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Abstract 

Promoting the conservation of multiple aspects of biodiversity in transformed landscapes is a 

fundamental challenge. Researchers have become increasingly interested in understanding not only how 

landscape structure affects the number of species that coexist in an area, but also the distribution of 

functional traits (i.e. functional diversity) that determine the relationship between species diversity and 

ecosystem functioning. As fragmented landscapes are becoming increasingly common, controlling 

landscape structure (i.e. both landscape configuration and composition) may help to promote the 

conservation of both taxonomic and functional diversity. Although we have a relatively good 

understanding of how landscape composition impact species richness over large spatial scales, less is 

known about how landscape configuration drives the relationship between species richness and 

functional diversity simultaneously. Furthermore, despite the conceptual support for trait-based 

frameworks, we still lack basic information on how different species traits explain species’ responses 

and their potential to provide functions at different spatial scales. In this thesis, I addressed these issues 

to generate new insights around how landscape structure can be managed to potentially maximize the 

conservation of both taxonomic and functional diversity in human-dominated landscapes.   

 

First, I conducted a systematic review on current approaches to evaluate how the influence of species 

traits on the relationship between environmental variables and ecological responses varies among scales 

(i.e. the scale-dependent role of traits; chapter 2). I show that there is a lack of studies comparing the 

effect of species traits on ecological responses at multiple scales. In addition, several ecological 

responses related to ecosystem functioning and species interactions such as seed dispersal, predation 

and multi-trophic networks have been widely overlooked. Importantly, the effects of landscape structure 

is also often ignored, and this makes it difficult to disentangle to what degree the responses of ecological 

systems across habitats, patches and landscapes are dependent on species traits. To address this gap, I 

then used data on bird ensembles collected in Brisbane (Australia) to test how landscape structure 

affects the distribution of species traits at different scales (chapter 3). I measured landscape composition 

and landscape configuration at two spatial resolutions: 100 m X 100 m and 1 km X 1 km. I found that 

depending on the scale of analysis, the strength of the association between species traits and landscape 

composition or configuration varies. At landscape scales, habitat configuration and the percentage of 

tree cover played a key role shaping the distribution of body sizes and dispersal capacities. Conversely, 

at local scales associations between the distribution of species traits and environmental variables were 

weak. Furthermore, the interaction between tree cover and fragmentation was important explaining trait 

distributions only at landscape scales. When tree cover was low at landscape scales, the presence of 

small-bodied species with low dispersal capacities depended mostly on having low levels of 

fragmentation. Although effects of fragmentation are stronger at landscape scales, habitat configuration 

is important determining trait distributions at local scales. Accounting for spatial scale can thus help to 
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find more general models of the effect of traits for predicting species responses to landscape change.  

Then, I developed a spatially explicit meta-community model to quantify how the relationship between 

species diversity and functional diversity is driven by both habitat amount and fragmentation (chapter 

4). I focus on the correlation between “response traits” (traits involved in species responses to 

environmental change) and “effect traits” (traits associated with species effects on ecosystem 

functioning). My model shows that the strength at which fragmentation modifies functional diversity in 

modified landscapes depends on the distribution of response traits and the correlation between response 

and effect traits. Finally, in chapter 5 I used my empirical data from Brisbane to disentangle the 

independent direct and indirect effects of landscape composition and configuration on bird functional 

diversity and species richness simultaneously. I evaluated the pathways through which landscape 

structure affects functional diversity in two main ways: 1) indirect effects through changes in species 

richness or 2) direct effects through redistribution in the abundances of particular traits. I show evidence 

that landscape structure acts differently on species richness compared to functional diversity. Landscape 

structure effects on species richness are consistent among different functional groups. However, 

patterns of functional diversity are more complex, vary among functional groups, and their dependence 

on the level of tree cover and fragmentation changes depending on the functional component evaluated. 

Importantly, although fragmentation does not always influence directly functional diversity, it can act 

indirectly through changes in species richness. 

This thesis integrates different concepts of community and landscape ecology to understand how 

species richness and different components of functional diversity may respond to landscape structure. 

Crucially, the hypotheses presented here would simplify forecasting and understanding the mechanisms 

that drive functional diversity in different landscapes and represent an advance for generality in 

landscape ecology. In addition, it provides new evidence about the importance of evaluating species 

diversity–functional diversity relationships at different spatial scales. My study suggests that a focus on 

conserving species with particular traits at the local scale may be ineffective if attributes of landscape 

structure are ignored. In addition, the results presented in this thesis are key for understanding how 

urban growth might best be done to maximize the conservation of functional and taxonomic diversity. 
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Chapter 1                                                                                                       

INTRODUCTION 
 

1.1 Background to the problem 

 

One of the most important questions in conservation science is how to predict the effects of 

environmental change on biological diversity that is relevant for ecosystem functioning (Díaz et al. 

2013, Gross et al. 2017, Naeem and Wright 2003). For many years, it was assumed that maximizing the 

protection of taxonomic diversity was enough to achieve the conservation of other components of 

biodiversity (Myers et al. 2000). However, the range of functions provided by a community also 

depends on the diversity of functional trait states (i.e. functional diversity) (Díaz and Cabido 2001, 

Mayfield et al. 2010). Theoretical and empirical evidence is now showing that the relationship between 

species richness and functional diversity can take many shapes, from positive, to hump-shaped to non-

significant (Laliberté et al. 2010, Mayfield et al. 2010, Safi et al. 2011). Thus, patterns of species 

richness, in some situations, tell us little about the ability of assemblages surviving in human-modified 

landscapes to provide ecosystem functions (de Bello et al. 2010, Mayfield et al. 2010, Petchey et al. 

2007). Therefore, evaluating how different environmental factors influence species richness and 

functional diversity simultaneously is a research priority (Díaz et al. 2007, Mori et al. 2013).  

 

One key environmental factor that affects functional diversity and species richness is landscape 

structure: the amount and spatial arrangement of different landscape elements (Dauber et al. 2003, 

Fahrig et al. 2011, Tscharntke et al. 2012). As highly fragmented landscapes are becoming more 

common with continuing anthropogenic habitat conversion (Haddad et al. 2015), understanding how 

landscape structure influences ecosystem functions in fragmented landscapes is of primary interest to 

maximize the outcomes of limited conservation resources. Empirical and theoretical evidence is 

showing that synergistic effects of habitat loss and fragmentation are fundamental for understanding 

ecosystem responses to environmental change (Bartlett et al. 2016, Didham et al. 2012, Ruffell et al. 

2016). However, while previous work has demonstrated that the relationship between species richness 

and functional diversity can follows various trajectories in response to land-use change (Flynn et al. 

2009, Luck et al. 2013, Newbold et al. 2013), less is known about how landscape configuration and 

landscape composition interact to affect functional diversity and its association with species richness.  

 

During recent years, there has been important advances in using the concept of functional diversity as 

a basis for understanding the relationships among landscape change, species diversity and ecosystem 

functioning (Carmona et al. 2016, Mori et al. 2013, Petchey et al. 2007). Previous work has linked 

patterns in trait variation within and among species can allow for inferences about how landscape 
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change affects species diversity (Suding et al. 2008, Mori et al. 2013, Palma et al. 2015), as well as the 

potential for different species to perform the same functional roles (Díaz et al. 2013, Laliberte et al. 

2013). However, despite conceptual support for trait-based frameworks, we lack basic information 

about how traits’ capacity to explain species responses to environmental change varies with the spatial 

scale of analysis. This information is critical for moving towards more general scale-dependent models 

of species and community distributions and dynamics. In this sense, scale-dependence and spatial 

configuration effects on species diversity-functional diversity relationships are emerging as important 

research topics in their own right over the next few years. 

 

This introduction is divided into four sub-sections to describe the conceptual framework underlying this 

thesis. The first section, “Functional diversity and its relationship with species diversity”, discusses 

current understanding of the relationship between species diversity and functional diversity in the 

context of landscape change. In addition, it defines the components of functional diversity and explains 

why functional traits matter for ecosystem functions. The second section “The role of landscape 

structure” discusses the importance of landscape structure in driving patterns of biodiversity and 

functional diversity. In the third section, “Accounting for spatial scale”, I describe the importance of 

accounting for spatial scale for the relationship between species trait values and landscape structure. I 

then discuss the importance of applying these concepts in urban systems, by focusing on birds, the 

biological model I use in the empirical work of this thesis. Finally, I include a description of the thesis 

structure with a brief summary of each chapter. Key concepts used throughout this thesis are 

summarized in Table 1.1. 

 

Table 1-1: Key definitions in the functional trait approach used in this thesis 

Term Definition References 

Assemblage 
Phylogenetically related groups within a community that do not 

necessarily use the same resources. 

(Fauth et al. 

1996) 

Community A set of species occurring in the same place at the same time 
(Fauth et al. 

1996) 

Ecosystem 

function 

The changes in energy and matter over time and space occurring 

through biological activity, such as primary production, nutrient 

uptake, decomposition, and evapotranspiration. 

Cardinale et al., 

2007. 

Ecosystem 

resilience 

The capacity of a system to absorb disturbance so as to maintain 

the same controls on fundamental functions. Indicates how well a 

dynamic system continues functioning in times of environmental 

change. A high diversity of response traits in a community should, 

in theory, provide greater resilience. 

(Sterk et al. 

2013) 
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Ensemble 
A phylogenetically bounded group of species that use a similar set 

of resources within a community. 

(Fauth et al. 

1996) 

Fragmentation The breaking apart of habitat, independent of habitat loss. (Fahrig 2003) 

Functional 

diversity 
The variation of functional traits in an assemblage. 

(Diaz and 

Cabido 2001, 

Laliberté and 

Legendre 

2010) 

Functional 

effect trait  

A component of an organism’s phenotype that determines the 

organism’s effect on ecosystem functions. 

(Luck et al. 

2012, Suding et 

al. 2008) 

Functional 

redundancy  

The number of species contributing in a similar way to an 

ecosystem function. When multiple species have similar 

contributions to a focal function (that is, they have similar 

functional effect traits that are of interest), an ecosystem is better 

able to maintain key functionality while experiencing 

environmental change. Functional redundancy is an important 

characteristic of a community’s resilience to environmental 

change. 

(Mayfield et al. 

2010, Mori et 

al. 2013) 

Functional 

response trait 

A component of an organism’s phenotype that determines the 

organism’s response to environmental changes. 

(Luck et al. 

2012, Mori et 

al. 2013) 

Functional 

traits 

The phenotypic characteristics of an organism that affect its 

performance in providing functions and its fitness. 

(McGill et al. 

2006, Violle et 

al. 2007) 

Landscape 

configuration 
The spatial arrangement of landscape elements within a landscape 

(Turner et al. 

2001) 

Landscape 

composition 

The number of patch, land cover and habitat types represented on 

a landscape and their relative abundance 

(Turner et al. 

2001) 

Landscape 

elements 

All the quantifiable elements (e.g. Patches-Matrix-Corridors) that 

can be found in a specific landscape extent. 

(Turner et al. 

2001) 

Landscape 

structure 

The arrangement of landscape components, such as habitat patches 

or anthropogenic land-uses across a landscape. It includes 

landscape composition (how much of each land cover or land use 

that exists) and configuration (the spatial pattern of these land 

(Mitchell et al. 

2013, 

Tscharntke et 

al. 2012) 
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cover or land use types). 

Response 

diversity 

The diversity of species that can perform similar ecosystem 

functions but have different capacities to respond to disturbance, 

imparting greater resilience to the entire system. 

(Mori et al. 

2013) 

Scale 

Scale is composed of the spatial resolution (i.e. grain size) and 

spatial extent of analysis. Spatial resolution corresponds to the size 

at which ecological responses and/or environmental variables are 

measured, whereas spatial extent is the area defining the 

population or community under consideration. 

(McGarigal et 

al. 2016) 

 

1.2 Functional diversity and its relationship with species diversity 

 

1.2.1 The need for functional traits approaches 

A functional trait is a measurable property of an organism that affects that individual’s capacity to thrive 

across an environmental gradient or to acquire and allocate energy and nutrients (McGill et al. 2006, 

Violle et al. 2007). For example, plant ecologists have used relatively easy traits to measure such as 

seed size, leaf longevity or wood density to link life history strategies with mean population growth 

rates (Adler et al. 2014). In addition, animal-based studies of functional diversity often consider 

behavioural characteristics (e.g. foraging behaviour) as traits (e.g. Luck et al. 2013). Traits can be 

classified depending on whether they explain how different individuals respond to disturbance (i.e. 

response traits) or how species contribute to ecosystem function (i.e. effect traits; Suding et al. 2008, 

Laughlin et al. 2014). For example, body size and nesting behaviour are response traits that affect 

species’ tolerance to land use change (Belmaker et al. 2014, Brown and Graham 2015, Luck et al. 2012). 

In addition, effect traits such as tongue length and bill morphology in birds and insects influence 

pollination effectiveness and handling of fruit and seeds (Bartomeus et al. 2018, Luck et al. 2012, Pigot 

et al. 2016). Some traits can act as both response and effect traits. Dispersal capacity as an effect trait 

influences the movement of individuals in transformed landscapes and thus long distance seed dispersal. 

At the same time dispersal capacity can be a response trait, as species with limited dispersal capacity 

may suffer more from reduced landscape connectivity (Buchi et al. 2012, Luck et al. 2013).  

 

Given limited budgets and the time needed to study the ecological aspects of all the species in a 

community, the possibility of inferring how environmental changes will influence ecosystem 

functioning by focusing on specific species traits seems a promising approach (Carmona et al. 2016, de 

Bello et al. 2010). Functional trait methods provide a more precise framework than functional group or 

guild approaches, because they characterise small functional differences between individuals and/or 
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species that are ignored by functional groups (Carmona et al. 2016, Laliberté et al. 2010, Luck et al. 

2012). In addition, the use of functional trait approaches allows for the quantification of the continuous 

variation in trait abundances across species (Messier et al. 2010, Spasojevic and Suding 2012, Violle et 

al. 2012). Based on this information, we can quantify how environmental change might affect the 

distribution of the abundance of traits related to ecosystem functioning across multiple scales (Mason 

et al. 2013, Villéger et al. 2008).This information can give more insight into community responses to 

disturbance than conventional species diversity metrics (Cadotte et al. 2011, Díaz et al. 2013).  

 

The relationship between species richness and functional diversity in transformed landscapes depends 

on the distribution of response traits across species and the level of functional redundancy. Functional 

redundancy is the number of species that share similar effect traits and it implies that ecosystem 

functioning is largely unaffected if redundant species are removed, but decreases if the species lost have 

unique roles (Laliberté et al. 2010). By analysing functional redundancy patterns and the correlation 

between response and effect traits, it is possible to improve predictions about how biodiversity loss 

leads to loss in ecosystem function (Díaz et al. 2013, Suding et al. 2008). When effect traits correlated 

with response traits that provide low tolerance to landscape change, species more susceptible to 

landscape change may be more important providing specific functions. For example, large bees that are 

more susceptible to agricultural intensification can be more efficient in terms of pollination services 

(Suding et al. 2008). In this case, functional redundancy is low and functional diversity is expected to 

decline more rapidly than species richness with landscape change.  

 

Despite the elegance of trait-base approaches, empirical evidence showing how functional traits drive 

species responses to landscape change that also considers landscape context and spatial scale is lacking 

(Bartomeus et al. 2018, Didham et al. 2016). Therefore, applying response-effect trait based approaches 

in spatially explicit ways constitutes an important research need. In addition, methods for functional 

trait approaches in fauna ecology substantially lag behind those in plant ecology (de Bello et al. 2010, 

Luck et al. 2012). Even though plants are excellent surrogates to measure some ecosystem functions 

(Díaz et al. 2007, Garnier et al. 2007, Laliberte et al. 2013), other functions such as pollination, pest 

control and seed dispersal are primarily produced by mobile faunal species that actively move between 

habitats and ecosystems (Cote et al. 2017, Kremen et al. 2007). As these species play essential roles 

translocating matter among and within patches, linking functional traits of these organisms to changes 

in landscape structure is a major research priority.  

1.2.2 Functional diversity components 

Here, I define the concept of functional diversity as the variation or dispersion of functional traits in an 

assemblage (Carmona et al. 2016, Villéger et al. 2008). Functional diversity is a multidimensional 
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concept, and can be divided into functional richness, functional evenness and functional divergence 

(Figure 1.1). As such, it provides independent information on the distribution of species in functional 

trait space (Mouchet et al. 2010, Villéger et al. 2008). The components of functional diversity are 

defined as follows: 

 

Functional richness: Represents the amount of functional space occupied by an assemblage. For a 

single-trait, the functional richness can be estimated as the difference between the maximum and 

minimum functional values present in the community (Mason et al. 2005). For multiple-trait studies, 

functional richness represents the volume filled in the trait dimensional space by the community of 

interest (Villeger et al. 2008). High functional richness indicates that the amount of functional volume 

occupied by a community is high and thus species interact with most of the resources potentially 

available to the community (Carmona et al. 2016).  

 

Functional evenness: Functional evenness describes how regularly species abundances are distributed 

in functional space (Mouchet et al. 2010, Carmona et al. 2016). Functional evenness is higher when the 

distances between all nearest neighbour species pairs are identical and when all species have the same 

abundance. Conversely, functional evenness is low when some species are tightly packed along the 

functional trait range. Low functional evenness indicates that even when some species occupy all the 

functional trait space, some areas of the functional trait space are under-exploited.  

 

Functional divergence: This component represents how far high species abundances are from the centre 

of the trait functional space (Carmona et al. 2016). Functional divergence is low when the most 

abundant species have functional traits that are close to the centre of the functional trait range. On the 

other hand, when the most abundant species have extreme functional trait values, divergence is high. 

High functional divergence indicates a high degree of niche differentiation, and thus low resource 

competition and increased ecosystem function as a result of more efficient resource use (Villéger et al. 

2008, Carmona et al. 2016). 

 

Another common index is functional dispersion which  measures the distribution of species abundances 

within trait space, and it is closely related to Rao’s quadratic entropy (Laliberte and Legendre 2010). In 

this thesis, Rao’s Q has been used as an index of functional divergence in chapters 3 and 5, as it depends 

both on the range of functional space occupied by the community and on the similarity between species 

with the highest abundances (Mouchet et al. 2010). This index is strongly positively correlated with 

functional dispersion (Laliberte and Legendre 2010), given that both indices aim at estimating the 

dispersion of species in trait space, weighted by their relative abundances (Laliberte and Legendre 

2010). 
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Figure 1-1: The components of functional diversity. See definitions in main text. Functional diversity 

components are complementary metrics of the distribution of functional trait values across the trait 

space. Even if functional richness (a) does not change, functional evenness (b) and functional 

divergence (c) may change depending on the distribution of abundances in the functional trait space. 

Adapted from Carmona et al. (2016).  

As functional diversity components reflect complementary characteristics of the distribution of 

abundances and taxa in functional space, the values of functional richness, evenness and divergence can 

be different for the same assemblages occupying the same environmental gradient (Luck et al. 2013). 

For example, even though in some cases functional richness may not be affected by low amounts of 

habitat (e.g. Magnago et al. 2014), habitat loss and fragmentation can promote a redistribution of trait 

abundances across species by, for example, favouring individuals with high dispersal (Luck et al. 2013, 

Pakeman 2011, Sonnier et al. 2014a). In this case, functional evenness and functional divergence would 

change. This could reflect changes in community structure with important implications for ecosystem 

functioning (Laliberté and Legendre 2010, Laliberte et al. 2013). Particularly in areas where habitat 

amount is limited, the implications of changes in landscape structure on the relationship between 

functional diversity components and species richness are still mostly unknown.  

1.2.3 The relationship between species richness and functional diversity 

Previous work has shown that species richness and functional diversity follow different paths in 

response to landscape change (Flynn et al. 2009, Mayfield et al. 2010). Whereas for some groups 

functional diversity may show a linear increase with increasing species richness, other groups may show 

significant hump-shaped or even negative relationships. In some cases, even an increase in species 

richness can come at the expense of species with unique traits (Coetzee and Chown 2016, Mayfield et 

al. 2010). Landscape fragmentation can promote the dominance of species with traits associated with 

long-distance dispersal due to increased fragment isolation (Barbaro et al. 2014, Ding et al. 2013, 

Magnago et al. 2014). Furthermore, even though species richness may not be affected by fragmentation, 
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habitat diversity can decrease in fragmented landscapes, which in turn favours generalist species with 

a more restricted set of functional traits (Munguia-Rosas et al. 2014).  

 

There are multiple factors that may affect the effects of landscape structure on the relationship between 

species richness and functional diversity. These factors include the type of disturbance, the species pool 

size, as well as functional group identity (Flynn et al. 2009, Naeem and Wright 2003). A meta-analysis 

performed by Laliberte et al. (2010) in agricultural landscapes showed that declines in functional 

diversity of birds and mammals were steeper than predicted by species number. Conversely, these 

authors showed that changes in the functional diversity of plant assemblages were indistinguishable 

from changes in species richness. These results suggest that land‐use intensification increases the 

vulnerability of functional effect groups independently of patterns of species richness. While much 

progress has been made in understanding the relationships among species richness and functional 

diversity in large-scale analyses that focus mostly on landscape composition (Flynn et al. 2009, Luck 

et al. 2013, Mayfield et al. 2010, Newbold et al. 2013, Palma et al. 2015), effects of landscape 

configuration have been widely overlooked. Most of the evidence showing that some ecosystem 

functions may be more susceptible than others to landscape configuration comes from analyses 

investigating species richness within functional groups. For example, frugivores and insectivores are 

highly susceptible to fragmentation when the amount of habitat is low (Bregman et al. 2014, Ikin et al. 

2013). However, as I discussed above, analysis of the effects of fragmentation on functional groups 

ignores small functional differences between individuals and precludes predictive analyses using 

concepts like functional redundancy (McGill et al. 2006, Mayfield et al. 2010; Luck et al. 2012; Mori 

et al. 2013). Applying functional trait approaches in spatially explicit ways is a promising research area 

to understand how landscape structure affects ecosystem functioning in changing landscapes.  

1.3 Bird functional diversity in urban systems 

 

Understanding the impacts of urbanisation on biodiversity is currently a major priority in conservation 

biology (Alberti 2015, Devictor et al. 2007, Lin and Fuller 2013, Sushinsky et al. 2013). Cities are the 

places where most human population growth is happening, and by 2030 some estimates predict that 

urban land cover will increase by 1.2 million km2 (Seto et al. 2012). Urban development primarily 

affects biodiversity through fragmentation and degradation of natural habitats. Although impacts vary 

with the frequency and intensity of environmental filters, including the loss and fragmentation of natural 

vegetation and increased disturbance from humans and exotic animals (Catterall et al. 2010, Litteral 

and Shochat 2017, Sol et al. 2014), a common outcome of urbanization is the simplification and 

homogenization of species composition (Devictor et al. 2007, Evans et al. 2011). This homogenization 

is predicted to result in a loss of the functioning and resilience of ecosystems (Ibarra and Martin 2015, 

Sonnier et al. 2014b). However, while the focus of previous research has been on the effects of 
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urbanization on species composition and abundance, we know much less about the effects of 

urbanization on the relationship between species loss and ecosystem function.  

 

Birds are an excellent group to link functional diversity patterns with urbanization effects on ecosystems 

because they respond rapidly to changes in landscape configuration and composition (Bregman et al. 

2014, Catterall et al. 2010, Müller et al. 2013). In addition, they occupy a broad range of habitat types 

and ecological niches, and play an important role in linking patches at the landscape scale through 

processes such as seed dispersal, pest control and pollination (Heyman et al. 2017, Luck et al. 2013). In 

addition, they are easy to detect and observe and species are generally easy to identify in the field. Bird 

abundance and community composition in urban areas have been widely studied (Batáry et al. 2017, 

Litteral and Shochat 2017). There is empirical evidence from numerous regions showing that that bird 

community composition becomes increasingly impoverished with urban development, leading to the 

dominance of a few abundant species (Chamberlain et al. 2017, Devictor et al. 2007, Evans et al. 2009). 

In addition, species richness in urban areas is generally lower compared to the surrounding rural 

landscapes, although some studies have shown that areas with intermediate levels of urbanization may 

exhibit the highest richness (Batáry et al. 2017). Compared to the study of species richness, patterns of 

bird trait diversity across urbanization gradients are less well known.  

There is growing evidence that bird species vary in their tolerance to urbanisation according to 

functional traits (Brown and Graham 2015, Croci et al. 2008, Evans et al. 2011). For example, species 

adapted to urban conditions tend to be omnivorous, medium-sized (40-100 g) species with high 

dispersal capacities (Croci et al. 2008, Evans et al. 2011, Sol et al. 2014). However, it is not clear how 

the relationship between the prevalence of these traits in urban environments and landscape structure 

changes depending on the spatial scale of analysis. Most studies have not asked direct questions about 

the effects of urban landscape structure on functional diversity and species diversity simultaneously. 

Furthermore, many studies often analyse a dichotomy between urban vs rural areas (Brown and Graham 

2015, Evans et al. 2011, Sonnier et al. 2014b), but do not focus on differences across urban gradients 

of habitat loss and fragmentation.  

There therefore remains a strong need to understand how patterns of urban development affect bird 

species diversity and functional diversity (Schütz and Schulze 2015). Urbanization can alter the 

potential of birds to promote restauration processes, control insect populations and even provide cultural 

services (Barber and Marquis 2011, Cox et al. 2018, Da Silveira et al. 2016). In this sense, besides 

affecting bird populations, changes in functional diversity could ultimately affect human health and 

well-being (Pollack et al. 2016). As landscape structure has been neglected in many studies that 

investigate the effects of land use change on functional diversity components, we lack understanding of 

the ecological trade-offs between species diversity and functional diversity associated with alternative 

urban growth patterns. In addition, separating the relative influence of landscape and local scale 
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variables is fundamental for making spatially explicit decisions about urban biodiversity conservation 

(Batáry et al. 2017, Concepcion et al. 2015, Garden et al. 2010). The use of trait-based frameworks at 

multiple scales constitutes a novel approach to help decision makers to decide how to maximize the 

conservation of multiple aspects of biodiversity in urban areas. 

1.4 The role of landscape structure and spatial scale 

 

Landscape structure plays an important role in shaping species richness and the potential of 

communities to provide functions. Even though several authors have discussed the prevalence of the 

effects of habitat loss over those of habitat fragmentation (Fahrig 2003, Fahrig et al. 2011), empirical 

and theoretical evidence suggests that the effects of fragmentation on species diversity increase when 

there is little habitat in a landscape (Fahrig 2017, Hanski 2015, Rybicki and Hanski 2013, Tscharntke 

et al. 2012). Changes in configuration of landscape elements, patch size, edge effects and matrix type 

alter connectivity patterns (Fahrig et al. 2011, Mitchell et al. 2013), population persistence (Büchi and 

Vuilleumier 2014) and biotic interactions (Barbaro et al. 2014, Barnagaud et al. 2015, Villard and 

Metzger 2014). Furthermore, there is evidence that fragmentation can promote the occurrence of species 

with particular functional traits without substantially reducing species richness (Ding et al. 2013, 

Concepcion et al. 2015). Thus, although habitat loss has a bigger impact on biodiversity compared to 

the effects of fragmentation (Fahrig et al. 2011, Tscharntke et al. 2012), there is a need to investigate to 

what extent habitat configuration can mitigate the effects of habitat loss (Didham Raphael 2010, 

Didham et al. 2012, Villard and Metzger 2014).  

 

Research on the effects of landscape configuration on functional diversity comes principally from 

studies that focus on the effects of patch size and isolation (de Frutos et al. 2015, Magnago et al. 2014, 

Ulrich et al. 2016). These studies have shown that fragmentation can affect functional diversity by 

modifying directly trait distributions and mediating the effects of habitat loss (Ibarra and Martin 2015, 

Magnago et al. 2014). For instance, fragmentation can promote traits associated with long-distance 

dispersal due to increased fragment isolation (Büchi and Vuilleumier 2012, 2014) These changes can 

be independent of the number of species if, for example, some species are replaced by stronger 

competitors with a new set of traits or if the abundance of species with less common traits increases 

(Coetzee and Chown 2016, Ding et al. 2013). In this sense, new research is needed to disentangle the 

ways in which configuration and composition variables contribute to functional diversity, either through 

changes in species richness or through independent changes in the distribution of functional traits. 

 

Another important issue is accounting for the scale at which species traits best explain species responses 

to landscape structure (Jackson and Fahrig 2015, McGarigal et al. 2016, Miguet et al. 2016). How 

species traits affect ecological responses is likely to vary depending on the smallest unit of observation 
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and the spatial extent over which observations are made. This is because biotic, abiotic and 

anthropogenic factors (and interactions among these) operating on species and communities at larger 

spatial scales can be quite distinct from those operating at smaller scales (de Bello et al. 2013a, Lavorel 

et al. 2013). For example, factors at regional and landscape scales such as the distribution of habitat 

types predominantly interact with species through traits like dispersal ability (Cadotte and Fukami 

2005), while traits such as competitive ability and foraging behaviour may be more important in shaping 

species interactions at local scales (Ikin et al. 2014). In this sense, biological traits that determine the 

occurrence or abundance of species at the landscape scale may be less influential at the local or 

microhabitat scales. However, few studies have explored the relationship between landscape structure 

and species traits at different scales (Suárez-Castro et al. 2018), and most of them have focused on plant 

assemblages. As we are still unable to measure the net impact of landscape structure on functional 

diversity patterns across scales, we are limited in the extent to which we can apply trait-based 

frameworks to guide decision makers in changing landscapes.  

1.5 Summary of the problem 

 

In many cases, we are constrained by how much habitat we can conserve or how much urban or 

agricultural land is needed to protect multiple aspects of biodiversity (Ewers et al. 2010) (Fahrig et al. 

2011). Thus, with increasingly fragmented landscapes, understanding how landscape structure 

influences ecosystem functions could help develop strategies that can maximize the outcomes of limited 

conservation resources (Mitchell et al. 2013). Knowledge of species traits could help to predict the 

effects of fragmentation on ecosystem function across species and regions (Ewers and Didham 2006, 

Kosydar et al. 2014, Kremen et al. 2007). However, despite conceptual support for trait-based 

frameworks, information about how different traits explain species responses at different spatial scales 

is scarce. As spatial patterns are scale dependent, there is a need to identify the local and landscape 

variables that best account for variation in trait diversity (de Bello et al. 2013a, Suárez-Castro et al. 

