adenosine A2A-R 

[69], histamine H1 [70] and the chemokine receptor, CXCR7 [71].  

Many crystal structures have been deciphered from the discovery of bovine rhodopsin and first 

human GPCR structure with a diffusible ligand. Hence, modeling has become a reliable tool to 

anticipate additional 3D structures to be discovered based on available experimental structures. 

Additionally valuable inputs could be obtained by characterisation of GPCRs crystallised with 

widening range of ligands and intracellular proteins required for receptors transition from 

inactive to active phase. Previous studies have significantly shown the specific role of distinct 

agonists and antagonists in studying the ECS conformations [72], thereby opening up new 

possibilities for allosteric drug targeting at GPCRs [73]. Primary results from the Lewis 

laboratory have identified an agonist-induced bond swap that initiates a cascade of 

conformational changes that appears to explain the link between NE binding and α1-AR 

signaling [74, 75].  

The goal of this project was to extend these studies to define how the ECS conformation of the 

α1-AR changes during agonist activation through understanding of NE egress pathway. The 

contacts NE make with surrounding residues in TMs and ECLs during egress may help in 

receptor subtype selectivity of ligand binding and design of specific drugs with higher efficacy 

and longer duration of action. Two parallel approaches were initiated to define the role of 

residues lining the primary and secondary binding sites. Residues predicted from binding site 

server lining the orthosteric site were mutated experimentally for their role in signaling while the 

role of residues at secondary sites were predicted from MD simulations. Moreover, only a few 

specific agonists and antagonists are known till date for the α1-AR. Therefore, a ligand based or 

structure based approach will help in finding possible new leads. The outcomes of this research 

will provide a new understanding of GPCR activation mechanisms by simulating the new hits 

and understanding their binding pattern in comparison to known ligands. This research is 

expected to open the door to the rational development of new modulators that can recognise the 

ECS of GPCRs in distinct conformational states.  

In the present PhD thesis, I made use of computational techniques in conjunction with 

experimental assays to delineate the residues involved in egress pathway. The process of receptor 

activation in the apo and NE-bound form of the built homology model was investigated by the 

aMD simulations. The residues known from previous experimental studies were mutated 
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individually along with some double mutants to further characterise their rolein the process of 

receptor activation [74, 75]. Moreover, we were also interested in studying the putative ligand 

binding residues in the active site and the importance of the ECS in agonist binding. This was 

followed by ligand based VS to identify hits as new ligand chemotype for the α1-AR and its 

subtypes. The α1-AR has been an important target for drug design but slight is known about the 

receptor function in dearth of crystal structure. Despite recent progress in GPCRs structure, 

function and mechanism; the rational development of the next generation of GPCR-targeted 

drugs including allosteric inhibitors and biased agonists has met with limited success [76].  
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The aim of this project was to study the changes in ECS conformation of the α1B-AR upon 

agonist binding and receptor activation computationally with rational design of modulators. 

The specific outcomes achieved include: 

1. Development of new molecular model that describes the conformational changes of 1-

AR by NE. 

2. Characterisation of the egress pathway of NE from the orthosteric binding site that lead to 

identification of additional contributions to NE affinity. 

3. Determination of the effects of selected ECS residues on agonist binding and NE 

signaling. 

4. Understand the 1B-AR activation process in both apoand NE-bound form. 

5. Identification of new modulators acting at different 1-AR subtypes. 
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Chapter 1 is an introductory chapter on the GPCRs which gives a brief overview of the 

structure, function, pharmacology and regulation of GPCRs. A broad picture of GPCR network 

is presented and classified into subclasses of which the biggest is class A and accounts for ~85% 

of the genes [77]. The mechanism of GPCRs activation is proposed on the rhodopsin structures 

[78, 79] although crystal structures of ARs have shed light on the GPCR activation process 

where the receptor is shown to exist in an equilibration between the inactive and active 

conformations. Biophysical studies has provided direct structural analyses of conformational 

changes in the receptor molecule as an important first step towards a more profound 

understanding of GPCR function at a molecular level [80]. A brief outline of adrenergic 

modulators that binds at the orthosteric and allosteric sites is presented with their limitations such 

as selectivity, clinical efficacy and undesirable effects on receptor regulation [81, 82]. 

