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Abstract

Tracking mobile nodes is a topic of significant scientific and commercial interest. However,

due to the high energy consumption of GPS receivers, high-frequency, long-term tracking of

resource-constrained mobile nodes remains challenging. Cooperative position tracking has

been proposed to improve energy efficiency, however most existing schemes perform oppor-

tunistic cooperation and optimize for either energy or accuracy. In this thesis, a cooperative

tracking algorithm is proposed using planned cooperation, where a cluster head centrally

coordinates resource usage among cluster members. This technique assumes the existence of

a reasonably stable cluster of mobile nodes carried by groups of people, animals, or vehicles.

Several variants of the proposed cluster-based tracking algorithm are investigated, which dif-

fer based on how a node estimates its position after receiving a position update from the

cluster head. These techniques include estimating a node’s position to be the same as the

position update, or using a Kalman filter to incorporate inertial measurement sensor data as

well as the received position updates.

A second group of localization techniques estimates position based on RSSI-based range

estimates from a subset of nodes using GPS to estimate their position. Multilateration is

used to estimate node positions based on these ranges. The theoretical bounds (Cramer-

Rao Lower Bounds) for localization performance are derived in a practical scenario where

both neighbouring node positions and RSSI range estimates have errors following normal

(position) and log-normal (range) probability distributions. Targeting resource-constrained

nodes, two different self-localization algorithms are proposed which use these different error

distributions. The two algorithms vary in computational complexity and localization per-

formance. In simulated experiments, the proposed self-localization algorithms reduce the

root mean square error and bias-norm up to 50% while reducing computation time by 80%

compared to previously published algorithms.

Finally, a multi-mode tracking algorithm is proposed building on the proposed cluster-

based tracking and self-localization algorithms. This algorithm uses either individual mea-
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surements, group estimates, or multilateration-based estimates based on the current status

of the group and the desired energy or accuracy performance. This multi-mode tracking

algorithm is as accurate as individual GPS tracking while using up to 50% less energy when

evaluated on position tracks of nodes generated using Reynolds’ flocking model. Overall, the

proposed algorithms show significant improvements in localization and tracking of mobile

nodes compared to the current state-of-the-art.
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Chapter 1

Introduction and Motivation

Localization and tracking of mobile nodes is useful for both industrial and scientific pur-

poses. For example, in the industrial context, Google traffic updates and driving directions

are interesting applications using location data. In the scientific context, tracking animal’s

location improves our knowledge of their movement range and foraging behaviour. The Bat-

mon project [1] of Commonwealth Scientific Industrial Research Organization (CSIRO) is an

example of a project which depends on localisation. Indeed, this Batmon project is a primary

motivation behind my thesis. It involves continental-scale fruit bat monitoring to understand

their movement and its influence on the spread of bat-borne diseases. Bats harbour viruses

such as Hendra, Lasaa, and Ebola which are transmitted through the bat’s bite, urine or

aerosolization of saliva and may lead to the death of victims [2–6]. On the positive side bats

play an important role in the native ecology [7, 8].

More broadly, localization and tracking of livestock (e.g., cattle, goats, and pigs in com-

mercial farms), wildlife (e.g., deer, dingoes), humans (e.g., workers, cyclists), and mobile

assets (gas cylinders, tools) also have scientific and industrial importance. These applica-

tions involve long-term tracking of sensor nodes fitted with battery operated tracking de-

vices. In most of these applications, the node movements are uncontrolled. Therefore, device

maintenance (e.g. battery replacement) may be laborious or even impossible. Hence, the

tracking device should be fitted with the maximum possible energy resources and it should

use them efficiently. However, to preserve the natural movements of the tracked animals, the

allowed maximum size and weight of the tracking devices is restricted, and this limits the

available computational power and energy resources. The satellite-based global positioning

system (GPS) is commonly used for outdoor localization and tracking. However, for resource-
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constrained devices, GPS-receivers are still relatively expensive in energy use. For example,

Camazotz, the tracking device used in the Batmon project, uses a CC430 system on chip

(SoC) with GPS, inertial, acoustic, air pressure and temperature sensors, two solar panels,

a 300mAh Li-Ion battery operating at 3.7V (3996J), with a total weight of just under 30g

[9]. Its battery is sufficient only for one year with 25 GPS-based position updates per day

(0.43J/GPS activity, GPS(74mW) and processor (13.2mW) use for 5s). This tracking period

and resolution may not be sufficient for Batmon and other similar applications.

However, in many applications, nodes exhibit grouping behaviour. The grouping be-

haviour presents an opportunity to distribute the GPS sensing load and share the GPS-based

position among the group members. Load sharing will potentially increase the tracking life

(reduced energy usage) of nodes but this comes at the expense of increased position error.

The energy-accuracy trade-off of sharing the GPS positioning information and sensing load

among the group members is the focus of this thesis.

This thesis considers the problems of outdoor localization and tracking of uncontrolled

nodes having grouping behaviour. Such groups may be dynamic in nature which means there

may exist different clusters of nodes during the tracking period. The size and number of nodes

in a cluster formed depends on the radio communication range. The nodes are assumed to

have resource-constrained tracking devices similar to Camazotz. Each node in a group is con-

sidered as an independent entity but the node will participate in a group activity to either

increase the tracking life-time or localization accuracy. In a group activity, member nodes

share the GPS sensing load, received signal strength indicator (RSSI) measurements, and

other sensor information such as accelerometer and magnetometer readings. The GPS has

errors in its positioning from a number of sources such as errors in ephemeris data, satellite

clock, multipath or errors in the receiver itself (thermal noise, software issues) [10]. Similarly,

the RSSI measurements also have noise from sources such as multipath, radio-interference,

obstructions or model inaccuracy leading to errors in distance estimation among nodes [11].

Considering the use of microelectromechanical system (MEMS)-based components, the mea-

surements from inertial-sensors also have noise. My thesis considers these different kinds

of errors in position measurement in group activity and investigates the possible solutions

to either increase the tracking period or improve the self-localization accuracy or both. The

evaluation presented is based on simulated group movement behaviour generated through the

well-known Reynolds flocking algorithm [12]. The energy model used is based on the reported
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energy consumption of Camazotz [9]. All the simulation framework and algorithms required

to perform the experiments are designed using Python. The four specific contributions made

in this thesis are outlined in the following paragraphs.

First, this thesis presents a cluster-based tracking (CBT) algorithm. CBT distributes

the GPS sampling load and shares the position information among the cluster members in

a planned manner using a cluster head (CH). Three variants of CBT are evaluated, namely

“CBT-Standard”, “CBT-cooperative Kalman filter (CKF)” and “CBT-CKF with Accelerom-

eter and Magnetometer”. The results are compared with an algorithm in which a node sam-

ples its own GPS every time it requires a position update, referred to here as the Individual

algorithm. Evaluations reveals that CBT can reduce the position error up to 43% for a given

energy budget compared to the Individual algorithm. Similarly, CKF with Acc.&Mag can

reduce the energy usage up to 27% while staying within the position error performance range

of Individual algorithm.

Second, this thesis presents the Cramer-Rao lower bound (CRLB) for the variance of the

position estimate using a multilateration technique. In multilateration, there are two types

of nodes. The first type, referred to as “blind nodes” are the nodes whose position is not yet

known. The second type, referred to as “anchor nodes” are the nodes that have an estimate

of their current locations (e.g., using GPS) and are in the communication range of the blind

nodes. Given the anchor node positions and the distance estimates between blind nodes and

anchor nodes, the blind node position is the intersection of circles whose origins are located

at the anchor positions and whose radii are equal to the distances between anchor nodes

and the blind node. This work extends previously published results in the literature. The

presented CRLB considers more realistic assumptions about errors, i.e., a zero-mean normal

distribution of errors in anchor positions and a log-normal distribution of errors in distance

estimates. The former assumption is due to GPS-based positioning and the latter is due to

the distance estimation using RSSI measurements [13, 14].

Third, this thesis presents two self-localization algorithms targeting resource-constrained

devices. Both the algorithms are heuristic in nature and are named heuristic non-linear

(HNL) and heuristic pseudo-linear (HPL) algorithms. HNL minimizes a non-linear, weighted

sum-square-error cost function in an iterative manner. The cost function consists of the

weighted square of the difference between the distance inferred from an RSSI measurement

and the Euclidean distance between the blind node and the anchor node to which the RSSI
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measurement corresponds. The square-error terms are weighted by their variances, which are

estimated by taking into account perturbations in both RSSI measurements and anchor node

position information. The results are compared with an existing iterative algorithm, named

source position estimation for anchor position uncertainty reduction (SPEAR), considering

similar noise assumptions in measurements [15]. Compared to SPEAR, the proposed HNL

algorithm has advantages in both root mean square error (RMSE) and computational time.

HNL only took one-sixth of the computational time and gives up to 27% less RMSE compared

to SPEAR.

The proposed HPL algorithm gives a closed form solution. HPL first approximates the

problem’s original non-linear system of equations with a linearized system of equations. Next,

HPL uses a weighted least-squares (WLS) solution to solve the system of linear equations.

The weights are estimated by taking into account the statistical properties of the perturba-

tions in both RSSI and anchor position information. Finally, HPL calculates and compensates

for the bias in the solution caused by noisy anchor positions and RSSI measurements. To the

best of my knowledge, there is no existing algorithm considering similar noise assumptions

to the ones made here and providing a closed form solution. HPL results are compared with

the “Hyperbolic” algorithm [16]. The Hyperbolic algorithm considers similar noise assump-

tions on distance estimates while assuming perfect knowledge of anchor node positions and

provides a closed form solution. The proposed HPL algorithm considerably improves the Hy-

perbolic algorithm both in term of RMSE and bias without any extra computational burden.

HPL shows up to 50% lower RMSE compared to the Hyperbolic algorithm and reduces the

bias close to zero.

Fourth, the thesis presents a multi-mode tracking algorithm. To maximize position ac-

curacy, this algorithm chooses the best between HPL, CBT and Individual tracking for the

localization at an instance based on the group size and available resources. For a given energy

budget, multi-mode tracking reduces the mean tracking error by up to 20% in comparison

to CBT. Additionally, the proposed multi-mode tracking algorithm is as accurate as the

Individual-based tracking while using around 50% less energy.

The rest of the thesis is organized as follows. Chapter 2 covers the literature survey

on energy-efficient localization and tracking algorithms and presents the research questions

addressed in this thesis. Chapter 3 describes the CBT algorithm for sharing the GPS sensing

load among a group of mobile nodes in planned cooperation. Chapter 4 gives the derivation of
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the theoretical bound on the localization variance. Chapters 5 and 6 propose HNL and HPL

algorithms to approach the theoretical bounds derived in Chapter 4. Chapter 7 describes

the multi-mode tracking algorithm and evaluates its energy-accuracy performance. Finally,

Chapter 8 presents the conclusions drawn from this thesis work along with the original

contributions made and possible future directions.
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Chapter 2

Literature Review, Gaps, and

Research Questions

Localization refers to the process of estimating the location of a device or node. An appli-

cation may need 2D or 3D location information. When the location information is tracked

along with time, then the process is referred as tracking. The field of localization and tracking

is vast. It ranges from an airplane navigation to localization/tracking of honey bees [17, 18].

Following are the basic parameters categorizing the localization field.

• Outdoor Versus Indoor: Outdoor localization refers to locating a node in open areas

such as a sea, forest, street, and road. Indoor localization refers to node positioning

inside a building, bus, airplane, etc.

• Self Versus Target: The process in which a node estimates its own location is called self-

localization. However, the process of estimating the location of another node (generally

referred as a target node) is called target localization. For example, finding the location

of an object using radar is target localization, whereas if the same object uses its GPS

or the radar information to estimate its location, then it’s self-localization.

• Resource-constrained Versus Resource-rich: The term resource may refer to a computa-

tional resource or an energy resource or both. The availability of resources for location

calculation can have a significant impact on the accuracy of the estimated location.

A resource-rich node, e.g. a car, may have enough battery and computational power

to run a complex optimization algorithm and estimate its location, whereas resources

available in a tracking device fitted on a honey bee may be minuscule.
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• Centralized Versus Distributed: This category specifies where the processing related to

localization takes place. In centralized localization, all the position estimation-related

processing happens at a single central location. Whereas, in distributed localization,

the tasks involved in the location estimation are divided among a set of processing

nodes in a network. Distributed processing is one way to deal with the problem of

constrained resources.

• Online Versus Offline : In online localization, the location is estimated and provided to

an application on a real-time basis e.g. Google driving directions. In offline localization,

raw location information is recorded and processed at a later time. Offline localization

generally serves analytic purposes such as tourist movement history.

This thesis is focused on outdoor, self-localization of resource-constrained mobile nodes

in 2D. The resource limitations are considered in both energy and computational power. The

processing is assumed to be at the node itself (centralized) and the location is calculated on

a real-time basis (online).

The rest of chapter is organized as follows. Section 2.2 discusses global navigation satellite

systems (GNSSs) and the GPS operation followed by high energy consumption issues of GPS

as a challenge in localization and tracking of resource-constrained devices. Section 2.1 covers

various mobility models. Section 2.3 presents radiolocation technologies and multilateration

along with the challenges posed by errors in various measurements required for multilat-

eration. Section 2.4 covers the literature addressing the high-energy consumption issue of

GPS by duty-cycling it. Section 2.5 discusses the literature related to the multilateration-

based localization addressing the measurement error problem. Next, section 2.6 presents a

summary of the reviewed literature along with the identified research gaps. Finally, Sec-

tion 2.7 presents various research questions addressed along with a short comment on the

methodology to answer those research questions.

2.1 Mobility Models

Mobility models describes the movement of mobile noes, and how their location, velocity

and acceleration change over time. The various movement models relevant to this thesis are

discussed below.
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2.1.1 Random Walk

This term was first coined by Karl Pearson in [19]. The Random Walk model, also referred

to as the Brownian Motion, was originally proposed to emulate the unpredictable movement

of particles in physics. The Random Walk model is a memoryless mobility process where the

information about the previous status is not used for the future decision. A basic example

of a random walk is the random walk on the integer number line which starts at 0 and at

each step moves +1 or −1 with equal probability. Other examples such as path traced by a

molecule in liquid and the search path of a foraging animal can also be approximated as a

random walk.

2.1.2 Random Waypoint

This model was first proposed by Johnson and Maltz in [20]. This mobility model is

a simple and straightforward stochastic model. In this model a node randomly chooses a

waypoint (destination point) which are uniformly randomly distributed on the system area.

The node then moves with constant speed on a straight line to this point. Once arrived, the

node pause for a random time, and then chooses a new destination and speed. This process

repeats again and again.

2.1.3 Reynolds flocking

In 1987, Craig Reynolds proposed a distributed flocking movement model [12]. This model

consist of three simple steering behaviors parameters (separation, alignment, cohesion) which

describe how an individual node in a flock maneuvers based on the positions and velocities its

nearby flockmates. The separation value decides the steer to avoid crowding local flockmates.

The alignment value defines the steer towards the average heading of local flockmates. The

cohesion value decides the steer to move toward the average position of local flockmates. By

chossing the different values for these steering behaviors one can simulate different types of

the flocking behaviour.
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2.2 GNSSs and GPS

GNSSs are commonly used for outdoor localization. The Department of Defense (DoD)

of the United States started the first GNSS project, presently known as GPS, for military

purposes, which, later on, was made available for civilian use. Initially, GPS made available

for civilian use was purposefully degraded, with accuracy of about 100m, using selective

availability, which was later removed. At present, consumer grade GPS is able to obtain

an accuracy in the range 1m to 10m [21]. For specialized applications such as surveying,

centimetre level accuracy is possible [22]. In addition to GPS, Russia’s Global Orbiting

Navigation Satellite System and the European Union’s Galileo are global operational GNSSs.

This thesis is focused on GPS, due to its current dominance in applications worldwide.