2018). Furthermore, we still lack general hypotheses describing how changes to landscape structure 

drive the relationship between species richness and functional trait diversity. Much progress has been 

made in understanding how landscape composition impacts species richness and functional diversity 

over large spatial scales (Flynn et al. 2009, Mayfield et al. 2010), but less is known about the relative 

influence of landscape configuration on this process. This thesis will address these gaps using both 

theoretical and empirical approaches and evidence. The information provided by my thesis should help 

increase our ability to evaluate biodiversity–ecosystem function relationships at the spatial scales 

relevant to management, and establish guidelines to better prioritize biodiversity and ecosystem 

function-based conservation across landscapes (Luck et al. 2013, Mayfield et al. 2010).  
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1.6 Thesis aims and objectives 

 

The overarching objective of this thesis is to contribute new evidence of how landscape structure affects 

species richness and functional diversity simultaneously. In chapter 2, I review current approaches used 

to evaluate how the influence of species traits on the relationship between environmental variables and 

ecological responses varies among scales (i.e. the scale-dependent role of traits). I then use bird 

ensemble data collected in Brisbane (Australia) to address one of the gaps identified in my review: 

increasing our ability to explain variation in trait values across local and landscape scales by including 

landscape structure variables (Chapter 3). In chapter 4, I develop a theoretical simulation model to 

quantify how the relationship between species richness and functional diversity is affected by both 

habitat amount and configuration. Finally, in Chapter 5, I use my empirical data from Brisbane to test 

some of the hypotheses that emerged from my theoretical model and evaluate the effects of landscape 

structure on both species richness and functional diversity for different functional groups.   

My thesis addresses the following objectives: 

 

1. Identify the main research gaps and opportunities around how the relationship between 

particular traits, environmental variables and ecological responses changes across scales. 

 

2. Identify how spatial scale affects the relationship between landscape composition and 

configuration and bird trait distributions in urban environments.  

 

3. Develop a spatially explicit analytical framework to quantify the effects of landscape structure 

on the relationship between species diversity and functional diversity. 

 

4. Disentangle the ways in which landscape composition and configuration affect species richness 

and functional diversity for an urban bird assemblage. 

 

1.7 Thesis outline 

 

A brief overview of the six chapters is presented below, and depicted visually in Figure 1.2. 

 

This thesis is structured as follows. First, in this chapter I have provided a critical summary of the key 

concepts and knowledge gaps relevant to the principal aim of my thesis. Next, there are four core 

chapters addressing each of the objectives mentioned in section 1.6. Finally, there is a conclusion 

chapter summarizing the main findings, conservation implications, and limitations of my thesis 
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research, along with a description of the future research directions that have emerged.  

 

 

Figure 1-2: Conceptual diagram of flow of this thesis  

 

CHAPTER 1: Introduction. This chapter provides an overview of the key topics explored in this thesis—

the importance of functional trait diversity approaches, the role of landscape structure and spatial scale, bird 

trait diversity in urban environments—and outlines the overarching objective and specific questions 

addressed by this research. 

 

CHAPTER 2: The scale-dependent role of biological traits in landscape ecology: a review. In this 

chapter, I describe current approaches used to evaluate how the influence of species traits on the 

relationship between environmental variables and ecological responses varies among scales (i.e. the 

scale-dependent role of traits). I quantify which traits and ecological responses have been assessed, and 

discuss the main challenges associated with quantifying the scale-dependent effect of traits and 

functional diversity metrics in real landscapes.  

CHAPTER 3: Associations between urban bird traits and environmental variables change across 

scales. Here, I evaluate different landscape structure variables to explain variation in the trait values of 

an urban bird assemblage across local and landscape scales. I provide empirical evidence that the 

interaction between landscape configuration, landscape composition and spatial scale can explain 

contrasting patterns in the distribution of species traits that have been seen in previous studies. This will 

improve our understanding of how local and landscape elements affect the abundance and composition 

of bird ensembles in urban systems. 

 

CHAPTER 4: The effects of landscape structure on the relationship between species diversity and 
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functional diversity. In this chapter, I present a spatially explicit model to investigate how the 

relationship between species richness and functional diversity components is affected by landscape 

structure. This model links the concepts of functional redundancy, “response traits,” and “effect traits” 

to provide testable hypotheses about how fragmentation influences functional diversity at different 

levels of habitat amount. The hypotheses that emerge from this model provide an opportunity for testing 

across a broad range of real landscapes and communities in different regions. 

CHAPTER 5: Effects of landscape structure on species richness and functional diversity in urban birds 

assemblages. Here, the hypotheses generated by the model in Chapter 4 are tested empirically using 

bird community data collected across the Local Government Area of Brisbane. I use a stratified random 

sampling approach at the landscape level to disentangle the independent direct and indirect effects of 

landscape composition and configuration on functional diversity and species richness simultaneously. 

This will help evaluate the mechanisms by which changes in landscape structure at landscape scales 

produce different responses in species diversity and functional diversity.  

 

CHAPTER 6: Synthesis and conclusion. In this final chapter, I summarise the key findings of my 

research, with a major focus on how fragmentation modifies the relationship between functional 

diversity and species richness. I then outline the significant contribution that this research makes to the 

fields of landscape ecology and community ecology. Finally, I present recommendations relating to 

future research directions based on my key findings and the limitations of the project. 
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Chapter 2                                                                                                                        

THE SCALE-DEPENDENT ROLE OF BIOLOGICAL TRAITS IN 

LANDSCAPE ECOLOGY: A REVIEW 
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2.1 Abstract 

 

To improve the application of trait-based approaches, we need to understand how the influence of 

species traits on the relationship between environmental variables and ecological responses varies 

among scales (i.e. the scale-dependent role of traits). In this chapter, I describe current approaches used 

to evaluate the scale-dependent role of traits. For this, I quantify which traits and ecological responses 

have been assessed, and discuss the main challenges associated with quantifying the scale-dependent 

effect of traits in real landscapes. Finally, I suggest ways forward for future research. I identify three 

main approaches used to evaluate the scale-dependent role of traits, based on whether: 1) traits are used 

as predictors or responses; 2) intraspecific variation of single traits is considered; or 3) trait diversity 

indices are used. This review shows that several ecological responses related to species interactions 

have been generally overlooked, and the interaction between species traits and landscape structure is 

not considered in many studies. The explicit inclusion of landscape structure effects in trait based 

approaches at multiple scales will benefit the integration between approaches from community ecology 

and landscape ecology. This is important if we want to describe the main mechanisms that operate 

simultaneously at multiple scales and predict the impact of landscape change on a broad range of 

ecological responses, including species diversity patterns and interspecific interactions. 

2.2 Introduction 

 

Conducting research across multiple spatial scales is important for evaluating community and species 

responses to landscape change (Levine 1992, Miguet et al. 2016). Species interact with the landscape 

at different scales, thus understanding how the influence of environmental variables on ecological 

responses changes across scales remains an important challenge (de Bello et al. 2013a, Jackson and 

Fahrig 2015, Miguet et al. 2016). Importantly, we can use species’ traits to explain mechanistic links 

between environmental variables and ecological responses (Luck et al. 2012, McGill et al. 2006, Mori 

et al. 2013, Suding et al. 2008), as patterns in trait variation within and among species can allow for 

inferences about how spatial processes affect biodiversity across scales (De Bello et al. 2013b, Laughlin 

and Messier 2015, Messier et al. 2010, Moran et al. 2016). Currently, there is some understanding about 

how traits influence the scale at which species respond most strongly to particular environmental 

variables (i.e. the scale of effect approach) (Jackson and Fahrig 2015, Miguet et al. 2016). Yet, a 

different, but equally important perspective focuses on the need to understand how the effect of different 

traits varies with the scale at which environmental variables and/or species’ responses are measured 

(i.e. the scale-dependent effect of traits).  

The effect of traits on ecological responses depends on the spatial scales of measurement (Carmona et 

al. 2016, De Bello et al. 2013b, Levine 1992). This is because the way that biotic, abiotic and 

anthropogenic factors relate to species traits can be quite different when measured at continental, 
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regional or landscape scales compared to small habitat patches or microhabitats (Chalmandrier et al. 

2017, de Bello et al. 2012a). By identifying how the effects of traits vary with spatial scale, better 

predictions about how species may respond to specific environmental variables at particular scales 

should be possible. This information is critical for moving towards more general scale-dependent 

models of species and community distributions and dynamics. 

I consider two components of scale (McGarigal et al. 2016): spatial resolution (i.e. grain size) and spatial 

extent (Figure 2.1). Spatial resolution corresponds to the plot size at which ecological responses, species 

traits and/or environmental variables are measured, whereas spatial extent is the area defining the 

population or community under consideration. Increasing the resolution helps to detect fine-scale 

associations between species traits and local environmental heterogeneity, as well as biotic interactions. 

For example, at fine resolutions, traits related to competitive ability and reproduction can shape 

interactions of species sharing similar resources (Chalmandrier et al. 2017, Gross et al. 2013). On the 

other hand, at coarse resolutions, the impacts of spatial patterns such as landscape fragmentation 

become more evident, and thus the importance of traits associated with dispersal capacity increases 

(Cote et al. 2017, Wilson and McTammany 2016). Large spatial extents tend to include a broad range 

of environmental conditions across gradients, and thus communities exhibit a wide range of trait values 

(Chalmandrier et al. 2017, Yang et al. 2014). In contrast, at small spatial extents, groups of species or 

individuals are defined by a more restricted number of suitable traits that represent adaptations to local 

conditions (de Bello et al. 2012b).  

To understand the extent to which previous research has evaluated the scale-dependent effect of species 

traits, I undertook a systematic review of the literature from the past five years. I 1) identified the main 

approaches that have been used to describe the influence of traits on ecological responses to 

environmental changes at multiple scales; 2) identified which traits have been assessed for scale-

dependent effects and 3) identified which major environmental variables and ecological responses have 

been measured and related to traits at the community and population levels. Based on my review, I point 

out that a more refined understanding of how traits drive species responses to environmental variables 

at different scales, will be of great benefit for understanding the ecological requirements (including 

optimal landscape structure) of species and ecological communities. I then identify future research 

challenges to address this. Detailed methods and references for the literature review are provided in 

Appendix B. 
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Figure 2.1: The components of spatial scale that affect trait-based inferences : 1) resolution (e.g. the 

plot area of the sampled community) and 2) extent, the total area that contains the population or 

assemblage under consideration. Broad spatial extents tend to include a broad range of environment 

variables (e.g. elevational and climatic gradients), whereas medium and small spatial extents reflect 

local habitat and landscape structure variables. Circles represent the plots used to measured ecological 

responses and/or environmental variables. All the plots (blue + yellow) could be analysed to discern the 

relationships between traits, environmental variables and ecological responses at large extents; while 

the yellow plots could be used to analyse these relationships at smaller extents. Individual plots can be 

of different size; the size of plot used in a specific study determines the spatial resolution of that study. 

Fine resolutions may be more appropriate to detect the influence of traits related to biotic interactions 

and local environmental heterogeneity, whereas at coarse resolutions ecological responses reflect the 

averaging effect of broad-scale environmental variables. 

2.3 Methods 

 

 I was interested in and reviewed studies that: 1) measured explanatory environmental variables and/or 

ecological responses at more than one spatial scale (e.g. resolution, extent or both); 2) quantified species 

traits as predictors or response variables; and 3) evaluated how the relationships between particular set 

of traits, environmental variables and ecological responses change across scales. In this sense, this 

review does not focus on studies that only evaluate the scale at which environmental variables have 
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their strongest effect on species with different traits (the scale of effect approach; Figure 2.2a) as this 

approach has received considerable attention and its importance has been discussed in recent reviews 

(Jackson and Fahrig 2015, Miguet et al. 2016).  

 I searched (March 27th 2017) for all papers published in the last five years, using the following search 

term sequence in Web of Science: TI (Title) = (scale or scale* or multi-scale or multi-scale or spatial) 

and TS (topic) = (trait or trait* or dispersal or size or size* or reproductive or foraging or behaviour) 

and TS = (scale or scale* or multi-scale or multi-scale*). To facilitate my search, I reviewed papers 

from 40 ecological journals most likely to publish papers on ecological responses to landscape change, 

and discarded all studies that did not include “scale” in the abstract. This produced a sample of 1540 

papers (see Appendix B for details of search methodology). Most of the results were then eliminated 

based on the titles or the abstracts if they failed to meet one or more of the three criteria above. In cases 

where suitability could not be determined based on the abstract, an assessment was made after reading 

the methods and results sections. This process produced a set of 101 studies, which are listed in Table 

S2.  

2.4 Approaches to evaluating the effect of traits in multi-scale studies 

 

The approaches that I focus on in this review explicitly account for how the relationship between 

particular traits, environmental variables and ecological responses change across scales. This is 

important if we want to describe the key mechanisms that operate simultaneously at different scales and 

predict the impact of environmental variables on a broader range of ecological responses, including 

species diversity patterns and interspecific interactions (Table 2.1). I identified three different 

approaches: “species traits as predictors”, “single trait expression across scales” and “trait diversity 

approaches”. In the “species traits as predictors” approach (Figure 2.2b), different traits are used as 

predictors to identify how they moderate ecological responses to environmental change across scales. 

Here, the focus is in evaluating how interspecific variation in trait values affects ecological responses 

at different scales. For example, how the effect of dispersal capacity and competitive ability on species 

abundances differ among local, landscape and regional scales. In the “single trait expression across 

scales” and the “trait diversity” and approaches, traits are mainly used as response variables to identify 

how changes in intraspecific trait variation (Figure 2.2c) or trait diversity (Figure 2.2d), are related to 

particular environmental conditions at each spatial scale. In the approaches considered in this review, 

traits help to infer what set of environmental conditions have a stronger influence on species and 

communities at each scale.  
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Table 2-1: Main approaches used to evaluate the role of traits in multi-scale studies  

Approach Main research question 
Examples of ecological 

responses of interest 

Scale of 

effect  

How do traits determine the scale 

at which environmental variables 

most strongly influence an 

ecological response? 

Species presence and 

abundance patterns, 

physiological responses 

Species 

traits as 

predictors  

How does the effect of different 

traits vary with the scale of 

measurement of environmental 

variables and/or species’ 

responses? 

Species presence and 

abundance patterns, Biotic 

interactions (e.g. seed 

dispersal, pollination, 

parasitism), functional and 

species diversity patterns 

 

Single trait 

variation 

across 

scales 

How does the expression of a 

single trait for a particular species 

vary over different spatial scales 

and how do environmental 

variables moderate this variation? 

This includes studies that measure 

phenotypic plasticity or 

intraspecific variation. 

Intraspecific trait 

variability (Variation in 

body size across scales, 

changes in home range 

and dispersal capacity 

related to changes in 

landscape structure at 

multiple scales) 

 

Trait 

diversity  

How do patterns of trait diversity 

(the variation or distribution of 

species traits in an assemblage) 

change across multiple scales?  

Functional trait diversity, 

Species diversity patterns 
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Figure 2-2: Approaches where traits are used to explain ecological responses at multiple scales  (n = 

101). Different landscape sizes show the different scales at which environmental variables are measured 

a) Scale of effect approach: studies aiming to identify which traits affect the scale at which 

environmental variables have their strongest effect; b) Traits as predictors: the effects of different traits 

on the relationship between environmental variables and ecological responses are measured at different 

scales; c) Studies that evaluate how the expression of single traits vary over different spatial scales and 

how environmental variables mediate such variation. d) The distribution of traits at particular scales is 

used to explain community assembly processes and to identify groups of species with similar traits that 

are affected in a similar fashion by biotic or abiotic conditions at different scales. In this case, 

researchers measure the abundance and frequency of trait values across species to infer how 

environmental variables shape community diversity patterns. 

2.4.1 Species traits as predictors 

I found 46 studies using the “species traits as predictors” approach. Studies of this type explicitly use 

traits as predictors to measure their moderating effect on the relationship between environmental 

variables and ecological responses at different spatial resolutions and/or extents (Figure 2.2b). It has 

been hypothesised that at broad spatial extents (e.g. landscape, region), environmental variables such 

as climate and topography influence species and communities based on sets of traits related to tolerance 

to disturbance, dispersal capacity and habitat specialization (Bourgeois et al. 2016, de Bello et al. 2013a, 
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Mokany and Roxburgh 2010), while at smaller spatial extents, other traits, including diet and nesting 

behaviour operate through more localised environmental variables to influence species abundance (Ikin 

et al. 2014, Stirnemann et al. 2015). To test this, multivariate analyses may be used to measure how 

specific traits account for variation in ecological responses at each scale of interest (De Bello et al. 

2013b, Gross et al. 2013). If variation in the effect of particular traits across scales is non-random, it 

can be hypothesized that this trait acts as a driving trait for a particular ecological response at some 

scales more than at other scales.  

 

Studies that use this approach include those that identify species traits that explain variation in invasion 

area among species at different extents (e.g. Akasaka et al. 2012a, Barnagaud et al. 2015), as well as 

those that predict how species with different traits respond to land-use change or biotic conditions at 

different resolutions (e.g. Chalmandrier et al. 2017, Donadi et al. 2015, Mokany and Roxburgh 2010). 

For instance, Akasaka et al. (2012a) found that, irrespective of the resolution analysed, non-native 

species with clonality had significantly larger invasion areas than species without that attribute. Clonal 

reproduction enhanced competitive ability and establishment, promoting rapid expansion and 

maintenance within suitable habitats at fine and coarse resolutions. In contrast, traits related to species’ 

colonization capacity, such as seed size, were only marginally related to invasion areas at coarser 

resolutions (i.e. 80 km2 grid). This suggests that invasive plants are dispersal limited at large scales. In 

another example, Gilroy et al. (2015) showed that habitat specialization was a good predictor of bird 

species abundances in cloud forest zones in the Colombian Choco-Andes. However, this trait was 

strongly linked to amount of tree cover and the distance from forest only at within-farm spatial 

resolutions. Conversely, foraging plasticity was a strong predictor of species responses to distance from 

forest at coarser landscape resolutions, but not for responses to local habitat within each farm.  

2.4.2 Single trait expression across scales 

This approach includes studies that measure how the effect of environmental variables on the expression 

of a particular trait within species varies over different spatial scales (Fig 2.1c). At the population level, 

phenotypic plasticity can modify the expression of the same trait at different scales (Laughlin and 

Messier 2015, Messier et al. 2010, Violle et al. 2012). For example, there is evidence that the expression 

of morphological traits in response to variation in landscape structure may change at different spatial 

extents and resolutions (Cattarino et al. 2016, Miguet et al. 2016). Kaiser et al. (Kaiser et al. 2016) 

showed that, by altering temperature, urbanization affected butterfly size at fine resolutions (200 X 200 

m), but these effects were not evident at broad resolutions (3 X 3 km). I found that 18 % of the reviewed 

studies analysed variation in trait expressions across different resolutions and/or extents. Most evidence 

on how environmental variables affect the expression of species traits and its effect on ecological 

responses comes from studies analysing trait variation across environmental gradients (e.g. levels of 
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disturbance), rather than from analyses at multiple scales (Messier et al. 2010, Moran et al. 2016, Ryder 

et al. 2013). Some of these studies show that intraspecific variation in traits may lead to different 

ecological responses, such as changes in demographic attributes in terms of survival and reproduction 

(Cattarino et al. 2016, Kaiser et al. 2016). However, there is a lack of empirical evidence on this topic 

and more research effort is needed to address this gap.  

2.4.3 Trait diversity  

An approach that has become more popular in the last few years is to measure the frequency of trait 

values across species and relate this to community diversity patterns at different scales (54 studies, 

Figure 2.1d). The main objective of this approach is to identify groups of species with similar 

morphological, physiological or behavioural traits that are affected in a similar fashion by biotic or 

abiotic conditions at different scales (Aguiar et al. 2013, Carmona et al. 2012, Carmona et al. 2016, De 

Bello et al. 2013b). Recent multi-scale studies show how sets of environmental variables linked to fire 

regimes (Boiffin et al. 2015), grazing (Carmona et al. 2012) and urbanization gradients (Brice et al. 

2016, Concepcion et al. 2015) explain variation in functional diversity indices at different scales. 

Variation in trait values across species reflect the spatial scale at which these environmental variables 

operate (De Bello et al. 2013b, Gross et al. 2013, Laliberte et al. 2013). For some assemblages, 

coexisting species tend to express more divergence in trait values at fine resolutions (10 × 10 cm 

subplots within larger plots), suggesting niche differentiation. Conversely, at broad resolutions and 

extents, environmental variables tend to filter species with similar traits and these patterns become more 

evident when disturbance increases (Chalmandrier et al. 2017, de Bello et al. 2013a). Thus, besides 

being important for analysing how landscape structure affects the distribution and abundance of 

individual species in habitat models, traits have become crucial to understanding how different sets of 

species maximize community-wide coexistence and hence measures of species diversity at different 

scales (Concostrina-Zubiri et al. 2014, Mayfield et al. 2010, Mori et al. 2013). 

 

2.5 What traits have been used to understand the scale-dependent role of traits? 

 

My review shows that traits related to size (e.g. body mass, plant height) and habitat specialization are 

most commonly used both at the species and the community level to explain the scale-dependent role 

of traits (Figure 2.3a). For animals, the most common trait was body size (n = 27) followed by habitat 

specialization (primary habitat and/or breadth of habitats used; n = 21), dispersal (n = 14), diet (n = 12) 

and various morphological traits (n = 11). How the effect of species competitive abilities on ecological 

responses change across scales is a topic that has received less attention, while traits associated with 

nesting and social behaviour have been investigated mostly in single-scale studies (Donner et al. 2013). 

Community level approaches are most common in plants, and generally evaluate easily measurable 
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morphological traits such as height, seed mass and specific leaf area. These traits are used to describe 

reproductive abilities and tolerance to disturbance (e.g. Craven et al. 2016, Kazakou et al. 2014). Traits 

related to species interactions (e.g. morphological traits for pollination and reproduction, chemical 

defences for herbivory and social behaviour) are still mostly ignored in most multi-scale trait-based 

approaches. Although some studies included species or population attributes such as geographic range 

size, I did not take them into account in my analysis, since they are not a property of the organisms 

measured at the individual level (McGill et al. 2006) . 

  

Of the studies that included multiple traits to calculate trait diversity indices, only 31% aimed to 

disentangle which particular set of traits were driving diversity patterns at each scale (Chalmandrier et 

al. 2017, Gross et al. 2013, Spasojevic et al. 2016b). Most community-level studies focused on 

evaluating how indices of functional diversity changed across spatial extents, without reporting the 

major combination of traits driving these differences. This information is fundamental to understand 

how species traits affect population responses and community dynamics at each scale (Bolnick et al. 

2011, Laughlin and Messier 2015, Violle et al. 2012). For example, there is evidence that traits such as 

body size, dispersal capacity, trophic level and matrix tolerance increase or decrease a species’ 

vulnerability to fragmentation and habitat loss (Bregman et al. 2014, Ewers and Didham 2006, Kosydar 

et al. 2014). However, multi-scale trait-based approaches still require information on how the 

interaction between these traits varies among microhabitats, patches and habitat types across 

landscapes. Using this information, it may be possible to explain, for example, whether edge sensitivity 

is primarily related to dispersal ability at the landscape scale (Ewers and Didham 2006), or if a much 

wider range of traits are influential in explaining this effect (Ries and Sisk 2010). More studies relating 

species traits and fragmentation patterns at multiple scales are needed to predict how changes to 

landscape structure affect biological communities. 

 

2.6 What predictors have been measured to understand the scale-dependent role 

of traits? 

 

Most studies I found focused on habitat or landscape composition variables, but less than 35% of the 

studies considered landscape structure predictors associated with both habitat amount and 

configuration. There are numerous examples of how changes in landscape structure variables can 

modify the effect of particular traits (Delattre et al. 2013, Moran et al. 2016). For example, matrix 

quality and fragmentation modify species mobility and fecundity through changes in mobility traits 

(Akasaka et al. 2012b, Delattre et al. 2013, Prokopenko et al. 2017, van Beest et al. 2011). The effect 

of dispersal capacity on community composition patterns may be higher in areas with complex 

topography, as there are more barriers for the movement of individuals. Conversely, flatter natural areas 
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may increase connectivity, and thus the importance of dispersal capacity relative to landscape structure 

decreases. Thus, the spatial configuration of the landscape may have a greater effect on community 

composition than differences between dispersal capacities among species (Lauterbach et al. 2013, 

Moran-Ordonez et al. 2015). Ignoring the role of landscape structure may have consequences for the 

interpretation of how landscape change affects community dynamics and ecosystem functioning. 

 

The importance of species traits for explaining ecological responses is highly dependent on 

environmental gradients that may affect the expression of traits (Albert et al. 2010, Garnier et al. 2007, 

Moreira et al. 2012). For example, differences in topography, disturbance level and elevation affect how 

traits such as plant height, nutrient concentration in leaves, and foraging behaviour influence population 

and community structure (Albert et al. 2010, Delattre et al. 2013, Garnier et al. 2007, Moreira et al. 

2012, Spasojevic and Suding 2012). Most of the studies I reviewed measured environmental predictors 

at local habitat resolutions (Kazakou et al. 2014, Laliberte et al. 2013) and/or at broad extents (across 

continents, nations or regions) (Belmaker and Jetz 2013, Krasnov et al. 2015, Lauterbach et al. 2013). 

However, we lack trait-based studies combining both different resolutions and spatial extents that aim 

to detect the effect of environmental gradients on trait effects at local habitat resolutions (e.g. Boiffin 

et al. 2015, Concepcion et al. 2015, Kazakou et al. 2014, Perovic et al. 2015). In addition, in most of 

the studies (n = 72), trait measurements were averaged at the species level, ignoring how environmental 

variables may affect the expression of traits within species at different extents. Understanding how 

environmental predictors interact with scale to affect the influence of traits on ecological responses is a 

critical gap to be filled.  

2.7 What ecological responses have been measured in multi-scale trait 

approaches? 

  

I found that the main ecological responses that have been measured to understand species traits effects 

across scales include the analysis of multiple indices of diversity (e.g. beta diversity, functional and 

phylogenetic diversity; 48%) (Gilroy et al. 2015), taxonomic diversity (17% of studies), (Fig 2a) 

(Barnagaud et al. 2015, Chalmandrier et al. 2017), interspecific interactions (8%) such as parasitism 

(Barnagaud et al. 2015, Gunton and Poyry 2016) and predation (Green and Côté 2014), and patterns of 

single species occurrence and distribution (10%). Most work about community trait‐based approaches 

come from studies on plant assemblages (38%) (Bourgeois et al. 2016, de Bello et al. 2013a) and to a 

lesser extent on invertebrates (23%) (Gothe et al. 2013, Wilson and McTammany 2016) and birds (14%) 

(Gilroy et al. 2015, Morante et al. 2016).  
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Figure 2-3: Ecological responses and traits analysed in multi-scale studies a) The main ecological 

responses and b) The main traits used in multi-scale studies for explaining the effects of traits on 

ecological responses at different scales. n = 101. An explanation of ecological responses and trait 

definitions is provided in Appendix B. 

With respect to the “Single trait expression across scales” approach, I found that most studies did not 

evaluate how intraspecific trait variation could affect population responses such as reproduction success 

at multiple scales (Kaiser et al. 2016, Ryder et al. 2013). Changes in environmental conditions with 

increasing spatial extent can modify how a particular trait is expressed in a population, and this can 

affect population fitness and survival. However, since most studies describing species-environment 

relationships are still not adopting multi-scale frameworks (reviewed by McGarigal et al. 2016, Miguet 

et al. 2016), we have little understanding of how different environmental variables, including landscape 

structure, affect intraspecific variation of many traits across scales and its effect on ecological responses. 

This is despite the study of the impacts of landscape change on species traits, such as foraging behaviour 

and dispersal distance, being an active area of research (Carmona et al. 2016, Cote et al. 2017, Moran 

et al. 2016). Ignoring intraspecific trait variation at multiple scales may mask the effect of environmental 
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variables on ecological responses, especially in landscape-scale studies that encompass strong 

environmental gradients and locally adapted populations (Spasojevic et al. 2016b).  

 

Evaluation of the scale-dependent role of traits on species interactions such as predation, seed dispersal 

and pollination has been poorly addressed, and I found that only 8% of studies examined these processes 

(Figure 2.3b). Species interactions might be inferred from a small number of traits (Eklöf et al. 2013, 

Morales-Castilla et al.). However, more evidence is needed to infer whether the traits of interacting 

species groups are consistently related across spatial scales (Dehling et al. 2014). Some examples of 

advances in this area come from studies on host-parasite relationships. A meta-analysis by Gunton and 

Poyry (2016) tested the hypothesis that, within a landscape, the risk of an insect being attacked by a 

parasite is strongest at medium spatial resolutions, with respect to parasites' foraging range, whereas it 

is weak at fine resolutions. However, these authors also showed that there is a lack of evidence that this 

change in risk across scales depends on certain traits such as the level of specialization and whether the 

parasite is gregarious or not. In another example, (Barnagaud et al. 2015) found that the abundance 

patterns of the parasitic brown-headed cowbird (Molothrus ater) are influenced by specific hosts' 

ecological traits at fine resolutions within landscapes, rather than at coarse (regional or continental) 

spatial extents. These authors found that the effects of nest parasitism depend more on landscape 

structure and other environmental factors operating at landscape and patch scales than on specific 

associations with particular groups of species at larger scales. Therefore, evidence provided by these 

studies shows that the importance of species traits explaining species interactions is highly dependent 

on regional and landscape context. 

 

2.8 Towards a better understanding of the scale-dependent effect of traits  

 

Although traits can provide a mechanistic approach to evaluate the link between ecological responses 

and environmental variables, current understanding of the scale-dependent role of traits in shaping these 

relationships is still in its infancy. From my review, I identify three main gaps: 1) There is a lack of 

studies explicitly quantifying the relative effect of particular sets of traits on ecological responses across 

scales; 2) several ecological responses related to ecosystem functioning and species interactions such 

as seed dispersal, predation and multi-trophic networks have been widely overlooked, and 3) the effects 

of landscape structure are often ignored in many studies. While recognizing the challenges associated 

with evaluating the scale-dependent effect of traits in real landscapes, I discuss these gaps and provide 

some general recommendations for future progress. 

Most community-level studies do not explicitly quantify the relative effect of single traits on ecological 

responses across spatial scales. Instead, studies measuring trait diversity tend to condense multiple traits 
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in a single metric, and many of them do not test for how sensitive these metrics are to including different 

traits. Since species traits may represent different niche axes, aggregated information of functional 

metrics can overlook specific associations between environmental variables and community patterns at 

different scales (Butterfield and Suding 2013, Chalmandrier et al. 2017, Spasojevic et al. 2016b). 

Therefore, in order to explain the scale-dependent role of traits in heterogeneous landscapes, ecologists 

must 1) test for different sets of traits to represent the main variations in traits effects across scales 

(Laughlin and Messier 2015, Spasojevic and Suding 2012, Zhu et al. 2017) and 2) evaluate the 

congruence between trait diversity metrics and single-trait models. 