The main focus is on the findings of the studies done on Class A GPCRs with special reference 

to α1-ARs. This chapter outlines a basic understanding of the GPCR along with the 

implementation of computational techniques to corroborate the structures of closely related 

GPCRs from existing structures based on sequence analysis. Further use of computational tools 

(homology modeling, molecular docking, MD and VS) has been shown to study the α1-AR for 

drug discovery and development.The present work is an effort to address the issues pertaining to 

the activation process of the α1B-AR and how the binding of the known ligand (agonist, NE) 

affect the ECS of the receptor and stabilise specific conformations.  The ligand-based in silico 

drug discovery approach is implemented to address rational development of leads which could 

prove to bepotential α1-AR modulators. 

Chapter 2 is a research chapter on characterising the egress pathway of NE, a α1-AR agonist. 

Homology model of the α1B-AR built using the turkey-β1-AR template was used for docking of 

NE at the orthosteric binding site. Validation of the docking model was carried out by site 

directed mutagenesis studies and testing the above mutants using radiolabelled, functional and 

binding studies that helped us to gain insights into the role played by the residues lining the 

egress pathway. Egress pathway identified critical involvement of residues from TM3, TM5, 

TM7, ECL1 and ECL2; in particular W121 (TM3), C195 (ECL2), Y203 (TM5) and S207 (TM5) 

which affect the signaling efficiency [75, 83]. Egress pathway identified 3 distinct positions viz. 

1, 2 and 3. Position 1 is the orthosteric binding site that included residues from TM3, TM5, TM7, 

ECL1 and ECL2. Position 2 is the auxiliary site 1 that included residues from ECL2 and TM5. 
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Position 3 is the auxiliary site 2 that included residues from ECL1 and TM3.  An overlap 

between orthosteric site and auxiliary site 1 is observed including residues from TM5. The 

negatively charged ECS provides retention site for positively charged Iigands as allosteric 

modulators which affect the signaling process. Hence, ECS represents an important secondary 

site for drug design and might be subtype specific [72, 84]. 

RAMD study on the β2-AR suggested that the ligands access the primary binding site via the 

ECS revealing that specific residues in the ECS were important for ligand entry and exit [83, 85]. 

In contrast, ligand exits through the TM helices as observed in rhodopsin [86-88] where ECL2 

covers the entrance to the binding pocket [89]. Ligand exit involved the breakage of the Asp192-

Lys305 salt bridge that linked the ECL2 to the extracellular top of the TM7. Guo D et al., 

investigated the molecular basis of ligand dissociation process (antagonist ZM241385) in the 

adenosine A2A-R [90] where ZM241385 follows a multi-step dissociation pathway from the 

A2A-R by first breaking the hydrogen bond network formed by the triad of Glu169 in ECL2, 

Thr256 in TM6 and His264 in TM7 and moving further away from the binding pocket into the 

extracellular domain and bulk solvent. Thus, it is plausible to suggest an importance of the ECS 

as a secondary site for ligand binding. 

The ECS of GPCRs is remarkably diverse and therefore represents an ideal target for the 

discovery of subtype-selective drugs. However, the functional role of the ECS in receptor 

activation or conformational coupling of this surface to the native ligand binding pocket is not 

fully understood. Small molecule drugs that bind within the TM core exhibit different efficacies 

towards G protein activation (agonist, neutral antagonist and inverse agonist) and also stabilise 

distinct conformations of the ECS. The use of NMR spectroscopy around a central structural 

feature in the ECS of the β2-AR i.e., a salt bridge linking ECL 2 and ECL3 could be beneficial to 

investigate the ligand-specific conformational changes. Thus, conformational coupling between 

the ECS and the orthosteric binding site might demonstrate that drugs targeting this diverse 

surface could function as allosteric modulators with high subtype selectivity. Moreover, these 

studies could provide new insights into the dynamic behavior of GPCRs not addressable by static 

and inactive-state crystal structures. 

