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Abstract 

Rice (Oryza sativa) is the most important crop in the world. Two thirds of the world 

population consume rice as main part of their daily diet. Crop wild relatives are essential to provide 

new genetic resources in order to improve crops to meet food demand and cope with environmental 

changes. Domestication of rice led to loss of many important genes through application of strong 

selection for the traits favoured by humans. Australian wild rice has unique features and is found 

growing in areas isolated from domesticated rice. This avoids the risk of contamination by gene flow 

from domesticated rice into the wild rice populations as in Asia where wild rice is mixed with 

cultivated rice in the same areas. These populations retain the genetics of rice prior to domestication. 

We took the advantage of next generation sequencing to study the Australian and Asian wild 

relatives of rice. We assembled high quality chloroplast sequences and used them to investigate the 

phylogeny of these populations, providing more details on the biogeography of the major groups of 

wild AA genome rices globally. Interestingly, the Australian chloroplast type was distinct from all 

others and was found to extend north to the Philippines. The groups of Asian wild relatives had 

substantially overlapping distributions across the area studied. This suggested a complex evolutionary 

history of the rice progenitors leading to the domestication of rice. Genome sequencing has suggested 

that the wild rice populations in northern Australia may include novel taxa, Analysis of the chloroplast 

and nuclear data demonstrated very clear evidence of distinctness from other AA genome Oryza 

species with significant divergence between Australian populations. Phylogenetic analysis suggested 

the Australian populations represent the earliest-branching AA genome lineages and may be critical 

resources for global rice food security. Populations of apparent hybrids between the taxa were also 

identified suggesting ongoing dynamic evolution of wild rice in Australia. These introgressions 

model events similar to those likely to have been involved in the domestication of rice.  

Starch quality and quantity are crucial for rice consumers and the rice industry. Starch properties have 

been linked directly to impact on human health. Many genes have been involved in determining rice 

starch properties. The genetic relationship of the starch related genes: ISA2, ISA3, PUL, SBE1, SBE3, 

SBE4, SSI, SSII-1, SSII-2, SSII-3, SSIII, SSIV and GBSSI in the Australian wild rice populations of 

Cape York were studied. Many SNPs/FNPs were recorded in the UTRs and exonic regions of these 

genes that could possibly impact on their expression and function. CDS prediction of the GBSSI gene 

showed an extra 120bp in some populations. This was due to a change in the predicted splicing site 

that would lead to intron retention and add 40 amino acid to the predicted protein. It seems that this 

addition would not affect the active site, however this may explain the differences in starch properties 

of this taxa reported previously. Australian wild rice populations have potential as a novel source of 

starch related genes which may help to improve the health of rice consumers.
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Chapter 1 

1 Preface and Study objective 

1.1 Rice importance and challenges  

There is no doubt that rice (Oryza sativa L.) is one of the most essential crops in the world. It 

is planted in one and half billion hectares in over 100 countries and accounts for approximately 30 % 

of global cereal production. By 2025, rice production will need to meet the demand of 4.6 billion 

people who rely mainly on rice. Moreover, it is a key source of carbohydrates (calories) as well as a 

source of many other essential nutrients (minerals and amino acids) in the human diet 

(Gnanamanickam, 2009). To meet this need with current production efficiencies, the area which is 

currently cultivated for rice would need to be doubled over the next few decades. However, it is 

unlikely that such an expansion in the area of land cultivated would be possible, as land resources are 

very limited, especially in relation to soil suitability and water availability.  

Moreover, environmental stresses (biotic and abiotic stresses), including those associated with 

climate change and global warming, are reducing the available area that is suitable for rice growing. 

According to the FAO Rice Market Monitor Report of October 2015, world production was then 

around 740 million tons, which is less than that predicted previously by 6.5 million tons. This 

productivity is 0.4% (2.6 million tons) less than that of 2014 (which was also less than predicted), 

indicating that there has been negative growth in rice production for those two years (FAO, 2015). 

As a consequence of all these issues, improving rice cultivars is essential, not optional, to ensure 

increased productivity to fill the gap between production and demand for rice.  

1.2 Rice genomics 

Rice is the first food crop for which a genome sequence was completed. It is an ideal model 

plant for investigating the genetics of grasses, due to its small genomic size (approximately 430 Mb) 

in comparison with other major crops like wheat. A high-quality reference genome is available now. 

This resource has accelerated rice research to improve it in all aspects: yield, environmental stress 

tolerance, pest and disease resistance, quality and nutrition.  
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1.3 Australian wild rice 

The Oryza genus has 26 species, all of them wild except two, and it is believed that they have 

many genes that will be very useful in rice improvement. Among those wild species, the Australian 

wild rice species AA genome group has vital importance. O. rufipogon and O. meridionalis 

populations from northern Australia represent intact genomic rice resources due to: isolation from 

other rice species both domesticated and wild; being far from cultivated rice fields in Australia; and 

being geographically isolated by sea from Asian populations. This has helped preserve the Australian 

populations from the genetic impact by gene flow from domesticated rice, which has been found in 

the Asian wild population. The uniqueness of the Australian wild rice, morphologically and 

genetically, suggests it is very valuable to plant breeders. 

1.4 Advanced technologies  

Classical breeding has improved both the quality and quantity of rice production. However, this 

process takes a long time and effort and is also expensive, so there is a serious need to develop and 

employ new methods that are effective, consume less time and are less costly. Next generation 

sequencing (NGS) has great potential for use in developing crops generally and rice in particular. 

This new approach promises the discovery of new genetic resources. NGS provides an opportunity 

to comprehensively view the whole genome and allow us to dig deeper into these resources to 

contribute to solving food security problems. 

1.5 Aim and Objectives of the project 

The aim of this study was to conduct a wide survey of all wild rice plants in north Queensland 

starting from Townsville up to the tip of Cape York. Sample collection was designed to cover all 

easily reached areas. The wild rice populations in this area are important because they can be 

considered as genetically intact, because they are isolated geographically from large scale 

domesticated rice production in southern Australia and are separated from Asian populations by sea. 

They are unlike the other wild rice accessions in the world (Asia, Africa and South America) that are 

close to domesticated rice fields and have no barrier to prevent mixing with domesticated rice 

physically as whole seeds, or via pollen transfer. 

The whole genome was sequenced to study the genetic relationships in these populations and 

other domesticated rices at two levels: the chloroplast genome to track the maternal inheritance, and 

the nuclear genome. This will clarify the genetic distinctness of two potential taxa described recently 

in these populations (Taxa A and B). Because of the potential role they have as a major part of the 
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primary gene pool of rice, it will be very important for the global rice research community to verify 

the status of these populations and answer other questions: how many divergent taxa are there? To 

what extent do they differ from other populations? and, Are these differences sufficient to consider 

any of the populations as new species?  

Understanding the relationship between these populations and cultivated rice may allow 

researchers to develop enriched breeding programs with potential reservoirs of new genes that have 

not been used before in the development of rice cultivars, and thereby to provide appropriate new 

resources that meet the challenges posed by global climate change and satisfy food security insurance. 

Early rice selection and breeding focused on just a few traits, and this may have led to parts of the 

genome that have traits now considered useful, being omitted during the domestication process. 

Studying starch related genes in the north Queensland uniquely wild populations will give a better 

understanding of how we can use these genes to enhance the quality and nutrition of rice, especially 

after the linking of starch properties with recent disease threats such as colon cancer and diabetes. 

1.6 Research plan  

The research plan was to: 

1. Collect samples between Townsville and the tip of Cape York. Vegetative material and seeds 

were to be collected if available. Additionally a site description was to be written, the GPS 

noted and pictures taken. 

2. Extract high molecular DNA and measure the quality and quantity, as only good quality would 

be used for sequencing.  

3. Sequence samples using the 150bp paired end technique and Illumina Hiseq 4000 machine. 

4. Obtain an assembled chloroplast genome sequence from the NCBI data base. This would be 

used as a reference to assemble the chloroplast of the Asian and Australian wild populations  

5. Assemble the chloroplast of the Asian and Australian wild rice with dual pipeline in order to 

reduce the assembly errors. 

6. Study the genetic relationship of Asian wild rice with other Oryza AA genome based on 

chloroplast level. 

7. Study the genetic relationships of Australian wild rice Cape York populations with other 

Oryza AA genome species at the chloroplast level. 

8. Study the genetic relationships between Australian wild rice Cape York populations and other 

domesticated rice populations at the nuclear genome level. 
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9. Study starch related genes in Australian wild rice population. Thirteen genes were nominated 

for studying their relationships, namely: ISA2, ISA3, PUL, SBE1, SBE3, SBE4, SSI, SSII-1, 

SSII-2, SSII-3, SSIII, SSIV and GBSSI. 
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Chapter 2 

2 Literature review  

2.1 Genetic diversity and the environmental impact 

Diversity occurs among plants due to a combination of factors (mutation, migration, 

recombination, selection and drift). Basically, it arises from the interaction between the reproductive 

system of a species and the environment. Changes in the environment have influenced different 

genetic selection processes during the evolutionary history of plant species. In addition, the 

reproductive system of plants plays an important role in the development of the species. For instance, 

in terms of its being sexual or asexual, unisexual or bisexual and whether it is monoecious or 

dioecious (De Vicente et al., 2004).  

The relationship between genetic diversity and the environment is reciprocal. In other words, 

the impact of the environment leads to diversity within the population and the diversity within the 

population leads to a population’s ability to cope with the harshest environments. A population which 

has less variation in its genome will be faced with extinction faster than a population with more 

variants in its genome. An important point which needs be considered, is whether the differences 

between populations are related to the genome itself or are a response to the impact of the environment 

(phenotype). There is no way of knowing the basis of variations in populations without examining 

the genetic material. Recent applications of new molecular techniques have proved that the phenotype 

is not necessarily a complete reflection of the genotype and that there are some silent genes that do 

not express because they are either controlled by other genes, or they need a specific environmental 

effect to express. Therefore, evaluation studies need to be at the molecular level to escape 

environmental interference. The sample number may have a great influence on the allele frequency 

detected and it needs to be large enough to represent all genotypes in the population (De Vicente et 

al., 2004; Huang et al., 2016).   

2.2 Diversity in genus Oryza spp  

The Oryza genus, which belongs to the Poaceae-grass family, has 26 species. Of Asian origin, 

are Oryza sativa, sub species japonica and indica; and of African origin, is Oryza glaberrima, both 
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of which were domesticated thousands of years ago. In addition, there are 24 wild type species (Table 

1). This diversity resulted from natural selection over millions of years, commencing with the ancient 

breeds. Wild species are quite distinct from each other morphologically and genetically (Figure 1) 

(Sanchez et al., 2013). Determining the relationships among these wild species and domesticated rice 

is interesting; thus it has been studied extensively. In order to maximise the benefits of these diverse 

resources and improve the current varieties (Li and Zhang, 2012; Wambugu et al., 2015) described 

the distribution of the Oryza species AA genome based on chloroplast DNA analysis, within five 

main groups (Figure 2). 

2.3 From wild to domesticated evolutionary background 

Oryza sativa was domesticated 9000 years ago. There are two theories as to the origin of its 

domestication. The first theory is about a single origin for the domesticated rice, which suggests that 

O. sativa japonica and O. sativa indica came from the domestication of the wild rice, O. rufipogon. 

The second theory concerns multiple independent domestications, which means domestication 

processes occurred separately (He et al., 2011; Londo et al., 2006; Sang, 2009; Sang and Ge, 2007).  

According to Vaughan et al. (2008), the evidence that supports a single event in rice 

domestication history relates to shattering and seed colour genes (sh4, rc) and strong bottlenecks in 

local geographic areas. Secondly, the single event is supported by the reappearance of the 

characteristics of wild species in the segregations that come from crossing O. sativa ssp. japonica and 

O. sativa ssp. indica. The fact that a group of cultivars tends to present unique alleles from unrelated 

wild populations, supports the single event theory. Furthermore, there is diversity of the cytoplasm 

when comparing wild and cultivated rice. However, the sequencing of the genes and genotyping 

methods indicate that indica and japonica are related to different ancestors. Finally, the separation 

between japonica and indica is estimated to be 0.4-0.2 Mya and this date is distant from the rice 

domestication event. 

The SNP pattern of 630 genes on three selected chromosomes (8, 10 and 12) from wild and 

domesticated accessions showed 20 apparent discriminating sweeps, which supports the single origin 

theory. As well, domestication dates back 8200 to 13500 years before the present (B.P.) based on the 

molecular clock, while the estimated time of separation between domesticated and wild is around 

3900 years (B.P.) when based upon the archaeological evidence (Molina et al., 2011). Both O. sativa 

ssp. japonica and ssp. indica show genes concentrated in limited regions, causing their density to be 

high compared to that of the wild O. rufipogon. This distribution is subsequent to strong selection 

during the domestication process (Flowers et al., 2012). From a sequence of about 1500 cultivated 
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and wild rice covering the Asian continent, 55 selective sweeps related to domestication were found. 

The conclusion is that O. sativa japonica was first domesticated in southern China in the Pearl River 

area, whereas O. sativa indica was developed as a result of crossing between O. sativa japonica and 

local wild rice, which then spread to South East and South Asia (Huang et al., 2012). 

 

Figure 1. The picture shows the difference among 12 Oryza species at the same development stage (Sanchez et al., 

2013) 

 

Figure 2. The relationship between Oryza species AA genomes based on chloroplast DNA analysis (Wambugu et al., 

2015) 
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Table 1. Oryza species, genome group, chromosome number and the geographical origin (Joseph et al., 2008; Koh et al., 

2015) and http://www.gramene.org/) 

 Oryza species 
Genome 

group 

Chromo. 

number 
Origin  

Wild / 

Domesticated 

1 O. officinalis Wall ex. Watt CC 24 Tropical Asia Wild  

2 O. perennis AA 24  Wild  

3 O. punctata Kotschy ex Steud. 
BB, 

BBCC 
24, 48 

Philippines and Papua 

New Guinea 
Wild  

4 O. rhizomatis Vaughan CC 24 Sri Lanka  Wild  

5 O. ridleyi Hook HHJJ 48 South Asia  Wild  

6 O. rufipogon Griff. AA 24  Tropical Asia Wild  

7 O. sativa ssp japonica and ssp indica AA 24  Domesticated  

8 O. schlechteri Pilger HHKK 48 Papua New Guinea Wild  

9 O. alta Swallen CCDD 48 South America Wild  

10 O. australiensis Domin. EE 24 Tropical Australia Wild  

11 O. barthii Chev. et Roehr AA 24 Africa Wild  

12 O. brachyantha Chev. et Roehr FF 24 Africa Wild  

13 O. coarctata Roxb. KKLL 48  India  Wild  

14 O. eichingeri Peter CC 24 
South Asia and East 

Africa 
Wild  

15 O. glaberrima  AA 24 Africa Domesticated 

16 
O. glumaepatula Steud. (Oryza 

glumaepatula) 
AA 24 

South and central 

America  
Wild  

17 O. grandiglumis Prod. CCDD 48 South America Wild  

18 O. granulata Nees et Arn. ex. Watt GG 24 Southeast Asia Wild  

19 O. latifolia Desv. CCDD 48 South America  Wild  

20 O. longiglumis Jansen HHJJ 48 Indonesia  Wild  

21 Oryza malampuzhaensis BBCC 48 South India Wild  

22 O. meridionalis Ng  AA 24 Tropical Australia Wild  

23 O. meyeriana Baill GG 24 Southeast Asia Wild  

24 O. minuta J.S. Presl. ex C.B. Presl. BBCC 48 
Philippines and Papua 

New Guinea 
Wild  

25 
O. nivara Sharma et Shastry (Oryza sativa f. 

spontanea) 
AA 24 Tropical Asia Wild  

26 
O. longistaminata Chev. et Roehr (Oryza 

glumaepatula) 
AA 24 Africa Wild  

http://www.gramene.org/
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In contrast, Civáň et al. (2015) reanalysed the previous data (1500 rice accessions) and they 

identified three independent regions for the domesticated rice event. They suggested the japonica 

population originated in Southern China and the Yangtze valley; that indica could be traced back to 

the Indochina population and Brahmaputra Valley, and the aus back to central India and Bangladesh. 

Finally, aromatic rice was found consequent to hybridisation of the japonica and aus strains. This 

confusion should be clarified, as in some cases, nucleotide polymorphism might fail to explain the 

history of rice selection and domestication. There are four possibilities to be considered in order to 

clarify the confusion: 1. the gene is not part of the selection target; 2. Variation could have assigned 

polymorphism to different regions; 3. the statistical design of the experiment is not sufficient to detect 

variations; 4. use history knowledge to track back the evolution of this population (Doebley, Gaut & 

Smith, 2006). 

2.3.1 Traits influenced by domestication  

QTL comparison between the domesticated rice and wild ancestor O. rufipogon shows three 

regions in chromosome 3 are associated with five domesticated traits: seed shattering, tillering, 

flowering time, grain weight, and seed percentage per set. Tropical japonica shows low nucleotide 

variation compared to the wild varieties, with only 37 SNPs, 36 of them in silent sites. On the other 

hand, indica shows high variation–288 SNPs, 276 of them located in silent sites. In other words, the 

diversity of silent sites in wild species is six times higher than in the domesticated species (Xie et al., 

2011).  

2.3.1.1 Panicle shape (open /closed) 

The OsLG1 gene controls ligule development in rice and gives the panicle shape. The 

expression of the OsLG1 gene was found to be much higher in the open panicle than in the closed 

one. In addition, it has been found that there are 12 SNPs and six base pair insertions/ deletions 

between the wild type O. rufipogon and O. sativa. One of those SNPs (G) was highly consistent in 

all wild types, whereas (A) was found in all domesticated cultivars (Zhu et al., 2013).  

2.3.1.2 Shattering genes 

Shattering related genes have received much attention due to their relation to the beginning of 

domestication. There are several types of mutations on chromosome 4 that control the shattering trait: 

A. one base pair substitution; B. mutations in the first exon 15 bp or 5 amino acid; C. 3bp or one 

amino acid insertion/ deletion; D. 1 bp or amino acid substitution and three mutations in the 5` of the 

starting codon; E. 1 bp substitution at site 55; F. 3 bp insertions /deletions between sites 343 and 344; 
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and G. 8bp insertions/ deletions between sites 558 and 559 (Li et al., 2006).  

The seed shattering gene sh4 showed probability of taking a role in the cell death event sequence 

or in releasing hydrolic enzymes. This enzyme is responsible for softening the cell bonds in the 

abscission layer, which leads to release of the seed from the spike. However, variation in one 

nucleotide in the cis-regulation of the qSH1 gene causes diminishment in its expression in the cell 

and produces a non-shattering trait (Doebley et al., 2006; Sang, 2009). The SHA1 gene has control of 

the seed shattering in O. sativa japonica and indica; a single nucleotide change from G to T leads to 

change in one amino acid–from lysine to asparagine, which switches the phenotype from shattering 

to non-shattering (Lin et al., 2007; Zhang et al., 2009). 

2.3.1.3 Seed colour genes 

White rice seeds (non-pigmented) have been found to exist through loss-of-function mutations 

which are encrypted to a protein that regulates the pathway of proanthocyanidin synthesis (Gross & 

Olsen, 2010). In white rice, the Rc gene has divided into two independent mutations: either 14 base 

pair fragment deletion, which has been found in 98% of white rice (this deletion basically was found 

in japonica cultivars then transferred to indica cultivars); or a single nucleotide substitution that 

causes a stop codon (Sang, 2009).  

Later, it was discovered that the Rc gene is controlled by three different mutations which 

regulate anthocyanin production in rice grain. These mutations are responsible for removing the red 

pigment in the seed originally found in the wild ancestor, O. rufipogon. The deletion of 14-bp in exon 

7 (causing frameshift translation) is the only mutation that has been found consistently in all white 

seed species and was not in all wild accessions. The other two mutations are almost variations of this 

mutation. One of the mutations seems to be fixed in O. sativa japonica cultivars only, while the other 

mutation is likely to cause a light red colour (Meyer and Purugganan, 2013).  

2.3.1.4 Awnless seeds 

Awns are controlled by a major gene (awn1) LABA1 on chromosome 4. This gene is involved 

in cytokinin enzyme activation, which plays a role in cell division and growth. A frame-shift deletion 

in LABA1 that has been found in cultivated rice, causes a significant reduction in the concentration of 

cytokinin in awn primordia. This leads to disruption of primordia elongation in the awn (Hua et al., 

2015). 
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2.3.1.5 Other traits  

 The BADH2 gene, with several mutations, has controlled the aromatic trait in most aromatic 

rice accessions (Gross and Olsen, 2010). Table 2 shows gene variations related to domestication 

events. The differences vary from SNP in the intron or in the open reading frame region, to the 

deletion range of nucleotides 14-1000 bp (Doebley et al., 2006; Gross and Olsen, 2010; Izawa et al., 

2009). 

Table 2. Genes related to the domestication process. A functional nucleotide polymorphism in a specific region leads to 

changes in traits. 

 Genes FNP Trait 
Functions that are affected 

by changes  

1 Wx 
SNP at the first intron on 5′ splice 

site 

Texture/taste of 

rice  

The synthesis of granule-

bond in starch  

2 sh4 
SNP leads to changes in amino 

acid in the ORF 
Seed shattering  

MYB  transcriptional 

activator  protein 

3 qSH1 

SNP leads to changes in the 

expression pattern in the 

promoter region  

Seed shattering 
BELL (homeobox) 

transcript factor  

4 Rc 
Deletion of 14 bp leads to 

premature stop codon  

The color of seed 

pericarp  
bHLH transcript factor 

5 Rd 
Two separate SNPs cause 

premature stop codons 

The color of seed 

pericarp  

DFR (Dihydroflavanol-4-

reductase) 

6 qSW5 1 kb deletion  The width of seed  unknown 

7 Gn1a Deletion of 16 bps in the ORF  
The number of 

grains per panicle  
Cytokinin oxidase  

8 Ghd7 Several FNPs Flowering time CCT motif protein  

9 sd1 Deletion of 383 bps Plant height  GA20 oxidase 

10 PROG1 
SNP leads to changed amino acid 

in the ORF 
Plant stature  Zn-finger transcript factor 

11 GIF1 FNPs in promoter region  Grain filling  Cell wall invertase 

12 Sdr4  Seed dormancy  

13 GS3  Grain size  

14 GW2  
Grain width and 

grain weight 
 

15 BADH2 Deletion  Fragrance   

16 Ghd7 Deletion  

Grain number, 

plant height and 

heading date 

 

17 Phr1 Insertion / deletion  
Grain 

discoloration  
 

18 
Gn1a and 

gn1  

Deletion  

Stop codon 
Grain number 

 Dehydrogenase / Cytokinin 

oxidase  

19 ehd1 Changes in one amino acid Flowering time 
Type B regulates the 

response 

20 hd1 Dislocated in coding sequence Flowering time  Transcriptional regulator 

21 hd6 Stop codon Flowering time  Protein Kinase 
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2.4 Valuable Characteristics of Wild rice 

Wild species in general, and wild rice in particular, are in danger of extinction. Many factors 

have impacted on these valuable natural resources. For example, climate change in terms of changes 

in temperature and rainfall, has had great impact on the survival of wild plants. Moreover, competition 

with other weedy plants and the grazing of animals destroy their chances for survival. Diversity is the 

key to species survival. Simply put, if there are no differences or if there is less heterozygosity 

between populations, they will become extinct or unfit for purpose at the first unsuitable circumstance 

they face (Henry et al., 2010; Reed and Frankham, 2003; Zhu et al., 2000). 

The domestication process added great value to cultivated rice by focusing on people’s 

favourite traits (like large fruit size, more kernels, coincidence of flowering and maturity, removal of 

shattering in grain crops, reduction in seed dormancy or elimination of it  in some crops etc). 

However, much valuable genetic material has been lost during the processes of grain refinement, such 

as closed hybridisation and back crossing (De Vicente et al., 2004; Krishnan et al., 2014). Between 

50 and 60% of allele numbers have been lost when comparing the cultivated variety to the wild. In 

other words, 40-50% of the genepool has been lost (Sun et al., 2001). Moreover, artificial selection 

during domestication processes negatively affects cultivars by allowing the accumulation of several 

deleterious mutations. These deleterious mutations lead to reduction in cultivar reproductive fitness 

for facing climate change (Lu et al., 2006). 

2.4.1 Disease and pest resistance  

There are many examples of useful traits that have been successfully introduced to cultivated 

rice from its wild relatives. The first is disease resistance, from Blast resistance genes Pi-9 (t) and Pi-

40, which were introduced from the wild rice O. minuta and O. australiensis respectively (Kole, 

2011). The Pirf2-1(t) gene located on chromosome 2 O. Rufipogon has an important role in providing 

non-specific resistance to rice Blast disease and contributes to a dominant mode of resistance to it 

(Utani et al., 2008). Furthermore, successfully introduced blight resistance genes Xa21, Xa23, Xa27 

Xa29(t) and Xa30 were from wild relatives O. longistaminata, O. rufipogon, O. minuta, O. officinalis 

and O. nivara respectively. In addition, viral resistance to Tungro disease comes from the RTSV gene 

that is derived from the ancestor, wild O. rufipogon. Secondly, pest resistance, in particular yellow 

stem borer resistance, comes  from the wild rice O. longistaminata, and the brown plant hopper 

resistance genes Bph10 and Bph18(t) from O. australiensis; Bph14, Bph15 from O. officinalis; bph11, 

bph12(t) from O. eichingeri; and Bph20(t), Bph21(t) from O. minuta. (Zhang and Xie, 2014). Also, 

O. nivara has a dominant gene resistant to grassy stunt disease (Khan et al., 2015). 
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2.4.2 Abiotic stress resistance 

Soil salinity has serial impact on seed germination, reduces plant growth, damages the 

chloroplast structure and decreases photosynthesis. O. coaretata has a salt resistance trait. This 

species has specific unicellular hairs (trichomes) which are responsible for maintaining the salt 

concentration at the lowest level in leaf tissue. Cold resistance at seedling stage, aluminium toxicity 

tolerance and tolerance to acid sulphate traits have been found in O. rufipogon, and iron toxicity 

tolerance in both O. rufipogon and O. glaberrima (Bal and Dutt, 1986), as well as other abiotic 

resistance genes in aus accessions (Schatz et al., 2014). Moreover, (Duan and Cai, 2012; Hadiarto 

and Tran, 2011) reported several genes related to abiotic stress resistance (Table 3). 

Table 3. Abiotic resistance genes in O. sativa 

  Gene  stress Species  

1 SUB1A  flooding O. sativa 

2 SK1 and SK2  flooding O. sativa 

3 HKT1;5  Saline soil  O. sativa  

4 NRAT1  High Al3+  O. sativa  

5 PSTOL1 at the Pup1 locus  Low Phosphorus O. sativa  

6  (OsPIP1, OsPIP2), Reduced transpiration, water use efficiency O. sativa 

7  (OsCDPK) Rooting system efficiency O. sativa  

8 OsLEA3-2 Salt / drought O. sativa 

 

2.4.3 Productivity    

Many QTLs responsible for increasing the yield have been reported found in O. rufipogon 

accessions from China and Malesia, and successfully transferred to the domesticated rice O. sativa 

(Fu et al., 2010; JinHua et al., 1996; Li et al., 2002). High expression of the Os11Gsk gene was found 

associated with high yield in the introgression line O. rufipogon (Thalapati et al., 2012). Furthermore, 

yld1-1 on chromosome 1 marker RM5, and yld2-1 on chromosome 2 marker RG256, were linked to 

yield improvement in O. rufipogon (Zhang and Wing, 2013). Moreover, agronomical traits (days to 

heading, number of spikelets in panicle, and shape and weight of the grains) of O. sativa have been 

improved by introducing new alleles from the wild relative O. grandiglumis. (Yoon et al., 2006) 
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2.4.4 Health and nutrition importance 

Recently, there has been a rapid increase in type -2 diabetes cases throughout the world. This 

has had increasing association with rice consumption, which constitutes the main meal of more than 

half the world’s population and is regularly eaten by about another 11%. Many studies have been 

focused on starch characteristics as a major carbohydrate component of the grains because of the 

emphasis on increased glucose percentage in the blood (Glycemia), also known as postprandial 

hyperglycemia PPHG. According to that, rice starch has been categorised as both high and low on 

the Glycemic Index. The low indexed rice is preferable, because it keeps PPHG under control after 

consumption and there is less risk of developing type -2 diabetes if it is eaten (Garaycochea et al., 

2015). Starch synthesis is a process that is formed by about 18 combined genes. They are all, together, 

responsible for starch amount, and for the amylose/amylopectin ratio, and for other starch properties. 

This leads to the configuration of the Glycemic Index (GI) (Hu et al., 2012; Kharabian-Masouleh et 

al., 2012). Most recently, it has been found that Australian wild rice has the highest amylose content, 

which can improve the glycemic index of the current cultivars, and provide healthier products  

(Tikapunya et al., 2017b).  

2.5 Wild Oryza species in Australia  

Four Oryza wild species have been natively found in the northern part of Australia, namely: O. 

meridionalis, O. australiensis, O. officinalis and O. rufipogon. These species were indigenous in 

remote areas and so uncontaminated by human bred cultivars, which kept it as an intact genepool for 

potential new abiotic, biotic resistance genes and nutrient grain quality (Henry et al., 2010). Reports 

have shown zinc, phosphorus and magnesium percentages are higher in the wild rice grains compared 

to commercial cultivars, which is possibly because their nutrients can be taken up more efficiently. 

Furthermore, the sodium concentration in the wild leaf was lower than in the cultivated, which means 

the wild plants must be using special mechanisms to avoid accumulating sodium in their cells (Wurm, 

2012). 

2.5.1 Oryza australiensis 

Oryza australiensis is found in the North of Queensland, the northern part of the Northern 

Territory and in Western Australia, according to Australia's Virtual Herbarium 

(http://avh.chah.org.au). This species has grown in areas considered relatively dry for the Oryza 

species. They usually overcome the dry season as rhizomes or seeds. The O. australiensis genome 

size has doubled (965 Mb) as a result of the accumulated retrotransposon copies through its lineage 

over millions years (Henry et al., 2010); (Piegu et al., 2006). 
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2.5.2 Oryza officinalis 

The information about this species is very poor and some reports refer to collections of it from 

two sites in the north of Queensland (Moa Island) and the Northern Territory. Further investigation 

is required according to (Henry et al., 2010). A recent study (Wambugu et al., 2015) showed that this 

species stands out from all the other Oryza species AA genome groups, based on chloroplast 

sequencing analysis (Figure 2).  

2.5.3 Oryza rufipogon 

This species has been found to be widespread in many locations in the North of Queensland, 

the Northern part of the Northern Territory and Western Australia, as reported by Australia's Virtual 

Herbarium (http://avh.chah.org.au). However, these reports were conducted years ago, and were 

based on classical classification keys. Many of these records mixed up the O. rufipogon and O. 

meridionalis, especially before 1981 (the date of separating this species out and giving it a new name). 

Both were classified as O. rufipogon. This has been proven by molecular analysis using SINE marker. 

Fourteen of 24 accessions were classified as O. rufipogon, but in fact they are O. meridionalis (Xu et 

al., 2005b).  

Recently, (Sotowa et al., 2013), found that the O. rufipogon samples in the north of Queensland 

have a unique morphological characterisation and are distinct from the Asian O. rufipogon. This has 

led to a huge argument about whether this finding applies to all Australian wild rice from other places, 

or just to these samples from North Queensland, due to its isolated location. Most recent molecular 

analysis based on the chloroplast genome for these samples, showed that Australian and Asian O. 

rufipogon is divided into two different clades. This point has opened the door to describing it as a 

new species (Wambugu et al., 2015). All the above considerations lead to this question: Can we treat 

O. rufipogon in all Australian states as the one species or not? 

2.5.4 Oryza meridionalis 

O. meridionalis is widespread and endemic to Australia and New Guinea. It is found in the 

north of Queensland, the Northern Territory and Western Australia. It is an annual species, surviving 

the harshest seasons as seeds. Before separation as a new species in 1981, its samples were classified 

as O. rufipogon (Ng et al., 1981). The interaction between both O. rufipogon and O. meridionalis 

which has been found in Australia, needs more investigation to explain the extent to which these 

species are genetically distinct from each other (Henry et al., 2010). 

http://avh.chah.org.au/
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2.5.5 Oryza nivara S.D. and O. minuta 

Some reports have suggested that O. nivara and O. minuta may be found in Australia; however, 

these reports have probably confused O. officinalis with O. minuta. This confusion probably applies 

to O. nivara as well, due to its high similarity to O. meridionalis (Groves et al., 2009). 

2.5.6 Oryza spp. Taxon A and Taxon B in North Queensland Oryza spp. Taxon A and Taxon 

B in North Queensland 

A recent study that discovered that two perennial populations in Australia are distinct 

genetically from the O. rufipogon found in Asia has been undertaken on a collection of Oryza AA 

genome species, gathered from throughout the Asian continent and Oceania. The first species has a 

similar appearance to O. meridionalis (hereafter referred to as Taxa B). The first one has a similar 

appearance to O. meridionalis (hereafter referred to as Taxa B), and the second one is more closely 

aligned to O. rufipogon (hereafter referred to as Taxa A (Sotowa et al., 2013). Furthermore, these 

studies suggest that the origin of Taxa B was evolutionary mixed mutations, segregation and natural 

selection from the ancient form of the O. meridionalis, which led to its becoming a new perennial 

species. The differences between the two are clearly seen in the shape of spikelets and lemma. On the 

other hand, Taxa A is possibly derived from Asian O. rufipogon and was later introduced to Australia.  

Later studies (Brozynska et al., 2014b; Brozynska et al., 2017; Moner et al., 2018; Wambugu 

et al., 2015) using NGS data on both the chloroplast and nuclear levels showed the unique 

characterisation of the Australian wild rice (Figure 2 andFigure 3). The importance of these taxa lies 

in their having been found in remote areas geographically and far from human intervention and cross 

pollination with domesticated rice, which kept them as pure as ancient wild rice. 

 

Figure 3 Grain appearance of the Australian wild rices (Tikapunya et al., 2017) 
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2.6 Genetic diversity analysis 

Diversity between creatures is one of the oldest topics argued among researchers. They question 

why creatures are diverse, how to group them, what the basis for a classification is, and one of the 

most important questions is, ‘What is the cutting edge between two populations that divides them into 

two different groups?’ Many scientific researchers have developed various methods of measuring the 

differences between specific populations in order to organise them into groups to simplify studying 

them and to find the relationships among them in terms of their evolution, based on morphology or 

agronomy characteristics or biochemical reactions–and recently, DNA molecular markers. Getting 

this knowledge allows researchers to better understand the biological system interfaces. In addition, 

choosing the right parents to hybridise and finding new resources to enhance existing cultivars is 

important to them. Genetic diversity measurements based on recent advances in technology have 

become extremely sophisticated (Mondini et al., 2009; Weir, 1996). 

2.6.1 Molecular genotyping tools: 

Molecular genotyping involves using molecular markers to identify the relationship between 

two individuals or two populations. This could be used to study the polymorphic rate in the 

population, the allele numbers to each polymorphic gene and the percentage of heterozygous (Karp 

et al., 1996). It has been reported that there are 38 molecular techniques (SNP, SSR, AFLP, CAPS, 

SSCP, etc.) used in assessing plant genetic diversity. They vary in accuracy, sensitivity, cost, time 

consumption and complexity. A good molecular marker should: be polymorphic; provide clear 

resolution of the genetic variety; be easy to use and cost effective; need only a small amount of tissue 

or DNA; be linked to the phenotypic character; and not require previous studies. In fact, there is no 

molecular marker that has all these features, but  markers are selected according to the work 

requirement in a specific case, depending on the level of the polymorphism, cost, equipment 

availability etc. (Mondini et al., 2009). 

Next generation sequencing (NGS) makes whole genomic sequencing accessible and reliable 

in terms of the cost and time needed to get the rows of data. The advantage of this technology is that 

it overcomes all the previous challenges that faced the earlier molecular markers. This is simply 

because the comparison is grounded in the “original code” or entire genome of the individual, or 

samples that represent the population. This allows deep study of the differences in the populations 

constructed on the original DNA sequence of the organism. However, analysing these data is not an 

easy job and is itself a new challenge. A number of generations of platforms have been developed 

during the last decade. Competition in terms of the amount of data, cost and speed are the main 
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features of those new generations. For instance, the amount of data about a single cell Hiseq X can 

cover the wild rice O. rufipogon genome approximately 2000 times. This depth of reading will make 

judgments on variations more confident. 

2.7 NGS application in rice genetic diversity analysis 

2.7.1 Specific gene sequences 

Early, when sequencing was costly, the NGS technique was utilised for specific regions which 

may or may not have been studied before, according to its classification or function importance, like 

functional nucleotide polymorphisms (FNPs). (Hollingsworth et al., 2009). For instance, rbcL and 

matK chloroplast genes and 20 other regions were sequenced and used effectively as barcodes in 

order to identify and differentiate rice species. They were also used to associate favorable rice cooking 

characteristics with functional SNPs in those genes (Kharabian-Masouleh et al., 2012; Schroeder et 

al., 2012). Another study sequenced 6.4 Kb of the Rc genes in Jiangsu weedy rice O. sativa f. 

spontanea, (which has red pericarp inhibited), which showed higher nucleotide polymorphism and 

the segregation proportion of Jiangsu weedy rice than US weedy rice (Li et al., 2014b). The Gn1a 

gene, which controls the cytokinin oxidase dehydrogenase enzyme that regulates the grain number 

per panicle, has been sequenced and investigated in wild and cultivated samples. Fourteen diverse 

alleles have been recognized AP1 – AP14, with clear association between them, and spikelet numbers 

and grain yield, as well as significant diversity, have been recorded. In addition, the AP9 allele was 

associated with a large panicle and high yield (Wang et al., 2015).   

2.7.2 Chloroplast DNA sequencing 

To date, more than 850 chloroplast genomes have been deposited in the database 

(www.ncbi.nlm.nih.gov/genomes). In the Oryza genus, 12 different chloroplast species have been 

released belonging to cultivated and wild rice. Recently, the chloroplast of O. australiensis (EE 

genome) has been released. Researchers have found that chloroplast size in the O. australiensis is 

135.224 Kbp, which is higher than for all other Oryza spp. by approximately 700 bp (Wu and Ge, 

2014). Also O. nivara chloroplast DNA sequence has been studied and 57, 61 and 159 insertions, 

deletions and substitutions respectively, were found compared to O. sativa. The most substitutions 

were in the large single copy LSC (68) and (10) in the small single copy SSC. On the other hand, 

most of the insertions and deletions were in the coding regions of the inverted repeats (Shahid Masood 

et al., 2004). Moreover, (Tong et al., 2015) evaluated the differences between 30 Korean accessions 

and five wild and cultivated rice: O. nivara, O. meridionalis, O. australiensis, O. sativa japonica and 

O. sativa indica. In total, 180 SNPs and 41 INDELs located in 63 genes and 153 intergenic regions 

http://www.ncbi.nlm.nih.gov/genomes
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were found. The phylogeny result supported the independent origin theory of domesticated rice O. 

sativa indica and japonica. Interestingly, inconsistent and ambiguous results were found when the 

researchers compared the phylogeny tree of the chloroplast to the nuclear phylogeny from the same 

study of 1.6 million SNPs. 

In Australia, (Brozynska et al., 2014b; Waters et al., 2012) have shown the relationships among 

O. sativa and other wild Asian O. rufipogon, O. australiensis and Australian O. rufipogon and O. 

meridionalis relatives. More than 850 SNPs have been detected based on chloroplast DNA sequence 

levels. The O. australiensis was the most distinct species from the others (EE genome). The 

interesting result was that the Australian O. rufipogon was closest to O. meridionalis – more so than 

to the Asian O. rufipogon 32 and 68 SNP respectively. This suggests the Australian O. rufipogon is 

different from the Asian O. rufipogon and could be a new species. Therefore, it has been suggested 

that O. rufipogon could be a perennial form of O. meridionalis. This has the potential to be a novel 

gene pool for improving cultivated rice. 

2.7.3 Whole genome sequencing 

Whole genome sequencing allows the development of accurate, specific markers which are 

linked to favorable traits. Furthermore, whole genome sequencing allows the design of markers within 

wide flanking regions, allowing the tracking of changes and re-combinations in regions surrounding 

genes in cross breeding systems (Duitama et al., 2015). The completed sequence of O. sativa japonica 

Nipponbare was finalised in 2005 by the International Rice Genome Sequencing Project (IRGSP). 

They estimated the error rate at less than one per 10 Kb (Kawahara et al., 2013). Then, two genomic 

assemblies were produced, the first one by the Rice Genome Annotation Project (RGAP) and the 

second one by the Rice Annotation Project (RAP). It has been noted there were slight differences 

between both of them, but this confused the rice community when a reference was needed. Therefore, 

another two individuals of O. sativa japonica and Nipponbare were sequenced to correct the previous 

sequence and to compare the allele diversity among the individuals from the same population 

(Kawahara et al., 2013). The resequencing project reduced the error rate to 0.15 per 10 Kb, which 

was a decrease of 85% on the errors in the previous reference. The average allele frequency was 0.20 

per 10 Kb, which should be taken into account when comparing diversity among individuals 

(Kawahara et al., 2013). 

An enormous recent project has sequenced 3000 rice accessions of O. sativa to represent a wide 

spread of diversity back to 89 countries with 14 X genome coverage on average. The seeds of all 

accessions are accessible from the International Rice Genebank Collection (IRGC). Both the 
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sequence data and the source of these data (seeds) constitute valuable repositories for developing and 

improving cultivated varieties (Li et al., 2014a). In another project, (Huang et al., 2012) sequenced 

the whole genome of 1,083 varieties of cultivated rice (both O. sativa indica and japonica) and 446 

accessions of the wild rice O. rufipogon, the progenitor of the cultivated rice O sativa. SNP analysis 

supports the single event theory of domesticated rice. 

In China, 517 from 50 000 accessions, different morphologically, geographically and 

genetically, have been chosen for sequencing (with around 1 X coverage) to study their agronomical 

traits. Three point six million SNPs were recorded, approximately one SNP per 9.32 Kb. Those SNPs 

have been successfully linked to agronomical traits, as shown in (Table 4) (Huang et al., 2010). 