 

Current research shows the importance of evaluating the congruence of functional diversity patterns 

with single-trait models. For example, Chalmandrier et al. (2017) classified traits as ‘driving traits’ if 

they had a significant pattern going in the same direction as the multi-trait functional diversity pattern 

and ‘countering traits’ if they showed a significant pattern going into the opposite direction. In this way, 

they showed how leaf dry matter content is more important for explaining the distribution of species at 

fine resolutions, whereas specific leaf area and height play a more important role structuring 

assemblages that respond in a similar way to environmental stressors at large extents (an entire 

landscape). More empirical evidence about how particular sets of traits drive trait diversity patterns 

across scales is needed, and the use of probability density function approaches to calculate functional 

diversity at multiple scales constitute a promising area of research (see Carmona et al. 2016) . 

Understanding the scale-dependent role of traits requires the evaluation of how local ecological 

responses are context dependent across management practices or regions. Trait effects depend on 

multiple factors including the ecological response and the taxonomic group of interest, as well as inter-

regional variation in landscape attributes such as matrix quality, road density or topography. For 

example, although it is assumed that dispersal traits may play an important role determining beta 

diversity when the spatial scale increases (De Bello et al. 2013b, Lauterbach et al. 2013), regional 

disturbances such as urbanization can moderate how strong the effect of dispersal capacity is at large 

spatial extents (Brice et al. 2016).. Further studies disentangling the effects of environmental variables, 

community composition, traits, and phylogeny are necessary to generalize findings of trait effects across 

regions. These studies may benefit from the current development of large databases (e.g. Kattge et al. 

2011, Salguero‐Gómez et al. 2015, Wilman et al. 2014) that allow the simultaneous extraction of trait 

values from a large number of species or populations, rather than on measurement of traits in the field 

(Kazakou et al. 2014).  

My review found that research is scarce regarding the scale-dependent effect of species traits in 

processes such as competition, parasitism and trophic interactions. Some work has shown how fluxes 

of resources and individuals across different habitats influence each other’s structure and dynamics 

(Kissling et al. 2012, Stouffer and Bascompte 2010, Wood et al. 2015). Other models have explicitly 
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evaluated how traits of resistance to herbivory influence spatial patterns in plants (Anderson et al. 2015), 

and there is some empirical evidence showing that traits related to body size, body shape and behaviour 

help to predict predator-prey interactions across multiple extents, including individual prey foraging 

areas and entire landscapes (Green and Côté 2014). However, the study of the effects of traits on 

ecosystem processes such as food-web interactions is still very limited, and deriving generalities across 

scales is still a major challenge. In order to assess the impacts of human modification on ecosystem 

services, we need to understand how traits of interacting species groups and ecosystem functions are 

consistently related across spatial scales.  

Although it is expected that the diversity of functional traits determines ecosystem functioning, we still 

lack information of how much trait diversity is needed to maintain multiple ecosystem functions within 

habitat types within landscapes, between landscapes and among regions (Nash et al. 2016, Spasojevic 

et al. 2016a). A key knowledge gap exists in our understanding of how species sharing similar functional 

traits respond to scale-specific disturbances. In addition, issues still remain in scaling up how local-

scale diversity affects ecosystem processes at larger spatial scales (e.g. how functional diversity at the 

landscape scale influences the recovery of productivity after wildfires across landscapes (Spasojevic et 

al. 2016a) . To address this, tools used in large-scale studies of biodiversity (remote sensing and trait 

databases) can be combined with theoretical advances developed from small-scale experiments. This 

could help facilitate scaling up data on local trait variation to regional extents that are needed for 

understanding species interactions and ecosystem service management (Martinez et al. 2016, 

Spasojevic et al. 2016a).  

Finally, studies tend to ignore how landscape structure and landscape context influence the scale-

dependent role of traits; only a few empirical studies have addressed the impact of regional landscape 

context on local trait divergence in natural populations (Kaiser et al. 2016, Moran-Ordonez et al. 2015, 

Peringer et al. 2016). Generally, landscape ecologists focus on measuring landscape structure at varying 

spatial extents around sites/patches where the ecological response is measure, and then determine the 

scale at which species traits has the strongest effect on the ecological response (de Bello et al. 2013a, 

Jackson and Fahrig 2015, Miguet et al. 2016).. In contrast, multi-scale studies that focus on the scale-

dependent role of traits generally use a hierarchical approach to compare ecological responses at local 

(plot scale) and regional scales that capture heterogeneity in conditions related with variables such as 

climate and topography. Studies that seek to link traits to ecological responses at the landscape scale 

must consider a hierarchical design where landscape structure is measured at multiple scales around 

plots distributed across an environmental gradient. This will allow for a more comprehensive 

understanding of how traits affect ecological responses in space, as well as guide management responses 

that explicitly account for trait effects across a wider range of spatial scales. 
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2.9 Conclusions 

 

Over the past few decades, the dependence of ecological processes on drivers acting across a range of 

scales has been widely studied (Jackson and Fahrig 2015, Miguet et al. 2016, Mitchell et al. 2013). 

Theoretical and empirical evidence suggest that species responses to landscape change are determined 

partly by the spatial resolution and extent at which physical and biological attributes are measured and 

partly by the ecological traits of species (de Bello et al. 2012b, Ewers and Didham 2006, Flynn et al. 

2009, Miguet et al. 2016). However, the study of the scale-dependent role of traits that drive ecological 

responses is still in its infancy. Furthermore, methodological developments in trait approaches for 

animal ecology substantially lag behind those currently used for plant ecology. 

 

Without a proper quantification of variation in abiotic and biotic conditions at multiple scales in trait 

based approaches, it is still difficult to disentangle whether the responses of ecological systems are 

dependent on traits or on environmental variables acting across habitats, patches and landscapes. In 

addition, the effects of traits on ecological responses depend on the environmental context. Therefore, I 

advocate for the use of models that evaluate how variation in environmental conditions across regions 

and habitat types influence trait effects on ecological responses, as well as the measurement of 

landscape structure at a wider range of spatial extents and resolutions. The explicit inclusion of 

landscape structure effects in trait based approaches at multiple scales will benefit the integration 

between approaches from community ecology and landscape ecology. This is fundamental if we want 

to predict the impact of landscape change on a broad range of ecological responses, including species 

diversity patterns and interspecific interactions. This way, we could prevent missing essential 

information about the mechanisms that operate simultaneously at multiple scales to shape biological 

communities in changing landscapes.  

  



31 
 

Chapter 3                                                                                                           

ASSOCIATIONS BETWEEN URBAN BIRD TRAITS AND 

ENVIRONMENTAL VARIABLES VARY ACROSS SCALES 
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3.1 Abstract 

 

The distribution of species traits along environmental gradients depends on the spatial scales of 

observation. Information about the relationship between species traits and landscape structure at fine 

scales is not necessarily helpful for predicting how these traits explain species responses at large scales. 

Thus, multi-scale approaches are necessary to understand the main factors that affect trait distributions 

across environmental gradients. I this chapter, I investigated the impacts of changes in landscape 

composition, landscape configuration (i.e. fragmentation) and their interaction on different bird species 

traits – namely body size, dispersal ability, clutch size and specialisation degree – across two spatial 

scales (1 hectare and 1km2). At each scale, I examined if variation in the value of traits in urban bird 

communities is mostly due to landscape composition, landscape fragmentation, or both. Results of this 

analysis show that traits have different relationships with environmental variables depending on the 

scale of analysis. At landscape scales, landscape fragmentation and the percentage of tree cover played 

a key role shaping the distribution of body sizes and dispersal capacities. Conversely, at local scales 

associations between the distribution of species traits and environmental variables were weaker. 

Furthermore, the interaction between tree cover and fragmentation was important explaining trait 

distributions only at landscape scales. When tree cover was low at landscape scales, the presence of 

small-bodied species with low dispersal capacities depended mostly on having low levels of 

fragmentation. Although effects of fragmentation are stronger at landscape scales, habitat configuration 

is important determining trait distributions at local scales. I hypothesize that at local scales, 

fragmentation may increase heterogeneity and thus facilitates the presence of species with multiple 

traits for exploiting resources. However, when the percentage of tree cover is low (< 30 %) at local 

scales, fragmentation effects are negative and tend to homogenize the distribution of traits. This may 

reflect how increasing habitat heterogeneity facilitates the presence of species with multiple strategies 

for exploiting resources. Results of this study suggest that a focus on conserving species with particular 

traits at the local scale may be ineffective if attributes of landscape structure are ignored. Therefore, 

local actions aimed at increasing species richness that do not consider landscape structure effects may 

favour species that are already more adaptable to urban landscapes.  

 

3.2 Introduction 

 

Identifying the interaction between ecological community structure and the spatial scale of analysis is 

fundamental to understanding the effects of landscape structure on biodiversity more broadly (Jackson 

and Fahrig 2015, Miguet et al. 2016). Spatial processes and disturbance regimes vary across scales and 

so does the effect of environmental variables on species and communities. The effects of environmental 

variables depends on species traits, thus it is expected that the distribution of trait values in response to 
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environmental variation will change depending on the scale of evaluation (de Bello et al. 2013a, 

Kazakou et al. 2014). Thus, information about the relationship between species traits and landscape 

structure at fine scales is not necessarily helpful for predicting how these traits respond at broader scales 

(Carmona et al. 2016, de Bello et al. 2013a). Multi-scale approaches are necessary to disentangle to 

what degree species’ responses to environmental variables are dependent on traits (e.g. Boiffin et al. 

2015, Kazakou et al. 2014). 

 

In the review presented in chapter 2, I showed multiple examples of how the distribution of species 

traits along environmental gradients depends on the spatial scales of observation (Albert et al. 2010, 

Garnier et al. 2007, Moreira et al. 2012). For instance, at spatial resolutions of kilometres, an increase 

in landscape heterogeneity may favour species with high dispersal (Öckinger et al. 2010). In contrast, 

highly mobile species may not tolerate local conditions if they cannot find nesting sites and/or tolerate 

aggressive competitors (Ikin et al. 2014, Montague-Drake et al. 2011). Therefore, although the 

distribution of dispersal capacities may be a good indicator of effects of landscape change at coarse 

scales, at local scales, poor dispersers and mobile species may respond to landscape attributes in similar 

ways (Concepcion et al. 2015). However, most evidence on how landscape structure affects the 

distribution of species traits comes from studies across environmental gradients (e.g. levels of 

disturbance), rather than from analyses at multiple scales (Messier et al. 2010, Moran et al. 2016, Ryder 

et al. 2013). 

 

Studying the impacts of urbanisation on biodiversity at multiple scales is a major priority in 

conservation biology (Alberti 2015, Evans et al. 2011, Lin and Fuller 2013). Cities are the epicenters 

of the net human population growth (Alberti 2015, Batáry et al. 2017), and separating the relative 

influence of landscape structure from patch and local scale variables is fundamental for making spatially 

explicit decisions about urban biodiversity conservation (Batáry et al. 2017, Concepcion et al. 2015, 

Garden et al. 2010). Urbanization can lead to biotic homogenisation through the replacement of non-

urban specialist species with urban adapted species, which share traits necessary for exploiting the 

habitats that urban areas support (Croci et al. 2008, Evans et al. 2011, Müller et al. 2013, Sol et al. 

2014). However, it is not clear how landscape structure influences the prevalence of different traits in 

urban environments across different spatial scales of analysis (Brown and Graham 2015, Evans et al. 

2011, Sonnier et al. 2014b). Most studies often focused on coarse scale analyses such as evaluating the 

prevalence of particular traits in urban vs rural areas (Brown and Graham 2015, Evans et al. 2011, 

Sonnier et al. 2014b), which limits the potential of finding differences across gradients of habitat loss 

and fragmentation. 

 

Here, I examine how accounting for spatial scale helps to explain the relationship between 

environmental change and the distribution of functional traits of an urban bird assemblage. In particular, 
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I address the following question: which set of environmental variables explain variation of trait values 

across local (1 ha) and landscape (1 km) scales? I examine if variation in the value of traits in urban 

bird communities is mostly due to landscape composition, configuration, or both. I expect that traits 

will show different relationships with environmental variables depending on the scale of analysis. For 

example, the distribution of some traits such as dispersal capacity will be more affected by 

fragmentation and amount of vegetation at landscape scales, whereas other traits related to reproductive 

capacity (e.g. clutch size) will show stronger associations at local scales. This information will improve 

our understanding of how local and landscape elements affect the richness and functional composition 

of bird assemblages in urban systems.  

3.3 Methods 

 

3.3.1 Study area 

I used empirical survey data to model the current distributions of bird species across the Brisbane Local 

Government Area (hereafter ‘Brisbane’) located on the eastern coast of Queensland, Australia (27°28′S, 

153°07′E; Figure 3.1). This region has a mean altitude of 540 m (range: 300–940 m), mean minimum 

and maximum temperatures of 16·3 and 26·5 °C respectively and a mean annual precipitation of 

1006 mm. During summer (December-March) average temperatures range from 21 - 29.8°C and the 

city has its highest average rainfall (426.6 mm). In winter (June – August), weather is generally dry and 

mild with mean temperatures between 11 - 21°C. Approximately half of the city (49 %) has tree canopy 

coverage (Jacobs 2014). Brisbane is also located in one of Australia’s most biodiverse regions, with 

more than 300 bird species recorded from 3100 km2 within the greater Brisbane region, which includes 

urban and peri-urban habitats, as well as remnants of natural habitat. During recent decades, the city 

has experienced extensive land clearing and fragmentation as a consequence of rapid population growth 

(Brisbane City Council 2014), which in turn has promoted declines among woodland birds (Catterall et 

al. 2010). 

3.3.2 Survey design  

I selected sample units for bird surveys at two spatial scales: a landscape scale of (1 X 1 km) that 

encompasses gradients of different amounts of tree cover and fragmentation, and a local scale (1 ha: 

100 X 100m) that encompasses gradients of the amount of vegetation at local scales. Although many 

bird species use areas larger than 1 km2, most previous studies of effects of urbanization on bird 

diversity have commonly shown the scales at which predictor variables relate significantly to local bird 

assemblages are between 500 m2 and 2000 m2 (Litteral and Shochat 2017). In addition, the selection of 

this size allowed me to capture heterogeneity in landscape attributes while minimizing spatial 

https://link.springer.com/article/10.1007%2Fs11252-016-0571-z#CR11
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mismatches between different sets of explanatory variables (Mitchell et al. 2016). Also, 1 km2 tries to 

capture the size at which many local conservation planning actions are carried out, at about the size of 

a neighbourhood, within urban areas at the landscape scale. Tree cover was selected as the main 

vegetation variable to describe landscape structure since in the study area it is highly correlated to other 

metrics such as percentage of urbanization (Mitchell et al. 2016). In order to measure fragmentation, I 

used a “clumpiness” metric that measures spatial aggregation (McGarigal 2002). This metric is a 

reliable measurement for habitat fragmentation because it is relatively insensitive to variation in habitat 

extent (Wang et al. 2014). 

Landscape units were selected by using stratified random sampling. First, I calculated tree cover for the 

entire Brisbane Local Government Area at the 1km2 resolution using ARCGIS 10.2.1 (Environmental 

Systems Research Institute). Each grid was classified according to each of the following tree cover 

categories: low (10-30%), medium (30-60%), and high (> 60 %). For each tree cover category (low, 

medium and high), I selected 16 landscape units stratified across different levels of fragmentation at the 

1-km scale, ranging from low (clumpiness index > 0.8) to high (clumpiness index < 0.5) levels of 

fragmentation (Figure 3.1). All units were located below 100 m altitude to avoid biases related to 

changes in bird community structure associated with changes in elevation.  

I then overlaid a 100 m x 100 m (1 ha) grid on the selected landscape units and performed a stratified 

random sampling based on the percentage of tree cover to select three sampling points within each 

landscape. These points corresponded to low (<30%), medium (30-60 %) and high (> 60 %) proportions 

of tree cover at the 1 ha scale In case a given level of tree cover at the plot scale was not available, a 

random point was chosen to keep the number of surveyed points equal across landscape units. This 

process resulted in the selection of 144 sampling points distributed across 48 landscape units. Although 

heterogeneity at local scales may be increase variability of environmental variables, the factorial design 

used in this analysis allows sampling local scale plots that represented three major vegetation 

conditions. In addition, the spatial replication of the same local conditions across landscapes helps to 

reduce variability across the analysed spatial extent. 

3.3.3 Bird surveys 

I used 5-minute point counts between dawn and 10 am to estimate bird density in each landscape unit. 

Each sampling point was sampled twice in each of two seasons: summer (January – March 2016) and 

winter (mid-May – August 2016) for a total of four repeat surveys. If a survey point was not accessible 

(e.g. could not be reasonably accessed on foot), I selected a new point in similar habitat identified on 

foot based on field conditions within the same 1ha grid cell. In order to avoid biases produced by local 

scale habitat variables on wetland birds (e.g. the presence of lakes), I excluded those species. I recorded 

distances of sightings using a range finder TruPulse 360B and each bird was recorded as seen, heard or 



36 
 

flying over. Birds recorded as flying over were omitted in the statistical analyses to avoid biases in 

recording species at local scales. Each bird detection was assigned to one of five distance classes from 

the site (0–10 m, 10–20 m, 20-40 m, 40–50 m, and > 50 m).  

 

 

Figure 3-1: Brisbane Local Government Area showing the landscape units used in this study. 

Landscape units were first selected based on tree cover (red < 30 %, yellow 30-60%, green > 60 %). 

Each of these categories was stratified across different levels of fragmentation, ranging from low 

(clumpiness index > 0.8) to high (clumpiness index < 0.5) levels. Two units with similar levels of tree 

cover and different levels of landscape configuration are highlighted. 
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3.3.4 Species traits 

I selected traits based on previous analyses that have explored their capacity to predict species responses 

to environmental degradation in urban environments (Croci et al. 2008, Evans et al. 2011, Sol et al. 

2014). These traits included body size, habitat plasticity, dispersal capacity and clutch size. Trait values 

were sourced from an unpublished traits database derived from the Handbook of Australian, New 

Zealand and Antarctic Birds (Luck, unpublished data) and from Garnett et al. (2015). In addition, Fraser 

et al. (2017) provided the values for dispersal capacity based on calculations for each species following 

Garrard et al. (2012) model. This model predicts median dispersal distance based on data on wingspan 

and body mass collated from published studies world-wide, and predicts that birds with a higher 

wingspan to mass ratio will have longer median dispersal distances. Collinearity between the selected 

traits across sites was tested using Spearman’s correlation test (Appendix C Table C1). Correlations 

(range 0.16 –0.36) were considered low, and therefore, all traits were retained for analysis. 

 

Body size can be linked to many system properties (Fritschie and Olden 2016) and strongly relates to a 

range of other traits in birds, including metabolic rate, foraging behaviour and longevity. Habitat 

plasticity is an absolute measure that represents the level of habitat specialisation associated with a 

given species, and it has been used in previous work to explain responses of urban birds to fragmentation 

and urbanization (Keinath et al. 2017). A diversity of habitat use strategies should confer greater 

capacity to adapt to landscape change for a given bird community. Although habitat plasticity is a 

characteristic that may be associated with several traits (e.g. nesting behaviour, competitive ability), I 

included it to reflect how specialist species would typically perceive their habitat as more restricted than 

generalists (Öckinger et al. 2010). Values of habitat plasticity were taken from Luck’s unpublished 

database. This metric is based on the frequency of occurrence of a species across thirteen different 

habitat types (Luck et al. 2013). Finally, mean clutch size was used because species with small clutch 

size tend to be less resilient to environmental change (Luck et al. 2012). 

3.3.5 Environmental variables 

Based on a review of the literature concerning bird and wildlife distributions in urban areas (e.g.Batáry 

et al. 2017, Catterall et al. 2010, Evans et al. 2011, Litteral and Shochat 2017), I chose variables that 

have been related to the impact of urban form and landscape structure conditions on urban bird diversity 

at both local and landscape scales. These were: the proportion of each cell that was impervious surface 

and build infrastructure, the proportion of each cell that was treed (% tree cover), the clumpiness, this 

is the level of aggregation of vegetation patches in each cell (as an inverse measure of fragmentation), 

and average vegetative vertical heterogeneity. These variables were calculated in each sampling unit at 

both local (1ha) and landscape scales (1k). High resolution LiDAR data from which I extracted these 

variables are available for Brisbane (Brisbane City Council, year 2009) and the collinearity among these 
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variables is low (Appendix C, Table C2). In order to measure vegetative vertical heterogeneity, I used 

foliage height diversity (FHD) as a relative abundance measure that describes how evenly the vegetation 

is distributed across each of the vertical stratums (Caynes et al. 2016, Mitchell et al. 2016). To 

characterise vegetation vertical structure, I used a foliage projective cover layer produced by Caynes et 

al. (2016). Based on modified methods from Miura and Jones (2010),The LiDAR data was separated 

into five distinct vertical vegetation layers based on discrete height intervals, including very low (≥ 0.15 

to <1 m), low (≥ 1 to <2 m), medium (≥ 2 to <5 m), high (≥ 5 to <10 m) and very high vegetation (≥ 

10 m). Caynes et al. (2016) obtained a measure of relative vegetation density within each vertical layer 

by calculating the ratio between the number of LiDAR returns within each vertical layer to the total 

number of returns from that layer and below. To quantify total vegetation vertical complexity over 

discrete height intervals, foliage height diversity (FHD) was calculated for each raster cell. FHD is 

defined as:  

 

FHD=−∑R 
i=1 pilnpi 

 

where pi is the proportion of total foliage from the ith vegetation layer and Ri  denotes the final ratio 

value for each vertical layer. FHD values are high where vegetation is more evenly distributed across 

the vertical strata and low where vegetation is less evenly distributed. I calculated a mean FHD value 

for all areas with tree cover at the local and landscape scale. In order to measure fragmentation, I used 

a “clumpiness” metric that measures spatial aggregation (McGarigal 2002). This metric is a reliable 

measurement for habitat fragmentation because it is relatively insensitive to variation in habitat extent 

(Wang et al. 2014). Clumpiness values range from −1 when vegetation is maximally disaggregated to 

1 when vegetation is maximally aggregated (McGarigal et al. 2002) with values above 0 representing 

more aggregated vegetation and values below 0 more disaggregated. In order to calculate clumpiness, 

I used the 2‐m tree cover data layer for both the local and the landscape scales, defining patches as 4‐

neighbour contiguous cells of tree cover (e.g. Von Neumann neighbourhood).. Metrics of landscape 

structure were calculated using FRAGSTATS (v4.2.598) (McGarigal 2002). 

3.3.6 Data analysis 

3.3.6.1 Abundance estimates 

 

Multiple-covariate distance sampling (Thomas et al. 2010) was used to fit detection functions to the 

observed data separately for each species and to test the importance of environmental and observer 

factors thought to influence detection probability. I fitted alternative models to the observed distribution 

of detections using half-normal or hazard key functions using season, detection type (i.e. if the bird was 

seen or only heard) and percentage of tree cover at the 1 ha resolution as potential covariates of detection 

probability of each species. For species recorded infrequently (< 30 records), a common detection 

https://link.springer.com/article/10.1007/s11252-016-0571-z#CR49
https://link.springer.com/article/10.1007/s11252-016-0571-z#CR47
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function was generated by grouping infrequently recorded species with more common species expected 

to have similar detectability.  (Alldredge et al. 2007). These groupings were based on similarities in diet 

(i.e. frugivorous, nectarivorous, insectivorous or omnivorous) and main foraging stratum (canopy, 

understory, ground; see Appendix C, Table C3). For each sampling site, I then calculated density 

estimates and analytical 95% confidence intervals for each species from the model that were best 

supported by the Akaike information criteria AIC. The abundance of each species at the 1km scale was 

estimated as the average of the abundances across the three sites surveyed in each landscape unit.  

3.3.6.2 Model selection 

 

For each spatial scale and each trait, I calculated the average trait value of a community, weighted by 

the relative abundance of the species (community weighted mean, hereafter CWM) using the CWM 

index of the FD package in R statistical environment (ver. 3.3.2; www.r-project.org). The CWM of 

traits has been extensively used to study the functional trait structure of communities and how this 

structure affects ecosystem functioning (Díaz et al. 2007). I log-transformed CWMs in order to 

approximate a normal distribution of the data and then standardized the CWMs (each trait separately) 

by subtracting the arithmetic mean and dividing by the standard deviation. At the 1km scale, CWM was 

calculated using all the species recorded within each landscape unit, whereas only the species recorded 

at each sampling point were used to calculate CWM at the local scale (1ha). 

 

To identify if variation in trait community weighted means across the environmental gradient at each 

scale were mostly due to landscape composition (i.e. build infrastructure, tree cover, vegetative vertical 

heterogeneity), configuration (fragmentation level) or both, I used generalise additive models (hereafter 

GAMs). Following Wüest et al. (2017), I fitted GAMs for the community weight means as a function 

of the environmental predictors while accounting for between-trait correlation: 

 

traitij = f(envi) + ukj + εij  Equation 3.1 

    

Where f(envi) is the smooth term of an environmental variable in site i, traitij is the community weight 

mean of a trait j in site i, ukj represents a random effect that enables the model to fit specific smoothers 

for each trait j and each predictor k (see equation 3.1). Correlation between traits was accounted for by 

defining an unstructured correlation structure on ukj with a different parameter for every possible pair 

of traits. Modelling traits jointly performs better compared to modelling each trait independently since 

it accounts for correlations between traits and yields less uncertainty in trait CWM predictions (Wüest 

et al. 2017). In addition, the use of GAMs avoids assumptions about the exact shape (e.g. linear, 

curvilinear, exponential) of ecological responses and local environmental gradients, which are unknown 

in many cases (Wüest et al. 2017). In order to minimize overfitting in GAM models, I allowed for a 

maximum of five degrees of freedom in the smoothers to avoid overly complex responses.  

http://www.r-project.org/
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To test if variation in the value of traits in urban bird communities is due to variation in landscape 

composition, configuration, or both at each spatial scale, I created a full model with all environmental 

variables and their interactions as fixed terms. All terms were then dropped individually from this model 

and compared with chi-square likelihood ratio tests, and all terms whose removal did not result in a 

significant p-value (α = 0.05) were considered as non-significant. The explanatory power of the best 

fitting model using root mean square error (RMSE) of predicted versus observed trait CWM-values. 

Models with the lowest RMSE have the best absolute fit. In addition, I calculated the marginal R2, 

which represents the proportion of variance explained by the predictors. Trait-specific values were 

calculated for each of these indices. To assess the significance of smooth terms for each trait in the best 

model, I used approximate p-values of Wald tests implemented in the mgcv (Wood Simon 2010) and 

‘MuMIn’ (Bartón 2014) packages in R. In this case, the null hypothesis is that the smooth term was 

zero.  

3.4 Results 

 

A total of 84 terrestrial bird species were observed during the survey period, none of which have been 

listed as nationally threatened (IUCN 2017). At the landscape scale, species richness in the highly 

urbanized areas (percentage of build infrastructure > 70 %) varied from 13 to 24 species, whereas in 

low urbanized areas (percentage of build infrastructure < 30 %) varied from 22 to 41 species.  

 

The importance of environmental variables to explain trait community weight mean (CWM) changed 

depending on the spatial scale analysed. At landscape scales, the inclusion of vegetation vertical 

structure of the vegetation did not improve model performance explaining the distribution of traits 

across the city (likelihood ratio test p = 0.22). Conversely, removing this variable caused a decline in 

model fit at local scales (p < 0.005). Dropping fragmentation or tree cover reduced the performance of 

models at both scales (p < 0.0001). However, the interaction between these two variables was important 

in improving model fit only at landscape scales (Local scale model: p = 0.99, Landscape scale model: 

p < 0.005). The best models for each scale are presented in Table 3.1. 

 

Table 3-1: Best GAMs models using environmental variables as predictors of community weight mean 

for four different bird traits at the landscape scale (1 km) and the local scale (1 ha).  The root mean 

square error (RMSE) and the proportion of variance explained (R2) by the model for each trait are 

shown. Predictors: Build infrastructure (BI); Fragmentation (F); tree cover (T); vegetation height 

diversity (V). Significance levels: * 0.05 < p < 0.1, ** 0.01 < p < 0.05. *** NS: not significant. 

    
Trait specific RMSE   Trait specific R2 
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Best 

model 
  

Body 

size 

Clutch 

size 
Dispersal 

Habitat 

Plasticity 
 

Body 

size 

Clutch 

size 
Dispersal 

Habitat 

Plasticity 

Landscape 

scale (1 X 1 

km) 

CWM = 

T** + 

F*** + I* 

*+ 

F:T*** 

 0.15 0.19 0.13 0.11  0.44 0.09 0.43 0.1 

Local scale 

(1 ha) 

CWM = 

TNS + F** 

+ INS + 

V** 

 0.25 0.35 0.27 0.11  0.17 0.13 0.19 0.03 

 

Models at the landscape scales had a better absolute fit and a higher deviance explained compared to 

local scale models (Table 3.1). Differences in trait-specific RMSE and R2 indicate that, at landscape 

scales, body size (RMSE = 0.15; R2 = 0.45) and dispersal (RMSE = 0.13; R2 = 0.43) were more strongly 

driven by the selected environmental variables than clutch size (RMSE = 0.35; R2 = 0.13) or habitat 

plasticity (RMSE = 0.11; R2 = 0.10). At landscape scales (1 km2), smooth terms of the interaction 

between dispersal and body size with tree cover (p < 0.005 and fragmentation (p =0.005) were highly 

significative. Species in areas with low tree cover and high fragmentation had high dispersal capacity 

and medium to large body sizes (Figure 3.2a-b). However, when fragmentation was low, assemblages 

in areas with low levels of tree cover (around 25 %) supported a higher proportion of species with low 

dispersal capacities (small dispersal community weight mean; Fig 3.2b). The interaction between 

dispersal and body size with fragmentation was also significant at local scales (p <0.0005), and more-

fragmented areas with medium amounts of tree cover were associated with lower mean body size (Fig 

3.2 d). 

3.5 Discussion 

 

The effect of urbanisation on bird species traits is greater at landscape scales and weaker at local scales. 

At landscape scales, habitat configuration and the percentage of tree cover plays a key role shaping the 

distribution of body sizes and dispersal capacities. When tree cover was low at landscape scales, the 

presence of small-bodied species with low dispersal capacities depended mostly on having low levels 

of fragmentation. In addition, the influence of landscape configuration determining trait distributions at 

both scales may reflect how increasing habitat heterogeneity facilitates the presence of species with 

multiple strategies for exploiting resources (Evans et al. 2011, Marzluff 2005). In contrast, tree cover 

and built infrastructure were poor predictors of trait distributions at local scales. Although the 

maintenance of small patches at local scales can help to preserve taxonomic diversity (Sekercioglu and 

Sodhi 2007) , results of this study suggest that this may not be the best alternative to reduce 

homogenization of bird assemblages, since trait diversity in urban areas is mainly driven by landscape 

rather than local scale variables.  
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Figure 3-2: Relationship between traits community weighted mean and percentage of tree cover across 

an urbanization gradient at the landscape (1km) (a-c) and the local scale (1ha) (d-f). The two lines 

represent different levels of fragmentation. Orange: high fragmentation (clumpiness < 0.5); blue: low 

fragmentation (clumpiness > 0.5). Effects of tree cover on the distribution of trait values were only 

significant at landscape scales, whereas effects of fragmentation were significant at both local and 

landscape scales. 