2.2.1 GPS Working

The GPS system consists mainly of three segments namely the space segment, control

segment and user segment as shown in Fig. 2.1 [22, 23].

Space Segment

This segment consists of the GPS satellites which send radio signals from space. There

are total 24 satellites in six orbital planes. The satellite signals include ranging signals and

navigation messages. The ranging signals are meant to estimate the distances between GPS

receiver on the earth and the satellites transmitting the signal. The GPS satellites transmit

two types of ranging codes differentiated based on the accuracy: the Precision or P-code and

the Coarse Acquisition or C/A-code, designed for military and civilian purpose respectively.

C/A-code messages are less accurate, easier to acquire but easier to jam than the P-code.

The navigation messages include ephemeris data and almanac data. The ephemeris data

contains the position of each satellite in orbit. The almanac data is used to calculate the

time and status of the entire satellite constellation.

Control Segment

This segment consists of five satellite tracking stations located around the world. It

tracks the GPS satellites and provides them with periodic updates, correcting their ephemeris

constants and clock-bias errors on a daily basis.
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Figure 2.1: GPS system segments: Space, Control and User

User Segment

This segment consists of the GPS receivers, the ones located in the users’ devices. GPS

receivers convert satellite signals into position, and velocity estimates.

The GPS receiver calculates its position using multilateration. Multilateration requires a

minimum number of reference points with their location known (satellites in this case) and

the distance between the visible satellites and the GPS receiver (user interested in finding

the location). To estimate the distance, the GPS receiver generates a set of codes identical

those transmitted by the system’s satellites and calculates the time delay between its codes

and the codes received from the GPS satellites by determining how far it has to shift its

own codes to match those transmitted by the satellites. Then the travel time is multiplied

by the speed of light to estimate distances between the receiver and the satellites, called

pseudoranges. Rather than require strong clock synchronization between the receivers and

the atomic clocks on the satellites, the receiver clock offset is also one of the estimated

parameters. To calculate the four parameters of position (x,y,z) and clock offset, readings

from four satellites are needed.

2.2.2 GPS Errors

The Euclidean distance between a node’s actual position and GPS-based positioning is

called the GPS error. There are multiple sources of GPS error such as atmospheric delays,

multipath, satellite clock, ephemeris errors, and receiver noise which includes receiver kine-

matics and receiver hardware quality [10]. The GPS-based positioning error can be calculated
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as a function of pseudorange errors on the satellite set. It is a common assumption that each

error source in range estimation is independent and follows a normal distribution on a large

enough set of samples. Another known condition is that the sum of all errors for each satel-

lite is equal to the total pseudorange errors. Given these conditions, the pseudorange error

estimate can be described using a normal distribution following the central limit theorem.

In addition, the error in each axis (x, y, z) of the GPS-based position estimation can also be

described using a normal distribution with zero mean [24].

2.2.3 Time to First Fix and GPS Start Modes

In resource-constrained devices the time to first fix (TTFF) plays an important role due

to its direct relationship with energy consumption, and the larger the TTFF, the higher the

energy consumption. GPS positioning involves iterative refinement of the position estimate

before it settles down and reports final position. In this iterative process, TTFF is the time

required by the GPS to finish its first position estimate. This involves startup, satellite signal

acquisition, navigation data and time required to perform the calculation. TTFF depends

on the start types (cold, warm and hot) of the GPS. These types are differentiated based on

the navigational data already available on the GPS receiver memory.

Cold Start

The cold start refers to a state when GPS is not active for a long time (probably weeks

duration) and it does not have any valid ephemeris or almanac data in its memory. The cold

start time may vary from the 30s to 45s depending on the manufacturer [25].

Warm Start

In warm start, the GPS receiver is supposed to have valid almanac data, the previous

position of the receiver, and the time which allows the receiver to predict the visible satellites.

This helps in faster acquisition of the signal and ephemeris data. The warm start takes around

25s to 35s, which again varies with manufacturer [25].
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Hot Start

A hot start is performed if the receiver has valid ephemeris in addition to the data in the

warm start. Then a receiver only needs ranging signals from satellites which take around 1s

to 5s [25].

2.2.4 Energy Consumption: A Problem

The energy-consumption value calculated for the hot start of Camazotz is around 0.4J

(explained in Chapter 1) [9]. This is relatively high for resource-constrained devices. For

example, the Camazotz battery (3996J) is only sufficient for one year with 25 GPS-based

position updates per day. Both the tracking period and resolution is not sufficient for appli-

cations in Batmon [1] or other localization/tracking applications such as tracking of livestock

(e.g., cattle, goats, pigs in commercial farms), wildlife (e.g., dear, dingoes), humans (e.g.,

workers, cyclists), and mobile assets (cylinders, tools) which also have scientific and indus-

trial importance.

An obvious solution to increase the tracking period and resolution is to increase the

available battery resources. One option is to increase the battery size. Increasing the available

battery size will increase the weight of the tracking devices. However, there are limitations

in both size and weight of tracking devices which can be used in order to ensure the natural

movement of the nodes. Therefore, the only option left is to efficiently use the available

resources.

GPS dominates the energy consumption among other components such as radio, micro-

controller unit (MCU), inertial sensors in tracking devices [26, 27]. Hence, it becomes natural

to focus on efficient use of the GPS. The above applications of interest consist of nodes with

grouping behavior. The grouping nature of the nodes carries the potential to increase the

tracking period. The node’s individual GPS can be duty-cycled by distributing the GPS-

sensing load among the group members. However, it is not clear how to distribute the

GPS-sensing load efficiently and what is the resulting tracking error range. In addition, what

is the energy-accuracy trade-off and how does this trade-off vary with a range of sampling

intervals?

This thesis investigates how GPS can be used to either increase the tracking period or

accuracy or both in applications having resource-constrained nodes but which exhibit some
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group behaviour. A significant amount of the literature is dedicated to duty-cycling the GPS

and increasing the tracking period while maintaining or improving the accuracy. The relevant

literature is discussed in the section 2.4.

2.3 Radiolocation Technologies and Multilateration

The size of wireless sensor networks (WSN) can range up to hundreds or thousands of

nodes. For such large networks, it may not be possible to equip every node with GPS.

Generally, such networks contain a small percentage of nodes with independent positioning

sensors such as GPS receivers [28–33]. The rest of the nodes use information from neigh-

bouring nodes to estimate their positions using radiolocation technologies such as angle of

arrival (AOA), time of arrival (TOA), time difference of arrival (TDOA) and multilateration

(described later in the section). In addition to large static WSNs, radiolocation technologies

are useful in localization and tracking resource-constrained mobile nodes as shown in this

thesis.

For a given node, neighbouring nodes considered in this thesis are the nodes within its

direct radio communication range. This thesis uses the term “blind node” for a node which

does not know its current location information and needs to localize itself using cooperative

localization. The term “anchor node” is used for a node which knows its current position

and is in the communication range of blind nodes. Several techniques using radio signals to

determine the position of an object are described in the following sections [28, 29, 34–37].

2.3.1 Angle of Arrival

The knowledge of angle between anchor nodes and a blind node can be used in blind

node localization [38–41]. Given an anchor node’s (sensing device) position, orientation and

range to the blind node, it only requires single measurement of bearing to calculate blind

node position as shown in Fig. 2.2.

When range measurements are not available then the blind node position can be calculated

using angles from two or more geographically distinct positions as shown in Fig. 2.3.

There are two basic methods for measuring angle or arrival. The first is to use a directional

antenna and rotate it seeking maximum signal strength and the second is to use an antenna

with a steerable beam to search for the direction of maximum signal strength. The details
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Figure 2.2: Blind node localization using range and angle measurements from one anchor
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Figure 2.3: Blind node localization using angle measurements from two anchors

of AOA localization can be found in [42, 43]. A comparative study of advanced methods

(ESPRIT, JADE, and SAGE) for joint estimation of TOA and DOA is given in [44].

2.3.2 Time of Arrival

TOA is the time at which a blind node first receives a radio signal transmitted by an

anchor node. The measured time is used to calculate the propagation time between anchor

node and blind node. The propagation time multiplied by the signal propagation speed gives

the distance or range between an anchor node and blind node. The presence of additive noise

and multipath signals, and the need for accurate clock synchronization makes the time of flight

estimation challenging [45–48]. Recently proposed ultrawideband-based localization systems
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such as Ubisense, BeSpoon, and DecaWave can deal with multipath and clock synchronization

issues efficiently [49]. However, such additional hardware is not typically yet available on low-

cost sensor nodes.

2.3.3 Time Difference of Arrival

In this technique, a blind node sends signals to multiple anchor nodes located at known

locations. The anchor nodes record the arrival time of the signal and the blind node location is

estimated by the difference of the recorded arrival time stamps. In contrast to TOA, TDoA

does not require the exact time when the signal was transmitted. TDoA measurements

involve the challenges of time synchronization of anchor nodes and signal detection [50, 51].

2.3.4 Backscatter Communication

Backscatter Communication has demonstrated the viability of astonishingly low-power

tags or battery-less communications. Backscatter system picks up TV or cellular signals using

antenna and converts them into electricity, which it then uses to reflect a Morse code-like

version of that signal. Similar antennas on other devices in turn detect that coded, reflected

signal, and can respond accordingly. Recently, researchers have explored localization using

Backscatter Communication [52, 53].

2.3.5 Radio Signal Strength Indicator

RSSI denotes the measured power of a radio signal at a receiver. It can be measured

by a receiver during normal data communication without any additional energy, bandwidth

or hardware requirement and is mostly reported in the logarithmic unit dB or dBm (dB

relative to 1 mW power). Given transmit power, receiver antenna gains, and signal path

loss as a function of distance, RSSI can be used to estimate transmit distance. The RSSI

measurement is available during normal packet reception and does not require any additional

hardware like other ranging techniques e.g. AOA, TDOA, and TOA. In addition, RSSI

is included in Institute of Electrical and Electronics Engineers (IEEE) 802.11, ZigBee and

supported by a number of commercially available radios. These reasons constitute the basis

for the use of the RSSI-based ranging technique in this thesis.

In an idealized environment, RSSI follows the free space radio propagation model. The
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radio signal strength is linearly related to the inverse square of the distance d between the

transmitter and the receiver. The received power Pr(d) at distance d follows the Friis equation

[54] given as

Pr(d) =

(
λ

4πd

)2

PtGtGr (2.1)

where λ is the transmitter signal wavelength in meters, Pt is the transmitted power, Gt

and Gr are transmitting and receiving antennas gains, respectively.

RSSI is not a particularly accurate estimator of distance, so RSSI-based location tech-

niques need to account for this accuracy. In practice, both the signal propagation and received

power suffers from several factors such as fading, interference, obstruction, absorption, and

multipath. Therefore, rather than a strict deterministic relationship, individual measure-

ments of RSSI are typically assumed to come from a probabilistic distribution. RSSI in such

environments is generally modeled using a parameterisable log-normal shadowing path loss

model [55] given as

Pr(d) = Pr(d0)− η10 log10

(
d

d0

)
+ np (2.2)

where, d0 is the reference distance, P0(d0) denotes the received power at distance d0, η is

the path-loss exponent, and np is the normal random variable (zero mean, parameterisable

variance) that accounts for fading effects. The distance estimate d̂ of actual distance d using

this model is then a random variable:

d̂ = d exp (−αnp) (2.3)

where, α = log 10
10

. In (2.3), np is a normal distributed variable within an exponential which

makes the distance estimates d̂ a log-normal distributed variable (experimentally verified in

[56]).

In addition to free space, the radio propagation model described in (2.2) is applicable

in different environments such as outdoor and indoor both with and without line-of-site.

The path-loss exponent η is one of the most important parameter which has been consid-

ered widely in radio propagation model analysis. It can take a range of values in different

environment as given in Table 2.1 [57, 58].
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Environment Path-loss exponent
Free Space 2

Urban area cellular radio 2.7 to 3.5
Showed urban cellular radio 3 to 5
Inside building line-of-site 1.6 to 1.8

Obstructed inside buildings 4 to 6
Obstructed inside factories 2 to 3

Table 2.1: Path-loss exponent for different environment

A number of authors have verified the radio propagation model given in (2.2) in different

set of environments [59–61]. In our lab, one of other students in our team undertook exper-

iments using sensor nodes similar to those planned for this work [62, 63]. The authors of

[62, 63] verified the RSSI model given in (2.2) by performing field experiments. They con-

ducted a large number of dense outdoor experimental measurements at different distances

and transmit powers using Camazotz [9], the CSIRO’s in-house developed tracking platform,

to verify the path-loss model and estimate its parameters. Th parameters for the CC2420

ZigBee module are based on results published in [64]. They used d0 = 1m and measured RSSI

every 5m up to 45m and estimated various radio propagation parameters as p0(dBm) = −33.44,

and η = 3.567, which are used in my experiments as well.

2.3.6 Multilateration: A Problem With Measurement Errors

This thesis is focused on 2D RSSI-based localization using multilateration. In multilater-

ation, a blind node requires anchor nodes position and distances to them in order to calculate

its position. Given accurate anchor node positions and distances, blind node position is just

the intersection of circles with the origin located at anchor node positions and radius equal

to the corresponding distances Fig. 2.4. For example, the left-hand side of Fig. 2.4 shows

three anchor nodes A,B,C with their positions given by coordinates (x1, y1), (x2, y2), (x3, y3)

which are known exactly and one blind node D with unknown position coordinate (x, y). The

accurate distances between the anchor nodes and the blind node are represented as d1, d2, d3.

Given the accurate distances and accurate anchor node information, the blind node position

is simply the intersection of circles denoted by the red dot. This is solvable using simple

trigonometry.

As discussed above, neither the distance estimates nor the anchor positions are error free.

In that situation, the left-hand side figure turns to the one given on right-hand side, where
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Figure 2.4: Multilateration: the left figure shows multilateration given perfect knowledge of
anchor positions and distance information and the right figure shows multilateration when
both anchor positions and distance measurements have errors.

the intersection of circles has uncertainty The solution to the blind node position estimation

problem depends upon the nature of the errors assumed in distance and anchor position

estimates.

This thesis considers a blind node localization problem (formally defined in Section 4.1,

Chapter 4 ) where errors in the distance estimates follow a log-normal distribution and anchor

positions errors follow a normal distribution. The former assumption is due to the underlying

RSSI-based distance estimation and the latter is due to GPS-based anchor position. The

literature related to the multilateration problem is discussed in Section 2.5.

2.4 Literature: GPS Duty-Cycling

As described in section 2.2.4, this section covers the literature on the problem of how

GPS can be used to either improve the tracking period or accuracy or both in applications

having resource-constrained nodes that exhibit some group behaviour.

Discussion of the attempts to reduce the GPS energy consumption in localization and

tracking are categorized as follows:

• Standalone GPS Duty-Cycling: This category consists algorithms using approaches

such as periodic, application-specific customization, object behaviour modeling, use of

low-power MEMS-based sensors (accelerometer, magnetometer, gyroscope) and dy-

namic selection of localization technology.

• Computation Offloading to Cloud/Central-server: This category covers the al-

gorithms using ideas of using existing cellular network infrastructure, energy-hungry
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computation offloading and information storage such as roadmap, Wi-Fi/cellular net-

work coverage, and trajectories.

• Multisensor Data Fusion This category covers the algorithms focusing on informa-

tion fusion from multiple independent localization sources. The common methods in

use are Kalman filter and its extensions, complementary filters, and particle filters.

• Cooperative GPS Duty-Cycling: This category covers the algorithms which con-

sider resource and information sharing with neighbouring nodes within the radio com-

munication range to improve the localization error and the energy usage.

2.4.1 Standalone GPS Duty-Cycling

An obvious solution to the GPS energy consumption problem is to decrease its sampling

frequency. This saving comes at the cost of increased positioning error. The approach

used in [65–67], looks at the problem of “when to localize” rather than how to localize.