 

Table 4. SNPs and their impact on related agronomical traits (Huang et al., 2010) 

Trait 
Chromo-

some 

Position 

(IRGSP 4) 

Major 

allele 

Minor 

allele 

Gene 

loci 

Tiller number 4 3760194 A T - 

Grain width 5 4907158 C G - 

Grain length 
3 17371398 G C GS3 

5 5343949 A G qSW5 

Gelatinization temperature 6 6726252 C T ALK 

Amylose content 6 1770929 T C Waxy 

Apiculus color 6 5335519 A G OsC1 

Pericarp color 2 27066598 A G - 

Hull color 
6 10378142 T C - 

9 7366211 T C Ibf 

Heading date 2 1439288 G A - 

Drought tolerance 1 5536395 G T - 

Degree of seed shattering 2 25025325 C T - 

 

Another five Korean rice accessions (Dongjin, Korean japonican cultivar and three other culture 

lines – HY-08, HY-04 and BLB – and their progenitor Hwayeong) have been sequenced with a 

coverage yield of 61 X. In total, 1,154,063 variations were found: 1,024,202; 53,180 and 76,681 

SNPs, insertions and deletions respectively. The largest differences were in the coding regions of five 
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genes that control important functions like ATP binding, signal transduction and the phosphorylation 

of protein / amino acid. Associating these SNPs with favorable functions will provide valuable 

sources from which to select  SNP(s) which regulate a specific trait (Jeong et al., 2013). Another 94 

varieties of O. sativa and 10 wild species were sequenced at 2.87-64.83X. 23 million variants were 

identified: 80% were in the repetitive element, which is extreme. However, changing analysis strategy 

led to reducing these variants to 4.4 million with 80% of them genotyped (Duitama et al., 2015). 

Further, 1483 accessions of O. sativa (sub spp. indica, aus, tropical japonica and temperate japonica) 

were sequenced at low coverage with approximately 1-3 X. The aim was to assemble individuals at 

low coverage and not ignore the variation among individuals; for instance, important genes like GW5, 

Sub1A and Pikm-1 which are absent in the reference O. sativa Nipponbare, were found in other 

cultivars (Marroni et al., 2014; Yao et al., 2015).  

In addition, many other studies used the entire genome sequence analysis of both wild and 

domesticated rice to measure polymorphism levels and genetic diversity. For example, the 

polymorphism between the O. sativa ssp. indica cv. Guangluai-4 and O. sativa japonica ssp. cv. 

Nipponbare has around 1.6 million SNPs with an average 6.9 SNPs per Kb. In addition, about 80,000 

and 92,000 insertions and deletions were found, respectively. These SNPs have been distributed 

across 32 gene families, coding/ non-coding regions, stop codons / prevent stop codons. Likewise, 

194 high rate SNPs genes with more than 100 SNPs/ genes, considered as hotspot genes, have been 

identified. Additionally, more details for several loci which are associated with the important traits 

S5, Sub1, LRK Pup1 for hybrid sterility, submergence tolerance, yield improvement and phosphorus 

deficiency loci respectively, have been provided. Another two million SNPs identified between 

Korean rice cv. Tongil and O. sativa japonica cv. Nipponbare with an average 5.77 SNP/ Kb., 

showing 91.8% of the total cv. Tongil genome goes back to O. indica and 7.9 % comes from O. 

japonica parents (Hu et al., 2014; Kim et al., 2014a; Schatz et al., 2014; Srivastava et al., 2014).  

The wild African rice Oryza brachyantha (FF genome) has also been sequenced and assembled 

using Short Oligonucleotide Analysis Package (SOAP) de novo. It has been annotated and 32,038 

coding genes and a total sequence of 261Mb were reported. Oryza brachyantha has a very compact 

genome compared to other Oryza species. It has 22,185 genes which belong to 18,020 families; in 

contrast, O. sativa has 28,830 genes belonging to 20,177 families. In other words, it has shared 17076 

and lost 2157 gene families in comparison to O. sativa. Besides, 30 % of these shared genes are 

located in different positions to those in O. sativa. These differences could prove important in the 

ways they can inform efforts to improve cultivated rice and evolutionary research (Chen et al., 2013). 
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2.8 Starch related genes  

Starch, at around 90% of dry rice grain weight, has vital importance as a direct source of energy 

in the human diet and in the food industry that requires different properties in its products to meet the 

market’s necessities. Recent increases in health problems like obesity, and developing type-2 diabetes 

or colon disease due to lifestyle changes have led to a rethinking of starch properties such as resistant 

starch, RS, which could be the solution to the new health threats (Zhou et al., 2016). Starch consists 

of two kinds of polysaccharide, mainly amylose 15-30 % and amylopectin 65-85%. Amylose has the 

structure of a linear chain, produced by bonding α 1,4 D-glucose units; while the amylopectin is a 

highly branched molecule composed of α 1,4 D-glucose units and α 1,6 D-glucose units that are 

responsible for the branching. The amylose / amylopectin ratio has great impact on the physical and 

chemical properties of the starch that are reflected in cooking processes. High amylose content tends 

to fluffy single grains, whereas low amylose tends to glossy when cooked (Dobo et al., 2010; Pérez 

and Bertoft, 2010; Yan et al., 2009; Yu et al., 2011; Zhang et al., 2014). 

Many genes are involved in the starch synthesis pathway, mainly: granule-bound starch 

synthase I (GBSSI), starch synthases SSI, SSII, SSIII, SSIV, starch branching enzyme SBE, starch 

debranching enzyme DBE, and isoamylase ISA. However, the granule-bound starch synthase GBSS-

I gene (waxy), which expresses mainly in storage tissue like endosperms, has an important impact on 

amylose content (Cheng et al., 2012; Dian et al., 2003; Yu et al., 2011). 

The multiplicity of genes that are involved in the starch synthesis process makes understanding 

this pathway very complicated. In Arabidopsis for example, the SS-II deficiency mutant causes an 

increase in total amylose and in the amylose/amylopectin ratio. On the other hand, the double mutant 

deficiency in SS-II and SS-III causes sluggish plant growth and decreased starch content (Zhang et 

al., 2008). Chain length distribution analysis shows mainly independent functionality in SSI, BEI and 

BEIIb genes; however, BEIIb deficiency reduces the short chain ratio in the amylopectin, and the 

be2b mutant has more amylose than the wild–probably because of amylopectin synthesis reduction 

(Abe et al., 2014).  

The PUL function to some extent overlaps with that of ISA1, but deficiency in ISA1 has more 

impact on amylopectin synthesis than PUL (Fujita et al., 2009). Also, (Fujita et al., 2011) suggested 

just SSI or SSIIIa is essential for starch biosynthesis and remarkably, found 30-33% amylose in high 

SSI activity and recessive SSIII, while (Kharabian-Masouleh et al., 2012) identified 66 functional 

SNPs in 18 starch biosynthesis related genes. Thirty-one SNPs were found associated with cooking 

quality. Other studies have shown resistant starch properties as the result of a deficiency of SSIIIa 
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genes and high expression of waxy genes (Zhou et al., 2016). There is one amino acid substitution on 

the product of the SBE3 gene, Leucine, in the wild that changed to Proline in the mutant, and this 

resulted in resistant starch in rice (Yang et al., 2012). 

The sequencing of the Swarna rice cultivar that has a low Glycemic Index (GI), showed nearly 

1.1 million SNPs and 0.1 million InDels, the majority of them in chromosome 1. The Starch Synthesis 

Related Genes (SSRGs), except BEIIa, have been found polymorphic in Swarna, compared to O. 

sativa Nipponbare (Table 5) (Rathinasabapathi et al., 2015). 

Table 5. Starch analysis genes SNPs and InDels in Swarna cultivar modified (Rathinasabapathi et al., 2015) 

No 
Gene Name 

Gene Non- Coding 

SNPs 

Non- coding 

InDels 

1 ADP- glucose pyrophosphorylase (small unit) AGPS2b 14 1 

2 Alpha 1,4- glucan phosphorylase SPHOL 9 1 

3 Glucose 6-phosphate-translocator GPT1 9 2 

4 Granule-bound starch synthase I GBSSI 10 4 

5 Granule-bound starch synthase II GBSSII 82 7 

6 Starch synthase I SSI 59 7 

7 Starch synthase IIa SSIIa 16 0 

8 Starch synthase IIb SSIIb 14 3 

9 Starch synthase IIIa SSIIIa 20 2 

10 Starch synthase IIIb SSIIIb 13 3 

11 Starch synthase IVa SSIVa 11 1 

12 Starch synthase IVb SSIVb 17 0 

13 Branching enzyme I BEI 9 1 

14 Branching enzyme IIa BEIIa 0 0 

15 Branching enzyme IIb BEIIb 23 5 

16 Debranching enzyme -isoamylase 1 ISA1 9 1 

17 Debranching enzyme -isoamylase 2 ISA2 1 0 

18 Debranching enzyme -Pullulanase PUL 47 3 

 

In rice cultivars, three different alleles have been identified in GBSS-I. These alleles vary in the 

number of CT repeats in the 5′-UTR, as well as in the SNPs in the splicing site of the first intron, 
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exons 4, 6 and 10. This relates to a huge variation in the mRNA expression level of up to 10 times, 

which is associated with the amount of amylose (Cai et al., 1998; Chen et al., 2008b; Dobo et al., 

2010; Hirano et al., 1996; Hirose and Terao, 2004; Isshiki et al., 1998; Larkin and Park, 2003, 1999; 

Mikami et al., 2008).  

(Chen et al., 2017) reported shifting in the exon intron splicing region of SSII-1 gene, that 

caused alternative transcript by adding 28 bp fragment to the mature mRNA. Up to ten nucleotides 

of the edges of the introns and exons (exon, intron splicing enhancer and silencer) have extreme 

importance, as the edge on intron exon can be shaped the transcriptome. Any change in these regions 

might influence the protein sequence (Jian et al., 2013; Prathepha, 2007). 

Starch has been strongly selected throughout the evolutionary history of rice and is strongly 

linked to consumer preferences. Wild rice does not have sticky starch, which trait was carefully 

chosen for rice varieties only after domestication; and development of glutinous rice may have 

happened in many stages. A SNP in GBSSI gene G to A was responsible for decreasing the granule-

bound starch synthase activity that changes wild rice to glutinous rice. This mutation first arose in 

Southeast Asia then spread to the temperate japonica varieties. The study of the WAXY gene suggests 

that this mutation is very rare in the wild species and that it most possibly arose by innovative 

mutation (Meyer and Purugganan, 2013). 

Evolutionary study of the GBSS-I shows two main and six minor GBSS-I haplotypes have been 

found in wild and domesticated rice. H2 was the most ancient one with 89% of the accessions. In 

domesticated rice, the GBSSS-I gene had three independent paths in its own evolutionary history. aus 

has the oldest evolutionary path, which agrees with the theory of three independent origins for  

domesticated rice (Civáň et al., 2015; Kim et al., 2016; Singh et al., 2015; Singh et al., 2017). GBSSI 

gene variation was less in the wild compared to the cultivated rice, which means different selection 

pressures have been applied to domesticated rice to meet the demands of different consumer 

requirements throughout the history of rice domestication (Cheng et al., 2012; Singh et al., 2017; 

Vaughan et al., 2008). 

Australian wild rice has high amylose content and has a different amylose and amylopectin 

structure from domesticated rice varieties as well as pasting properties and a fine molecular structure, 

all of which suggests it has an alternative biosynthesis mechanism that can lead to new rice products 

and the development of new cultivars with a low glycemic index, which is important for diabetic rice 

(Calingacion et al., 2014; Tikapunya et al., 2017b). 
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Chapter 3 

3  Chloroplast phylogeography of AA genome rice species 

3.1 Abstract 

Whole chloroplast genome sequence analysis of 59 wild and domesticated rice samples was 

used to investigate their phylogeny providing more detail on the biogeography of the major groups 

of wild A genome rices globally. An optimized chloroplast assembly method was developed and 

applied to extracting high quality whole chloroplast genome sequences from shot gun whole DNA 

sequencing data. Forty complete high quality chloroplast genome sequences were assembled 

(including; temperate japonica, tropical japonica and aus). South American, African wild rice 

relationship were conformed. The Australian chloroplast type was found to extend north to the 

Philippines. The remainder could be divided into an African (O. barthii and the domesticated O. 

glaberrima) clade and the Asian taxa. The Asian taxa could be placed in two distinct clades including 

the domesticated O. sativa ssp. indica and O. sativa ssp. japonica respectively. These two groups of 

wild rices had substantially overlapping distributions with the O. sativa japonica group extending 

further west into India. The aromatic rices had japonica chloroplasts as expected. A polyphyletic 

maternal genome origin of the cultivated aus group of rices was suggested by the identification of 

aus accessions in both the indica and japonica clades. The current distribution of the chloroplast types 

appears to differ significantly to that of the nuclear genome diversity suggesting a complex 

evolutionary history of the rice progenitors leading to the domestication of rice.  

Keywords: Asian wild rice, chloroplast sequence, phylogenetic analysis, Oryza AA genome, de novo 

assembly, mapping assembly  

 

3.2 Introduction 

The Oryza genus belongs to the Poaceae (grass) family and has 26 species two of which (Oryza 

sativa with two sub species japonica and indica are Asian in origin and Oryza glaberrima which is 

African in origin,(Wambugu et al., 2013)) were domesticated thousands years ago and 24 of which 

are wild species (Appendix 2 Table 16). The wild species are morphologically distinct and many 

display significant genetic diversity. The wild species, in particular the AA genome group of close 
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inter-fertile relatives, have been utilized as genetic resources to improve cultivated rice (Brozynska 

et al., 2015; Sanchez et al., 2013).  

Oryza sativa was domesticated around 8000-9000 years ago based on the archeological 

evidence (Gross and Zhao, 2014). There have been two distinct theories for the origin of domesticated 

rice: The first involves a single origin which suggest that O. sativa ssp. japonica and O. sativa ssp. 

indica were derived from a common domestication of the Asian wild rice O. rufipogon. (Flowers et 

al., 2012; Molina et al., 2011; Tong et al., 2016; Vaughan et al., 2008). The second theory is multiple 

domestication events in which the main sub species are domesticated at around the same time in 

separate areas (He et al., 2011; Sang and Ge, 2007). A common version of the first theory suggests 

that japonica was domesticated first and then subjected to introgression of wild germplasm to form 

indica. This hypothesis is supported by evidence of common domestication alleles in both japonica 

and indica (Huang et al., 2012). The second theory proposes multiple independent domestications 

(Choi et al., 2017; Kumagai et al., 2016). This is attractive due to the significant genetic distance 

between japonica and indica clades estimated to be around 1 million years. (Feltus et al., 2004; Xu, 

2010) 

Substantial recent research has addressed this issue. (Huang et al., 2012) analyzed the SNPs 

variation (around 8 millions) of 1083 varieties of O. sativa subsp. indica and japonica as well as 446 

geographically isolated accessions of O. rufipogon from the Asian continent. This study of the whole 

genome supported the single event theory and divided O. rufipogon into three groups (Or-I, Or-II and 

Or-III). In contrast, (Civáň et al., 2015) re-analyzed the SNPs variation and identified evidence for 

domestication of rice in three separate regions. They trace the origins of domestication of japonica to 

populations of wild rice in the Yangtze valley of Southern China and, indica to populations in 

Indochina and the Brahmaputra valley and aus to central India and Bangladesh. Aromatic rice was 

attributed to a hybridization between japonica and aus. 

Recent reports show that Australian wild rice is distinct from other wild rice populations. These 

populations are different morphologically and genetically and may represent distinct taxa (Brozynska 

et al., 2014b; Kim et al., 2015; Sotowa et al., 2013; Wambugu et al., 2015). The genetic value of the 

Australian wild rice populations is enhanced due to their isolation from domesticated rice reducing 

the potential for contamination by gene flow from domesticated populations and keeping intact the 

genepool of wild diversity as a reservoir of genes for rice improvement (Henry et al., 2010). 

The chloroplast which is a highly conserved maternally inherited organelle in plants, not 

involved in recombination, has been used as an important tool for analysis of evolutionary 
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relationships and to estimate genetic distance among plant species. Oryza chloroplast genomes have 

a narrow range of sizes around 135 kb and have been used to study relationships within the group 

(Appendix 2 Table 17). (Ravi et al., 2008; Wambugu et al., 2015). 

The aim of this study was to assemble and analyze the whole chloroplast genomes from wild 

populations of AA genome rice and use this to determine the genetic relationships with their 

geographical distribution, especially between the closest relatives of domesticated rice from Asia and 

Australia. 

 

3.3 Materials and methods  

Raw sequence data for the sequences of Asian O. rufipogon and O. sativa were obtained from 

the EMBL website using the links provided by (Huang et al., 2012) . The O. rufipogon collections 

included both perennial and annual O. rufipogon germplasm maintained in China and Japan. The 

whole genome coverage of Illumina sequence reads was between 0.21X and 6.92 X. Samples with 

sequence coverage between 0.9X and 6.75X were selected. Assuming this coverage will be enough 

to cover all chloroplast sequence, as there are numerous copies per cell (for instance 1000 -1700 copy 

of chloroplast genome per cell in Arabidopsis leaf) (Zoschke et al., 2007). The locations from which 

these samples were sourced was examined on a map (Figure 4), and grouped into 5 major geographic 

zones: (Z1: India, Z2 India and Burma, Z3 China, Z4 Thailand, Vietnam and Cambodia, Z5 Oceania 

Australia, Papua new Guinea, Indonesia, Malaysia and Singapore). Samples within each zone were 

grouped further and 6-9 samples were chosen to represent each zone (Appendix 2 Figure 14-16) 

3.3.1 Chloroplast genome assembly  

Next Generation sequencing (NGS) reads were analyzed using CLC Genomic workbench 

software and Clone Manager Professional 9, to assemble the chloroplast sequence (Kim et al., 2015). 

A quality check (QC) was applied to all raw data. Based on the results of the QC report, reads were 

trimmed to obtain PHRED score above 25. Chloroplast genome sequence for each of the selected 

accession was assembled using a Chloroplast Assembly Pipeline (CAP) (Appendix 3). Essentially, 

the method is comprised of a Mapping assembly component (M-component) and a de novo assembly 

component (D-component). Both the M- and the D-components have two sub-processes designed to 

reduce errors in the chloroplast sequences  
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Figure 4. Distribution of 79 Asian wild rice accessions. The accessions were divided into those from 5 different 

geographic zones for comparison. Map sourced from Google maps. 

 

derived from each of these assembly components. The chloroplast sequences from the M- and the D- 

components were assembled, mismatches identified and errors resolved by manual curation by 

observing reads mapped to the mismatch positions (Appendix 3).  

3.3.2 Phylogenetic analysis 

The assembled chloroplast sequences and chloroplast sequences were analysed using Geneious 

V 9.1.3 software (BioMatters, USA). Sequences were aligned using the plugin MAFFT (Katoh et al., 

2002). The alignment file was inspected physically. Maximum Likelihood ML, Maximum Parsimony 

MP using , MrBayes (Huelsenbeck and Ronquist, 2001), PHYLM (Carbonell-Caballero et al., 2015; 

Guindon and Gascuel, 2003), Fast Tree(Price et al., 2009), RAxML (Stamatakis, 2006), Garli(Gutell 

and Jansen, 2006) methods were used to analyse the evolutionary relationships. (Appendix 2 Table 

18) 

3.3.3 Genome annotation 

All chloroplast sequences were annotated using the CpGAVAS website 

(http://www.herbalgenomics.org/0506/cpgavas/analyzer/home) with the default parameters. The 

outcome was imported directly to Geneious software for comparison with the reference O. sativa 

japonica NC_001320 to obtain the functional nucleotide polymorphisms (FNPs). Thereafter one 

chloroplast sequence was used to draw the chloroplast map using OGDraw v1.2 (Lohse et al., 2013). 

Manual editing was used to identify the polymorphic genes in all chloroplast in this study. 

©2017 Google-Map data © 2017 Google, INEGI, ORION-ME 

http://www.herbalgenomics.org/0506/cpgavas/analyzer/home
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3.4 Results 

3.4.1 Raw data 

The available raw sequence data was first assessed to identify samples with good genome 

coverage. Only 79 of 446 samples (17%) that had a whole genome coverage at or above 0.9 X (0.9 - 

7.0 X) were selected for analysis. These 79 samples were randomly distributed and covered a wide 

area that was divided into five major zones in Asia. Some samples were located very close to others 

so further selection was used to obtain 6-9 samples per zone with whole genome coverage ≥ 0.9X 

(Table 6).  

3.4.2 Chloroplast assembly  

A well-developed dual pipe line (Appendix 3) was used for chloroplast assembly. High quality 

of 40 new chloroplast sequence (31 wild rice O. rufipogon and 9 of domesticated rice was achieved. 

Mapping reads to a reference and de novo assembly procedures were the core of this pipe line, 

allowing successful assembly of all major regions of the chloroplasts, large single copy and inverted 

repeat A and small single copy and inverted repeat B. The output of the analyses was subjected to 

additional steps which further reduced errors significantly to limit manual correction. The sequence 

coverage was the limiting factor preventing some samples passing through this pipeline (Table 6 and 

Table 7) some accessions could not be resolved and failed to deliver a complete consensus sequence 

because of low coverage and gaps in some regions, although the whole genome coverage of W3091 

and W2331 was around 2X.  

Twelve samples had no differences between the two pipe lines while 21 samples had just 1-3 

differences and 7 had 4-7 differences (Appendix 2 Table 18). Finally, manual inspection was used to 

check all the gaps and differences to identify the correct call. Some of these differences were found 

to be due to low coverage and assembly errors and some were real differences compared to the 

reference. The average coverage of the whole chloroplast for all 40 accessions was 775 X. Five 

accessions  had no coverage for some regions based on the mapping procedure, however the de novo 

procedure had enough coverage to resolve them through manual inspection of the mapped reads 

(Table 7). 

3.4.3 Chloroplast alignment  

Fifty nine chloroplast genomes were aligned in (Geneious software V 9.1.3) using MAFFT plugin 

tool. The Alignment sequence was 135702 bp. The number of identical sites was (97.6 %) while the 

number of variable sites was (2.4%). The minimum and maximum lengths were 134116bp and  
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Table 6 Geographic origin of wild rice O. rufipogon accessions. The location (latitude and longitude) of collection, ecotype, sequence coverage (whole genome basis) and total 

number of sequence reads are provided for each accession. 

Zone Accession ID Original producing area Latitude Longitude 
Ecotype according to (Huang et al., 

2012) 

 

whole genome 

Sequencing  coverage Total reads 

Z1 IND W1743 India 26.92 75.82 Or-I 1.09 3,839,420 

Z1 IND W1998 India 22.2 73.2 Or-III 2.24 7,875,088 

Z1 IND W1782 India 12.31 76.64 Or-III 3.48 12,259,790 

Z1 IND W1777 India 19.95 79.3 Or-III 4.84 17,025,200 

Z1 IND W1683 India 20.1 84.48 Or-II 6.75 23,695,210 

Z1 IND W2066 Nepal 28.6 81.6 Or-III 1.66 5,845,360 

Z1 IND W1804 Sri Lanka 6.93 79.95 Or-II 3.99 14,037,346 

Z2 InB W0634 Burma 25.38 97.39 Or-II 1.13 3,979,158 

Z2 InB W0628 Burma 20.4 92.85 Or-II 2.31 8,113,788 

Z2 InB W1083 India 27 88.4 Or-I 1.37 4,853,498 

Z2 InB W0153 India 22.4 88.66 Or-III 2.54 8,927,010 

Z2 InB W1126 India 24.86 92.36 Or-II 2.85 9,991,228 

Z2 InB W1096 India 26.2 92.94 Or-II 4.84 16,981,922 

Z3 CHI W3085 China 23.6 102.01 Or-III 1.18 4,133,106 

Z3 CHI W3091 China 26.8 113.55 Or-II 1.81 6,346,610 

Z3 CHI W3002 China 22.19 112.31 Or-III 2.95 10,342,360 

Z3 CHI W3052 China 23.73 106.91 Or-III 3.73 15,348,634 

Z3 CHI W3065 China 19.25 110.46 Or-III 4.02 16,574,456 

Z3 CHI W2331 Vietnam. 21.03 105.85 Or-I 2.1 7,390,804 

Z4 TCV W0626 Burma 19.77 96.11 Or-I 2.03 7,170,788 
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Z4 TCV W2308 Laos 17.57 102.38 Or-II 2.47 8,692,358 

Z4 TCV W1939 Thailand 8.54 99.73 Or-II 1.61 5,610,368 

Z4 TCV W1554 Thailand 15.09 99.99 Or-II 3.1 10,883,160 

Z4 TCV W1870 Thailand 15.23 102.5 Or-II 4.18 14,547,246 

Z4 TCV W1854 Thailand 19.64 99.52 Or-II 4.73 16,484,594 

Z4 TCV W2316 Vietnam. 10.39 107.02 Or-I 3.75 13,193,968 

Z5 OCE W1236 New Papua Guinea -5.31 141.61 Or-II 0.91 3,200,720 

Z5 OCE W1230 New Papua Guinea -4.63 138.93 Or-I 0.97 3,426,114 

Z5 OCE W2078 Australia -14.3 132.4 Or-III 1.18 4,163,924 

Z5 OCE W2108 Australia -13.07 142.07 Or-III 2.22 7,803,528 

Z5 OCE W1975 Indonesia -2.99 104.76 Or-II 2.74 9,650,252 

Z5 OCE W1977 Indonesia -6.4 106.82 Or-II 3.98 13,998,776 

Z5 OCE W2024 Indonesia 3.29 117 Or-II 4.38 15,418,262 

Z5 OCE W0576 Malaysia 5.8 102.38 Or-II 3.69 12,940,976 

Z5 OCE W1214 Philippine 7.86 124.86 Or-III 2.92 10,232,274 

Z3 CHI HP483_indica China  28.30  109.71  Domesticated 2.76 12,466,512 

Z3 CHI HP179_indica China 27.68  120.55  Domesticated 3.01 13,623,130 

Z3 CHI HP49_temperate_japonica China 33.55  109.91  Domesticated 2.15 9,718,138 

Z3 CHI HP46_temperate_japonica China 26.89  109.20  Domesticated 0.55 2,475,544 

 GP715_aus Bengal NA NA Domesticated 1.81 8,194,072 

 GP706_tropical_japonica Ivory Coast NA NA Domesticated 2.21 9,997,788 

 GP294_aromatic Pakistan NA NA Domesticated 2.75 12,419,702 

 GP285_aus Pakistan NA NA Domesticated 2.27 10,253,590 

 GP284_aromatic Pakistan NA NA Domesticated 2.64 11,923,052 

 GP629_tropical_japonica Indonesia  NA NA Domesticated 2.04 9,231,004 
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134911bp respectively. All characters weighed equally and 134573 characters were constant. 

Parsimony-informative characters were 308 and parsimony-uninformative characters were 

821.  

The number of differences between the reference O. sativa subsp. japonica Nipponbare 

GU592207.1 and wild accessions totalled 4975. These differences were distributed between 

deletions, tandem repeat deletions, insertions, tandem repeat insertions, single nucleotide 

polymorphism transitions, single nucleotide polymorphism transversions and substitutions 

with the number of differences reflecting the genetic distance among the species (Table 8) 

3.4.4 Phylogenetic analysis 

Five software tools were used to analyse the sequences using Maximum likelihood, 

Maximum Parsimony and Bayesian approaches. All analyses gave identical phylogenetic trees 

in regard to the main clades and sub clades. However there were some minor differences at the 

end of some clades or a lack of resolution (Appendix 2 Table 19 ).  

The phylogeny of the fifty nine accessions (Figure 5) followed largely their geographical 

distribution (Appendix 2, Figure 23-25). O. glumipatula (South America) and O. 

longistaminata (Africa) were the first distinct group within the A genome species, this clade 

was reported by (Kim et al., 2015; Wambugu et al., 2015). The Australian clade including O. 

meridionalis and other accessions from Australia and one from further north in the Philippines 

was the next distinct clade identified. 

The rest of the accessions divided into two main clades, the African rice species, O. 

barthii and O. glaberrima and the Asian species. The Asian accessions divided into two big 

clades: an indica group including  O. sativa subsp. indica, O. nivara group, aus (GP-285) as 

one clade, and a japonica group including O. sativa subsp. Japonica, aromatic rices (GP-284, 

GP-294), temperate japonica (HP-46 and HP-49), tropical japonica (GP-706) and aus (GP-

715) as the second big clade. The indica grouping could be further divided into two clades with 

O. nivara in a distinct grouping. The geographical distributions of the Asian clades were 

overlapping. However, accessions in the O. sativa japonica sub clade extended further west 

into India, while the O. sativa subsp. indica were more abundant further to the south and east. 

(Civáň et al., 2015; Garris et al., 2005; Kim et al., 2014b; Tong et al., 2015; Tong et al., 2016) 
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Table 7 Chloroplast sequence analysis by mapping, the chloroplast coverage and the number of gaps following mapping is given for each accession. 

Zone Accession ID 

Chloroplast genome (based on mapping procedure) 
Final chloroplast 

obtained  
Minimum 

coverage 

Maximum 

coverage 
Average  coverage 

Number of gaps \regions with 

no coverage  

Z1 IND W1743 0 867 338.07 1 No 

Z1 IND W1998 11 2488 1154.15 0 Yes 

Z1 IND W1782 21 2508 1624.43 0 Yes 

Z1 IND W1777 51 2649 1641.65 0 Yes 

Z1 IND W1683 110 4984 2885.86 0 Yes 

Z1 IND W2066 20 808 407.07 0 Yes 

Z1 IND W1804 119 2505 1514.29 0 Yes 

Z2 InB W0634 1 1434 491.92 0 Yes 

Z2 InB W0628 34 1582 786.89 0 Yes 

Z2 InB W1083 30 686 369.88 0 Yes 

Z2 InB W0153 31 1898 1003.02 0 Yes 

Z2 InB W1126 28 1362 819.7 0 Yes 

Z2 InB W1096 46 3350 1738 0 Yes 

Z3 CHI W3085 8 376 241.04 0 Yes 

Z3 CHI W3091 0 618 397.98 7 No 

Z3 CHI W3002 4 327 160.72 0 Yes 

Z3 CHI W3052 16 772 436.59 0 Yes 

Z3 CHI W3065 23 486 301.37 0 Yes 

Z3 CHI W2331 0 1794 393.66 1 No 

Z4 TCV W0626 0 1324 440.71 1 Yes 

Z4 TCV W2308 2 1751 766.29 0 Yes 
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Z4 TCV W1939 68 823 452.87 0 Yes 

Z4 TCV W1554 0 4081 2099.6 1 Yes 

Z4 TCV W1870 261 2260 1508.46 0 Yes 

Z4 TCV W1854 32 2936 1397.8 0 Yes 

Z4 TCV W2316 106 1587 992.9 0 Yes 

Z5 OCE W1236 0 720 289.63 1 No 

Z5 OCE W1230 4 934 368.03                      0 Yes 

Z5 OCE W2078 88 960 503.22 0 Yes 

Z5 OCE W2108 162 1806 966 0 Yes 

Z5 OCE W1975 49 1341 762.79 0 Yes 

Z5 OCE W1977 58 1991 1242.43 0 Yes 

Z5 OCE W2024 0 2008 1033.65 21 Yes 

Z5 OCE W0576 57 1821 1182.77 0 Yes 

Z5 OCE W1214 73 1652 947.93 0 Yes 

Z3 CHI HP483_indica 0 997 500.37 1 Yes 

Z3 CHI HP179_indica 2 1160 574.11 0 Yes 

Z3 CHI HP49_temperate_japonica 42 1114 463.69 0 Yes 

Z3 CHI HP46_temperate_japonica 4 167 80.54 0 Yes 

- GP715_aus 12 413 270.56 0 Yes 

- GP706_tropical_japonica 39 301 177.07 0 Yes 

- GP294_aromatic 28 849 461.06 0 Yes 

- GP285_aus 0 337 174.87 1 Yes 

- GP284_aromatic 20 772 418.43 0 Yes 

- GP629_tropical_japonica 0 415 98.05 1 No 
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Table 8 Variants among AA chloroplast genomes.  Deletion, Insertions SNPs when compared with O. sativa subsp. japonica Nipponbare GU592207.1 Del: deletion, Del.T.R. 

: deletion tandem repeat, Ins.: insertion, Ins.T.R. : insertion tandem repeat, SNP Tr.: SNP tran transition, SNP Trv. :SNP transversion and Subs. : substitution. 

No. Name/ code and origin  Deletions  Del.T.R. Insertions 
Ins. 

T.R. 

SNP 

Tr. 
SNP Trv. Subs. 

Total 

variation  
Density /Kb 

Base 

pair 

1 Australian taxa A 10 7 4 10 47 43 4 125 0.929 134557 

2 Australian taxa B 6 7 6 11 53 50 2 135 1.003 134557 

3 O.barthii1 4 7 11 10 33 30 5 100 0.743 134674 

4 O.barthii2 4 7 6 11 33 30 7 98 0.728 134603 

5 O.barthii3 4 7 6 8 35 32 4 96 0.713 134596 

6 O.barthii4 5 7 8 8 35 33 6 102 0.758 134640 

7 O.glaberrima 4 7 6 9 33 30 7 96 0.713 134606 

8 O.glumipatula 7 10 9 8 62 41 4 141 1.048 134583 

9 O.longistaminata1 8 9 9 8 68 36 3 141 1.048 134567 

10 O.longistaminata2 8 10 9 8 59 39 3 136 1.011 134563 

11 O.meridionalis 6 6 4 14 45 44 3 122 0.907 134558 

12 O.nivara 6 11 6 7 35 28 10 103 0.766 134494 

13 O.officinalis 25 33 35 35 317 201 24 670 4.966 134911 

14 O.rufipogon Asian1 3 6 0 5 18 17 6 55 0.409 134537 

15 O.rufipogon Asian2 3 13 2 6 28 25 3 80 0.595 134544 

16 O.sativa.indicaJN861109.1 9 37 5 4 25 19 8 107 0.796 134448 

17 O.sativa.indicaNC_008155.1 7 8 5 6 26 18 6 76 0.565 134496 

18 O.sativa.japonicaNC_001320.1 36 18 34 15 22 32 15 172 1.279 134525 

19 W0153 Z2 India 6 7 4 8 28 21 9 83 0.617 134484 

20 W0576 Z5 Malaysia 7 8 5 7 25 18 8 78 0.58 134502 

21 W0626 Z4 Burma 6 8 4 7 25 26 9 85 0.632 134456 
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22 W0628 Z2 Burma 3 5 2 5 14 12 2 43 0.32 134583 

23 W0634 Z2 Burma 6 8 5 6 24 23 7 79 0.587 134511 

24 W1083 Z2 India 1 3 0 5 6 2 3 20 0.149 134537 

25 W1096 Z2 India 1 3 0 4 6 2 2 18 0.134 134536 

26 W1126 Z2 India 7 8 3 7 24 17 8 74 0.55 134494 

27 W1214 Z5 Philippine 12 7 6 11 50 44 2 132 0.981 134549 

28 W1230 Z5 Papua New Guinea 6 7 6 8 24 23 8 82 0.61 134521 

29 W1554 Z4 Thailand 7 7 4 6 25 17 8 74 0.55 134495 

30 W1683 Z1 India 1 3 0 4 6 2 3 19 0.141 134536 

31 W1777 Z1 India 1 3 0 4 6 2 3 19 0.141 134536 

32 W1782 Z1 India 3 7 3 3 18 16 5 55 0.409 134595 

33 W1804 Z1 Sri Lanka 3 5 2 4 14 13 3 44 0.327 134582 

34 W1854 Z4 Thailand 7 2 1 5 6 4 4 29 0.216 134116 

35 W1870 Z4 Thailand 6 8 5 8 25 24 10 86 0.639 134516 

36 W1939 Z4 Thailand 7 8 4 6 24 17 7 73 0.543 134494 

37 W1975 Z5 Indonesia 7 8 3 7 24 17 7 73 0.543 134495 

38 W1977 Z5 Indonesia 7 9 3 7 36 27 7 96 0.714 134508 

39 W1998 Z1 India 3 8 3 3 15 16 4 52 0.386 134595 

40 W2024 Z5 Indonesia 7 8 4 7 24 17 8 75 0.558 134520 

41 W2066 Z1 Nepal 6 7 8 6 28 24 8 87 0.647 134542 

42 W2078 Z5 Australia 10 7 6 12 44 45 3 127 0.944 134553 

43 W2108 Z5 Australia 12 7 4 11 48 42 4 128 0.951 134542 

44 W2308 Z4 Laos 2 2 1 4 5 4 4 22 0.164 134553 

45 W2316 Z4 Vietnam 2 4 0 0 3 3 2 14 0.104 134556 

46 W3002 Z3 China 7 7 4 7 23 18 7 73 0.543 134501 
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47 W3052 Z3 China 6 8 5 9 26 25 8 87 0.647 134516 

48 W3065 Z3 China 9 6 6 5 32 24 9 91 0.676 134539 

49 W3085 Z3 China 6 8 5 9 27 25 10 90 0.669 134517 

50 HP483_indica 7 8 5 7 25 18 8 78 0.58 134502 

51 HP179_indica 7 6 3 7 25 18 7 73 0.543 134496 

52 HP49 temperate japonica 0 0 0 0 1 0 0 1 0.007 134551 

53 HP46 temperate japonica 0 1 0 2 1 0 1 5 0.037 134553 

54 GP715 aus 1 5 0 4 7 2 4 23 0.171 134534 

55 GP706 tropical japonica 0 3 0 5 3 1 1 13 0.097 134556 

56 GP294 aromatic 1 4 0 4 8 2 3 22 0.164 134532 

57 GP285 aus 6 7 4 7 26 18 7 75 0.557 134540 

58 GP284 aromatic 1 4 0 4 8 2 3 22 0.164 134532 

59 Total differences  352 444 283 418 1497 1763 1379 4975   
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3.4.5 SNPs and FNPs variation  

Further analysis was preformed based on grouping the accessions within the main clades. The 

total number of variations relative to the reference O. sativa. japonica NC_001320.1 were 4975 

in total with 3478 SNPs and 1497 InDels. The clade related to O. nivara had the highest number 

of SNPs (704) and InDels. (318), while the indica related clade had the second highest number 

of variants, in total (769). However, these numbers are completely changed when we look at 

the variants per accession in the clade to overcome the effect of sample size in each clade. This 

clearly shows that the lowest variation per accession was in the japonica related clades (36 per 

accession) while the highest were in the South American and Australian related clades at 139 

and 128 respectively. (Table 9).  

A total of 80 genes were annotated in the 40 chloroplasts with 13 of them having 

functional variations (Figure 6) (atpB, atpI, ccsA, cemA, clpP, matK, ndhF, ndhK, psaA, psbB, 

rpoC1, rpoC2, and rps18). The total number of functional nucleotide polymorphisms (FNPs) 

in all chloroplasts was 36 and 12 of them were found to be common in all accessions (6 genes) 

4 FNPs in psaA, , 2 in psbB, one in clpP , ndhK, atpB, rps18, and 2 in hypothetical protein 

(Table 10). The number of FNPs varied from 12 to 19. The lowest FNPs/SNP proportion was 

12.0 % in W2078 Z5 Australia, while the highest was 20.7% in W1998 Z1 India. There were 

no unique FNPs in 13 accessions, while the highest number of unique FNPs was 7 with the 

proportion of unique FNPs at 37% in W1214 Z5 Philippine (Table 11). 

We found around 265 (SNPs / InDels) that could be used as markers to discriminate at 

the clade level. These could be used to screen wild accessions to identify novel genetic 

resources for rice breeding and track the evolutionary relationships of the wild accessions 

(Appendix 2 Table 20 and Table 21).  

 

3.5 4. Discussion  

This analysis of the complete sequence of the 40 new chloroplast genomes of wild and 

domesticated rice population contributes to our understanding of the evolutionary relationships 

in Oryza species and will facilitate better use of wild rice in rice breeding (Daniell et al., 2016; 

Matsuoka et al., 2002; Tang et al., 2004). The well-developed assembly pipeline used in this 

study was critical in efficiently obtaining an accurate whole chloroplast genome sequence 
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Figure 5 Phylogenetic relationship of Oryza chloroplast AA Genome. Analysis using MrBayes GTR model with 2000 bootstraps and O. australiensis as an out group. Numbers 

on branches refer to probability percentage. 
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despite variable coverage. The complementation of the two procedure (mapping reads to 

reference and de novo assembly) eliminates many errors which might have been considered as 

a real differences in the past. The geographically separated African and South American wild 

rices were found to be genetically distinct from the Asian domesticated rice, and 

Asian/Australian wild rice (Figure 5 and Figure 7) in agreement with earlier studies based on 

fewer samples (Brozynska et al., 2017; Wambugu et al., 2015). 

 

       

 

Figure 6 Chloroplast gene map. Polymorphic genes are marked with *. The inner circle represents the four 

chloroplast regions LSC, IRB, SSC and IRA. The GC content is shown in the grey area 
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Figure 7 Phylogeographic distribution of diversity in Oryza spp. AA chloroplast genomes. The O. sativa spp. 

indica and O. nivara clade group are represented by blue and green dots respectively. The yellow dots represent 

the clade related to O. sativa subsp. Japonica. The Australian clade is marked with red dots. The black dot 

represents W1977 which was an out group relative to the two sub clades including O. nivara and O. sativa subsp. 

indica. *Asian and Australian accession positions were based on collection site GPS locations. Map sourced from 

Google maps. 

 

©2017 Google-Map data © 2017 Google, INEGI, ORION-ME 
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Table 9 Polymorphisms between the clades defined by the chloroplast phylogeny SNPs, InDel and Deletions between the clades as defined in Figure 4 

 1 Ratio* 2 Ratio* 3 Ratio* 4 Ratio* 5 Ratio* 6 Ratio* 7 Ratio* 
Total 58 

accessions  

Ratio per 

accession 

in Total 

SNP 423 21.15 568 51.64 573 95.5 704 58.67 353 70.6 315 105 542 542 3478 59.97 

InDel 305 15.25 308 28 196 32.67 318 26.5 139 27.8 103 34.33 128 128 1497 25.81 

Total 728 36.4 876 79.64 769 128.17 1022 85.17 492 98.4 418 139.33 670 670 4975 85.78 

1-japonica clade (20 accessions) 2-indica clade (11 accessions) 3-Australian clade (6 accessions) 4-Nivara clade ( 12 accessions)  5-African clade 

(5 accessions) 6-South American clade (3 accessions)  7-O. officinalis (1 accessions)  * Ratio per accession 

 

Table 10 Functional variation in chloroplast genome sequences. FNPs location, amino acid substitution, codon changed and polymorphism type. 