None of the distributions of the traits evaluated were affected in a similar way by environmental 

variables at both scales. At landscape scales, small species with low dispersal capacities were negatively 

affected by loss of tree cover, particularly in more-fragmented areas. Previous studies have reported 

fragmentation and percentage of built infrastructure reducing reproductive capacity of smaller-bodied 

species and increasing survival of larger-bodied species (Brown and Graham 2015, Evans et al. 2011). 

At local scales, however, the relationship between species traits and compositional variables (tree cover 

and build infrastructure) was weak. This might be because of the matrix surrounding remnant habitat 

patches with similar levels of fragmentation and habitat amount can be quite diverse in urban areas 

(Garden et al. 2010, Ikin et al. 2013, Litteral and Shochat 2017). Heterogeneity at local scales may 

facilitate the presence of aggressive species (Shochat et al. 2010) and the availability of finding suitable 

nesting sites (Marzluff et al. 2007). The influence of these factors on species occurrence may not be 

mediated by species’ size or dispersal capacities, but for behavioural traits that were not take into 

account in this analysis.  
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Results of this study show that fragmentation plays an important role driving the distribution of traits 

at both scales. At the landscape scale, the negative effects of habitat loss and fragmentation are more 

evident in species with low mobility and low habitat plasticity that are more likely to rely on 

heterogeneous habitat patches with moderate to low edge effects. On the other hand, highly mobile 

species, which are able to move among distant habitat fragments, are expected to be less sensitive to 

landscape configuration (Öckinger et al. 2010, Schleicher et al. 2011). However, highly mobile species 

can also be negatively affected at local scales by fragmentation through its effect on nesting and 

reproduction (Ikin et al. 2014). In this case, fragmentation may increase the prevalence of adverse 

factors, such as nest predation, and facilitate the presence of aggressive species (Montague-Drake et al. 

2011). Fragmentation also decreases the proportion of habitat specialists at landscape scales, 

particularly at medium (< 50 %) and low (< 25 %) amounts of tree cover. This may explain adverse 

effects on species with high dispersal capacities but with low habitat plasticity. The interaction between 

fragmentation and spatial scale could explain mixed results from previous studies, ranging from positive 

effects of dispersal on species occurrence at the landscape level (Devictor et al. 2008) to non- significant 

effects of urbanization on both highly and poorly mobile birds (Concepcion et al. 2015). These results 

emphasise the need for multi-scale approaches to properly quantify the importance of species traits and 

landscape structure shaping urban assemblages.   

A focus on conserving species with particular traits at the local scale may be ineffective if attributes of 

landscape structure are ignored. Local actions such as garden planting (Catterall 2004, French et al. 

2005) could be ineffective if the objective is to implement conservation initiatives that target species 

less tolerant to landscape change (e.g. small-bodied species with low dispersal capacities). Previous 

work has shown that revegetating urban spaces may increase species richness, but this favours species 

that are already more adaptable to urban landscapes (Archibald Carla et al. 2017). If landscape structure 

is inappropriate, enhancing revegetation at local scales may not attain the desired conservation 

outcomes for species more sensitive to urbanization. Therefore, variation in habitat quality at landscape 

scales may be more relevant in explaining species distributions in urban landscapes (Donnelly and 

Marzluff 2006, Melles 2003, Sandström et al. 2006). The results presented here agree with those of 

previous studies showing that in Brisbane, conservation of bird assemblages in remnants depends 

mostly on the interaction between patch remnant size and connectivity (Catterall et al. 2010) (Shanahan 

et al. 2011). Although big generalist species with high dispersal capacities tend to dominate in urban 

bird assemblages (Devictor et al. 2007, Sol et al. 2014) , heterogeneity caused by landscape change can 

promote communities with a higher diversity of traits in urban areas(Litteral and Shochat 2017). 

There are a few key areas for future research that will help explain the mechanisms of spatial structuring 

in urban bird assemblages at multiple scales. To improve the reach of these results, linking this 

information with regional patterns is still needed. The results presented in this study must be compared 

with analyses of how landscape structure affects trait distributions in surrounding non-urban areas 
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(Evans et al. 2011). For example, by evaluating the distribution of reproductive and dispersal traits 

across multiple extents, it might be possible to test how dispersal processes over large distances interact 

with matrix types to maintain local-scale functional diversity (Benchimol and Peres 2015, Delattre et 

al. 2013). This will allow for a more comprehensive understanding of how trait values distributions 

could be extrapolated in space, and could guide management responses that explicitly account for trait 

effects at a wider range of spatial scales. More research is  also needed in understanding trade-offs 

between multiple sets of traits, including how bird dispersal patterns are associated with other traits 

such as competitive ability and how this drives community responses to landscape change. In addition, 

including other metrics of trait distribution may help to understand the main findings of this study. Here, 

weighted mean trait values were used, but ignoring intraspecific variation may mask the effect of 

environmental variables on ecological responses, especially in landscape-scale studies that encompass 

strong environmental gradients and locally adapted populations (Spasojevic et al. 2016b).Finally, 

accounting for local disturbances associated with habitat fragmentation, such as noise levels and 

presence of competitive aggressive species may provide additional insights into why species with 

specific traits may decline. Based on this information, we can develop the most efficient strategies to 

manage urban species at landscape and local scales.  
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Chapter 4                                                                                                                 

EFFECTS OF FRAGMENTATION ON FUNCTIONAL DIVERSITY 

AND ITS ASSOCIATION WITH SPECIES RICHNESS  
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4.1Abstract 

 

Promoting the conservation of multiple aspects of biodiversity in transformed landscapes is a 

fundamental challenge. We need to understand not only how landscape structure affects species 

diversity, but also the distribution of functional traits (i.e. functional diversity) that determine the 

relationship between species diversity and different ecosystem processes. However, we still lack 

information about how landscape structure drives the relationship between species richness and 

functional diversity simultaneously. Here, I use a spatially explicit model to generate hypotheses about 

how changes to landscape structure drive the relationship between species and different components of 

functional diversity across human-dominated landscapes. I focus on the correlation between “response 

traits” (traits involved in species responses to environmental change) and “effect traits” (traits 

associated with species effects on ecosystem functioning).The strength at which fragmentation modifies 

functional diversity in modified landscapes depends on the distribution of response traits and the 

correlation between response and effect traits. I show that: 1) when present, the effect of fragmentation 

on functional diversity tends to be negative and becomes evident when the correlation between response 

and effect traits increases; 2) indirect effects of fragmentation through changes in species richness are 

strong in communities with a low divergence in response traits and 3) direct effects of fragmentation 

are evident in communities with a high divergence in the distribution of response traits and a high 

correlation between response and effect traits. The generation of the hypotheses presented in this 

Chapter provides a good opportunity to test them across a broad range of real landscapes and 

communities in different regions.  

4.2 Introduction 

 

Predicting how landscape change affects the relationship between species diversity and ecosystem 

functioning is a central question in conservation biology (Mayfield et al. 2010). For many years, it was 

assumed that maximizing the protection of taxonomic diversity was enough to achieve the conservation 

of other components of biodiversity (Myers et al. 2000). However, the range of functions provided by 

a community is thought to largely depend on the diversity of functional trait states across species (i.e. 

functional diversity; Díaz and Cabido 2001, McGill et al. 2006). Since functional diversity is not 

necessarily associated to species richness (Laliberté et al. 2010, Mayfield et al. 2010), taxonomic 

diversity, in some situations, tells us little about the ability of assemblages to provide ecosystem 

functions. As such, conservationists and ecologists have called for a more comprehensive view of 

biodiversity that does not only focus on maximizing species richness, but also functional diversity that 

might affect the potential of an assemblage to maintain ecosystem functions (Cadotte et al. 2011, 

Cernansky 2017). 

 



47 
 

A key environmental factor that determines species richness and functional diversity is landscape 

fragmentation; the breaking apart of habitat, independent of changes in habitat amount (Fahrig 2003). 

Empirical and theoretical evidence suggests that landscape fragmentation plays an important role in 

shaping biodiversity, especially when there is little habitat in a landscape (Hanski 2015, Rybicki and 

Hanski 2013). Fragmentation can alter functional diversity directly by, for example, promoting the 

occurrence of medium-sized species with high dispersal capacities. In this case, changes in patterns of 

trait abundances (e.g. an increase in the proportion of high dispersers) within a community may occur 

even if species richness remains constant (Sonnier et al. 2014a). In addition, fragmentation can act 

indirectly on functional diversity by affecting species richness (Rybicki and Hansky 2013). This occurs 

when species richness and functional diversity are correlated and thus factors that affect species richness 

indirectly affect functional diversity (de Bello et al. 2010, Mouchet et al. 2010, Petchey and Gaston 

2006). For example, if functional diversity is positively correlated with species richness, it is expected 

that less-fragmented landscapes, which may have higher species richness (Rybicki and Hanski 2013), 

would have high functional diversity as well. By simultaneously affecting species richness and 

functional diversity, fragmentation may change the strength of the association between these 

components, as it has been shown with changes in landscape composition (Laliberté et al. 2010, Flynn 

et al. 2009). As fragmented landscapes become increasingly common (Haddad et al. 2015, Mitchell et 

al. 2013, Villard and Metzger 2014), disentangling effects of landscape fragmentation relative to the 

effects of habitat loss is of particular interest to maintain functional diversity.  

The response-effect-trait framework can help to identify which traits drive species responses to 

fragmentation and their effect on ecosystem functioning (Luck et al. 2012, McGill et al. 2006, Mori et 

al. 2013, Suding et al. 2008). Species responses to landscape change are thought to be directed by their 

“response traits” (Mori et al. 2013). Those species with response traits that allow persistence in 

fragmented landscapes are most likely to persist compared to those without compatible response traits 

(Mori et al. 2013, Suding et al. 2008). For example, species with traits that enhance reproductive 

capacity favour colonization of small patches of habitat (Belmaker and Jetz 2013, Henle et al. 2004). In 

addition, habitat specialists tend to be less common across landscapes, and thus more likely to be absent 

from small isolated remnant patches (Keinath et al. 2017). The species that persist contribute to 

ecosystem functioning and these functions are reflected in the distribution of “effect traits” (de Bello et 

al. 2010, Díaz et al. 2004, Suding et al. 2008). Examples of effect traits include tongue length that 

influence pollination effectiveness and bill morphology that influence the handling of fruits and seeds 

in different animal groups (Galetti 2013, Garibaldi Lucas et al. 2015, Luck et al. 2012).  

By evaluating the correlation between response and effect traits, we may predict the main paths by 

which fragmentation affects functional diversity. When response traits values that make species 

susceptible to fragmentation are not correlated with effect traits, the loss of species does not necessarily 
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translates to losses of specific effect functional traits from the community. In this case, fragmentation 

effects on functional diversity will be less associated to changes in species richness (Carmona et al. 

2012, Laliberté et al. 2010, Luck et al. 2013). On the other hand, when response and effect traits are 

highly correlated, there is a high chance that species responding in a similar way to fragmentation also 

provide functions that are not provided by other species (Suding et al. 2008). In this case, the association 

between species richness and functional diversity will be strong, as the loss of those species sharing 

similar response traits can alter significantly patterns of functional diversity (Mori et al. 2013). 

However, the rate at which species are lost will depend on how many of them share similar response 

traits (Mori et al. 2013, Batáry et al. 2017). In this sense, we also need to account for patterns of 

distribution of response traits across species to infer potential effects of fragmentation on functional 

diversity.  

Currently, we lack spatially-explicit understanding that can provide general hypotheses of how changes 

to fragmentation drive functional diversity and its association with species richness as habitat is lost. 

Previous spatially explicit metacommunity models have evaluated the factors that drive coexistence of 

species with different dispersal and reproductive traits (Buchi et al. 2012, 2014), or that drive species-

area relationships (e.g. Rybicky and Hanski 2013). Other studies (Suding et al. 2008, Mori et al. 2013) 

have presented trait-based response–effect frameworks that differentiate the community response to 

environmental change (predicted by response traits) and the effect of that change on ecosystem 

processes (predicted by effect traits). In this chapter, I present a spatially explicit model that integrates 

these concepts to evaluate how fragmentation affects the association between species richness and 

different components of functional diversity. These components are the number of different trait values 

present in a community (i.e. functional richness), the distribution of the abundance of those values (i.e. 

functional evenness), and the degree to which the abundance of a community is distributed toward the 

extremities of the occupied trait space (i.e. functional divergence) (Carmona et al. 2016, Villéger et al. 

2008). Based on the results of this model, I derive a series of testable hypotheses about the trajectories 

of change we would expect for species and functional diversity as habitat amount and fragmentation 

change. 

4.3Methods 

 

4.3.1 Model description 

I used a modified version of a spatially explicit metacommunity simulation model that integrates 

elements of the models described by Büchi and Vuilleumier (2014), Jackson and Fahrig (2012), and 

(Rybicki and Hanski 2013) (R code provided in Appendix D). My model considers multi-species 

communities that are characterized by their response trait values, and where these are either highly or 
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Figure 4-1: Potential paths by which fragmentation and habitat loss can influence functional 

diversity.a) Fragmentation can affect functional diversity directly by changing the abundance patterns 

of effect traits. The level at which fragmentation affects directly functional effect diversity will depend 

on the correlation between response and effect traits. Fragmentation can also affect indirectly functional 

diversity by altering patterns of species richness. In addition, fragmentation can moderate the 

association between species richness and functional diversity by changing the correlation between 

response and effect traits. One-headed arrows represent causal pathways between variables. Dashed 

arrows represent moderating effects b) Examples of direct and indirect effects of fragmentation on 

functional diversity for a community with high correlation between response (e.g. dispersal) and effect 

(e.g. tongue length) traits. 1 and 2 represent direct effects whereas 3 and 4 represent cases of indirect 

effects. 1., fragmentation pattern benefits low dispersers and thus species with short tongues without 

changing species richness; 2. Fragmentation pattern benefits high dispersers and thus species with 

longue tongues without altering species richness: 3. Fragmentation pattern maintain high levels of 

species richness. In this case, the chance of maintaining high levels of functional diversity will depend 

on the correlation between response and effect traits. 4. Fragmentation pattern affects negatively species 

richness and filter both high and low dispersers. 
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slightly correlated with effect traits. The species reproduce, disperse, survive and compete for space in 

landscapes with different levels of habitat amount and different patterns of habitat fragmentation 

(Figure 4.2).  

 

Landscapes are represented as grids where cell values represent a continuous measure of habitat type 

so that cells with similar values correspond to similar habitat types. The edge of the grid-based 

landscape was modelled as a torus, with the bottom row adjoining the top row and the right-most column 

adjoining the left-most column. Each cell had a fixed carrying capacity that can support a maximum 

number of individuals, which is constant across all cells in the landscape. Dispersing organisms could 

not settle if a grid cell reached carrying capacity, and thus carrying capacity was used as a proxy for 

competition of different individuals for space. Performance of a species in a particular grid cell was 

determined by the distance between the habitat type value of each cell the optimum habitat type values 

based on the response trait values of that species. The interaction between community dynamics and 

the spatial distribution of habitat type values determines outcomes in terms of patterns of species 

diversity and functional diversity. 

4.3.2 Landscape generation 

I created fractal landscapes of 1089 (33 x 33) cells using the midpoint displacement algorithm (Saupe 

1988). I assumed that habitat types were spatially autocorrelated, thus grid cells with similar values 

tended to be close to each other (fractal dimension D = 2, to generate all landscapes). To ensure that 

there was an even representation of habitat values across the landscape and avoid bias towards particular 

habitat types, I transformed the normally-distributed raw values generated by the midpoint displacement 

algorithm to a uniform distribution, U (0,1). To do this, I used the following transformation:  

 

𝑧 =  
1

2
𝐸𝑟𝑓𝑐(

−𝑦

√2
)               Equation 4.1 

 

Where z is a uniform distributed value, y is a Gaussian distributed value, and Erfc is the complementary 

error function (Weisstein 2006).  

I simulated the removal of habitat in each landscape, by creating a second fractal landscape that served 

as a “habitat loss grid”. Values of grid cells in the “habitat loss grid” were distributed uniformly based 

on equation 4.1, and corresponded to the relative probability of the cell being removed from the original 

fractal landscape. Based on these probabilities, I removed a set number of cells that I assumed become 

unsuitable for reproduction and settlement by any species. To simulate fragmentation, I manipulated 

the distribution of cells within the “habitat loss” grid to simulate maximal (fractal dimension D = 3) to 

low (fractal dimension D = 2) levels of fragmentation (Figure 4.2a).  
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4.3.3 Species response traits 

Species differed based on three response traits: niche optimum (µs), niche breadth (𝜎𝑠) and dispersal 

ability (𝜙𝑠). I chose niche optimum and niche breadth since they affect habitat suitability and 

specialisation of species by influencing their reproductive capacity in different habitats, whereas 

dispersal ability plays a fundamental role in determining the impacts of habitat fragmentation on species 

diversity (Büchi and Vuilleumier 2014, Cattarino et al. 2016). In real communities, niche optimum and 

breadth corresponds to an expression of multiple traits including diet, morphology and foraging 

strategies(Laughlin and Messier 2015). However, for simplicity, I assumed that one trait is the main 

determinant of each of niche optimum and breadth, but this model could be extended to include multiple 

traits if needed. 

  

I assume that niche optimum and niche breadth control the number of offspring each species can 

produce in different habitats. The niche optimum constitutes the habitat value where each species has 

the greatest reproductive capacity, while niche breadth corresponds to the range of habitat values where 

the species can reproduce. For each cell, individuals reproduce based on their reproductive rates Rs(Hi) 

such that: 

 

𝑅𝑠(𝐻𝑖) =
1

σ𝑠√2π
𝑒𝑥𝑝 [−

1

2
 (

𝐻𝑖−µ𝑠

σ𝑠
 )

2
].      Equation 4.2 

 

where Rs(Hi)  depends on the deviation from the individual niche optimum µ𝑠 in the habitat (Hi) value 

for the cell i that the individual is located in, as well as the niche breadth (σs). Values of 𝑅𝑠(𝐻𝑖) were 

rounded to the nearest integer to produce a discrete numeric value of offspring in each simulation step. 

Species with large niche breadths tend to be able to reproduce in a wider range of suitable habitats and 

thus are more generalist than species with the smaller niche breadths. However, their reproductive rate 

in their optimum  habitat is lower compared to specialists (Büchi and Vuilleumier 2014). 

 

I specified dispersal ability as a trait that affects the probability that individuals disperse a distance d 

between cells. This probability is described by a negative exponential distribution: 

 

𝐷𝑠(𝑑) =  
1

ϕ𝑠
exp(

−𝑑

ϕ𝑠
)           Equation 4.3 

 

where 𝐷𝑠(𝑑) is the dispersal kernel of species s, and ϕs is the mean dispersal ability for the species 

(Büchi and Vuilleumier 2014). 
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4.3.4 Distribution of response traits 

Following Kraft et al. (2007) and Mouchet et al. (2010), I simulated sets of 150 species to generate 

communities with different distributions of response traits (Figure 4.2b). For simplicity, I controlled the 

distribution of one response trait: niche breadth. I used this trait since the distribution of specialist 

(narrow niche breadth) versus generalist species (broad niche breadth) is a major determinant of 

communities’ tolerance to landscape change (Büchi and Vuilleumier 2014). Communities could have a 

high representation of specialist species that are more dependent to one particular habitat type. In 

contrast, communities could have a high proportion of generalist species that are able to reproduce in a 

wide range of habitat types. In each simulation I started with a uniform distribution of dispersal abilities 

in each community and allowed fragmentation and habitat loss to filter for specific dispersal strategies 

after community dynamics. For each community, niche optimum also followed a uniform distribution 

across species, taking values between 0 and 1 (Table 4.1).  

To simulate different distributions of niche breadths, I used a beta distribution with different mean and 

variance parameters (equation 4.4; Table 4.1):  

 

𝑉𝑎𝑟(𝑦𝑖) =
𝑚𝑖(1− 𝑚𝑖) 

(1 + 𝑝𝑖) 
             Equation 4.4 

where Var(yi) is the variance of niche breadth (yi) across individuals in a community i, 𝑚𝑖 is the mean 

niche breadth value for the community i and 𝑝𝑖 is a precision parameter that controls the variance of yi 

across the entire community.  

4.3.5Correlation between response and effect traits 

To test how landscape structure might affect each community’s capacity to provide functions, I used a 

continuous theoretical effect trait “ET1” that follows a uniform distribution between 0 and 1. This 

distribution ensures that different values of the effect trait are equally represented in each community. 

In order to achieve different levels of redundancy, I controlled the correlation coefficient between 

response and effect traits using a bivariate beta distribution based on the method described by (Dias et 

al. 2008). A low correlation coefficient implies a high chance of having effect trait values spread 

randomly across different response trait values, whereas a high correlation implies a high  chance of 

particular effects trait values being associated with particular response trait values. 
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Figure 4-2: Main components of the model used to infer the effects of fragmentation on the relationship 

between species richness and functional diversity a) Fractal landscapes represent landscapes with 

different amounts of habitat and the configuration of habitat patches. Cells with similar colours 

represent similar habitat types. High fractal dimension represent situations where habitat is removed 

with high levels of fragmentation. b) Communities with different distributions of response traits are 

achieved by sampling different distributions of niche breadths. c) Communities with different levels of 

correlation between effect and response traits. 

 

 



54 
 

Table 4-1 List of parameters used to generate the species pools and the fragmentation patterns 

 Parameter Phase Values 

 Niche optimum (µ𝑠) Reproduction U(0,1) 

Functional 

Traits 
Niche breadth (σ𝑠) Reproduction 

 

Beta(m, pi) 

m = (0.5), pi = (5,50) 

 

 Dispersal ability (ϕ𝑠) Dispersal U(0,1) 

 
 

Effect trait (ET) 

 

Functional effect 

diversity 

U(0,1) 

Landscapes 

 

 

Fractal algorithm 

(D) 

Spatial structure of 

the habitat 
2 

Fractal algorithm 

(D) 

 

Fragmentation 

pattern 

2,3 

 

4.3.6 Community dynamics 

I used a demographic model to simulate the dynamics of each community in each landscape. 

Demographic processes were simulated in the following sequence: (1) reproduction, (2) mortality, and 

(3) dispersal. After reproduction, individuals survive based on a probability of 0.5 for each species. In 

this way, I did not assume a specific survival strategy for each species and kept mortality as a fixed 

factor in my analysis. All juveniles disperse a random distance (d) during each time step, drawn from 

the dispersal kernel that depended on their dispersal ability ϕs (Equation 4.3). The initial direction of 

the movement was chosen by drawing a uniform random number between 0 and 2π. Then, individuals 

adopted a movement behaviour where the directions of successive movement steps were correlated 

(Van Dyck and Baguette 2005). For this, I used a wrapped Cauchy distribution with a mean direction 

equal to the previous direction (Fletcher Jr 2006). If individuals did not find a suitable cell because it 

had reached its carrying capacity (K = 10) or if it was not suitable for reproduction (𝑅𝑠(𝐻𝑖) was less 

than 1) or settlement the individual moved again and looked for a different cell. Individuals could not 

move more than five times in one time step and died if they could not find a suitable cell. For simplicity, 

I did not explicitly model mortality during movement. Once all the individuals dispersed and settled 

they became adults, reproduced and a new time step started.  
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4.3.7 Experimental design 

Simulations were conducted using a factorial experimental design, in which the total amount of habitat, 

the fragmentation pattern, the distribution of response traits, and the correlation between response and 

effect traits in the community were varied. I considered two different levels of fragmentation for the 

habitat removal process: low (D=2) and high (D=3). For each fragmentation level, habitat was removed 

at four levels: 60%, 70%, 80% and 90% habitat loss. I focused on medium and low levels of habitat 

amount, as this is the range where previous studies have found the largest effects of fragmentation on 

communities and species (Hanski 2015, Rybicki and Hanski 2013). In addition, I controlled for the 

distribution of abundances of niche breadths within the trait value range for each community (Hereafter 

“divergence” Carmona et al. 2016). For this, I used equation 4.4. If divergence is low, few species are 

distributed in the extremes of the trait value range, and thus it is expected that most species will respond 

similarly to landscape change. In contrast, if divergence is high, many species are distributed in the 

extremes of the trait value range, and thus many species will respond differently to landscape change. I 

tested the effects of fragmentation patterns on four types of communities with different distributions of 

niche breadths and different levels of correlation between effect and response traits (Table 4.1, Figure 

4.2b-c): 1) Low divergence in the response trait, high correlation; 2) High divergence in the response 

trait, low correlation; 3) Low divergence in the response trait, low correlation and 4) High divergence 

in the response trait, high correlation.  

 

The simulations were initialised by randomly allocating individuals to habitat cells in each landscape 

until each cell reached carrying capacity (K = 10 individuals). Then community dynamics were 

simulated in each fragmented landscape until species richness varied by less than 10 % from time step 

to time step for at least 100 time steps, or until the community went extinct. For each of the 32 unique 

combinations of factors (four types of communities, by four levels of habitat amount, by two types of 

fragmentation patterns), I replicated community dynamics 50 times, resulting in a total of 1600 

simulation runs. A new landscape and a new community were simulated in each run.  

4.3.8 Statistical analysis 

I characterized species richness and the distribution of the effect trait in each community at the end of 

each simulation using the TPD package in R version 3.1.3 (Carmona et al. 2016). This package 

calculates functional diversity using trait probability density functions that represent the distribution of 

probabilities of observing each possible trait value in a given ecological unit. For each simulation, I 

calculated functional divergence, functional evenness, and functional richness (Mason and De Bello 

2013). 

I used structural equation modelling (SEM; Grace 2006) to examine the pathways through which habitat 

loss and fragmentation affect each component of functional effect diversity (i.e. functional evenness, 
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functional divergence or functional richness). I created a different model for each functional diversity 

component establishing a causal path between species richness and functional diversity to account for 

indirect effects of habitat amount and fragmentation. I also included a moderator term for habitat loss 

and fragmentation to detect their influence on the association between functional diversity components 

and species richness (moderated mediation sensu Preacher et al. (2007). To evaluate if the patterns of 

response trait divergence influenced effects of habitat loss and fragmentation, I created a model 

including all the community types. In addition, I created models for each community type to evaluate 

the paths by which fragmentation effects changed depending on the level of correlation between 

response and effect traits. The Tucker – Lewis index (TLI) was used to check how overall model fit 

improved relative to compared with an expected “true” model that best explains the response variable 

based on the presented set of predictors. A value of 0.95 or larger indicates good model fit (Weston and 

Gore 2006). I also used the root mean square error of approximation (RMSEA) to measure absolute 

model fit, where values < 0.06 indicate good fit (Weston and Gore 2006). Models with high RMSEA 

and low TLI were rejected and some relationships were removed until I found a well-fitting and 

ecologically meaningful model (Shipley 2000). Direct and indirect effects of each environmental 

predictor on functional diversity were analysed by calculating standardized path coefficients of the final 

selected model (Grace 2006). All SEMs were created using the R package lavaan (Rosseel 2012) in R 

version 3.1.3 (R Core Team, 2015) 

4.4 Results 

 

The full model (TLI = 0.995 and RMSE = 0.04) including all the community types show that both 

habitat loss (p < 0.001) and fragmentation (p < 0.005) have a negative effect on all the components of 

functional diversity. In addition, the correlation between response and effect traits was key determining 

the relative importance of direct and indirect effects of landscape fragmentation on functional diversity. 

Effects of habitat loss were more constant than effects of fragmentation, and for the same amount of 

habitat loss, communities with a high correlation of response and effect traits tended to be more 

negatively affected compared to communities with low correlations (Figure 4.3, Table 4.2). This pattern 

was maintained for all the components of functional diversity independently of the distribution of 

response traits (Figure 4.3, Table 4.2).  

Effects of fragmentation on functional diversity depended on three main factors: the correlation between 

response and effect traits, the distribution of response traits and the functional component evaluated. 

Models for communities with high effect- response trait correlations included significant direct 

fragmentation effects (p < 0.05, Table 4.2) and had a good fit (TLI  = 0.95 and RMSE  = 0.03). In these 

communities, components of functional diversity tended to be lowest in fragmented landscapes 

compared to non-fragmented landscapes (Figure 4.3). However, depending on the distribution of 
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response traits, the prevalence of direct effects or effects mediated by changes in species richness was 

different. When the divergence in the distribution of response traits was low, indirect effects on all the 

components of functional diversity were always significant (p < 0.01, Table 4.2). In contrast, when the 

divergence in response traits increased, direct effects were prevalent (Table 4.2). For communities with 

a low correlation between effect and response traits, negative effects of fragmentation were only 

significant for functional richness (p < 0.01), particularly when the divergence in the distribution of 

response traits increased (Table 4.2). I did not find significant effects of fragmentation on either 

functional evenness or functional divergence of communities with low correlations of response and 

effect traits (Table 4.2).  

Moderating effects of fragmentation on the association between species richness and functional 

diversity were only evident for functional richness in communities with a high divergence in the 

distribution of response traits (TLI = 0.985 and RMSE = 0.05). In this case, functional richness 

decreased faster than species richness in fragmented landscapes, particularly when species richness was 

low (Figure 4.4). For all the community types analysed, I did not find any evidence that the association 

between species richness and functional evenness or functional divergence was affected by 

fragmentation (Table 4.2). 

4.5 Discussion 

 

4.5.1Effects of fragmentation on functional diversity and its association with species richness 

The results of this model provide new evidence that landscape configuration is important driving 

patterns of species richness and functional diversity. My results agree with previous work showing that 

habitat amount tends to filter species more strongly than fragmentation (Fahrig and Triantis 2013). 

However, my model shows that a redistribution of trait abundances as a result of changes in habitat 

configuration is expected depending particular factors (Sonnier et al. 2014a). Based on the results 

presented here, general patterns of fragmentation effects on functional diversity and its association with 

species richness can be found: 1) the effect of fragmentation on functional diversity tends to be negative 

and becomes evident when the correlation between response and effect traits increases; 2) indirect 

effects of fragmentation through changes in species richness are strong in communities with a low 

divergence in response traits and 3) direct effects of fragmentation are evident in communities with a 

high divergence in the distribution of response traits and a high correlation between response and effect 

traits. Testing these patterns across different regions and landscape contexts will help to understand the 

mechanistic pathways through which fragmentation influence functional diversity and species richness. 