Tilak [67] proposed two approaches, one adaptive and one proactive, to decide the position

sampling interval. The adaptive algorithm calculates the position sampling interval using

recently observed motion of the nodes. A node estimates its velocity based on the distance

traveled and time taken in last two sampling points. The node uses this velocity estimate for

traveled-distance estimation and decides its next sampling point at a pre-calculated distance.

The predictive algorithm uses a model-based movement prediction for velocity estimation.

Both the algorithms give significant energy savings compared to tracking using a periodic

(constant) sampling interval.

An algorithm named EnTracked, which uses an accelerometer to detect motion or non-

motion states and GPS speed reading for better speed estimation is given in [68]. EnTracked

consists of three modules: an application requiring position data, the EnTracked-server, and

the EnTracked-client. The application module requests the data from the EnTracked-server

module which formulates the position query according to the application specific error and

uncertainty requirements of a client. The EnTracked-client module implements the client

logic: if the currently available position reading meets the position uncertainty requirement

of the application then supply the same position value otherwise compute a new position. A

new GPS reading is not requested until positional uncertainty crosses an application specific

tolerance limit. EnTracked saves up to 50% energy in comparison to an algorithm using
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periodic sampling.

The subsequent version of EnTracked named EnTrackedT focuses on energy efficient

trajectory tracking [69, 70]. This version simplifies the trajectory by ensuring it is within some

known corridor boundary. EnTrackedT uses three strategies namely heading aware strategies

(using a compass); distance aware strategies (using GPS-based speed); and movement aware

strategies (using an accelerometer). EnTrackedT further reduces the energy consumption by

40% to 60%. The reduction depends upon the position uncertainty limit which varies up to

500m.

The authors of [71] investigate the best localization source for an object with a fixed

energy budget. Their algorithm named EnLoc characterizes the optimal localization accuracy

for a given energy budget using a node’s movement history. EnLoc requires area maps

containing the locations of Wi-Fi access points, global system for mobile communication

(GSM) towers, and GPS performance profiles to achieve the reported performance. The

algorithm, reliable anchor pair selection (RAPS) given in [72] uses a node’s spatio-temporal

history and knowledge of GPS accuracy fluctuations in urban areas. It uses a cell tower-RSS

blacklisting database to detect when GPS is unavailable (e.g., indoor) and avoid turning on

the GPS in such cases. In RAPS, GPS is turned ON only when estimated uncertainty in the

position exceeds the maximum threshold and the accuracy level of the GPS in that area is

acceptable. RAPS achieves around 30% energy saving compared to periodic sampling with

a similar error profile. The major energy saving of RAPS comes by avoiding GPS activation

when it’s likely to be unavailable or available with poor performance. A drawback of RAPS is

the requirement of spatio-temporal history and an RSSI database of cell towers. The energy

saving of RAPS may differ for high deviations from the historical movement patterns.

A mobile phone middleware for energy and context-aware location-based services is given

in [73]. These authors noticed the lack of on-the-fly adjustment of GPS duty-cycling in the

Android stack. Hence, they proposed middleware with a dynamic scheduler, mobility pro-

filing, batch transmission and energy-aware features. The mobility profiling module creates

user profiles and predicts their activity based on their movement history of available GPS

points. The proposed middleware predicts the probability of a user remaining in the same

profile and adjusts the GPS duty-cycling accordingly. The complex nature of the proposed

middleware makes it unsuitable for the resource-constrained nodes.

The above-mentioned works make it clear that the smart use of GPS and low-power
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inertial-sensors significantly improves both energy and accuracy. A direct performance com-

parison among these algorithms is not straightforward. These algorithms differ in term of

resource requirements; one needs cell-tower databases, another need maps and another makes

use of travel history. In addition, these algorithms consider different tracking or localization

scenarios. In my view, these algorithms are complementary to each other and could be com-

bined if relevant resources or information is available. Generally, the energy and accuracy

improvements reported compared to periodic sampling vary from 30% to 50%. The range of

improvements depends on the tracking scenario, available information, resources and tracking

requirements.

2.4.2 Computation Offloading to Cloud/Central-Server

Offloading the computationally intensive task in localization to an external server is an-

other approach for energy-efficient localization. A major limitation of algorithms using such

an approach is the unavailability of connectivity to the cloud at all locations. This limits the

algorithms use in localization and tracking of uncontrolled mobile nodes considered in this

thesis. However, following is a review of some interesting algorithms using such an approach.

The algorithm named assisted-GPS (A-GPS) uses existing cellular networks to predict

and convey the possible visible GPS satellites information to a node [74]. A-GPS greatly

reduces the search space and shortens the time-to-first-fix from minutes to seconds. The

algorithm achieves an accuracy of 50m indoors and 15m outdoors. However, the algorithm

is unsuitable for the localization in areas with no cellular coverage.

The authors of [75] explore a GPS computation black box. Their proposed algorithm

named low energy assisted positioning (LEAP) shifts the delay-tolerant and energy-hungry

GPS computational stages to a cloud server. Therefore, GPS is switched on for a second

or less to collect the sub-millisecond level propagation delay for the signal of each satellite.

LEAP infers the other information necessary to perform the GPS-based position calculation

from nearby objects e.g. cellular towers. This results in 80% energy saving compared to

traditional GPS positioning algorithms. A LEAP extension, named Co-GPS, uploads raw

GPS signal to a cloud and performs signal processing their itself [76]. Co-GPS uses the earth

elevation database to generate landmarks for reference and removes the reference object

requirement. An issue with Co-GPS is its energy and accuracy trade-off. For accurate

localization, it requires a huge data upload which may reduce the potential energy gains.
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Trajectory simplification is an approach to reduce communication overhead by reducing

sensing data transferred during location updating. The idea behind trajectory simplification

is to replace the obtained positions with a smaller subset (snapshot), the one which is minimal

in size while still reflecting the overall motion information. It is useful for applications which

need mobile node’s trajectory information instead of a single position. The authors of [65]

proposed to reduce the data transmissions by decreasing the number of location updates.

The authors of [77] proposed an Inter-Frame Coding (IFC) algorithm which exploits spatio-

temporal localities to compress trajectory based locating sensing data. In addition, offline

localization (data processing at central server) can be cheap, but is not suitable when real-

time results are needed and Internet connectivity is not available.

2.4.3 Multisensor Data Fusion

Significant research has been undertaken to improve position estimates by fusing the noisy

GPS measurements and noisy measurements from MEMS-based navigation sensors or other

sources of position information such as Wi-Fi.

The authors of [78] proposed an algorithm to fuse the differential-GPS [79] and dead

reckoning (DR)-based estimations. In DR, the authors use a pedometer and compass to

estimate displacement and direction respectively. They use an extended Kalman filter (EKF)

to process the GPS-based and DR-based position estimation. Simulation-based results reveal

that the proposed algorithm reduces the horizontal position error of differential-GPS from

5m to 2m (60% reduction).

In [80], the authors use MEMS-based inertial sensors (accelerometer, gyroscope, and

magnetometer) for pedestrian navigation and exploit the complementary nature of gyroscope

and magnetometer to improve DR. The magnetometer-based azimuth estimations are more

sensitive to the local disturbances in the magnetic field measurements caused by nearby

permanent magnets, electric currents, or large iron bodies but are stable over time. Whereas,

gyroscopes-based azimuth estimations are independent of the location, but drift continuously

with time. Therefore, the authors use the gyroscope derived azimuth to identify magnetic

disturbances and the magnetic compass to determine the bias of the gyroscope and the

initial orientation, even when no GPS signal is available. They refine the direction estimate

by applying a Savitzky-Golay filter and a Kalman filter (KF). This algorithm also achieves

a position accuracy of around 5m.
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The authors of [81] describe a MEMS-based navigation system without using GPS. This

system uses accelerometer signals for step detection, a magnetometer for azimuth angle cal-

culation and a multi-layer neural network for the step-length estimation. It performs final

estimation using a modified receding horizon Kalman finite impulse response filter. Another

middleware for Android-based mobile phones to track the position using GPS, accelerometer,

and magnetometer is given in [82]. The authors use sensors of a mobile phone (accelerome-

ter and magnetometer) to track the position in-between two consecutive GPS samples. The

time between two consecutive GPS activations is based on the error accumulation in the

sensor-based position estimation. To compute the sensors-based location, the authors use

Vincenty’s formulae and low-pass filters to process the noisy sensor signals. GPS is used

as both the starting point for sensor-based location and an error correction mechanism to

reduce the drift in sensor-based estimation. Their middleware reduces GPS usage around

20% while ensuring a predefined maximum position uncertainty limit.

A vehicle localization framework using a smartphone’s inertial sensors is given in [83].

This framework uses a DR approach to compute the position based upon the pipelined

processing of velocity, acceleration, and directional components. This framework focuses on

accurate positioning. However the high-frequency sampling of even an accelerometer and

a magnetometer can also lead to high energy utilization [27]. This work lacks details of

the energy and accuracy gains with their approach. The authors of [84] present a GPS-

inertial navigation system (INS) map matching algorithm using curve-to-curve matching

after Kalman filtering to correct mismatch and eliminate redundancy.

For indoor environments, the authors of [85] present a tracking algorithm which fuses

information from wireless local area network (WLAN), pedestrian dead reckoning (PDR) and

map information. The authors evaluate a complementary extended Kalman filter (CEKF)

and a particle filter to fuse the information from the available sources. Their algorithm

achieves errors less than 3m in distance and 12° in heading for particle filters compared to

4m in distance and 12° for the CEKF. The authors of [86] proposed a navigation system for

a smartphone using WiFi, PDR, and landmarks such as turns, elevators, escalators, stairs,

and doors. This system use smartphone sensors (accelerometer, magnetometer, gyroscope,

barometer) and WiFi to identify landmarks. To makes the system suitable for resource-

constrained nodes the sensor fusion problem is formulated in a linear perspective and uses a

KF instead of a particle filter. The framework achieves an average localization accuracy of
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1m.

In summary, the literature suggests improvements in tracking accuracy by fusion of dif-

ferent sources of information with suitable fusion methods. The GPS integration with an

INS reduces the GPS duty-cycling roughly in the range of 50%. However, INS requires high

sampling of inertial sensors for such results and as observed in [27] continuous high sampling

of inertial sensors is also energy expensive. The addition of information from sources such as

landmarks, map, and pedometer further improve the navigation performance. However, the

computation time to run such algorithms is a few seconds, as observed in [85], and this may

not be suitable for resource-constrained devices with long-term tracking requirements.

2.4.4 Cooperative GPS Duty-Cycling

Inspired by the social and group nature of humans, researchers have also investigated the

possibility of position or energy improvement by sharing sensor measurements within a group

of mobile nodes. The algorithms using this approach are referred as cooperative algorithms.

In cooperative algorithms, the measurements such as GPS, inertial measurement unit (IMU),

and distance are shared among neighbouring nodes through communication interfaces such

as low-power radio, Bluetooth, and Wi-Fi.

The authors of [87] present a cooperative GPS duty-cycling algorithm using a Wi-Fi ad-

hoc network while ensuring an application-specific upper error bound. In this algorithm, each

node tracks its own position uncertainty and whenever a node approaches the uncertainty

limit, it requests a position update from neighbouring nodes. In case of a fruitful reply,

the node updates its position with the received information, otherwise it activates its own

GPS for a position update. The authors use real data traces of visitors in the Epcot theme

park in Florida to evaluate the algorithm. The results are compared with an algorithm in

which a node relies only on the locally available information and does not use any kind

of cooperation. The algorithm reduces energy consumption in the range of 30% to 40%.

However, the reduction is strongly dependent on parameters such as communication range

and maximum tolerable position uncertainty.

The cooperative ambience monitoring platform (CoMon), a novel cooperative ambiance

monitoring platform is proposed in [88]. This platform addresses the energy problem through

opportunistic cooperation among nearby mobile nodes using Bluetooth. It uses following for

cooperative activity:
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• Contact stability profile: CoMon maintains the history of contacts along with their

duration. It uses this information to decide whether to initiate cooperative activity

with a particular node or not.

• Differentiation between acquaintances and strangers: CoMon maintains this informa-

tion to decide whether to share the activity data with a particular user or not.

• Profit and loss analysis ability: The node’s personal ability to make profit and loss

analysis is based on factors such as the following. What is being shared with a neigh-

bour? What is each node getting in return from the other? What chances are there to

end up with a beneficial cooperation?.

CoMon concentrates on general resource sharing among devices. Complex negotiations pro-

cess make CoMon unsuitable for resource-constrained mobile nodes.

In [89], the authors propose a GPS duty-cycling algorithm based on radio contact log-

ging and inertial sensors. The algorithm uses short-range radio communication as a means

of reducing position uncertainty of a node. If the sum of the neighbouring node position

uncertainty and distance to that node is less than the node’s own position uncertainty, the

node updates its position estimate with its neighbour’s position, otherwise it activates its

own GPS. The algorithm also uses an accelerometer to detect movement versus a stationary

state of a node. This avoids activation of the GPS in the stationary state resulting in better

energy efficiency. This algorithm saves 50% energy compared to the individual algorithm

while meeting the application specific positioning criteria. In another work [27], the authors

propose movement-pattern-based and group-based motion sensors duty cycling algorithms.

The authors use empirical data traces of cattle to evaluate the performance of the algorithms.

The movement-based algorithm yields 78% improvement in overall node energy consumption,

and the group-based method results in an additional 20% energy reduction during periods of

low mobility.

The authors of [90], proposed an algorithm using positive orthogonal codes and a semi-

extended Kalman filter. In this algorithm, the GPS measurement is treated as the linear part

and neighbourhood distance part as a nonlinear part in the same Kalman filter. This algo-

rithm uses ranging, road map and GPS information in order to refine the relative position of

the neighbourhood nodes in an energy-rich environment with vehicle grade IMU information.

The authors of [91] proposed an algorithm to correct the DR-based position estimate

25



using Bluetooth and IMU data shared by neighbouring nodes. In this algorithm, all the data

is loaded into a server for relative distance estimation among nodes. The authors assume

a scenario where a group of nodes moves in the same direction and uses the average of all

readings to deal with the sensor noise. The authors reported 28% error reduction by using

the data from neighbouring nodes for position estimate correction.

The authors of [92] improve Wi-Fi positioning in an indoor environment by using the

RSSI-based distance among the neighbouring nodes. They calculate a confidence score as a

weight to decide the position of the neighbouring node. The confidence of the Wi-Fi-based

position is calculated using the standard deviation of the multiple Wi-Fi scans for the same

point. Less standard deviation means higher confidence in position and vice versa. The

confidence score of Bluetooth is calculated by RSSI modeling in the different settings of the

indoor environment. Lastly, the authors use game theory to determine the final position of

the nodes. The algorithm yields up to 32% improvement compared to an existing algorithm

only using Wi-Fi for positioning.

The reviewed works are summarized in Table 2.2. It shows the performance (energy or

accuracy) gain in localization/tracking (both indoor and outdoor) by cooperation among a

group of mobile nodes. Sharing the measurements such as distance, self-position estimate,

and IMU can improve the position accuracy up to 30%. In terms of energy, cooperation

among neighbouring nodes can reduce the consumption up to 80%. Cooperation between

GPS and inertial sensors can also help in reducing the energy consumption. The movement

pattern, communication range, and maximum tolerable position uncertainty are identified as

important parameters affecting the cooperative localization.

2.5 Literature Review: Localization using Multilatera-

tion

As described earlier in section 2.3.6, this section covers the literature related to the

multilateration-based localization problem in which both anchor nodes and distance informa-

tion have errors. The error in the anchor’s position is assumed to follow a zero-mean normal

distribution and errors in distance estimates are assumed to follow a log-normal distribution

due to the underlying RSSI-based ranging technique.