Chapter 3 is a research chapter to understand the activation process of the apo and NE-bound 

form of the α1B-AR by aMD. TMs of the functionally active crystal structures of the class A 

GPCRs like opsin [91] (active metarhodopsin II (3PQR)); β2-AR  (active G protein bound 
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(3SN6) [63], active-like nanobody bound (3POG)) [22]; A2A-R (agonist UK432097 bound 

(3QAK) [23]) internally rearranges towards the cytoplasmic side that leads to cascade of bond 

swapping and bond forming events [92, 93]. The rotation of TM6 is accompanied by a 

translocation of Trp6.48 located close to the base of the binding pocket in rhodopsin, A2A-R and 

to some extent in β2-AR.  

Ballesteros et al., predicted disruption of ionic lock between TM3 and TM6 in the β2-AR that 

leads to constitutive activation of the receptor [94]. Inactive conformations along with transitions 

were observed for the active structure of β2-AR on microsecond level timeframe using cMD in a 

study by Dror et al., [95]. Miao et al., demonstrated the use of aMD on M2 muscarinic receptor 

[96] where the receptor activation was characterised by formation of a hydrogen bond between 

the Tyr2065.58 – Tyr4407.53 and outward movement of cytoplasmic end of TM6 by ~6Å which is 

in agreement with previous GPCR studies where TM6 has been suggested to be a switch for the 

conformational transitions between inactive and active states [97].  

We performed dihedral aMD by applying boost potential to all the dihedral angles in the system 

(parameters: Edihed and αdihed) and dual-boost aMD by applying boost potential to all atoms in the 

system along with dihedral angles. The residues known from the experimental studies in our lab 

were mutated individually along with some double mutants to further characterise their role in 

receptor activation [74, 75]. aMD identified movement of tyrosine residues in close proximity to 

form weak hydrogen bond for W184A and double mutant Y223F-Y348F in a 10ns simulation. 

The direct activation of the apo and NE-α1B-AR was not observed over the nanosecond time 

scale but few mutants could be seen moving close to active state over a time scale of 10ns (Table 

3-1, Chapter 3). The residues identified showed reduced distance between Tyr223 (-OH) – 

Tyr348 (-OH) suggesting movement of receptor towards active state. This activation process at 

atomistic level is of pivotal importance in understanding the structure-function relationship. The 

receptor activation is characterised by formation of a hydrogen bond between the intracellular 

domains of TM5 and TM7 (Tyr223–Tyr348) which is in consonance with the results observed in 

previous studies for the active structures of rhodopsin [91, 98] and β2-AR [99, 100]. aMD applied 

to α1B-AR in apo and NE-bound state have shown almost similar results in apo-state and NE-

bound receptor thereby suggesting theirsimilar inclination towards activation with both dihedral 

and dual-boost dynamics. 
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Chapter 4 reflects the VS of the α1B-AR modulators. VS provide a cost and time effective 

method to interrogate in silico databases containing millions of compounds to identify potential 

binders to a receptor of interest. Chris de Graaf and Didier Rognan used selective structure-based 

VS for full and partial agonists of the β2-AR [101]. Previous VS studies on class A GPCR 

member like A2A-R [69], β2-AR [101], Chemokine CXCR4 receptor [102], Dopamine D1 and 

D2 receptor [103] and Histamine H1 receptor [62] have successfully screened selective agonists 

and antagonists. 

Evers A. and Klabunde T. performed structure-based VS for antagonists of the homology model 

of the α1A-AR generated using BRh as structural template [42]. Previous studies on β2-AR and 

rhodopsin have claimed the use of inactive structures resulting in identification of antagonists or 

inverse agonists while the use of active-state homology models retrieves partial/full agonists. 

Evers et al., generated a homology model for the α1A-AR [42] and docked ∼23 000 ligands 

resulting in 24 ligands binding in the submicromolar range [104]. The role of imidazoquinazoline 

derivatives have been widely demonstrated in diverse biological activities including the anti-

hypertensive activities through a selective α1-antagonistic mechanism [105-107]. 