 



58 
 

 

Figure 4-3:  Relationship between functional diversity components and habitat amount showing the 

trends for two fragmentation types. Panels on the left correspond to a community with high divergence 

in the distribution of niche breadth values, whereas panels on the right correspond to communities with 

low divergence in the distribution of niche breadths. Shaded areas represent the 95 % confidence 

interval. LC : Low correlation between response and effect traits; HC: High correlation between 

response and effect traits; Frag: High fragmented landscape; Non-Frag: Low fragmented landscape. 
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Figure 4-4: Association between species richness and functional richness for different types of 

communities  with a) high divergence and b) low divergence in the distribution of response traits. The 

lines represent two levels of fragmentation. In communities with high divergence in the distribution of 

response traits, fragmentation increases the rate of decline in functional richness for a given number of 

species. Shaded areas represent confidence intervals. 
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Table 4-2: Direct, indirect (mediated by changes in species richness) and moderating effects of fragmentation and habitat loss on different components of 

functional diversity for communities with different distributions of response traits and different levels of correlation between response and effect traits.  FRic = 

Functional richness; FDiv = Functional divergence; FEve = Functional evenness. Significant effects are bolded. 

 

        Low correlation   High correlation 

 

Distribution 

of response 

traits    Estimate Std.Err 

z-

value P(>|z|)  Estimate Std.Err 

z-

value P(>|z|) 

Fric 

High 

divergence 

Direct 

effects 

Habitat loss 0.00 0.00 -2.89 0.00   0.00 0.00 -3.04 0.00 

Fragmentation -0.06 0.01 -8.75 0.00  -0.06 0.01 -9.93 0.00 

Correlation 

Species 

richness 0.01 0.00 3.12 0.00   0.01 0.00 3.24 0.00 

Indirect 

effects 

Fragmentation -0.01 0.01 -1.90 0.06  -0.01 0.00 -3.08 0.00 

Habitat loss 0.00 0.00 -2.98 0.00   0.00 0.00 -3.05 0.00 

 
Moderating 

effects Fragmentation 0.003 0.001 6.503 0.00  0.00 0.04 2.94 0.00 

                        

Low 

divergence 

Direct 

effects 

Habitat loss 0.00 0.00 0.66 0.51   0.00 0.00 0.04 0.97 

Fragmentation 0.01 0.01 1.27 0.21  0.00 0.00 0.62 0.53 

Correlation 

Species 

richness 0.00 0.00 3.34 0.00   0.00 0.00 3.55 0.00 

Indirect 

effects 

Fragmentation 0.00 3.00 0.00 0.01  0.00 0.00 2.69 0.01 

Habitat loss 0.00 0.00 -3.22 0.00   0.00 0.00 -3.41 0.00 

                          

FDiv 
High 

divergence 

Direct 

effects 

Habitat loss 0.00 0.00 -0.24 0.81   0.00 0.00 1.75 0.08 

Fragmentation -0.02 0.01 -1.88 0.06  -0.02 0.01 -1.94 0.05 

Correlation 

Species 

richness 0.00 0.00 1.36 0.17   0.00 0.00 1.09 0.28 

Indirect 

effects 

Fragmentation 0.00 0.00 -1.47 0.14  0.00 0.01 -0.88 0.38 

Habitat loss 0.00 0.00 -1.30 0.20   0.00 0.00 -1.02 0.31 
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Low 

divergence 

Direct 

effects 

Habitat loss 0.00 0.00 -0.15 0.88   0.00 0.00 -0.60 0.55 

Fragmentation -0.01 0.01 -0.75 0.45  -0.01 0.01 -0.96 0.34 

Correlation 

Species 

richness 0.00 0.00 -0.98 0.33   0.00 0.00 -2.94 0.00 

Indirect 

effects 

Fragmentation 0.00 0.00 -0.76 0.45  0.00 0.00 -2.17 0.03 

Habitat loss 0.00 0.00 0.91 0.36   0.00 0.00 2.82 0.01 

                          

Feve 

High 

divergence 

Direct 

effects 

Habitat loss 0.00 0.00 -1.36 0.18   0.00 0.00 1.05 0.29 

Fragmentation 0.00 0.01 0.10 0.92  -0.04 0.01 -3.86 0.00 

Correlation 

Species 

richness 0.00 0.00 1.20 0.23   0.00 0.00 1.57 0.12 

Indirect 

effects 

Fragmentation 0.00 0.00 -1.27 0.21  0.00 0.00 -1.44 0.15 

Habitat loss 0.00 0.00 -1.21 0.23   0.00 0.00 -1.55 0.12 

                        

Low 

divergence 

Direct 

effects 

Habitat loss 0.00 0.00 -1.37 0.17   0.00 -0.45 0.65 0.00 

Fragmentation 0.00 0.01 -0.40 0.69  -0.01 0.01 -2.26 0.02 

Correlation 

Species 

richness 0.00 0.00 -1.39 0.17   0.00 0.00 -2.31 0.02 

Indirect 

effects 

Fragmentation 0.00 0.00 -1.53 0.13   0.00 0.00 -2.10 0.04 

Habitat loss 0.00 0.00 1.37 0.17   0.00 0.00 2.33 0.02 
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Direct fragmentation effects on functional diversity that are independent of changes of species richness 

are common in communities with a high divergence in the distribution of response traits. Previous work 

shows that landscape change can promote changes in the distribution of functional traits without 

substantially reducing species richness (Concepcion et al. 2015, Ding et al. 2013). This could happen, 

for example, if some species are replaced by stronger competitors with a new set of traits (i.e. changes 

in functional richness), if the abundance of species with less common traits increases (i.e. changes in 

functional evenness) or if the centroid of the mean trait distribution is changed (changes in functional 

divergence). These changes will have an impact on functional diversity while species richness remains 

constant (Sonnier et al. 2014a). Since fragmentation tends to filter species that share similar traits 

(Carneiro et al. 2016), the diversity of functional traits may decrease abruptly in fragmented landscapes 

for a given number of species. This could be particularly evident when groups of species that share 

similar response traits that make them more susceptible to fragmentation. Although the main effects of 

fragmentation on functional evenness and functional divergence were negative, fragmented landscapes 

can lead to an increase in these components at low levels of species richness (Figure 4.3, Table 4.2). 

These can reflect that only the most adapted species that maximize the use of resources in high 

fragmented areas will persist (Ding et al., 2013, Ibarra and Martin 2015). These results may explain the 

homogenization in the distribution of functional traits that has been found across multiple human 

dominated landscapes (Devictor et al. 2007, Ibarra and Martin 2015, Sonnier et al. 2014b). 

Indirect effects of fragmentation through changes in species richness are preponderant when the 

divergence in response traits is low. In this case, my model reflects cases where species richness and 

functional diversity are correlated and thus factors that decrease species richness are expected to 

indirectly decrease functional diversity (de Bello et al. 2010, Mouchet et al. 2010, Petchey and Gaston 

2006). When the divergence in the distribution of response traits decreases, there is a high chance that 

multiple species respond in a similar way to landscape change. For example, fragmentation has a strong 

negative effect on large bodied species (Bartlett et al. 2016, Bregman et al. 2014) or high trophic groups 

(Bartlett et al. 2016). If these species share similar effect traits, fragmentation will have an important 

role hindering particular functions such as seed dispersal for large-fruited trees (Bovo et al. 2018). In 

addition, if the correlation between response and effect traits is high, losing one particular species can 

affect significantly functional diversity, as fewer species contribute in a similar way to any given 

ecosystem function (Mori et al. 2013). In this case, patterns of functional diversity will mostly depend 

on species richness.  

Results of this study suggest that we should avoid fragmentation to maintain high levels of functional 

diversity at the landscape scale. Although fragmentation can increase heterogeneity in habitats and have 

some positive effects on species richness and species abundance (Fahrig 2017), my model shows that 

increasing fragmentation reduces functional diversity for a given amount of habitat. In addition, I show 

evidence that functional richness can decrease more abruptly in fragmented landscapes when there is a 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/seed-dispersal
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high divergence in the distribution of response traits. As shown in previous studies, functional richness 

is more correlated to species richness and generally decreases as habitat is lost (Flynn et al. 2009, 

Mayfield et al. 2010). This is supported by empirical evidence (Ding et al. 2013, Magnago et al. 2014) 

showing that fragmentation selects against species with extreme trait values and so trait values tend to 

converge (Barbaro et al. 2014). In contrast, large habitat patches allow the persistence of more specialist 

species (Rybicki and Hanski 2013). Thus, less-fragmented landscapes that have not reached low 

amounts (< 30 %) of remnant vegetation tend to promote the persistence of species with extreme trait 

values (Carmona et al. 2016, Mason and De Bello 2013). Results of this study also suggest that 

functional evenness increases when fragmentation is low. Therefore, independently of the number of 

species and the amount of habitat available, large or interconnected habitat patches will not only 

promote a higher functional richness (Bovo et al. 2018), but also a higher chance that species with 

extreme and less common traits use available resources more efficiently at the landscape level 

(Magnago et al. 2014). 

4.5.2Limitations and future research 

As with all models, I made a series of assumptions that may limit the generality of these findings. First, 

I used a single trait to describe both the distribution of response traits and effect trait diversity. Second, 

my model assumes that there is a strong relationship between species traits and local environmental 

conditions, even though the effects of traits might depend on regional context that is ignored in this 

study. Finally, I ignore the frequency of disturbances that can alter relationships between species 

richness and functional traits. Here, I describe potential avenues of research that can provide more 

insights in these topics. 

A crucial avenue of research involves identifying which set of traits have the largest influence on 

species’ responses to fragmentation. Values of functional diversity metrics depend on which traits and 

how many traits are included (Mouchet et al. 2010, Zhu et al. 2017). In my model, I used niche breadth 

to represent a combination of traits that favoured reproduction in particular habitats. However, multiple 

traits such as body size, trophic level and matrix tolerance increase or decrease a species’ vulnerability 

to fragmentation and habitat loss, and therefore define niche breadth (Ewers and Didham 2006) 

(Laughlin and Messier 2015). In addition, survival and competitive traits act with spatial heterogeneity 

to promote the coexistence of distinct dispersal strategies (Cattarino et al. 2016) (Büchi and Vuilleumier 

2014, 2016) . Therefore, a selection process evaluating correlations between traits in real landscapes is 

needed before testing effects of habitat configuration on functional diversity. 

Previous research shows that factors related to regional context (e.g. regional disturbance) can modify 

the effects of species traits on ecological functions. Unfortunately, there is a lack of empirical tests that 

evaluate how fragmentation drives functional diversity across different disturbance frequencies. 



64 
 

Empirical evidence comes mostly from analyses that focus on landscape composition (e.g.Flynn et al. 

2009, Luck et al. 2013) or from tests comparing functional group diversity across patches of different 

size in the same landscape (e.g. Benchimol and Peres 2015, Bregman et al. 2014). Future research 

should focus on discerning how factors such as matrix type and composition, the scale of analysis, 

species interactions and spatial autocorrelation of habitat types affect the hypotheses provided by my 

model (Biswas et al. 2016). For example, by evaluating the distribution of reproductive and dispersal 

traits across landscapes with different matrix type and levels of spatial autocorrelation of habitat types, 

it might be possible to test how dispersal processes are affected to maintain local-scale functional 

diversity. 

  

Finally, competitive and mutualistic interactions among species with similar ecological traits have an 

important role in shaping community structure in heterogeneous landscapes (Barbaro et al. 2014, 

Bregman Tom et al. 2015). In my model, carrying capacity was used as a proxy for competition of 

different individuals for space. However, further work need to quantify how spatial context moderates 

the role of species interactions in driving trait distributions. For instance, the spatial autocorrelation of 

habitat types may affect movement behaviour, as well as the probability of species interacting (Barbaro 

et al. 2014, Biswas et al. 2016). This opens an opportunity to analyse how landscape configuration 

drives functional diversity by altering the frequency at which species interact. In addition, accounting 

for disproportionate effects of key species that may drive community structure is needed. For example, 

an increase of a single native species affected by anthropogenic habitat alteration can introduce 

substantial ecological dysfunction (Maron et al. 2013). Such information would complement inferences 

about how environmental filtering processes lead to patterns of trait diversity across systems with 

different spatial contexts. 

4.5.3 Conservation and management implications 

Highly fragmented landscapes are becoming ever more common with continuing anthropogenic habitat 

conversion (Haddad et al. 2015). Thus, understanding how landscape configuration influences 

ecosystem functions in fragmented landscapes will help maximize the ability of limited conservation 

resources to achieve landscapes that provide multiple functions. If for example, there is low correlation 

between response and effect traits in a group of frugivorous species, my results suggest that focusing 

resources on protecting patches that maximize taxonomic diversity may be enough to ensure high levels 

of seed dispersal. However, when the correlation between effect and response traits increases (e.g. 

pollinator ensembles where different species are associated with different crops), the potential to 

manage landscape configuration to protect both species richness and functional diversity becomes more 

restricted. In this case, planning at the landscape scale requires a deeper understanding of the trade-offs 

and synergies between the conservation of taxonomic diversity and functional diversity with limited 
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resources. 

My results support the idea that habitat fragments should be protected in clusters rather than as randomly 

scattered fragments (Rybicki and Hanski 2013), since when fragmentation has an effect on diversity, it 

is always negative. There is empirical evidence that functional diversity increases with patch size 

(Benchimol and Peres 2015, Bregman Tom et al. 2015) and this may explain the positive effects of 

maintaining spatial aggregations of habitat as habitat is lost across a landscape. However, preserving 

large habitat patches is not always possible, and there are many examples where managing the spatial 

configuration of remnant habitat is necessary. For example, although urban environments tend to have 

negative impacts on biodiversity, ecological impacts of urbanization might be mitigated by managing 

the composition and spatial pattern of the remaining habitat (Lin and Fuller 2013, Villard and Metzger 

2014). Collecting empirical evidence of functional diversity along the gradient of large patches to 

networks of small patches will help develop strategies to manage the growth of urban and agricultural 

landscapes and conserve both species and functional diversity. 
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Chapter 5                                                                                                                        

EFFECTS OF LANDSCAPE STRUCTURE ON SPECIES RICHNESS 

AND FUNCTIONAL DIVERSITY IN URBAN BIRDS ENSEMBLES 
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5.1 Abstract 

 

Analysing the simultaneous effects of landscape structure on species richness and functional diversity 

is necessary to propose strategies that maximize the conservation of both. Here, I use structural equation 

modelling to show how landscape composition (the percentage of tree cover and built infrastructure), 

landscape configuration (fragmentation level) and vegetation structure interact to drive functional 

diversity and species richness of urban bird ensembles in Brisbane, Australia. My approach allows 

disentangling the pathways through which landscape structure (i.e. landscape composition and 

configuration) affect functional diversity in two main ways: 1) indirect effects through changes in 

species richness or 2) direct effects through redistribution in the abundances of particular traits. Effects 

of landscape structure on species richness are consistent among different ensembles: fragmented 

landscapes in areas with high percentage of built infrastructure have low levels of species richness. 

However, patterns of functional diversity are more complex. Direct effects of landscape composition 

on functional diversity were more common in frugivorous/nectarivorous, whereas direct effects of 

fragmentation were more evident in insectivorous ensembles. In addition, effects of landscape 

composition mediated by changes in species richness were more common than indirect effects of 

fragmentation These results are key for understanding how urban growth might best be done to 

maximize the conservation of functional and taxonomic diversity. 

5.2 Introduction 

 

Evaluating the relationship between species richness and functional diversity is necessary if we want to 

maximize the conservation of both in changing landscapes. If species richness and functional diversity 

are strongly related, similar conservation strategies could achieve both. However, previous work 

(including the model presented in chapter 4) has demonstrated that the relationship between species 

richness and functional diversity can vary from positive to negative or non-significant (Flynn et al. 

2009, Laliberté et al. 2010, Mayfield et al. 2010). In particular, fragmentation can affect this relationship 

by modifying trait distributions and mediating the effects of habitat amount on both species and traits 

(Ibarra and Martin 2015, Magnago et al. 2014). However, most progress in this area comes from large-

scale analyses that focus on landscape composition (Flynn et al. 2009, Luck et al. 2013), and the broader 

effects of landscape structure on this relationship have been widely overlooked.  

 

Effects of landscape structure on functional diversity can be both direct and indirect (Sonnier et al. 

2014a). Fragmentation and habitat loss can act directly on functional diversity by filtering species with 

certain traits that make them more tolerant to landscape change (Barbaro et al. 2014, Ding et al. 2013, 

Magnago et al. 2014). For instance, fragmentation can promote traits associated with long-distance 

dispersal due to increased fragment isolation (Büchi and Vuilleumier 2012). These changes can be 
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independent of the number of species surviving in a community (Büchi and Vuilleumier 2014, Magnago 

et al. 2014). In addition, landscape structure can act indirectly on functional diversity by affecting 

species richness. This occurs when species richness and functional diversity are correlated and thus 

factors that decrease species richness are expected to indirectly decrease functional diversity (de Bello 

et al. 2010, Mouchet et al. 2010, Petchey and Gaston 2006). For example, if functional diversity is 

positively correlated with species richness, it is expected that less-fragmented landscapes, which may 

have higher species richness (Rybicki and Hanski 2013), would have high functional diversity as well. 

Analysing direct and indirect effects of landscape structure on functional diversity can help unpack the 

drivers that differentially affect species richness and functional diversity.  

 

In the previous chapter, I showed that fragmentation effects on functional diversity depend on the 

distribution of response traits across species and its correlation with effect traits. These two factors will 

affect the community functional redundancy, this is, the number of species contributing in a similar way 

to a particular ecosystem function. Functional redundancy may affect the prevalence of direct and 

indirect effects of landscape structure on functional diversity. If functional redundancy is low, then 

functional diversity would decrease rapidly as species with less common traits are lost (Laliberté et al. 

2010). This is an example of indirect effects of landscape structure on functional diversity through 

declines of species richness (Mayfield et al. 2010). Since habitat amount tends to filter species more 

strongly than fragmentation (Fahrig et al. 2011), a redistribution of trait abundances as a result of 

changes in habitat amount rather than on habitat configuration is expected. Conversely, when functional 

redundancy is high, changes in functional diversity will be less mediated by changes in species richness 

(Carmona et al. 2012, Laliberté et al. 2010, Luck et al. 2013), and thus direct effects of landscape 

structure will become common. In this case, certain types of habitat configuration can alter patterns of 

trait abundances in a community (e.g. favour large species) without any conspicuous changes in species 

richness.  

 

Understanding direct and indirect drivers of how landscape structure alters functional diversity is 

important is important in urban environments. Cities constitute important locations of landscape 

transformation and are on of the fastest-growing land-use type globally (Seto et al. 2012). Although 

urban environments tend to have negative impacts on biodiversity, the ecological impacts of 

urbanization might be mitigated by managing the spatial pattern of the remaining habitat (Villard and 

Metzger 2014). For example, a compact, high-density growth form may reduce local extinctions and 

improve species’ distributions when relatively large patches with good habitat quality are preserved 

(Hanski 2015). On the other hand, sprawling growth may have adverse effects on native species 

richness, but may help to maintain friendlier wildlife matrices that enhance connectivity and potential 

ecological functions at larger scales (Fahrig 2017, Soga et al. 2014). Land sharing and land sparing 

constitute two extremes that are not necessarily exclusive, and evaluating what happens along the 



69 
 

gradient of possibilities is fundamental to propose strategies to manage the spatial arrangement of 

landscape elements (Fischer et al. 2014, Lin and Fuller 2013). However, analyses in urban areas have 

mostly focused on the effects of tree cover on species richness (Batáry et al. 2017), and there is a lack 

of studies about the simultaneous effects of landscape structure on both species richness and functional 

diversity. 

 

In this chapter, I test how the amount of tree cover, vertical vegetation structure and landscape 

fragmentation simultaneously influence species diversity and functional diversity of urban bird 

assemblages using Brisbane as a case study. I evaluate this for different functional groups and provide 

evidence showing how fragmentation modifies the impacts of habitat loss on different functional 

indices. Specifically, I ask: 1) how does landscape structure affect both species richness and functional 

diversity components of an urban bird assemblage? And 2) How do different attributes of landscape 

structure affect directly and indirectly through changes in species richness functional diversity for 

different ensembles? I focus in two groups, frugivorous/nectarivorous and insectivorous birds, since 

they are associated with different functions and have different levels of functional redundancy in 

Brisbane. In addition, previous work has shown that, in urban areas, insectivorous birds tend to be more 

affected by fragmentation than frugivorous birds (Evans et al. 2011, Sol et al. 2014)}. Based on the 

results of my theoretical model (chapter 4), I expect that direct effects of fragmentation on the functional 

diversity will mostly depend on the level of functional redundancy. In addition, I expect that landscape 

composition will have a bigger influence than landscape configuration on functional diversity of 

frugivorous species (a group with low functional redundancy in the study area) than on insectivorous 

species (which has high functional redundancy). Based on these results, I discuss how urban growth 

could be managed to potentially maximize the conservation of both taxonomic and functional diversity.  

5.3 Methods 

 

The analyses presented here are based in the data collected in the Brisbane Local Government Area as 

explained in sections 3.2.1 and 3.2.2. In this chapter, however, I focus only on measuring associations 

at the 1 km2 resolution.  

5.3.1 Data analysis 

5.3.1.1 Functional trait diversity indices and species richness calculation 

 

In chapter 3, I explored which traits best explained bird species responses to habitat loss and 

fragmentation across Brisbane (i.e., response traits). In this chapter, I focus on effect traits – the traits 

that relate to the performance of functions - to infer how landscape structure affects the capacity of bird 

ensembles to contribute to specific ecosystem functions. For this, I selected four effect traits: dispersal 
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capacity and body size, foraging plasticity and diet. Body size can be linked to many system properties 

(White et al. 2007) and may represent a universal trait to predict the effects of landscape structure on 

ecosystem functioning (Séguin et al. 2014). Dispersal capacity and foraging behaviour are important 

traits in the dynamics of pollination, seed dispersal, and pest control (Lundberg and Moberg 2003). 

Luck et al. (2013) provided values of foraging plasticity based on the frequency with which a particular 

species has been recorded using different foraging behaviours in different Australian regions.  

Trait values of each effect trait were sourced from an unpublished traits database derived from the 

Handbook of Australian, New Zealand and Antarctic Birds (Luck, unpublished data). In addition, Fraser 

et al. (2017) provided values of dispersal capacity for each species using a model presented by Garrard 

et al. (2012). This model predicts median dispersal distance based on data on wingspan and body mass 

collated from published studies world-wide, and predicts that birds with a higher wingspan to mass ratio 

will have longer median dispersal distances.  

I also classified bird species into different functional groups based on diet: frugivorous, nectarivorous 

and insectivorous following Wilman et al. (2014). These authors translated verbal descriptions of bird 

diets from multiple sources into standardized, semi-quantitative information about the relative 

importance of different food categories. I defined insectivores as those whose diet is more than 60% 

arthropods. These species are more likely associated with pest control. Nectarivorous and frugivorous 

birds were those that include more than 60% of their diet on fruits and nectar, and they most likely 

contribute to pollination and seed dispersal (see Appendix C Table C3 for a complete list of species 

recorded in this study and their trait values). Frugivorous and nectarivorous birds were grouped into a 

single group since most species (e.g. rainbow lorikeet Trichoglossus chlorolepidotus, brown honeyeater 

Lichmera indistincta) that use plant resources include nectar and fruits in their diet. In order to test the 

hypothesis that the effects of fragmentation are more evident in groups of species with high functional 

redundancy, I calculated functional redundancy for each of the insectivorous and frugivorous groups 

taking into account all the species I recorded during my surveys. For this, I used the function 

“redundancy” of the package TPD (Carmona et al. 2016) in R.3.3. Functional redundancy of 

insectivorous birds was higher (15.8) than frugivorous/nectarivorous birds (10.6). In addition, the 

number of insectivorous species recorded is higher (41) than the number of frugivorous/nectarivorous 

(25) and thus insectivorous species are expected to have higher redundancy. 

 

For each of these functional groups, I quantified species richness, functional richness (FRic), functional 

evenness (FEve) and functional divergence (FDiv) at a 1 km2 resolution using the total number of 

individuals recorded in each landscape unit (see section 3.3. for data collection methodology).  As 

explained in previous chapters, functional richness corresponds to the range of trait values in a given 

area and reflects how much functional space is occupied by a community. Functional evenness 

quantifies if the functional trait space is evenly occupied by the community (Villéger et al. 2008). 
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Functional evenness values will be lower when some parts of the functional space are empty while 

others are densely populated (Mouchet et al. 2010). Functional divergence measures to what extent 

dominant species diverge in their trait values using trait dissimilarity weighted by species abundance 

(Mason et al. 2005). All diversity calculations were performed with the dbFD function implemented in 

the FD package in R (R Development Core Team, (Laliberté and Legendre 2010)). 

 

5.3.1.2 Data analysis 

 

I used structural equation modelling (SEM; Grace 2006) to examine the pathways through which habitat 

loss and fragmentation affect each functional diversity component. I created a different model for each 

functional diversity component establishing a causal path between species richness and functional 

diversity to account for indirect effects of landscape structure. Environmental variables were the 

percentage of built infrastructure (impervious surface + buildings), percentage of tree cover, vertical 

vegetation structure complexity, fragmentation measured as the level of aggregation of patches. The 

hypothetical model for the causal relationships among these factors is given in Figure 5.1. 

 

Figure 5-1: Theoretical model showing the main relationships between landscape structure and species 

richness and functional diversity. Built infrastructure affects both the amount and the spatial aggregation 

of tree cover. In addition, tree cover and fragmentation affect vertical structure across Brisbane 

(Mitchell et al. 2016). All the components of landscape structure affect directly patterns of species 

richness, and this may drive changes in functional diversity (indirect effects). In addition, landscape 

structure can affect directly functional diversity without necessarily changing species richness by 
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promoting the abundance of species with particular traits (direct effects). One-headed arrows represent 

causal pathways between variables.  

For each functional component (i.e. functional evenness, functional divergence or functional richness), 

I constructed the model presented in figure 5.1. I then tested the fit of this model using a maximum 

likelihood method, based on a Chi squared distribution to check how overall model fit improved relative 

to an expected model that best explains the response variable based on the presented set of predictors. 

If p ≥ 0.05, I considered that the two models were not statistically different from each other. If p < 0.05, 

the model was rejected and I started adding quadratic terms and removing some relationships until I 

found a well-fitting and ecologically meaningful model (Shipley 2000). In addition, I used the Tucker 

– Lewis index (TLI) to check how overall model fit improved relative to the alternative models. A value 

of 0.95 or larger indicates good model fit(Weston and Gore 2006). I also used the root mean square 

error of approximation (RMSEA) to measure absolute model fit, where values < 0.06 indicate good fit 

(Weston and Gore 2006). The model with the lower RMSEA and the highest TLI was considered as the 

best.  

 

I analysed the direct and indirect effects of each environmental predictor on functional diversity by 

calculating standardized path coefficients of the best fitting model (Grace 2006). The significance of 

the individual paths coefficients was analysed and p values lower than 0.05 were denoted as significant. 

If both direct and indirect effects were significant, I found evidence that landscape structure acted on 

functional diversity both by modifying species richness and by redistributing trait abundances across 

species. All SEMs were created using the R package lavaan (Rosseel 2012), and all continuous 

variables were log-transformed prior to analyses.  

5.4 Results 

 

5.4.1 Effects of landscape structure on species richness and functional diversity for the urban bird 

assemblage 

For all the functional diversity components and the functional groups, the SEMs including tree cover, 

percentage of built infrastructure and fragmentation had the best overall fit (x2= 1.243, p = 0.27, TLI= 

1, RMSEA = 0.048, df = 10). Adding the relationship between vegetation structure and functional 

diversity did not improve overall model fit (x2= 9.3, p = 0.01, TLI= 1, RMSEA = 0.435, df = 14). 

Therefore, SEM results show that at the 1 km2 resolution, the vertical structure of the vegetation does 

not help to explain the effects of landscape structure on either species richness or the functional 

components evaluated. 

Landscape composition and configuration affect species richness and functional diversity differently. 
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At the assemblage level, both fragmentation (standardize path coefficient = -0.30) and the percentage 

of built infrastructure (standardized path coefficient = -0.75) negatively affect species richness. This 

relationship was different when functional diversity components were evaluated. In this case, both 

functional richness (Figure 5.2a) and functional evenness were unaffected directly by fragmentation, 

tree cover or built infrastructure. The only component that was directly affected by landscape structure 

was functional divergence that decreased significantly when both fragmentation (p < 0.05; standardized 

path coefficient of – 0.43) and built infrastructure increased (p < 0.05; standardized path coefficient of 

– 0.37) (Figure 5.2b). 

5.4.2 Effects of landscape structure on species richness and functional diversity for the urban bird 

ensembles 

Drivers of species richness among insectivorous and frugivorous/nectarivorous species were similar, 

but direct effects on functional components were more variable (Table 5.1). Increasing fragmentation 

reduced functional richness and functional divergence in the insectivorous ensemble, whereas it did not 

have a clear effect on the nectarivorous/frugivorous ensemble (Figure 5.3 a-d). For 

frugivorous/insectivorous birds, functional diversity is mostly driven by landscape composition rather 

than on fragmentation (Table 5.1). For example, tree cover had a significant positive effect on functional 

richness of this ensemble, whereas built infrastructure played an important role decreasing functional 

evenness (Figure 5.3f). In contrast, models did not show direct effects of tree cover and built 

infrastructure on functional evenness or functional richness of insectivorous species (Figure 5.3 e-f).  

 

The level of functional redundancy was not an indicator of the prevalence of indirect effects of 

landscape structure on functional diversity. Independently of the ensemble evaluated, species richness 

mediated the effects of built infrastructure on all the components of functional diversity (Table 5.1). In 

addition, indirect effects of fragmentation had a negative influence on functional evenness of 

frugivorous/nectarivorous, but no effects were detected for functional evenness of insectivorous (Figure 

5.3, Table 5.1). In contrast, fragmentation had an indirect negative impact on functional divergence of 

insectivorous, whereas functional divergence of frugivorous/nectarivorous increased with species 

richness independently of the fragmentation level (Figure 5.3, Table 5.1).  
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Figure 5-2: Structural equation models showing the effects of landscape structure on different 

functional components for the urban bird assemblage. Numbers between arrows indicate standardized 

path coefficients, which allow for comparing relationship strengths within a model; a) Functional 

richness, b) Functional divergence and c) Functional evenness. One-headed arrows represent causal 

pathways. Yellow arrows: Positive effects, Green arrows: Negative effects. The intensity of the colour 

represents the strength of the relationship. Solid lines denote significant effects whereas dashed lines 

denote non-significant effects 
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Figure 5-3: Structural equation models showing the direct effects of landscape structure on different 

functional components for the insectivorous and the frugivorous ensembles.  Numbers between arrows 

indicate standardized path coefficients, which allow for comparing relationship strengths within a 

model; a, b) Functional richness; c, d) Functional divergence; and e, f) Functional evenness. Orange 

arrows: Positive effects, Blue arrows: Negative effects. The intensity of the colour represents the 

strength of the relationship. Dashed lines represent non-significant relationships. 
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Table 5-1: Direct and indirect effects of different attributes of landscape structure on different 

components of functional diversity for the two ensembles evaluated.  FRic = Functional richness; FDiv 

= Functional divergence; FEve = Functional evenness. Significant effects are bolded. 