In the literature, two main classes of approaches deal with the adverse effects of RSSI and
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Table 2.2: Summary: GPS duty-cycling categories

Category
Basic Concepts/ Direc-
tions

Energy & Accuracy
Improvement Range
compared to Indi-
vidual algorithm or
standard GPS sam-
pling

Remarks

Standalone

focused on duty-cycling the
locally available GPS; peri-
odic sampling; movement-
based sampling; inertial-
sensors for movement predic-
tion; modeling the movement
behaviour

energy savings up to
60%; position uncer-
tainty limit 50m to
500m

achievable maxi-
mum energy and
accuracy is lim-
ited compared to
cooperative

Computation Of-
floading

shifting computational inten-
sive task involved in GPS-
based positioning to central
facility; shifting whole raw po-
sitioning data to central fa-
cility; using existing telecom-
munication infrastructure for
faster access of almanac data

energy saving up to
70%; accuracy up to 5m
to 15m

connectivity to
the central server
may not be avail-
able in remote
areas; energy
cost of raw data
upload may sup-
press the benefits
of computation
shifting

Multisensor Data
Fusion

use of inertial sensors such as
accelerometer, magnetometer,
compass and barometer; fu-
sion of Wi-Fi- or Bluetooth-
based positioning information

energy savings up to
50%; position accuracy
up to 1m

additional re-
quirements of
inertial sen-
sors; primarily
focused on ac-
curacy improve-
ment;limited
energy gains

Cooperative GPS
Duty-Cycling

position sharing among neigh-
bouring nodes; inertial sen-
sors data sharing

energy-saving 50% to
80% (note: this saving
should be multiplied by
the group size to get a
comparison with stan-
dalone category); po-
sition uncertainty limit
50m to 500m

potential of high
energy gains;
energy gains
depends on
grouping nature;
limited position
accuracy
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anchor position errors on localization performance. The first approach is based on optimiza-

tion techniques such as semidefinite programming (SDP) or second order cone programming

(SOCP). The second class covers closed form solutions based on the linearized system of equa-

tions using WLS, total least-squares (TLS) and element-wise total least-squares (EWTLS).

The former (iterative solutions) have better positioning performance over the latter (closed

form solution) but incur a higher computational cost. The major works in both categories

are given next.

2.5.1 Iterative Solutions Using Complex Optimization Techniques

The authors of [93] present a convex position estimation technique in WSN, based exclu-

sively on connectivity-induced constraints processed in a centralized resource centre. They

model the known peer-to-peer communication constraints as a set of geometric constraints on

the node position and solve the problem using SDP. An iterative multilateration technique in

which three or more nodes compute their positions and then act as anchors in the subsequent

iterations is given in [94]. In [95], a multidimensional scaling (MDS) technique that uses node

connectivity information for localization is proposed. It presents two methods: one builds

a global map directly and the other builds local maps then stitches them together to build

a global map. The MDS-based algorithms outperform the convex optimization algorithm of

[94] when the number of available anchors is low (around 50% lower position error when the

number of anchors is less than 5% of total nodes) and only connectivity information is avail-

able. In addition, the MDS-based algorithms show better performance than Hop-TERRAIN

[96], especially when the number of anchors is small. Hop-TERRAIN is a two-phase sensor

network position algorithm consisting of the start-up phase and the refinement phase. The

start-up phase ends up providing a rough position estimate to the nodes and the refinement

phase uses a weighted least square solution to improve that position estimate. In an eval-

uation with four anchors (2 percent of the network) and a connectivity level 12 (average

number of neighbors), the average error of the MDS-based algorithm is 27% of the radio

communication range compared to 90% of Hop-TERRAIN.

In [61], the authors derived a CRLB for the localization problem assuming perturbation

in the RSSI measurements and perfect knowledge of anchor positions. In [97], the authors

proposed an SDP relaxation-based method for the localization in ad-hoc WSNs assuming

the availability of accurate anchor positions. The approach is to convert the non-convex
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quadratic distance constraints into linear constraints by introducing a relaxation to remove

the quadratic term from the constraint. Similarly, there are other RSSI-based node localiza-

tion methods such as [98–100]. However, none of the above works consider the presence of

errors in both RSSI and anchor position information.

A distributed multidimensional scaling approach for localization in WSNs is proposed in

[101]. It weights the range measurements based on their accuracy to account for the commu-

nication constraints in a sensor network. A robust joint localization and time synchronization

algorithm for WSN with bounded anchor position uncertainties is given [102]. The algorithm

implements a robust joint-estimator based on minimizing the worst-case mean square error

and the solution is obtained by solving an SDP problem. In [103, 104], the authors propose a

three-step distributed sensor network localization approach using SCOP. In the first step, the

blind nodes compute their locations using available anchor node position information. In the

second step, anchor nodes refine their position estimates using relative distance information

exchanged with their neighbors followed by final refinement in position by blind nodes in the

third step.

Node localization for underwater and underground networks is considered in [105]. The

authors propose an SDP-based localization algorithm in the presence of anchor position error

and uncertainties in the signal propagation speed affecting the TOA-based distance measure-

ment. They also derive the CRLB for the corresponding problem. An SOCP-based approach

for sensor network localization with anchor position uncertainty is given in [106]. It presents

a robust localization approach using maximum-likelihood criteria under an unbounded un-

certainty model for the anchor position error. All these works consider normally distributed

errors in both anchor positions and distance measurements. In practice, perturbation in

RSSI-based distance estimates follows a log-normal normal distribution [107].

The authors of [15] considered normally distributed errors in anchor positions and log-

normal distribution of errors in distance estimation. They propose an RSSI-based solution

for joint location estimation of a source and multiple anchor nodes. Their algorithm is

based on a maximum likelihood (ML) estimation and requires multiple RSSI and anchor

position measurements. In outdoor localization of mobile nodes where GPS is the main source

of anchor position information, GPS is responsible for the majority of energy consumed.

Therefore, the requirement of multiple measurements of an anchor position is not suitable

for resource-constrained systems.
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2.5.2 Closed-form Solutions Using Least-Squares Techniques

In [108], the authors propose a two-step closed-form solution for localizing a mobile node

using noisy TDOA measurements. In the first step, they use the WLS to give the initial

solution and in the second step, they use the known geometric constraints to improve the

solution. Their solution approximates the maximum-likelihood estimator when the TDOA

measurement errors are small. The author of [109] proposes two methods to compensate for

the bias of the solution given in [108]. The bias can be very large with high measurement

noise. The author proposes two solutions namely BiasSub and BiasRed. In BiasSub, the

author subtracts the theoretically computed bias from the source location estimate whereas,

in BiasRed, the author creates an augmented solution equation and impose a quadratic

constraint to reduce the bias. The BiasSub method is efficient when TDOA noise parameters

are known exactly. When the TDOA noise parameters are not available, the BiasRed solution

turns out to be more useful than BiasSub.

A closed form solution and corresponding CRLB for localizing a stationary source/emitter

based on TDOA measurements is presented in [110]. The authors assume a normally-

distributed error in both anchor position information and TDOA measurements. In [111],

a range-based positioning technique is proposed that has a computational complexity lower

than the least-squares method. Their algorithm is based on the linearized range measure-

ment equations and implementation of a WLS criterion in a computationally efficient way.

In [16], the authors propose two WLS algorithms, called hyperbolic and circular, to localize

a node using RSSI-based distance measurements while assuming the log-normal shadowing

path-loss model. The hyperbolic algorithm linearizes the problem and solves it using the

WLS method. The circular algorithm minimizes the weighted approximation of the original

non-linear sum-square-error cost function using the gradient-descent method. The circular

algorithm performs better than the hyperbolic algorithm due to minimization of the original

cost function by an iterative approach. The proposed hyperbolic algorithm matches the low

computational requirement of our scenarios of interest but does not consider errors in the

anchor node positions.

The authors of [112] propose an EWTLS solution to localize a node in the presence of

errors in both anchor position and distance measurements. The EWTLS [113],[114] solutions

deal with the element-wise variance but assume the same type of error distribution. In case
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of the RSSI-based localization, the distance measurements follow a log-normal distribution

whereas anchor position information has normally-distributed noise. In [115], a closed-form

solution for node localization using noisy TDOA measurements and anchor position infor-

mation is presented. The authors assume the scenario of a large equal radius and develop

the estimator based on a geometric approach removing the need for introducing an auxiliary

variable. The authors of [116] propose a TLS-based solution for location estimation of a sta-

tionary source using noisy TDOA measurements and perturbed anchor positions. In [117],

the authors present three different solutions based on Taylor series, WLS and constrained

total least-squares (CTLS) for localization in the presence of additive zero-mean Gaussian

noise in both distance and anchor position information. The Taylor series and WLS-based

solutions are proposed for the scenario where errors are only present in distance measure-

ments. In the CTLS-based algorithm, the authors assume perturbation in anchor position

information as well. The authors of [118] also consider the presence of independent additive

zero-mean Gaussian noise in both distance and anchor position information. They present

another CTLS-based localization algorithm for the case where distance measurement errors

are negligible compared to anchor position errors.

The authors in [119],[120], propose a WLS-based closed-form solution to determine the

position of a mobile target in the presence of multiple transmitters and receivers using TDOA

measurements. The algorithm is based on the intersection of the ellipsoids defined by bistatic

range measurements from a number of transmitters and receivers. These works are based on

the TDOA measurements and assume perfect knowledge of the anchor positions.

Unfortunately, many of the solutions presented here are not suitable for the problem of

different anchor and range error distributions. As will be shown in detail later in section

6.1, the overdetermined system of linear equations represented by Ãw ≈ b̃ has components

of both distance and anchor position errors in b̃ . The presence of the distance errors in b̃

leads to an error distribution different from that for Ã. This violates the basic assumption

of identical error distribution in TLS and EWTLS techniques [114, 121], so these techniques

cannot be directly used.
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2.6 Literature Summary and Research Gaps

This section summaries the literature reviewed in section 2.4 and section 2.5 along with

the identified research gaps.

Section 2.4 reviews the literature on localization and tracking algorithms dealing with the

relatively high-energy consumption of the GPS which is a poor match to energy-constrained

systems. The literature investigate several questions. First, “when to localize?”, meaning

when GPS should be sampled? Among the various approaches, inertial sensor-based sampling

decision gives better position accuracy and energy consumption. However, as noted in the

literature as well, this approach may lead to early depletion of the battery for frequent

movement behaviour. In addition, long-term and continuous use of inertial sensors is observed

to be energy expensive. Second, “how to keep track of the position uncertainty?”, in order to

delay the GPS activation until position uncertainty reaches a limit. Again, inertial sensors

are found useful for tracking position uncertainty.

Third, “how to exploit the multiple sources of position information such as GPS, inertial,

map, mobile network, Bluetooth and Wi-fi for accurate localization and tracking?”. Investi-

gations of this question reveal that fusing the multiple sources of position information may

result in errors as low as 1m. Fourth, “what benefits in term of energy and accuracy can be

achieved by sharing position and inertial information among neighbouring nodes?”. Inves-

tigation reveals an energy saving around 30% to 40% and error reduction up to 30% from

such cooperation. However, these savings strongly depend on parameters such as the radio

communication range of nodes, maximum tolerable position uncertainty, and inertial sensors

sampling frequency.

The algorithms reporting cooperation benefits use inertial movement-based position sam-

pling intervals. The movement-based sampling interval is reported to perform better than

periodic sampling but the difference is significant only for infrequent movements otherwise

the former leads to battery drainage. In addition, the movement-based approach requires

continuous sampling of inertial sensors which may be unavailable. The tracking life and

available resources are important factors where nodes are uncontrolled, movements are un-

predictable, and resources are limited such as the tracking nodes and applications considered

in this thesis. For such cases, periodic sampling can guarantee a minimum tracking period.

Thus, for such cases, periodic sampling remains a valid choice. However, the literature does
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not provide any insights into cooperation benefits for the periodic sampling.

Next, the existing cooperative algorithms follow dynamic sampling intervals based on iner-

tial sensors. Therefore, it is natural to investigate opportunistic cooperation. However, given

reasonably stable groups and periodic sampling, planned cooperation seems a viable alterna-

tive option. In planned cooperation, participating nodes use cooperative localization as their

primary source of positioning and follow a predefined set of operational rules. In contrast,

opportunistic cooperation considers cooperative localization as an occasional alternative and

primarily relies on the locally available positioning resources. Planned cooperation may avoid

redundant GPS activation by different neighbouring nodes at the same time. It may result

in better control over the resource pool available in the group. The resource control may

allow us to implement simple and effective techniques such as multilateration for localization

in a group of mobile nodes, which require simultaneous position measurement from several

nodes. The literature does not shed any light on the benefits of planned cooperation. To

fill this research gap, this thesis investigates the unexplored benefits of planned cooperation

using periodic sampling.

The first part of section 2.5 reviews complex optimization-based solutions to the blind

node localization problem given errors in both anchor positions and distance measurements.

Most works assume perfect knowledge of anchor positions and consider errors only in dis-

tance measurements. There is a significant literature which considers normally distributed

errors in both RSSI-based distance measurements and anchor positions. This is not realistic

given that the RSSI-based distance measurements follow a log-normal distribution [57]. The

work [15], is the only one to my knowledge which considers normally distributed errors in

anchor positions and log-normal distributed errors in distance estimation. However, their

ML-based joint localization framework requires multiple measurements of anchor positions

and RSSI measurements. The applications considered in this thesis assume energy-expensive

GPS as the main source of anchor position information. Therefore, the requirement of mul-

tiple measurements of an anchor position is not in line with thesis goal of resource-efficient

localization.

Most of the closed form solutions discussed in the second part of the section 2.5 also assume

perfect knowledge of anchor positions or additive zero-mean Gaussian errors in distance

estimates. To solve the localization problem, the algorithms use one or another form of

the least-squares solution. From an algebraic point of view, in a system of linear equation
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representation Ãw ≈ b̃ of the considered localization problem, perturbation in distance

estimates only affects the elements of b. The LS and WLS techniques in general, are designed

to take such errors into account. The works considering the error in both anchor position

and distance measurement assume a similar type of error distribution and present solutions

based on TLS, EWTLS or CTLS. These techniques are able to take into account errors in

both A and b. They require that the noise components in both Ã and b̃ to be independent

and identically distributed. In the considered multilateration localization, however, it can be

shown that the noise components in the formulated equations are algebraically related. The

CTLS-based technique [122] can account for the linear correlation of errors in A and b but,

in the considered multilateration localization problem, the dependence is not linear.

In summary, the literature of blind-node localization clearly lacks a self-localization so-

lution for resource-constrained nodes given realistic assumptions on errors where distance

estimates follow log-normal and anchor position follows a normal distribution. The error dis-

tribution assumption for distance is due to the underlying shadowing path-loss radio propaga-

tion model [14, 57, 107]. The normal distribution of anchor positions is empirically supported

in [13]. This gap also includes theoretical bounds on localization performance under such

realistic assumptions on errors. To fill these gaps, this thesis provides the theoretical bound

and the self-localization solution.

2.7 Research Questions and Methodology

Based on the research gaps identified in the literature review, the following are the research

questions addressed in this thesis.

1. How can GPS sampling load and position readings be shared among a group of mobile

nodes to improve individual tracking accuracy given a limited energy budget?

2. What is the theoretical minimum bound on localization performance of a blind node

in the presence of normally distributed errors in anchor positions and log-normally

distributed errors in RSSI-based distance estimation?

3. How can the theoretical minimum bound on localization be approach or achieved in

the assumed scenario of resource-constrained mobile nodes?
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4. How can additional information of error characteristics be used to improve the tracking

accuracy of such groups of mobile nodes?

In general, the methodology to answer these research questions involves formulation and

derivation of a suitable mathematical framework and then validating the results using ex-

tensive simulations. All the simulations are performed using Python. The details of each of

the experiments are given in the respective chapters answering the research questions. The

real-world evaluations of the proposed algorithms require high-resolution group movement

dataset. The choice is between running real-world simulations in one very specific scenario,

or running multiple trials with consistent parameters. Given the probabilistic nature of the

radio propagation model, many tens or hundreds of runs are needed, therefore the proposed

algorithms are evaluated using extensive simulations only similar to other established works

in this area [15, 37, 40, 90, 105, 106]. However, it will be useful to run real-world trials in

future.
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Chapter 3

Cluster-Based Tracking

This chapter explores answers to the first research question (RQ1) which is “How can GPS

sampling load and position readings be shared among a group of mobile nodes to improve

individual tracking accuracy given a limited energy budget?”.