 
Sequence 

location 
Gene Gene product Protein ID 

AA 

Change 
CDS 

CDS 

Codon 

number 

CDS 

position 

CDS 

Position 

within 

codon 

Change 
Codon 

change 

Polymorphism 

type 

Effect on 

protein  

1 2,603 matK maturase K NP_039361.2 I -> F matK CDS 201 601 1 T -> A 
ATT -

> TTT 

SNP 

(transversion) 
Substitution 

2 8,415  
hypothetical 

protein 
NP_039365.1 R -> S 

hypothetical 

protein 

CDS 

23 67 1 C -> A 

CGC -

> 

AGC 

SNP 

(transversion) 
Substitution 

3 8,538  
hypothetical 

protein 
NP_039365.1 L -> V 

hypothetical 

protein 

CDS 

64 190 1 C -> G 
CTT -

> GTT 

SNP 

(transversion) 
Substitution 
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Sequence 

location 
Gene Gene product Protein ID 

AA 

Change 
CDS 

CDS 

Codon 

number 

CDS 

position 

CDS 

Position 

within 

codon 

Change 
Codon 

change 

Polymorphism 

type 

Effect on 

protein  

4 8,599  
hypothetical 

protein 
NP_039365.1 G -> E 

hypothetical 

protein 

CDS 

84 251 2 G -> A 

GGG -

> 

GAG 

SNP 

(transition) 
Substitution 

5 8,622  
hypothetical 

protein 
NP_039365.1 S -> P 

hypothetical 

protein 

CDS 

92 274 1 T -> C 
TCC -

> CCC 

SNP 

(transition) 
Substitution 

6 22,488 rpoC1 

RNA 

polymerase 

beta' subunit 

NP_039374.1 Q -> E rpoC1 CDS 4 10 1 C -> G 

CAA -

> 

GAA 

SNP 

(transversion) 
Substitution 

7 24,178 rpoC1 

RNA 

polymerase 

beta' subunit 

NP_039374.1 N -> S rpoC1 CDS 567 1,700 2 A -> G 

AAT -

> 

AGT 

SNP 

(transition) 
Substitution 

8 24,756 rpoC2 

RNA 

polymerase 

beta'' subunit 

NP_039375.1 Q -> H rpoC2 CDS 10 30 3 G -> T 
CAG -

> CAT 

SNP 

(transversion) 
Substitution 

9 25,379 rpoC2 

RNA 

polymerase 

beta'' subunit 

NP_039375.1 R -> K rpoC2 CDS 218 653 2 G -> A 

AGA -

> 

AAA 

SNP 

(transition) 
Substitution 

10 25,835 rpoC2 

RNA 

polymerase 

beta'' subunit 

NP_039375.1 D -> G rpoC2 CDS 370 1,109 2 A -> G 

GAT -

> 

GGT 

SNP 

(transition) 
Substitution 
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Sequence 

location 
Gene Gene product Protein ID 

AA 

Change 
CDS 

CDS 

Codon 

number 

CDS 

position 

CDS 

Position 

within 

codon 

Change 
Codon 

change 

Polymorphism 

type 

Effect on 

protein  

11 25,897 rpoC2 

RNA 

polymerase 

beta'' subunit 

NP_039375.1 H -> D rpoC2 CDS 391 1,171 1 C -> G 

CAT -

> 

GAT 

SNP 

(transversion) 
Substitution 

12 26,188 rpoC2 

RNA 

polymerase 

beta'' subunit 

NP_039375.1 R -> G rpoC2 CDS 488 1,462 1 A -> G 

AGA -

> 

GGA 

SNP 

(transition) 
Substitution 

13 28,019 rpoC2 

RNA 

polymerase 

beta'' subunit 

NP_039375.1 W -> L rpoC2 CDS 1,098 3,293 2 G -> T 
TGG -

> TTG 

SNP 

(transversion) 
Substitution 

14 28,336 rpoC2 

RNA 

polymerase 

beta'' subunit 

NP_039375.1 C -> G rpoC2 CDS 1,204 3,610 1 T -> G 

TGT -

> 

GGT 

SNP 

(transversion) 
Substitution 

15 29,113 rpoC2 

RNA 

polymerase 

beta'' subunit 

NP_039375.1 N -> D rpoC2 CDS 1,463 4,387 1 A -> G 

AAC -

> 

GAC 

SNP 

(transition) 
Substitution 

16 30,548 atpI 
ATP synthase 

CF0 A subunit 
NP_039377.1 D -> E atpI CDS 16 48 3 T -> G 

GAT -

> 

GAG 

SNP 

(transversion) 
Substitution 

17 40,251 psaA 
photosystem I 

P700 
NP_039383.1 R -> G psaA CDS 334 1,000 1 G -> C 

CGC -

> 

GGC 

SNP 

(transversion) 
Substitution 
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Sequence 

location 
Gene Gene product Protein ID 

AA 

Change 
CDS 

CDS 

Codon 

number 

CDS 

position 

CDS 

Position 

within 

codon 

Change 
Codon 

change 

Polymorphism 

type 

Effect on 

protein  

chlorophyll a 

apoprotein A1 

18 40,482 psaA 

photosystem I 

P700 

chlorophyll a 

apoprotein A1 

NP_039383.1 R -> G psaA CDS 257 769 1 G -> C 

CGA -

> 

GGA 

SNP 

(transversion) 
Substitution 

19 40,684 psaA 

photosystem I 

P700 

chlorophyll a 

apoprotein A1 

NP_039383.1 H -> Q psaA CDS 189 567 3 A -> T 

CAT -

> 

CAA 

SNP 

(transversion) 
Substitution 

20 40,839 psaA 

photosystem I 

P700 

chlorophyll a 

apoprotein A1 

NP_039383.1 S -> T psaA CDS 138 412 1 A -> T 

TCC -

> 

ACC 

SNP 

(transversion) 
Substitution 

21 49,212 ndhK 

NADH 

dehydrogenase 

subunit K 

NP_039387.2 R -> T ndhK CDS 12 35 2 C -> G 

AGA -

> 

ACA 

SNP 

(transversion) 
Substitution 

22 53,201 atpB 

ATP synthase 

CF1 beta 

subunit 

NP_039390.1 R -> P atpB CDS 37 110 2 C -> G 

CGG -

> 

CCG 

SNP 

(transversion) 
Substitution 
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Sequence 

location 
Gene Gene product Protein ID 

AA 

Change 
CDS 

CDS 

Codon 

number 

CDS 

position 

CDS 

Position 

within 

codon 

Change 
Codon 

change 

Polymorphism 

type 

Effect on 

protein  

23 56,134  
hypothetical 

protein 
NP_039393.1 N -> K 

hypothetical 

protein 

CDS 

59 177 3 C -> G 

AAC -

> 

AAG 

SNP 

(transversion) 
Substitution 

24 56,770  

acetyl-CoA 

carboxylase 

beta subunit 

NP_039394.1 S -> C 

acetyl-CoA 

carboxylase 

beta subunit 

CDS 

73 218 2 C -> G 
TCC -

> TGC 

SNP 

(transversion) 
Substitution 

25 56,776  

acetyl-CoA 

carboxylase 

beta subunit 

NP_039394.1 Q -> L 

acetyl-CoA 

carboxylase 

beta subunit 

CDS 

75 224 2 A -> T 
CAG -

> CTG 

SNP 

(transversion) 
Substitution 

26 59,000 cemA 

envelope 

membrane 

protein 

NP_039398.1 L -> F cemA CDS 108 324 3 G -> T 
TTG -

> TTT 

SNP 

(transversion) 
Substitution 

27 66,104 rps18 
ribosomal 

protein S18 
NP_039408.1 T -> N rps18 CDS 155 464 2 C -> A 

ACC -

> 

AAC 

SNP 

(transversion) 
Substitution 

28 67,982 clpP 

ATP-

dependent Clp 

protease 

NP_039410.1 P -> A clpP CDS 103 307 1 G -> C 

CCG -

> 

GCG 

SNP 

(transversion) 
Substitution 
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Sequence 

location 
Gene Gene product Protein ID 

AA 

Change 
CDS 

CDS 

Codon 

number 

CDS 

position 

CDS 

Position 

within 

codon 

Change 
Codon 

change 

Polymorphism 

type 

Effect on 

protein  

proteolytic 

subunit 

29 69,349 psbB 
photosystem II 

47 kDa protein 
NP_039411.1 A -> V psbB CDS 184 551 2 C -> T 

GCG -

> 

GTG 

SNP 

(transition) 
Substitution 

30 70,278 psbB 
photosystem II 

47 kDa protein 
NP_039411.1 A -> T psbB CDS 494 1,480 1 G -> A 

GCA -

> 

ACA 

SNP 

(transition) 
Substitution 

31 70,281 psbB 
photosystem II 

47 kDa protein 
NP_039411.1 I -> F psbB CDS 495 1,483 1 A -> T 

ATC -

> TTC 

SNP 

(transversion) 
Substitution 

32 84,369  
hypothetical 

protein 
NP_039431.1 Q -> E 

hypothetical 

protein 

CDS 

125 373 1 C -> G 

CAA -

> 

GAA 

SNP 

(transversion) 
Substitution 

33 102,760 ndhF 

NADH 

dehydrogenase 

subunit 5 

NP_039441.1 F -> C ndhF CDS 293 878 2 A -> C 
TTC -

> TGC 

SNP 

(transversion) 
Substitution 

34 105,906 ccsA 

cytochrome c 

biogenesis 

protein 

NP_039443.1 Y -> S ccsA CDS 224 671 2 A -> C 
TAT -

> TCT 

SNP 

(transversion) 
Substitution 
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Sequence 

location 
Gene Gene product Protein ID 

AA 

Change 
CDS 

CDS 

Codon 

number 

CDS 

position 

CDS 

Position 

within 

codon 

Change 
Codon 

change 

Polymorphism 

type 

Effect on 

protein  

35 124,775  
hypothetical 

protein 
NP_039456.1 M -> L 

hypothetical 

protein 

CDS 

34 100 1 A -> C 
ATG -

> CTG 

SNP 

(transversion) 
Substitution 

36 130,749  
hypothetical 

protein 
NP_039460.1 Q -> E 

hypothetical 

protein 

CDS 

125 373 1 G -> C 

CAA -

> 

GAA 

SNP 

(transversion) 
Substitution 

 Blue FNPs are found in all accessions relative to the reference 
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Table 11 Summary of variants identified for all Asian wild rice samples analysed. 

 accession SNP FNP 
Common 

FNPs 

unique 

FNPs 

unique FNPs 

ratio 

1 W0153 Z2 India 102 13 12 1 7.69 

2 W0576 Z5 Malaysia 96 15 12 3 20 

3 W0626 Z4 Burma 104 14 12 2 14.29 

4 W0628 Z2 Burma 80 16 12 4 25 

5 W0634 Z2 Burma 100 14 12 2 14.29 

6 W1083 Z2 India 62 12 12 0 0 

7 W1096 Z2 India 62 12 12 0 0 

8 W1126 Z2 India 94 15 12 3 20 

9 W1214 Z5 Philippine 148 19 12 7 36.84 

10 W1230 Z5 Papua New Guinea 100 15 12 3 20 

11 W1554 Z4 Thailand 95 15 12 3 20 

12 W1683 Z1 India 62 12 12 0 0 

13 W1777 Z1 India 62 12 12 0 0 

14 W1782 Z1 India 90 18 12 6 33.33 

15 W1804 Z1 Sri Lanka 81 16 12 4 25 

16 W1854 Z4 Thailand 64 12 12 0 0 

17 W1870 Z4 Thailand 102 14 12 2 14.29 

18 W1939 Z4 Thailand 94 14 12 2 14.29 

19 W1975 Z5 Indonesia 94 15 12 3 20 

20 W1977 Z5 Indonesia 116 18 12 6 33.33 

21 W1998 Z1 India 87 18 12 6 33.33 

22 W2024 Z5 Indonesia 94 15 12 3 20 

23 W2066 Z1 Nepal 105 16 12 4 25 

24 W2078 Z5 Australia 142 17 12 5 29.41 

25 W2108 Z5 Australia 143 18 12 6 33.33 

26 W2308 Z4 Laos 63 12 12 0 0 

27 W2316 Z4 Vietnam 60 12 12 0 0 

28 W3002 Z3 China 94 15 12 3 20 

29 W3052 Z3 China 104 14 12 2 14.29 

30 W3065 Z3 China 109 15 12 3 20 

31 W3085 Z3 China 105 14 12 2 14.29 

32 HP483_indica 51 6 12 0 0 

33 HP179_indica 50 9 12 3 20 

34 HP49_temperate_japonica 1 6 12 0 0 

35 HP46_temperate_japonica 2 6 12 0 0 

36 GP715_aus 13 6 12 0 0 

37 GP706_tropical_japonica 5 6 12 0 0 

38 GP294_aromatic 13 6 12 0 0 

39 GP285_aus 51 9 12 3 20 

40 GP284_aromatic 13 9 12 3 20 
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The phylogenetic tree shows clearly that the Australian clade is distinct from all others. 

However, this clade extends north from Australia (to the Philippines) overlapping with an Asian clade 

including accessions form Papua New Guinea (Figure 4 and Figure 5). Other Australian plant species 

have been found to have relationships with plants in the Philippines(Simpson, 1977; Yap, 2010). The 

Philippines is at the boundary of regions having an Australia association or origin and those with an 

Asian link. 

The analysis divided the Asian wild and domesticated accessions into two main clades, one 

related to O. sativa spp. japonica and the other to O. sativa spp. indica which in turn divided into two 

sub clades related to O. sativa spp. indica and O. nivara respectively. This supports the view that 

these lineages were separated some time ago (0.99 million years,(Brozynska et al., 2017; Kumagai et 

al., 2016; Liu et al., 2015)) and that the much more recent domestication was from distinct gene pools 

(Brozynska et al., 2017; Civáň et al., 2015). The overlap of the Australian and indica clades supports 

a recent phylogeny study (Brozynska et al., 2017; Fuchs et al., 2016) based on the nuclear gene 

analysis which shows greater introgression between the Australian wild rice and the nivara/indica 

group than between the Australian and japonica group. The analysis shows that chloroplast diversity 

is greater further south and east being higher in the clade related to indica and highest in Australia. 

The aromatic, tropical and temperate japonica are much closer to O. sativa japonica which 

agrees with previous study apart from the discovery that aus appears in both clades japonica and 

indica. This suggest that the maternal genomes of aus come from two different origins.(Kumagai et 

al., 2016) (Civáň et al., 2015; Kim et al., 2015; Tong et al., 2015; Tong et al., 2016) 

Despite the existence of distinct clades based upon chloroplast sequence the accessions did not 

show a strong geographic isolation being spread widely across the south and east of Asia. Divergence 

may have been caused by a past period of geographic isolation creating distinct populations that 

became the progenitors for domestication of indica and japonica rice. These populations have now 

been widely distributed across the entire region in Asia with the Australian populations retaining 

more geographic distribution. The populations may have accumulated useful mutations in response 

to the selective pressure of different environments during periods of geographic separation. 

The nuclear genome diversity in these wild rices does not follow the same pattern as the 

chloroplast genomes (Figure 4, (Civáň et al., 2015; Huang et al., 2012)). This suggests that the 

evolution of the wild progenitors of domesticated rice followed a complex path probably involving 

many dispersal events and chloroplast capture. Interestingly the majority of the accessions in the 

chloroplast clade including O. nivara had japonica like nuclear genomes while the majority of the 
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chloroplast clades related to japonica and indica were intermediate in nuclear genome (Huang et al., 

2012).  

The chloroplast is not just an energy factory for the cell but has an impact on intracellular 

signalling and may regulate the whole cells response to the surround environment. (Bobik and Burch-

Smith, 2015; Daniell et al., 2016; Sun and Guo, 2016). The extent to which adaptation has shaped the 

evolution of these distinct chloroplast genomes is not yet clear. The 36 FNPs distributed over 13 

genes (atpB, atpI, ccsA, cemA, clpP, matK, ndhF, ndhK, psaA, psbB, rpoC1, rpoC2 and rps18) and 

hypothetical proteins could provide adaptation to specific environments. Especially as they control 

vital biological processes in the plant cell like ATP synthesis, envelope membrane protein, NADH 

dehydrogenase, photosystem I and II, ribosomal protein S18 , RNA polymerase. Any variation in 

these chloroplast genes may also affect nuclear gene expression and led to dramatic changes in plant 

performance in normal conditions or under biotic / abiotic stress (Table 10 and Figure 6). (Brozynska 

et al., 2015; Dal Bosco et al., 2003; Inaba and Schnell, 2008; Li, 2012; Sun and Guo, 2016; Wang et 

al., 2014; Xu et al., 2005a; Zheng et al., 2016). Variation in maternal genomes has been shown to 

have a dramatic impact on human phenotype (Wallace, 2016). Maternal genome variation in rice 

might also offer significant adaptation to environment. Only two chloroplast types seem to have been 

introduced into domestication of japonica and indica rice. The wider range of chloroplast types 

revealed in this study might represent an untapped resource for rice genetic improvement. Twelve of 

the 36 FNPs which were found to be common in all accessions (Table 10) (Appendix 2, Figure 22) 

may represent domestication related variation between O. sativa japonica NC_001320 and all these 

wild rices. These may have resulted from selection pressure in cultivation and may include some 

accumulated mutations that could be harmful in the wild and would not survive outside of the 

domesticated gene pool. 

Rice passed through the bottle neck of the domestication process with human selection that 

focused on specific characters like seed shattering, uniform maturing and yield and led to loss of other 

important alleles which might have a role in biotic / abiotic stress resistance and adapt to environment 

changes. The wild FNPs identified in this study represent the original gene pool before domestication 

and may be useful in developing rice genotypes for cultivation in future environments (Andersson et 

al., 2010; Brozynska et al., 2015; Hajjar and Hodgkin, 2007; Henry, 2009; Song et al., 2005; Xu et 

al., 2012). Further study of these FNPs is required to determine their significance. Analysing 

chloroplast genomes provides a useful tool for conserving and utilizing the genetic resources in the 

A genome genepool of Oryza species and supporting food security. 
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Chapter 4 

4 Diversity and Evolution of Rice Progenitors in Australia 

4.1 Abstract 

In the thousands of years of rice domestication in Asia, many useful genes have been lost from 

the gene pool. Wild rice is a key source of diversity for domesticated rice. Genome sequencing has 

suggested that the wild rice populations in northern Australia may include novel taxa, within the AA 

genome group of close (inter-fertile) wild relatives of domesticated rice that have evolved 

independently due to geographic separation and been isolated from the loss of diversity associated 

with gene flow from the large populations of domesticated rice in Asia. Australian wild rice was 

collected from 27 sites from Townsville to the northern tip of Cape York. Whole chloroplast genome 

sequences and 4555 nuclear gene sequences (more than 8Mbp) were used to explore genetic 

relationships between these populations and other wild and domesticated rices. Analysis of the 

chloroplast and nuclear data showed very clear evidence of distinctness from other AA genome Oryza 

species with significant divergence between Australian populations. Phylogenetic analysis suggested 

the Australian populations represent the earliest-branching AA genome lineages and may be critical 

resources for global rice food security. Nuclear genome analysis demonstrated that the diverse O. 

meridionalis populations were sister to all other AA genome taxa while the Australian O. rufipogon-

like populations were associated with the clade that included domesticated rice.  Populations of 

apparent hybrids between the taxa were also identified suggesting ongoing dynamic evolution of wild 

rice in Australia. These introgressions model events similar to those likely to have been involved in 

the domestication of rice.  

4.2 Introduction 

Rice (Oryza sativa L.) is a critically important cereal crop being a key source of carbohydrates 

(calories) and an important source of many other nutrients for more than half of the world’s 

people(Civáň et al., 2015; Huang et al., 2012). The wild relatives of rice represent a valuable resource 

for rice improvement and adaptation to meet the needs of a growing human population in a changing 

keywords: Australian wild rice, nuclear genes, chloroplast sequence, phylogenetic analysis
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environment.(Henry, 2016; Henry et al., 2010; Mickelbart et al., 2015).  

Wild Oryza species are widespread in northern Australia(Henry et al., 2010). This is an area 

without a long history of rice cultivation, implying that the wild populations have remained largely 

isolated from the impacts of gene flow from domesticated crops that has apparently been widespread 

in Asia (Brozynska et al., 2017). The AA genome species of rice include cultivated species and their 

close relatives(Choi et al., 2017). Draft genome sequences of the AA genome populations from 

Australia have recently been reported indicating that these populations may be an important genetic 

resource for rice because of their high diversity and phylogenetic relationship to domesticated 

rice(Brozynska et al., 2015; Brozynska et al., 2014b; Brozynska et al., 2017; Sotowa et al., 2013; 

Wambugu et al., 2015).   

We now report on an analysis of the genomes of rice collected from sites over a wide area in 

northeastern Australia allowing analysis of the diversity and relationships within and between these 

wild populations. 

 

4.3 Material and methods  

4.3.1 Field collections 

Samples and data were collected during May 2015, 2016 and 2017, from north eastern 

Queensland, Australia. Collections ranged from south of Townsville to the most northerly parts of 

Cape York Peninsula (Figure 8). Seeds and vegetative material were collected from 29 sites. GPS 

coordinates, observations of plant spike form, awn length, an herbarium voucher, and photographs of 

flowers (where possible) were obtained at each site (Appendix 4, Table 27, ). 

4.3.2 Morphological measurement  

Anther and awn measurements were recorded in the field. For anther length, 4 to 8 flowers from 

3 to 6 immature panicles were selected at random from each population, photographed against a 

standard background with a scale, and measurements obtained later in the laboratory using Image-

Pro Plus software (Media Cybernetics, MD, USA, http://www.mediacy.com/index.aspx?page=IPP). 

The awn length was measured for ten different plants from each population selected at random.  

4.3.3 DNA extraction and sequencing 

Vegetative tissue from 29 samples (representing each of the collection sites) was prepared and 

http://www.mediacy.com/index.aspx?page=IPP
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DNA extracted as described by Furtado (Furtado, 2014). Three approaches were used to assess the 

quality and quantity of the extracted DNA:  Nano Drop (Thermo Fisher Scientific), agarose gel 

electrophoresis, and Qubit (Thermo Fisher Scientific). Multiplex sequencing of the 29 wild rice 

samples was conducted using a Hiseq 4000 (Illumina) using 2X 150 paired end technique, aiming to 

produce approximately 10 X whole genome coverage on average. Reference chloroplast genome 

sequences were obtained as described in (Appendix 4, Table 28). 

 

 

 

Figure 8 Australian wild rice collection sites. Red dots indicate collection sites. 

 

4.3.4 Chloroplast genome assembly  

The sequence reads were analyzed using CLC Genomic workbench V.9, Geneious V.9.1.5 and 

Clone Manager Professional 9, (Kim et al., 2015). A quality check (QC) was applied to all raw data. 

Based on the results of the QC report, reads were trimmed. A dual pipeline approach was used to 

assemble the chloroplast genome sequences: mapping reads to reference, and de novo assembly. The 

outputs of both pipelines were combined and all discrepancies were resolved and corrected manually.  



 

55 
 

4.3.5 Chloroplast phylogenetic analysis 

The assembled chloroplast genome sequences together with those that were obtained from 

earlier studies (a total of 42), were analysed using Geneious V 9.1.5 (geneious.com). Chloroplast 

genomes were aligned using the MAFFT (MAFFT  v7.308  Algorithm: auto, scoring matrix: 1PAM 

/ k=2  gap open penalty:1.53 offset value:0.123) plugin tool (Katoh et al., 2002). The alignment file 

was inspected physically.  Bayesian Inference (BI), Maximum Likelihood (ML), and Maximum 

Parsimony (MP) approaches, using the software packages MrBayes (Huelsenbeck and Ronquist, 

2001), PHYLM(Carbonell-Caballero et al., 2015; Guindon and Gascuel, 2003), PAUP(Swofford, 

2003) respectively were utilized to infer the evolutionary relationships. (Appendix 4, Table 32). 

Genetic diversity for the whole chloroplast calculated using DnaSP software (Rozas et al., 2003) 

4.3.6 Chloroplast genome annotation 

All chloroplast sequences were annotated using the CpGAVAS website 

(http://www.herbalgenomics.org/0506/cpgavas/analyzer/home), using the default parameters as 

recommended. The outcome was imported directly into Geneious software to allow comparison with 

the reference O. sativa japonica NC_001320 to identify polymorphisms.  

4.3.7 Phylogenetic analysis of nuclear genes 

Phylogenetic analysis was based upon a set of 4643 genes that were found in all include  Oryza 

species (Brozynska et al., 2017). These sequences were obtained from the sequence data pool for each 

field sample and reference genome using the software packages FastQC, BWA, Samtools, bcftools 

and MUMmer. The accession identifiers of the reference samples used were: O. sativa japonica AA 

GCA_000005425.2, O. sativa indica AA GCA_000004655.2, O. rufipogon AA GCA_000817225.1, 

O. nivara AA GCA_000576065.1, O. barthii AA GCA_000182155.3, O. glaberrima AA 

GCA_000147395.2, O. glumaepatula AA GCA_000576495.1, O. meridionalis AA 

GCA_000338895.2, Taxon A AA LONB00000000, Taxon B AA LONC00000000 and O. punctata 

BB GCA_000573905.1. A total of 4555 genes were obtained from all samples and references. These 

genes were divided into groups based upon the chromosomal location in O. sativa japonica. Multiple 

sequence alignment was performed at the gene level using MAFFT (Katoh et al., 2002). Following 

this individual gene alignment files were concatenated into single alignment for each chromosome, 

then all chromosomes were combined into a whole genome alignment of 8,179,015 base pairs (Figure 

10 B). 

 

http://www.herbalgenomics.org/0506/cpgavas/analyzer/home
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Phylogenetic trees were reconstructed using three analytical approaches: maximum likelihood 

(ML), maximum parsimony (MP) and Bayesian inference (BI). For the ML analysis.  PHYML 

version 20131022 was used with the following settings: Tree topology search: NNIs, Initial tree= 

parsimony, model of nucleotide substitution= GTR (Guindon and Gascuel, 2003). For the MP 

analysis PAUP 4.0 was used with the following setting: stepwise taxon addition with random seed, 

heuristic tree search strategy, and 1000 bootstrap (Swofford, 2003). For the BI analysis MrBayes was 

used with same as reported in (Brozynska et al., 2017). 

 

4.4 Results and Discussion 

Wild AA genome rice was collected from 27 sites in north Queensland, Australia (Figure 8 and 

Appendix 4, Table 27). Plants were found around the margins of lakes and creeks (Appendix 4, ) 

where for the most part, water was available to support their growth. Wild rice was not located on 

Cape York north of the Jardine River (-11.103665, 142.283901) or on the Islands of Torres Strait, 

consistent with Herbarium records (AVH, accessed 30/06/2017). Although the cause of this 

distributional gap, and its temporal dynamics, is unclear, it may represent a contemporary barrier to 

gene flow with populations to the north in New Guinea and South East Asia.  

Wild plants in the field showed significant morphological variation (Appendix 4, Table 27), 

particularly in spike morphology, awn length and anther length. Awn length varied more than 3 fold 

between sites with the open panicle types (O. rufipogon-like, Taxon A) having shorter awns than the 

closed panicle types (O. meridionalis-like, Taxon B). The shortest anthers (c. 1.5 mm) were found in 

plants resembling O. meridionalis or taxon B. In contrast, the longest anthers (4.5 mm) were found 

in plants resembling O. rufipogon or taxon A. Both awn and anther length showed highly significant 

(P < 0.01) differences between sites. The results agree with previous studies of these Australian 

populations. (Brozynska et al., 2014b; Sotowa et al., 2013; Waters et al., 2012).  

All regions of the chloroplasts were successfully sequenced. The high sequence coverage 

ensured a complete genome sequence was obtained for all sites in the assembly pipeline that was 

used. The average coverage of the total chloroplast for all samples was 683 X while the highest and 

lowest coverages were 2063X and 10X respectively (Appendix 4, Table 28). Compared to the 

reference sequence an average of 129.6 variants (deletions, insertions, and SNPs) per sample were 

found (Appendix 4, Table 29), which agrees with the results reported by (Brozynska et al., 2014b). 

A total of 18 functional polymorphisms were found in the chloroplasts with six of them common to 

all samples (Appendix 4, Table 30 and Table 31).  
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The aligned sequence comprised 135,532 bp. Of the variable sites 227 were parsimony-

informative and 661 were uninformative (427 were unique). The phylogenetic trees constructed using 

different approaches (Appendix 4, Table 32) were highly congruent (Brozynska et al., 2014b; Kim et 

al., 2015; Wambugu et al., 2015). As in earlier work (Wambugu et al., 2015), a clade including O. 

glumipatula and O. longistaminata was sister to all other AA genome rices which were divided into 

an Australian clade, and a clade with Asian and African taxa including the two domesticated species. 

The Australian clade contained two main clades: a small clade (7 populations) containing Taxon A 

and a much larger clade (20 populations) containing the majority of the samples including Taxon B 

and O. meridionalis. This result confirms that the chloroplast genome of Taxon A is not closely 

related to that of Asian O. rufipogon despite the plants having a similar appearance. Eight unique 

chloroplast molecular makers were found in all members of the clade that includes Taxon A 

(Appendix 4, Table 33) (Kim et al., 2015). The chloroplasts of the different Australian AA genome 

taxa showed significant genetic differences (Figure 9).The concatenated alignment of 4555 nuclear 

genes comprised 8,179,015 bp of which 44.1% were invariant. The minimum and maximum lengths 

were 5,916,081 bp and 7,013,653 bp respectively, slightly longer than reported previously (Brozynska 

et al., 2017). The nuclear analysis (as one full length sequence and by chromosomes) grouped the 

Australian samples into two main clades. One of these included Taxon A and the other much larger 

group (27 samples) included Taxon B and O. meridionalis types (Appendix 4, Table 34 and Figure 

10). This analysis confirmed the nuclear genomes of the diverse O. meridionalis group including 

Taxon B are sister to those of all other AA genome taxa. However, four other Australian samples 

including Taxon A grouped within the clade that includes all other AA genome species as suggested 

by the single genome analysis (Brozynska et al., 2017). The phylogeny based upon individual 

chromosomes (Appendix 4, Figure 33-35) shows that these populations were a sister to all Asian and 

African rices (chromosomes 4,5,6,7,8) or the Asian rices (chromosome 9,10), O. indica/O. nivara 

(1,2,3,11) or Australian (12) clades indicating significant introgression between the different 

populations of wild rice. 

The chloroplast genomes of Taxon B are diverse and include a small number (populations WR- 

44, WR- 52. WR-153, WR-162) that showed close relationships to the chloroplast genome found in 

the plants with an A genome. These included the most divergent B types (eg WR-44, WR-52 and 

WR-162). Some of these were from sites where morphological traits were somewhat intermediate 

between the Taxon A and Taxon B types. For example, the populations found on the Lakeland-

Cooktown road had large anthers and panicles that varied from open to closed. The divergent B 

nuclear genome and A chloroplast genome suggests plants in these populations may be hybrids. 

Population WR-65 had a B type chloroplast but an A type nuclear genome. 
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Figure 9 Diversity of chloroplast genomes A, Phylogenetic tree based on MP analysis of whole chloroplast genome 

sequences Colours relate to the main clades. red and brown clades are from Australia. Bootstrap values (MP 1000 

replicates) are shown on the branches; B, Genetic distances between populations in Australia and elsewhere 
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Both chloroplast and nuclear gene analysis suggest a high diversity of AA genome wild rice in 

Australia. This supports the view that Australia might be a centre of diversity for the AA genome 

clade. The populations with a morphology similar to O. meridionalis are diverse and may include 

both annual and perennial types (Brozynska et al., 2014b; Sotowa et al., 2013). These populations 

could all be considered part of one diverse species, O. meridionalis. The nuclear genome analysis of 

the O. rufipogon-like (Taxon A) populations places them in the Asian clade together with 

domesticated rices. This suggests these Australian populations should be considered as a distinct, 

undescribed taxon (Brozynska et al., 2017). Analysis of the chloroplast genomes placed Australian 

plants with O. rufipogon-like morphology in the Australian clade, distant from the Asian O. rufipogon 

which were placed in the Asian clade. Some populations with a nuclear genome similar to O. 

meridionalis had a chloroplast genome that was closer to the O. rufipogon-like plants (Taxon A) 

suggesting that their evolutionary history involved some introgression or hybridization and 

chloroplast capture (Brozynska et al., 2014b; Brozynska et al., 2017; Wambugu et al., 2015). One 

example of chloroplast capture in the other direction was also detected (WR-65). This illustrates a 

dynamic state of evolution of wild Oryza in Australia. This type of ongoing introgression is 

demonstrated by the analysis of the individual chromosomes in these populations and similar events 

may explain the domestication of wild indica by introgression of domestication alleles from 

domesticated japonica (Civáň et al., 2015). Extensive evidence shows distinct wild progenitors 

populations for indica and japonica rice that require separate domestication (Civáň et al., 2015) while 

the presence of common domestication related alleles suggests a single domestication event (Huang 

et al., 2012). The discovery of natural hybrids between taxa with greater divergence than indica and 

japonica demonstrates the potential for similar hybridization events to be associated with the transfer 

of domestication related alleles during rice domestication. 

Further research should determine the diversity of useful alleles in these populations that might 

be incorporated into domesticated rice to improved stress tolerance and grain quality. The need for 

increased efforts to conserve these species in situ and ex situ is suggested by the very limited 

collection of this material in seed collections and the more limited distribution of the O. rufipogon 

like populations in the wild in locations that may be threatened by the incursion of weeds. 
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Figure 10 Individual chromosome analysis showing diversity of nuclear genomes A, Phylogenetic tree based on MP 

analysis of the concatenated alignment of all nuclear genes. Colours relate to the main clades. Red and Brown clades are 

from Australia. Bootstrap values (Maximum Parsimony, 1000 replicates) are shown on the branches; B, Individual 

chromosome length and number of genes per chromosome. 
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Chapter 5 

5 Starch gene diversity in Australian wild rice 

5.1 Abstract 

Starch quality and quantity are crucial for rice consumers or industry. Starch properties have 

been linked directly to human health. Many genes are associated with starch properties. The 

relationship between the starch related genes: ISA2, ISA3, PUL, SBE1, SBE3, SBE4, SSI, SSII-1, SSII-

2, SSII-3, SSIII, SSIV and GBSSI in the Australian wild rice population of Cape York were studied. 

The results showed that the populations previously described as taxa A, grouped with domesticated 

rice; while taxa B was in a different clade. Interestingly two accessions, WR-65 and WR-44, had an 

in between position, suggesting hybridisation between these populations. Many SNPs/FNPs were 

recorded in the UTRs and exonic region of these genes that could possibly impact on their expression. 

CDS prediction of the GBSSI gene showed an extra 120bp. This was due to a change in the predicted 

splicing site that would lead to intron retention and add 40 amino acid to the predicted protein. It 

seems that this addition would not affect protein structure and the active site; however, this may 

explain the different starch properties of this taxa reported previously. Australian wild rice 

populations have potential as a novel source of starch related genes which may help improve the 

health of rice consumers.  

 

 

Keywords: Rice, starch genes, starch genes phylogenetic, gene splicing, GBSSI, intron retention  
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5.2 Introduction 

Starch is around 90% of the dry rice grain weight and has vital importance as a direct source of 

energy in the human diet; but the food industry requires different rice properties to meet market 

requirements. Recently, increasing concerns about health problems like obesity, developing type-2 

diabetes and colon disease due to lifestyle and diet changes have led to evaluation of starch properties 

like resistant starch (RS) that could help address these health challenges (Zhou et al., 2016). Starch 

consists of two kinds of polysaccharide: amylose 15-30 % and amylopectin 65-85%. Amylose is a 

linear chain produced by linking glucose α 1,4, while the amylopectin is a highly branched molecule 

composed of α 1,4 linked glucose chains with α 1,6 links that are responsible for the branching. The 

amylose / amylopectin ratio has great impact on the physical and chemical properties of the starch 

that impact on the cooking process. Rices with high amylose content tend to give fluffy single grains; 

on the other hand, low amylose rice tends to be glossy when cooked (Dobo et al., 2010; Pérez and 

Bertoft, 2010; Yan et al., 2009; Yu et al., 2011; Zhang et al., 2014). 

Many genes are involved in the starch synthesis pathway, mainly granule-bound starch synthase 

I (GBSSI), starch synthase SSI, SSII, SSIII, SSIV, starch branching enzyme (SBE), starch debranching 

enzyme (DBE) and isoamylase (ISA). However, the GBSSI gene (waxy) which is expressed mainly 

in storage tissue such as the endosperm, has a major influence on the amylose content (Cheng et al., 

2012; Dian et al., 2003; Yu et al., 2011). 

The large number of genes that are involved in the starch synthesis process make understanding 

and manipulating this pathway much more difficult. In Arabidopsis for example, an SSII deficient 

mutant causes an increase in total amylose and amylose/amylopectin ratio; on the other hand, a double 

mutant deficient in SSII and SSIII gives sluggish plant growth and decreased starch content (Zhang 

et al., 2008). Chain length distribution analysis shows mainly independent functionality of the SSI, 

BEI and BEIIb genes. However a BEIIb deficiency reduces the short chain ratio in the amylopectin, 

and a be2b mutant has more amylose compared with the wild type, probably because of a reduction 

in amylopectin synthesis (Abe et al., 2014). While PUL function to some extent overlaps with ISA1, 

deficiency of ISA1 has more impact on amylopectin synthesis than PUL (Fujita et al., 2009). Fujita 

et al. (2011) suggested SSI or SSIIIa alone were essential for starch biosynthesis, and remarkably, 

found 30-33 % amylose with high SSI activity and recessive SSIII. (Kharabian-Masouleh et al., 2012) 

identified 66 functional SNPs in 18 starch biosynthesis related genes. Of these, 31 SNP were found 

to be associated with cooking quality. Other studies have shown resistant starch properties as a result 

of deficiency of the SSIIIa gene and high expression of the waxy gene (Zhou et al., 2016), whereas, 

a single amino acid substitution in the SBE3 gene (leucine in the wild changed to Proline in the 
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mutant) resulted in resistant starch in rice (Yang et al., 2012). 

In rice cultivars, three different alleles have been identified in GBSSI, based on the number of 

CT repeats in the 5′-UTR as well as SNPs in the splicing site of the first intron, exons 4, 6 and 10. 

These variants are associated with a huge variation in the mRNA expression level of up to 10 times, 

which is in turn is associated with the amylose content (Cai et al., 1998; Chen et al., 2008b; Dobo et 

al., 2010; Hirano et al., 1996; Hirose and Terao, 2004; Isshiki et al., 1998; Larkin and Park, 2003, 

1999; Mikami et al., 2008). Other researchers have reported changes in the exon intron splicing region 

of SSII-1 gene, that cause an alternative transcript leading to the addition of a 28 bp fragment to the 

mature mRNA (Chen et al., 2017). The sequences of up to ten nucleotides on the edges of the introns 

and exons (exon, intron splicing enhancer and silencer) have extreme importance, as they can shape 

the transcriptome by influencing splicing and expression. Any change in these regions might 

influence the expression level or protein sequence (Jian et al., 2013; Prathepha, 2007). 

Starch traits have been under strong selection throughout the history of rice domestication, as 

they are directly linked to consumer preferences. Wild rice does not have sticky starch, stickiness 

being one starch trait, as stickiness was carefully selected for only after domestication; and the 

development of glutinous rice, may have occurred over many stages. 

 Evolutionary study of GBSSI shows two major and six minor haplotypes in wild and 

domesticated rice. The H2 allele was the most ancient one found in 89% of the accessions. In 

domesticated rice the GBSSI gene has had three independent paths in rice evolutionary history. aus 

rice has the oldest one. This agrees with the theory of three independent origins of the domesticated 

rice (Civáň et al., 2015; Kim et al., 2016; Singh et al., 2015; Singh et al., 2017). GBSSI gene variation 

was found to be less in the wild than in cultivated rice, which demonstrates that selection pressure 

has been applied it to meet the demands of different consumers during domestication (Cheng et al., 

2012; Singh et al., 2017; Vaughan et al., 2008). 

Alternative splicing events are well known in plants and impact on post transcriptional 

regulation and may result in protein diversity. Alternative splicing provides ability to adjust the 

transcriptome according to the environment, and can be divided in to exon skipping , intron retention, 

alternative donor and alternative acceptor changes (Cooper et al., 2009; Wang and Brendel, 2006). 

Arabidopsis and rice have been used as models in studies of alternative splicing. In rice, for instance, 

around 20% of the expressed genes showed nearly 14500 alternative splicing events, 53.5% of which 

were intron retention and 13.8% exon skipping; whereas, in human, 58% of alternative splicing was 

reported as exon skipping and intron retention was just 5%. In Arabidopsis, 40 % of the genes have 
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alternative splicing events shared with rice, suggesting that there is a conserved mechanism regulating 

this process and involved in plant evolution (Kiegle et al., 2018; Wang and Brendel, 2006). In rice 

more than 50% of genes have splicing events responsive to stress in the environment (Zhiguo et al., 

2013). 

Australian wild rice has a very high amylose content and has a different amylose and 

amylopectin structure as well as pasting properties and fine molecular structure, suggesting an 

alternative biosynthesis mechanism that can lead to new rice products. This may allow development 

of new cultivars with low glycemic index, which is important for diabetic rice (Calingacion et al., 

2014; Tikapunya et al., 2017b). 

The aim of this study is: 1, to understand the diversity of starch genes in the Australian wild 

rice population. 2, determine the functional variation in these genes (nominate synonymous and non-

synonymous SNPs in the coding region as well as the variation in the exon-intron splicing enhancer 

and silencer that have potential impact on the transcriptome). This study aims to better understand 

the variation in starch properties of these taxa and their potential utility in rice breeding and 

production. 

5.3 Materials and methods 

5.3.1 Australian wild rice collection 

Samples were collected during May 2015 and 2016 from north eastern Queensland, Australia. 

Locations ranged from south of Townsville to the most northerly parts of Cape York Peninsula ( B). 

Vegetative material was collected from 29 sites. At each site, GPS coordinates and phenotypic 

characteristics were recorded. DNA was extracted as described by (Furtado, 2014). The extracted 

DNA was subjected to quality and quantity checks. Thereafter samples were sequenced with a Hiseq 

4000 (Illumina), using a 2X 150 paired end technique, with an aim to produce approximately 10 X 

whole genome coverage on average. See Chapter 4for GPS locations and other details (Moner et al., 

2018). 