 

   Frugivorous/Nectarivorous  Insectivorous 

  

 Estimate 

Std.

Err z-value P(>|z|) 
 

Estimate 

Std.

Err 

z-

value P(>|z|) 

Fric 

Direct 
effects 

Built infrastructure -0.32 0.18 2.37 0.00   -0.51 0.41 -1.24 0.22 

Tree cover 2.31 1.22 1.9 0.04 
 

1.14 0.82 1.40 0.16 

Fragmentation -2.38 2.04 1.17 0.24 
 

-7.59 2.35 3.22 0.00 

Species richness 0.40 0.03 13.24 0.00   0.30 0.08 4.01 0.00 

Indirect 

effects 

Tree cover -0.19 0.13 -1.47 0.14   -0.30 0.22 -1.42 0.16 

Fragmentation -4.97 3.04 1.64 0.10 
 

-7.77 3.10 2.50 0.01 

Built infrastructure -0.87 0.26 -3.33 0.00   -1.94 0.47 -4.11 0.00 

            

FDiv 

Direct 

effects 

Built infrastructure -0.03 0.23 -0.12 0.91   0.48 0.25 1.95 0.45 

Tree cover -0.11 0.27 -0.42 0.68  -0.31 0.9 0.1 0.00 

Fragmentation -1.51 1.99 -0.76 0.45  -9.5 2.01 4.7 0.47 

Species richness 0.16 0.03 6.18 0.00   0.03 0.04 0.68 0.49 

Indirect 

effects 

Tree cover 0.03 0.07 0.45 0.66   -0.21 0.06 -3.66 0.00 

Fragmentation -1.97 1.21 1.64 0.10  -2.34 1.36 1.73 0.08 

Built infrastructure -0.34 0.12 -2.81 0.01   -0.59 0.15 -3.96 0.00 

            

Feve 

Direct 

effects 

Built infrastructure -0.03 0.01 -2.86 0.00   0.02 0.01 1.73 0.09 

Tree cover 0.00 0.02 0.18 0.86  -0.02 0.02 -1.42 0.16 

Fragmentation -0.07 0.06 1.14 0.26  -0.12 0.07 1.76 0.08 

Species richness -0.01 0.00 -3.43 0.00   0.00 0.00 -1.05 0.29 

Indirect 

effects 

Tree cover 0.00 0.01 -0.17 0.86   0.01 0.01 1.31 0.19 

Fragmentation 0.08 0.03 -2.40 0.02  0.03 0.03 -1.14 0.26 

Built infrastructure 0.01 0.01 2.58 0.01   0.01 0.01 1.13 0.26 

 

5.5 Discussion 

 

My approach allowed me to disentangle the independent direct and indirect effects of landscape 

composition and configuration on bird functional diversity and species richness. Although direct effects 

of landscape structure on species richness are consistent among bird ensembles, within-group functional 

diversity responded differently depending on the ensemble considered. In addition, I provide evidence 

that landscape composition and configuration affect species richness and functional diversity 

differently. My results suggest that in ensembles with low redundancy, changes in functional diversity 

are mostly driven by landscape composition, whereas the relative effects of landscape configuration 

increase in ensembles with high redundancy. These results highlight the importance of accounting for 
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the independent effects of different aspects of landscape structure to explain changes in functional 

diversity in human-dominated landscapes (Laliberte et al. 2013, Luck et al. 2013, Mayfield et al. 2010). 

 

Landscape composition drives functional diversity both directly by filtering species with particular traits 

and indirectly by altering patterns of species richness. Since species richness and functional richness 

tend to be correlated (Mouchet et al. 2010), the highly negative effects of built infrastructure on species 

richness can lead to declines in functional richness. In addition, negative direct effects of built 

infrastructure on functional richness likely reflect a homogenization in the distribution of a reduced 

number of common traits (Batáry et al. 2017, Coetzee and Chown 2016). My results suggest that even 

if tree cover does not affect directly species richness of frugivorous/nectarivorous, managing urban tree 

cover can promote high levels of functional richness. This may be achieved by preserving a good 

diversity of planted trees in urban areas that facilitate the presence of species with multiple requirements 

(Catterall 2004, Sewell and Catterall 1998). Although landscape composition does not have a clear 

effect on functional richness of insectivorous, negative effects of built infrastructure on functional 

divergence suggest that there is a reduction in abundance for species with extreme trait values. In this 

case, managing tree cover to preserve high functional richness does not necessarily enhance functional 

diversity in highly urbanized areas, since built infrastructure tend to homogenize the distribution of 

certain traits (Croci et al. 2008). 

 

The level of functional redundancy is an indicator of the prevalence of direct effects of fragmentation 

on both functional richness and functional divergence. In frugivorous/nectarivorous, there is a high 

variation in dispersal and body size traits and thus in responses to habitat configuration across species 

(Coetzee and Chown 2016, de Frutos et al. 2015, Magnago et al. 2014). In this sense, the effects of 

landscape configuration on frugivorous become less evident. For insectivorous, there is a high 

redundancy for traits such as dispersal and body size and these traits predict how species may rely on 

heterogeneous habitat patches with moderate to low edge effects (Catterall et al. 2010, Shanahan et al. 

2011). Therefore, a reduction in functional divergence is associated with a decrease in the abundance 

of small sized species with low dispersal capacities in fragmented landscapes (Brown and Graham 2015, 

Evans et al. 2011). My results show that reductions in functional divergence of insectivorous can be 

expected even if species richness is not altered. These results concur with several studies of both 

simulated communities (Mouchet et al. 2010, Villéger et al. 2008) and real avian assemblages (Ding et 

al. 2013, Ibarra and Martin 2015) showing that changes in functional diversity may appear independent 

of changes in species richness.  

 

Despite the contrasting responses between different functional components and ensembles, it may be 

possible to establish some guidelines to promote the conservation of functional diversity in urban areas. 

Since responses of the components of functional diversity to landscape structure are mixed (Schütz and 
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Schulze 2015), it is clear that maintaining the capacity of bird ensembles to provide multiple functions 

is more challenging than protecting species richness. However, at least for some groups, we could 

benefit from understanding how landscape structure promotes positive relationships found between 

species richness and functional richness/divergence. Previous work in the study region has found that 

bird assemblages in remnant forest patches varied little with patch size above 10–20 ha, but below this 

threshold, they became increasingly dominated by large-bodied species (Catterall et al. 2010). 

Additional work in the area has shown that landscape connectivity has a greater influence on bird 

species richness than patch area (Litteral and Shochat 2017, Shanahan et al. 2011). Thus, preserving 

connected, medium-sized patches might be the best option to preserve both functional diversity and 

species richness in Brisbane. For this approach to be successful, the negative impacts of fragmentation 

should be reduced by promoting the conservation of landscape elements that attenuate the effects of the 

landscape matrix on both the area-sensitivity and/or dispersal behaviour of bird species.  

 

This study is a first step to understand the effects of landscape structure on functional diversity, but 

more analysis are needed to link this findings to effects on ecosystem functioning. For example, several 

studies indicate that birds, besides reducing herbivorous insect populations, may also increase plants 

productivity and biomass (Barber and Marquis 2011, Mäntylä et al., 2011). In cities, this could have 

important implications for the conservation of green spaces that provide habitat for other species as well 

as cultural services. However, it is unknown at what extent the diversity of dispersal and body size traits 

influence increases in plant biomass, or if this is mostly driven by the presence of specific trait values 

within the community. It is important to note that, although results of this study describe changes in 

functional diversity at the landscape level, effects of fragmentation are scale dependent, and opposite 

forces operate simultaneously to shape species assemblages at the fragment scale. For example, 

previous work has found that bird insectivory increases at edges and in small forest fragments (Barbaro 

et al. 2014, González-Gómez et al. 2006), and this increase may be explained by a greater regularity of 

trait abundance distributions in edge than in interior bird assemblages (Barbaro et al. 2014). Testing 

this hypothesis requires information at the patch scale that I did not include in my analyses here. In 

addition, my study focused on understanding how landscape structure affects general patterns of 

community structure, but I did not identify individual species within ensembles that can have 

disproportionate effects on ecosystem functions, and this remains an important issue.  

5.6 Conclusions 

 

Results from this study show that it is possible to disentangle the pathways through which fragmentation 

and landscape composition affect functional diversity of groups with different levels of functional 

redundancy. This has important implications for understanding how landscape change (e.g. urban 

growth) might best be done to maximize the conservation of functional and taxonomic diversity. 
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Avoiding fragmentation would help to maintain high levels of functional diversity for insectivorous 

ensembles with high redundancy of traits associated with vulnerable responses to landscape change. In 

contrast, the weak direct effects of fragmentation on functional diversity of frugivorous species suggest 

that landscape composition (i.e. percentage of built infrastructure and native vegetation) is the main 

driving force of functional diversity in this group, whereas fragmentation acts mostly indirectly through 

effects on species richness. Instead of promoting certain habitat configurations, actions such as street 

tree plantings that help avoid species richness loss ought also to maintain high functional diversity for 

that group (Catterall et al. 2010, Lim and Sodhi 2004, Sewell and Catterall 1998). For these actions to 

be successful, accounting for the relative effects of landscape attributes on functional diversity is crucial 

if we want to propose management strategies for multiple groups of species in transformed landscapes. 
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Chapter 6                                                                                                                  

SYNTHESIS 
 

Conserving multiple aspects of biodiversity in transformed landscapes is a fundamental challenge 

(Laliberté et al. 2010, Luck et al. 2013). As fragmented landscapes become increasingly common, 

controlling the spatial arrangement of landscape elements may help to promote the conservation of both 

taxonomic and functional diversity. In this context, the use of species’ traits to predict how species 

richness and functional diversity may follow independent paths after landscape change is a potentially 

powerful approach (Díaz et al. 2013, Mori et al. 2013). However, despite the conceptual support for 

trait-based frameworks, we still lack basic information on how different traits explain species responses 

at different spatial scales (Chapter 2). Furthermore, to date there have been few attempts to provide 

general hypotheses of how changes to landscape structure drive the relationship between species 

richness and functional trait diversity. Much progress has been made in understanding how landscape 

composition impact functional diversity over large spatial scales (Flynn et al. 2009, Mayfield et al. 

2010). However, less is known about how the landscape configuration and landscape composition 

interact to affect the relationship between species diversity and functional diversity.  

 

To address these gaps, the overarching objective of this thesis was to provide novel evidence of how 

landscape structure drives species richness and functional diversity simultaneously. For this, I divided 

my analyses into four main chapters. In Chapter 2, I reviewed current approaches used to evaluate how 

the influence of species traits on the relationship between environmental variables and ecological 

responses varies among scales (i.e. the scale-dependent role of traits). I then used bird assemblage data 

collected in Brisbane (Australia) to address one of the gaps identified in my review: including landscape 

structure variables to explain variation of trait values across local and landscape scales (Chapter 3). In 

Chapter 4, I developed a theoretical simulation model to quantify how the relationship between species 

richness and functional diversity is driven by both habitat amount and configuration. Finally, I used my 

empirical data to test some of the hypothesis of my theoretical model and evaluated the effects of 

landscape structure on both species richness and functional diversity components for different 

functional groups (Chapter 5).   

In this concluding chapter, I summarise the main findings from each Chapter of this thesis, and discuss 

their implications for the management of landscape structure in transformed landscapes. I then 

synthesise the major contributions, discuss challenges and limitations, and recommend future research 

directions.  
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6.1 Main findings  

 

6.1.1 The scale-dependent role of biological traits in landscape ecology: a review 

In Chapter 2, I completed the first quantitative synthesis of the main approaches used to evaluate how 

patterns in trait variation within and among species are related to environmental variables across scales 

(De Bello et al. 2013b, Laughlin and Messier 2015, Messier et al. 2010, Moran et al. 2016). I identified 

which ecological responses have been measured and related to traits at the community and population 

levels in multi-scale studies. Based on my review, I identified three main gaps: 1) there is a lack of 

studies explicitly quantifying the relative effect of particular sets of traits on ecological responses across 

scales; 2) several ecological responses related to ecosystem functioning and species interactions such 

as seed dispersal, predation and multi-trophic networks have been widely overlooked, and 3) the effects 

of landscape structure are often ignored. 

This chapter constitutes a step towards better integration of landscape ecology and community 

ecology to improve inferences about the relationship between species traits and multiple ecological 

responses. I emphasized that without a proper quantification of spatial scale effects in trait-based 

approaches, it is difficult to disentangle to what degree the responses of ecological systems across 

habitats, patches and landscapes are dependent on species traits. I advocated for the use of models that 

evaluate how variation in landscape structure across regions and habitat types at coarse scales 

interacts with local variables to determine the effects of traits on ecological responses. In this way, we 

can ensure that we capture the essential mechanisms that operate simultaneously at multiple scales to 

shape biological communities in changing landscapes.  

6.1.2 Associations between urban bird traits and environmental variables change across scales 

One of the main gaps I identified in Chapter 2 was the need to disentangle how landscape structure acts 

on trait distributions at multiple spatial scales. This is necessary if we want to understand how species 

sharing similar traits may be more or less tolerant to landscape change at a range of scales relevant to 

management (Concepcion et al. 2015, de Bello et al. 2013a). In this chapter, I provided empirical 

evidence that the interaction between landscape configuration, landscape composition and spatial scale 

can explain contrasting patterns about variations in the distribution of species traits at different scales. 

At landscape scales, fragmentation (landscape configuration) and percentage of tree cover (landscape 

composition) played a key role shaping the distribution of body sizes and dispersal capacities. At local 

scales, however, the relationship between landscape composition and species traits was weak. 

Furthermore, I showed that fragmentation plays an important role driving the distribution of traits at 

both scales. In particular, increasing fragmentation at landscape scales negatively affected small species 

with low dispersal capacities in areas of low tree cover. Conversely, fragmentation at local scales 
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increased spatial heterogeneity that allowed for the persistence of species with a diverse set of traits 

(e.g. both high and low dispersers). Thus, although dispersal can explain biotic homogenization at the 

landscape scale as a consequence of the dominance of highly mobile species (Devictor et al. 2008) at 

local scales birds with different dispersal capacities are affected by similar factors, including 

competition for nesting sites and the presence of aggressive species (Concepcion et al. 2015). 

Accounting for differences in trait distributions across multiple scales spatial scale can thus help to find 

more general models of the effect of traits for predicting species responses to landscape change. 

6.1.3 Effects of fragmentation on the relationship between species richness and functional diversity 

In Chapter 4, I presented a theoretical model aimed to generate hypotheses about how fragmentation 

drives the relationship between species richness and multiple components of functional diversity, while 

controlling for habitat amount. This is the first model that shows how the correlation between response 

and effect traits and the distribution of response traits can be used to predict fragmentation effects on 

species richness and functional diversity for multiple communities. Results of my model showed that: 

1) when present, the effect of fragmentation on functional diversity tends to be negative and becomes 

evident when the correlation between response and effect traits increases; 2) indirect effects of 

fragmentation through changes in species richness are strong in communities with a low divergence in 

response traits and 3) direct effects of fragmentation are evident in communities with a high divergence 

in the distribution of response traits and a high correlation between response and effect traits. The 

generation of the hypotheses presented in this chapter provides a good opportunity to test them across 

a broad range of real landscapes and communities in different regions. 

6.1.4 Effects of landscape structure on species richness and functional diversity in urban bird 

assemblages 

In Chapter 5, I tested some of the hypotheses generated by the theoretical model developed in Chapter 

4. Here, I disentangled how landscape structure drives the functional diversity directly or indirectly by 

changes in species richness. I did this for different components of functional diversity and functional 

groups with different levels of functional redundancy. Previous research evaluating the effects of 

landscape configuration on functional diversity has mostly focused on comparing patches with different 

size or isolation levels (Ibarra and Martin 2015, Magnago et al. 2014). My study goes further and 

focuses on multiple landscapes with different levels of habitat amount and fragmentation. By using a 

stratified random sampling approach at the landscape level, I could disentangle the independent direct 

and indirect effects of landscape composition and configuration on functional diversity and species 

richness simultaneously. I provided evidence that landscape structure acts differently on species 

richness and functional diversity. Further, the effects of landscape structure on species richness were 

consistent among different functional groups. However, patterns of functional diversity varied among 

groups and were less dependent upon tree cover and fragmentation. I showed that although 
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fragmentation sometimes does not act directly on functional diversity, it can affect it indirectly, through 

changes in species richness.  

6.2 Major contributions  

 

My thesis advances our knowledge of the effects of landscape structure on multiple components of 

biodiversity, and in particular functional trait diversity. I draw from the fields of landscape ecology, 

functional ecology, community ecology, and environmental management. My findings are relevant to 

ecologists and practitioners/managers with an interest in preserving biodiversity in human-modified 

landscapes. I did a systematic review and generated theoretical and empirical evidence. By doing this, 

I was able to identify the main knowledge gaps, simulate different scenarios to provide specific 

hypotheses and test them in real landscapes. This approach allowed me to generate new insights around 

how landscape change can be managed to potentially maximize the conservation of both taxonomic and 

functional diversity. The overarching contributions of my project are detailed below. 

 

I provided new evidence that not only landscape composition but also landscape configuration is 

important in driving patterns of species richness and functional diversity. Most previous studies have 

focused on analysing effects of fragmentation on species richness and functional diversity 

independently (Magnago et al. 2014, Perovic et al. 2015), but my study goes further by analysing how 

fragmentation drives the relationship between these components (Chapter 4-5). In addition, previous 

work has drawn different conclusions about the relative importance of the mechanisms underlying 

fragmentation effects across differing taxa, and some studies even argue about the utility of the ‘habitat 

fragmentation’ concept in general (Fahrig and Triantis 2013). Usually, fragmentation effects are best 

tested with studies on individual species rather than on communities, as the latter typically consist of 

species with dissimilar habitat requirements (Hanski 2015). I showed that trait based approaches are 

useful for seeking more general patterns of fragmentation effects on multiple components of 

biodiversity at the community level. This was achieved by comparing communities and functional 

groups with dissimilar distribution of trait values. I show that it may be possible to explain multi-species 

responses to fragmentation based on species traits.  

 

i. The theoretical model I developed brings together different concepts from functional ecology 

within a landscape ecology framework. Previous spatially explicit metacommunity models 

have evaluated the factors that drive coexistence of species with different dispersal and 

reproductive traits (Buchi et al. 2012, 2014), or that drive species-area relationships (e.g. 

Rybicky and Hanski 2013). Other studies (Suding et al. 2008, Mori et al. 2013) have presented 

trait-based response–effect frameworks that differentiate the community response to 

environmental change (predicted by response traits) and the effect of that change on ecosystem 
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processes (predicted by effect traits). The model presented in my thesis is the first to integrate 

these concepts to predict how species richness and different components of functional diversity 

may respond to fragmentation. Furthermore, I then explicitly tested these hypotheses with 

empirical data and provided evidence that different components of landscape structure may 

influence the relationship between species richness and functional diversity in real landscapes. 

Empirical evidence that the mechanisms that led to these hypotheses operate in many 

ecosystems would simplify biodiversity forecasting and represent an advance for generality in 

community and landscape ecology. 

 

ii. An important challenge for empirical studies is to account for the correlation between the total 

amount of habitat and the degree of fragmentation. Effective research on the impacts of habitat 

loss versus fragmentation requires tools that can empirically test whether environmental 

variables are causally related, and if so, account for the indirect effects that these causal 

relationships imply (Ruffell et al. 2016). The study design used in this thesis allowed me to 

infer the independent and joint effects of different compositional and configurational variables 

on functional diversity. In addition, both my theoretical model and the structural equation 

models I used to analyse my empirical data helped me to unpack the drivers of functional 

diversity and species richness in my study area. Based on these analyses, I show that the relative 

effects of habitat loss and fragmentation on functional diversity can be inferred by analysing 

functional redundancy patterns. 

 

iii. Studies in urban areas have shown that the ability of traits to explain species responses to 

urbanization varies among regions (Brown and Graham 2015, Croci et al. 2008, Evans et al. 

2011). However, it is not clear how much of this variation is due to differences in the spatial 

scale at which landscape structure influences the distribution of traits (Chapter 2). Thus, the 

underlying mechanisms that account for patterns of bird trait diversity after urban land use 

change remain unclear. I presented new evidence of how the interaction between landscape 

structure and spatial scale drives the distribution of urban bird functional traits. I showed that 

urbanisation affects bird species traits at landscape scales more strongly than at local scales. 

Thus, trait-based inferences about species responses to landscape change could be improved by 

addressing the scale issue. This information could help to reconcile previous contrasting results 

about the importance of species traits explaining species responses to landscape change across 

different regions. 
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6.3 Conservation implications 

 

Landscape ecologists tend to focus on how attributes of the surrounding landscape affect the site scale 

responses of species with different biological traits. Management prescriptions guided by this 

knowledge will influence species or assemblages at sites, but not necessarily result in the intended 

biodiversity outcome beyond this scale. My study suggests that a focus on conserving species with 

particular traits at the local scale may be ineffective if attributes of landscape structure are ignored. In 

urban systems, for example, local actions such as planting native gardens (Catterall et al. 2010, French 

et al. 2005)have been proposed to promote species diversity peaks in areas with moderate levels of 

urbanization . This is because the heterogeneity produced by intermediate levels of urbanization can 

promote the coexistence of species using different resources (Batáry et al. 2017). However, this might 

be ineffective if the objective is to implement conservation initiatives that target species less tolerant to 

landscape change, such as small-bodied species with low dispersal capacities (Brown and Graham 

2015). Local actions aimed at increasing species richness that do not consider landscape structure effects 

may favour species that are already more adaptable to urban landscapes (Archibald Carla et al. 2017).  

 

Highly fragmented landscapes are becoming ever more common due to anthropogenic habitat 

conversion (Haddad et al. 2015). In this context, understanding how landscape structure influences the 

relationship between species richness and functional diversity will help maximize limited conservation 

resources. If, for example, there is high redundancy in an assemblage of frugivorous species, my results 

suggest that focusing resources on protecting well-connected, medium-sized patches may be enough to 

ensure high levels of seed dispersal. However, the potential to manage landscape configuration to 

protect both species richness and functional diversity becomes more restricted when there is low 

functional redundancy. In this case, a limited number of key species providing one specific function 

may be highly susceptible to habitat loss. Even if landscape configuration is managed to maximize 

species richness (Jackson and Fahrig 2015, Rybicki and Hanski 2013), rapid declines in functional 

diversity are expected if unique species are lost (Coetzee and Chown 2016, Laliberte et al. 2013). In 

this case, managing landscape structure for particular targets (e.g. species with key effect traits) may be 

more realistic than trying to maximize multiple aspects of biodiversity. 

When habitat configuration matters, my results support the idea that habitat fragments should be 

protected in clusters rather than as randomly scattered fragments (Rybicki and Hanski 2013), as when 

fragmentation has an effect on functional diversity, it tends to be negative. Although fragmentation can 

increase heterogeneity in habitats and have some positive effects on species richness and species 

abundance (Fahrig 2017), evidence suggest that this is at expense of species with unique traits (Coetzee 

and Chown 2016). In addition, there is empirical evidence that functional diversity increases with patch 

size (Benchimol et al. 2015, Bregman et al. 2015) and this may explain the positive effects of avoiding 
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fragmentation when habitat is lost. However, preserving or restoring large patches is not always 

possible, and there are multiple examples where managing the spatial configuration of remnant habitat 

is necessary to protect biodiversity (Haddad et al. 2015, Villard and Metzger 2014). Although urban 

environments tend to have negative impacts on biodiversity, ecological impacts of urbanization might 

be mitigated by managing the composition and spatial pattern of the remaining habitat (Lin and Fuller 

2013, Sushinsky et al. 2013). When habitat amount is limited. When habitat amount is limited, my 

results show that fragmentation must be avoided at landscape scales to maximize functional diversity 

.  

6.4 Limitations and future research 

 

In this section, I discuss the primary limitations of the contributions of my thesis, and suggest future 

research directions to advance this work. 

6.4.1 The different components of scale 

In Chapter 3, I addressed how landscape structure explains variation of trait values across local (1 ha) 

and landscape (1 km2) scales. To improve the reach of these results, linking this information with 

regional patterns is still needed. The results presented in this thesis must be compared with analyses of 

how landscape structure affects trait distributions in surrounding non-urban areas (Evans et al. 2011). 

For example, by evaluating the distribution of reproductive and dispersal traits across multiple extents, 

it might be possible to test how dispersal processes over large distances interact with matrix types to 

maintain local-scale functional diversity (Benchimol and Peres 2015, Delattre et al. 2013). This will 

allow for a more comprehensive understanding of how trait values distributions could be extrapolated 

in space, and could guide management responses that explicitly account for trait effects at a wider range 

of spatial scales. 

In Chapter 5, I was interested in understanding how landscape attributes affected simultaneously 

functional diversity and species richness at a single scale. The next step will be to evaluate how variables 

at local and coarser scales operate simultaneously to shape species assemblages at the fragment and the 

regional scale. Patch level analyses can show how heterogeneity produced by fragmentation may 

increase functional diversity at local scales, even if it decreases at landscape scales. For example, 

previous work has found that bird insectivory increases at edges and in small forest fragments 

(González-Gómez et al. 2006), and this increase may be explained by higher levels of functional 

evenness and functional divergence in edge compared to interior bird assemblages. Comparing patterns 

of functional diversity between the edge and the patch interior will help to detect edge effects that can 

increase heterogeneity in trait distributions at local scales. Also, accounting for spatial autocorrelation 

of the functional diversity components at more than one scale can help to disentangle the effects of 
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large-scale and local scale filters shaping community structure (Biswas et al. 2015). Positive spatial 

autocorrelation means the functional diversity values of nearby locations are more similar than distant 

ones, and therefore there is a higher influence of large scale environmental filters. Conversely, negative 

spatial autocorrelation means functional diversity is more dissimilar in nearby locations, and therefore 

local scale processes such as competition are expected to occur (Fortin and Dale 2005). It is thus 

necessary to identify the spatial signature of multiple ecological processes that are potentially acting at 

different spatial scales by contrasting positive and negative components of spatial autocorrelation for 

different components of functional trait diversity.  

6.4.2 Synergistic effects of fragmentation and multiple environmental variables 

Recent advances in our understanding of the ecological effects of habitat fragmentation show the strong 

context dependence of ecosystem responses, including time lags in population decline, and synergistic 

interactions between habitat fragmentation and other factors such as frequency of disturbances, 

topography and climate (Didham et al. 2012, Ewers and Didham 2006, Tscharntke et al. 2012). I only 

evaluated a subset of environmental variables, but future research should focus on discerning how 

factors such as matrix type, patch characteristics (e.g shape and edge contrast) affect the results provided 

by my work (Biswas et al. 2015, Carmona et al. 2016). For example, hostile landscape matrixes may 

act in synergy with habitat configuration to increase the proportion of species with high dispersal 

abilities (Buchi et al. 2012). Furthermore, the frequency of disturbances can increase the role of one 

trait over others (e.g. reproductive capacity becomes more important than dispersal) (Büchi and 

Vuilleumier 2014, 2016) and thus a further step will consist in running my model again changing the 

frequency of habitat removal. 

 

In addition, including information about factors such as soil types and topography, which affect non-

random patterns of land clearing, should be considered in future analyses. Since the loss and retention 

of native vegetation is rarely random among landscapes, the amount of remaining native vegetation 

may not necessarily reflect a good measure of habitat quality (Simmonds et al. 2017). For example, 

different areas with high amounts of tree cover are on sandy soils that do not provide a good habitat for 

several species (Watson 2011), which can impact the range of trait values that can be found. This might 

explain why I did not find clear effects of tree cover on functional richness for the functional groups 

analysed. Accounting for these effects in future analyses is needed to better understand the relative 

effects of habitat amount and fragmentation.  

6.4.3 Accounting for species interactions 

One of the main gaps I identified during my dissertation is the need to quantify how spatial context 

moderates the role of species interactions in driving trait distributions. Recent evidence is suggesting 
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that competition and mutualism can drive effects of environmental change on trait diversity (Adler et 

al. 2013, Barbaro et al. 2014; Bregman et al. 2015). For example, although it is supposed that 

competitive interactions should generate trait dispersion patterns due to limiting similarity process 

(Gallien 2017, Maynard et al. 2017), competition can also lead to patterns of trait clustering when it 

acts synergistically with landscape change(Gallien et al. 2017). However, empirical tests of synergistic 

effects of species interactions and disturbance on functional diversity are lacking. In addition, the spatial 

autocorrelation of habitat types may modify the probability of species interacting (Biswas et al. 2015; 

Barbaro et al. 2015). This opens an opportunity to analyse how landscape configuration drives 

functional diversity by altering the frequency at which species interact. In addition, accounting for 

disproportionate effects of key species that may drive community structure is needed. For example, an 

increase of a single native species affected by anthropogenic habitat alteration can introduce substantial 

ecological dysfunction (Maron et al. 2013). Such information would complement inferences about how 

environmental filtering processes lead to patterns of trait diversity across systems with different spatial 

contexts. 

6.4.4 Improving trait-based frameworks 

The ability to effectively use a trait framework is becoming controversial because most studies have 

not clearly related specific traits to specific threats or functions (Bartomeus et al. 2018, Didham et al. 

2016). Despite some generalities that emerge across taxa associated with large species, specialists, and 

higher trophic levels being in general more sensitive to fragmentation (Ewers and Didham 

2006)(Bartlett et al. 2016), there is substantial variation in the response of the species with those traits 

to landscape change. I have discussed that this must be due in part to how spatial scale affects the 

relationship between species traits and environmental variables. However, comparisons of how single 

traits explain species responses across regions are needed. Ecological studies that collect rigorous 

empirical evidence about how traits influence species responses and their potential to provide functions 

is a major research priority (Didham et al. 2016). In addition, there is a need to quantify the functional 

effects of trait variation on clear measurements of performance, rather than just assuming invariant 

species‐level trait correlates of ecosystem functions (McGill 2015, Didham et al. 2016). 

By using continuous trait variations in my simulated model, I avoided issues related to ignoring 

intraspecific variation in trait-based approaches (Messier et al. 2010). However, trait values for my 

empirical analyses were sourced from the literature rather than being measured directly in the field, 

which was out of the scope of this project. Thus, the analyses presented in chapters 3 and 5 are based 

on mean trait values of species. In addition, the predictions of my theoretical model are largely based 

on whether response and effect traits are in general positively, negatively, or uncorrelated (e.g. large 

bodied species have a high pollination efficiency). However, the evaluation of how traits are correlated 

across different taxa is an important question that has not yet been answered. Besides collecting primary 
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information in the field, analysis of trait variation using values reported in multiple trait databases may 

help to solve these issues. 