This chapter proposes a CBT algorithm and investigates its usefulness to be an answer

the RQ1. The algorithm distributes the GPS sampling load among the neighbouring nodes

in a planned manner using a CH. Three variants of CBT are evaluated, namely, “CBT-

Standard”, “CBT-CKF” and “CBT-CKF with Accelerometer and Magnetometer”. For the

usefulness assessment, this chapter investigates the following fundamental questions regarding

the proposed CBT algorithm:

1. What is the individual nodes’ energy–accuracy trade-off when distributing the GPS

sampling load among the group of mobile nodes. How this trade-off varies with the

GPS sampling interval?

2. Can the energy–accuracy trade-off the tracking be further improved through time-series

analysis and modeling, such as using the KF?

3. What is the effect on the energy-accuracy trade-off of using the individual nodes’ ac-

celerometer (acc.) & magnetometer (mag.) sensor information in the proposed CBT

algorithm?

The rest of the chapter first presents the proposed algorithm along with its variants.

Next, the chapter covers the dataset, energy model and experiment performed to evaluate

the performance of the proposed algorithm. Lastly, the chapter presents results followed by

the conclusions drawn.

36



3.1 Proposed CBT Algorithm

This section describes the proposed CBT algorithm and its variants. The performance of

these algorithms is studied later in the chapter, to better understand the key trade-offs that

the different variants offer.

3.1.1 CBT-Standard

Initially, all nodes get a GPS lock, form clusters based on their location (e.g., cluster

radius is less than 50m) and start the CH election process. The CH is selected in an ad-

hoc fashion. Nodes independently run random timers and the node whose timer fires first

becomes the CH, where a tie is resolved by lowest node ID. Multiple clusters may occur at a

particular time depending on the positions of the nodes. A cluster formed in this process will

be partially connected with assured connectivity to the CH. One node can be a member of one

cluster only and selection among multiple clusters is made on the basis of the distance to the

CH. The CH is responsible for scheduling GPS sampling for all of the cluster’s members. The

schedule is randomized and takes into consideration the available battery status of individual

nodes. The CH is also responsible for receiving the position updates and distributing these to

the member nodes. If a node misses three consecutive position updates, it leaves the current

cluster and looks for a new cluster if any are available. The decision to consider three misses

is based on the amount of position uncertainty limit of an application, nodes velocity and

GPS sampling interval. For example, position uncertainty/error limit of a node with average

velocity of 6 m/s and a sampling interval of 10s touches to 180m (6*10*3), when misses

misses three consecutive updates. A departing node initiates a new cluster formation process

if no other cluster is in range. In the absence of new GPS position updates either from the

local GPS or from neighbors, the node uses its last position as the current position estimate.

3.1.2 CBT-Cooperative Kalman Filter(CKF)

The basic algorithm of this variant is inherited from the CBT-standard defined above.

The differences are as given below:

1. Each node runs its own KF. Whenever there is a requirement of GPS sampling for a

KF measurement update, rather than sampling its own GPS, a request to the CH is
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submitted to provide the GPS update, leading to a our decision of naming this variant

of CBT as cooperative KF.

2. Upon the receipt of a GPS update request from a group member, the CH randomly

assigns the GPS sampling task among its members having sufficient energy. Similarly

to standard CBT, the CH is responsible for the distribution of new position and ve-

locity values among its members. Note that GPS receivers typically output position

and velocity during on-board signal decoding. These velocities can be calculated in a

number of ways such as Doppler shift measurement, position difference or differencing

carrier phase measurements at consecutive epochs [123]. In this thesis, the exact cal-

culation method is not important, but it is assumed that the GPS output velocity is

used from the GPS receiver, rather than calculating the velocity separately from other

information.

3. An individual node uses the new position and velocity update as the measurement and

control input update in its KF and estimates its current position.

The details of the KF are as given below.

System Model

xt = Atxt−1 + Btut + wt (3.1)

zt = Htxt + vt (3.2)

where, xt is the state vector containing node 3D position at time t, ut is a control input

vector containing 3D velocity values reported in the cooperative GPS update, At is the state

transition matrix and Bt is the control input matrix given as

xt =


x

y

z

 , ut =


vx

vy

vz

 , At =


1 0 0

0 1 0

0 0 1

 , Bt =


τ 0 0

0 τ 0

0 0 τ

 .
The symbol τ represents the time interval for KF update. The wt in (3.1) is the vector

containing the process noise terms for each parameter in the state vector. The process noise

is assumed to be drawn from a zero mean normal distribution with covariance given by the
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Algorithm 1: CBT-Standard

/* initialization of variables */

1 number of nodes; maximum battery capacity ; CM current battery level (initialization with
maximum battery capacity ); minimum battery (required for tracking activity) ; sampling interval ;
total tracking period ; radio range ;

2 Initially all nodes get GPS lock // Use of own GPS to get position update ;
/* cluster formation and cluster head (CH) selection process */

3 while every node is either becomes a CH or a cluster member (CM) do
4 check clustering eligible nodes // (the nodes which are neither a CH nor a CM and

CM current battery level ≥ minimum battery) ;
5 if count of clustering eligible nodes ≤ 0 then
6 exit ;
7 else
8 All clustering eligible nodes exchange their position with nodes in radio range ;
9 clustering eligible nodes run a random timer and node with lowest timer value wins the CH

race, a tie on timer value is resolved using lowest node ID ;
10 a node joins the nearest CH if multiple CH in radio range and changes own status to CM ;

11 end

12 end
/* position updates based on sampling interval */

13 while CM current battery level ≥ minimum battery ∧ trajectory tracked ≤ total tracking period do
14 for every CH do
15 count active CM ( number of CM with battery level ≥ minimum battery);
16 if count active CM ≤ 0 then
17 CM current position to CM last position (update all CM including CH) ;
18 break the current clsuter;
19 all CM and the CH search for an active CH within radio range;

20 end
21 if count active CM > 0 then
22 random selection of a CM from active CM list to get GPS lock by the CH ;
23 GPS lock by the selected CM and GPS position received stored as position update ;
24 energy used = GPS energy + MCU energy + radio energy ;
25 update CM current battery level −= energy used;

/* distribution of position update to all the CM by the CH */

26 if distance to CH ≤ radio range then
27 update CM current position = position update;
28 energy used = MCU energy + radio energy ;
29 update CM current battery level −= energy used;

30 else
31 if position update not received ≤ 3 // (number of scheduled updates not

received from the CH) then
32 update CM current position = CM last position;
33 energy used = MCU energy + radio energy ;
34 update CM current battery level −= energy used;
35 position update not received += 1;

36 else
37 update CM current position = GPS lock ;
38 energy used = GPS energy + MCU energy + radio energy ;
39 update CM current battery level −= energy used;
40 position update not received = 0 ;
41 leave current CH and search for new CH or initiate a new clustering process;

42 end

43 end

44 end

45 end

46 end

39



covariance matrix

Qt =


σ2
vxτ

2 0 0

0 σ2
vyτ

2 0

0 0 σ2
vzτ

2

 ,
where, σvx , σvy and σvz are the standard deviations in the control input velocity measure-

ments. In practice, the speed accuracy parameter (Sacc) of GPS can provide an estimate of

standard deviations in the velocity measurements.

In (3.2), zt is the measurement vector at time t, which contains the 3D position received

in the cooperative GPS update given as

zt =


cx

cy

cz


and Ht is the transformation matrix that maps the state vector parameters into the

measurement domain given by

H =


1 0 0

0 1 0

0 0 1

 .
In (3.2), vt is the is the vector containing the measurement noise terms for each observation

in the measurement vector zt. Like the process noise, the measurement noise is assumed to

be zero mean Gaussian noise with covariance matrix

Rt =


σ2
cx 0 0

0 σ2
cy 0

0 0 σ2
cz


where, σcx , σcy , and σcz are the standard deviations in position updated received through

cooperative positioning. As the node who sampled GPS to provide cooperative position

update has better estimate of its position therefore σcx , σcy , and σcz used in KF will be same

as (P acc) value. However, the position accuracy value (Pacc) provided by the GPS, group

size and sampling interval are used as an indicator for estimation of standard deviations in

position received in cooperative updates.
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Prediction Stage

The KF equations used for the prediction stage are

x̂t|t−1 = At−1x̂t−1|t−1 + Btut (3.3)

P̂t|t−1 = AtPt−1|t−1A
T
t + Qt. (3.4)

Update Stage

The KF update equations used are given by

x̂t|t = x̂t|t−1 + Kt

(
zt −Htx̂t|t−1

)
(3.5)

Pt|t = Pt|t−1 + KtHtPt|t−1 (3.6)

where,

Kt = Pt|t−1H
T
t

(
HtPt|t−1H

T
t + Rt

)−1
.

Algorithm 2: CBT-CKF

/* The pseudo code for CBT-CKF is same as CBT-Standard except it requires some extra

variables initialization and changes in pseudo code lines of CBT from 26 to 29.

*/

/* Additional initialization of variables required compared to CBT. For symbol

descriptions please refer to the text description of the algorithm. */

1 xt;ut;At;Bt;Qt; zt;H;Rt;
/* The if-block in pseudo code of CBT which starts from line number 26 is replaced

by following lines of code in pseudo code of CBT-KF. */;
2 if distance to CH ≤ radio change then

// prediction stage;
3 x̂t|t−1 = At−1x̂t−1|t−1 + Btut;

4 P̂t|t−1 = AtPt−1|t−1A
T
t + Qt;

// update stage;

5 x̂t|t = x̂t|t−1 + Kt

(
zt −Htx̂t|t−1

)
;

6 Kt = Pt|t−1H
T
t

(
HtPt|t−1H

T
t + Rt

)−1
;

7 Pt|t = Pt|t−1 + KtHtPt|t−1;
8 position update = x̂t|t;
9 update CM current position = position update;

10 energy used = MCU energy (including KF energy processing cost) + radio energy;
11 update CM current battery level −= energy used

12 end
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Algorithm 3: CBT-CKF (Acc.& Mag.)

/* The pseudo code for CBT-KF(Acc.& Mag.) is same as CBT-CKF except it updates the

nodes current velocity estimation based on accelerometer and magnetometer data.

*/

/* Additional initialization of variables required compared to CBT-KF. For symbol

descriptions please refer to the text description of the algorithm. */

1 at // velocity correction calculated after processing raw acc. and mag. data;
2 ut = at // the updating frequency of velocity estimation depends on sampling frequency

of acc. and mag. sensors;

3.1.3 CBT-CKF with Acc. &, Mag.

The basic algorithm is the same as CBT-CKF. In CBT-CKF, the velocity estimate is based

on the values reported by the GPS and is assumed to be constant between two consecutive

GPS sampling intervals. However, in this variant, each node uses its acc. & mag. sensors

to update the velocity estimation required by KF in between two GPS sampling intervals.

To avoid any algorithm dependencies by raw data processing of acc. and mag., it’s assumed

that IMU as black-box is available which gives us observations in real-world frame.

3.2 Experimental Setup

3.2.1 Movement Data Insights

The group movement data used in the evaluation is generated using a simulation frame-

work designed in python. The movement generation module of the framework is based on the

Reynolds flocking algorithm [12]. The flocking algorithm gives the flexibility to define group-

ing parameters such as number of nodes, grouping tendency, grouping distance and maximum

speed. The evaluation dataset contains 3D position traces of 20 nodes at the resolution of 1s

in the movement area of 50×50×1 km for one day. Considering that birds/animals are active

only 50% of the time (either at night or during the day), the static position time intervals

are ignored to avoid potential bias in the results towards the proposed algorithm. Therefore,

movements are only generated for 12 hours (43200s). Nodes from two randomly allocated

base camps start towards a common foraging area. Nodes follow the flocking model and

a random motion model during journey and feeding activities, respectively. Furthermore,

nodes maintain a speed of approximately 6m/s with an inter-node distance of around 20m.

In Fig. 3.2 (c), the velocity jumps between different values as the Reynolds flocking model
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Figure 3.1: Movement data insights part -I (a) speed of the simulated mobile nodes. Nodes
follow random walk model during feeding activity (15000s to 25000s) and flocking model
otherwise with maximum speed of 6m/s; (b) time-slice view of the angle between two consec-
utive velocity vectors of a node. Variation in the angle implies that track followed by node
is not a straight line; (c) Speed distribution

of a single node.
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Figure 3.2: Movement data insights part -II (a) numbers of the clusters formed for a particular
position sampling interval over the entire simulation period in which cluster count variation
shows the dynamic clustering nature of the simulated data; (b) distribution of distances
between CH and cluster members for a particular position sampling interval over the entire
simulation period; (c) time slice view of variation in 3D velocity components of a node.
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(a)

Figure 3.3: Movement data insights part -III; time slice view of representative trajectories of
nodes generated using flocking algorithm.

updates velocity at regular sampling intervals. Typically, velocity is relatively constant until

the flocking model finds two nodes too close or too far apart and then takes action to cor-

rect this. Figs. 3.1, 3.2 and 3.3 provide more insights into various aspects of the simulated

movement data characteristics.

3.2.2 Energy Model

Energy parameters in the experiments are based upon a CSIRO multimodal mobile sensing

platform called Camazotz [9]. Camazotz uses a CC430 system on chip with GPS, inertial,

acoustic, air pressure and temperature sensors, two solar panels, 300mAh Li-Ion battery

operating at 3.7V( 3996J), with a total weight just under 30g targeted at tracking small

wildlife such as flying foxes.

The calculation of individual activity (e.g. GPS, radio, and MCU) energy consumption

of Camazotz is based upon the energy usage reported in [9] and corresponding data sheets of

components. A simplified energy model is used in the simulations: it’s assumed that GPS does

not require a cold start (Section 2.2.3) considering the sampling interval varies only from 10s

to 100s. The energy consumption of radio transmission and reception is assumed to be same.

The MCU energy used to collect and process acc. and mag. samples is negligible given the

low sensor sampling rates. As the KF update for 3D positioning only involves multiplications

45



and inversions of only 3X3 matrices, therefore, the MCU energy required for processing is

also negligible compared to the energy required for a GPS fix. These assumptions helps in

avoiding the cycle-accurate estimation of energy consumed by MCU and sensors. Instead,

the total energy nodes require for data processing and standby is estimated as miscellaneous

energy. The focus of our analysis is on the activities that dominate energy usage: GPS sensor

sampling and radio communications. The energy cost of each activity is shown in Table 3.1

and (3.7)-(3.9) are summarized in Table 3.2.

Eg = Tg (Pg + Pm) (3.7)

Er = Tr (Pr + Pm) (3.8)

Ea = TdPn(1− Td)Ps (3.9)

Table 3.1: Details of energy model

Activity / Component Value
Total simulation period (T ) 43200s
GPS power consumption (Pg) 74mW
GPS activity time hot-start mode (Tg) 5s
MCU power consumption (Pm) 13.2mW
Radio power consumption (Pr) 13.2mW
Packet size (S) 80bits
Channel bit rate (C) 256Kbps
Packet transmission/receiving time (S/C)
(Tt)

0.31ms

Current drawn by acc.& mag. in normal
mode (In)

110µA

Current drawn by acc.& mag. in sleep mode
(Is)

1µA

Power by acc.& mag. in normal mode (Pn)
(2.5v)

275µW

Power by acc.& mag. in sleep mode (Pa)
(2.5v)

2.5µW

Time taken for 1 sample, considering maxi-
mum sampling rate supported by acc.& mag.
is 200Hz (minimum of two)

5ms

Sampling Rate (Acc.) 50Hz.
acc.& mag. duty-cycling time (Td) 0.25s
Standby power drawn by platform (Ps) 1.2 µW
Miscellaneous energy consumption (El) =
TPs

54 J
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Table 3.2: Activity-wise energy consumption

Activity Energy/activity
GPS (Eg) 0.436J
Radio (Er) 34.78 µJ
Acc.& Mag. activity (Ea) 70.62µJ

3.2.3 Experiment Details

The experiments are divided into two different categories based on how the GPS sampling

is triggered. The first category is “Periodic Sampling”, in which GPS sampling is triggered

at a fixed time interval. The sampling interval in the experiments varies from 10s to 100s.