5.3.2 Starch related gene sequence 

Raw sequence data were imported into CLC genomic workbench V.10, and mapped to the 

Oryza sativa japonica Group (assembly Build 4.0) as a reference. Gene loci (Table 12) and A) were 

extracted using CLC extraction tools. Thereafter, all sequences were imported into Geneious V9.1.5 

(geneious.com) and aligned using the MAFFT plugin tool (Katoh et al., 2002). The alignment file 

was inspected physically for any errors or misaligning. SNP finding and annotation tools were used 
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to identify synonymous and non-synonymous nucleotides and amino acid substitutions. 

Table 12 Details of thirteen starch related genes in rice reference gene name, ID and size are shown. 

 Gene name Size bp Gene ID NCBI database 

1 ISA2 2724 4338695 

2 ISA3 11317 4347328 

3 PUL 13139 4335042 

4 SBE1 7644 4342117 

5 SBE3 11571 4329532 

6 SBE4 3309 4335763 

7 SSI 7746 9269493 

8 SSII-1 8015 4348711 

9 SSII-2 5006 4330709 

10 SSII-3 4976 4340567 

11 SSIII 7943 4337056 

12 SSIV 8082 4331077 

13 GBSSI 5065 4340018 

ISA: starch-debranching enzyme isoamylase, PUL: starch-debranching enzymes pullulana, SBE: 

starch branching enzyme, SS: soluble starch synthesis enzyme, GBSS: granule-bound starch synthesis  

 

5.3.3 Phylogenetic analysis 

Bayesian Inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP) 

approaches, using the software packages MrBayes (Huelsenbeck and Ronquist, 2001), RAxML 

(Stamatakis, 2006; Stamatakis et al., 2008) and PAUP (Swofford, 2003) respectively were utilised to 

infer the evolutionary relationships. The phylogenetic analysis was done based on two levels: 

individual genes and all genes combined in one alignment file. 

5.3.4 CDS prediction  

Full GBSSI gene sequences were uploaded to the GENSCAN web server: 

http://genes.mit.edu/GENSCAN.html. for analysis, organism module: Arabidopsis, with suboptimal 

exon cutoff =1. Print option: predicted CDS and peptides (Burge and Karlin, 1997; Burge and Karlin, 

1998; Salzberg et al., 1998). 

http://genes.mit.edu/GENSCAN.html
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5.3.5 Protein model 

Predicted amino acid was used to find the best homology model through SWISS-MODEL 

server: https://swissmodel.expasy.org/ (Arnold et al., 2006; Biasini et al., 2014; Kiefer et al., 2008) 

5.3.6 Protein alignment and 3D structure 

The protein 3D structure was obtained by upload the protein model file.pdb to the FATCAT 

server: http://fatcat.sanfordburnham.org (Ye and Godzik, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 A. Gene structure of 13 starch related genes. Green bars are complete gene sequences, 

yellow bars are exons. B. Australian wild rice collection sites North of Queensland 

B 

A 

https://swissmodel.expasy.org/
http://fatcat.sanfordburnham.org/
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5.4 Results  

A phylogenetic tree of the 13 starch related genes, clearly shows two main clades. The 

populations described earlier as Taxa A have grouped with the domesticated rice reference (O. 

sativa japonica). Accessions of the other populations, Taxa B, all grouped together in a separate 

clade. Interestingly, two accessions WR-65 and WR-44 were intermediate between these clades 

(Figure 12 and Figure 45 -57). WR-65 and WR-44 were examined further due to their location 

in the phylogenetic tree. The alignment file shows two types of reads in both accessions for 

some of these genes. These variants seem to reflect the heterozygous nature of these plants 

(Figure 13). This suggests that they have resulted from hybridisation between these populations 

in agreement with our overall analysis of the nuclear genes (Moner et al., 2018).  

Individual starch related genes (ISA2, ISA3, PUL, SBE1, SBE3, SBE4, SSI, SSII-1, SSII-

2, SSII-3, SSIII, SSIV and GBSSI) were not all intermediate. Five genes (SBE3, SSI, SSII-1, 

SSIII and SSIV) have different associations jumping between clades A and B for these two 

accessions (WR-65 and WR-44). Moreover, some of these genes (ISA2, PUL, SBE1, SBE3, 

SSI, SSII-1, SSII-3 and SSIV) divide into at least two main sub clades in the Taxa B population 

(Figure 45 -57). The GBSSI gene phylogenetic tree shows that Australian wild rice can be 

grouped into the three different groups previously reported in the evolutionary history of this 

gene (Figure 12 and Figure 45-57) (Singh et al., 2017). 

Nucleotide variation (synonymous and nonsynonymous) showed some differences in each 

gene (Table 13). The highest SNPs/ FNPs were in the ISA2, SSII-2, and SSIII genes 

respectively, while the lowest were in SSI and GBSSI. Some of these SNPs/FNPs were highly 

specific to either Taxa A or B. (Table 35 and Supplementary File 1). Interestingly, overlaying 

these differences with annotation information showed that many of these variations were 

located in the UTR and exons intron boundaries. Because very high amylose content had been 

recorded in these populations and GBSSI has the main role in amylose biosynthesis, the large 

number of variations in the intron exon boundary of this gene were investigated and the likely 

sequences of cDNAs were predicted. The full length sequences of the GBSSI gene for Taxa A, 

B, O. rufipogon Asian populations and O. sativa japonica as validation reference, were 

predicted. Several SNPs were recorded in these accessions, but these did not affect the length 

of the transcripts. However, Taxa B had a large insertion of 120bp (Figure 14 and Figure 15) 

that could provide an explanation of the high amylose content in this taxon.
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Figure 12 Phylogenetic tree based on maximum likelihood and Bayesian analysis (both agreed in topology) of 13 starch gene sequences. Bootstrap values (1000 replicates) are shown 

on the branches. Taxa A accessions grouped with domesticated rice while Taxa B accessions grouped together as a separate clade. WR-65 and WR-44 were in between those two 

clades indicating they were hybrids 
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Figure 13. Two type of reads as evidence of hybridisation in Australian wild rice population from North 

Queensland. 

The results suggest 12 exons in taxa B whereas 13 were predicted for the others as shown 

previously. Exon 11 in the taxa B was predicted to be 336 bp which is equivalent to exon 11 

and 12 and the insert of 120bp. The intron between exon 11 and 12 equal 120bp. This suggest 

that the whole intron remained and was not removed during the predicted splicing process. This 

led to an additional 40 amino acid in the predicted protein but kept the sequence in frame. One 

T/A SNP in the intron 11 splicing enhancer is possibly responsible for this intron retention. 

The 3D structure comparison between taxa B and the reference shows significant differences 

in the linking region as well as the beta sheet (Figure 16). 

5.5 Discussion  

The Australian wild rice populations of the Cape York have unique characteristics 

(Brozynska et al., 2017). Starch analysis of these populations shows in general high amylose 

content compared the domesticated cultivars (Tikapunya et al., 2017b). 
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Table 13. SNPs/FNP summary for starch related genes compared to the O. sativa japonica assembly Build 4.0 

Genes  SNPs per accession FNPs per accession 

ISA2 495 17.07 44 1.52 

ISA3 235 8.11 23 0.8 

PUL 346 11.94 40 1.38 

SBE1 108 3.73 14 0.49 

SBE3 90 3.11 9 0.32 

SBE4 172 5.94 21 0.73 

SSI 57 1.97 7 0.25 

SSII-1 315 10.87 18 0.63 

SSII-2 512 17.66 35 1.21 

SSII-3 327 11.28 33 1.14 

SSIII 585 20.18 36 1.25 

SSIV 157 5.42 27 0.94 

GBSSI 12 0.42 10 0.35 

 

Phylogenetic analysis of starch related genes indicated that the Australian wild rice, Taxa B, 

accessions were well differentiated from domesticated rice. Their starch related genes may 

explain their different starch structure and content, especially their high amylose (Tikapunya 

et al., 2017b). Starch related genes in general were subjected to selection over the course of 

domestication and breeding to enhance the cultivar to suit human use and taste. GBSSI and 

SBE genes in particular were under strong selection pressure due to requirements to meet the 

demand of different consumers. This led to the loss of important allele from those genes and 

also other starch related genes (Yu et al., 2011). Australian wild rice as an intact population 

can deliver varieties of alleles to develop new cultivars with specific starch properties for 

consumption of healthy rice with low glycemic index or even for industry requirements 

(Brozynska et al., 2015; Henry et al., 2010).  
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Figure 14. Prediction of the CDS and determined exons boundary in GBSSI taxa B compared to the reference O. sativa japonica. Differences are highlighted by the red rectangle. In 

Taxa B exon 11 and 12 were combined and included the intron between them. 
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Intermediate location of those accessions (WR-65 and WR-44) and jumping between 

clades across all starch related genes was interesting (Figure 12, 13 and Figure 45-57). Read 

alignment showed two types of reads that are unlikely to be an error and gave strong evidence 

of hybridisation between Australian wild rice populations taxa A and B (Moner et al., 2018). 

The degree of exchange of genomic material was not equal in all starch related genes; therefore 

they were in different positions in the phylogenetic trees. 

Numbers of SNPs have been identified in those 13 starch related genes (Table 35 and 

Supplementary File). Their locations were in the 5`UTR, exon and intron boundaries that 

regulate the expression level and final transcriptome (Srivastava et al., 2018). Specific allele in 

the UTR and exons of GBSSI influenced the proportion of amylose /amylopectin (Butardo et 

al., 2016). Splicing regions and their impact on transcription has been well studied in the 

abundance of human genome resources and plants. In general, several bases up to ten, in either 

5` or 3` of the exon-intron boundaries, control this process. Any change in this area impacts on 

the spliceosome binding site and can cause alternative splicing which can change protein 

sequences (Jian et al., 2013; Srivastava et al., 2018). Epigenetic mechanisms and co-

transcription might be involved in Splicing pre-mature mRNA (Gelfman et al., 2013), by 

changing chromatin structure and RNA polymerase II elongation, which eventually impact on 

the spliceosome configuration (Luco et al., 2011; Maor et al., 2015; Ullah et al., 2018; Yearim 

et al., 2015). All the above might play an important role in the variations in the starch properties 

that were reported previously in those populations (Tikapunya et al., 2017b). 

The GBSSI gene in particular, as the key gene associated with amylose synthesis, has 

many variations in the 5` UTR of the Australian wild rice accessions, which may be associated 

with regulating the expression level and post translation regulation of this gene, as well as the 

splicing process (Barrett et al., 2012; Liu et al., 2009; Srivastava et al., 2018; Terada et al., 

2000). (Mishra et al., 2016) studied the variation in the 5` UTR of the OsClpB-C gene during 

heat stress and found that it has an essential role in the post-transcriptional control and 

expression of the OsClpB-C gene as well as being involved in ribosomal assembly. 

An SNP change from A to G resulting in a change from the negative charged amino acid 

Aspartic to non-polar amino acid Glycine, did not seem to affect the gene activity in vitro, but 

in fact impacted on starch granule binding and eventually reduced amylose content (Wang et 

al., 1995; Ayres et al., 1997; Cai et al., 1998). One amino acid change from Cysteine               

(non- polar) to Valine (non-polar) lead to over expression and a change to an insoluble form,  
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A 

 

B 

 

C 

Figure 15 A. SNP in the intron 11 splicing enhancer of the GBSSI gene B. intron 11 retention and 120 bp insertion in the CDS C. insertion of extra 40 amino acid as a consequence of 

the intron retention. 
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Figure 16. JSmol display of the GBSSI 3D structure alignment (superposition) Taxa B with Reference O.sativa japonica (3vue.1.A) using FATCAT. Taxa B and reference are in grey 

and red respectively. White arrow indicates the difference in the structure between these genes. left top is Taxa B left bottom reference 
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indicating that a disulfide bond controlled the three dimension stability of the 3D structure and 

may be very important in maintaining domain arrangement and increasing the efficiency of 

starch biosynthesis (Momma and Fujimoto, 2012). The number of dinucleotide (CT)n in the 5` 

UTR and the first intron splicing junction have been linked with amylose content in some 

indica varieties (Zhu et al., 2003). On the other hand, duplication of 23 bp in the second exon 

or a SNP in the fourth exon can cause a glutinous trait and loss of binding function between 

starch granules(Hori et al., 2007; Liu et al., 2009). A combination of several SNPs in exons 6 

and 10 led to a change in the amino acid and the splicing site of the first intron, all leading to a 

range of amylose contents (Chen et al., 2008a; Chen et al., 2008b; Dobo et al., 2010; Hoai et 

al., 2014). Changing G to T led to incomplete post transcriptional processing of the immature 

mRNA, giving a glutinous trait (Hirano et al., 1998). 

Alternative splicing impacts on gene expression can lead to exon skipping, intron 

retention or frame shifting that changes or makes nonfunctional the eventual protein (Cartegni 

et al., 2002). For instance, a G to T SNP in intron 25 of the DFNA1 gene interrupted the splicing 

donor site that is responsible for nonsyndromic deafness in humans. This SNP caused a 4 base 

insertion and frame shift, premature termination and the deletion of 32 amino acids from the 

protein. (Lynch et al., 1997). As an additional example, a C to T SNP in the seventh exon of 

the SMN2 gene results in a truncated protein by changing exon splicing enhancer ESE to exon 

splicing silencer ESS (Cartegni et al., 2006; Cartegni and Krainer, 2002).  

The 40 amino acid insertion reported here as an intron retention event, changed the 3D 

structure of this protein slightly (Figure 17 - 19). The distance between the nearest residue in 

the active site, Thr., and the new inserted residue, Phe, was around 15A°, hence it was not 

likely to affect the active site. The disulfide bond plays an important role in stabilising the 

protein domain (Figure 18) (Momma and Fujimoto, 2012). The new inserted residues near the 

disulfide bond also did not appear to affect its function.  This was clearly by shown by domain 

similarity to the reference (Figure 19). However, it impacts on the beta sheet and linking region. 

This new structure might affect the protein binding or early/ late termination per unit. 

In conclusion, a number of variations have been found between domesticated and 

Australian wild rice starch related genes. These were in critical positions that impact on genes 

regulation, expression and final transcriptome, which affects the starch properties. More 

experiments are essential to identify the useful variations, as well as to eliminate the deleterious 

mutations that might reduce the quantity or harm the quality, and affect how we can employ 
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them to improve existing high quality and healthy rice. 

 

Figure 17. 3D structure filled of the GBSSI gene protein Taxa B blue, green and red colour referring to the pocket 

KTGGL, 40 amino acid insertion and one amino acid change Ser to Arg 

 

Figure 18. Three dimension structure of the GBSSI gene of Taxa B. The closest distance between the Thr in the 

active site and the 40 amino acid insertion Phe was 15 A° 
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Figure 19 A, GBSSI gene of Taxa B; B, O. sativa japonica. Disulfide bond shown by white arrows 

 

A                                                                                                           B 
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Chapter 6 

6 General discussion  

6.1 Fulfilment of objectives 

This study extends previous studies (Brozynska et al., 2017; Sotowa et al., 2013; Tikapunya et 

al., 2017a) which reported potentially two new species of wild rice in the North of Queensland. These 

species are both different from O. rufipogon, the closest wild relative of domesticated rice. The first 

of these studies covered morphological characters with investigation of some genomic loci. The 

second study was a comprehensive whole genome nuclear and chloroplast assembly and annotation 

as well as a study of the relationship to other Oryza species. However, the study was based on just 

two individual plants. The third study explored the possibility of consumption of rice from these 

populations and the grain properties of the rice. 

This thesis reports (Chapter 3) the assembly of high quality chloroplast sequences of wild rice 

populations of Asia as the closest geographic populations to the Australian wild rice, in order to study 

the phylogeny of these populations. SNPs and other molecular markers were defined to identify and 

distinguish these populations. Chapter 4 reports an extensive survey of populations from Townsville 

to the tip of Cape York, with wild rice collected from 27 different sites. This collection showed clearly 

the two distinct taxa. Chapter 5 was focused on the starch related genes following the report of 

interesting starch properties, especially the amylose content in these populations (Tikapunya et al., 

2017b). The phylogeny of starch related genes was studied individually and together. As GBSSI gene 

has the main role in amylose synthesis, it was studied in more detail. In this chapter, we will discuss 

the key findings and suggestions for further study of these interesting wild populations. 

 

6.2 Chloroplast genomes of Asian wild rice  

The chloroplast is a conserved maternally inherited genome, and has been used as barcode to 

track the evolution of plant species. A dual pipeline procedure was developed using mapping of reads 

to a reference and de novo approaches, in order to assemble high quality chloroplast genomes which 

allowed elimination of assembly errors that may have been counted as a difference previously. Any 
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errors may impact negatively on the analysis of evolutionary relationships and may provide an 

erroneous assessment to the evolutionary history of the Oryza genus. Average coverage was a critical 

criterion for acceptance of results in the dual pipeline. However, sometimes even with relatively high 

coverage, there were still some small genomic areas with no coverage due to deletion or chance lack 

of sequencing. Analysis of 31 wild Asian and 9 domesticated accessions covering South and South 

East Asia down to the North of Australia gave a perspective on the evolution of these wild populations 

and how they interact with the surrounding environment.  

The phylogenetic tree shows that genetic variation of the wild rice populations is mainly 

distributed according to geographic origin (based on continent). Interestingly, the Australian type 

extended to the North (Philippines). Asian populations overlapped and there is no cut off line to 

separate them, possibly because of the impact of human movement. Two main sub clades representing 

the origin of the domesticated rice japonica and indica sub species were identified. The separation of 

these two subclades supports the multiple domestication theory. Domesticated species of aus 

appeared in both subclades, suggesting that both maternal genomes were involved in this 

domestication.   

The nuclear genome diversity in these wild rices does not follow the same pattern as for the 

chloroplast genomes (Figure 4) (Civáň et al., 2015; Huang et al., 2012). This suggests that the 

evolution of the wild progenitors of domesticated rice followed a complex path, probably involving 

many dispersal events and chloroplast capture. Interestingly, the majority of the accessions in the 

chloroplast clade, including O. nivara, had japonica like nuclear genomes; while the majority of the 

chloroplast clades related to japonica and indica were intermediate in nuclear genome (Huang et al., 

2012).  

The chloroplast is not just responsible for photosynthesis but also affects intracellular signaling 

and performances and responses to the environment. The survival of these populations in the 

Australian environment mean that these wild plants may have alleles that could contribute to 

adaptation of this crop to different environments, allowing rice to be grown in new areas. Here we 

reported 36 nonsynonymous (FNPs) distributed over 13 genes (atpB, atpI, ccsA, cemA, clpP, matK, 

ndhF, ndhK, psaA, psbB, rpoC1, rpoC2 and rps18) that could provide adaptation to specific 

environments. especially when they control vital biological processes in the plant cell like ATP 

synthesis, envelope membrane protein, NADH dehydrogenase, photosystem I and II, ribosomal 

protein S18 and RNA polymerase.  

Maternal genomes, including the chloroplast and mitochondria, have a great impact on the 
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overall phenotype. Just two chloroplast types have domesticated in Asian rice. Other wild chloroplasts 

failed to pass through the domestication bottle neck and strong selection pressure over thousands of 

years of the domestication process. Introducing these new wild chloroplast types might help to adapt 

rice to various environments, or add interesting performance re abiotic / biotic stresses. Analysing 

chloroplast genomes provides a useful tool for conserving and utilising the genetic resources in the 

A genome genepool of Oryza species and for supporting food security. 

 

6.3 Phylogeny of Australian wild rice populations 

We did a comprehensive survey looking for wild rice from Townsville up to the tip of Cape 

York over two years, 2015 and 2016. Wild rice was found in 27 sites, around creeks and lake margins. 

Water availability was the key factor in finding these wild plants. Interestingly, there was no wild rice 

after crossing the Jardine River (-11.103665, 142.283901) up to the tip and to the Islands of Torres 

Strait. It is unclear why rice does not extend further north on the Cape. As previously reported, wild 

rice showed significant morphological differences compared to the domesticated rice–mainly by way 

of long anthers with short awns and open panicles in what was reported as taxa A., and short anthers, 

very long awns and closed panicles in taxa B, according to previous reports. These morphological 

traits could be indicators of the evolutionary history of these populations. Long anthers may improve 

out crossing, while long awns might help seeds attach to animals and enhance distribution. This could 

be one of the explanations as to why this taxa separates over large areas. 

Twenty-nine samples were sequenced successfully with an average coverage of around 10X 

and overall high quality data. Chloroplast genomes were assembled using the same dual pipeline used 

for the Asian data, to produce high quality chloroplast genomes for use as reference genomes for 

these populations in future studies. An average of 129.6 variants were recorded as SNPs, deletions or 

insertions compared to the reference genome O. sativa japonica. Six common nonsynonymous SNPs 

were identified in all samples, plus another 12 that were not consistent among all samples, possibly 

including alleles which could be useful for the rice community in improving this important crop.  

Chloroplast phylogenetic analysis showed clear distinct clades. Australian wild rices were 

isolated from all other AA Oryza species, with two main subclades corresponding to taxa A and B. 

Australian wild rice in general was very different from the domesticated rice ancestor O. rufipogon, 

suggesting that it is most likely not the same species, as previously thought. This means Australian 

wild rice has a repository of new genes that have not been used before, which opens an opportunity 

to the rice community to add new genetic material to enhance rice varieties. Chloroplast markers that 
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were identified could help in identifying those two main groups in a simple way.  

The coding parts of genes (exons) are the key parts of the genome. A set of 4555 genes were 

compared in order to evaluate these wild populations according to the functionality of the coding 

sequences. Concatenation of all exons across the 12 chromosomes showed Australian wild rice as a 

distinct population from all other AA genome species. Taxa A (O. rufipogon like) was a sister clade 

to all domesticated and wild rice, while taxa B (O. meredionalis like) was a sister clade to all others 

(Asian and African Oryza AA genome). This indicates that these populations have unique functional 

material. These genes make them competitive in the Australian environment. Our analysis confirms 

previous studies of these populations. Individual chromosome phylogenetic analysis shows 

significant introgression between the different populations of wild rice.  

The divergent B nuclear genome and A chloroplast genome suggest plants in some of these 

populations may be hybrids. Population WR-65 had a B type chloroplast but an A type nuclear 

genome. Both chloroplast and nuclear gene analysis suggest a high diversity of AA genome wild rice 

in Australia. This supports the view that Australia might be a centre of diversity for the AA genome 

clade. Some populations with a nuclear genome similar to O. meridionalis had a chloroplast genome 

that was closer to the O. rufipogon-like plants (Taxon A), suggesting that their evolutionary history 

involved some introgression or hybridisation and chloroplast capture. One example of chloroplast 

capture in the other direction was also detected (WR-65). This illustrates a dynamic state of evolution 

of wild Oryza in Australia. This type of ongoing introgression is demonstrated by the analysis of the 

individual chromosomes in these populations and similar events may explain the domestication of 

wild indica by introgression of domesticated alleles from domesticated japonica. The discovery of 

natural hybrids between taxa with greater divergence than indica and japonica, demonstrates the 

potential for similar hybridisation events to be associated with the transfer of domestication related 

alleles during rice domestication. 

 

6.4 Starch related genes in wild rice populations  

Starch analysis of these populations shows high amylose content compared with domesticated 

cultivars. Therefore, we focused on analysis of starch related genes. Phylogenetic analysis of these 

genes indicated that the Australian wild rice, Taxa B, accessions were well differentiated from 

domesticated rice. This may explain why they have different starch structure and content, especially 

high amylose. Starch related traits were one of the key factors that breeders focused on. As a result, 

this has been under selection to meet the consumer’s requirements. Important alleles from these genes 
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have been lost during domestication. Australian wild rice is an intact population that was not involved 

in domestication so can deliver novel alleles or possibly new genes to help develop new cultivars 

with specific starch properties for healthy rice.  

Phylogenetic analysis of the starch related genes showed two accessions (WR-65 and WR-44) 

were in between the main clades and jumped between clades across all starch related genes. This was 

unexpected and required more investigation. Read alignment showed two types of reads that are 

unlikely to be an error, that provided strong evidence of hybridisation between Australian wild rice 

populations, taxa A and B. Important SNPs were identified across all 13 genes in 5`UTR, exon, exon 

and intron boundaries that regulate the expression level and shape the final transcriptome. 

GBSSI has the main role in amylose synthesis, amylose content and amylose /amylopectin ratio; 

therefore, it was targeted for more attention. Many variations were found in the 5` UTR of the 

Australian wild rice accessions, which may be associated with regulation of the expression level and 

post translation regulation of this gene, as well as the splicing process. To confirm the importance of 

these SNPs, we predict the CDS of this gene and interestingly found one SNP (T to A) in the exon 

splicing enhancer that had an effect on the splicing process, causing alternative splicing and retention 

of the whole intron between exons 11 and 12. This intron retention might be responsible for the 

increased amylose and the distinct starch structure in this population. The transcript of this predicted 

CDS showed a 40 amino acid insertion without any effects on the translation frame. The 3D structure 

of this protein showed a slight change in the beta sheet and linking region but no change in the main 

protein domains. This insertion was also far from the protein active site which retained functionality. 

This new structure might affect the protein binding or early/ late termination per unit, or speed up the 

synthesis per time unit.  

 

6.5 Future directions 

Crop wild relatives are important genetic material to improve and develop domesticated 

cultivars. These wild plants represent a vast repository of undiscovered genes. Introducing them into 

breeding programs adds new alleles that might be the key to planting the crop in new areas which 

have not been used before. In this study, it was shown clearly that the Australian wild rice population 

of Cape York was distinct from all other wild and domesticated rice AA genomes. In addition, there 

is a high probability this includes a new species. This new species should receive much more 

attention. Priority number one is to protect this population from extinction. This new species was 

found in limited sites compared to the other populations, which means there is a high potential to lose 
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it due to competition from weeds. Secondly, new species classification should be confirmed, and a 

new scientific name proposed.  

The high quality chloroplast genomes that were assembled in this study as well as the SNPs and 

FNP markers, could be used to guide any further survey as a simple technique to identify unknown 

wild rice on a large scale, especially at the pre-selection stage. These markers should clarify the 

evolutionary linkage and make it easy to select from large collections. 

These wild populations should be under intensive study to evaluate and characterise their 

desirable traits like biotic and abiotic stress, nutritional value and productivity. Further research 

should determine the diversity of useful alleles in these populations that might be incorporated into 

domesticated rice to improve stress tolerance and grain quality. Moreover, Cape York populations 

located in an area isolated from commercial rice fields, provide material suitable to study for other 

evolutionary relationships and are models for evolutionary studies and for testing new evolutionary 

hypotheses. These latter include hybridisation events in these populations, that prove rice evolution 

is a dynamic and ongoing process. 

A number of hypotheses could be used to explain why starch properties in these populations 

showed a different structure and high amylose content. One, reported here, is intron retention in the 

GBSSI gene, which needs to be validated. RNA-seq analysis is essential to confirm this and to 

determine the expression level of this gene. Further studies are required to study these genes in more 

depth. This discovery could be the key to the production of high quality and healthy rice with low 

glycemic index and reduced diabetes risk.  
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Appendices  

1 Appendix 1. Oryza meridionalis  

1.1 Economic/Academic importance  

Oryza meridionalis is an Australian wild rice in the AA genome group of close relatives of 

domesticated rice. The economic and academic interest in this species is associated with it being the 

most distant from domesticated rice of the species within the AA genome group making it an 

important resource for rice improvement and the study of rice evolution.  

 

1.2 Brief botanical descriptions including distribution 

Oryza meridionalis was described by Ng et al. in 1981.  It is found across northern Australia 

from the Kimberley region in Western Australia to Queensland (Figure 20). O. meridionalis has also 

been reported from New Guinea.  This is one of four Oryza species found in Australia (Henry et al., 

2010).The description in the flora of Australia (Groves et al., 2009) includes the details provided in 

(Table 14) O. meridionalis is depicted in (Figure 21). It can be distinguished from other Oryza species 

found in northern Australia on the basis of the closed panicles and small anthers. O. meridionalis was 

originally described as an annual (Ng et al., 1981). 

 

Table 14 Description of Oryza meridionalis (Groves et al., 2009) 

Life cycle  Annual or perennial 

Clums 0.3-2 m 

Leaves ligule 5-20(-30) mm, blade 6-47 cm long 4-14 mm wide 

Panicles 9-30 cm long 

Spikelets 6.5-10 mm long 

Awn (30-) 60-150 mm long 

Anthers 1.3-2.5 (-3) mm long 

Caryopsis oblanceoloid or oboid-ellipsoidal laterally compressed (5-) 5.5-7.5 (-8.3) mm long 
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The presence of populations with similar appearance but apparent perennial habit led to some 

uncertainty about the identity of these perennial populations. O. meridionalis like plants were 

designated as Taxa B by (Brozynska et al., 2014b). Subsequent analysis (Moner et al 2017) has 

suggested that these are all part of one clade supporting the description of O. meridionalis as, an 

annual or perennial as in the Flora of Australia (Groves et al., 2009). (Julia et al. 2016) reported details 

of the morphology of some ex situ collections of O. meridionalis. Herbarium samples may be labelled 

O. rufipogon especially if collected before O. meridionalis was described. 

 

1.3 Cytological details of genome including karyotype data 

O. meridionalis is a diploid 2n=24. 

 

1.4 Physiological studies 

The grain physical traits (Kasem et al., 2010; Kasem et al., 2012; Tikapunya et al., 2016) and 

starch properties (Kasem et al., 2014; Tikapunya et al., 2017) have been investigated. Starch gene 

sequences were reported by Kasem et al. (2011). O. meridionalis has a high amylose content relative 

to domesticated rice.  

1.5 Enumeration of sequences 

The genome has been sequenced using Illumina and PacBio sequencing techniques (Brozynska 

et al., 2017) based upon 47.1 Gbp of shot gun Illumina sequence data and 15.0 Gbp of PacBio 

sequence data representing an estimated 127X and 41X coverage respectively of the estimated 370 

Mbp genome.  

1.6 Assembly 

Brozynska et al. (2017) reported both hybrid (Illumina/PacBio) and Pac Bio only assemblies 

(Table 2). Hybrid assemblies covered 446 Mbp and PacBio alone, 355 Mbp. 

1.7 Repetitive sequences 

The most abundant group of transposable elements was found to be the Gypsy family 

representing almost 40% of all repeats with Copia elements accounting for 9.3% (Brozynska et al., 

2017).  
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Table 15 Hybrid and PacBio assembly statistics calculated for scaffolds and contigs for hybrid assembly and for scaffolds 

only for PacBio assembly (Brozynska et al., 2017). 

 Hybrid only Pac-Bio 

Assembler Sparse Assembler + DBG2OLC  Celera Assembler 

Number of scaffolds 4,718 3,242 

Total size of scaffolds 446,369,637 354,906,376 

Longest scaffold 2,079,733 3,232,522 

Mean scaffold size 94,610 109,135 

N50 scaffold length  163,003 159,640 

Number of contigs  4808  

Total size of contigs  446,351,110  

Longest contig  1,449,836  

Median contig size 54,495  

 N50 contig length 159,759  

 

1.8 Gene annotation 

Bonskya et al. (2017) identified 21,169 protein encoding genes, and 5,624 non-coding RNA 

genes (including; 615 tRNA, 4,892 miRNA, 453 snoRNA, 87 sRNA and 129 rRNA). 

1.9 Organelle genome 

The complete chloroplast genome of O. meridionalis was reported by (Nock et al., 2014; 

Wambugu et al.,2015) used the whole chloroplast genome sequence to relate O. meridionalis to other 

taxa. Some of the variation in the chloroplast genome within the species has been explored (Waters 

et al., 2012; Brozynska et al., 2014a). The mitochondrial genome has not been reported. 

1.10 Impact on plant breeding including pre-breeding work  

Sanchez et al. (2013) produced hybrids between O. sativa and O. meridionalis that had heat and 
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drought tolerance in extreme temperature conditions. Introgression from O. meridionalis into 

japonica cv. Taichung 65 lead to the identification of genes that control awn length on chromosomes 

1, 4, 5. Awn length is controlled largely by a single dominant gene.  However, other genes increase 

the expression and produce longer awns (Matsushita et al., 2003). Arbelaez et al. (2015) reported 

introgression lines with O. sativa cv Curinga as the recurrent parent.  

1.11 Comparative genomics  

Comparison of the genome with that of domesticated rice by mapping of sequence reads 

suggests that O. meridionalis has more diversity in regions of the genome that lack variation in the 

domesticated rice gene pool (Krishan et al., 2014). 

1.12 Future prospects 

O. meridionalis represents an important genetic resource for rice improvement providing a 

potential source of abiotic stress tolerance (Atwell et al., 2014) including heat tolerance (Scafaro et 

al., 2009; Scafaro et al., 2011; Scafaro et al., 2016). Photosynthesis traits may also be useful (Giuliani 

et al. 2013). Grain quality traits including starch properties may also add useful diversity to the rice 

gene pool. Further sequencing of this species will be of value (Henry, 2014) especially to explore 

diversity within the species.  This resource will be important in developing rice for production in new 

or altered environments (Henry et al., 2016). 
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Figure 20 Distrubution of  O. meridionalis http://www.ala.org.au 

 

Figure 21 Oryza meridionalis in northern Australia. 
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2 Appendix 2. 

Table 16 Oryza species the genome group, chromosome number and the geographical origin is provided for each species (Joseph & Thomas, 2008) and (Koh & Thomson, 2015). 

 Oryza species 
Genome 

group 

Chr. 

number 
Origin  

Wild 

Domesticated 

1 O. officinalis Wall ex. Watt CC 24 Tropical Asia Wild  

2 O. perennis AA 24  Wild  

3 O. punctata Kotschy ex Steud. BB, BBCC 24, 48 
Philippines and Papua New 

Guinea 
Wild  

4 O. rhizomatis Vaughan CC 24 Sri Lanka  Wild  

5 O. ridleyi Hook HHJJ 48 South Asia  Wild  

6 O. rufipogon Griff. AA 24  Tropical Asia Wild  

7 O. sativa  ssp japonica and ssp indica AA 24  Domesticated  

8 O. schlechteri Pilger HHKK 48 Papua New Guinea Wild  

9 O. alta Swallen CCDD 48 South America Wild  

10 O. australiensis Domin. EE 24 Tropical Australia Wild  

11 O. barthii Chev. et Roehr AA 24 Africa Wild  

12 O. brachyantha Chev. et Roehr FF 24 Africa Wild  

13 O. coarctata Roxb. KKLL 48  India  Wild  
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14 O. eichingeri Peter CC 24 South Asia and East Africa Wild  

15 O. glaberrima  AA 24 Africa Domesticated 

16 O. glumaepatula Steud. (Oryza glumaepatula) AA 24 South and central America  Wild  

17 O. grandiglumis Prod. CCDD 48 South America Wild  

18 O. granulata Nees et Arn. ex. Watt GG 24 Southeast Asia Wild  

19 O. latifolia Desv. CCDD 48 South America  Wild  

20 O. longiglumis Jansen HHJJ 48 Indonesia  Wild  

21 Oryza malampuzhaensis BBCC 48 South India Wild  

22 O. meridionalis Ng  AA 24 Tropical Australia Wild  

23 O. meyeriana Baill GG 24 Southeast Asia Wild  

24 O. minuta J.S. Presl. ex C.B. Presl. BBCC 48 
Philippines and PapuaNew 

Guinea 
Wild  

25 
O. nivara Sharma et Shastry (Oryza sativa f. 

spontanea) 
AA 24 Tropical Asia Wild  

26 
O. longistaminata Chev. et Roehr (Oryza 

glumaepatula) 
AA 24 Africa Wild  
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Table 17 Chloroplasts sequences of Oryza spp. (http://www.ncbi.nlm.nih.gov/genome). Refseq, size, genes number and released date were demonstrated. Last update 15.1.2018 

Organism Name BioProject Size(Mb) GC% Replicons tRNA CDS Genes 
Release 

Date 

Modify 

Date 

Oryza alta PRJNA387897 0.13518 39 NC_034760.1/KF359913.1 37 87 132 24-May-17 24-May-17 

Oryza australiensis PRJNA256411 0.13522 38.95 NC_024608.1/KJ830774.1 38 83 129 29-Jul-14 29-Jul-14 

Oryza barthii PRJNA289787 0.13467 38.99 NC_027460.1/KM881634.1 33 82 123 14-Jul-15 14-Jul-15 

Oryza brachyantha PRJNA328726 0.1346 38.98 NC_030596.1/KT992850.1 38 83 129 12-Jul-16 19-Jul-17 

Oryza eichingeri PRJNA387861 0.13482 39 NC_034759.1/KF359912.1 37 87 132 24-May-17 24-May-17 

Oryza glumipatula PRJNA289804 0.13458 38.99 NC_027461.1/KM881640.1 33 83 124 14-Jul-15 14-Jul-15 

Oryza grandiglumis PRJNA387860 0.13515 38.99 NC_034761.1/KF359914.1 37 87 132 24-May-17 24-May-17 

Oryza latifolia PRJNA387768 0.13519 38.99 NC_034762.1/KF359915.1 37 87 132 24-May-17 24-May-17 

Oryza longiglumis PRJNA387852 0.13564 38.93 NC_034763.1/KF359918.1 37 87 132 24-May-17 24-May-17 

Oryza longistaminata PRJNA289799 0.13457 38.99 NC_027462.1/KM881641.1 33 83 124 14-Jul-15 14-Jul-15 

Oryza meridionalis PRJNA86637 0.13456 39.01 NC_016927.1/JN005831.1 41 75 124 28-Feb-12 28-Feb-12 

Oryza meyeriana PRJNA387854 0.13613 38.94 NC_034765.1/KF359921.1 37 86 131 24-May-17 24-May-17 

Oryza minuta PRJNA325260 0.13509 38.96 NC_030298.1/KU179220.1 39 89 138 10-Jun-16 10-Jun-16 

Oryza nivara SL10 PRJNA12441 0.13449 39.01 NC_005973.1/AP006728.1 38 119 165 12-Jul-04 11-Mar-11 

Oryza officinalis PRJNA289798 0.13491 39 NC_027463.1/KM881643.1 33 83 124 14-Jul-15 14-Jul-15 

Oryza punctata PRJNA291899 0.1346 38.97 NC_027676.1/KM103375.1 41 100 149 4-Aug-15 4-Aug-15 

https://www.ncbi.nlm.nih.gov/genome/11312?genome_assembly_id=318763
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA387897
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/11312/318763%7COryza%20alta/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/10966?genome_assembly_id=205933
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA256411
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/10966/205933%7COryza%20australiensis/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/2750?genome_assembly_id=233906
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA289787
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/2750/233906%7COryza%20barthii/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/10862?genome_assembly_id=282255
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA328726
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/10862/282255%7COryza%20brachyantha/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/54763?genome_assembly_id=318969
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA387861
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/54763/318969%7COryza%20eichingeri/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/11318?genome_assembly_id=233910
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA289804
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/11318/233910%7COryza%20glumipatula/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/11320?genome_assembly_id=318764
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA387860
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/11320/318764%7COryza%20grandiglumis/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/10967?genome_assembly_id=318759
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA387768
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/10967/318759%7COryza%20latifolia/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/54756?genome_assembly_id=318962
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA387852
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/54756/318962%7COryza%20longiglumis/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/11285?genome_assembly_id=233909
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA289799
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/11285/233909%7COryza%20longistaminata/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/11319?genome_assembly_id=206891
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA86637
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/11319/206891%7COryza%20meridionalis/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/54757?genome_assembly_id=318963
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA387854
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/54757/318963%7COryza%20meyeriana/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/10965?genome_assembly_id=277085
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA325260
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/10965/277085%7COryza%20minuta/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/2841?genome_assembly_id=206845
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA12441
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/2841/206845%7COryza%20nivara%20SL10/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/10964?genome_assembly_id=233908
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA289798
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/10964/233908%7COryza%20officinalis/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/10963?genome_assembly_id=241558
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA291899
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/10963/241558%7COryza%20punctata/chloroplast/
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Oryza rhizomatis PRJNA387890 0.1348 39.01 NC_034758.1/KF359911.1 37 87 132 24-May-17 24-May-17 

Oryza ridleyi PRJNA387853 0.13573 38.92 NC_034764.1/KF359919.1 37 87 132 24-May-17 24-May-17 

Oryza rufipogon PRJNA162601 0.13454 39 NC_017835.1/JN005832.1 37 77 122 9-May-12 9-May-12 

Oryza sativa PRJNA291900 0.1345 39 NC_031333.1/KM103369.1 40 100 148 5-Oct-16 26-Jan-17 

Oryza sativa indica 

Group 

PRJNA17293 0.1345 39 NC_008155.1/AY522329.1 0 64 65 16-Jun-06 15-Apr-09 

Oryza sativa indica 

Group 

PRJNA368975 0.13455 39 NC_027678.1/KM103382.1 41 94 143 4-Aug-15 26-Jan-17 

Oryza sativa indica 

Group 

PRJNA318714 0.13455 39 Pltd: CP018170.1 0  0 4-May-17 4-May-17 

 

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/genome/54789?genome_assembly_id=318995
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA387890
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/54789/318995%7COryza%20rhizomatis/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/10969?genome_assembly_id=318760
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA387853
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/10969/318760%7COryza%20ridleyi/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/457?genome_assembly_id=206777
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA162601
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/457/206777%7COryza%20rufipogon/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/10?genome_assembly_id=241556
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA291900
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/10/241556%7COryza%20sativa/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/10?genome_assembly_id=206673
https://www.ncbi.nlm.nih.gov/genome/10?genome_assembly_id=206673
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA17293
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/10/206673%7COryza%20sativa%20Indica%20Group/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/10?genome_assembly_id=303740
https://www.ncbi.nlm.nih.gov/genome/10?genome_assembly_id=303740
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA368975
https://www.ncbi.nlm.nih.gov/genome/browse#!/proteins/10/303740%7COryza%20sativa%20Indica%20Group/chloroplast/
https://www.ncbi.nlm.nih.gov/genome/10?genome_assembly_id=318276
https://www.ncbi.nlm.nih.gov/genome/10?genome_assembly_id=318276
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA318714
https://www.ncbi.nlm.nih.gov/nuccore/CP018170.1
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Table 18 Comparison of chloroplast sequence generated by mapping and de novo procedures. Two different reference genomes were used. The degree of manual correction required 

for assembly and the final chloroplast size is given. 