6.5 Concluding remarks 

 

Trait based analyses constitute a powerful approach to understanding and predicting the effects of 

landscape structure on functional diversity and species diversity. However, as stated by several authors, 

we are still far to ensure we are adequately equipped to make conservation decisions based on trait 

theory across different landscapes (Bartomeus et al. 2018, Didham et al. 2016). Experimental tests are 

needed to understand which traits are important for explaining ecological responses in different 

contexts. Furthermore, we need to evaluate how many traits are appropriate to study effects of 

environmental change on ecological responses at different scales of observation (Suárez-Castro et al. 

2018). This thesis constitutes an advance in trying to find general patterns about the effects of landscape 

structure on functional diversity. However, testing the hypotheses presented here requires accounting 

for context dependence of ecosystem responses, as well as the synergistic interactions between habitat 

fragmentation, species interactions and other components of global environmental change (Didham et 

al. 2012, Ruffell et al. 2016). A better integration and communication between the fields of landscape 

and community ecology is needed if we want to advance in this area. 
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APPENDIX B 
 

A review of the literature on the scale-dependent role of traits from 2012 to March 2017 

Search criteria: 

I searched (March 27th 2017) for all papers published in the last five years, using the following search 

term sequence in Web of Science: TI (title) = (Scale Or Scale* Or Multiscale Or Multi-Scale Or Spatial) 

And TS (topic) = (Trait Or Trait* Or Dispersal Or Size Or Size* Or Reproductive Or Foraging Or 

Behaviour). This procedure resulted in over 30,000 results. All studies that did not include “scale” in 

the abstract were discarded. I then filtered these results by selecting 40 ecological journals most likely 

to publish papers on ecological responses to landscape change, resulting in a total of 1540 records (Table 

S1). For my analysis, we selected studies based on the following criteria: 

1) Environmental predictors and ecological responses were measured at multiple spatial scales. I 

defined spatial scale as the smallest/shortest unit of observation (i.e. grain) and the spatial extent 

or duration over which observations are made (i.e. extent). 

2) The ecological response variable was directly measured, not inferred e.g. from a model. 

3) Species traits were explicitly included as predictors or response variables for explaining the 

relative influence of environmental factors on ecological responses at each measured scale. I 

use the term trait in its broader sense and included morphological, physiological features related 

to species survival and reproduction, as well as traits related to species-specific habitat 

preferences (i.e. habitat specialization). 

4) Measured trait effects or responses were explicitly reported from tables or graphs and based on 

quantitative analyses. Thus, I did not take into account papers that discussed potential links 

between traits, environmental variables and ecological responses from the text portions of the 

papers. 

Most of the results were then eliminated based on the titles or the abstracts, because they failed to 

meet one or more of the criteria above. In cases where suitability could not be determined based on 

the abstract, I eliminated additional papers after reading the methods and results sections. This 

process produced a set of 101 studies, which are listed in table S2. 

I placed each of these studies according to the three approaches analysed in my review: “Species traits 

as predictors”, “Single trait expression across scales” and “Trait diversity approaches”. For this, I 

answered each of the following questions:  

 Does the study quantify trait effects at multiple spatial scales? The study quantifies how the 

effect of different traits on the response variables varies with the spatial scale of measurement. 
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 Does it quantify trait distributions at multiple spatial scales? The study quantifies how trait 

diversity patterns (The variation or dispersion of functional traits in an assemblage) change with 

scale.  

 Does it quantify effects of scale on traits? The study evaluates how the expression of a single 

trait for a particular species varies over different spatial scales and how environmental variables 

moderate this variation. 

The proportion of papers categorized into each approach is shown in Fig. 1. Next, I determined the type 

of traits and ecological responses measured in each study (results in Fig. 1b). I used the following 

categories: 

Species traits 

 Size: Length, height or body mass. I excluded traits such as seed size from this category as they 

were used for explaining the relative dispersal or reproductive abilities of the species.  

 Habitat specialization: Principal habitat requirements and capacity to use various habitats. 

 Morphology Plants/animals: Any structural or morphological trait except body mass/length or 

plant size. For plants morphological traits included specific leaf area, growth form and stem 

width and thickness, whereas for animals traits included body shape, wing size and shape, beak 

width, tail length, and tarsus length 

 Reproductive traits: Offspring size, clonality, seed production, number of broods per year, 

number of eggs per clutch, mating behaviour.  

 Dispersal Capacity: Any trait related to the area or distance over which a species moves across 

the landscape (e.g. home range size, dispersal strategy, dispersal vector) 

 Diet: Main type of food items consumed. 

 Foraging Method: Food procurement methods and main foraging locations. Studies about 

habitat selection are not included.  

 Physiological traits: Leaf dry matter content, leaf nitrogen concentration, leaf carbon 

concentration.  

 Behaviour: Traits related to nesting or social behaviour 

Ecological responses 

 Interspecific interactions: Studies evaluated the relationships between different species that 

affected survival, reproduction and/or growth rates for at least one species involved in the 

interaction. Interactions may include parasitism, competition, predation, pollination or 

herbivory. 
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 Multiple indices of diversity: The study reported quantitative measures that reflect how many 

different types of species and functional traits can be found in a particular assemblage across 

scales. Trait diversity could be measured with different indices, including functional richness, 

functional evenness, functional divergence, community weighted means or any multivariate 

analyses aimed at determining the optimal trait combination for a given environment. 

 Spatial parameters: The studies characterized spatial relationships between biotic and abiotic 

variables at multiple scales. Measurements included the spatial aggregation of species among 

an environmental gradient, functional connectivity patterns or metacommunity analyses.  

 Patterns of species abundances: The study reported the abundance of each species 

independently at each scale of observation.  

 Taxonomic diversity: Studies that only focused on calculating indices of taxonomic diversity 

(e.g. taxonomic alpha, beta or gamma diversity) for biological assemblages at multiple scales. 

Table B1 List of journals searched for papers on species traits explaining ecological responses to 

landscape change at multiple scales between 2012 and March 2017. In parenthesis, the number of 

studies  

Journal 

Number of 

papers 

Agriculture Ecosystems & Environment 1 

American Naturalist 2 

Behavioral Ecology 3 

Biodiversity and Conservation 2 

Biogeosciences 1 

Biological Conservation 1 

Biotropica 1 

Conservation Biology 1 

Diversity and Distributions 5 

Ecography 5 

Ecological Applications 1 

Ecological Indicators 2 

Ecology 6 

Ecology and Evolution 3 

Ecology Letters 1 

Ecosphere 1 

Evolutionary Ecology 1 

Evolutionary Ecology Research 1 

Freshwater Science 1 

Functional Ecology 3 

functonal ecology 1 

Global Change Biology 1 

Global Ecology and Biogeography 3 
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Insect Conservation and Diversity 2 

Journal of animal ecology 1 

Journal of Animal Ecology 3 

Journal of Applied Ecology 3 

Journal of Ecology 8 

Journal of Evolutionary Biology 1 

Journal of Plant Ecology 1 

Journal of Vegetation Science 9 

Journal of Wildlife Management 1 

Landscape Ecology 3 

Marine ecology progress series 3 

Molecular Ecology 1 

Oecologia 3 

Oikos 5 

Plant Ecology 2 

Plos One 4 

Science of The Total Environment 1 

Urban Ecosystems 1 

 

Table B2. Articles used in the 2012-2017 review of the empirical literature on the scale-dependent role 

of traits, numbered alphabetically.  

1. Aguiar FC, Cerdeira JO, Martins MJ, Ferreira MT. Riparian forests of Southwest Europe: are 

functional trait and species composition assemblages constrained by environment? Journal of 

Vegetation Science. 2013;24(4):628-38. doi:10.1111/jvs.12009. 

2. Akasaka M, Takada M, Kitagawa R, Igarashi H. Invasive non‐native species attributes and invasion 

extent: examining the importance of grain size. Journal of Vegetation Science. 2012;23(1):33-40. 

doi:10.1111/j.1654-1103.2011.01332.x. 

3. Akasaka T, Akasaka M, Nakamura F. Scale-independent significance of river and riparian zones on 

three sympatric Myotis species in an agricultural landscape. Biological Conservation. 2012;145(1):15-

23. doi:10.1016/j.biocon.2011.08.017. 

4. Albouy C, Leprieur F, Le Loc'h F, Mouquet N, Meynard CN, Douzery EJP et al. Projected impacts 

of climate warming on the functional and phylogenetic components of coastal Mediterranean fish 

biodiversity. Ecography. 2015;38(7):681-9. doi:10.1111/ecog.01254. 

5. Allen AM, Mansson J, Sand H, Malmsten J, Ericsson G, Singh NJ. Scaling up movements: from 

individual space use to population patterns. Ecosphere. 2016;7(10). doi:10.1002/ecs2.1524. 

6. Auffret AG, Aggemyr E, Plue J, Cousins SAO. Spatial scale and specialization affect how 

biogeography and functional traits predict long-term patterns of community turnover. Functional 

Ecology. 2017;31(2):436-43. doi:10.1111/1365-2435.12716. 

7. Barnagaud JY, Papaix J, Gimenez O, Svenning JC. Dynamic spatial interactions between the native 
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invader Brown-headed Cowbird and its hosts. Diversity and Distributions. 2015;21(5):511-22. 

doi:10.1111/ddi.12275. 

8. Bartlett MK, Zhang Y, Yang J, Kreidler N, Sun SW, Lin L et al. Drought tolerance as a driver of 

tropical forest assembly: resolving spatial signatures for multiple processes. Ecology. 2016;97(2):503-

14. doi:10.1890/15-0468.1. 

9. Bastos R, D'Amen M, Vicente J, Santos M, Yu HR, Eitelberg D et al. A multi-scale looping approach 

to predict spatially dynamic patterns of functional species richness in changing landscapes. Ecological 

Indicators. 2016;64:92-104. doi:10.1016/j.ecolind.2015.12.025. 

10. Bauder JM, Castellano C, Jensen JB, Stevenson DJ, Jenkins CL. Comparison of Movements, Body 

Weight, and Habitat Selection Between Translocated and Resident Gopher Tortoises. Journal of 

Wildlife Management. 2014;78(8):1444-55. doi:10.1002/jwmg.790. 

11. Bell DM, Bradford JB, Lauenroth WK. Scale dependence of disease impacts on quaking aspen 

(Populus tremuloides) mortality in the southwestern United States. Ecology. 2015;96(7):1835-45. 

doi:10.1890/14-1184.1. 

12. Belmaker J, Jetz W. Spatial Scaling of Functional Structure in Bird and Mammal Assemblages. 

American Naturalist. 2013;181(4):464-78. doi:10.1086/669906. 

13. Bino G, Ramp D, Kingsford RT. Niche evolution in Australian terrestrial mammals? Clarifying 

scale-dependencies in phylogenetic and functional drivers of co-occurrence. Evolutionary Ecology. 

2013;27(6):1159-73. doi:10.1007/s10682-013-9631-5. 

14. Boiffin J, Aubin I, Munson AD. Ecological controls on post-fire vegetation assembly at multiple 
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18. Burbrink FT, Myers EA. Body size distributions at community, regional or taxonomic scales do not 

predict the direction of trait-driven diversification in snakes in the United States. Global Ecology and 
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APPENDIX C 
 

Table C1: Values of the Spearman correlation test for the traits selected in this study 

  
Body mass 

(g) 
Clutch size 

Habitat 

specialization 
Dispersal 

Body.mass 1 0.21 -0.12 0.31 

Clutch.size.y 0.21 1 -0.1 -0.24 

Habitat_Plasticity -0.12 -0.1 1 0.56 

dispersal 0.31 -0.24 0.56 1 

 

Table C2: Values of the Spearman correlation test environmental variables used as predictors in this 

study 

  
% Tree 

cover 

 Built 

infrastructure 
Clumpiness 

Vertical 

structure 

% Tree cover 1 -0.6 -0.42 0.71 

 Built infrastructure -0.6 1 0.34 0.6 

Clumpiness -0.42 0.34 1 0.39 

Vertical structure 0.71 0.6 0.39 1 
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Table C3:Trait values for bird species recorded in Brisbane during 2016 that were taken into account in the statistical analysis of this thesis  

Species Common name Diet 

Foraging 

strata 

Body mass 

(g) 

Clutch 

size 

Habitat 

plasticity 

Diet 

Plasticity 

Foraging 

behaviour 

plasticity 

Acanthiza nana Yellow thornbill Invertebrate Tree/shrub 6.19 3.1 39 8 11 

Acanthiza pusilla Brown thronbill Invertebrate Tree/shrub 7.62 2.9 42 14 13 

Acanthorhynchus tenuirostris Eastern spinbell Omnivore Tree/shrub 16.00 2.2 42 8 9 

Acridotheres tristis Common myna Omnivore Ground 116.43 4 17 27 16 

Acrocephalus australis Australian Reed-Warbler Invertebrate Ground 24.80 3.1 31 8 15 

Alectura lathami Australian Brush turkey Plant/Seed Ground 2333.06 22 14 23 5 

Alisterus scapularis Australian King Parrot Plant/Seed Tree/shrub 232.26 4.5 29 20 15 

Anthochaera chrysoptera Little wattlebird Fruits/Nectar Tree/shrub 67.80 1.7 37 15 14 

Cacatua galerita Sulphur crested cockatoo Plant/Seed Ground 720.43 2.5 47 17 13 

Cacatua sanguinea Little corella Plant/Seed Ground 523.69 2.6 27 13 9 

Cacomantis flabelliformis Fan tailed cuckoo Invertebrate Ground 49.80 1.1 38 5 12 

Chrysococcyx basalis Horsfield's Bronze-Cuckoo Invertebrate Tree/shrub 23.12 1 45 11 5 

Cisticola exilis Golden headed cisticola Invertebrate Tree/shrub 7.80 3.6 43 8 5 

Climacteris picumnus Brown treecreper Invertebrate Tree/shrub 28.94 2.7 36 10 14 

Colluricincla harmonica Grey shrike thrush Invertebrate Tree/shrub 65.80 2.9 45 18 15 

Colluricincla megarhyncha Little shrike thrush Invertebrate Tree/shrub 32.34 2.4 17 12 9 

Columba livia Rock dove Plant/Seed Ground 354.20 1.8 20 12 10 

Coracina novaehollandiae Black faced cuckoshrike Omnivore Tree/shrub 118.00 2.5 45 14 18 

Cormobates leucophaea White throated treecreper Invertebrate Tree/shrub 22.00 2.5 28 10 13 

Corvus orru Torresian crow Omnivore Ground 507.96 4.6 22 25 8 

Cracticus nigrogularis Pied butcherbird Omnivore Ground 128.00 2.8 42 26 11 

Cracticus tibicen Australian Magpie Invertebrate Ground 284.87 3.3 50 26 20 

Cracticus torquatus Grey butcherbird Omnivore Tree/shrub 82.88 3.2 46 18 10 

Dacelo novaeguinae Laughing kookaburra Invertebrate Ground 333.80 3 34 10 14 

Dicaeum hirundinaceum Mistletoebird Fruits/Nectar Tree/shrub 12.00 2.7 31 13 9 

Dicrurus bracteatus Spangled drongo Invertebrate Tree/shrub 85.53 3.4 19 17 9 
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Elanus axillaris Black shouldered kite VertFishScav Tree/shrub 270.10 3.4 43 9 24 

Entomyzon cyanotis Blue faced honeyeater Invertebrate Tree/shrub 105.26 2.6 33 13 16 

Eolophus roseicapilla Galah Plant/Seed Ground 325.33 4.5 35 17 11 

Eopsaltria australis Eastern yellow robin Invertebrate Tree/shrub 20.15 2.3 34 11 13 

Eurystomus orientalis Dollarbird Invertebrate Tree/shrub 143.02 3.5 26 5 10 

Geopelia humeralis Bar shouldered dove Plant/Seed Ground 128.42 2 15 8 5 

Gerygone levigaster Mangrove gerygone Invertebrate Tree/shrub 6.20 2.8 13 5 9 

Gerygone olivacea White throated gerygone Invertebrate Tree/shrub 6.72 2.8 37 5 10 

Glossopsitta pusilla Little lorikeet Fruits/Nectar Tree/shrub 39.40 4 31 10 8 

Grallina cyanoleuca Magpie-lark Invertebrate Ground 82.57 3.8 50 11 14 

Hirundo neoxena Welcome swallow Invertebrate Tree/shrub 14.70 3.8 55 5 16 

Lichenostomus chrysops Yellow faced honeyeater Fruits/Nectar Tree/shrub 17.30 2.4 36 20 10 

Lichmera indistincta Brown honeyeater Fruits/Nectar Tree/shrub 11.18 1.9 19 10 10 

Lonchura castaneothorax Chesnut breasted manikin Plant/Seed Ground 11.00 5 14 8 10 

Malurus cyaneus Superb fairy wren Invertebrate Ground 10.00 7.3 44 17 16 

Malurus lamberti Variegated fairy wren Invertebrate Tree/shrub 8.04 2.9 31 8 10 

Malurus melanocephalus Red backed fairy wren Invertebrate Tree/shrub 7.90 2.4 18 5 11 

Manorina melanocephala Noisy miner Omnivore Tree/shrub 60.22 2.8 34 18 14 

Megalurus timoriensis Tawny grassbird Invertebrate Ground 37.50 3.2 17 7 5 

Meliphaga lewinii Lewins honeyeater Fruits/Nectar Tree/shrub 33.58 2.2 31 16 15 

Melithreptus albogularis White throated honeyeater Invertebrate Tree/shrub 14.01 2 14 10 12 

Merops ornatus Rainbow bee eater Invertebrate Tree/shrub 29.50 4.7 42 5 13 

Monarcha melanopsis Black faced monarch Invertebrate Tree/shrub 22.70 2.3 22 5 9 

Myiagra inquieta Restless flycatcher Invertebrate Tree/shrub 20.90 3.3 26 5 15 

Myiagra rubecula Leaden flycatcher Invertebrate Tree/shrub 12.05 1.9 29 7 13 

Myzomela sanguinolenta Scarlet honeyeater Fruits/Nectar Tree/shrub 8.34 2 15 9 11 

Neochmia temporalis Red browed finch Omnivore Tree/shrub 11.00 5.2 48 13 12 

Ocyphaps lophotes Crested pigeon Plant/Seed Ground 204.00 2 32 13 5 

Oriolus sagittatus Olive backed oriole Fruits/Nectar Tree/shrub 95.20 2.2 30 20 13 

Pachycephala pectoralis Golden whistler Invertebrate Tree/shrub 30.36 2.2 43 10 19 
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Pachycephala rufiventris Rufous whistler Invertebrate Tree/shrub 22.48 2.6 42 14 15 

Pardalotus punctuatus Spotted pardalote Invertebrate Tree/shrub 8.70 3.1 45 9 13 

Pardalotus striatus Striated pardalote Invertebrate Tree/shrub 11.44 3.8 41 13 13 

Petrochelidon ariel Fairy martin Invertebrate Tree/shrub 10.84 3.5 39 5 10 

Petroica rosea Rose robin Invertebrate Tree/shrub 8.20 3 22 5 16 

Philemon citreogularis Little friabird Omnivore Tree/shrub 60.56 2.4 26 16 12 

Philemon corniculatus Noisy friabird Omnivore Tree/shrub 100.71 3 35 22 10 

Platycercus adscitus Pale headed rosella Plant/Seed Tree/shrub 111.00 6 18 18 5 

Platycercus elegans Crimson rosella Plant/Seed Tree/shrub 123.86 4.4 35 21 7 

Plectorhyncha lanceolata Stripped honeyeater Fruits/Nectar Tree/shrub 40.56 3 33 17 13 

Psophodes olivaceus Eastern whipbird Invertebrate Tree/shrub 62.36 2 32 11 10 

Rhipidura albiscapa Grey fantail Invertebrate Tree/shrub 7.80 1.9 45 13 15 

Rhipidura leucophrys Willie wagtail Invertebrate Tree/shrub 20.70 3 47 8 23 

Rhipidura rufifrons Rufous fantail Invertebrate Tree/shrub NA 1.9 34 5 19 

Scythrops novaehollandiae Channel billed cuckoo Fruits/Nectar Tree/shrub 683.99 3 13 11 8 

Sericornis frontalis White browed scrub wren Invertebrate Ground 13.23 2.1 44 13 11 

Sphecotheres vieilloti Australasian figbird Fruits/Nectar Tree/shrub 108.00 2.7 24 17 10 

Strepera graculina Pied currawong Omnivore Tree/shrub 298.86 3.1 31 24 22 

Streptopelia chinensis Spotted dove Plant/Seed Ground 159.00 1.9 15 9 5 

Taeniopygia bichenovii Double-barred Finch Invertebrate Ground 10.00 4.3 21 9 5 

Threskiornis molucca Australian ibis Omnivore Tree/shrub 1794.89 3 29 14 10 

Todiramphus sanctus Sacred kingfisher Invertebrate Ground 52.96 4.3 28 9 21 

Trichoglossus chlorolepidotus Scaly breasted lorikeet Fruits/Nectar Tree/shrub 87.10 2.9 14 16 5 

Trichoglossus haematodus Rainbow lorikeet Fruits/Nectar Tree/shrub 113.25 2 44 19 9 

Vanellus miles Masked lapwing Invertebrate Ground 387.00 3.5 42 14 20 

Zosterops lateralis Silvereye Omnivore Tree/shrub 11.00 2.6 49 24 20 
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Table C4: Groups used to calculate average density estimates in Brisbane for  birds recorded in this project during 2016. The model with the lowest AIC and 

the coefficient of variation (CV) is shown. Potential covariates were season (s) and percentage of tree cover (t); hn = half detection function. The model with 

the lowest AIC shows the variable (in brackets) that accounted for variation in detection probability.  

 

   Number of counts 
   

Group characteristics Species Common name Summer Winter Total 

Models 

with 

lowest 

AIC 

Density 

(ha) 
CV 

Invertebrates; 

Tree/Shrub < 10 g 

Acanthiza nana Yellow thornbill 0 3 3 hn (s) 0.03 1.97 

Gerygone levigaster Mangrove gerygone 6 8 14 hn (s) 0.14 1.97 

Gerygone olivacea White throated gerygone 1 6 7 hn (s) 0.07 1.97 

Acanthiza pusilla Brown thronbill 4 8 12 hn (s) 0.12 1.97 

Rhipidura albiscapa Grey fantail 5 38 43 hn (s) 0.43 1.97 

Petroica rosea Rose robin 0 4 4 hn (s) 0.04 1.97 

Pardalotus punctuatus Spotted pardalote 0 11 11 hn (s) 0.11 1.97 

Zosterops lateralis Silvereye 6 16 22 hn (s) 0.22 1.97 

Eopsaltria australis Eastern yellow robin 18 17 35 hn (s) 0.35 1.97 

Rhipidura rufifrons Rufous fantail 4 7 11 hn (s) 0.11 1.97 

Fruit/Nectar; 

Tree/Shrub; 12-18 g 

Dicaeum hirundinaceum Mistletoebird 4 18 22 hn (s) 0.22 2.94 

Melithreptus albogularis White throated honeyeater 22 18 40 hn (s) 0.4 2.94 

Acanthorhynchus tenuirostris Eastern spinbell 3 8 11 hn (s) 0.11 2.94 

Lichenostomus chrysops Yellow faced honeyeater 7 52 59 hn (s) 0.59 2.94 

Omnivore; 

Tree/Shrub/80 - 120 g 

Entomyzon cyanotis Blue faced honeyeater 16 9 25 hn (t+s) 0.25 0.03 

Manorina melanocephala Noisy miner 311 199 510 hn (t+s) 5.1 0.03 

Acridotheres tristis Common myna 17 6 23 hn (t+s) 0.23 0.03 

Invertebrates; Ground; 

<10 g 

Cisticola exilis Golden headed cisticola 2 7 9 hn (t) 0.09 0.17 

Malurus melanocephalus Red backed fairy wren 20 14 34 hn (t) 0.34 0.17 
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Malurus lamberti Variegated fairy wren 12 7 19 hn (t) 0.19 0.17 

Malurus cyaneus Superb fairy wren 29 28 57 hn (t) 0.57 0.17 

Sericornis frontalis White browed scrub wren 8 12 20 hn (t) 0.2 0.17 

Plant/Seed; Tree/Shrub; 

> 120 g 

Platycercus adscitus Pale headed rosella 12 8 20 hn (s) 0.2 1.64 

Platycercus elegans Crimson rosella 0 3 3 hn (s) 0.03 1.64 

Alisterus scapularis Australian King Parrot 11 4 15 hn (s) 0.15 1.64 

Eolophus roseicapilla Galah 8 3 11 hn (s) 0.11 1.64 

Cacatua sanguinea Little corella 8 6 14 hn (s) 0.14 1.64 

Plant/Seed; Ground; > 

120 g 

Geopelia humeralis Bar shouldered dove 13 10 23 hn (t+s) 0.23 1.43 

Streptopelia chinensis Spotted dove 34 8 42 hn (s) 0.42 1.43 

Columba livia Rock dove 6 0 6 hn (s) 0.06 1.43 

Ocyphaps lophotes Crested pigeon 29 38 67 hn (s) 0.67 1.43 

Finches; Ground; <10 g 

Taeniopygia bichenovii Double-barred Finch 4 2 6 hn (t) 0.06 4.20 

Neochmia temporalis Red browed finch 8 6 14 hn (t) 0.14 4.20 

Lonchura castaneothorax Chesnut breasted manikin 0 3 3 hn (t) 0.03 4.20 

Invertebrate; 

Tree/Shrub;10-20g 

Petrochelidon ariel Fairy martin 3 2 5 hn (t+s) 0.05 0.13 

Pardalotus striatus Striated pardalote 48 58 106 hn (t+s) 1.06 0.13 

Myiagra rubecula Leaden flycatcher 6 2 8 hn (t+s) 0.08 0.13 

Hirundo neoxena Welcome swallow 15 10 25 hn (t+s) 0.25 0.13 

Myiagra inquieta Restless flycatcher 0 2 2 hn (t+s) 0.02 0.13 

Invertebrate; 

Ground/Shrub; >25 g 

Acrocephalus australis Australian Reed-Warbler 3 3 6 hn (t+s) 0.06 3.40 

Megalurus timoriensis Tawny grassbird 4 8 12 hn (t+s) 0.12 3.40 

Lorikeets 

Glossopsitta pusilla Little lorikeet 0 5 5 hn (t+s) 0.05 0.06 

Trichoglossus 

chlorolepidotus scaly breasted lorikeet 25 26 
51 hn (t+s) 0.51 0.06 

Trichoglossus haematodus Rainbow lorikeet 221 134 355 hn (t+s) 3.55 0.06 

Invertebrate;Tree/Shrub; 

> 24g 

Pachycephala rufiventris Rufous whistler 9 24 33 hn (t+s) 0.33 1.52 

Chrysococcyx basalis Horsfield's Bronze-Cuckoo 0 2 2 hn (t+s) 0.02 1.52 

Climacteris picumnus Brown treecreper 1 1 2 hn (t+s) 0.02 1.52 
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Merops ornatus Rainbow bee eater 11 7 18 hn (t+s) 0.18 1.52 

Pachycephala pectoralis Golden whistler 0 15 15 hn (t+s) 0.15 1.52 

Colluricincla megarhyncha Little shrike thrush 1 3 4 hn (t+s) 0.04 1.52 

Cormobates leucophaea White throated treecreper 12 14 26 hn (t+s) 0.26 1.52 

Fruit/Nectar; 

Tree/Shrub; >40 g < 100 

g 

Plectorhyncha lanceolata Stripped honeyeater 5 1 6 hn (t+s) 0.06 0.11 

Cacomantis flabelliformis Fan tailed cuckoo 3 7 10 hn (t+s) 0.1 0.11 

Oriolus sagittatus Olive backed oriole 5 4 9 hn (t+s) 0.09 0.11 

Sphecotheres vieilloti australasian figbird 33 11 44 hn (t+s) 0.44 0.11 

Invertebrate; 

Tree/Shrub;60-90g 

Colluricincla harmonica Grey shrike thrush 8 9 17 hn (t) 0.17 1.98 

Dicrurus bracteatus Spangled drongo 8 4 12 hn (t) 0.12 1.98 

Single 

Myzomela sanguinolenta Scarlet honeyeater 0 64 64 hn (s) 0.64 0.06 

Lichmera indistincta Brown honeyeater 49 83 132 hn (t+s) 1.32 0.09 

Rhipidura leucophrys Willie wagtail 24 22 46 hn (t+s) 0.46 0.06 

Meliphaga lewinii Lewins honeyeater 39 28 67 hn (t+s) 0.67 0.07 

Psophodes olivaceus Eastern whipbird 18 10 28 hn (s) 0.28 0.05 

Grallina cyanoleuca Magpie-lark 56 42 98 hn (s) 0.98 0.08 

Cracticus torquatus Grey butcherbird 130 64 194 hn (t+s) 1.94 0.06 

Philemon corniculatus Noisy friabird 14 25 39 hn (t+s) 0.39 0.05 

Coracina novaehollandiae Black faced cuckoshrike 35 6 41 hn (s) 0.41 0.14 

Cracticus nigrogularis Pied butcherbird 120 98 218 hn (s) 2.18 0.07 

Cracticus tibicen Australian Magpie 104 69 173 hn (s) 1.73 0.08 

Dacelo novaeguinae Laughing kookaburra 26 12 38 hn (s) 0.38 0.08 

Corvus orru Torresian crow 185 140 325 hn (s) 3.25 0.04 

Cacatua galerita Sulphur crested cockatoo 36 29 65 hn (s) 0.65 0.06 

Alectura lathami Australian Brush turkey 15 24 39 hn (s) 0.39 0.19 

Strepera graculina Pied currawong 28 19 47 hn (s) 0.47 0.07 

Vanellus miles Masked lapwing 19 21 40 hn (t+s) 0.4 0.23 

Threskiornis molucca Australian ibis 21 17 38 hn (s) 0.38 0.18 
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APPENDIX D 
 

Script of the model used in chapter 4 to test the effects of fragmentation on functional diversity and 

species richness. 