In the first experiment, the nodes are tracked using the proposed CBT to get the range of

benefits using planned cooperation. Next, the nodes are tracked using CBT-CKF, to know

the relevance of KF in a situation of where exact velocity measurements may not be available

for quite a long period. In the third experiment, the nodes are tracked using CBT-CKF

with acc.& mag. This experiment investigates the use of a noisy but continuous estimate of

movements of the nodes in the KF. To the best of my knowledge, there is no existing work

in this category, therefore, the performance of the proposed CBT-Standard algorithm and its

variants are compared with the Individual tracking algorithm. In the Individual algorithm,

each node independently samples and records its GPS position.

In the second category, “Dynamic Sampling”, GPS sampling is triggered dynamically

based on a predefined application specific position error uncertainty tolerance limit. A range

of uncertainty limits ranging from 50 m to 450 m are considered in the experiments. The

position uncertainty is assumed to have a linear relationship with velocity and time. For CBT

and its variants, cluster position uncertainty limit is computed as the average of uncertainty

limit of the cluster members. In this category, the performance of the CBT algorithms is

compared with an existing cooperative algorithm proposed in [27]. The experiments similar

to the periodic category are performed here as well.

For the purpose of evaluation, a zero-mean Gaussian noise with standard deviation of

10m, N (0, 10), is added to the original GPS position dataset, which is similar to the GPS

performance in low-performance GPS areas such as dense forest, city or cloudy sky. based

upon the GPS accuracy results presented in [72]. A group size of 50m is considered in all the

experiments assuming a one-hop communication model. The node’s acceleration estimates

are assumed to be received from a black box (e.g. IMU ouput) which processes all the raw

47



acc. and mag. signals and gives an acceleration estimate corrupted with zero-mean Gaussian

noise. The noise parameters in the acceleration estimate (na) is calculated using (3.10) and

the parameters given in data-sheet, (na) is

na = nd ∗
√

(bd ∗ 1.6). (3.10)

Where, accelerometer bandwidth bd equals to (50Hz) and noise density (nd) (200µg/
√
Hz)

is the square root of the power spectral density. In simulations, the σcx , σcy , and σcz value

used for the node who sampled the GPS is 10m whereas for the rest of the nodes in group

the value varies from 20m to 40m.

3.3 Results

The performance of algorithms is measured in term of mean energy consumed and mean

position accuracy achieved. Each experiment is repeated 20 times to avoid the effects of

random variations in a single experiment. The simulation stops either when all the nodes’

batteries are exhausted or the track is completed. The results for each category are given

below.

3.3.1 Periodic Sampling

Fig. 3.4a shows the energy consumption by all the nodes for all the algorithms. The GPS

energy consumption is relatively high compared to the other components (Table 3.2), leading

to a similar energy consumption by all the CBT algorithms. As expected, the proposed CBT

algorithms outperform the Individual algorithm in terms of energy consumption. The savings

can be as high as 30% over the Individual algorithm for nearly all sampling intervals. This

gain comes at the expense of accuracy, as shown next.

Fig. 3.4b compares the mean and standard deviation of the position error of all the

nodes for all the algorithms. CBT algorithms have higher errors (42% to 8% in the sampling

interval of 10s to 100s) compared to the Individual algorithm. The use of the KF in CBT-

CKF increases the position error performance gap between Individual and CBT-standard to

35% from 8% for the higher sampling intervals. This gap increase using KF can be explained

by the node velocity fluctuation on the individual axes between two consecutive sampling
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Figure 3.4: Results (a) mean and standard deviation of energy consumed by different algo-
rithms over various sampling intervals;(b) mean and standard deviation of localization error
of different algorithms over various sampling intervals.

points shown in Fig. 3.2c. The KF requires a good estimate of nodes velocity to give a

reasonable position estimate which is unavailable without the use of the accelerometer and

magnetometer sensors.

The addition of accelerometer and magnetometer information to the KF (CKF with

Acc.&Mag.) improves the position error performance. The variant CKF with Acc&Mag.

shrinks the position error gap range between Individual and CBT-standard from 42% – 8%

to 22% - 1% over various sampling intervals. It is noticeable in Fig. 3.4b that, at the

sampling interval of 100s, the variant CKF with Acc.&Mag. has the same mean error and a

slight reduction in variability in comparison to the Individual algorithm.
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Figure 3.5: Segment-wise (Flocking vs. Random movement model) localization error of
various algorithms (a) flocking movement segment (0s-15000s and 25001s-43200s) ;(b) random
movement segment (15001s to 25000s)

Fig. 3.5 presents the segment-wise localization error of various algorithms. The lo-

calization error in the segment (0s-15000s and 25001s-43200s) where nodes follow flocking

movement model is given in Fig. 3.5a. The error pattern is similar to the pattern in the

complete segment (Fig. 3.4b). However, the error pattern differs for the segment (15001s -

25000s) where nodes follow random movement model. As expected, CKF with Acc.&Mag.

does not bring any advantage in the random movement segment Fig. 3.5b.

Shifting the focus to the consolidated view of position and energy performance of Indi-

vidual versus CBT algorithms presented in Fig. 3.6, the benefits can be clearly observed as

follows. For an energy budget of 250J, the proposed CBT algorithm and its variants perform
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Figure 3.6: Energy-accuracy comparison of periodic sampling for interval 10s (right most
point on curves) to 100s.

best with 43% reduction in position error compared to the Individual algorithm. Alterna-

tively, for a fixed error range of 67m the variant CKF with Acc.& Mag. performs better,

yielding 27% energy saving compared to the Individual algorithm.

3.3.2 Dynamic Sampling

The results for position uncertainty limit ranging from 50m to 450m are summarized in

Fig. 3.7. The results for CBT-CKF are excluded given the bad performance for the similar

reasons explained in periodic sampling category. For the initial uncertainty limit of 50m,

the existing cooperative algorithm (the algorithm of [27]) performs better in energy usage

with comparable position accuracy performance than the proposed CBT algorithm. The

poor performance of the proposed CBT algorithm can be seen as a result of the low position

uncertainty limit for a group size of 50m. As described earlier, group position uncertainty

limit is computed as the average of position uncertainties of all group members.

For a group radius of 50m, the group position uncertainty limit of 50m can be reached

easily, leading to a higher GPS sampling rate, causing more energy usage. Overall in this

category, the existing co-operative algorithm performs well or comparable to the CBT algo-

rithm. However, there are some points like a given error range of 22m, where the proposed

CBT algorithm can save energy up to 40% compared to existing cooperative scheme.
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Figure 3.7: Energy-accuracy comparison of dynamic sampling; (a) position uncertainty limit
50m (right most point on curves) to 450m; (b) Zoom into a portion of sub-figure (a).

3.4 Conclusions

This chapter presents a cluster-based tracking algorithm for resource-constrained mobile

nodes. It provides insights into three proposed variants of CBT, without any KF, with KF,

and with KF and inertial sensors. The results show that the proposed CBT algorithms (CBT-

Standard, CBT-CKF with Acc. and Mag.) improves energy and accuracy by around one-

third over the Individual tracking algorithm in periodic GPS sampling scheme. In dynamic

sampling, existing cooperative algorithm performs better or comparable to CBT-standard

with only few exception points where it performs better.

The experiments show that the proposed CBT-Standard can give us position error reduc-

52



tion up to 43% for a given energy budget in comparison to the Individual algorithm. On the

other side the variant CKF with Acc.&Mag can also save energy up to 27% while staying

within the position error performance range of Individual algorithm. For the dynamically

triggered GPS sampling category CBT algorithms sometimes can save up to 40% of energy

while staying within the same error bound.

In summary, the proposed CBT-Standard algorithm and its variant CBT-CKF with

Acc.&Mag are shown to answer RQ1. These algorithms can provide a range of energy-

accuracy benefits in tracking resource-constrained mobile nodes.
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Chapter 4

Theoretical Bounds on Localization

Performance

This chapter considers the second research question (RQ2) “What is the theoretical minimum

bound on localization performance of a blind node in the presence of normally distributed

errors in anchor positions and log-normally distributed errors in RSSI-based distances esti-

mations?”

This question is answered by deriving the Cramer-Rao lower bound (CRLB) for the self-

localization problem given errors in both anchor positions and RSSI measurements.

The CRLB gives the minimal achievable variance for any unbiased estimator. Given an

observation vector x with a known distribution that is related to an unknown parameter

vector θ, the CRLB sets a lower bound on the covariance of any unbiased non-Bayesian

estimator θ̂ of θ. The CRLB is the inverse of the Fisher information matrix (FIM), denoted

by F(θ). Therefore,

Cov(θ̂) ≥ F−1(θ). (4.1)

The FIM represents the information provided by the observation x about the unobserved

parameter vector θ and, when certain regularity conditions are satisfied, is calculated as

F(θ) = −E
[
∂2l(θ | x)

∂2θ

]
(4.2)

where l(θ | x) is the log-likelihood function of θ given x.

In the remainder of this chapter, first, a formal problem definition is given followed by the

derivation of CRLB. Then, the chapter is concluded with experimental insights given into
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the relationship of CRLB with the number of nodes and errors levels in measurements.

4.1 Problem Statement

This chapter considers a self-localization problem for a single node, referred to as the blind

node, on the two-dimensional Cartesian plane, as the application such as Bat positioning is

about geographical location, so height is not an important issue. The blind node obtains an

estimate of its true position, denoted by (xb, yb). There are M ≥ 3 nodes, referred to as the

anchor nodes, arbitrarily distributed within the communication range of the blind node at lo-

cations (xi, yi), i = 1, ...,M . The locations of the anchor nodes are known only approximately

as their position estimates (e.g., from GPS) are corrupted by random errors. The blind node

estimates its distance from the anchor nodes using the available RSSI measurements that are

also subject to error. The knowledge of the noisy anchor node positions at the blind node is

denoted by (x̃i, ỹi), i = 1, ...,M . The corresponding noisy RSSI measurements are denoted

by p̃i, i = 1, ...,M , in the linear (mW) domain and by p̃i(dBm), i = 1, ...,M , in the logarithmic

(dBm) domain.

The following common assumptions are adopted:

A1 : The available position information of the ith anchor node on the x and y axes are

corrupted by independent additive zero-mean Gaussian errors with standard deviation σai

(experimentally validated in [13]). The errors in the knowledge of different anchor node

positions are independent of each other and the values of σai do not need to be the same for

different anchor nodes. Therefore,

x̃i = xi + nxi (4.3)

and

ỹi = yi + nyi (4.4)

where

nxi , nyi ∼ N (0, σai). (4.5)

A2 : The path-loss model for the radio signal propagation is the log-normal shadowing

model [14]. Therefore, the RSSI measurement of the signal transmitted from the ith anchor

node and received at the blind node has a nominal value of p̄i(dBm) in the logarithmic (dBm)

domain. However, the actual measured value is a realization of the nominal value corrupted
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by a zero-mean Gaussian error with standard deviation σpi , i.e.,

p̃i(dBm) = p̄i(dBm) + npi (4.6)

where

npi ∼ N (0, σpi) . (4.7)

According to the shadowing path-loss model, it holds that

p̃i(dBm) = p0(dBm) + 10η log10

di
d0

+ npi (4.8)

where

di =

√
(xi − xb)2 + (yi − yb)2 (4.9)

is the distance between the blind node and the ith anchor node. In addition, d0, p0(dBm), and

η are the reference distance, the received power at the reference distance, and the path-loss

exponent, respectively. Therefore, given the noisy value p̃i(dBm), the RSSI-induced estimate

for the distance between the blind node and the ith anchor node, denoted by d̃i, is given by

d̃i = d010

p̃i(dBm) − p0(dBm)

10η . (4.10)

Furthermore, it is assumed that the blind node and the anchor nodes have limited com-

putational and energy resources. Hence, at any particular instance of localization, only one

RSSI measurement and position estimate from each anchor node is available to the blind

node.

4.2 Cramer-Rao Lower Bound

In the considered self-localization problem, the observation vector x contains the noisy

anchor positions (x̃i, ỹi), i = 1, ...,M , as well as the noisy RSSI measurements p̃i, i = 1, ...,M ,

i.e., it can be written as

x = [p̃1, x̃1, ỹ1, p̃2, x̃2, ỹ2, ..., p̃M , x̃M , ỹM ]T . (4.11)
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Given (4.6) and (4.8), the probability density function (pdf) of p̃i is expressed as [61]

fp̃i (p̃i) =
10/ ln 10√

2πσ2
pi
p̃i

exp

[
−ci

8

(
ln
d2
i

d̃2
i

)2
]

(4.12)

where

ci =

(
10η

σpi ln 10

)2

. (4.13)

In view of the assumption A1, the pdfs of the noisy anchor positions (x̃i, ỹi), i = 1, ...,M , are

written as

fx̃i(x̃i) =
1√

2πσ2
ai

exp

[
−(x̃i − xi)2

2σ2
ai

]
(4.14)

and

fỹi(ỹi) =
1√

2πσ2
ai

exp

[
−(ỹi − yi)2

2σ2
ai

]
. (4.15)

Here, unknown parameters of interest are the position coordinates of the blind node

(xb, yb). However, the RSSI measurements are functions of the unknown original (non-noisy)

anchor positions, (xi, yi), i = 1, ...,M . Therefore, the correct anchor positions are included

as the nuisance parameters. Hence, the unknown parameter vector θ is

θ = [xb, yb, x1, y1, x2, y2, ..., xM , yM ]T . (4.16)

The noisy anchor node positions (x̃i, ỹi), i = 1, ...,M , are statistically independent of each

other as well as the RSSI measurements. Therefore, the log-likelihood function of the joint

probability distribution of all the observations is written as

l (θ | x) =
M∑
i=1

ln fp̃i (p̃i | θ) +
M∑
i=1

ln fx̃i (x̃i | θ)

+
M∑
i=1

ln fỹi (ỹi | θ)

=
M∑
i=1

ln fp̃i (p̃i | xb, yb, xi, yi)

+
M∑
i=1

ln fx̃i (x̃i | xi) +
M∑
i=1

ln fỹi (ỹi | yi) .