We screened approximately 17.9 million drug-like compounds from the ZINC database using 

ROCS software. The initial results identified 80“hits” which were confirmed by flexible docking 

to likely bind either in the orthosteric site or in line to allosteric sites along the ligand unbinding 

pathway (chapter 2). To corroborate the potential of screened hits to target the α1-AR, we 

selected 12 hits for pharmacological evaluation acrossthe three α1-AR subtypes. VS and 

molecular docking of the screened hits from the drug like compounds database identified 3 hits 

from 12 compounds which were similar to the query molecule NE. In vitro studies of hits 

supported our study and identified compound 7 to be weak agonist for α1A-AR, compound 12 to 

be weak agonist forα1A-AR and α1D-AR subtypes while compound 10 to be weak agonist for α1A-

AR and α1B-AR and subtypes and full agonist for α1D-AR subtype. 

The combined use of ROCS, VIDA and FRED played a vital role in compound identification and 

selection. This selection of hits is essential in VS of the compounds from large pool of database. 

The current study showed that the homology model of the α1B-AR is suitable for retrieving the 

α1-AR partial/full agonists.The results of our initial characterisation revealed that several ligands 

that docked in the orthosteric site of the α1B-AR activated all the three α1-AR subtypes 

confirming the potential of this approach to identify new modulators. The approach used can in 
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principle be applied to any member of the GPCR family with known ligand information and site-

directed mutagenesis data. 
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In summary, this project has increased our understanding of GPCR structure  ̧ function and shed 

light on the aspect of receptor activation process, role of the ECS in identification of residues as 

allosteric/auxiliary sites by modeling, dynamics and VS followed by their experimental 

validation. We addressed the exit pathway of NE from the homology model of hamster α1B-AR 

by SMD simulations and succeeded in getting close to active state of the receptor for few single 

and double mutants which have been proven experimentally to contribute in the signaling 

efficacy. Although the direct receptor activation could not be observed for the apo and NE- 

bound form of the α1B-AR, the use of aMD has shown the movement of the receptor towards 

active state for the mutants in significantly shorter simulation time compared to classical 

simulations.  

This study established the application of aMD to the study of activation process which will be 

highly useful for designing GPCR mutation studies and engineering small molecules for 

receptor-selective therapeutics. The novel modulators for the α1-ARs were identified by using 

known endogenous ligand, NE as a query to search leads among the database with millions of 

compounds confirming the potential of this approach to identify new α1-AR subtype GPCR 

modulators. The atomic-level descriptions of the process as observed in this study will deepen 

our understanding of ligand-GPCR interactions and will lay the structural foundation for future 

rational design of drugs with optimised binding kinetics. 

The different studies conducted with this project have increased our understanding of the α1-AR. 

This project work provided useful insights into the role of residues lining the orthosteric sites, 

ECS and TM helices adding their specific role in activation and providing subtype specificity. 

This project has open doors to new possibilities in drug design targeting allosteric sites along 

with structure based drug design. The combined use of computational and experimental 

technique is beneficial in setting an environment for understanding of basics and surpassing the 

high cost associated with either technique. 
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5.2 Future Perspectives 

This PhD project has unbolted and raised additional questions to be countered that comprehend 

the basis behind the working mechanism of this class and subset of receptor. Though 

experimental data is available to validate the computational results obtained from molecular 

modeling, molecular docking, homology modeling, MD and VS, but further insight is needed to 

join the hanging patches. Future work that could provide more insight into above studies 

includes: 

1. Building new molecular model from the latest active GPCRs and their comparison with the 

inactive GPCRs and their subsequent models. 

2. Free Energy perturbation simulations on the apo and NE-bound receptor to determine 

contribution of each residue in ligand binding. 

3. Long range accelerated simulations to study the receptor activation/inactivation using 

different parameters (different atomic velocity initialisation). 

4. Steered dynamic simulations on the new hits to determine the egress pathway and additional 

contributions of residues. 

5. Ligand based virtual screening for the antagonist prazosin. 

6. Structure based virtual screening using imidazole as the basic pharmacophore. 

7. Structure and fragment based drug design on the existing modulators. 
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