 

 

######Community model, effects of fragmentation on species richness and functional diversity#### 

##############################Andrés Felipe Suárez Castro############################# 

 

 

scPATH="m:/Users/uqasuare/Desktop/CODE_FSC/CODE_COMMUNITIES_2017Aug.R" 

 

source(scPATH) 

 

library(plyr) 

library(vegan) 

library(FD) 

library(BBmisc) 

library(pracma) 

library(gridExtra) 

library(ggplot2) 

library(snowfall) 

library(CircStats) 

 

#---------------------------------------------------------------------------------------# 

#  CREATE COMMUNITIES BASED ON BETA DISTRIBUTIONS   # 

#---------------------------------------------------------------------------------------# 

 

####This is the list of parameters to create the communities### 

 

#rep.cap = runif(0.1,0.9,0.5) #reproductive capacities. Three means of a beta distribution: 0.1 (low 

=high survival),0.5(medium = medium survival),0.8(high = low survival) 

#Nicheopt = runif(0.1,0.9,0.5)    #Niche breadth. Two means of a beta distribution: 0.1 

(specialists),0.5(generalists) 

mean.op = c(0.5,0.5,0.5,0.5) # different mean values for niche optimum. These values will represent 

the mean for different communities 

prec = c(2,2,2,2) # precision parameter to calculate the variance of the beta distribution, for fixed ?, the 

larger the value of the parameter, the smaller the variance of y.  

Disp.cap = c(0.5, 0.5,0.5,0.5) #Dispersal capacity means. Mean of a beta distribution that will represent 

the rates of decay for a negative exponential distribution: 0.1 (HIGH dispersal capacity),0.5(MEDIUM 

dc), 0.8 (LOW dispersal capacity) 

Dispcap.prec=c(5,5,5,5) #precision parameter for the beta distribution of dispersal capacity 

 

####This is the list of parameters to create the landscapes### 
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p = c(1)           #amount of habitat for fractal landscapes 

H.val = c(0.1,0.5,1)    #degrees of habitat clustering for habitat types. 1 = high spatial autocorrelation 

of habitats. 

 

####Combine the `parameters to generate the experimental design### 

 

landscap.par<-expand.grid(H.val,p) #landscape parameters  

exp.design <- data.frame(mean.op, prec,Disp.cap,Dispcap.prec) 

 

#parallel setup to run multiple communities simultaneously 

sfInit(parallel=TRUE,cpus=24) 

 

#export data, functions and libraries to workers 

sfExportAll() 

sfClusterEval(library(plyr)) 

sfClusterEval(library(vegan)) 

sfClusterEval(library(FD)) 

sfClusterEval(library(BBmisc)) 

sfClusterEval(library(pracma)) 

sfClusterEval(library(snowfall)) 

sfClusterEval(library(CircStats)) 

 

#-----------------------------------------------------------------------------------------# 

#LOW FRAGMENTATION, HIGH DIVERGENCE IN RESPONSE TRAITS 

#---------------------------------------------------------------------------------------## 

 

allland<-generate.lands(landscap.par) 

 

system.time(community_1<-generate.comms(exp.design,0.1,0.7,1000,150,10,allland[[2]],10,0.5,0.5)) 

 

#60% habitat lost 

landscape<-generate.lands(landscap.par) 

landscape_60_clustered<-habloss_biased(landscape[[2]],landscape[[3]],60) 

community_1b_2Sep<-sfLapply(community_1,remove_cells,landscape_60_clustered) 

system.time(sim_clustfrag_HD60_2Sep<-

sfLapply(community_1b_2Sep,comm.dynamics,600,landscape_60_clustered,10,60,0.5,0.5)) 

save(sim_clustfrag_HD60_2Sep,file="sim_clustfrag_HD60_2Sep.RData") 

communityb_HD<-sim_clustfrag_HD60_2Sep[[1]][[1]] 

rm(sim_clustfrag_HD60_2Sep) 

 

#70% habitat lost 

landscape<-generate.lands(landscap.par) 

landscape_70_clustered<-habloss_biased(landscape[[2]],landscape[[3]],70) 

community_1c_2Sep<-sfLapply(community_1,remove_cells,landscape_70_clustered) 

system.time(sim_clustfrag_HD70_2Sep<-

sfLapply(community_1c_2Sep,comm.dynamics,600,landscape_70_clustered,10,70,0.5,0.5)) 

save(sim_clustfrag_HD70_2Sep,file="sim_clustfrag_HD70_2Sep.RData") 
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communityc_HD<-sim_clustfrag_HD70_2Sep[[1]][[1]] 

rm(sim_clustfrag_HD70_2Sep) 

 

#80% habitat lost 

landscape<-generate.lands(landscap.par) 

landscape_80_clustered<-habloss_biased(landscape[[2]],landscape[[3]],80) 

community_1d_2Sep<-sfLapply(community_1,remove_cells,landscape_80_clustered) 

system.time(sim_clustfrag_HD80_2Sep<-

sfLapply(community_1d_2Sep,comm.dynamics,600,landscape_80_clustered,10,80,0.5,0.5)) 

save(sim_clustfrag_HD80_2Sep,file="sim_clustfrag_HD80_2Sep.RData") 

communityd_HD<-sim_clustfrag_HD80_2Sep[[1]][[1]] 

rm(sim_clustfrag_HD80_2Sep) 

 

#90% habitat lost 

landscape<-generate.lands(landscap.par) 

landscape_90_clustered<-habloss_biased(landscape[[2]],landscape[[3]],90) 

community_1d_2Sep<-sfLapply(community_1,remove_cells,landscape_90_clustered) 

system.time(sim_clustfrag_HD90_2Sep<-

sfLapply(community_1d_2Sep,comm.dynamics,600,landscape_90_clustered,10,90,0.5,0.5)) 

save(sim_clustfrag_HD90_2Sep,file="sim_clustfrag_HD90_2Sep.RData") 

communitye_HD<-sim_clustfrag_HD90_2Sep[[1]][[1]] 

rm(sim_clustfrag_HD90_2Sep) 

 

simulation_HDCLUST_2Sep<-

rbind(communityb_HD,communityc_HD,communityd_HD,communitye_HD) 

 

#----------------------------------------------------------------------------------------# 

# HIGH FRAGMENTATION, HIGH DIVERGENCE IN RESPONSE TRAITS 

#----------------------------------------------------------------------------------------## 

 

system.time(community_1<-generate.comms(exp.design,0.1,0.7,1000,150,10,allland[[2]],10,0.5,0.5)) 

 

#60% habitat lost 

landscape<-generate.lands(landscap.par) 

landscape_60_unclustered<-habloss_random(landscape[[2]],60) 

community_1b_2Sep<-sfLapply(community_1,remove_cells,landscape_60_unclustered) 

system.time(sim_rand_HD60_2Sep<-

sfLapply(community_1b_2Sep,comm.dynamics,600,landscape_60_unclustered,10,60,0.5,0.5)) 

save(sim_rand_HD60_2Sep,file="sim_rand_HD60_2Sep.RData") 

communityb_UHD<-sim_rand_HD60_2Sep[[1]][[1]] 

rm(sim_rand_HD60_2Sep) 

 

sfStop() 
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#Functions used in the code to generate the landscapes and simulate community dynamics  

#----------------------------------------------------------------------------------# 

#  CREATE COMMUNITIES BASED ON BETA DISTRIBUTIONS   # 

#---------------------------------------------------------------------------------# 

 

#The following functions calculate all the parameters for the beta distribution 

#calculate the trait value distribution for each community based on the mean of trait values 

#Formula from #r is the Target (Spearman) correlation #n is the number of samples 

 

beta_correlated <- function(exp.design, r1, r2, n){ 

 rho1 <- 2 * sin(r1 * pi/6)    # Pearson correlation 

 rho2 <- 2 * sin(r2 * pi/6)    # Pearson correlation 

 P <- toeplitz(c(1,rho1,rho2))# Correlation matrix 

 d <- nrow(P)          # Dimension 

 ## Generate sample 

 U <- pnorm(matrix(rnorm(n*d), ncol = d) %*% chol(P)) 

 #niche_breadths 

 alpha <- 1  

 beta <- 1 

 rep.cap<-c(1) 

  

 x1_beta <- qbeta(U[,1], alpha, beta) 

 x2_beta <- qbeta(U[,2], alpha, beta) 

 x3_beta <- qbeta(U[,3], alpha, beta) 

  

 Nbre<-expand.grid(x1_beta,rep.cap) 

 Nbre_05<-expand.grid(x2_beta,rep.cap) # low correlation with effect traits 

 Nbre_01<-expand.grid(x3_beta,rep.cap) # high correlation with effect traits 

  

 #disp_capacity 

 alpha_disp <- exp.design[[3]] 

 beta_disp <- exp.design[[4]] 

  

 x1_beta_disp <- qbeta(U[,1], alpha_disp, beta_disp) 

 x2_beta_disp <- qbeta(U[,2], alpha_disp, beta_disp) 

 x3_beta_disp <- qbeta(U[,3], alpha_disp, beta_disp) 

  

 Disp_cap<-expand.grid(x1_beta_disp,rep.cap) 

 Disp_cap_05<-expand.grid(x2_beta_disp,rep.cap) 

 Disp_cap_01<-expand.grid(x3_beta_disp,rep.cap) 

  

 Nicheopt<-runif(n) 

 Surv<-0.5 

 df<-  

data.frame(Nicheopt,Nbre[,2],Nbre[,1],Disp_cap[,1],Surv,Nbre_01[,1],Nbre_05[,1],Disp_cap_01[,1], 

Disp_cap_05[,1])  

return(df) 

} 
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#### Based on the community mean the following functions calculate all the parameters for the beta 

distribution for individuals### 

 

betafi <- function(community,Nind) #Nind is the number of individuals to generate. x is a dataframe 

that includes a column with the trait value mean for a specific community 

{ 

 comms1<-list() 

 for (i in 1:nrow(community)) 

 { 

  var<-((1-community[i,1])*community[i,1])/(1+100) 

  alpha <- ((1 - community[i,1]) / var - 1 / community[i,1]) * community[i,1] ^ 2  

  beta <- alpha * (1 / community[i,1] - 1) 

  Nicheoptimum <- rbeta (Nind, alpha, beta) 

  comms1[[i]]<-data.frame(Nicheoptimum,community[i,]) 

  comms1[[i]]<-comms1[[i]][,c(1,3:15)] 

 } 

 return(do.call(rbind,comms1)) 

} 

 

#generate number of individuals by species 

ComSpecies <- function(ComMatrix,Nsp) 

{  

 NumCom <- length(ComMatrix) / Nsp 

 Output <- matrix(NA,nrow=Nsp,ncol=NumCom) 

 for (i in 1:NumCom) 

 { 

  Output[,i] <- ComMatrix[(((i - 1) * Nsp) + 1):(i * Nsp)]  

 } 

 return(Output) 

} 

 

#------------------------------------------------------------------------------# 

# FRACTAL ALGORITHM TO GENERATE LANDSCAPES        # 

#------------------------------------------------------------------------------# 

 

MidPointFM2D_NS <- function (x, maxlevel=5, sigma=1, H=x, addition=1, SD=1) # generate a matrix 

of values based on midpoint displacement method 

{ 

 f3 <- function(delta, x0, x1, x2) 

 { 

  (x0+x1+x2)/3 + delta * rnorm(1,mean=0,sd=SD) # average 3 points and displacement 

 } 

 f4 <- function (delta, x0, x1, x2, x3) 

 { 

  (x0+x1+x2+x3)/4 + delta * rnorm(1,mean=0,sd=SD) # average 4 points and displacement 

 } 

 N <- 2^maxlevel # dimension of matrix 
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 X <-matrix ( , N+1, N+1) # empty matrix 

 delta <- sigma 

 # set intial 4 random corners of the matrix 

 X [1,1] <- delta*rnorm(1,mean=0,sd=SD) 

 X [1,N+1] <- delta*rnorm(1,mean=0,sd=SD) 

 X [N+1,1] <- delta*rnorm(1,mean=0,sd=SD) 

 X [N+1,N+1] <- delta*rnorm(1,mean=0,sd=SD) 

 D <- N # set step/limit 

 d <- N/2 # set step/limit 

 for (stage in 1:maxlevel) 

 { 

  delta <- delta*0.5^(0.5*H) 

  # start moving on a 2D matrix with i=x and j=y 

  for (i in seq(d+1, N-d+1, by=D)) 

  { 

   for (j in seq(d+1, N-d+1, by=D)) 

   { 

    X[i,j] <- f4 (delta, X[i+d, j+d], X[i+d, j-d], X[i-d, j+d], X[i-d, j-d]) # find the point where diagonals 

cross eachother 

   } 

  } 

  # diplacement of external points (optional) 

  if (addition == 1) 

  { 

   for (i in seq(1, N+1, by=D)) 

   { 

    for (j in seq(1, N+1, by=D)) 

    { 

     X[i,j] <- X[i,j] + delta*rnorm(1,mean=0,sd=SD) 

    } 

   } 

  } 

  delta <- delta*0.5^(0.5*H) # reduce the displacement 

  # find boundary grid points(they have only 3 surrounding points each) 

  for (i in seq(d+1, N-d+1, by=D)) 

  { 

   X[i,1] <- f3 (delta, X[i+d, 1], X[i-d, 1], X[i, d+1]) 

   X[i,N+1] <- f3 (delta, X[i+d, N+1], X[i-d, N+1], X[i, N-d+1]) 

   X[1,i] <- f3 (delta, X[1, i+d], X[1, i-d], X[d+1, i]) 

   X[N+1,i] <- f3 (delta, X[N+1, i+d], X[N+1, i-d], X[N-d+1, i]) 

  } 

  # find interior grid points (first iteration would be negative step and it is also not needed for grid 

purposes, therefore conditional) 

  if (D<N) 

  { 

   for (i in seq(d+1, N-d+1, by=D)) 

   { 

    for (j in seq(D+1, N-D+1, by=D)) 
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    { 

     X[i,j] <- f4 (delta, X[i, j+d], X[i, j-d], X[i+d, j], X[i-d, j]) 

    } 

   } 

   for (i in seq(D+1, N-D+1, by=D)) 

   { 

    for (j in seq(d+1, N-d+1, by=D)) 

    { 

     X[i,j] <- f4 (delta, X[i, j+d], X[i, j-d], X[i+d, j], X[i-d, j]) 

    } 

   } 

  } 

  # displacement of corner and middle points (optional) 

  if (addition == 1) 

  { 

   for (i in seq(1, N+1, by=D)) 

   { 

    for (j in seq(1, N+1, by=D)) 

    { 

     X[i,j] <- X[i,j] + delta*rnorm(1,mean=0,sd=SD) 

    } 

   } 

   for (i in seq(d+1, N-d+1, by=D)) 

   { 

    for (j in seq(d+1, N-d+1, by=D)) 

    { 

     X[i,j] <- X[i,j] + delta*rnorm(1,mean=0,sd=SD) 

    } 

   } 

  } 

  D <- D/2 

  d <- d/2 

 } 

 return(X) 

} 

 

#######transform the raw values to a uniform distribution###### 

 

 

transform.uniform<- function(landscape) 

  

{ 

 landscap<-as.vector(landscape) 

 Y <- (landscape - mean(landscape))/sd(landscape) 

 Z <- 0.5 *erfc(-Y / sqrt(2)) 

 transform.landscape<- matrix(Z, nrow=dim(landscape)[1],ncol=dim(landscape)[1]) 

 return(transform.landscape) 

} 
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#-----------------------------------------------------------------------------------# 

#  APPLY FRACTAL ALGORITHM TO GENERATE LANDSCAPES    # 

#------------------------------------------------------------------------------------# 

 

generate.lands<-function(exp.design) 

{ 

 landscap.par<-exp.design[1,"H.val"] 

 allland<-transform.uniform(MidPointFM2D_NS(exp.design[1,"H.val"])) 

 allland<-apply(landscap.par,1,MidPointFM2D_NS) 

 landscap<-list() 

 for (i in 1:ncol(allland)) 

 { 

  landscap[[i]]<- matrix(allland[,i], nrow=sqrt(nrow(allland)),ncol=sqrt(nrow(allland))) 

 }  

 allland<-lapply(landscap, transform.uniform) 

 return(allland) 

} 

 

 

######Functions of habitat loss################ 

 

 

# Remove habitat randomly to generate high fragmentation 

habloss_random<-function(landscape,hab.loss) # hab.loss is the % of cells to replace with non-suitable 

habitat 

  

{ 

 cell.loss<-round((length(landscape)*hab.loss)/100) 

 suitcells<-which(landscape!=-1) 

 cells.rep <- sample(suitcells, cell.loss,replace=FALSE)  # draw random values from [1, length(vec)] 

 landscape[cells.rep] <- -1 

 return(landscape) 

  

}  

 

# Remove habitat in clusters. Low fragmentation 

habloss_biased<- function(landscape, frag_layer,hab.loss) 

{ 

 data<-data.frame(c(frag_layer)) 

 data$cell<-1:1089 

 data$celllandscape<-c(landscape) 

 cell.loss<-round((length(landscape)*hab.loss)/100) 

 for (i in 1:nrow(data)) 

   { 

           if(data[i,"celllandscape"]==-1){ 

           data[i,1]<-0 

       } 
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     } 

  #data<-subset(data,celllandscape!=-1) 

  cells.rep <-sample(seq_len(nrow(data)), cell.loss, prob=data[,1]) 

  landscape[cells.rep] <- -1 

  return(landscape) 

} 

 

#Count the number of individuals in each cell of the landscape 

 

count.inds <- function(comm.position)  

{  

 #Initiatlize a 33x33 matrix with 0 

 spp.counts<-matrix(nrow=33,ncol=33, rep(0, 33*33)) 

 for(i in 1:nrow(comm.position))  

 { 

  # fill the location  

  spp.counts[comm.position[i,"X1"], comm.position[i,"X2"] ] <- spp.counts[comm.position[i,"X1"], 

comm.position[i,"X2"] ] +1  

 } 

 return(spp.counts)  

} 

 

assign.position <- function(community,landscape,K) 

{ 

 positions<-data.frame(which(landscape[,]>-2,arr.ind=TRUE),position=1:length(landscape),inds=0) 

 for (i in 1:nrow(positions))positions[i,"cell.value"]<-landscape[positions[i,"row"],positions[i,"col"]] 

 positions<-positions[rep(seq_len(nrow(positions)), each=K),] 

 positions<-positions[sample(nrow(positions),nrow(positions),replace = FALSE),] 

 community<-community[sample(nrow(community),K*(dim(landscape)[1]^2),replace = TRUE),] 

 community$X1<-positions$row 

 community$X2<-positions$col 

 community$cell.value<-positions$cell.value 

 community$count<-0 

 return(community) 

} 

#----------------------------------------------------------------------------------# 

#     CALCULATE REPRODUCTION, DISPERSAL, MORTALITY 

#---------------------------------------------------------------------------------# 

 

# Survival function 

surviv<-function(test.com) 

{  

   for (i in 1:nrow(test.com)) 

  { 

    test.com[i,"Survi"]<-0.5 

   test.com[i,"survival"]<-rbinom(1,1,(test.com[i,"Survi"])) 

          }  

   survivors<-subset(test.com, test.com$survival!=0) 
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    return(survivors) 

} 

 

#Reproduction function 

 

reproduction<-function(adults) 

{ 

 for (i in 1:nrow(adults)) 

 { 

  adults[i,16]<-dnorm(adults[i,"cell.value"],adults[i,"Nicheoptimum"],adults[i,"Nbre"]) 

  if(round(adults[i,16]>1))adults[i,16]<-1 

 } 

 new.ind <- adults[rep(row.names(adults), round(adults[,16])), 1:15] 

 return(new.ind) 

} 

 

#Function survival reproduction 

 

surv.rep<-function(test.com,landscape,K) 

{ 

 juveniles<-reproduction(test.com) 

 juveniles$count<-0 

 survivors<-surviv(test.com) 

 new.test.com <-survivors[1:15] 

 if (nrow(juveniles)>0)  

 { 

  new.generation<-disper_fun(juveniles,landscape,new.test.com,K)  

 }else 

 { 

  survivors<-survivors[1:15] 

  survivors$count<-survivors$count+1 

  new.generation<-survivors 

 } 

  

 return(new.generation)#add a matrix with the number of individuals 

  

} 

#---------------------------------------------------------# 

#               DISPERSAL FUNCTIONS     # 

#---------------------------------------------------------# 

 

#Simulate individual movement: 

 

disp.juv<- function(juveniles,landscape,ind_positions, K) 

 { 

  posavailable<-sum(ind_positions$indsavailable) 

  

  lattice_size<-dim(landscape) 
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   posx<-juveniles[[12]] 

   posy<-juveniles[[13]] 

   #calculate distance of dispersal based on dispersal capacity 

   dist<-rexp(1, juveniles[[4]])  

   if(dist>30)dist<-30 

   if(dist==0)dist<-1 

   theta<-runif(1,0,2*pi) 

   x<-cos(theta)*dist 

   y<-sin(theta)*dist 

   if (round(x+posx)!=33) 

   { 

    newposx<-round(x+posx) %% lattice_size[1]#new x position 

   }else{ 

    newposx<-33 

   } 

   if (round(y+posy)!=33) 

   { 

    newposy<-round(y+posy) %% lattice_size[2]#new x position 

   }else{ 

    newposy<-33 

   } 

   juveniles[[12]]<-newposx 

   if (juveniles[[12]]==0)juveniles[[12]]<- 1 

   juveniles[[13]]<-newposy 

   if (juveniles[[13]]==0)juveniles[[13]]<- 1 

   juveniles[[16]]<-(nrow(landscape)-(nrow(landscape)-

juveniles[[12]]))+(nrow(landscape)*(juveniles[[13]]-1)) 

   juveniles[[17]]<-landscape[juveniles[[12]],juveniles[[13]]]  

   steps<-0 

   while(steps<5 & dnorm(juveniles[[17]],juveniles[[1]],juveniles[[3]])<0.5){ 

    steps<-steps+1 

    dist<-rexp(1, juveniles[[4]])  

    if(dist==0)dist<-1 

    if(dist>30)dist<-30 

    theta<-rwrpcauchy(1, theta, rho=exp(-1)) 

    x<-cos(theta)*dist 

    y<-sin(theta)*dist 

    if (round(x+posx)!=33) 

    { 

     newposx<-round(x+posx) %% lattice_size[1]#new x position 

    }else{ 

     newposx<-33 

    } 

    if (round(y+posy)!=33) 

    { 

     newposy<-round(y+posy) %% lattice_size[2]#new x position 

    }else{ 

     newposy<-33 
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    } 

    juveniles[[12]]<-newposx 

    if (juveniles[[12]]==0)juveniles[[12]]<- 1 

    juveniles[[13]]<-newposy 

    if (juveniles[[13]]==0)juveniles[[13]]<- 1 

    juveniles[[16]]<-(nrow(landscape)-(nrow(landscape)-

juveniles[[12]]))+(nrow(landscape)*(juveniles[[13]]-1)) 

    juveniles[[17]]<-landscape[juveniles[[12]],juveniles[[13]]]  

   } 

  return (juveniles)  

} 

 

disper_fun<-function(juveniles,landscape,current.community,K) 

 {  

  #calculate current numbers of individuals in each cell 

  position.land<-count.inds(current.community) 

  #calculate number of available positions in each cell 

  indsavailable <- c(K-position.land) 

  ind_positions<-data.frame(position=1:length(landscape),indsavailable=indsavailable) 

  #subset available cells in the landscape 

  ind_positions<-subset(ind_positions,!ind_positions$position %in% which(landscape[,]==-1)) 

  #count the number of available cells 

  posavailable<-sum(ind_positions$indsavailable) 

  current.community$count<-current.community$count+1 

  count_steps<-0 

  while(posavailable>0 & nrow(juveniles)>0 & count_steps<10){ 

   juveniles$ID<-paste("Juv", 1:nrow(juveniles), sep = "")  

   if(nrow(juveniles)>posavailable) 

   { 

    juvtodisp<-(juveniles[sample(nrow(juveniles),posavailable),]) 

   }else{ 

    juvtodisp<-juveniles 

   } 

   count_steps<-count_steps+1 

   juveniles<-juveniles[!(juveniles$ID %in% juvtodisp$ID),] 

   #apply dispersal function 

   juvdispersed<-apply(juvtodisp[1:15],1,disp.juv,landscape,ind_positions,K) 

   juvdispersed<-as.data.frame(t(juvdispersed)) 

   juvdispersed<-juvdispersed[c(1:13,17,15)] 

   names(juvdispersed)<-names(current.community[1:15]) 

   juvdispersed$position<-(nrow(landscape)-(nrow(landscape)-

juvdispersed$X1))+(nrow(landscape)*(juvdispersed$X2-1)) 

   juvdispersed$ID<-paste("Juv", 1:nrow(juvdispersed), sep = "")  

   juvnotdispersed<-juvdispersed[!(juvdispersed$position %in% ind_positions$position),] 

   juvdispersed<-juvdispersed[!(juvdispersed$ID %in% juvnotdispersed$ID),] 

   freq<-count(juvdispersed,"position") 

   ind_positions2<-ind_positions[!(ind_positions$position %in% freq$position),] 

   ind_positions<-ind_positions[ind_positions$position %in% freq$position,] 
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   for (i in freq[,"position"]) 

   { 

    ind_positions[which(ind_positions$position == i),"indsavailable"]<-

ind_positions[which(ind_positions$position == i),"indsavailable"]-freq[which(ind_positions$position 

== i),2] 

   } 

   overloadpos<-subset(ind_positions,ind_positions$indsavailable<0) 

   if (nrow(overloadpos)>0) 

   { 

    juvdispersed$ID<-paste("Juv", 1:nrow(juvdispersed), sep = "")  

    juvtodisp<-juvdispersed[juvdispersed$position %in% overloadpos$position,] 

    for (i in overloadpos[,"position"]) 

    { 

     juvtodisp[which(juvtodisp$position == i),"remove"]<-overloadpos[which(overloadpos$position == 

i),][[2]]*-1 

    } 

    juvtodisp <- split(juvtodisp, juvtodisp[16], drop=TRUE) 

    juveniles_disp<-list() 

    for (i in 1:length(juvtodisp)) 

    { 

     if (nrow(juvtodisp[[i]])>juvtodisp[[i]][1,"remove"]) 

     { 

      juveniles_disp[[i]]<-juvtodisp[[i]][sample(nrow(juvtodisp[[i]]), juvtodisp[[i]][1,"remove"]), ]  

     }else{ 

      juveniles_disp[[i]]<-juvtodisp[[i]] 

     }  

    } 

    juveniles_disp<- do.call(rbind, juveniles_disp) 

    juvdispersed<-juvdispersed[!(juvdispersed$ID %in% juveniles_disp$ID),]  

    juvtodisp<-juveniles_disp 

    names(juvtodisp)<-names(current.community) 

    juveniles<-rbind(juvtodisp[1:15],juveniles[1:15]) 

   } 

   juveniles<-rbind(juveniles[1:15],juvnotdispersed[1:15]) 

   current.community<-rbind(juvdispersed[1:15],current.community) 

   position.land<-count.inds(current.community) 

   indsavailable <- c(K-position.land) 

   ind_positions<-data.frame(position=1:length(landscape),indsavailable=indsavailable) 

   ind_positions<-subset(ind_positions,!ind_positions$position %in% which(landscape[,]==-1)) 

   posavailable<-sum(indsavailable)   

  }   

  new.generation <- current.community 

  return(new.generation) 

}  
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#------------------------------------COMMUNITY DYNAMICS-------------------------------------------------- 

 

 

 

 

comm.dynamics <-function(community,generations,H.val,p, 

             K,habloss,shapebeta1,shapebeta2,clustered=NULL) 

{ 

  

 initial_diversity<-fundiv_total(community, community[,c("Species", "Nbre","Nbre_05")]) 

 landscap.par<-expand.grid(H.val,p)  

 allland<-generate.lands(landscap.par) 

 if(missing(clustered)) { 

  landscape<-habloss_random(allland[[1]],habloss) 

 }else { 

  landscape<-habloss_biased(allland[[1]],allland[[2]],habloss) 

 } 

 test.com<-remove_cells(community,landscape) 

 diver<-list() 

 community_matrix<-list() 

 for (i in 1:generations) 

 { 

  test.com<-surv.rep(test.com, landscape,K)   

  #diver[[i]]<-list(speciesdiv(test.com),fundiv(test.com),count(test.com, "Species")) 

  if (nrow(count(test.com, "Species"))<1) 

  { 

   break  

  } 

  if (i %in% c(1,generations/2,generations)) 

  { 

   fun.div_05<-fundiv_total(test.com, test.com[,c("Species", "Nbre","Nbre_05")]) 

   fun.div_01<-fundiv_total(test.com, test.com[,c("Species","Nbre","Nbre_05","Disp.cap")]) 

   #fun.div_Nbre<-fundiv_total(community, community[,c("Species","Nbre")]) 

   fun.div_01$Nbre<-fun.div_01$CWM[,1] 

   fun.div_01$Nbre_2<-fun.div_01$CWM[,2] 

   fun.div_01$Disp.cap<-fun.div_01$CWM[,3] 

   fun.div_05$Nbre<-fun.div_05$CWM[,1] 

   fun.div_05$Nbre_2<-fun.div_05$CWM[,2] 

   fun.div_05$Disp.cap<-fun.div_01$CWM[,3]#I put the same value of div_05 here 

   fun.div_01<-do.call(cbind,fun.div_01) 

   colnames(fun.div_01)[which(names(fun.div_01) == "CWM.Nbre_01")] <- "CWM.Nbre_05" 

   fun.div_05<-do.call(cbind,fun.div_05) 

   community_matrix[[i]]<-test.com 

   diver[[i]]<-rbind.fill(fun.div_01,fun.div_05) 

   diver[[i]]$generation<-i 
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  } 

 } 

 diver<-do.call(rbind.fill,diver) 

 diver$shapebeta1<-shapebeta1 

 diver$shapebeta2<-shapebeta2 

 diver$hab<-habloss 

 if(missing(clustered)) { 

  diver$frag<-"FRAGMENTED" 

 }else { 

  diver$frag<-"NON-FRAGMENTED" 

 } 

 diver$Hlands1<-H.val[[1]] 

 diver$Hlands2<-H.val[[2]] 

 return(list(diver, community_matrix,initial_diversity)) 

} 

 

########################################################## 

#Calculate FD using trait probability distributions (Carmona et al. 2016) 

########################################################## 

 

fundiv_total <- function(test.com,traits) 

{ 

  

 TPDs_d1 <- TPDs(species = test.com$Species, traits) 

 test.com<-test.com[order(test.com$Species),]  

 abundance<-(count(test.com,"Species")) 

 abundance2<-as.data.frame(t(abundance[,2])) 

 colnames(abundance2)<-abundance$Species 

 rownames(abundance2)<-"1" 

 TPDc_d1 <- TPDc(TPDs = TPDs_d1, sampUnit = abundance2) 

 RED_comm_d1 <- as.data.frame(REND(TPDc = TPDc_d1)) 

 FRED<-as.data.frame(redundancy(TPDc_d1)) 

 colnames(RED_comm_d1)<-c("FRic","FEve","FDiv") 

 colnames(FRED)<-c("Fred","nbsp") 

 return(cbind(RED_comm_d1,FRED)) 

 