Accessions 

Improved mapped sequence Improved De novo sequence 

Differences between 

Mapping and De novo 

seq.  manual correction 

required  

Final 

chloroplast 

sequence size 

bp 

Differences 

Vs  

O. 

rufipogon 

Differences Vs  

O. sativa  Nipponbare 

Differences Vs 

O. rufipogon 

Differences Vs 

O. sativa  

Nipponbare 

Z1W1743     Gaps  

Z1W1998 73 49 77 52 4 134,595 

Z1W1782 80 54 81 55 1 134,595 

Z1W1777 74 19 74 19 0 134,536 

Z1W1683 74 19 74 19 0 134,536 

Z1W2066 76 84 79 87 3 134,542 

Z1W1804 70 42 72 44 2 134,582 

Z2W0634 70 78 70 78 0 134,511 

Z2W0628 68 41 70 43 2 134,583 

Z2W1083 74 20 74 20 0 134,537 
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Z2W0153 76 82 77 83 1 134,484 

Z2W1126 56 72 58 74 2 134,494 

Z2W1096 72 17 74 19 2 134,536 

Z3W3085 75 86 80 91 5 134,517 

Z3W3091 78 87 84 94 Gaps  

Z3W3002 58 71 65 78 7 134,501 

Z3W3052 72 83 78 89 6 134,516 

Z3W3065 75 89 80 94 5 134,539 

Z3W2331     Gaps  

Z4W0626 71 85 71 85 0 134,456 

Z4W2308 80 22 80 22 0 134,553 

Z4W1939 55 71 57 73 2 134,494 

Z4W1554 59 72 60 74 2 134,495 

Z4W1870 73 84 75 86 2 134,516 

Z4W1854 81 24 86 29 5 134,116 

Z4W2316 81 14 82 15 1 134,556 
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Z5W1236     Gaps  

Z5W1230 75 81 76 82 1 134,521 

Z5W2078 126 127 126 127 0 134,553 

Z5W2108 127 128 127 128 0 134,542 

Z5W1975 57 71 59 73 2 134,495 

Z5W1977 74 95 75 96 1 134,508 

Z5W2024 60 73 62 76 2, 3 134,520 

Z5W0576 61 77 62 78 1 134,502 

Z5W1214 127 132 127 132 0 134,549 

HP483_indica 61 77 62 78 1 134,502 

HP179_indica 57 72 59 73 1,2 134,496 

HP49_temperate_japonica 79 1 79 1 0 134,551 

HP46_temperate_japonica 82 5 85 8 3 134,553 

GP715_aus 78 23 78 23 0 134,534 

GP706_tropical_japonica 80 13 85 15 2,5 134,556 

GP294_aromatic 77 22 77 22 0 134,532 
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Table 19 Phylogenetic software tools applied to chloroplast genome analysis, analysis model and bootstrap number used in this study. 

 Program Analysing method  Substitution model  Rate variation  Bootstrapping Out group Options Chosen 

1 Fast tree  
Maximum 

likelihood 
GTR Gamma - - Gamma20 likelihood 

2 Garli  
Maximum 

likelihood 
- - - - Default setting 

3 PHYLM   
Maximum 

likelihood 
GTR - 1000 -  

4 MrBayes Bayesian GTR Gamma 2000 O. australiensis  

5 RAxML  
Maximum 

likelihood 
GTR Gamma 2000 - 

rapid bootstrapping and search for the best-

scoring ML tree 

 

 

GP285_aus 61 74 62 75 1 134,540 

GP284_aromatic 77 22 78 23 1 134,532 

GP629_tropical_japonica     Gaps  
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Table 20 SNP frequencies in each clade as described below 

Clade group  SNPs Clade group  SNPs Clade group  SNPs Clade group  SNPs 

A 35 E 12 A,B,F,G 2 C2 1 

B 28 F 35 A,F,G 6 E1 2 

C 2 G 102 C,D 10 E2 2 

D 2 A,B,F 1 C1 9 E3 1 

C2 1 E4 1 C2 1 E4 1 

E1 2 F,G 4 E1 2 F,G 4 

E2 2 officinalis 8 E2 2 officinalis 8 

E3 1 australiensis 2 E3 1 australiensis 2 

total 265       

 

Clade A:  W1214 Z5 Philippine, W2078 Z5 Australia, W2108 Z5 Australia, Australian taxa A and Australian taxa B 

Clade B:  O. barthii1, O. barthii2, O. barthii3, O. barthii4 and O. glaberrima  

Clade C: O. nivara, W0153 Z2 India, W0626 Z4 Burma, W0634 Z2 Burma, W1230 Z5 Papua New Guinea, W1554 Z4 

Thailand, W1870 Z4 Thailand, W2024 Z5 Indonesia, W2066 Z1 Nepal, W3052 Z3 China, W3065 Z3 China and W3085 

Z3 China 

Clade D O. sativa indica JN861109.1, O. sativa indica NC_008155.1, W0576 Z5 Malaysia, W1126 Z2 India, W1939 Z4 

Thailand, W1975 Z5 Indonesia and W3002 Z3 China 

Clade E: O. rufipogon Asian1, O. sativa japonica NC_001320.1, O. sativa subsp. japonica Nipponbare GU592207.1, 

W0626 Z4 Burma, W1083 Z2 India, W1096 Z2 India, W1683 Z1 India, W1777 Z1 India, W1782 Z1 India, W1804 Z1 

Sri Lanka, W1854 Z4 Thailand, W1998 Z1 India, W2308 Z4 Laos and W2316 Z4 Vietnam 

Clade F: O. glumipatula, O. longistaminata1 and O. longistaminata2 

Clade G: O. officinalis and O. australiensis 
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Table 21 SNPs / InDels markers distinguishing the clades defined in the chloroplast phylogeny. 

 Sequence  SNP clade  

1 
CGCGACCTTGGCTATCAACTACAGATTGGTTGAAATTGAATCCGTTTAGG/ATTGAAAGCCAT

AGTACTAATACCTAAAGCAGTGAACCAAATCCCTACTAC 
G in clade G 

2 
GGAAGATTAATCGGCCAAAATAACCATGAGCGGCCACAATATTATAAGTT/CTCTTCCTCTTG

ACCAAATCTGTAACCCTCATTAGCAGATTCGTTTTCAGT 
T in clade E 

3 
CTTCCTCTTGACCAAATCTGTAACCCTCATTAGCAGATTCATTTTCAGTA/GGTTTCCCTGATC

AAACTAGAGGTTACCAAGGAACCATGCATAGCACTGAA 

A in O. 

australiensis 

4 
TACCATCAGAGAAACTTCCTTGACCAATAGGGTAAATCAAGAAAACAGCG/AGTAGCAGCTG

CAACAGGAGCTGAATATGCAACAGCAATCCAAGGACGCAT 
G in clade F 

5 
TTTCATTGCACACGACTTTCCCTATGTAGAAATAGGCTATTTCTATTCCA/GAAGAGGAAGTCT

ACTAATTTTTTTAGTAGTAAGTTGATTCACTTACTATT 
A in clade A 

6 
ATCGTGCTTGCATTTTTCATTGCACACGACTTTCCCTATGTAGAAATAGC/GCTATTTCTATTC

CGAAGAGGAAGTCTACTAATTTTTTTAGTAGTAAGTTG 
C in clade G 

7 
TTACCTTGATCATTTATCAATCATTTCTAGTTTATTAGTTTTGTTTAATA/GATTAATTAAGAGG

ATTCACCAGATCATTGATACGGAGAATATCCAAATAC 
A in clade E1 

8 
ATTTATTGGTACACTTGAAAAGTACCCCAGAAAATCGAAGCAAGAGTTTG/TCTAATTGGTTT

AGATGGATCCTTTGCGGTTGAGTCCAAAAAGAGAAAGAA 

G in clades A, F 

and G 

9 
GAAACAACAAGAAAAATTCATATTCTGATACATAAGAGTTATATAGGAAT/CCGAAATAGTC

TTTTATTTTCTTTTTTCAAAATAAAAATGGATTTCATTGA 
T in clade G 
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10 
GGACAAGACTGTTCTCGTAGCGAGAATGGGATTTCTACAACGATCGCAAC/ACCCCTCAGATA

GAATCTGAGAATAAAACTCAGAATAAAAAAAATTGTTGT 
C in clade B 

11 
ATTAACCGTTTCACAAGTAGTGAACTAAATTTCTTGTTATTAGAACCAAG/TAATTTCGACAA

GTTCGGAACCATTTAATCCATAATCATGGGCAAACACAT 
G in clade A 

12 
AGAAAAAATCAAAGGTCTACTCATAGGAAAACCT/AGCTTTTCCCTACATCAGGCACTAATCT

ATTTTTAACGTCTAATTAGATCAGGGAGTTCTTCCAATT 
T in clade A 

13 
CTTCCAATTAAGAAGTTAAGCTCGTTGCTTTTTA/GTTTTACCAGAATTGGAGCCAGGCTCTAT

CCATTTATTCATTAGACCCAGAAAATCG/AGAATTTTTTTATT 
A,G in clade G 

14 
TTCTTTCTTTTTCTTTAAAGAATTCCGCCTTCCTTAAAATATCAGAAACA/TGTTCTTGTAGGTT

GAGCACCTTTTTCAAGGAAATAGAGAATAGCTGGAAC 
A in clade A 

15 
TTCTTTCTTTTTCTTTAAAGAATTCCGCCTTCCTTAAAATATCAGAAACG/TGTTCTTGTAGGTT

GAGCACCTTTTTCAAGGAAATAGAGAATAGCTGGAAC 
G in clade E 

16 
TCATCTCGAACAAATTCACTTTTATTCCTTATTCCGGTCCAATTCTATTGTTGAGGTTGAGACA

GTTGAAAATCGTGTTTACTTGTTCGGGA 
Ins in clade C1 

17 
CTAATTTATTAGTTTTCACTAACCCTAGATTCTTTCCCTTGATAAAAAAG/TAAATTCTGTCCT

CTCGAGCTCCATCGTGTACTATTTACTTAGCTTACTTA 
G in clade F 

18 
CTTCAAGTCGCACGTTGCTTTCTACCACATCGTTTTAAACGAAGTTTTAC/ACATAACATTCCT

CTAATTTCATTGCAAAGTGTTATAGGGAATTGATCCAA 
C in clade G 

19 
TATAGGGAATTGATCCAATATGGATGGAATCATGAATAGTCATTAGTTTA/CGTTTTTTGTATA

CTAATTCAAACTTGCTTTGCTATCTATGGAGAAATATG 
A in clade G 
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20 
TTCTCGTATTTCTTCGACTCGAATACCAAAAGAAAGAAAAAAATGAAGTAAAAAAAAACGC

ATTTCCTGTAAAGTAAAATTAAGGTCTTTGCTTTTACTT 
Ins in clade A 

21 
TAGTTAAACTATTGCAATGAAAAGAAAGTTTTTTGGTAGTTATAGAATTA/CTCGTATTTCTTC

GACTCGAATACCAAAAGAAAGAAAAAAATGAAGTAAAAA 
A in clade B 

22 
TTCTATCTAACGAGCAGTTCTTATCTTATCTTTACCGGGATGGATCATTT/CTGGATATTTAAA

AAATCGCGGATCGAGATCGTTTTCGCTTAACCAAAGAA 
T in clade A 

23 
AAAAATTTATCTCTATCATAAATCTATCTCTACCATAAAGGGG/AATAGGTCTCGTTTTTTATA

CAATGTTCTAT/CGTCAAGTTTAAAA 

GG,T in O. 

australiensis  

24 
TAGGTCTCGTTTTTTATACAATGTTCTACGTCAAGTTTAAAAATTTTTCATGAAAATGAAAAA

AAGATTTTCAATTTGACTGGACTTGACACTGGATTATGTTT 
Ins in O. officinalis  

25 
ACTTGACACTGGATTATGTTTTCTGAGACAGAAAATGAACGCATTAGGAA/CTGCATCGAATC

TAAGAGTTTATAAGAGAAAAAAATTCTCTTTAATAAACTT 
A in clade F 

26 
CTTTATGTCTCGTGCAGAATACAATACGATTTCATCTTTCGTTTCATCAT/GAAAAAATCTGGG

ACGGAAGGATTCGAACCTCCGAGTAACGGGACCAAAAC 
T in clade C 

27 
GGAAGGATTCGAACCTCCGAGTAACGGGACCAAAACCCGCTGCCTTACCG/ACTTGGCCACG

CCCCATTTCGGGTTTTATGCGACACTAATAAACAGTATTA 
G in clade A 

28 
CATTACATGGAATTCTATTAAGATATTATATGAAAGTCGAATTTCTTCCT/ACTCTCATTTGAG

AGTGCGAATACAAGGAGGTATTTTGTGTTTGGGAA 
T in clade E1 

29 
TTATTTATCCGACTAGTTTTTTCTTCGCCAAATTGCCCGAAGCTTATGCG/CATTTTCAACCCA

ATCGTGGATTTTATGCCTGTCATACCTGTACTCTTTTT 
G in clade B 
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30 
CGACTAGTTTTTTCTTCGCCAAATTGCCCGAAGCTTATGCCATTTTCAAT/CCCAATCGTGGAT

TTTATGCCTGTCATACCTGTACTCTTTTTTCTATTAGCC 
T in clade E 

31 
TACGAGAAAATCCGGGGGTCAGAATTCCTTCCAATTCGAAAGTCCCAAAT/CGATCCGAGGG

GGCGGAAAGAGAGGGATTCGAACCCTCGGTACAAAAAAATT 
T in clade G 

32 
TTCTTTTTTCTTTCTAATTCTAAAATTGGATATTGGCTAAAAGACAATCG/AGATAGATTTTCT

CTTCAGCAGGCATTTCCATATAGGACTTGTTATAATAA 
G in clade D 

33 
ATTCTAAAATTGGATATTGGCTAAAAGACAATCAGATAGATTTTCTCTTT/CAGCAGGCATTT

CCATATAGGACTTGTTATAATAAAACAAGCAGGTT 
T in clade A 

34 
GCAGGCATTTCCATATAGGACTTGTTATAATAAAACAAGCAGGTTATAGAAAGAAAAAAACT

CTTTTTTTTATTATTTATCAACAAAGCAAAAAGGGGTCTTATC 
Ins in clade A 

35 
TGTATAAGTGGATTTTTTTGTATTTCCTTAGACTTAGACCG/ACGCAAGGCAAGAATTTCTCGC

TATTTACG/TATTTCATATTCTTGTTACTAGATGTT 
G,G in clade G 

36 
GATTTCGAAAGTCAATTTTTCTTTTCAATATCTTTATCTTTCTTTTTTTTCAGAATCCTATTTTT

GTTCTTATACCCATGCAATAGAGAGCGAGTGGG 
Ins in O. officinalis  

37 
GCAAATACCTTCCGCGCTTTTAACCCAACTCAAGCTGAAGAAACTTATTCC/AATGGTCACCG

CTAATCGCTTTTGGTCCCAAATCTTTGGTGTTGCTTTTTC 
C in clade C2 

38 
TTCCCTGAGGAGGTTCTACCACGTGGAAACGCTCTTTAATGGAACTTTC/TGTTTTAGCTGGTC

GTGACCAAGAAACCACCGGTTTTGCTTGGTGGGCCGGGAATGC 
C in clade G 

39 
GCCGTGCATTTGTATGGTCTGGAGAAGCTTACTTGTCTTATAGTTTAGGT/CGCTTTATCTGTC

TTTGGTTTTATCGCTTGTTGTTTTGTCTGGTTCAATAA 
T in clade F 
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40 
AAAAAAAACAAATAAAGAAACAAACGTATTCAATACGCAAAAGAAAAGAGAGAGGAAAGC

AAAAGGAGAGAGAGAGGAAAGCAAAAGGAGAGAGAGGGATT 
Ins in O. officinalis  

41 
AATAAAGAAACAAACGTATTCAATACGCAAAAGAAAAGAGAGAGGAAAGT/CAAAAGGAGA

GAGAGGGATTCGAACCCTCGATAGTTCCTAGAACTATACCG 
T in clade B 

42 
GAACATAGCCATACGAAATGACC/TCACTAACCTCTAGAAACATCTCAAATACAAATCCCTTT

TCGATATATTTCTGTATACTGTATA/CCATGG/TATACAGGATCCG 
C,A,G in clade G 

43 
CGATATATTTCTGTATACTGTATCCATGTATACAGGATCCGCTATATCT/CGCTTGTGAAATAA

AGCATAAAAT/CCCCCTCAACCCCATATCCAAATAAAAAAAGTGG 
T,T in clade A 

44 
GATTGGACTGGTCTTTCTGGTAGCTATTCTAAATTCTCTCATTTCTTAAG/ATGTGTTTAGTATT

TAGTAGCCCGATACAAAATAAAAAAGGGCCGTTTATTCG 
G in clade F 

45 
AATAGAAAATGAAACGGTCGACCCAGACATAGACGGTCGACCCAGGCGGATATAATATACC

CTATAAAATATAGGACGTAGCGAGCGTAGTTCAATGGTAA 
Ins in clade C1 

46 
ATAGACTGTGCCTTTCTTTCATTTATTTTTTCTTTTCTGCAAGGTAGGGAGGGGGCCTTGAGA

GTTCCTCTTGTGGTAGCAAGTTACTTCGCAACCTGCT 
Ins in clade E 

47 
ATAAAAAGGGTTGGATACCGCCCAACCACCCAGCCCTCTACCATG/ATCTAGACAAATAGAA

TAGTTA/CCTTTTATACAGACTGCTAAGTGCGGAGACGGGAATCGAACCC 
G,TA in clade E2 

48 
CTGCTCTACTCCGCTCTGGAGCGCTGGAAACCGGTGGACGAAAAAGGTTGAATACAATACAG

GCCTCTACCATGTCTAGACAAATAGAATAGTTATTTTATAC 
Ins in clade B 

49 
CGACTCTGTACTCATAATCCAAATCCA/TATTTGTTTTTTGGATGCAATTTCAATTAGTCTTTG

GA/GTACAAATCGCGAAAATGCATATTCTTCCTCAATATGCTATTGAGAG 
A,A in clade G 
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50 
AATGAAACAGAGAAGGTTCCTCACAGTTAGCA/GGTTGGTACTTCGATCGCGGGCCTTTCCTT

TACTTTCTTTTTTGTTCAGAATTGAACAAAGAATTTGGGGAAGAAAACATCTT 
A in clade B 

51 
TTCGATCGCGGGCCTTTCCTTTCCTTTCTTTCCTTTCTTTTTTGTTCAGAATTGAACAAAGAAT

TTGGGGAAGATGTTT/AAACATCTTCCCCCACTTATCATGAAATCTGGGCCATAGA 

Ins, TGTTT in O. 

officinalis 

52 
TGTTCAGAATTGAACAAAGAATTTGGGGAAGAAAACATCTTCCCCCACC/TTATCATGAAATC

TGGGCCATAGAGAAAGAGTGAGATGTTTTTTTTT 
C in clade B 

53 
AAGAAAACATCTTCCCCCACTTATCATGAAATCTGGGCCATAGAGAAAGC/AGTGAGATGTTT

TTTTTTATTTATCATAGACTTTCCCTATGGCTTGAGAGAAACA 
C in clade A 

54 

TTGAGAGAAACAATAAATAACTTAAAGAAAAAGGCG/ACATAGGAGCCGAAGGATTTACTTG

ATGTAAAGAAGATTCTGAATGTCTCC/TGCTTAGTCGATTCTCTCCGTTTAACTA/TTTTCT 

TCTCTTCTTTTCCACTCAATTCTAGTTTATTAGA 

G,C,A in clade G 

55 
TAAAAGAATCAAAGAAGATGAATAGAACTAAGAACACAT/CAAAAAAGAGCATATAGGCCC

GAGACCATTACCAAAAGTTCTTCCCAATAATCATATTGGGTAT 
T in clade G 

56 
GTATATCACTGAAAATTAATACCCAGCCATATGGGTATATGAAGGGCGCA/GAATTCGTTTAT

ACCCCACCCAATTAGAGGAAATAAAACATAAATGGAGAAAGTTT 
A in clade B 

57 
AGCCAATAGAAGAAAAAAGTCCCTAATTTTTCAGACCGTTCTGAGCATGC/TGAAAAGTCAAT

AGCCTAAAGATAAAAAACCCTATACTTTGTGCAAGTGAT 
C in clade F 

58 
AGACTTATATATCTCGATATATACAGATATAATGTACATTATGGAGTAGACT/CTATAATGGG

AAATGAAAGTGGCTAATTTTGGAATTGAATAAGAAGCCCTTTT 
T in clade E3 

59 
GTTTAAACACTAAGCGAAGCAGGGGGGTGTAAATTCCAAAAAAGAAATTGT/GACTCTTTTTC

CTATTAGATCAATCAAATCACTACCCGTACTGAACTAATATAGAATCCC 
T in clade C1 
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60 
TTTTATTAATCTATTCTTATTCCATATCCTTTATAAACGAATTC/TCCCTAAAAAGTAGGGGAT

GATCCGTGAATTAACCTAACCATCAACTAAAA 
C in clade F 

61 
AAAAACTGCTCATACTATCATTATAGTATAATGAGGAGCGGTTGTATACG/CGCCCTATCGTC

TAGTGATGCCCCTATCGTCTAGTGGTTCAGGACATCTCTCTTTCAAGGAG 
G in clade A,F,G 

62 
TTCCTGGGTCGATGCCCGAGCGGTTAATGGGGACGGACTGTAAATTCGTTGACG/AATATGTC

TACGCTGGTTCAAATCCAGCTCGGCCCAAAAATCTAGGGCTTCGTGA 
G in clade G 

63 
GCTCGGCCCAAAAATCTAGGGCTTCGTGAATATGAGTTAAATCCATTTTTA/TTTCTTCCATAA

AAAAGAATATTTGATCCATAGAAATAAAAGAAATAAAGGAT 

A in clade D 

+W2024 Z5 

Indonesia, W1554 

Z4 Thailand 

64 
TTCCTCTCTTACAAACAAAAGACCTTTTCTTATTGGTTATTGAAAGGTGGATTC/ATTATCTAT

TTTTAGCGATAATAAATCGCGACATACTAGTTATGTCATTCTCACTATA 
C in clade A 

65 

CACCGCCCTGTCAAGGCGGAAGCTGCGGGTTCGAGCCCCGTCAGTCCCGAACTAGGGTC/TCA

ATGAATGGAGAAATTCATCTTTCCTTTTTCCATGAAAAAAGGGGGGCAGGAAGCAAG 

ATCAAATA 

C in clade A 

66 
TTTTTTAGTTCGCGTTTCTCAGTAAAGAGG/AGA/GAGAGTATAGGAATTTTTTTATCACTACT

TCTGGTTGATAGCGAAAGACATACATATCATACGT 
G,A in clade G 

67 
CTACTTCTGGTTGATAGCGAAAGACATACATATCATACGTGGAAGGGATCT/CTCCTATGTTA

TACTATTCCACTCTCAACCATGAATTGATTTGATAGATCCGATATTCATAATATTGAAT 
T in clade G 

68 
GAAGTTCAATTAATCATTGAAGAAATGAAAAAGGGATTAAATAAAAA/TAAAAATCCAAGTC

TTAAATGAAAGGATCCGGTTGGAATCATAAAGTGTGGTAGAAAAA 
A in clade A 
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69 
CAATTTCTTTTTTCACTGCATCCACTTAATTTCAATCAAGTCAAAATA/GAAAAAATCCATGGA

GGGAGAGAAAAATAATATGAGAATAGACTATAGTAAAAG 
A in clade G 

70 
TGTTTCAAAAGAGCATAAAATTTATTTTAAGAACTAAGAATAAGAAAAGAA/GTATAAAACA

AATGGAAAATGTGCGATATGTTGGGAATAGCTCCGCGGAAGAAA 
A in clade E 

71 
AAATGGAAAATGTGCGATATGTTGGGAATAGCTCCGCGGAAGAAAATCTAAAA/GTTCTTAT

GTATAGAACTTTTTTAACCATGGGTCGCTTCTAGTAGCGATTATGA 
A in clade A 

72 
CTAAAGTTCTTATGTATAGAACTTTTTTAACCATGGGTCGCTTCTAGTC/AGCGATTATGAATT

GCTCTCACCGCTCTTTCTATTTCTATTTTCTATTC 
C in clade F 

73 
ATGAAGGAATTATTCTACTATTGATGAATAATCATAGTAGAATCAAGGGTACAGAGTCAAAA

AGGGGTTCTGACCTAAAA/GGCTATGGATGAATCAGTTCAAAGAATTTACTC 
In clades C,D 

74 
GAAACGCTATCTCATCCCTATTGGTAG/TCGGTTTGGGCCACTACTGCTAAAACAAACCCCAG

TTTGAGGAAAGAACGGTGGGTTCTCAAAATCCAGTATCGCCGAGCCT 
G in clade G 

75 
GAAACGCTATCTCATCCCTATTGGTATCGGTTTGGGCCACTG/ACTGCTAAAACAAACCCCAG

TTTGAGGAAAGAACGGTGGGTTCTCAAAATCCAGTATCGCCGAGCCTTGTTATTCTC 
G in clade F 

76 
GGTTCTCAAAATCCAGTATCGCCGAGCCTTGTTATTCTCTTGCCCCAACTTATGCGGGGTGCA

CAAATTTGTCGATTTGGATCAGTACTATAAGCCTAAGTATTTTATTGATCAGGCGGCAC 
Ins in clade F 

77 
CCATGCCGCCAAAAAATACGATCTAAAATCGAGAAAAGAGCAAGTATTCATG/CCACGTTTC

TTACTAAAACTAACTTTCTTTTATCTTAAATCTAATTCTACTTA 
G in clade A 

78 

ACGTTTCTTACTAAAACA/TAACTTTCTTTTATCTTG/AAATCTAATTCTACTTACTTTTTTCCAA

TCTTTTTCAAAAAATCTATTCATGCTTTTTTTGGATCCAGTTTCGATTATTCTCCTCG/AAA 

GGATTCTATCTTAAAACACACATTGCTAACACTAGAAAACTTC 

G,G in clade G 
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79 
TCGGTATTCTCTCCCGCCTGCCATTTAATGT/GCATAATAAAAGACAATGGATTTATGCCTAAT

CCGTATATAGGTAAACTCCAGGTCCGAACA 
T in clade E 

80 
TGCCATTTAATGGCATAATAAAAGACAATGGATTTATGCCTAATCCGTATATAA/GGTAAACT

CCAGGTCCGAACAGCATTATTATCTATGGATCCCCCTTATGTACATATCTC 
A in clade C 

81 
TATTCTCAATCGAACTAAAGTCAAACTTTCTAGTGCTTATAAATTATTATC/ATTTTGGTTTTA

TCCCATTCATAGAAAGGAGAAAAAATGAGAAATCTTTGCCGTC 
C in clade A 

82 
GTCAAAAGAAAAAGCTATTTTGGAGTTTTATCAACAATTTGCTTGTGTAGGC/TGGGGACCTG

GTATTTTCGGAATCCTTATGTGAGGAATTACAAAAGAAATT 
C in clade G 

83 
TTACGAGACCTTCTTTGGTACATATCCCTTATCTCAAGTTTTTGATCAAACCAATCCATTGAC

ACAAACT/GGTTCATGGGCGAAAAGTGAGTTGTTTGGGTCCTGGAGGATTGAC 
T in clade G 

84 
AGGATATTTATACTTCTTTTCACATCCGAAAATATGAAATTCAGACGGATACG/AACAAGCCA

AGGCTCCGCTGAAAAAATCACTAAAGAAATACCACATCTAGAAGAACATTTA 
G in clade G 

85 
AATCACTAAAGAAATACCACATCTAGAAGAACATTTACTCCGCAATTTGGAT/CAGAAATGG

AGTTGTGAAGTTGGGGTCCTGGGTAGAAACAGGCGATATTTTA 
T in clade B 

86 
TCTCAGAAGAACTTCCAGGTTAATAGGGAAGAAGTTTGATCGGAATAAATC/ATAAATTCTTT

TCTTATTTCTATTTTATGATTGACCAATATAAACATCAACA 
C in clade A 

87 
ATTTCTATTTTATGATTGACCAATATAAACATCAACAACTTCAAATTGGC/ACTCGTTTCCCCT

CAACAAATAAAGGCTTGGGCTAACAAAA 
C in clade G 

88 
TTGATTCTCGGATACGAAGATATCAAATGGGATACATCAAACTCGCATGTCCCGTGACTCAT

GTGTGGTATTTG/AAAAGGTCTTCCTAGTTATATCGCGAAT 
G in clade G 
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89 
ATAGCAATAAAGCTTTTTCAGCTATTTGTAATTCGCGATTTAATCACGAAACGC/TGCTACTTC

TAATGTTAGGATTGCTAAAAGGAAAATTTGGGAAAAGGAACC 
C in clade B 

90 
GCTACTTCTAATGTTAGGATTGCTAAAAGGAAAATTTGGGAAAAGGAACCT/CATTGTATGGG

AAATACTTCAAGAAGTTATGAGGGGACATCCTGTACTGTTGAATAGAGCACCT 
T in clade F 

91 
ACTATTTGTTTACACCCATTAGTGTGTAAAGGTTTCAATGCG/AGACTTTGATGGGGATCAAA

TGGCTGTTCATCTACCTTTATCCTTGGAAGCTCAGGCGGAAGCTCGTTTACTTATGTT 
G in clade G 

92 
GCGGAAGCTCGTTTACTTATGTTTTCTCATATGAATCTCCTATCTCCCGCTATTGGA/GGATCC

TATTTGCGTACCAACCCAAGACATGCTTATCGGACTTTATGTATTAACGATT GGAAAC 
A in clade G 

93 
CGAAAAAGGGGGTACTTATTTATGGCGGAACGGGCCAATCTGGTCTTTCAT/GAATAAAGAG

ATAGATGGAACTGCTATGAAACGACTTATTAGCAGATTAATAGATCATTTCG 
T in clade A,F,G 

94 
GTTTTCTTTTGGAAAAACACTATTATTATGGGGCTGTACACGCGGTAGAAAAG/ATTACGCCA

ATCCGTTGAAATCTGGTATGCTACAAGTGAATATTTGAAACACG 
G in clade A 

95 

TTACGCCAATCCGTTGAAATCTGGTATGCTACAAGTGAATATTTGAAACAA/CGAAATGAATT

CGAATTTTCGGATAACAGATCCTTCTAATCCAGTCTATCTAATGTCTTTTTCAGGAGCTAGAG

GAA 

ATGCATCT/GCAGGTACACCAATTAGTAGGTATGCGAGGATTAATGGCGGATCCTCAAGGA 

A,T in clade G 

96 

GATATTCTACATAGTGTGACTATTCCC/TTCAAAAAGCTTGATTCTAGTGCAAAATGATCAAT

ATGTAGAATCCGAACAAGTAATTGCGGAGATTCGTGCCGGAACGTCCGCTTTGCATTTTAAA

GAAAG/AGGTACAAAAACATATTTATTCCGAATCAGAC/TGGGGAAATGCACTGGAGTACCGA

TGTTTATCATGCGCCCGAATATCAATATGGTAATCTTCGTCGATTACCAAA 

C,G,C in clade G 
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97 
GATTACCAAAAACAAGCCATTTATGGATATTGTCAGTAAGTATGTGCAGAG/TCTAGTATAGC

TTCTTTTTCGCTCCACAAGGATCAAGATCAAATGAATACTTATTC 
G in clade B 

98 
GTATAGCTTCTTTTTCGCTCCACAAGGATCAAGATCAAATGAATACTTATTCT/CTTTTCTGTT

GACGGAAGGTATATCTTTGGCCTCTCGATGGCTGATGATGAGGTAAGACATAGAC 
T in clade G 

99 
TTGACGACCCACGATACAAAAAAGATAAAAAGGGTTCG/AGGAATTGTTAAATTTAGATATA

GGACCCTAGAGGACGAATATAGGACTCGAGAGAAAGACT 
G in clade G 

100 

CCCGAGAGGAAGAATGTAAAACCCTAGAAGACGAATATAGGACTCT/GAGAGGAC/GGAGTA

TGAAACCCTAGAAGATGAATATGGGATCCCAGAGG/AACGAA 

TATGAAACCCTAGAAGATGAATATGGAATCCTAGAGGACGAATAT 

T,C,G in clade G 

101 

ACCACTAGAAAGAGAAAAAAAAGATTCGAAGGAATCAAAAAAAAGGA/GAAAATTGGGTCT

ATGTTCAA/GTGGAAAAAAATTCTCAAGAGCAAGGAAAAGTATTTTGTTTTGG 

TTCGACCTGCAGTC 

A,A in clade G 

102 

AAAAAGAGGAGGCTCGTGCTTCCCTTGTTGAGATAAGAGCAAATGA/GTCTGATTCGCGATTT

CCTAAGAATTGGGTTAATCAAATCCACTATTTCGTATACACGAAAAAGGTATGA TAGCAC/G 

AAGTGCAGGACTGATTCTCCATAATAGGTTAGATCGCACCAATACCAATTCCTTTTA 

A,C in clade G 

103 
GGTTTTGTCGGCATCCAACTGTTCTCGAATTGGTTTTTTTAAGAATTCC/AAAAAATCCCAATG

GGGTAAAAGAATCGAATCCTAGAATTCCTATTCCAAAATTTT 
C in clade A 

104 
CAGTTAAATTGGCACTTTCTCCCTCATGATTCTTGGGAAGAGACATCAGCT/AAAAATTCACC

TTGGACAATTTATTTGCGAAAATGTATGTCTATTTAAATC 
T in clade F 

105 
GGATTGGAATGAGCGTATACCAAGAATTCTTGGGGGTCCTTGGGGATTCTTGATTGGAGCTG

AGC/TTAACCATAGCCCAAAGTCGTATCTCTTTGGTTAATA AGATCCAAAAGGTTTATCGA 
C in clade G 



 

120 
 

 Sequence  SNP clade  

106 
TTATACCTGTTGGTACCGGATTCCAAAAATTTGTGCACCGTTACCCACAAA/GACAAGAACCT

TTATTTCGAAATTCAAAAAAAAAAACTATTTGCGTCGGAAATGAGAGATA 
A in clade E2 

107 
TCGGCTCTTTCTTAATCTTCGAAAAGAAAGAAATTTCGTAATGGAAT/AGGTAGGATGAAAAA

AAAGAAAAAATCAAAAGGAAGTGTGGAAAAAATGACAAGAA GATATTGGAACAT 
T in clade G 

108 

TATGTTAACGAATTGGTCGATTACTAAAACTAGACTTTCTCAATTTAGAGAT/CTTAAGAGCA

GAAGAAAAGATGGAAAAATTCCACCATCTCCCAAAAAGAGATGT 

GGCAATCTTGAAGAGAAAATTATCTACCTTGC 

T in clade A 

109 
TCGGGCGTAGAAGTAGGCCAACACTTCTATTGGCAAATAGGAGGTTTCCAAATTCATGCCCA

AGTACTC/TATCACTTCTTGGGTCGTAATTACTATCTTGCTAGGTTCAGTTATC 
C in clade G 

110 
ACTATCTTGCTAGGTTCAGTTATCATAGCTGTTCGCAATCCACAAACCATT/CCCAACCGATG

GTCAGAATTTCTTCGAATATGTCCTTGAGTTTATTCGAGACTT 
T in clade B 

111 

GAAGAGGAAAGAAAGAAGGATGGAATGAAAGATCAGTTGGTTGGAAAGAAAGAGAAATAG

AATAG/ATGAGTACACAAACCTCTAATGATTAGAAACTAAAAAGGAG 

ATCTCGAAGCAGTTCGGAGAATT 

G in clade A 

112 
CTTAGTCTAGCTTTTATGGAAGCTTTAACAATTTATGGACTAGTTGTGGCACTA/GGCGCTTTT

ATTTGCGAACCCTTTTGTTTAATCCTAAAAAAGAAAACGAGTCCTTTAGATT 
A in clade G 

113 
GATTTGAGGATGATCAATTTAGAGGATATGTTCGCCGTCTTGCTTCCCGT/CCCTTTGTTTAGG

GCAGTGGAAAGTATTTTTCCTTTTATTTTAGGAATTTTGGGAACATT 
T in clad G 

114 
AAATTTTAACTAAAGGGCAAATACAAATAAAAAAACAACTTTGCTGCCCAT/CGATAGATTTT

TATCTAGGCGGAAGAGTCCTCTTAATATTTATCTAGTCTTA TATGGGTTTCGGTATATTGAA 
T in clade G 
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115 
AATCGAAAACAGAGGATCTTGAGTACTATTCGAAATTCGGAAGAATTGCGTAGAGGG/AACC

ATTGAGCAGCTCGAAAAAGCTCGAATTCGATTACAGAAAGTCGAACTAGAA 
G in clade G 

116 
CCATGAAACAAGTAGCTGGCAAATCAAAATTGGAATTAGCTCAATTCGCG/AGAGTTACAAG

CCTTTGCACAATTCGCCTCTGCTCTCGATAAAACAAGTCAGAATCAATTG 
G in clade E 

117 
AAAAACAAATGCATATACAAATGTATGATGCATATATCATAAAGAAGGAATATATATGGAG

CGGGTAGTGGGAATCGAACCCGCAACCCCACGGTTATGAGCCTTGTCAG 
Ins in clade B 

118 
AAACTGCCAAATAAAACGCGTCCCAAGCAGAAATATCACAAGTACCGCCGCGACCT/AGGGC

CGTCGCAAGGAAAACTATATCCAAAATCTTTTTTATCCGGCATTAATT 
T in clade G 

119 
GTCTAACATTCTTGCCAATACATTATCCTCATTCTGTTCCGGATTGTAATCC/TCTAATGAAAA

AAATAGCTCCATGAGCAAAAGCCCCTGTCATGATGAACCCTGCAATGT 
C in clade G 

120 
CTTGGTTTCCATTTGGGTTGTAGATGTAACCAACCCCCTATTAAGGATAGC/GGTAGAAAGAA

ATAATAGAAAAAGAGCTCCTGTATAAAGATCTTCATTGGTCCGTAA 
C in clade G 

121 
CCTTAGGATCAACCCCAGCGTCAAGAAATTGGTTAATCGGTAAAGATACG/ATGGATTTGGTG

CCCCGCCCAAGAAAGAGACCCAAGTCCTAATAACCCTGCTAAGTGAT 
G in clade B 

122 
GAGGCAAGTGTTCGGATCTATTATGACATAAGGATTGGGTGCCTAACGGACTTTTTTTTATCT

TGGATTTCTCCACGTAACAAAAAAACCTTTTTTTAATTTAAA 
Ins T in clade A 

123 
TTCCGACCTAATTTATTTGATTAATGGATCAACAACCAAACCCCCATTTTA/CTGAAAAAGGA

GAGTGGTCTTATTCAAATTCAAAGCGCTTCGTAATCTTCAACCAGTTCTG 
A in clade A,F,G 

124 
GCAGAAAAATGAAGCATAGATAGACCTATATCCTTCGTCCA/GAATTTTCTGAAAGGTAACTA

TCTCGGTTTCATATATGAAATTTCTATAGAATCC 
A in clade F 
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125 
ATGGGATAAGTAAGCAGTTTTTTTTAGTTGTATCGACCCAGTCGC/GTCACTAATTGATCTTTA

CGGTGCTTTCTCTATCAATTTGAGAACTCTATCCATAGAGTAGTATAGGCCATACTT 
C in clade G 

126 
TATAACTTCGATCATAGGGATCAATTTCTAGTCGCGTAGCTTCATAATAATTC/TTGCAAAGCT

TCCGCATAATTTCCTTCGGATTGAGCCAACATCCGTTACGGTCGT 
C in clade G 

127 
TCCCACAAGAGGTTTTTCTTAACACCAATGAATTCTATTAATGCTAGAGA/GAAAACGATAGC

TCCAAGAATTTCTTTGTTCTCAACGCCTCCTATTTAGAGGAAT 
A in clade F 

128 
TGTTATCCCAACCATTCTTCCCAGCCCTGATACCAATCAGGAAAGGGC/TTAATTTCTAACAA

AGTTTTTCTCTTGTTGATTCCTATTTCTAGGTGTAGTGCTTTTA 
C in clade G 

129 
CCCCTATGCTACCTATTAGTACTAGTAGAGTAGGATTAGCCTGTAATACAA/GAACCTATCCT

GTAGGTGTAACCTTTCGCTCAATACTAAAATCTACAATTGAAGCAT 
A in clade F 

130 
AAAGAGTCAAATCGCACCATCTCTATAATAAGTAAATGCCCTTTTTTCCCCT/GGAGGTTGTC

GGAATTATTCGCAATAAAATATTGGCTACAATTGAGAAGGTCTTA 
T in clade G 

131 
TTGAGAAGGTCTTATCAATGAAATTTCCATTTATACGGGATCTAGGCATAATTCCCAAT/CCC

ATTCTATCATTCTATATAGAATTCTTTTCATTCCTTCACAAAATAACAT 
T in clade F 

132 

TCCATTCAATTCTTAT-

AAATCGATCCCTATGCTCCAAATGGATAAGG/AGAGGTATTTCTGCTCAGCCCAAATTCTCTC

TTTTTCCTTCTGTTTGAACAAGAAGAGAT 

G in clade F 

133 
AGGAATAGGAAAACTCGCTATTCACTCAGTTTTTTTTCCATAATAAGAG/TTATGGAGGAGAG

ATGGCCGAGCGGTTCAAGGCGTAGCATTGGAACTGCTATGTAG 
G in clade C1 

134 
TGGTTGTACCTGTACTGCAGGAATAGGAAAACTCGCTATTCACTCAGTTTA/TTTTTCCATAAT

AAGATTATGGAGGAGAGATGGCCGAGCGGTTCAAGGCGTAGCA 
A in clade G 
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135 
GATATTTTTAATTTGATATGGCTCGGACGAATAATCTAATACATGGATAAAGAATAAATAAT