(4.17)

The second-order partial derivatives of the log-likelihood function l (θ | x) with respect

to the entries of its vector argument θ, required for the calculation of the FIM, are computed
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as

∂2l (θ | x)

∂xb2
=

M∑
i=1

{
− ci(xi − xb)2

d4
i

+ ci ln

(
d2
i

d̃2
i

)[
(xi − xb)2

d4
i

− 1

2d2
i

]}
(4.18)

∂2l (θ | x)

∂yb2
=

M∑
i=1

{
− ci(yi − yb)2

d4
i

+ ci ln

(
d2
i

d̃2
i

)[
(yi − yb)2

d4
i

− 1

2d2
i

]}
(4.19)

∂2l (θ | x)

∂xb∂yb
=

M∑
i=1

{
ci(xi − xb)(yi − yb)

d4
i

[
ln

(
d2
i

d̃2
i

)
− 1

]}
(4.20)

∂2l (θ | x)

∂xb∂xi
=
ci(xi − xb)2

d4
i

− ci ln
(
d2
i

d̃2
i

)[
(xi − xb)2

d4
i

− 1

2d2
i

]
(4.21)

∂2l (θ | x)

∂xb∂yi
=
ci(xi − xb)(yi − yb)

d4
i

[
1− ln

(
d2
i

d̃2
i

)]
(4.22)

∂2l (θ | x)

∂yb∂xi
=
ci(xi − xb)(yi − yb)

d4
i

[
1− ln

(
d2
i

d̃2
i

)]
(4.23)

∂2l (θ | x)

∂yb∂yi
=
ci(yi − yb)2

d4
i

− ci ln
(
d2
i

d̃2
i

)[
(yi − yb)2

d4
i

− 1

2d2
i

]
(4.24)

∂2l (θ | x)

∂xi∂xj
=

{
− ci(xi−xb)2

d4i
− 1

σ2
ai

+ ci ln
(
d2i
d̃2i

) [
(xi−xb)2

d4i
− 1

2d2i

]
i = j

0 i 6= j
(4.25)

∂2l (θ | x)

∂yi∂yj
=

{
− ci(yi−yb)2

d4i
− 1

σ2
ai

+ ci ln
(
d2i
d̃2i

) [
(yi−yb)2

d4i
− 1

2d2i

]
i = j

0 i 6= j
(4.26)

∂2l (θ | x)

∂xi∂yj
=

{
ci
d4i

(xi − xb)(yi − yb)
[
ln
(
d2i
d̃2i

)
− 1
]

i = j

0 i 6= j.
(4.27)

Considering [61]

E
[
ln

(
d2
i

d̃2
i

)]
= 0, (4.28)

the expectations of the above second-order derivative terms are given as
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E
[
∂2l (θ | x)

∂xb2

]
=

M∑
i=1

{
− ci(xi − xb)2

d4
i

}
(4.29)

E
[
∂2l (θ | x)

∂yb2

]
=

M∑
i=1

{
− ci(yi − yb)2

d4
i

}
(4.30)

E
[
∂2l (θ | x)

∂xb∂yb

]
=

M∑
i=1

{
−ci(xi − xb)(yi − yb)

d4
i

}
(4.31)

E
[
∂2l (θ | x)

∂xb∂xi

]
=
ci(xi − xb)2

d4
i

(4.32)

E
[
∂2l (θ | x)

∂xb∂yi

]
=
ci(xi − xb)(yi − yb)

d4
i

(4.33)

E
[
∂2l (θ | x)

∂yb∂xi

]
=
ci(xi − xb)(yi − yb)

d4
i

(4.34)

E
[
∂2l (θ | x)

∂yb∂yi

]
=
ci(yi − yb)2

d4
i

(4.35)

E
[
∂2l (θ | x)

∂xi∂xj

]
=

{
− ci(xi−xb)2

d4i
− 1

σ2
ai

i = j

0 i 6= j
(4.36)

E
[
∂2l (θ | x)

∂yi∂yj

]
=

{
− ci(yi−yb)2

d4i
− 1

σ2
ai

i = j

0 i 6= j
(4.37)

E
[
∂2l (θ | x)

∂xi∂yj

]
=

{
−ci
d4i

(xi − xb)(yi − yb) i = j

0 i 6= j.
(4.38)

Using, (4.29) to (4.38), the FIM can be expressed as

F(θ) =

F11 F12

FT
12 F22

 (4.39)

where
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F11 =
M∑
i=1

ci

d4
i

Qi, (4.40)

F12 = −

[
c1

d4
1

Q1, · · · ,
cM

d4
M

QM

]
, (4.41)

F22 = blockdiag


c1

d4
1

Q1 +
1

σ2
a1

I2, · · · ,
cM

d4
M

QM +
1

σ2
aM

I2

 , (4.42)

Qi =

 (xi − xb)2 (xi − xb)(yi − yb)

(xi − xb)(yi − yb) (yi − yb)2

 , (4.43)

and I2 is the 2 × 2 identity matrix. Consequently, a lower bound is obtained on the root-

mean-square error (RMSE) of any unbiased estimator of the blind node location as

√
E
[
(x̂b − xb)2 + (ŷb − yb)2] ≥√Tr

{(
F11 − F12F

−1
22 FT

12

)−1
}
. (4.44)

4.3 Experimental Insights

This section describes some experiments performed to validate the lower bound on the

RMSE of the localization error given by (4.44) as well as to obtain more insights into its

relationship with the number of anchors and their physical arrangement.

To experimentally validate the CRLB results given in (4.44), it is noted that the authors

of [61] have calculated the CRLB for a similar localization problem. They assume perfect

knowledge of anchor positions and consider errors only in the RSSI measurements following a

log-normal shadowing path-loss model. The additional errors in anchor positions is expected

to increase the CRLB values relative to these previously published results.

The results for three arbitrarily selected network topologies of anchors for a fixed blind

node are given in Fig. 4.1. The evaluation is performed for three stages, differentiated

based on the number of available anchor nodes, of every network topology . The first stage

considers the availability of only three anchors followed by the addition of another three

anchors in the second stage and finally adding six more anchors in the third stage. The

anchors of the first, second, and third stages are labeled as “anchors 1-3”,“anchors 4-6” and
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Figure 4.1: (a) Three stages of three different networks with a fixed blind node position (the
green dot). The first stage consists of three anchors represented by squares, the triangles
represent the added three anchors in the second stage, and the stars represent the six anchors
added in the third stage of the network; (b) the CRLB of localization RMSE given the first
stage of the network; (c) the CRLB of localization RMSE for second stage of the network;
(d) the CRLB of localization RMSE for third stage of the network.
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“anchors 7-12”, respectively in Fig. 4.1a. The experiments are performed for anchor position

errors with standard deviations equal to 1m, 3m, and 5m over a range of RSSI errors with

standard deviations between 1dB and 10dB. The results obtained using (4.44) are labeled

as “CRLB-RP-1m”, “CRLB-RP-3m”, and “CRLB-RP-5m”, respectively. The CRLB given

in [61] consider errors only in RSSI which means the CRLB values will be same for anchor

position error 1m, 3m and 5m. Therefore, the CRLB values calculated using [61] are labeled

as “CRLB-R-1,3,5m”.

The following observations are made from Fig. 4.1:

• For a fixed blind node, CRLB varies with the number as well as the arrangement of the

available anchor nodes.

• In all topologies, CRLB-RP is larger than CRLB-R, which shows that errors in the

anchor positions have a significant impact on CRLB.

• With three anchor nodes, the minimum number of anchors required for 2D localization,

the CRLB is very high for all the evaluated topologies. Therefore, it takes more than

three anchor nodes to attain a reasonable estimate of the blind node position in the

assumed scenario of errors.

• The CRLB using twelve nodes is considerably smaller compared to using three anchor

nodes. The CRLB gap between six and twelve anchor nodes has a maximum value

around 20% in all the cases, whereas from an energy consumption perspective, the latter

case requires twice the energy. A similar observation of the non-significant performance

improvement by adding anchor nodes beyond six has also been made in [95]. Based on

this observation, the experiments given in the next chapters assume the availability of

a minimum six anchor nodes to perform multilateration.

4.4 Conclusions

This chapter presented the theoretical lower bound on the RMSE of self-localization by

a blind node, which can be achieved by any unbiased estimator in the presence of normally

distributed errors in the anchor positions and log-normally distributed errors in the RSSI-

based distance estimations. Evaluations under different topologies and varying error scenarios

revealed the CRLB depends on topologies as well as the number of anchor nodes.
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Chapter 5

Heuristic Non-Linear Algorithm

This chapter explores the third research question which is “ How can the theoretical mini-

mum bound on localization be approached or achieved in the assumed scenario” of resource-

constrained mobile nodes?

As discussed in the literature review, Chapter 2, the authors of [15] addressed a similar

problem. Their algorithm is based on the ML estimation and requires multiple RSSI and

anchor position measurements. This thesis focuses on energy-efficient outdoor localization of

mobile nodes where the GPS is the main source of anchor position information while being

responsible for the majority of energy consumed; hence, multiple GPS measurements are not

practically desirable.

This chapter presents a resource-efficient algorithm, referred to as the heuristic nonlinear

(HNL) algorithm, for the self-localization problem formally defined in Section 4.1 given only

single RSSI and anchor node position measurements. HNL is heuristic in nature and is

based on the weighted least-squares (WLS) estimation method. It is based on minimizing

a non-linear weighted sum-square-error cost function. Each term in the cost function is the

weighted square of the difference between the distance inferred from an RSSI measurement

and the Euclidean distance between the blind node and the anchor node to which the RSSI

measurement corresponds. The square-error terms are weighted by their variances, which

are estimated by taking into account errors in both RSSI measurements and anchor node

position information.

A number of numerical simulations are carried out with various geometrical arrangements

of the blind node and the anchor nodes in arbitrary network topologies to evaluate the per-

formance of the proposed algorithm in comparison with an existing ML-based algorithm [15].
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The simulation results show that the proposed HNL algorithm offers significant improvement

in the localization performance over the algorithm of [15].

5.1 Proposed Algorithm - HNL

If the original values xi, yi, and di are available, one can estimate the position of the blind

node by minimizing the following sum-square-error objective function over its arguments x

and y:

c(x, y) =
M∑
i=1

ei
2(x, y) (5.1)

where the ith error (loss) term of the objective function is defined as

ei(x, y) = δi(x, y)− di (5.2)

with

δi(x, y) =
√

(xi − x)2 + (yi − y)2. (5.3)

Since, in practice, the original values xi, yi, and di are not known, they are replaced with

their corresponding noisy observations x̃i, ỹi, and d̃i and the ith error term is approximated

as

ēi(x, y) = δ̃i(x, y)− d̃i (5.4)

where

δ̃i(x, y) =
√

(x̃i − x)2 + (ỹi − y)2. (5.5)

Additionally, in order to factor in the variations in the scale and statistical properties of the

values associated with different anchor nodes, each error term is weighted with the inverse of

its standard deviation. Therefore, the following objective function∗ is minimized:

c̄(x, y) =
M∑
i=1

ēi
2

Var(ēi)
. (5.6)

∗the arguments x and y are dropped from ēi(x, y) and δ̃i(x, y) on the right-hand side of (5.6) and afterwards
to simplify the notation.
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As the errors are independent of each other, we have

Var(ēi) = Var(δ̃i) + Var(d̃i). (5.7)

The first term on the right-hand side of (5.7) is calculated as

Var(δ̃i) = E[δ̃2
i ]−(E[δ̃i])

2. (5.8)

Given (5.5), E[δ̃2
i ] in (5.8) is computed as

E[δ̃2
i ] = E[(x̃i − x)2] +E[(ỹi − y)2]

= E[(xi + nxi − x)2] +E[(yi + nyi − y)2]

= δ2
i + 2σ2

ai
.

(5.9)

To calculate (E[δ̃i])
2 in (5.8), it is noted that δ̃i is the Euclidean distance between the

points (x, y) and (x̃i, ỹi) where x and y are deterministic variables and x̃i and ỹi are indepen-

dent stochastic variables that have Gaussian distributions with means xi and yi, respectively,

and the same variance σ2
ai

. Therefore, δ̃i has a Rice distribution [124] with the expectation

E[δ̃i] =

√
π

2
σaiL1/2

(
− δ2

i

2σ2
ai

)
(5.10)

where L1/2(.) is a Laguerre polynomial expressed as

L1/2(z) = exp (z/2)
[
(1− z) I0

(
−z

2

)
− zI1

(
−z

2

)]
(5.11)

with I0(.) and I1(.) being the modified Bessel functions of the first kind with orders zero

and one, respectively. Bessel functions are not particularly cheap on an embedded platform,

however, one can approximate these functions as a simple sum of scaled exponential functions

[125]. For (5.8), this approximation works well when the argument to the Bessel functions is

small (less than 25).

The second term on the right-hand side of (5.7) is calculated as

Var(d̃i) = E[d̃2
i ]−(E[d̃i])

2. (5.12)
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To calculate the entries of (5.12), it is noted that d̃i using (4.6) - (4.10) is equal to

d̃i = di exp

(
ln 10

10η
npi

)
= exp(ln di) exp

(
ln 10

10η
npi

)
= exp

(
ln di +

ln 10

10η
npi

)
.

(5.13)

Hence, as per the assumption A2, npi ∼ N (0, σpi), d̃i has a log-normal distributed with mean

µdi = ln di and standard deviation σdi = ln 10
10η

σpi . Therefore, it holds that

(E[d̃i])
2 = exp

(
2 ln di + σ2

di

)
= d2

i exp
(
σ2
di

) (5.14)

and

E[d̃2
i ] = exp

(
2 ln di + 2σ2

di

)
= d2

i exp
(
2σ2

di

) (5.15)

and consequently Var(d̃i) in (5.12) is calculated as

Var(d̃i) = d2
i

[
exp

(
2σ2

di

)
− exp

(
σ2
di

)]
. (5.16)

Given an initial estimate
(
x̂

(0)
b , ŷ

(0)
b

)
and having calculated (5.7), the position of the

blind node can be estimated by minimizing (5.6) in an iterative manner using any suitable

optimization technique. Since the original anchor positions (xi, yi), i = 1, ...,M , are unknown,

hence δi in (5.9) and (5.10) is replaced by its approximate value of

δ̄
(k)
i =

√(
x̃i − x̂(k)

b

)2

+
(
ỹi − ŷ(k)

b

)2

(5.17)

where
(
x̂

(k)
b , ŷ

(k)
b

)
is the blind node’s position estimate at the kth iteration. In addition, the

unknown values of di, i = 1, ...,M in (5.16) are replaced by their available approximate values

d̃i, i = 1, ...,M .
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5.2 Experimental Setup and Results

5.2.1 Setup and Scenario

The proposed HNL algorithm is evaluated by simulating a group of seven nodes in a

30m×30m wide area. It is assumed that all the nodes have limited energy and computational

resources. All the nodes are assumed to have a GPS receiver for independent positioning and

a low-power radio for communication. GPS is widely accepted for the purpose of outdoor

localization but suffers from high energy consumption. Therefore, to balance life-time and

localization accuracy, all the nodes are considered to operate in a cooperative manner. For

the purposes of this experiment, only one node is used as a blind node and there are six

anchor nodes.

The errors on the position information of all anchor nodes are assumed to have Gaus-

sian distribution with zero mean and known standard deviations. The radio propagation

environment is represented by a log-normal shadowing path-loss model with known param-

eters. The values of the path-loss model parameters used in our experiments are d0 = 1m,

p0(dBm) = −33.44, and η = 3.567. These values are based on the results reported in [63],

which uses same hardware for experiments as the one assumed in this thesis.

Both homogeneous and heterogeneous GPS noise scenarios in the region are considered

for the performance evaluation. The homogeneous scenario refers to the case where the

standard deviation of the GPS noise is the same all over the region. In the heterogeneous

scenario, the standard deviation of the GPS noise varies within the region. In practice,

if the GPS operational context, e.g., surroundings, hardware, etc., is the same for all the

nodes, then the scenario is homogeneous. Otherwise, it is a heterogeneous scenario. As an

example, the GPS localization performance is a function of the length of time during which

the GPS receiver is active [89]. Therefore, variations in the GPS activity time may lead to

a heterogeneous scenario. The heterogeneous scenario may also arise with cooperative or

group/cluster-based energy-efficient localization schemes [88, 90, 126, 127] where the GPS

activation time is decided based on the available energy budget of the individual nodes. In the

experiments, the standard deviations of the errors on the anchor node position information,

σai , i = 1, ...,M , are the same for all the anchor nodes when the GPS noise scenario is

homogeneous. However, in the heterogeneous scenario, these standard deviations may differ
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depending on the position of the anchor nodes within the region.

The performance of the RSSI-based localization highly depends on the network geometry

[128]. Therefore, the performance of HNL is evaluated with different arbitrarily selected

anchor and blind node positions. The GPS noise standard deviation varies from 1m to 10m.

The RSSI measurement errors range from 1dB to 10dB in all the experiments. An arbitrary

point in the region is selected as the initial estimate for the blind node. The initialization

point is kept considerably far from the true position of the blind node while being fixed in

all trials of each experiment.