ATATATACGAAAACATAATAAAGAGAACATGCGAATTTCTTGTATT 
Ins T in clade B 

136 

TCTAGTATTTATCCTGTTTTTTTTATTAATAGGTTTAAGATTCATTAGCTTTATCATTCTGCTCT

TTCACAAAGGAGTGCCAAGAGAACTCAATGGATCTTATGTTATTCATTGAATACATTTCTTTT

TTATTATAGTATCGGCAAGGAATGTCGATT 

Ins in O. officinalis  

137 
TTGTACAATGCATAGGACTGCCCCCTCCCCATTTCCAAATTTTGGATTTGGAATACTTTATTG

ATTTTTTAGCCCCTTTAATTGACATAGATACAAATACTCTACTAGGATGATGCACAAGA 
Ins in O. officinalis  

138 
TTCAGAAGATATGTCTAAAGTAGATGGTGATTGATAGAGCAATTCTTGCTCG/ATAAGTTCCA

GTATTAGTACTGCGCCGAACATAAAGCTTGTGGCTGGTAGTAA  
G in clade G 

139 
AAAACTAGCGCAAACATGTAATAGCGTATTCGGAATTGTAACCAAGCCCCT/CCCCATGGGTT

CTATACCCGATTCATAACTAGAAAGCTTCTCTGGTCCTTCACGAAC 
T in clade G 

140 
TGTTTCCTCTTTGCCACGTCTTCTTTAAAGATTCATCCAATGGAATCCCGACC/TCCCTTTCTTT

TTGATTTCCTTTCTATTTAGGTATGGTGGAGACATAATTCTTATAGAA 
C in clade E 

141 
TTCTTTAAAGATTCATCCAATGGAATCCCGACTCCCTTTCTTTTTGATTTA/CCTTTCTATTTAG

GTATGGTGGAGACATAATTCTTATAGAAACAAAACTCTC 
A in clade C1 

142 

ATGAGGAGTAATTCTATAAAAATAAAGAACTCTATTTCAGAACGTAGATC/TGATTTAGATTT

AGGTAATCTATAGATATAGATAAGCAAAGTAATATACTTCAAACAAAGTAGGAATT C/T 

GCAAGATGGAGAACATCTTGCAGTTGATTTGATAGAAATTCATTTTTCTTTT 

C,C in clades 

A,B,F,G 

143 

TACTTCAAACAAAGTAGGAATTCGCAAGATGGAGAACATCTTGCAGTTATTATAGGGAAGTC

TAGGGACTTAGAGCATATCCTATTTGAAGGAGGGTGGAATTCAAATCTGGTAAAGG 

ATCTTTGCTTCTATTGATTTGATAGAAATTCGTTTTTCTTTTCCTGTCTCTATAATTTTC 

Ins in O. officinalis 
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144 
TCTATAATTTTCGATGAATGAGCCTCTGGTAATCCTTTTC/ATCTCTATTTTATGGCGCAGGCG

CCTGTCCAGTCTATAAACAAGTACTAATAGGGAAATGAAAACTATA 
C in clades C,D 

145 
GATGAATGAGCCTCTGGTAATCCTTTTATCTCTATTTTATGGCGCAGGCC/GCCTGTCCAGTCT

ATAAACAAGTACTAATAGGGAAATGAAA 
C in clade F 

146 
GACATTGATTTTGCAAGAAGATCCACTATGTTCATTGCATAATAAGCTCCT/CTTGAAAAGCA

TTGGCGCACGTGTAAACGAGTTGCTCTACCGAACTGA 
T in clade A 

147 

CAATAGTAGGTAGGTAGGTAGAAAAATTACTAGATAGCATTGGA/CCCTACTTCGCTTCGCTA

TCTAATAAC/TTTTTTCTACCCCTCTTCCCTTTTTCTTTGTATCA 

ACTAAACCGTTGGGTTGTCTTCAATTAGATG 

A, C in clad G 

148 
TGGGGGAATCCAATTAACAGCCTCGACTCGTATCCTAGCTCGTCTGAGAGCTAG/CCTTCGCT

TCAACCAATTCTTTCGTACCCTCAGCTCTACTCACGTTAGCTTCG GCTA 
G in clade G 

149 
AATTTGCTTACCGTCAGTGTCTCGACTCTTGACTACCAAAGCG/ATTATAAATATAAGGTAAC

TTGCCCGGGGGAAAAGTGACATCCAGCACGGGTCCAATAATTTGATC 
G in clade G 

150 
TTGATTTCGTTGCCCAAACGAATCCCATTCAATCGTTTACTCATGGAATGAGC/TCCGTCGGA

AAGTTCAATCAATCTTTTTTTCATATACATTTTGCCTTTTGTAAACGATT 
C in clade E 

151 
GTCCGTCGGAAAGTTCAATCAATCTTTTTTTCATATACATTTTGCCTTTTGTG/AAACGATTTG

TGCCTACTCTACTTTCTTATCTAGGACTTCGATATACAAAATATATAC 
G in clade G 

152 
CTTGATCGTTACAAAGGCCGATGCTATCACATCGAGCCCGTTGTTGGGGAGGAA/TAATCAAT

ATATCGCTTATGTAGCTTATCCATTAGACCTATTTGAAGAGGGTTCTGTTACTAA 
A in clade G 
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153 

CGTCCTTTATTGGGATGTACTATTAAACCAAAATTGGGATTATCC/TGCAAAAAATTATGGTA

GAGCATGTTATGAGTGTCTACGT/CGGTGGACTTGATTTTACCAAAGATGATGAAAA 

CGTAAACTCACAA 

C, T in clade G 

154 
GATTCTGTATTGCAATTTGGTGGAGGAACTTTAGGACATCCTTGGGGTAATGCG/ACCTGGTG

CAGCAGCTAATCGGGTGGCTTTAGAAGCCTGTGTACAAGCTCGTAA 
G in clade A 

155 

AAACTAAAGGAGAATGAATGAAAAAAGACAGAGTTTGGAAGTTAGACCCCTTTA/CTAAGAC

TCTCTTTCAAAAAAGAGGACATTTTGAAACTTTTAACAGGCACAATCGT 

GAGTCAACAAGTGACTCGAAATGCC/TCGTAAGAAAAGAGAATTGATTTTCAAAATGGTAGA

ACTAGATGA 

A,C in clade G 

156 
TAAAAGAATTTGTCCCTTGATTGAGTATGCTATTTTT/CCCTCCTTTACCGCGCATTATTGTAT

AC/TGCTTCTAGAAGAGCACGTATGCAGAGAGGAAATTACAGTTTAATAAAAAA 
T,C in clade G 

157 

ATGTGGAAGGAAGTAGACGAAAAAGATTTTGGATTCGAAATAGGCA/GCATTCGACTAAGTC

A/GTACTTTGAATCCAATTTCAAGTTCA/GATTAGAAGGATAGG/AAAGGCCGCGAG 

GATCGGAAAAGAAAAATCAAATCTTTTTAATTGCTTCT 

A,A,A,G in clade F 

158 
TGCATGTGGAAGGAAGTAGACGAAAAAGATTTTGGATTCGAAATAGGT/CGCATTCGACTAA

GTCGTACTTTGAATCCAATTTCAAGTTCGATTAGAAGGATAGA 
T in clades C,D 

159 
AGATATACTTAATTATATCATAAGAATCTTAAGATATTTTTC/TGAATAGATAG/CAAATCGAA

TAGATAGAAATAGTAAATTTGAATGGAGACACCTATTCTATGATG 
C,AG in clade G 

160 

ACAGGATCATAATACGGATCTTTTGTAGTGTAAGTAATATAATATGGTAC/TGTTATGTGGCT

CTTTCTACACACAAATGCAAACCCGCTATGGATGC/GGGATTATGGATGCGGATATAG 

GCTACGAGCATAAATGCATGCATATGCGGAACCGGGTAT 

C, C in clad G 
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161 
TTTTACAGGAGTATCTAGTTGGCGAAGGCGATTTCAGAATCAAAAAAAGTAAAGTAAAGTCA

AAATCATTTAGCTTATTCTCTCAATTTCAATCGACCGCTG 
Ins in clades C,D 

162 
TGAATAGAAAGTCAATGTATCTAACCAATTATTTTACAGGAGTATCTAGTTGC/GCGAAGGCG

ATTTCAGAATCAAAAAAAGTAAAGTCAAAATCATTTAGCTTATTCTCTCAATTTCA 
C in clade G 

163 
TTTCTCAACACGAGGGAAAAGGTCCCTTCGAAATTGCATTATTGTAAGGGGATTTTGAGTATT

TATCTAAAGGAAGGAACAAATGAGGATAAGAGAAAATTGCTTC 
Del. In clade F 

164 
AAGACCTTTTTATCTTGGACGAAATGATAAAAGAGAAACCGAATACACATGTACAAAAA/CC

CCCCTATAGGAATACGCAAGGAAATAATACAATTGGCCAAAATAGATAATGAGG GTCATCT 
A in clade G 

165 
CCCACGAGAAGCAACTGGACGAATTGTATGTGCCAATTGCCATTTAGCT/GAATAAGCCTGTG

GATATTGAAGTTCCCCAAGCAGTGCTTCCCGATACTGTATTTGAAGCAG 
T in clade G 

166 
TTGGGCACAAGAAAAAGGCTTTTTTGCCTTTTTCTTGTGTCGATTCTTCTTGTATTGTATCGAA

ATATGAATCTTTTTTCTTCCTATTCGGCAAAGATTACTATTTC 
Ins in clades C,D 

167 
ATTAGTTTATTACTCTAAATTAAATCAATGATTTACAAGAGACTTCCTCCGGGT/GAATAAAA

TATTGGATCCTCGATTGATCCTTTCTTTCTCCTCGCTTCATAAAAG 
T in clade A 

168 

TACAAGAGACTTCCTCCGGGGAATAAAATATTGGATCCTCGATTGATCCC/TTTCTTTCTCCTC

GCTTCATAAAAGTGAATC/TAATTTCATTGGCGAGGGGGTTATAAATCAACTGA 

TGGATTACTTCACTAACATTATT 

C,C in clade G 

169 
AACAAACAAAATTAACAAACAAAACGAATAAATAGAGGGATTCTGACCATCAGAT/GCAAA

GGCTTTCTCTTTGTTATTTTTACAAATCAAAATAGGAAACCCGTTTGTAGGTTATGGAATA 
T in clade A 

170 
GGGGGTAAGGACCCGCTAAGTTCCTATTTTTTCATGTTTACAAT/CCTGGTCCCTCCAATTACT

ATAGAGATGAACCCAATCCAGAATATGAACCGTAAAAGAAAACACCTATTAAAC 
T in clade F, G 
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171 
CATCCTTGTGAGATTGTCAATTTTGTACCAAAGGTGTATTTTGAGTATACCG/AAATTAGTATA

GCTATCCTTCCTATGGCACAGCAATCCTGTTTCG 
G in clade G 

172 
ACCAAATTAGTATAGCTATCCTTCCTATGGCACAGCAATCCTGTTTCGAGACCAAG/CTTGGT

CTCGAAACAGAATTCTTTTTTTCTCTTCTTTGTTCCTTGTCTATAGGGTAAGCTA  

AGACCAAG in 

clade C,D 

173 
CAATAGAAAACCTCAATTTTGAGGGTCCTACTTAATTTTCACCGGCTTCGGATCGGAATAGTA

GAATAATTCGGAATAGGGCTCAAGATCTTGGGAAAATCTA 
Ins in clade B 

174 

AAGAGAAGTAGATGCGAAAGCTATCCCTTCGAATCCAACCTTTCCCT/CTTAAAGAATTTAAT

TGGTTAGCATAATATAATATCTAATAAATAGAAAATCAAATAGTAGATAATCTGTT 

ATGAAAGAGAGAAAACATTCTTTGAAGAATCAAGATTCGTAATCAAT/CCCTTGCCTTGTTTA

CTAACTTTCTT 

T,T in clade G 

175 

CTTATTCCATATGGAATACAATCAATTAAAATAAGAAGGAATAGGGGAATATTT/CGACTGTT

CGCTCCAAAAAGAAGGTTAAATCATCCTATTGAAAAAGACCAAAATAGAAAGAA 

CTTTTTCA 

T in clade B 

176 

177 

TTTTTCACTGGGGTTAGC/ATGATCTAGTTCTTAATATTA/TTTACTTTACTCAATTGACAGATT

ACACAGCAAATCTCTTGATTCGGAATTA 

A in clade A,B,F,G  

C/A in just in G 

 

TTTCTTGGTCATTGAGATTCGTGGATAATTTAGACTACTATTTAGGGATAG/AATCGTACCTCT

TTTTTTTATCT/CCCTCGAACAAATCGAAATGATTGAAGTTTTTCTATTTGGAATCG 

TCTTAGGCCTA 

G,T in clade F 

178 
GTCATTGTACACAATTCCTATCTTGTTTTCCACATCCTAATTTTCTTC/GTCTTTTTCTATCTAT

AGAGAATCT/CTCGTGTCATTTCTTCTTTTTGGTCTCATATAAT CAAGGAATGGTATATAT 
C,T in clade G 
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179 
TTGGACCTTAGAGTCATGAAAAATTTGGTAAATCTCATTTTTGAAAAAAT/GAAATTCAATTA

AAAGCAGTATCCAAGCTAAGTCAGGCCTCAGAAATCAGAGC 
T in clade F 

180 

AAAATTTTTTATTCTAATGGATTTTCTTCTTCCTCTTCGGTTTCAAAATAGAGGAATAAAAGA

ACAAAATAGAAGAATAAAAGAATAAGTAGAAGAATTAAGTTAAGTCAATCCAAAAAG 

GAAAGG 

Ins in O. officinalis 

181 
GATGTTAGAATCAGAGTTATTTTGCAATGTGTGAGTTGTGTTCGAAAAGGC/GGCCAATGAGG

AGTCGGCAGGGATTTCTAGATATAGTACTCAAAAGAATCGCCAC 
C in clade G 

182 
TGTGTTCGATCTTTCCAAAGATCAAAAAGAATAAGAACTTCCTATTTAATATTCCTATTTAAT

ATATAGAGT/CATAGATAGAATACAAAATACAAATCAACTTGTCTGATTTCCATTAGATAT 
Ins ,T in clade F 

183 
TCTTGTGTTCGATCTTTCCAAAGATCAAAAAGAATAAGAACTTCCTATTTAATATTCCTATTT

AATATATAGAGCATAGATAGAATACAAAATACAAATCAACTTGTCTGATTTCCATTAGATA 
Ins in clade B 

184 
CAAAGATCAAAAAGAATAAGAACTTCCTATTTAATATATAGAA/GCATAGATAGAATACAAA

ATACAAATCAACTC/TGTCTGATTTCCG/ATTAGATATTATTTCATATGTAT 
A,C,G in clade G 

185 
GAGGGTATTCATCTAATATATGGACCAAAGAGAGACTAC/T 

TTCTTCTGGATCCAAAATTAATAAAATAAACAAATCAATTTTTT 
C in clade A,F,G 

186 
AATAAGGAATAAATCATGTATACATCTAAACAACCCTTTCATAAATCCAAG/ACAAACTTTTC

ATAAATCCAAGCAAACTTTTCGTAAATCCAAGCAAACTTTTCGTAA 
G in clade G 

187 
AGTCAATTTCAATAATTACAGGTCCTAGACCCAGAAAAAATAGACATATTCCTCA/CATTAAC

ACAAAAGTTCAATTCCAATCGAAACTTAAGAAACTCCAACCAGACTTTAAGAAA 
A in clade F,G 



 

129 
 

 Sequence  SNP clade  

188 

TCGAAAGGGCCAGACTATATATAAAGAAAGTAATCCAATTTAGATTCTTGT/GGTTTGTTATA

AGAAAGAACAATGGGGAAGAAG/AAAATAGTTTTTTTATTTATTGCAACATGCTCGTT 

GATTC CTACCACTTAATC 

T,G in clade G 

189 
TACAGCTACTTGTGCAAGGATTTTACGATTAAGAATCAATTCTTTCTTGTAC/AAGATTGTGTA

TTAATTTACTATAATTATCGAATACTTTATGTATCCGCGTTGCTGCGTTTATCCG 
C in clade G 

190 
TTTGCATCGTATCAAAAATCGCCATTCCTGAGATTAACCACCCGCCT/GGGGGAGTTTATAAA

CAAAAAAATATCGCTAATTCCATCTTCTATACT 
T in clade G 

191 
GTGGTTGGAGTATTTCAGGAGGAACTGTAACGAATCCGGGTATTTGGAGTTATGAAGGT/CGT

GGCAGGGGCGCATATTGTGTTTTCTGGCTTGTGTTT CTTGGCAGC TATCTGGCATTGGGTA 
T in clade G 

192 
TCTTTAGAGATAAAGAAGGGCGCGAACTTTTTGTACGCCGTATGCCTACC/TTTTTTTGAAAC

ATTTCCGGTTGTTTTGGTAGATGAAGAGGGAATTGTGAGAGCGGACG 
C in clade C1 

193 
ACATGGGAAACATCTCCCATCCCTTCTTTGACTCTTTTTCCTTTTTTATAT/CGGGAAATGATC

CCAAATGACAAATGAATAGGTGTGGAAGTTATAATTGTAAATAA 
T In clade G 

194 
CTAAGGTTCCGACTAAAAAAGTGAAATAATTTAATTGAAGTAAGAAGTCTCCCAGATG/CATC

TGGGAGACTTCTTACTTCAATTAGTCCCCGTGTTCTTCGA ATGGATCTCTTAATTGTTGAGA 
AGATG in clade B 

195 
TTATGGCTACACAAACCGTTGAAGATAGTTCTAGACCTGGACCAAGACG/AAACTCGCGTAG

GTAATTTATTGAAACCCTTGAATTCGGAATATGGGAAAGTAGCTCCGGGTT 
G in clade G 

196 
AAACCCTTGAATTCGGAATATGGGAAAGTAGCTCCGGGTTGGGGGACTACC/TCCTTTTATGG

GGGTCGCAATGGCTTTATTCGCGGTATTCCTATCTATTATTTTAGAAATT 
C in clade F 

197 
GAGTGTGTGACTTGTTAGAATTTGCTCCTATTGATAATACATAGAAAGGG/CACCTGTTATCT

CTATCAAGATGATTCTAATTCGTCGGATATTATTTATTCTAGTATCTGGAAC 
GG in clade G 
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198 
ATAGACGAGCCAACTTGAGATTTTTTGGCATTATCATCACAAAGAAGAAATTA/CTGGATTTT

TCTTATTTCATATCTTCAAGGCAAATCGACCCAACCCAGTGGCTGATGA 
A in clade C1 

199 
AAGTTGCTACCGGTTTTGCTATGACTTTTTACTATCGCCCAACCGTTACAGAA/GGCTTTTTCC

TCGGTTCAATACATAATGACCGAGGCCAACTTTGGTTGGTTAATCCGATCAGT 
A in clade F 

200 

CCCGCGAATTAACTTGGGTCACTGGTGTGGTTTTAGCTGTATTG/AACTGCATCGTTTGGTGTA

ACTGGTTATTCTTTACCTTGGGATCAAATTGGTTATTGGGCAGTCAAAATTGTGAC 

AGGTGTA/G CCTGACGCGATTCCGGTAATAGGATCACCTTTAGTGGAGTTATTA 

G,A in clade G 

201 
TCTAATGATACGTAAGCAAGGTATTTCGGGCCCTTTATAAGGAAGGCATA/CTCATAGAGAGT

TCTAATTCTCATATATCATATCGGGTAGGTTGTGGTATTTCATTGCTACAAACATGG 
A in clade G 

202 
CTTGGATATTGAGCATTTACCCATAAGAGTAGGATTCTTTTCAATGAG/ATAGTTGTAGGTGC

AACTTCGGAAAATAGAATCTGATAAAGCTTTTCTTACTTAGAG 
G in clade G 

203 
TTTTTGTTTTTCTTTAGATTAGTTAATCTTTTTTGAAAGCTTAAAAGGGGT/GGAAGTAAACCT

GTTTTTATTTTCTTGGAAACGAGTACCCTCTTCCTCCGTGTGAAGAA 
T in clade G 

204 
GTCCATATTTCTAGAAAAAGTATCTCATATTTTGCATTTCCATTCCCACAAGA/CAAAAATACT

ATAATTCACATTTCGAACAGGCATGGATACAGCATCTATAGGATAAC 
A in clade G 

205 
TAATATCTTGGGCAGTTATGTATCTAGGACCTTTGACGCAAATTGATGCGT/GTTCTAACTCCA

TAGAGATTACTTCTCAATACAATTTCTTTCAAATTTAGT 
T in clade G 

206 
GTAGGGCTTCCATAACTAAACCCTCGAAAGTAATTTTTGCTTCTCTCGGGG/TTTTTTTTTTCTC

TCCTATTTTTCTTTTCTGTCATA-TTTTTTTTCTCCTATTTTT 
G in clade B 

207 
ATAGCAATTCCCATTCCGCCCAAAACCTTAGGAATTCCTTGATAGTTGGT/CATAAATTCGTA

AGCCAGGTCGGCTGATACGCTTTAAAAAGGTTCTAGTTCTATATATT 
T in clade F 
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208 
CGAAGAAATTGACTTCGTATGGGCATTTTGCTGGCAGCTATGGAAATAGCTA/GCTCTAGCTA

CAGTTTCGGATACTCCGCCCATTTCATAAAGTATTCGACCTGGTTT 
A in clade C,D 

209 
TTTAACAACGGCTACCCAATATTCGGGGGATCCCTTTCCCGAACCCATACGTGTTTCC/GGTG/

CGGTCTTATTGTAACCGGTTTGTCGGGAAATATACGTACCCAGATTTTTCCA 
C,G in clade G 

210 
CGAATATTTACTCTTTCCTGTCTTATTTGTTAATTCATAACCTTATCAAATAAGG/ACAATTTTT

TTGGTTTGTTCCGCCATCCCACCCAATGAAGTATTGGGATTCTTT 
G in clade G 

211 
TTTTCCCGCGAGACGGCCTGCAATTTTTACTTTTACTCCCTTTATATCC/TGTTTTTTTAGTTAA

TTCAATGGCTTTTTTCATTGCCTTTCGGAATGAAACTCTAT 
C in clade G 

212 
CTACGTCCTCGAGCCCGAGGTCTGAATTTATTCATAATAGTACTCCTACTGACTTCC/GGCTTT

AGTGATGAATAAATTTGCTTTGTCGAAATCCCTATAATGAGTAGCATTTGCT 
C in clade B 

213 
ACCTCTCTGGATCCTCGAATTGAAAGAGAGATTGAGAGGGATCA/CAGAATCCTAATTCTCGC

TATTTGGAATGGATCCAATTCTATTGAGTCTGACTCATAGTGATCATTTCTC 
A in clade G 

214 

GATATGTCAAAAGCAGGTCTGATTACACCTATTCCTAATCCTAAATAGAATGTAAGGAT/CGT

GGGGATTTCTATGTAAACAGAGTATCCTATTTCCATAGGCTCGAATGAC 

CCCTTCTCATAATAAGAA 

T in clade F 

215 
GGTATGGAATGAACTTATAATCTGATGATCGAGTCGATTCCATGATTATAAGTTCATA/TACC

CTAGCGCCCATTCCCATTTTGGGCGGAACAGATCTACTAATTCTTTTATT 
A in clade F,G 

216 
TTGTAGGGTGGATCTCGAAAGATAGGAAAGATCTCCCTCCAAGCCGTACATACG/AACTTTCA

TCGAATACGGCTTTCCACAGAATTCTATAGGGATCTATGAGATCGAG 
G in clade G 

217 
CATTTCATGTTTCGAGGTCTCAAAAAAGGGCGTGGAAACAGATAGAAACTCTG/TGAATGGA

AATTGAAAAGAAATGTAGCCCCAGTTCCTTCGGAAATGGTAAGATCTTTGGCG 
G in clade A 
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218 

GATGTCAAAAGGAAAGGGATGGAGTTTTTCTCGCTTTTGGCGTAGCAGGCCTCCCTTT/AAAG

GGAGGCCCGCGCGACGGGCTATTAGCTCAGTGGT 

AGAGCGCGCCCCTGATAATTGCGTCGTTG 

TTT in clade C,D 

219 

CTAGCCATAAGAGGAATGCTTGGTATAAATAAGCCACTTCTTGGTCTTCGACC/TCCCTAAGT

CACTACGAGCGCCCC/TCGATCAGTGCAATGGGATGTGGCTATTTATCTAT 

CTCTTGACTCGAAATGGGAGCAG 

C,C in clade G 

220 
TGATCTTCATATCGATCTATTATCCACCTCTGCATCTATTCTTTCTTAGCTCTAAACGGGTGGA

AGATCCATCCAATTTGGTTATATCATGGACTCAAAAAACGGAT 
Ins in clade F 

221 
AGAACACAGATACATAACATAAAAAAAAGAATAAATAAGACGAAATTCGC/ACCTCCCCCTA

CATATTTAATTTCTTCTCCTATACAAAAACTAGCAAGACCTACTCCATT 
C in clade B 

222 
GTTTTTAGTCCCCAATGAAGTACTAAAGGACCCTATCCTATTTCCTGTATTAC/ACATGAATTT

TGGATAGATTTTGTGAAAAAAAAGAAACTCCACTCTTCGCTGTTG 
C in clade B 

223 
TGAATATCCAACAAGAGGTTCCATTGAATGAATAACAGATCCGGATCCCAAGAAC/TAATAA

AGCTTTCGAATAAGCATGAGTGATCAAATGGAATAAAGCAGCTTG 
C in clade G 

224 
CTTATATAAACAAAAAATCTCAAATATCCCTCATCGTGAGACATATAATCG/ATCACTATAAA

TAAGAACCAGGATTCCTACAGTAGTAATTAGTATTAACATAATAGAAGT 
G in clade G 

225 
AAAGTAAAACACTAGGAAAAGCCCATATGCGACGAAGATTTTTTGTTGCTGTC/TGGAAT/CA

AGAAAAAGTCCAAACCCCATTGACATAATAACTGGAAGTGGGAGAAGAGGGA 
C,T in clade G 

226 
TAATTTTTCAAAAATTTTCTCATTGAAACAATCAAAAAATAAGAATAGGTTTTGTTTTGTTGG

TTAAAGTCAAAAAGTTAATGAAATAACTTCGTTACCTAGTTATTACCT 
In in clade F 
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227 
GAAAACCTTTGTATATATTCTATATTATTAAAACAAAGTCTAAAAAAAATATAG/TAATATGT

TAAAAAACTCTTGTCTTATCCGCATTAGACAAAATGAAGTAAAAAAGAAT 
G in clade A 

228 
TTTCAATATCTTTTAGTATCTAAGTATAAATACTAAGAAAAAGAAGAAAA/G 

ATGGATTGATTTGCGGCAATAGATGTCTTTCACATACAACTAGAAAAAAGTA 
A in clad C,D 

229 
ACAAACAAATAATAGGGTTTTGGGATAATATGAATTGACCTATCCCCC/AAAAAATTCCAATT

ATTTAATATGAATAATTAGGAATAATTAGGATTAATTAATGA 
C in clade E 

230 
ACCAAACGAAGTCTATTTTAATGAAGATTCTAATGTCCTAAATTCTATGGAC/ATCTTCCAATC

TCGACGATTCGCGAGAAAATAACTTAATATTCTTTTAATAA 
C in clade G 

231 
GAATCTTCCAATCTCGACGATTCGCGAGAAAATAACTTAATATTCTTTTAATAAACCTA/GTT

ATTTCAACTTAGCCGCCATGGTGAAATTGGTAGACACGCTGCTCTTAGGAAGCAGTGCTC 
A in clade A 

232 
TTCGAGTCCGAGTGGCGGCAGTCTCGAAAAAGAATACAATAGATTATAAAATAAAATGGATT

CAATTCAATTCGAAATTTCCAATTTTGTAATGGGACCTTCTC CTTATGCTATTTGCAACTTTA 
Ins in clade F 

233 
TGTTACTAAGCTATGCGACTCTTTTGTGCGGATCCTTATTATCCGCCGCTCTTCTAATC/GATT

AGATTTCGAAAGAATTTAGATTTCTTTTCGAAAAAGAAGAAAAATGTTTT 
C in clade G 

234 
TTCCAAATTATTACAAATATCAATTAATTGAGCGTTTGGATTCTTGGAGTTC/ATCGTGTCATT

AGTCTAGGGTTTACCCTTTTAACCATAGGTATTCTTTGTGGAGCAGTATGGGCT 
C in clade A 

235 
TCAAAAATTCGAGATAGATCTAATTAGACTCTTTTACTTTTTTCTGAATTTTTG/TAGTATTTCC

ACTATGGAATATAGAGCGGACTAGTAGAAGAAAAAAAATCCTATTTAGGA 
G in clade E 

236 
GATACAGATTAAAAGAAAGAGTTCTCGCGGGCCGGAATCCTCAAAATTTG/TCGTTTGGAAC

ATGAAATAGCTTGTATCCATAGAACATCTGTCGTAACATAGAT 
G in clade A 
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 Sequence  SNP clade  

237 
TTACAAAAGTAATTAGCATTTTTGGCATTAACAGAAATTTTGGACTAGTAATG/TAGTCCAAA

AAATACTACTAATTCCGCAACAAAACCACTCATTCCTGGTAAGGCAA 
G in clade A 

238 
TAATGAAACCCATGTGAGAGACGGAGGAGTAGGCTATTCTTTTTTTGAAATTT/GCGTTGA/GC

CAAGAGAAGTTGAAGCTGCATAGATTATTTGCATCGCTCCTATTATTACTAACC 
T,A in clade G 

239 
CAATAAGATAGAGCCATGCTGCGGGTTGTCTCAGGTCCTAAATAAACGCGGACG/CTTAAAA

AATCTGTTGGGCAGGCGGATTCGCATCTCTTACAACCCACACAATCTT 
G in clade B 

240 
ACATTGAGTGCATCCTATACATGTATCATAAATTTTTACGGAATGTGACATTGGG/TCTATAA

ATTTTCCTTTTCAACATAAAAATTTTCGATCTGGTCAAAATGAA 
G in clade E 

241 
AAAAATTTTCGATCTGGTCAAAATGAAATTAGTACTATATCAATCAAATGTATTA/GTAGACA

CCAGACGAAGCAATGGTTTATCCAAACTTCAACAAATAATGCAATATATTTCTTA 
A in clade F 

242 
TATATTTCTTAATCCGTTTGTGAGAAAGCATGAAAAGAGCCAAGAGACTTG/T 

AATTTTGGGCTTCAACAATCATAATTATACGAATTGTATATACGAATTCG 
G in clade A,B,F 

243 

AGAATACTATGGAATAACCTACTCAAAAAATAGATATTCTCAAATAATAAATAGTATTCATG

TTAATATTTCATCAAATAATAAATAGTATTCATGTTAATATTTCATATTATTATTATATGTGTC

CCTTTG 

Ins in clade B 

244 
GCAGCCGCAAGGGCTATAACAAAAATTGCGAAAATGTCTCCTTTTAATTGGCGA/GCTATCAA

ATAGATCAGAAAATGTTACGAGATTTAGATTAATTGAATTCAGTATAAGTTC 
A in clade G 

245 
TATTCGAAATATCTATGAAAAAGGTATGTTTCTTTCTCTTGTTTGAGAGA/GACTTTTGTGTTG

AAAATATTCTTACTGTTATTGTAT 
A in clade A,F,G 

246 
AATAAATAAGCTTTAGTTAATGTAATAAAGATACTCATTGTCATTTCTAG/AAATTCCAACCA

TTTTATTCATTTGGAAAAATCCAAAAAAGGATATATAGGG 
G in clade A 
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247 
GGTAATCTTTCACATTCCGCCAAAGAAGAAATTAGAAAAACCAGAAAACCTATG/AGGCTGA

CGCCAAAGATTCCATCCAAAAAAACCATATTTTGACTGTGCTTCAACTATA 
G in clade B 

248 
CTGTCTGCTAGAATAATAAAAAACGCTTCGGAATTCATCTCATCCTTTATAATATAAA/TGGT

ACTTTTTCTTTGTTCAGCAATAACTTAATCTTGGAATAAAACACTCGTTAT 
A in clade B 

249 
AAATTAGACCAAAGGAATTCTGTCTGCTAGAATAATAAAAAACGCTTCC/GGAATTCATCTCA

TCCTTTATAATATAATGGTACTTTTTCTTTGTTCAGCAATAA 
C in clade G 

250 
TACTAATCCTTTATGTACTTTAGTGTTTCTAATCCCTCACTAACTTTTGAC/TGGATTCCCTTAT

GATTACAACTTTCTGTATCGGGAATCCCTTATTATTGCCCGCTTCAA 
C in clade C1 

251 
TTTGTTTCACTCATATAGCTATCTAGTTTAACTTACTAACCTGAATATAGAATAAGAAAAGGA

A/GGATAAATATTCAATGAATTTCAGAGGAAAAAGATCCTATTTTAACGAATCGCAC 
G in clade G 

252 
ATAGCTTGAAGCAGTCCCAGGGGGCCAGCATATTCAGGACCAATACGTTGTTGTATT/CGATG

CGGATATTTCTCTTTCTAACCACACAATTACGAGTACTTCTATTGTGATTCCCAGT 
T in clade F 

253 
GTCATGATATCAGCCAATTTCATTTTTTTGACTAGCTGAGGAAGAATTTGCAAATTAATAAAC

/ACCGGGTGGACGAATTTTCCATCTCCAGGGGAAAAGACTATCATCTCCTACCAGAT 
C in clade C1 

254 
CCTACCAGATAAATTCCTAATTCACCTTTTGGGGCTTCCACTCTTGCATAAAGCTCTTGC/TTT

TGACAATTCAAAATTGGGTGAAGGTTTTTTACCAAGAAATCGATATTCAAAA 
C in clade F 

255 
TTCGGAATTCTTTGCTTTCTTAAAGCGTCGGACTTCTAAATTCTCATAAGGGCCCCCC/AGGAA

TTTTTTCTACAGCCTGTTGAATAATTTTGATTGATTCCCTCATTTCACCGATTCGTACT 
C in clade B 

256 
TCTAAATTCTCATAAGGGCCCCCAGGAATTTTTTCTACAGCCTGTTGAATAATTTTGATG/TGG

ATTCCCTCATTTCACCGATTCGTACTAAATAGCGTGCTAATGAATCCCCTTC TTTTTGCCAT 
G in clade E4 
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257 
TGTTGAATAATTTTGATTGATTCCCTCATTTCACCGATTCGTACTAAATAGCGC/TGCTAATGA

ATCCCCTTCTTTTTGCCATTGGACTTTCCAATCGAATTGATTGTAAGACTCG 
C in clade G 

258 

CACATTCAGATCCGTTTTTTGAGTCCATGATATAACCAAATTGGATGGATCTTCCACCCGTTT

AGAGCTAAGAAAGAATAGATGCAGAGGTGGATAATAGATCGATATGAAGATCATGAGCT 

GCCCCATA 

Ins in clade F 

259 

ATTTCGAGTCAAGAGATAGATAAATAGCCACATCCCATTGCACTGATCGG/AGGGCGCTCGTA

GTGACTTAGGGG/AGTCGAAGACCAAGAAGTGGCTTATTTATACCAAGCATTCCTCTTATGGC

TAGATCCAACCT 

G,G in clade G 

260 
ATTATCAGGGGCGCGCTCTACCACTGAGCTAATAGCCCGTCGCGCGGGCCTCCCAAA/TTTGG

GAGGCCTGCTACGCCAAAAGCGAGAAAAACTCCATCCCTTTCCTTTTGACATCCCCATGCCG 
AAA in clades C,D 

261 
ATCTTACCATTTCCGAAGGAACTGGGGCTACATTTCTTTTCAATTTCCATTCC/AAGAGTTTCT

ATCTGTTTCCACGCCCTTTTTTGAGACCTCGAAACATGAAATGG 
C in clade A 

262 
TACTCGATCTCATAGATCCCTATAGAATTCTGTGGAAAGCCGTATTCGATGAAAGTC/TGTAT

GTACGGCTTGGAGGGAGATCTTTCCTATCTTTCGAGATCCACCCTACAATATGGGG 
C in clade G 

263 

AACTGGAATAAAAGAATTAGTAGATCTGTTCCGCCCAAAATGGGAATGGGCGCTAGGGTT/A

ATGAACTTATAATCATGGAATCGACTCGATCATCAGATTATAAGTTCATTCCATACCGGACCA

G 

T in clade F,G 

264 
GAAGGGGTCATTCGAGCCTATGGAAATAGGATACTCTGTTTACATAGAAATCCCCACA/GTCC

TTACATTCTATTTAGGATTAGGAATAGGTGTAATCAGACCTGCTTTTGACATATCTA 
A in clade F 

265 
CTATGAGTCAGACTCAATAGAATTGGATCCATTCCAAATAGCGAGAATTAGGATTCTT/GGAT

CCCTCTCAATCTCTCTTTCAATTCGAGGATCCAGAGAGGTGTTTTCATAG  
T in clade G 
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Figure 22 FNPs percentages found in different genes in Asian wild rice chloroplast genomes 

 

Figure 23 Geographical distribution of Asian wild rice zone 1 including India and zone 2 India and Burma. High 

coverage samples was selected from each circle. 

 

atpB clpP ndhK psaA psbB rps18 hypothetical protein
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Figure 24 Geographical distribution of Asian wild rice zone 3 including China and zone 4 including Thailand, Vietnam 

and Cambodia. High coverage samples were selected from each circle 

 

Figure 25 Geographical distribution of Asian wild rice zone 5 including Oceania Australia, Papua New Guinea, 

Indonesia, Malaysia and Singapore. High coverage samples were selected from each circle. 
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3 Appendix 3. Chloroplast Assembly Pipeline 

3.1 Abbreviations 

MA-approach: mapping assembly approach  

DA-approach: de novo assembly approach  

CpN: Oryza sativa ssp japonica cv Nipponbare (Genbank accession GU592207)  

CpW: Australian wild rice Taxa-A (Genbank accession KF428978); 

CpL: Oryza longistaminata (Genbank accession KM881641) 

CpO: Oryza officianalis (Genbank accession KM881643); 

CpWt: Triticum aestivum (Genbank accession NC_002762.1). 

CAP: chloroplast assembly pipeline  

M-component: Mapping assembly component  

MOpt-process: Mapping Optimisation Process  

MImp-process: Mapping Improvement process  

D-component: de novo-assembly-component  

D-process: de novo assembly process  

DImp-process: de novo improvement process  

OsNipp35bp-PEreads; 35bp paired end Illumina reads of O. sativa Nipponbare (GU592207)  

R-tool; Read mapping tool  

S-tool; Structural variant analysis and Local Realignment” tool  

P-tool; Paired-end read extraction and remapping tool  

MOpt:R+S; Mapping optimisation using the R and S tool 

MOpt:R+S+P; Mapping optimisation using the R, S and P tools 

MOpt:R+P: Mapping optimisation using the R and P tools 

MOpt:R+P+S; Mapping optimisation using the R, P and S P tools 

C, F; Cost and Fraction mapping settings 
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TaxaA100bp-PE reads; 100 bp paired-end reads of the Australian wild rice Taxa-A  

3.2 Sequence data statistics 

We used achieved whole genome NGS paired end data available in our research group for all 

analysis. NGS data of O. sativa ssp japonica cv Nipponbare consisted of 35 bp paired end reads 

(OsNipp35bp-PEreads), generated on an Illumina GAII analyser, and the Cp sequence for this 

genotype (accession GU592207) was published (Nock et al., 2011). Summary statistics of the 

sequence data sets trimmed at a quality score limit of 0.01 (>20 PHRED score) is shown in (Table 

22) CLC Bio Genomics Workbench (CLC-GWB, CLC-Bio, QIAGEN, Denmark) was used for the 

mapping assembly and for de novo assembly of Cp genome sequences. Geneious R9 (Biomaters, 

USA) was used to align Cp sequences and identify number of mismatches and details of the variants. 

Clone Manager (SciEd, USA) was used to assemble Cp contigs and derive a consensus Cp sequences. 

Details of CpN and reference Cp sequences used and mismatches between them 

Accession numbers of Cp sequences used as reference sequences and sourced from NCBI and 

GenBank are as follows: CpN, Oryza sativa ssp japonica cv Nipponbare (Genbank accession 

GU592207);  CpW, Australian wild rice Taxa-A (Genbank accession KF428978); CpL, Oryza 

longistaminata (Genbank accession KM881641); CpO, Oryza officianalis (Genbank accession 

KM881643); CpWt, Triticum aestivum (Genbank accession NC_002762.1). Number of mismatches 

between the publically available CpN and CpW, CpL, CpO and CpWt are 125, 141, 670 and 7,499 

mismatches respectively. 

3.3 Abbreviations and denotations used to identify assembled Cp sequences  

Cp sequences derived from the de novo assembly approach were denoted with one identifier, 

“-D”. In the example CpN-D, de novo assembled Cp sequence was generated using reads of O. sativa 

cv Nipponbare (GU592207). Chloroplast sequences derived from the mapping assembly approach 

are denoted by two identifiers. The first identifier provides details of the reference Cp used while the 

second identifier provides details of the assembled Cp. In the example CpW/CpN-XXX, the two 

identifiers are CpW/ and CpN-XXX, indicating that CpW (Australian wild rice Taxa-A, Genbank 

accession KF428978) was used as a reference Cp sequence to obtain a mapping assembled Cp 

genome sequence of CpN (O. sativa cv Nipponbare, GU592207) with details after the hyphen 

indicating the process and settings used for the mapping assembly. 
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3.4 Chloroplast Assembly Pipeline (CAP details) 

The CAP is structured to obtain assembled Cp genome sequences using a MA-approach and 

the DA-approach and are identified as the mapping-assembly-component (M-component) and the de 

novo-assembly-component (D-component) respectively (Figure 26). The M-component consists of 

two process steps; the Mapping Optimisation Process (MOpt-process) and the Mapping Improvement 

process (MImp-process). The D-component also consist of two process steps; the de novo assembly 

process (D-process) and the de novo improvement process (DImp-process). Both these process steps 

are designed to sequentially improve the assembly process leading to least number of errors in the 

assembled Cp genome sequences derived from these two components of the CAP. Consequently, 

reduced number of mismatches identified between the M-component and the D-component would 

result in reduced manual curation and increased confidence in the accuracy of the final assembled Cp 

genome sequence. 

3.5 Mapping Optimisation (MOpt) process and the CM-Rule: rationale 

The 35 bp paired end Illumina reads of O. sativa Nipponbare (GU592207), henceforth referred 

to as OsNipp35bp-PEreads, were shown to be of sufficient quality and length to generate a mapping-

assembly-derived Cp sequence of Nipponbare perfectly matched the reference Cp sequence used 

(another accession of Nipponbare (Genbank accession AY522330.1) (Nock et al., 2011). However, 

this earlier study (Nock et al., 2011), did not indicate if the reported mapping parameters were optimal 

settings and if an accurate Cp genome sequence of Nipponbare could be generated using a reference 

Cp sequence of a closely related species. Hence, the availability of an accurate Cp sequence of O. 

sativa cv Nipponbare (GU592207) and sequence reads of the same genotype prompted us to assess 

the optimum mapping (MOpt) parameters required when using the CpN as a reference Cp sequence 

and also after using a Cp sequence of closely related species as reference Cp sequence. 

The OsNipp35-PEreads were mapped to the CpN using the read mapping tool (R-tool) at 

combinations of two “Cost settings” (C-setting) and “Fraction settings (F-setting). Each C-setting 

consists of mismatch-cost, insertion-cost and deletion-cost settings, while the F-setting consists of 

length-fraction and similarity-fraction. We used a combination of two C-settings (C1 and C2) and six 

F-settings (F0, to F5) settings (C&F-settings) (Table 23) and these steps using the R-tool are 

collectively referred to as the MOpt:R steps (Figure 27). As the CpN was used as the reference Cp 

sequence, the Cp sequences generated at the MOpt:R steps were denoted with a prefix CpN/(e.g. 

CpN/CpN-C1F3-MOpt:R, Table 23). An accurate mapping-derived Cp sequence was possible only 

with the most stringent mapping settings of C1F0 and C2F0 but not at any other mapping setting as 
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increased mismatches were observed with reduced stringency in the C and F setting (Figure 28 i, ii, 

blue bars). We attempted to improve the Cp sequences derived from the MOpt:R step using the 

“Structural variant analysis and Local Realignment” tool (S-tool), referred to as the MOpt:R+S step 

(Figure 27). However, the corresponding Cp sequences from the MOpt-R+S step also failed to show 

complete homology to the CpN sequence with either no change, a slight increase or a reduction in the 

number of mismatches (Figure 28 i, ii, yellow bars). Mismatches were comprised predominantly of 

the T nucleotide at homopolymer regions (Table 24) due to the mapping of single reads from broken 

paired-end reads to these homopolymer regions (Figure 28). Filtering out all mapped single reads, by 

implementing the “Paired-end read extraction and remapping tool (P-tool), applied after the MOpt:R 

step and referred to as the MOpt:R+P step or after the MOpt:R+S step and referred to as the 

MOpt:R+S+P step (Figure 27), resulted in an accurate consensus Cp sequences with no mismatches 

when compared to the CpN sequence (Figure 27). Hence, we identified that even when using paired-

end reads as input data, reads with homopolymer sequence can map as single reads to corresponding 

homopolymer regions causing errors in the assembled Cp sequences. We also identified that using 

the P-tool can completely eliminate these errors leading to an accurate Cp sequence even when using 

35bp paired-end Illumina data. Having identified the importance of the P-tool applied in combination 

with the R-tool and S-tool as the R+P+S-step or R+S+P-step, we tested if these steps could be used 

to generate an accurate Cp sequence when using the OsNipp35bp-PEreads and a reference Cp 

sequence of a species closely related to O. sativa. Here we chose CpW (Australian wild rice Taxa-A, 

Genbank accession KF428978) as the reference Cp sequence. All Cp sequences, generated at the 

various C and F settings (Table 23) with the R-tool, P-tool and S-tool applied (Figure 27), when 

aligned to the CpN sequence, none showed complete homology, but instead had several mismatches 

indicating an accurate Cp sequence was not obtained (Figure 29 i, ii). Mismatches in all Cp sequences 

derived from the MOpt:R step, showed a trend in the number of mismatches, with the highest 

mismatches observed at the most stringent and at the most relaxed C and F settings while the lowest 

number of 16 mismatches was observed at C and F settings in between (Figure 29 i, ii, blue-bars or 

red-line curve). A similar trend of mismatches was observed in the Cp sequences derived from the 

MOpt:R+S step but the lowest number of mismatches was 5 (Figure 29 i, ii, blue-broken-line-

bordered-yellow-bars or blue-broken-line-curve). Implementation of the P-tool as the Mopt:R+P 

step reduced the mismatches to as low as 14 in some of the assembled Cp sequences (Figure 29 i, ii, 

black-broken-line-bordered-brown-bars or black-broken-line-curve ). Implementation of the P-

tool as the MOpt:R+S+P step led to further reduction in mismatches with the least mismatches of 3 

at C1F3 and C2F3 onwards (Figure 29 i, ii, blue-bold-line-bordered-brown-bars or blue-line-

curve which is super imposed by the black-line-curve). The implementation of the P-tool as the 

MOpt:R+P+S step also led to further reduction in mismatches with the least mismatches also of 3 at 
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C1F3 and C2F3 onwards (Figure 29 i, ii black-line-bordered-yellow-bars or black-line-curve). 

Results in (Figure 29 i, ii) indicate that the P-tool and the S-tool both contribute to reducing the 

number of mismatches. The P-tool reduced mismatches due to single nucleotide variants (SNPs) and 

the multi-nucleotide variants (MNVs) (Figure 29 i, ii, insert figures with variant distributions). 

The S-tool generally has no impact on reducing variants due to SNPs and MNVs but contributes in 

reducing the variants due to insertions and deletions. Results in (Figure 29 i, ii) indicate three key 

points; 1, the P-tool can be applied before or after the S-tool as the number of mismatches were 

reduced to 3 in both cases. 2, the application of the MOpt:R+S+P step and the MOpt:R+P+S step led 

to a consistent number of mismatches in the Cp sequences derived at any given C and F setting. 3, 

the consistent number mismatches of 3 was represented in Cp sequences at most of the C and F 

settings (Figure 29 i, ii). Mismatches were also determined by comparing the Cp sequences to CpW. 

As indicated earlier, the CpN when aligned to the CpW sequence had 125 mismatches. Since an 

accurate Cp sequence was not assembled (Figure 29 , i, ii), all of the consensus Cp sequences when 

compared to the CpW sequence, as expected showed mismatches totalling above or below the 

expected 125 mismatches (Figure 29 iii, iv). The trend in mismatches of Cp sequences derived from 

the MOpt:R+S+P step and the MOpt:R+P+S step as shown in (Figure 29 iii, iv) was similar to that 

observed in (Figure 29 i, ii). We observed 124 mismatches as the consistent number of mismatches 

in the consensus Cp sequences derived from most of the C and F (Figure 29 iii, iv) and these C and 

F settings were the same that had 3 mismatches when the Cp sequences was compared to CpN (Figure 

29 i, ii). These results indicate that the number of mismatches in the consensus Cp sequences if 

consistent across most of the C and F settings at the MOpt-R+S+P step and at the MOpt-R+P+S, 

which we refer to as the “Consistent-Mismatch Rule” (CM-rule), can be used as an indicator to 

identify the optimal C and F settings to obtain a Cp sequences with the least number of mismatches. 

Having used the CpW as the reference, the CM-rule when applied to the data in (Figure 29 iii, iv) 

alone successfully identified C1F3, C1F4, C1F5, C2F3, C2F4 and C2F5 as the optimum Cost and 

Fraction settings as the corresponding assembled Cp sequences had the least number of 3 mismatches 

when compared to CpN. In addition, the 3 mismatches consisted of variants of the same nature in all 

of the consensus Cp sequences. The consensus Cp sequence, CpW/CpN-C1F3-MOpt:R+P+S, 

generated at the MOpt process at C1F3 had 3 and 124 mismatches when compared to CpN and CpW 

respectively (Figure 29).  

3.5.1 Mapping Improvement process: rationale 

We determined that the Cp sequence obtained from the MOpt-process could be further 

improved by implementing the R+P+S step, twice in sequence, which we refer to as the Mapping 

Improvement process (MImp-process) (Figure 26). In the first step referred to as the Mapping 
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Improvement process step-1 (MImp-1), the chosen Cp sequence from the MOpt-process was taken 

as a reference Cp sequence and subjected to the R+P+S-tool. The Cp sequence from the MIpm-1 step 

was used as a reference Cp and subjected to the R+P+S-tool and this step is referred to as the Mapping 

Improvement process step-2 (MImp-2). The MImp-process improved the Cp sequence derived from 

the MOpt-process, as the mismatches were reduced to 2 at the MImp-1 step with no reduction further 

at the MImp-2 step (Figure 30 i). Data in (Figure 30) with mismatches determined by comparing to 

CpW indicates no change to the number of 124 mismatches because the change in nucleotide 

corresponding to the reduction in the single mismatch when compared to CpN was still a mismatch 

when compared to CpW. Hence, data in (Figure 30 ii) indicates the MImp-process reduced 

mismatches and the accuracy of the Cp derived from the MOpt process. The Cp sequence from the 

M-component (MOpt and MImp steps) was found to be 134,550 bp in length with 2 mismatches when 

compared to CpN. 

3.6 De novo-assembly process and de novo-improvement process: rationale 

The de novo assembly process (D-process) is where whole genome sequence reads were 

subjected to the de novo assembly tool in CLC-GWB at various combinations of “Word size” setting 

(W-setting) and “Bubble size” setting (B-setting), with scaffolding and in the “Fast” mode. Cp-

specific contigs, identified by BLAST analysis against the same reference Cp sequence used in the 

M-component (Figure 26), were updated and then aligned to a reference sequence to identify overlaps 

and gaps. Additional de novo assembly at additional W- and B-settings was undertaken to generate 

additional contigs for closing gaps. The Cp sequence derived from the D-process was generally 

denoted as CpX-D where X represents the name of the species or genotype. 

We determined that the Cp sequence obtained from the D-process can be further improved 

using the de novo improvement (DImp) process, which is similar to the MImp (Figure 26). The Cp 

sequence generated from the D-process, CpN-D, had 17 mismatches over 96 bases when compared 

to CpN (Figure 30, iii red bar). The application of the 3-Map-tool of R+P+S at the C1F3 setting, the 

optimal C and F setting from the MOpt-process (Figure 29), was applied to the CpN-D sequence twice 

and this process is referred to as the de novo assembly improvement process (DImp-process) 

comprising of the DImp1-step and DImp2-steps respectively. The DImp-process led to reducing the 

17 mismatches in CpN-D to 6 mismatches and 4 mismatches in the CpN-D/CpN-C1F3DImp1:R+P+S  

and the CpN-DImp1/CpN-C1F3DImp2:R+P+S sequences obtained from the DImp1-step and the 

DImp2-step respectively (Figure 30, iii, black double bordered yellow bars). Thus, the DImp-

process is an important tool which can be applied to reduce errors in the Cp sequence obtained from 

the D-process. The Cp sequence from the D-component was found to be 134,465 bp in length with 4 
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mismatches when compared to CpN. 

3.7 Manual curation to obtain a Cp-CAP 

Cp sequences derived from the M-component and the D-component were aligned, mismatches 

determined and nucleotide calls revised by manual curation. The process of manual curation of the 

mismatches involved observing the reads mapped at the mismatch position, recording the mismatch 

position, the number of nucleotides covering the mismatch and providing appropriate evidence on 

why a mismatch was considered to be a likely error and warranted correction.  

We identified 18 and 5 mismatches on comparing the M-component derived Cp sequence 

(CpW/CpN-C1F3MImp2:R+P+S, 134,550 bp) and the de novo assembly derived CpN-D (134,469 

bp) and the D-component derived Cp sequence (CpN-DImp1/CpN-C1F3DImp2:R+P+S , 134,465 

bp) respectively. Erroneous mismatches were identified by examining the reads mapped to the 

mismatch positions of all these sequences (Table 25 and Table 26). In the M-component derived Cp 

and the CpN-D comparison, with 18 mismatches covering 113 nucleotides, 2 mismatches were due 

to missing data in CpN-D due to -NN- in the contigs used to generate this sequence. In addition, 17 

out of the 18 mismatches were due to errors in the do novo generated CpN-D sequence. In the M-

component derived Cp and the D-component derived Cp sequence comparison, with 5 mismatches 

covering 89 nucleotides, 4 mismatches were due to errors in the D-component derived Cp sequence. 

The manual curation of all 3 sequences led to revised sequences of the same length of 134,550 bp and 

this was represented as the assembled Cp from the CAP and referred to as CpW/CpN-CAP. The 

CpW/CpN-CAP differed from CpN by one less T nucleotide in the homopolymer region at 78,440, 

where CpN is 134,551 bp in length and the homopolymer consists of 17 T nucleotides. This error was 

not resolved by the CAP due to the absence of mapped reads with sequence spanning both sides of 

the homopolymer (Figure 31) essentially as the CpW used as the reference had 16 T nucleotides. 

Using 100bp paired reads would have resolved this short homopolymer region of 17T nucleotides but 

not extensively longer homopolymer regions as is observed with genome assemblies using illumina 

reads. However, the CAP is robust enough to generate an almost accurate Cp sequence even when 

using short 35 bp PE reads and this robustness was tested using 100bp illumina reads of the Australian 

Wild rice Taxa-A as explained in the results. The implementation of the MOpt-process, the MImp-

process and the DImp-process led to the manual curation of 5 mismatches covering 89 bases, a much 

better option than the non-implementation of these processes resulting in a worst case scenario with 

the manual curation of 54 mismatches covering 224 bases after comparison of the CpW/CpN-

C1F5:R, derived from the worst C1F5 setting, and the de novo assembled CpN-D sequence. The CAP 

is outlined in (Figure 26). 
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3.7.1 Important steps in the CAP 

Availability of an accurate Cp sequence of Oryza sativa cv Nipponbare at NCBI (CpN, 

GenBank accession GU592207), was used to assess the accuracy of CAP-derived Cp sequences using 

the OsNipp35bp-PEreads of the same accession. We identified that use of the S-tool in CLC 

corrected assembly related errors but not occurring in homopolymer regions (Table 24) resulting from 

spurious non Cp-specific reads mapping to the corresponding homopolymer regions (Figure 28 iii, 

iv), and use of the P-tool resolved these errors by filtering out the single mapped reads (Figure 28 i, 

ii). This analysis provided a key outcomes, where the P-Tool is essential in reducing errors due to 

single mapped reads in any mapping assembly-derived Cp sequence. We also identified the CM-rule, 

which allows the generation of a highly accurate Cp sequence from the MOpt-process of the M-

component of the CAP by identifying the optimal R-tool settings in conjunction with P-tool and the 

S-tool (Figure 29). We demonstrated that the Cp sequence derived from the MOpt-process can be 

further improved by applying the R+P+S step in the MImp process (Figure 30 i). We demonstrated 

that the Cp sequence from the D-process can be improved by applying the DImp process, similar to 

the MImp-process, as it reduced the 17 mismatches covering 96 bases in CpN-D to 4 mismatches 

covering 86 bases (Figure 30 iii). All the steps in the CAP lead to the generation of with reduced 

errors, if any, to ultimately reduce the manual curation process to generate an accurate Cp sequence. 

Results from the manual curation of the Cp sequence from the M-component (Table 25 and Table 

26) clearly indicates some key findings. Mismatches in CpN-D sequence identified when compared 

to Cp sequence from the M-Component, were overwhelmingly due to errors in the de novo generated 

CpN-D sequence and the DImp-process greatly reduced the mismatches sequence indicating the value 

of using this improvement process. The Cp sequence derived using CpW as the reference and from 

the M-component of the process with 2 mismatches over 5 bases (Figure 30 i), was more accurate 

than that derived from the D-component of the process which had 4 errors over 86 bases (Figure 30 

iii). 

3.8 M-Component robustness- OsNipp35bp-PEreads and CpW as a reference 

Assessing the robustness of the M-component of the CA-pipeline using the CpW as a reference 

Cp sequences demonstrates the utility of this process in conjunction with the D-component of the 

CAP to generate a Cp sequence with least number of errors (Figure 26). In addition, an accurate Cp 

sequence was generated even when using very short reads, in this case under 35bp PE reads, with the 

CAP. 
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Table 22 Summary statistics of the next generation sequence data used for the assembly of chloroplast genome sequence. 

Sample details 

Sequence data details 

before trimming 
Sequence data details after trimming 

Paired end 

reads 

Average 

length bp 

Percentage 

trimmed 

Total 

Number of 

reads 

Paired end 

reads 

Average 

length bp 

Oryza sativa ssp 

japonica cv 

Nipponbare  

GenBank 

accession 

GU592207 

9,689,084 36 99.80% 9,669,352 9,653,208 32.6 
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Table 23 Read-mapping parameters and their settings details used in the Mapping-optimisation process at the read 

mapping step (MOpt:R) and using the 35bp pared-end Illumina reads of Oryza sativa cv. Nipponbare. 

Cost (C) mapping parameters- Mismatch, 

Insertion and Deletion Cost 

Fraction (F) mapping 

parameters- 

Length and Similarity 

Fraction 

Mapping-derived consensus 

sequences 

2,3,3 (C1) 

1,1 (F0) CpN/CpN-C1F0-MOpt:R 

1,0.95 (F1) CpN/CpN-C1F1-MOpt:R 

1,0.9 (F2) CpN/CpN-C1F2-MOpt:R 

1,0.8 (F3) CpN/CpN-C1F3-MOpt:R 

0.8,0.8 (F4) CpN/CpN-C1F4-MOpt:R 

0.8,0.5 (F5) CpN/CpN-C1F5-MOpt:R 

1,2,2 (C2) 

1,1 (F0) CpN/CpN-C2F0-MOpt:R 

1,0.95 (F1) CpN/CpN-C2F1-MOpt:R 

1,0.9 (F2) CpN/CpN-C2F2-MOpt:R 

1,0.8 (F3) CpN/CpN-C2F3-MOpt:R  

0.8,0.8 (F4) CpN/CpN-C2F4-MOpt:R 

0.8,0.5 (F5) CpN/CpN-C2F5-MOpt:R 

 

Increasing C-setting and F-setting values represents decreasing stringency in mapping of reads to a reference Cp. 

Mapping-derived consensus sequences are denoted with C and F codes, representing the Cost and Fraction settings, and 

with CpN/ to indicate the publically available chloroplast sequence of Oryza sativa Nipponbare (GU592207) used as a 

reference Cp.  
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Table 24 Details of mismatches between different CpN/mapping consensus sequences derived when O. sativa Nipponbare 35bp Illumina reads were mapped to the O.sativa 

chloroplast sequence (GU592207) under various mapping settings. 

Reference position 
Reference 

base(s) 

Variant nucleotide / variant frequency / Spurious single reads mapped  

MOpt:R at C1F1 

with 1 mismatch  

MOpt:R at C1F2 

with 1 mismatch  

MOpt:R at C1F3 

with 5 mismatches  

MOpt:R at C1F4 

with 7 mismatches  

MOpt:R at C1F5 

with 8 mismatches  

29351-29352 TT       AA  / 35 / Yes   

29376 G           

36428 A           

45579 A       del / 53 / Yes   

46061 T           

46065-46069 ACATG           

46086 A           

46090 A           

46094 T           

60137 del           

65707 C           

66336 T           

66352 T           

73151 A         T / 64 / Yes 

78410 A           

78414 AA           

78419 AA           

78423 C T / 62 / Yes T / 78 / Yes T / 75 / Yes T / 81 / Yes T / 76 / Yes 

78441-78442 AA     TT / 90 / Yes TT / 87 / Yes TT / 79 /Yes 

78444 C     T / 98 / Yes T / 97 / Yes T / 92 / Yes 

78446-78447 CC     TT / 98 / Yes TT / 97 / Yes TT / 93 / Yes 

78455 A     T / 97 / Yes T / 97 / Yes T / 95 / Yes 

78461 C           

102132 T         C / 73 / Yes 

102134 G         T / 74 / Yes 

104746 A           

Reference position 
Reference 

base/es 

MOpt:R at C2F1 

with 1 mismatch  

MOpt:R at C2F2 

with 1 mismatch  

MOpt:R at C2F3 

with 5 mismatches  

MOpt:R at C2F4 

with 16 mismatches  

MOpt:R at C2F5 

with 18 

mismatches 

        AA  / 56 / Yes   

29376 G       del / 58 / Yes del / 57/ Yes 

36428 A         T / 54 / Yes 

45579 A       del / 56 / Yes   

46061 T       A  / 56 / Yes A / 53 / Yes 
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46065-46069 ACATG       GATAT / 66 / Yes GATAT / 63 / Yes 

46086 A       del / 64 / Yes del / 58 / Yes 

46090 A       C / 64 / Yes   

46094 T       A / 48 / Yes   

60137 del         G / 67 / Yes 

65707 C         del / 67 / Yes 

66336 T         G / 56 / Yes 

66352 T         A/ 83 / Yes 

73151 A         T / 65 / Yes 

78410 A       T / 47 / Yes   

78414 AA       TT / 43 / Yes   

78419 AA       TT / 63 / Yes   

78423 C T / 60 / Yes T / 81 / Yes T / 65 / Yes T / 65 / Yes T / 46 / Yes 

78441-78442 AA     TT / 74 / Yes TT / 73 / Yes TT /67 / Yes 

78444 C     T / 93 / Yes T / 93 / Yes T / 90/ Yes 

78446-78447 CC     TT / 97 / Yes TT / 96 / Yes TT / 94 / Yes 

78455 A     T / 96 / Yes T / 95 / Yes T / 93 / Yes 

78461 C           

102132 T         C / 76 / Yes 

102134 G         T / 74 / Yes 

104746 A         T / 60 / Yes 
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Table 25 Manual curation of mismatches between chloroplast (Cp) sequences. 

Start 

bp 
end bp 

Description of mismatches 

in: 

CpN-D or the DImp2-

process derived Cp 

sequence 

Mismatches between the M-Component derived Cp sequence (CpW/CpN-C1F3-

MImp2:R+P+S, 134,550 bases) and the D-process  derived Cp sequence (CpN-D, 134,469 

bases) and the DImp2-process derived Cp sequence (CpN-D-DImp1/CpN-C1F3-

DImp2:R+P+S, 134,465 bases) 

Outcome of manual curation for Outcome of manual curation for; 

type Length 

(with 

gaps) 

M-component 

derived Cp sequence 

D-process derived Cp 

sequence CpN-D 

M-component 

derived Cp sequence  

DImp2-process 

derived Cp sequence 

24687 24707 Deletion 21 Yes 0 No 21 Yes 0 No 21 

43019 43019 SNP (transition) 1 Yes 0 No 0         

46096 46153 Deletion 58         Yes 0 No 58 

46097 46146 Deletion 58 Yes 0 No 50         

55846 55846 Insertion 

(tandem repeat) 

1 Yes 0 No -1         

55849 55849 SNP (transition) 1 Yes 0 No 0         

55853 55853 SNP (transition) 1 Yes 0 No 0         

55912 55912 SNP (transition) 1 Yes 0 No 0         

57053 57060 Deletion 13 Yes 0 No 8         

73152 73152 SNP 

(transversion) 

1 Yes 0 No 0         

78424 78424 SNP (transition) 1 Yes 0 No 0         

78439 78442 Deletion 4         Yes 0 No 4 

78441 78442 Substitution 2 Yes 0 No 0         

78444 78444 SNP (transition) 1 Yes 0 No 0         

78446 78447 Deletion 2 Yes 0 No 1         

78455 78455 SNP 

(transversion) 

1 Yes 0 No 0         

100654 100655 Deletion 2         Yes 0 No 2 

100655 100656 Deletion 2 Yes 0 No 2         

102132 102132 SNP (transition) 1 Yes 0 No 0         

102134 102134 SNP 

(transversion) 

1 Yes 0 No 0         

105791 105794 Substitution 4 No 0 Yes 0 No 0 Yes 0 

TOTAL mismatches/variants 1 17 1 4 

Manual curation: change in length (bp) 0 81 0 85 

Manual-curation led Cp final consensus length 

in bp. 

Revised  M-

component Cp 

134,550 + 0 = 

134,550 bp 

Revised D-process 

Cp, CpN-D 134,469 

+ 81 = 134,550 bp 

Revised M-

component CP 

134,550 + 0 = 

134,550 bp 

Revised DImp2-

process Cp 134,465 + 

85 = 134,550 bp 
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Table 26 Manual curation of chloroplast (Cp) sequences derived from the Mapping Assembly Component (M-Component) and two sequences from the Denovo-Assembly 

Component (D-component); the Denovo Assembly process (D-process) and from the denovo Improvement process (DImp2-process). All Cp sequences were generated using 

35 bp paired end Illumina reads of O. sativa Nipponbare (accession GU592207) and the Cp (KF428978) of the Australian Wild rice Taxa-A (CpW) was used as a reference Cp 

sequence for the M-process. All analysis steps were undertake using CLC genomics Workbench. 

Start bp End bp Sequence 

Mismatches between the M-Component derived Cp sequence (CpW/CpN-C1F3-MImp2:R+P+S, 134,550 bases) and the D-

process derived Cp sequence (CpN-D, 134,469 bases) and the DImp2-process derived Cp sequence (CpN-D-DImp1/CpN-

C1F3-DImp2:R+P+S, 134,465 bases) 

Description of mismatches in: CpN-

D or the DImp2-process derived Cp 

sequence 

Outcome of manual curation for; 

M-component derived Cp 

sequence (134,550 bp)  

D-process derived Cp sequence CpN-D (134,469 

bases) 

Type 

Length 

(with 

gaps) 

Sequence  

Correct 

Reason 

when not 

correct 

Mismatch 

included (+) 

or deleted (-

)  

Correct Reason when not correct 

Mismatch 

included 

(+) or 

deleted (-)  

24687 24707 

AATTGTC

GAATTAT

ACTCAGC 

Deletion 21   Yes 0 

No, The presence of a 8 base sequence 

TACTCAGC as a repeat is clearly 

present in the reads. The De novo 

assembly is erronous as one of this 

repeat region is represented which can 

be noticed when the reads overlap at 

the repeat region in updated contig file 

. 

21 

43019 43019 G 

SNP 

(transition

) 

1 A Yes 0 
No, The presence of spurious single 

reads in the updated contig file  
0 

46096 46153 

TACGAAA

ACATAAT

AAAGAG

AACATGC

GAATTTC

TTGTATT

TTCAGTC

CATCATT

ATA 

Deletion 58           
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46097 46146 

TATTATA

TACGAAA

ACATAAT

AAAGAG

AACATGC

GAATTTC

TTGTATT

TTCAGTC

CAT 

Deletion 58   Yes 0 

No, Has NNN in this region as no 

contigs in this region covering 58 

bases  

So 58 base sequence to be insertrd 

minus the 8Ns = 50 bases difference 

50 

55846 55846   

Insertion 

(tandem 

repeat) 

1 A Yes 0 

No, Presence of singlespurious reads 

generating an extra A in the 

homopolymer A region. 

-1 

55849 55849 T 

SNP 

(transition

) 

1 C Yes 0 

No, Presence of singlespurious reads 

generating an extra A in the 

homopolymer A region. 

0 

55853 55853 A 

SNP 

(transition

) 

1 G Yes 0 

No, Presence of singlespurious reads 

generating an extra A in the 

homopolymer A region. 

0 

55912 55912 T 

SNP 

(transition

) 

1 C Yes 0 

No, Presence of singlespurious reads 

generating an extra A in the 

homopolymer A region. 

0 
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57053 
57060 

  

ATATCTA

AAGTAT 

  

Deletion 

  

13 

  
  Yes 0 

No, No contigs in this region leading 

to NNN.  

The error is due to presence of a 

tandem repeat sequence 

CTTTTTTTTTAGAATA and also a 

non-tandedem sequence GTATTCT. 

The sequence spanning the repeat, 

based on reads is  

TTCGATTCTTTTTTTTTAGAATAC

TTTTTTTTTAGAATACTAAAGTA

TTCTAAAAAAAAAGTATTCTA.  

The CpD has the following sequence 

instead 

CTTTTTTTTTAGAATACTTTTTTT

TTAGANNNNTCTAAAAAAAAAG

TATTCTA, with the following 

sequence missing due to the NNNN, 

ATACTAAAGTAT. 

So this 13 base sequence 

ATACTAAAGTAT should be added 

to the CpD sequence. 

12 bases sequence to be insertrs minus 

4 Ns = 8 bases 

8 

73152 73152 A 

SNP 

(transversi

on) 

1 T Yes 0 

No, Correct reads present but 

mismatch caused by high coverage of  

of spurious broken reads 

0 

78424 78424 C 

SNP 

(transition

) 

1 T Yes 0 

No, Homopolymer region. Correct 

reads present, but mismatch caused by 

high coverage of mapping of spurious 

broken reads 

0 

78439 78442 TTAAT Deletion 4           

78441 78442 AA 
Substituti

on 
2 TT Yes 0 

No, Part of a T-nucleotide 

homopolymer region. Mispmatch 

caused by high coverage of spurious 

single reads of T-nucleotides. 

0 

78444 78444 C 

SNP 

(transition

) 

1 T Yes 0 

No, Part of a T-nucleotide 

homopolymer region. Mispmatch 

caused by high coverage of spurious 

single reads of T-nucleotides. 

0 
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78446 78447 CC Deletion 2 T Yes 0 

No, Part of a T-nucleotide 

homopolymer region. Mispmatch 

caused by high coverage of spurious 

single reads of T-nucleotides. 

1 

78455 78455 A 

SNP 

(transversi

on) 

1 T Yes 0 

No, Part of a T-nucleotide 

homopolymer region. Mispmatch 

caused by high coverage of spurious 

single reads of T-nucleotides. 

0 

100654 100655 AA Deletion 2           

100655 100656 AA Deletion 2   Yes 0 

No, The deletion is part of GAAA. 

The specific contig and hence the CpD 

has the sequence GA. The denovo 

failed even though there are reads with 

sequence spanning on either side of 

the GAAA. The error could be 

because there are reads ending at G or 

at GA. 

2 

102132 102132 T 

SNP 

(transition

) 

1 C Yes 0 
No, Presence of partly mapped single 

reads causing the transition error. 
0 

102134 102134 G 

SNP 

(transversi

on) 

1 T Yes 0 
No, Presence of partly mapped single 

reads causing the transversion error. 
0 

105791 105794 GCTT 
Substituti

on 
4 AAGC 

No, one 

read 

matched the 

reference 

even though 

most of the 

reads had 

the AAGC 

sequence 

0 Yes 0 

TOTAL mismatches/variants       1 17 

Manual curation: change in length 

(bp) 
      0 81 

Manual-curation led  

final Cp consensus length in bp 
      

Revised M-component Cp: 

134,550 + 0 = 134,550 bp 

Revised D-process Cp, CpN-D: 

134,469 + 81  = 134,550 bp 
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Start bp End bp Sequence 

Mismatches between the M-Component derived Cp sequence (CpW/CpN-C1F3-MImp2:R+P+S, 134,550 bases) and the D-

process derived Cp sequence (CpN-D, 134,469 bases) and the DImp2-process derived Cp sequence (CpN-D-DImp1/CpN-

C1F3-DImp2:R+P+S, 134,465 bases) 

Description of mismatches in: CpN-

D or the DImp2-process derived Cp 

sequence 

Outcome of manual curation for; 

M-component derived  Cp 

sequence (134,550 bp)  

DImp2-process derived  Cp sequence (134,465 

bases) 

Type 

Length 

(with 

gaps) 

Sequence  

Correct 

Reason 

when not 

correct 

Mismatch 

included (+) 

or deleted (-

)  

Correct Reason when not correct 

Mismatch 

included 

(+) or 

deleted (-)  

24687 24707 

AATTGTC

GAATTAT

ACTCAGC 

Deletion 21   Yes 0 

No, The presence of a 8 base sequence 

TACTCAGC as a repeat is clearly 

present in the reads. The De novo 

assembly is erronous as one of this 

repeat region is represented which can 

be noticed when the reads overlap at 

the repeat region in updated contig file 

21 

43019 43019 G 

SNP 

(transition

) 

1 A         

46096 46153 

TACGAAA

ACATAAT

AAAGAG

AACATGC

GAATTTC

TTGTATT

TTCAGTC

CATCATT

ATA 

Deletion 58   Yes 0 

No, No coverage by contigs in this 

region. NNN were inserted which in 

the DMP process removed the Ns and 

this led to the the false deletion 

58 
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46097 46146 

TATTATA

TACGAAA

ACATAAT

AAAGAG

AACATGC

GAATTTC

TTGTATT

TTCAGTC

CAT 

Deletion 58           

55846 55846   

Insertion 

(tandem 

repeat) 

1 A         

55849 55849 T 

SNP 

(transition

) 

1 C         

55853 55853 A 

SNP 

(transition

) 

1 G         

55912 55912 T 

SNP 

(transition

) 

1 C         

57053 
57060 

  

ATATCTA

AAGTAT 

  

Deletion 

  

13 

  
          

73152 73152 A 

SNP 

(transversi

on) 

1 T         

78424 78424 C 

SNP 

(transition

) 

1 T         

78439 78442 TTAAT Deletion 4   Yes 0 

No, Contigs mis-assembled due to T 

homopolymer. The error in the 

Contigs was not corrected by the DMP 

analysis. 

4 

78441 78442 AA 
Substituti

on 
2 TT         
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78444 78444 C 

SNP 

(transition

) 

1 T         

78446 78447 CC Deletion 2 T         

78455 78455 A 

SNP 

(transversi

on) 

1 T         

100654 100655 AA Deletion 2   Yes 0 

No, The deletion is part of GAAA. 

The specific contig has the sequence 

GA. The denovo failed even though 

there are reads with sequence spanning 

on either side of the GAAA. The error 

could be because there are reads 

ending at G or at GA. 

2 

100655 100656 AA Deletion 2           

102132 102132 T 

SNP 

(transition

) 

1 C         

102134 102134 G 

SNP 

(transversi

on) 

1 T         

105791 105794 GCTT 
Substituti

on 
4 AAGC 

No, one 

read 

matched the 

reference 

even though 

most of the 

reads had 

the AAGC 

sequence 

0 Yes 0 

TOTAL mismatches/variants       1 4 

Manual curation: change in length 

(bp) 
      0 85 

Manual-curation led  

final Cp consensus length in bp 
      

Revised M-component Cp: 

134,550 + 0 = 134,550 bp 

Revised DImp2-process Cp: 

134,465 + 85  = 134,550 bp 
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Figure 26 Details of the Chloroplast Assembly Pipeline (CAP) R; read mapping tool, P; extract paired end mapped 

reads and remapping, S; structural variant plus realignment tools. i, The CAP pipeline consists of two distinct 

components the M-Component and the D-Component. ii, All mappings steps included Cost (C) settings of C1 and 

C2 comprising of 2, 3, 3 and 1, 2, 2 for Mismatch Cost, Insertion Cost and Deletion Cost respectively. Each of 

the Cost Settings had a combination of five Fraction (F) settings of 1.0, 1.0 and 1.0, 0.95 and 1.0, 0.8 and 0.8, 0.8 

and 0.8, 0.5 for Length Fraction and Similarity Fraction respectively. iii, All de novo assembly steps were 

undertaken using the “Fast” (F) mode and at various “Word” (W) and “Bubble” (B) settings. The DImp-process 

involved subjecting the CpX-D to the 3-Map-Tool of R+P+S-Tool. X, code name of the genotype whose Cp is 

being generated. All analysis are designed to be undertaken in the CLC Genomics Workbench (CLCBio, Qiagen, 

Denmark). 

Chloroplast-Assembly Pipeline (CAP) 

Mapping-Component  

(M-Component) 

de novo-Component 

(D-Component) 

Chloroplast sequence from 

M-Component 

Chloroplast sequence from D-

Component 

Compare and identify mismatches followed by manual-curation  

Chloroplast sequence from CAP 
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Figure 27 Steps of the Mapping Optimisation process and the “Cost” and “Fraction” mapping settings used to 

obtain an accurate mapping-derived chloroplast assembled sequence. N/, abbreviation of the reference Cp genome 

sequence used a suffix to denote the reference Cp sequence used; C, Cost mapping setting used; F, Fraction 

mapping settings used; MOpt, Mapping Optimisation process; R, read mapping tool; P, extracting of mapped 

paired-end reads and remapping tool: S, structural variant analysis plus local realignment tool. Mapping assembled 

Chloroplast sequences were progressively passed through various MOpt steps. Increasing C- and F-values 

represents decreasing stringency in mapping of sequence reads to the Cp reference used. All analyses were 

conducted using the CLC Genomics Workbench analysis software. 
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Figure 28 Mapping Optimisation (MOpt) process-derived chloroplast genome (Cp) sequences using CpW as a 

reference and mismatches when compared to CpN. CpW, Cp sequence of the Australian Wild rice Taxon-A 

(Genbank accession KF428978); CpN, Cp sequence of Oryza sativa Nipponbare (CpN, Genbank accession 

GU592207); LF, SF, length and similarity fraction; MC, IC, DC, mismatch, insertion and deletion cost. i, ii, iii, 

iv, data related to the MOpt process-derived Cp sequences derived using a fixed setting for MC, IC and DC of 2, 

3, 3 and of 1, 2, 2 respectively and within these six combinations of LF and SF Fraction settings. Y-axis indicates 

mismatches in the MOpt process-derived Cp genome sequences when compared to the CpN (i, ii) and when 

compared to CpW (iii, iv). Read mapping was carried out using 35 bp paired-end Illumina reads of O. sativa 

Nipponbare (Genbank accession GU592207) and using the publically available CpW. MOpt process involves the 

read mapping tool (R), extracting the mapped paired-end reads and remapping tool (P) and the structural variant 

plus local realignment tool (S), implemented is sequence as the R+P+S or R+S+P with the aim of reducing the 

mismatches in the Cp sequences obtained from the preceding step. Number of mismatches when compared to 

CpN, shown above each bar, is a sum of single nucleotide variants, multi-nucleotide variants, insertions and 

deletions. Consistent number of mismatches in consensus Cp sequences derived from the R+P+S step and the 

R+S+P step, at each of the C and F setting used, are highlighted in blue. All mapping analysis was carried out 

using CLC Genomics Workbench V7.5.1. 

i

i 

i 
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Figure 29 Mapping Optimisation (MOpt) process-derived chloroplast genome (Cp) sequences using CpW as a reference and mismatches when compared to CpN. CpW, Cp 

sequence of the Australian Wild rice Taxon-A (Genbank accession KF428978); CpN, Cp sequence of Oryza sativa Nipponbare (CpN, Genbank accession GU592207); LF, SF, 

length and similarity fraction; MC, IC, DC, mismatch, insertion and deletion cost. i, ii, iii, iv, data related to the MOpt process-derived Cp sequences derived using a fixed 

setting for MC, IC and DC of 2, 3, 3 and of 1, 2, 2 respectively and within these six combinations of LF and SF Fraction settings. Y-axis indicates mismatches in the MOpt 

process-derived Cp genome sequences when compared to the CpN (i, ii) and when compared to CpW (iii, iv). Read mapping was carried out using 35 bp paired-end Illumina 

reads of O. sativa Nipponbare (Genbank accession GU592207) and using the publically available CpW. MOpt process involves the read mapping tool (R), extracting the 

mapped paired-end reads and remapping tool (P) and the structural variant plus local realignment tool (S), implemented is sequence as the R+P+S or R+S+P with the aim of 

reducing the mismatches in the Cp sequences obtained from the preceding step. Number of mismatches when compared to CpN, shown above each bar, is a sum of single 

nucleotide variants, multi-nucleotide variants, insertions and deletions. Consistent number of mismatches in consensus Cp sequences derived from the R+P+S step and the 

R+S+P step, at each of the C and F setting used, are highlighted in blue. All mapping analysis was carried out using CLC Genomics Workbench V7.5.1.
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Figure 30 Mapping Improvement (MImp) and De novo Improvement (DImp) process reduces mismatches in the 

Cp sequence from MOpt-process and CpN-D sequence respectively. Cp; chloroplast sequence; MOpt, Mapping 

optimisation process; CpN-D, de novo assembly-derived Cp sequence; MC, IC and DC, mismatch, insertion and 

deletion cost (C) setting; LF and SF, length and similarity fraction (F) setting ; R, read mapping tool; P, extracting 

mapped paired-end reads and remapping tool; S, structural variant analysis and local realignment tool. Read 

mapping and de novo assembly was carried out using 35bp Illumina Paired end reads of Oryza sativa cv 

Nipponbare. The Cp sequence of the Australian Wild rice Taxon-A (CpW, KF428978) was used as a reference 

for read mapping assembly at C1F3 mapping settings representing a C setting of 2, 3, 3 for MC, IC and DC 

respectively, and a F setting of 1.0 and 0.8 for LF and SF respectively. The X-axis indicates the various Cp 

sequences and the mapping settings used. Mismatches in mapping-derived Chloroplast (Cp) sequences when 

compared to the publically available Cp sequence of O. sativa Nipponbare (CpN, GU592207) (i, iii) and to the 

Australian Wild rice Taxa-A (CpW, KF428978) (ii). Number of mismatches are a sum of single nucleotide 

variants, multi-nucleotide variants, insertions and deletions and are shown at top of each bar while those in blue 

highlight represent mismatches and bases covered. i; The Cp sequence from the MOpt process at the C2F5 had 

the highest mismatches of 42 over 78 bases, while at the C1F3 setting had 5 over 24 bases to 3 mismatches over 

5 bases when using the 3-Map tools and further reduced at the MImp process to 2 over 5 bases. ii; All of the 

consensus Cp sequences discussed above had 124 mismatches when compared to CpW. iii, The de novo assembly 

derived CpN-D sequence was also improved when passed through the DImp process with 17 mismatches over 96 

bases reduced to 4 over 86 bases.  

 



 

166 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 Comparisons of Chloroplast (Cp) sequences at a T nucleotide homopolymer sequence between CpN-CAP 

sequence of Oryza sativa cv Nipponbare to CpN and CpW respectively. CpN-CAP, chloroplast sequence assembled using 

the Chloroplast assembly pipeline (CAP) using paired end Illumina reads (35 bp) of Oryza sativa; CpW, chloroplast 

sequences of Australian Wild rice Taxa-A (KF428978); CpN, Chloroplast sequence of O. sativa (GU592207). CpW has 

16 T and one of the T is replaced with a G nucleotide while CpN has 17 T nucleotide (i). The assembled CpN-CAP has 

16 T nucleotides (B) and its alignment to CpW is shown in (ii) and to CpN is shown in (iii). The mapping of the paired 

end Illumina reads (35 bp) to CpW is shown in (iv) and to CpN-CAP is shown in (v). All alignments were undertaken 

Geneious V 9 and all mapping of reads to Cp sequences using CLC genomics Work Bench V 9.0. 

 

CpW has 16 T 

CpN has 17 T 

i 

CpW has 16 T 

CpN-CAP has 16 

i

CpN has 17 T 

CpN-CAP has 16 

i

CpW has 16 T 

iv 
CpN-CAP has 16 T  
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4 Appendix 4. 

Table 27 Details of collections of wild rice from north Queensland made in 2015, 2016 and 2017. Including site description, GPS coordinates, panicle shape, awn and anther length 

for wild populations from each collection site. 

Site 

# 
Sample # Site description 

GPS location and 

elevation 
Likely Species* Panicles 

Awn 

 length** 

(mm) 

Awn 

SD±  

Anther 

length 

(mm)*** 

 Anthers SD ± 

1 WR-8 
Mareeba Wetlands 

(Clancy Lagoon) 

S:16.92661° 

E:145.35620° 

Elevation: 410 m 

Taxon A Open 4.6 1.3 4.60 0.21 

2 WR-20B 
Mareeba Wetlands 

(Pandanus lake) 

S:16.93795° 

E:145.35077° 

Elevation: 422 m 

Taxon B Closed 9.5 1.3 2.09 0.13 

3 WR-24B 

Abbatoir Swamp 

(Mossman-Mt 

Molloy Road) 

S:16.63574° 

E:145.32603° 

Elevation: 422 m 

Taxon A Open 5 2.1 - - 

4 WR-31 

small roadside 

swamp, cnr Bethel 

Road and Mulligan 

Hwy 

S:16.57874° 

E:145.18906° 

Elevation: 363 m 

Taxon B ( classic) 

or O. meridionals  
Closed 10 1.8 2.28 0.07 
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5 

WR-44,  

 

 

 

WR-52  

 

 

     

 

WR-65  

Lakeland-Cook 

Town section, 

Mulligan Hwy 

S:15.758640° 

E:144.99924° 

Elevation: 159 m 

Mixed Taxon A 

and B 
Open 6.9 2.1 

4.45 

3.82 

3.5 

0.18 (2015 collection) 

0.10 (2017collection) 

large lake 

0.17 (2017collection) 

small lake 

Taxon B  Closed  9 1.3 
4.26 

2.81 

0.23 (2017collection) 

large lake 

0.14 (2017collection) 

small lake 

Taxon B+ O. 

australiensis 

Partially 

open 
11.8 1.1  - 

6 WR-74 

Barretts Road, near 

Cook Town Airport. 

Wetland/Swamp 

S:15.43399° 

E:145.17816° 

Elevation: 25 m 

O. meridionalis, 

Taxon B, Taxon 

B+ 

Closed 10.1 2.2 2.34 0.21 

7 WR-83 
Unnamed 

marshland/wetland 

S:15.53078° 

E:144.38336° 

Elevation: 95 m 

O. meridionalis Closed 8 2.1 2.08 0.16 

8 WR-91 
Lakefield National 

Park 

S:15.20969° 

E:144.38966° 

Elevation: 58 m 

 O. meridionalis, 

Taxon B, Taxon 

B+ 

Closed 11.6 2.6  - 

9 WR-103 
Lakefield National 

Park 

S:14.85996° 

E:144.16586° 

Elevation: 32 m 

O. meridionalis, 

Taxon B, Taxon 

B+ 

Closed 8.9 1.3  - 
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10 WR-111 
Jpn11 site (Sotowa et 

al., 2013) 

S:14.84947° 

E:144.16811° 

Elevation: 21 m 

O. meridionalis, 

Taxon B, Taxon 

B+ 

Closed 9.1 0.9  - 

11 WR-121 
Lakefield National 

Park 

S;15.14672° 

E:144.32773° 

Elevation: 57 m 

O. meridionalis , 

Taxon B, Taxon 

B+ 

Closed 7.8 1.1  - 

12 WR-133 
Jpn2 site (Sotowa et 

al., 2013) 

S:15.43943° 

E:144.21111° 

Elevation: 148 m 

O. meridionalis, 

Taxon B, Taxon 

B+ 

Closed 7.5 1.6 2.05 0.09 

13 WR-141B 

Balurga Road (off 

Musgrave to 

Pormpurraw road) 

S:14.83915° 

E:142.56808° 

Elevation: 88 m 

Taxon B, O. 

meridionalis 
Closed 14.7 2.2 1.94 0.21 

14 WR-153 

Balurga Road (off 

Musgrave to 

Pormpurraw road) 

S:14.90241° 

E:142.49919° 

Elevation: 75 m 

Taxon B, O. 

meridionalis 
Closed 9.5 1.7 2.41 0.08 

15 WR-162 Merluna 

S: 13.05811° 

E:142.61964° 

Elevation: 137 m 

O. meridionalis , 

Taxon B, Taxon 

B+ 

Closed 8.1 1.7  - 

16 WR-172 
Andoom Road, 

Weipa 

S:12.61513° 

E:141.89191° 

Elevation : 8 m 

O. meridionalis, 

Taxon B, Taxon 

B+ 

Closed 9.9 1.5 2.21 0.19 

17 WR-182 
Lydia Creek, Batavia 

Downs Road 

S:12.66010° 

E:142.66843° 

Elevation: 68 

Taxon B, O. 

meridionalis 
Closed 10.9 2.6 2.26 0.18 
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18 WR-193 
Development road to 

Bamaga, Moreton. 

S:12.45885° 

E:142.63562° 

Elevation: 39 

Taxon, O. 

meridionalis 
Closed 9.7 1.9 2.68 0.14 

19 WR-207 

Telegraph Road 

(Weipa turnoff to 

Batavia Downs). 

S:12.88274° 

E:142.73929° 

Elevation: 93 

 O. meridionalis  

Taxon B, Taxon 

B+ 

Closed 7.4 1.7 1.66 0.15 

20 WR-213 

Peninsular 

Development  Road 

(Between Archer 

River Road to Weipa 

turnoff)  

S:13.29167° 

E:142.84729° 

Elevation: 148 

O. meridionalis, 

Taxon B, Taxon 

B+ 

Closed 11.2 1.6 1.54 1.03 

21 WR-221 

Peninsula 

Development  Road 

(Between Coen and 

Musgrave) 

S:14.005117° 

E:143.1903607° 

Elevation: 208 

O. meridionalis, 

Taxon B, Taxon 

B+ 

Closed 8.6 1.7 2.19 0.18 

22 WR-231 

Peninsula 

Development  Road 

(Between Musgrave 

to Laura)  

S:14.785617° 

E:143.504467° 

Elevation: 76 

O. meridionalis, 

Taxon A+ or O. 

officinalis 

Open 

/complet

ely open  

9 1.7 2.51 0.11 

23 WR-242 
Peninsula 

Development Road  

S:15.00745° 

E:143.640993° 

Elevation: 59 

Taxon, O. 

meridionalis 
Closed 6.6 1.1 1.69 0.14 
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24 WR-260 

Townsville Site-1, 

Bruce Highway 30 

km south of 

Townsville 

S:19.395962 

E:147.004486 
 Taxon B Closed 9.3 1.4 2.03 0.12 

25 WR-261 

Townsville Site-2, 

Woodstock-Giru 

Road 

S:19.599657 

E:146.882965 
Taxon A, ? 

Open / 

Closed 
5.9 1.3 1.83 0.07 

26 WR-271 

Townsville Site-3, 

Charters Towers-

Townsville road 

S:19.397224 

E:146.723831 
Taxon A, ? 

Open / 

Closed 
6.0 2.7 1.90 0.08 

27 WR-285 

Townsville Site-4, 

Town Common 

Wetlands, 

Townsville 

S:19.25445 

E:146.725586 

Taxon B, O. 

meridionalis 
Closed 10.5 1.7 3.60 0.17 

*Designation in field: Taxon A Oryza rufipogon-like (open panicles), Taxon B O. meridionalis (closed panicles and short anthers) and Taxon B+ different 

to both Taxon A and B. 

**Awn length average in cm for 10 seeds from 10 different plants from the population sampled randomly. Not representing the sequenced sample 

***this is the average of ten anthers from the same plant. Not representing the sequenced sample  

±standard deviation  

‡ this site contains three different taxa  
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Table 28 Details of sequence coverage of Australian wild rice samples. Including whole genome coverage with 

total number of reads, and minimum, maximum and mean coverage of the chloroplast genome. 

 Sample number 
Site 

number 

Whole genome  Chloroplast genome  

Sequencin

g 

coverage 

Total reads 
Minimum 

coverage 

Maximum 

coverage 

Mean 

coverage 

1 WR-8 1 7.33 16,581,166 10 649 388.07 

2 WR-20B 2 9.21 20,821,128 16 620 364.43 

3 WR-24B 3 10.2 23,069,168 24 1008 646.98 

4 WR-31 4 9.35 21,140,048 17 659 446.06 

5 WR-44 5 8.11 18,332,596 17 503 310.81 

6 WR-52 5 8.61 19,462,696 15 610 370.77 

7 WR-65 5 8.79 19,873,876 23 1082 718.52 

8 WR-74 6 9.84 22,243,622 21 863 579.19 

9 WR-83 7 15.42 34,862,816 34 1054 685.87 

10 WR-91 8 13.3 30,070,336 35 1337 922.73 

11 WR-103 9 12.24 27,683,838 47 1507 1088.64 

12 WR-111 10 13.62 30,802,742 41 1314 961.82 

13 WR-121 11 11.22 25,377,232 35 1011 686.18 

14 WR-133 12 7.74 17,509,322 19 608 408 

15 WR-141B 13 14.48 32,739,902 24 1128 700.56 

16 WR-153 14 10.88 24,591,888 33 1330 906.44 

17 WR-162 15 5.63 12,732,082 20 587 400.76 

18 WR-172 16 6.9 15,604,400 12 476 278.41 

19 WR-182 17 8.42 19,030,168 47 1268 901.65 

20 WR-193 18 13.22 29,898,648 46 1541 1104 

21 WR-207 19 8.71 19,686,052 21 821 577.54 

22 WR-213 20 8.42 19,029,062 33 914 575.42 

23 WR-221 21 10.37 23,450,552 56 1283 930.66 

24 WR-231 22 6.29 14,225,150 22 646 412.28 

25 WR-242 23 11.42 25,826,240 56 2063 1444.48 

26 WR-260 24 3.95 8,934,498 15 478 320.6 

27 WR-261 25 11.47 25,936,014 50 1341 932.98 

28 WR-271 26 13.89 31,419,206 58 1518 1015.09 

29 WR-285 27 9.55 21,591,668 48 1085 738.28 
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Table 29 Variants in chloroplast genomes insertions, deletions and SNPs compared with the O. sativa subsp. 

japonica Nipponbare GU592207.1 reference genome. Abbreviations are as follows: Del: deletion, Del.T.R.: 

deletion tandem repeat, Ins.: insertion, Ins.T.R.: insertion tandem repeat, SNP Tr.: SNP transition, SNP 

Trv.:SNP transversion and Subs.: substitution. 

Sample 

number 
Deletion 

Deletion 

tandem 

repeat 

Insertion 

Insertion 

tandem 

repeat  

SNP 

trans-

etion 

SNP 

trans-

version 

Sub- 

stitution  
Total 

WR-8 12 7 5 11 48 41 4 128 

WR-20B 11 8 6 10 49 43 3 130 

WR-24B 12 7 4 11 47 42 4 127 

WR-31 11 7 6 11 50 44 4 133 

WR-44 12 7 4 12 48 41 4 128 

WR-52 12 7 4 12 48 41 4 128 

WR-65 12 8 6 10 49 42 3 130 

WR-74 12 7 6 10 50 43 4 132 

WR-83 12 7 6 11 49 43 3 131 

WR-91 12 8 6 10 49 43 2 130 

WR-103 12 7 6 10 50 43 4 132 

WR-111 12 7 6 10 49 42 3 129 

WR-121 12 7 6 10 49 43 3 130 

WR-133 11 8 6 11 49 43 3 131 

WR-141B 13 7 6 10 50 43 3 132 

WR-153 12 7 4 11 46 39 3 122 

WR-162 13 8 5 11 48 39 5 129 

WR-172 11 7 6 11 49 40 4 128 

WR-182 12 7 6 10 49 42 4 130 

WR-193 12 7 6 10 49 42 4 130 

WR-207 13 7 6 12 49 42 2 131 

WR-213 12 6 6 10 44 40 5 123 

WR-221 12 7 6 10 49 42 3 129 

WR-231 12 7 6 10 49 42 4 130 

WR-242 12 7 6 10 50 43 3 131 

WR-260 12 7 6 10 49 43 4 131 

WR-261 12 7 6 11 49 43 4 132 

WR-271 12 7 6 11 49 43 4 132 

WR-285 12 7 6 10 49 42 3 129 
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Table 30 Chloroplast functional nucleotide polymorphisms (FNPs) in Australian wild rice populations. including position, gene name, gene product, amino acid substitution 

and codon change. 

 Site Gene Gene product Protein ID 

Amino 

acid 

change 

CDS 

CDS 

codon 

number 

CDS 

position 

CDS 

position 

within 

codon 

Change 
Codon 

change 

Polymorphism 

type 

Protein 

effect 

1 8,593  hypothetical protein NP_039365.1 G -> E 
hypothetical 

protein CDS 
82 245 2 G -> A 

GGA -> 

GAA 

SNP 

(transition) 
Substitution 

2 8,599  hypothetical protein NP_039365.1 G -> E 
hypothetical 

protein CDS 
84 251 2 G -> A 

GGG -> 

GAG 

SNP 

(transition) 
Substitution 

3 8,622   hypothetical protein NP_039365.1 S -> P 
hypothetical 

protein CDS 
92 274 1 T -> C 

TCC -> 

CCC 

SNP 

(transition) 
Substitution 

4 24,178 rpoC1 
RNA polymerase 

beta' subunit 
NP_039374.1 N -> S rpoC1 CDS 567 1,700 2 A -> G 

AAT -> 

AGT 

SNP 

(transition) 
Substitution 

5 24,756 rpoC2 
RNA polymerase 

beta'' subunit 
NP_039375.1 Q ->H rpoC2 CDS 10 30 3 G -> T 

CAG -> 

CAT 

SNP 

(transversion) 
Substitution 

6 25,897 rpoC2 
RNA polymerase 

beta'' subunit 
NP_039375.1 H ->D rpoC2 CDS 391 1,171 1 C -> G 

CAT -> 

GAT 

SNP 

(transversion) 
Substitution 

7 27,695 rpoC2 
RNA polymerase 

beta'' subunit 
NP_039375.1 G ->D rpoC2 CDS 990 2,969 2 G -> A 

GGT -> 

GAT 

SNP 

(transition) 
Substitution 

8 28,019 rpoC2 
RNA polymerase 

beta'' subunit 
NP_039375.1 W ->L rpoC2 CDS 1,098 3,293 2 G -> T 

TGG -> 

TTG 

SNP 

(transversion) 
Substitution 

9 29,113 rpoC2 
RNA polymerase 

beta'' subunit 
NP_039375.1 N ->D rpoC2 CDS 1,463 4,387 1 A -> G 

AAC -> 

GAC 

SNP 

(transition) 
Substitution 
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10 29,138 rpoC2 
RNA polymerase 

beta'' subunit 
NP_039375.1 Q -> P rpoC2 CDS 1,471 4,412 2 A -> C 

CAA -> 

CCA 

SNP 

(transversion) 
Substitution 

11 30,699 atpI 
ATP synthase CF0 

A subunit 
NP_039377.1 D ->N atpI CDS 67 199 1 G -> A 

GAT -> 

AAT 

SNP 

(transition) 
Substitution 

12 40,251 psaA 

photosystem I P700 

chlorophyll a 

apoprotein A1 

NP_039383.1 R -> G psaA CDS 334 1,000 2 G -> C 
CGC -> 

CCC 

SNP 

(transversion) 
Substitution 

13 56,665  

acetyl-CoA 

carboxylase beta 

subunit 

NP_039394.1 S -> Y 

acetyl-CoA 

carboxylase 

beta subunit 

CDS 

38 113 2 C -> A 
TCT -> 

TAT 

SNP 

(transversion) 
Substitution 

14 66,104 rps18 
ribosomal protein 

S18 
NP_039408.1 T -> N rps18 CDS 155 464 2 C -> A 

ACC -> 

AAC 

SNP 

(transversion) 
Substitution 

15 70,278 psbB 
photosystem II 47 

kDa protein 
NP_039411.1 A -> T psbB CDS 494 1,480 1 G -> A 

GCA -> 

ACA 

SNP 

(transition) 
Substitution 

16 70,281 psbB 
photosystem II 47 

kDa protein 
NP_039411.1 I -> F psbB CDS 495 1,483 1 A -> T 

ATC -> 

TTC 

SNP 

(transversion) 
Substitution 

17 105,906 ccsA 
cytochrome c 

biogenesis protein 
NP_039443.1 Y -> S ccsA CDS 224 671 2 A -> C 

TAT -> 

TCT 

SNP 

(transversion) 
Substitution 

18 124,775   hypothetical protein NP_039456.1 M ->L 
hypothetical 

protein CDS 
34 100 1 A -> C 

ATG -> 

CTG 

SNP 

(transversion) 
Substitution 
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Table 31 Comparison of the SNPs, FNPs and the unique FNPs in Australian wild rice populations. 

Accession SNP FNP FNPs % Common FNPs Unique FNPs Unique FNPs % 

WR-8 93 11 11.83 6 5 46 

WR-20B 95 12 12.63 6 6 50 

WR-24B 93 11 11.83 6 5 46 

WR-31 98 12 12.24 6 6 50 

WR-44 93 11 11.83 6 5 46 

WR-52 93 11 11.83 6 5 46 

WR-65 94 12 12.77 6 6 50 

WR-74 97 12 12.37 6 6 50 

WR-83 95 12 12.63 6 6 50 

WR-91 94 12 12.77 6 6 50 

WR-103 97 12 12.37 6 6 50 

WR-111 94 12 12.77 6 6 50 

WR-121 95 12 12.63 6 6 50 

WR-133 95 12 12.63 6 6 50 

WR-141B 96 12 12.5 6 6 50 

WR-153 88 10 11.36 6 4 40 

WR-162 92 10 10.87 6 4 40 

WR-172 93 14 15.05 6 8 57 

WR-182 95 12 12.63 6 6 50 

WR-193 95 12 12.63 6 6 50 

WR-207 93 12 12.9 6 6 50 

WR-213 89 10 11.24 6 4 40 

WR-221 94 12 12.77 6 6 50 

WR-231 95 12 12.63 6 6 50 

WR-242 96 13 13.54 6 7 54 

WR-260 96 12 12.5 6 6 50 

WR-261 96 12 12.5 6 6 50 

WR-271 96 12 12.5 6 6 50 

WR-285 94 12 12.77 6 6 50 
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Table 32 Phylogenetic analysis tools applied to chloroplast genome analysis. 

 Program 
Analysing 

method 

Substitution 

model 

Rate 

variation 

Bootstrapp

ing 
Out group 

1 PAUP 
Maximum 

Parsimony 
 Gamma 1000 O. officinalis 

2 PHYLM 
Maximum 

likelihood 
GTR Gamma 1000 - 

3 MrBayes Bayesian GTR Gamma 2000 O. officinalis 

We compared methods and found that GTR was the best method for comparing diverse Oryza 

genomes (Brozynska et al., 2014a; Brozynska et al., 2014b) giving results consistent with 

known relationships at different genetic distances. 

 

 

Figure 32 Wild rice habitat in northern Queensland Jpn2 site S:15.43943° E:144.21111° 
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Table 33 Unique chloroplast SNPs found in the Australian taxa. 

 Sequence  SNPs 

1 

CACTAATAGGTTTCATGTTACGTCAATTTGAACTTGCTCGGTCTGTTC

AATTGCGA/GCCTTATAATGCAATTTCATTCTCTGGCCCAATCGCTGTT

TTTGTTTCCGTATTCCTGATTT 

A Australian new 

taxa clade 

2 

GTCTTTCTGGTAGCTATTCTAAATTCTCTCATTTCTTAAATGTGTTTAG

TAG/TTTAGTAGCCCGC/ATACAAAATAAAAAAGGGCCGTTTATTCGG

ATTGTGAGACGCATTAAAATGCAATTTGCG 

G,C Australian 

new taxa clade 

3 

GCGAAGCAGGGGGGTGTAAATTGCAAAAAAGAAATTGGACTCTTTTT

CCTATTAGATCAC/ATCAAATCACTACCCGTACTGAACTAATATAGAA

TCCCTTTTATTAATCTATTCTTATTCCATATCCTTT 

C Australian new 

taxa clade 

4 

GTATTAACGATTGGAAACCGTCGAGGTATTTGTGCAAATAGATATAA

TAGTTGCGGAAACTATCCAAACCAAAAAGTAAG/ATTACAATAATAAT

AATCCTAAGTATACGAAAGATAAAGAATCTCTTTTTTCTAGTTCCTAT

GATGCACTGGGAGCTTATAGACAGAAACAAAT 

G Australian new 

taxa clade 

5 

CCCGCAACCCCACGGTTATGAGCCTTGTCAGCTACCAAACTGTTCTAT

CCTGTTAAACTAAAGAGAGGGGAACTAGTGGATAAAAA/GGGGGGTT

GAATACGCCCCTCTACCATATCTATACAAATAGAATAGTCCATTTATA

CAGAATGGTAAAGAGGGCTCTTCTACGATCATCAATTCCAGAAATCC

AT 

A Australian new 

taxa clade 

6 

AAGATTTCTCAATTTTCATTAAATCTTATAGAAAGAGGTAGAATTTCT

TCTTTTTTTCAGGGATTTTAGGGAAAC/ATAAGGCTCTTGTCATTTTTT

ATTCTATTACTGAACAGAATGGGAAGACAGGGTTGGTTATTCTTCGTC

TACGAATATCCAAATTTTAAC  

C Australian new 

taxa clade 

7 

TTCGTAAAAATCTTTGGAAGAAAAAGACTTATTTTTCCATAGTACAAT

CTTATTCTTTAGCAAAATCAAGATCATTTTCTGGCGTCAGCGAGCAC/T

CCAAAACCAAAGGGTTTTTCTCGGCAACAAACAAACAAATAATAGGG

TTTTGGGATAATATGAATTGACCTATCCCCAAAAAATTCCAATTATTT

AATATGAATAATTAG 

C Australian new 

taxa clade 

8 

TCTTTTTGCCATTGGACTTTCCAATCGAATTGATTGTAAGACTCGTAA

AGATCAACTTTACGAAGATCCCATTGTATTCCAGAAGCTCGTAACATG

GGA/GCCCGATAAGCCCCAATTTACAGCTTCTTCTCCGCTAATAAAAC

CAACTCCCTCAACTCGTTCCAAAAAAATGGGATTCTGTGTAATAAGTT

GTTGATATTCAA 

A Australian new 

taxa clade 
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Table 34 Chromosomes phylogenetic analysis topology agreement. 

Chromosome 

Maximum 

Likelihood (ML) 

Vs Maximum 

Parsimony (MP) 

Maximum 

Likelihood 

(ML) Vs 

Bayesian 

Inference (BI) 

Maximum 

Parsimony (MP) 

Vs Bayesian 

Inference (BI) 

Agreement 

among 

approaches 

1 100% - - - 

2 100% 100% 100% 100% 

3 100% 100% 100% 100% 

4 100% 100% 100% 100% 

5 90% 100% 100% 97% 

6 95% 100% 100% 98% 

7 95% 95% 100% 97 

8 100% 100% 100% 100% 

9 90% - 100% - 

10 - - - - 

11 90% 100% 100% 97% 

12 100% 90% - - 
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Figure 33 Maximum Parsimony phylogenetic tree analysis of the concatenated alignment of chromosome 1 genes. 

Colours relate to the main clades. Red and Brown clades are from Australia. Bootstrap value of 1000 replicates are 

shown on the branches 
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Figure 34 Maximum Parsimony phylogenetic tree analysis of the concatenated alignment of chromosome 2 genes. 

Colours relate to the main clades. Red and Brown clades are from Australia. Bootstrap value of 1000 replicates are 

shown on the branches 
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Figure 35 Maximum Parsimony phylogenetic tree analysis of the concatenated alignment of chromosome 3 genes. 

Colours relate to the main clades. Red and Brown clades are from Australia. Bootstrap value of 1000 replicates are 

shown on the branches 
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Figure 36 Maximum Parsimony phylogenetic tree analysis of the concatenated alignment of chromosome 4 genes. 

Colours relate to the main clades. Red and Brown clades are from Australia. Bootstrap value of 1000 replicates are 

shown on the branches 
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Figure 37 Maximum Parsimony phylogenetic tree analysis of the concatenated alignment of chromosome 5 genes. 

Colours relate to the main clades. Red and Brown clades are from Australia. Bootstrap value of 1000 replicates are 

shown on the branches. 
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Figure 38 Maximum Parsimony phylogenetic tree analysis of the concatenated alignment of chromosome 6 genes. 

Colours relate to the main clades. Red and Brown clades are from Australia. Bootstrap value of 1000 replicates are shown 

on the branches. 
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Figure 39 Maximum Parsimony phylogenetic tree analysis of the concatenated alignment of chromosome 7 genes. 

Colours relate to the main clades. Red and Brown clades are from Australia. Bootstrap value of 1000 replicates are 

shown on the branches. 
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Figure 40 Maximum Parsimony phylogenetic tree analysis of the concatenated alignment of chromosome 8 genes. 

Colours relate to the main clades. Red and Brown clades are from Australia. Bootstrap value of 1000 replicates are 

shown on the branches. 
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Figure 41 Maximum Parsimony phylogenetic tree analysis of the concatenated alignment of chromosome 9 genes. 

Colours relate to the main clades. Red and Brown clades are from Australia. Bootstrap value of 1000 replicates are 

shown on the branches. 
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Figure 42 Maximum Parsimony phylogenetic tree analysis of the concatenated alignment of chromosome 10 genes. 

Colours relate to the main clades. Red and Brown clades are from Australia. Bootstrap value of 1000 replicates are 

shown on the branches. 
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Figure 43 Maximum Parsimony phylogenetic tree analysis of the concatenated alignment of chromosome 11 genes. 

Colours relate to the main clades. Red and Brown clades are from Australia. Bootstrap value of 1000 replicates are 

shown on the branches. 
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Figure 44 Maximum Parsimony phylogenetic tree analysis of the concatenated alignment of chromosome 12 genes. 

Colours relate to the main clades. Red and Brown clades are from Australia. Bootstrap value of 1000 replicates are 

shown on the branches. 
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5 Appendix 5 

Table 35 Non synonyms nucleotide polymorphism in 13 starch related gene. Gene, protein and amino acid substitutions are shown. Colours: Green taxon A, orange taxon B yellow 

in both 

GBSS
-I 

             

Base 
Referen
ce 

Reference 
position 

Gene ID Protein ID 
Amino Acid 
Change 

CDS Codon 
Number 

CDS 
Position 

CDS Position Within 
Codon 

Chang
e 

Codon 
Change 

Polymorphism 
Type 

Protein 
Effect 

FREQUEN
CY 

G A 2,054 
LOC43400
18 

XP_01564448
6.1 

I -> V 165 493 1 A -> G ATC -> GTC SNP (transition) 
Substitutio
n 

2 

ISA3              

Base 
Referen
ce 

Reference 
position 

Gene ID Protein ID 
Amino Acid 
Change 

CDS Codon 
Number 

CDS 
Position 

CDS Position Within 
Codon 

Chang
e 

Codon 
Change 

Polymorphism 
Type 

Protein 
Effect 

Frequenc
y 

C T 1,719 
LOC43473
28 

XP_01561225
5.1 

I -> T 167 500 2 T -> C ATA -> ACA SNP (transition) 
Substitutio
n 

27 

A G 1,703 
LOC43473
28 

XP_01561225
5.1 

D -> N 162 484 1 G -> A GAT -> AAT SNP (transition) 
Substitutio
n 

27 

A G 7,377 
LOC43473
28 

XP_01561225
5.1 

C -> Y 560 1,679 2 G -> A TGT -> TAT SNP (transition) 
Substitutio
n 

27 

SBE1              

Base 
Referen
ce 

Reference 
position 

Gene ID Protein ID 
Amino Acid 
Change 

CDS Codon 
Number 

CDS 
Position 

CDS Position Within 
Codon 

Chang
e 

Codon 
Change 

Polymorphism 
Type 

Protein 
Effect 

Frequenc
y 

A G 2,600 
LOC43421
17 

XP_01564311
1.1 

V -> I 50 148 1 G -> A GTC -> ATC SNP (transition) 
Substitutio
n 

24 

A G 3,570 
LOC43421
17 

XP_01564311
1.1 

R -> H 190 569 2 G -> A CGC -> CAC SNP (transition) 
Substitutio
n 

26 

A G 7,215 
LOC43421
17 

XP_01564311
1.1 

R -> H 762 2,285 2 G -> A CGT -> CAT SNP (transition) 
Substitutio
n 

23 

C G 7,293 
LOC43421
17 

XP_01564311
1.1 

G -> A 788 2,363 2 G -> C 
GGG -> 
GCG 

SNP 
(transversion) 

Substitutio
n 

25 

SBE3              

Base 
Referen
ce 

Reference 
position 

Gene ID Protein ID 
Amino Acid 
Change 

CDS Codon 
Number 

CDS 
Position 

CDS Position Within 
Codon 

Chang
e 

Codon 
Change 

Polymorphism 
Type 

Protein 
Effect 

Frequenc
y 

G A 6,502 
LOC43295
32 

XP_01562750
3.1 

T -> A 525 1,573 1 A -> G ACC -> GCC SNP (transition) 
Substitutio
n 

1 

A C 8,471 
LOC43295
32 

XP_01562750
3.1 

S -> Y 569 1,706 2 C -> A TCT -> TAT 
SNP 
(transversion) 

Substitutio
n 

1 

G A 1,288 
LOC43295
32 

XP_01562750
3.1 

E -> G 120 359 2 A -> G GAA -> GGA SNP (transition) 
Substitutio
n 

25 
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SBE4              

Base 
Referen
ce 

Reference 
position 

Gene ID Protein ID 
Amino Acid 
Change 

CDS Codon 
Number 

CDS 
Position 

CDS Position Within 
Codon 

Chang
e 

Codon 
Change 

Polymorphism 
Type 

Protein 
Effect 

Frequenc
y 

T G 825 
LOC43357
63 

XP_01563424
5.1 

V -> L 62 184 1 G -> T GTG -> TTG 
SNP 
(transversion) 

Substitutio
n 

26 

G A 1,151 
LOC43357
63 

XP_01563424
5.1 

N -> D 93 277 1 A -> G AAT -> GAT SNP (transition) 
Substitutio
n 

27 

A G 1,867 
LOC43357
63 

XP_01563424
5.1 

A -> T 213 637 1 G -> A GCT -> ACT SNP (transition) 
Substitutio
n 

24 

SS-I              

Base 
Referen
ce 

Reference 
position 

Gene ID Protein ID 
Amino Acid 
Change 

CDS Codon 
Number 

CDS 
Position 

CDS Position Within 
Codon 

Chang
e 

Codon 
Change 

Polymorphism 
Type 

Protein 
Effect 

Frequenc
y 

A G 5,406 
LOC92694
93 

XP_01564424
1.1 

G -> E 500 1,499 2 G -> A 
GGG -> 
GAG 

SNP (transition) 
Substitutio
n 

25 

A G 401 
LOC92694
93 

XP_01564424
1.1 

A -> T 72 214 1 G -> A GCG -> ACG SNP (transition) 
Substitutio
n 

24 

S-II-1              

Base 
Referen
ce 

Reference 
position 

Gene ID Protein ID 
Amino Acid 
Change 

CDS Codon 
Number 

CDS 
Position 

CDS Position Within 
Codon 

Chang
e 

Codon 
Change 

Polymorphism 
Type 

Protein 
Effect 

Frequenc
y 

A G 2,250 
LOC43487
11 

XP_01561456
1.1 

R -> H 215 644 2 G -> A CGT -> CAT SNP (transition) 
Substitutio
n 

3 

T G 2,366 
LOC43487
11 

XP_01561456
1.1 

A -> S 254 760 1 G -> T GCT -> TCT 
SNP 
(transversion) 

Substitutio
n 

2 

C T 1,107 
LOC43487
11 

XP_01561456
1.1 

V -> A 115 344 2 T -> C GTT -> GCT SNP (transition) 
Substitutio
n 

27 

A G 6,643 
LOC43487
11 

XP_01561456
1.1 

G -> E 498 1,493 2 G -> A 
GGG -> 
GAG 

SNP (transition) 
Substitutio
n 

27 

A G 2,093 
LOC43487
11 

XP_01561456
1.1 

A -> T 163 487 1 G -> A GCA -> ACA SNP (transition) 
Substitutio
n 

27 

SS-II-
2 

             

Base 
Referen
ce 

Reference 
position 

Gene ID Protein ID 
Amino Acid 
Change 

CDS Codon 
Number 

CDS 
Position 

CDS Position Within 
Codon 

Chang
e 

Codon 
Change 

Polymorphism 
Type 

Protein 
Effect 

Frequenc
y 

C T 1,085 
LOC43307
09 

XP_01562745
2.1 

S -> P 130 388 1 T -> C TCT -> CCT SNP (transition) 
Substitutio
n 

3 

T C 322 
LOC43307
09 

XP_01562745
2.1 

P -> L 9 26 2 C -> T CCG -> CTG SNP (transition) 
Substitutio
n 

3 

G A 4,373 
LOC43307
09 

XP_01562745
2.1 

N -> S 653 1,958 2 A -> G AAC -> AGC SNP (transition) 
Substitutio
n 

2 

G A 522 
LOC43307
09 

XP_01562745
2.1 

T -> A 76 226 1 A -> G ACG -> GCG SNP (transition) 
Substitutio
n 

29 

C A 1,014 
LOC43307
09 

XP_01562745
2.1 

Y -> S 106 317 2 A -> C TAC -> TCC 
SNP 
(transversion) 

Substitutio
n 

29 
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T C 3,866 
LOC43307
09 

XP_01562745
2.1 

T -> M 484 1,451 2 C -> T ACG -> ATG SNP (transition) 
Substitutio
n 

27 

G C 983 
LOC43307
09 

XP_01562745
2.1 

H -> D 96 286 1 C -> G CAT -> GAT 
SNP 
(transversion) 

Substitutio
n 

27 

T C 1,149 
LOC43307
09 

XP_01562745
2.1 

A -> V 151 452 2 C -> T GCT -> GTT SNP (transition) 
Substitutio
n 

27 

C A 3,896 
LOC43307
09 

XP_01562745
2.1 

E -> A 494 1,481 2 A -> C GAG -> GCG 
SNP 
(transversion) 

Substitutio
n 

27 

SS-II-
3 

             

Base 
Referen
ce 

Reference 
position 

Gene ID Protein ID 
Amino Acid 
Change 

CDS Codon 
Number 

CDS 
Position 

CDS Position Within 
Codon 

Chang
e 

Codon 
Change 

Polymorphism 
Type 

Protein 
Effect 

Frequenc
y 

T A 1,058 
LOC43405
67 

XP_01564424
6.1 

K -> M 244 731 2 A -> T AAG -> ATG 
SNP 
(transversion) 

Substitutio
n 

2 

A G 1,190 
LOC43405
67 

XP_01564424
6.1 

G -> D 288 863 2 G -> A GGC -> GAC SNP (transition) 
Substitutio
n 

2 

G A 4,394 
LOC43405
67 

XP_01564424
6.1 

M -> V 737 2,209 1 A -> G ATG -> GTG SNP (transition) 
Substitutio
n 

28 

G A 3,995 
LOC43405
67 

XP_01564424
6.1 

S -> G 604 1,810 1 A -> G AGC -> GGC SNP (transition) 
Substitutio
n 

27 

C A 889 
LOC43405
67 

XP_01564424
6.1 

T -> P 188 562 1 A -> C ACG -> CCG 
SNP 
(transversion) 

Substitutio
n 

24 

T G 894 
LOC43405
67 

XP_01564424
6.1 

K -> N 189 567 3 G -> T AAG -> AAT 
SNP 
(transversion) 

Substitutio
n 

24 

G A 413 
LOC43405
67 

XP_01564424
6.1 

D -> G 72 215 2 A -> G GAT -> GGT SNP (transition) 
Substitutio
n 

23 

SS-III              

Base 
Referen
ce 

Reference 
position 

Gene ID Protein ID 
Amino Acid 
Change 

CDS Codon 
Number 

CDS 
Position 

CDS Position Within 
Codon 

Chang
e 

Codon 
Change 

Polymorphism 
Type 

Protein 
Effect 

Frequenc
y 

C A 1,392 
LOC43370
56 

XP_01563621
5.1 

K -> N 207 621 3 A -> C AAA -> AAC 
SNP 
(transversion) 

Substitutio
n 

2 

C T 5,259 
LOC43370
56 

XP_01563621
5.1 

W -> R 858 2,572 1 T -> C TGG -> CGG SNP (transition) 
Substitutio
n 

2 

G C 6,923 
LOC43370
56 

XP_01563621
5.1 

L -> V 1,103 3,307 1 C -> G CTT -> GTT 
SNP 
(transversion) 

Substitutio
n 

3 

A G 4,097 
LOC43370
56 

XP_01563621
5.1 

V -> I 762 2,284 1 G -> A GTT -> ATT SNP (transition) 
Substitutio
n 

3 

T G 4,080 
LOC43370
56 

XP_01563621
5.1 

S -> I 756 2,267 2 G -> T AGT -> ATT 
SNP 
(transversion) 

Substitutio
n 

29 

G A 1,561 
LOC43370
56 

XP_01563621
5.1 

R -> G 264 790 1 A -> G 
AGG -> 
GGG 

SNP (transition) 
Substitutio
n 

27 

G A 1,588 
LOC43370
56 

XP_01563621
5.1 

K -> E 273 817 1 A -> G AAA -> GAA SNP (transition) 
Substitutio
n 

27 

G A 2,035 
LOC43370
56 

XP_01563621
5.1 

N -> D 422 1,264 1 A -> G AAT -> GAT SNP (transition) 
Substitutio
n 

27 
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A G 6,449 
LOC43370
56 

XP_01563621
5.1 

R -> K 1,011 3,032 2 G -> A AGG -> AAG SNP (transition) 
Substitutio
n 

27 

A G 6,478 
LOC43370
56 

XP_01563621
5.1 

V -> I 1,021 3,061 1 G -> A GTT -> ATT SNP (transition) 
Substitutio
n 

27 

SS-IV              

Base 
Referen
ce 

Reference 
position 

Gene ID Protein ID 
Amino Acid 
Change 

CDS Codon 
Number 

CDS 
Position 

CDS Position Within 
Codon 

Chang
e 

Codon 
Change 

Polymorphism 
Type 

Protein 
Effect 

Frequenc
y 

C T 5,407 
LOC43310
78 

XP_01562620
2.1 

C -> R 510 1,528 1 T -> C TGT -> CGT SNP (transition) 
Substitutio
n 

3 

T C 354 
LOC43310
78 

XP_01562620
2.1 

R -> W 50 148 1 C -> T CGG -> TGG SNP (transition) 
Substitutio
n 

3 

T C 1,126 
LOC43310
78 

XP_01562620
2.1 

S -> L 131 392 2 C -> T TCG -> TTG SNP (transition) 
Substitutio
n 

3 

T C 6,528 
LOC43310
78 

XP_01562620
2.1 

P -> S 624 1,870 1 C -> T CCC -> TCC SNP (transition) 
Substitutio
n 

2 

G C 860 
LOC43310
78 

XP_01562620
2.1 

Q -> E 103 307 1 C -> G CAG -> GAG 
SNP 
(transversion) 

Substitutio
n 

29 

T C 8,015 
LOC43310
78 

XP_01562620
1.1 

S -> N 23 68 2 C -> T AGT -> AAT SNP (transition) 
Substitutio
n 

17 

T C 8,039 
LOC43310
78 

XP_01562620
1.1 

G -> E 15 44 2 C -> T GGA -> GAA SNP (transition) 
Substitutio
n 

17 

A G 525 
LOC43310
78 

XP_01562620
2.1 

A -> T 61 181 1 G -> A GCT -> ACT SNP (transition) 
Substitutio
n 

16 

 

*For more details please see the excel file  
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Figure 45 Phylogenetic tree based on Bayesian analysis of GBSSI gene. Bootstrap values (1000 replicates) are shown 

on the branches. Taxa A accessions grouped with domesticated rice while Taxa B accessions grouped together as a 

separate clade. WR-65 and WR-44 were in between those two clades indicating they were hybrids 
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Figure 46 Phylogenetic tree based on Bayesian analysis of ISA2 gene. Bootstrap values (1000 replicates) are shown on 

the branches. Taxa A accessions grouped with domesticated rice while Taxa B accessions grouped together as a 

separate clade. WR-65 and WR-44 were in between those two clades indicating they were hybrids. 
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Figure 47 Phylogenetic tree based on Bayesian analysis of ISA3 gene. Bootstrap values (1000 replicates) are shown on 

the branches. Taxa A accessions grouped with domesticated rice while Taxa B accessions grouped together as a 

separate clade. WR-65 and WR-44 were in between those two clades indicating they were hybrids. 
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Figure 48 Phylogenetic tree based on Bayesian analysis of PUL gene. Bootstrap values (1000 replicates) are shown on 

the branches.  
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Figure 49 Phylogenetic tree based on Bayesian analysis of SBE1 gene. Bootstrap values (1000 replicates) are shown on 

the branches. Taxa A accessions grouped with domesticated rice while Taxa B accessions grouped together as a 

separate clade. WR-65 and WR-44 were in between those two clades indicating they were hybrids. 
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Figure 50 Phylogenetic tree based on Bayesian analysis of SBE3 gene. Bootstrap values (1000 replicates) are shown on 

the branches.  
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Figure 51 Phylogenetic tree based on Bayesian analysis of SBE4 gene. Bootstrap values (1000 replicates) are shown on 

the branches.  
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Figure 52 Phylogenetic tree based on Bayesian analysis of SSI gene. Bootstrap values (1000 replicates) are shown on 

the branches.  
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Figure 53 Phylogenetic tree based on Bayesian analysis of SSII-1 gene. Bootstrap values (1000 replicates) are shown on 

the branches.  
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Figure 54 Phylogenetic tree based on Bayesian analysis of SSII-2 gene. Bootstrap values (1000 replicates) are shown on 

the branches. Taxa A accessions grouped with domesticated rice while Taxa B accessions grouped together as a 

separate clade. WR-65 and WR-44 were in between those two clades indicating they were hybrids. 
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Figure 55 Phylogenetic tree based on Bayesian analysis of SSII-3 gene. Bootstrap values (1000 replicates) are shown on 

the branches. Taxa A accessions grouped with domesticated rice while Taxa B accessions grouped together as a 

separate clade. WR-65 and WR-44 were in between those two clades indicating they were hybrids. 
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Figure 56 Phylogenetic tree based on Bayesian analysis of SSIII gene. Bootstrap values (1000 replicates) are shown on 

the branches.  
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Figure 57 Phylogenetic tree based on Bayesian analysis of SSIV gene. Bootstrap values (1000 

replicates) are shown on the branches. 

 