5.2.2 Algorithm comparison

The performance of HNL is compared with the algorithm given in [15] referred to as

“SPEAR”. As discussed earlier, SPEAR makes similar assumptions on the errors as assumed

in this thesis and solves a joint localization problem for the anchor nodes and the blind

nodes using ML estimation. SPEAR requires multiple measurements of RSSI and anchor

positions. However, the problem considered in this thesis is a self-localization problem in

a resource-constrained scenario where the blind node as well the anchor nodes have limited

energy. Therefore, only a single measurement of RSSI and anchor positions is provided to

the proposed algorithm as well SPEAR. Both algorithms use a sequential least squares pro-

gramming (SLSQP) solver available in the SciPy package for Python. For an unconstrained

problem, SLSQP is similar to Newton’s method.

5.2.3 Results

The RMSE and the bias norm are selected as the performance measures in the evaluations.

To compare the complexities of the evaluated algorithms, the average number of iterations

and convergence time of a single localization instance are measured. The algorithms are

executed on a machine with a 2.9GHz processor and 8GB of RAM and the time stamping

is done using Python’s cProfile module. The results are calculated by averaging over 1000

independent trials for each experiment. The corresponding values of the theoretical lower

bound on the RMSE given by CRLB are also plotted for reference, wherever applicable. The

results for HNL are labeled as “proposed”. The results of the SPEAR algorithm are denoted

as “SPEAR-S” for source position estimation for anchor position uncertainty reduction with
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Figure 5.1: Considered network topologies. (a) The network topology in which the stars are
the anchor nodes with homogeneous GPS error (σai): the σai values are 1m, 3m, and 5m;
the circle is the true position of the blind node; the triangle is the initial estimate for the
blind node position. (b) The network topology with heterogeneous GPS error: the stars are
the anchor nodes with σai = 6m; the squares are the anchor nodes with σai = 3m; the circle
is the true position of the blind node; the triangle is the initial estimate for the blind node
position. (c) The network topology with heterogeneous GPS error: the stars are the anchor
nodes with σai = 4m; the squares are the anchor nodes with σai = 2m; the circle is the true
position of the blind node; the triangle is the initial estimate for the blind node position.

single measurement (SPEAR-S). The iteration count reported is based on an output pa-

rameter “nit” reported by the SLSQP method under the default convergence criteria. The

convergence time reported for SPEAR-S is the time spent by the algorithm in the “SLSQP”

method only. However, the convergence time reported for the proposed algorithm is the

sum of the time spent in “SLSQP” method and the time spent to evaluate Bessel functions

required to compute weights in the proposed algorithm.

Homogeneous GPS error

Fig. 5.2 presents the results for the homogeneous GPS error scenario in an arrangement

given in Fig. 5.1a. From Figs. 5.2a - 5.2c, it is clear that HNL outperforms SPEAR-S in

term of RMSE and the performance gap increases with the increase of errors in the RSSI

measurements. For example, the RMSE improvement for error combination σai = 3m and

σpi = 5dB is only 10% but increased to 35% when σpi is 10dB. Note that CRLB sets the

theoretical lower bound for any unbiased estimator. The proposed estimator/algorithm is

biased therefore, the RMSE may sometime be lower than CRLB as visible in Fig. 5.2c. The

bias of both algorithms is comparable as evident from Figs. 5.2d - 5.2f. However, Figs. 5.2g -

5.2l revel that HNL requires significantly fewer iterations and time for convergence compared

to SPEAR-S.
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Figure 5.2: Localization performance for the network topology given in Fig. 5.1a and different
homogeneous GPS error scenarios of σai = 1m, 3m, and 5m and different values of σpi . (a)-(c)
The RMSE of the algorithms as well as the corresponding CRLB. (d)-(f) The bias norm of
the algorithms. (g)-(i) The iteration counts. (j)-(l) The convergence times of the algorithms
for a single localization instance.
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Figure 5.3: Localization performance for the network topology given in fig 5.1b for hetero-
geneous GPS error and different values of σpi . (a) The RMSE of the algorithms as well as
the corresponding CRLB. (b) The bias norm of the algorithms. (c) The iteration counts. (d)
The convergence times of the algorithms for a single localization instance.

Heterogeneous GPS error

Fig. 5.3 shows the results for heterogeneous GPS scenario for the node placement given

in Fig. 5.1b. There are three anchor nodes with σai = 6m and three anchor nodes with

σai = 3m. Similar to the homogeneous scenario, HNL outperforms SPEAR-S in terms of

RMSE and computational time requirement. The performance trend is also verifiable by the

results given in Fig. 5.4 for another heterogeneous topology shown in Fig. 5.1c.

In summary, HNL significantly outperforms SPEAR-S in both RMSE and convergence

time. The significantly low and almost constant convergence time for all the combinations of

errors makes HNL more suitable for the resource constrained battery-operated mobile nodes

considered in this thesis.
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Figure 5.4: Localization performance for the network topology given in fig 5.1c for hetero-
geneous GPS error and different values of σpi . (a) The RMSE of the algorithms as well as
the corresponding CRLB. (b) The bias norm of the algorithms. (c) The iteration counts. (d)
The convergence times of the algorithms for a single localization instance.

5.2.4 Performance for Imperfect Knowledge of the Model Param-

eters

The error distributions in real scenarios are usually not perfectly known. These experi-

ments investigate what happens when incorrect distribution parameters are used. The results

for overestimation of σai , σpi , and path-loss exponent (η) are given in Fig. 5.5. HNL shows ro-

bust behaviour in overestimation of the different parameters for high errors in measurements

and sensitive behaviour for low measurement errors. For example, there was no performance

change for high errors in measurements (σpi = 8dB − 10dB) even 50% overestimation of

parameters. However, for low measurement errors an increase in the RMSE and bias was

noticed even for 25% of overestimation.

The underestimation results are given in Fig. 5.6. Here, HNL performs better than
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Figure 5.5: Localization performance with the overestimated parameters: σai , σpi , and η. (a)
The network topology with homogeneous GPS error: the stars are the anchor nodes with
σai = 5m, the circle is the true position of the blind node, the triangle is the initial estimate
for the blind node position. (b) The RMSE results with overestimated parameters. (c) The
bias results with overestimated parameters.
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Figure 5.6: Localization performance with the underestimated parameters: σai , σpi , and η.
(a) The network topology with homogeneous GPS error: the stars are the anchor nodes with
σai = 5m, the circle is the true position of the blind node, the triangle is the initial estimate
for the blind node position. (b) The RMSE results with underestimated parameters. (c) The
bias results with underestimated parameters.

SPEAR-S even when the different parameters are underestimated by 50%. In summary,

HNL shows moderate robustness against imperfect knowledge of model parameters.

5.3 Conclusions

This chapter presented a localization algorithm in the presence of errors in the RSSI-based

distance measurements as well as the anchor node position information. The performance

of the proposed HNL algorithm was compared with a previously-proposed algorithm, called
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SPEAR, that solves a joint localization problem of the blind node position and the anchor

node positions using the ML estimation. Simulation results showed that the proposed al-

gorithm can significantly reduce the localization RMSE and computational time compared

with the SPEAR algorithm making it more suitable for localization in resource constrained

environments. The robust behaviour of HNL given imperfect knowledge of various model

parameters also makes it suitable for real-life implementation.
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Chapter 6

Heuristic Pseudo-Linear Algorithm

This chapter presents a heuristic pseudo-linear (HPL) algorithm to solve the self-localization

problem. This is another approach to the research question 3, which removes the limitations

of iterative optimization and 2D applicability of the algorithm proposed in chapter 5.

The proposed HPL algorithm delivers a closed-form solution and approximates the original

system of nonlinear equations with a system of linear equations given by Ãw ≈ b̃. As shown

in the next section, the resulting linearised system of equations contains errors on both sides

of the equations due to errors in distance and anchor position measurements. Notably, the

errors in b̃ and Ã are non-linearly correlated. In addition, the probability distributions of

errors in distance and anchor position measurements are different. This violates the pre-

requisites of existing techniques such as TLS, EWTLS, and CTLS.

To deal with this error scenario, HPL uses a weighted least-squares approach. The weights

are estimated by taking into account the statistical properties of errors in both RSSI and

anchor position information. In addition, the algorithm compensates for the bias caused by

anchor position and RSSI measurements errors. The evaluation is performed using numerical

simulations with various arrangements of the blind node and anchor nodes within arbitrary

network topologies. Due to similar computational requirements, the performance of the

proposed algorithm is compared with an existing WLS-based hyperbolic algorithm [16] that

only takes into account the errors in the RSSI measurements. The simulation results show

that the proposed algorithm offers significant improvement in the localization performance

over the hyperbolic algorithm of [16].

The remainder of this chapter presents the proposed HPL algorithm followed by experi-

ments and results.
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6.1 Proposed Algorithm - HPL

Given the anchor positions (xi, yi) and the corresponding distances di, i = 1, · · · ,M , the

blind node position can be estimated by intersecting the circles defined by

(x− xi)2 + (y − yi)2 = d2
i , i = 1, · · · ,M. (6.1)

To solve the system of non-linear equations (6.1), subtracting the equation corresponding to

i = 1 from the others results in a system of linear equations expressed as

2Aw = b (6.2)

where

A =


x2 − x1 y2 − y1

x3 − x1 y3 − y1

... ...

xi − x1 yi − y1

 ,

b =


d2

1 − d2
2 + k2 − k1

d2
1 − d2

3 + k3 − k1

...

d2
1 − d2

i + ki − k1

 ,
(6.3)

w =

x
y

 , (6.4)

and

ki = x2
i + y2

i . (6.5)

The ordinary least-squares solution of (6.2) is

w =
1

2

(
ATA

)−1
ATb. (6.6)
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Because the original values xi, yi, and di are not available, they are replaced with their

corresponding noisy observations x̃i, ỹi and d̃i. Both A and b are noisy and (6.2) becomes

2Ãŵ ≈ b̃ (6.7)

where

Ã =


x̃2 − x̃1 ỹ2 − ỹ1

x̃3 − x̃1 ỹ3 − ỹ1

... ...

x̃M − x̃1 ỹM − ỹ1

 , (6.8)

b̃ =


d̃2

1 − d̃2
2 + k̃2 − k̃1

d̃2
1 − d̃2

3 + k̃3 − k̃1

...

d̃2
1 − d̃2

M + k̃M − k̃1

 , (6.9)

ŵ =

x̂
ŷ

 , (6.10)

k̃i = x̃2
i + ỹ2

i . (6.11)

To factor in the difference in the scale and statistical properties of the values associated

with different anchor nodes and distance measurements, the WLS solution to (6.7) is given

as

ŵ =
1

2

(
ÃTS−1Ã

)−1

ÃTS−1b̃. (6.12)

In (6.12), S is the covariance matrix of b̃ with its (i, j)th entry being

sij =


Var(d̃2

1 − d̃2
i+1 + k̃i+1 − k̃1) if i = j

Var(d̃2
1 − k̃1) if i 6= j.

(6.13)

Considering the assumptions A1 and A2 in addition to the independent nature of the errors
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of the anchor positions and the RSSI-induced distances, (6.13) can be written as

sij =


Var(k̃i+1) + Var(k̃1) + Var(d̃2

1) + Var(d̃2
i+1) if i = j

Var(k̃1) + Var(d̃2
1) if i 6= j.

(6.14)

To calculate Var(k̃i), it’s noted that k̃i is the sum of squares of independent normally dis-

tributed random variables x̃i and ỹi with non-zero mean. Therefore, k̃i/σ
2
ai

has a non-central

chi-squared distribution with the variance

Var

(
k̃i
σ2
ai

)
= 2

(
2 + 2

x2
i + y2

i

σ2
ai

)
(6.15)

and consequently

Var
(
k̃i

)
= 4σ2

ai
(σ2

ai
+ (x2

i + y2
i )). (6.16)

Considering the assumption A2, Var(d̃2
i ) is calculated as [16]

Var(d̃2
i ) = exp(4µdi)

[
exp(8σ2

di
)− exp(4σ2

di
)
]

(6.17)

where

µdi = ln di and σdi =
ln 10

10η
σpi . (6.18)

As xi, yi, and di are not available, their corresponding noisy observations x̃i, ỹi, and d̃i are

used in (6.16) and (6.17).

In addition, it is noted that (6.7) has multiple sources of bias. The left-hand side of

(6.7) has error, the right-hand side errors are neither additive nor zero-mean and there is

a correlation between left-hand and right-hand side errors. To estimate the bias in the

algorithm assuming an additive error model, (6.7) can be written as

2 (A + N) ŵ = b + e (6.19)
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where

N =


nx2 ny2

nx3 ny3

... ...

nxM nyM


︸ ︷︷ ︸

Ň

−


nx1 ny1

nx1 ny1

... ...

nx1 ny1

 ,
︸ ︷︷ ︸

N1

(6.20)

e = b̃− b, (6.21)

and

N = Ã−A. (6.22)

Using (6.12) and (6.19), E[ŵ] becomes

E[ŵ] = E
[(

ÃTS−1Ã
)−1
]

ATS−1b︸ ︷︷ ︸
I

+E
[(

ÃTS−1Ã
)−1

NT

]
S−1b︸ ︷︷ ︸

II

+E
[(

ÃTS−1Ã
)−1

ATS−1e

]
︸ ︷︷ ︸

III

+E
[(

ÃTS−1Ã
)−1

NTS−1e

]
.︸ ︷︷ ︸

IV

(6.23)

The term I in (6.23) is the approximation of ŵ, term II gives the bias due to the noise in Ã,

and terms III and IV exist due to the fact that E[e] and E[NTe] are not equal to zero.

To compensate for the bias terms II and III in (6.23), the expectation of the corresponding

noise covariance is subtracted in (6.12) as

ŵ =
1

2

(
ÃTS−1Ã− E

[
NTS−1N

])−1

×
(
ÃTS−1b̃− E

[
NTS−1b̃

])
.

(6.24)

Using (6.19), E
[
NTS−1N

]
is equals to

E
[
NTS−1N

]
= E

[
ŇTS−1Ň

]
+E

[
NT

1 S−1N1

]
−E

[
NT

1 S−1Ň
]
−E

[
ŇTS−1N1

]
.

(6.25)
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The last two terms on the right-hand side of (6.25) are equal to zero, which leads to

E
[
NTS−1N

]
= L (6.26)

where

L =

l11 l12

l21 l22

 (6.27)

with various entries equal to

l11 =

M−1∑
k=1

S−1
kk σ

2
nxk+1

+ σ2
nx1

(
uTS−1u

)
, (6.28)

l22 =

M−1∑
k=1

S−1
kk σ

2
nyk+1

+ σ2
ny1

(
uTS−1u

)
, (6.29)

l12 = l21 = 0, (6.30)

and u = [1, 1, ..., 1]. The bias due to the correlation between the noises in Ã and b̃ is

E
[
NTS−1b̃

]
= E

[
ŇTS−1b̃

]
−E

[
NT

1 S−1b̃
]
. (6.31)

The independent and uncorrelated nature of RSSI and anchor position noises makes the

entries in the first term of (6.31) involving noise in di and x1, y1 zero ∗. Hence

E
[
ŇTS−1b̃

]
=


M−1∑
k=1

xk+1s
−1
kk σ

2
nxk+1

M−1∑
k=1

yk+1s
−1
kk σ

2
nyk+1

 (6.32)

and with the same logic the entries in the second term of (6.31) involving di and (xi, yi, i 6= 1)

are zero. Therefore,

E
[
NT

1 S−1b̃
]

= −

x1σ
2
nx1

(
uTS−1u

)
y1σ

2
ny1

(
uTS−1u

)
 . (6.33)

To compensate for term IV in (6.23), E[b̃] is calculated with the ith entry of b̃, E[b̃i]

∗This assumption of ”independent and uncorrelated RSSI measurements” is certainly used in the simula-
tion experiments. Different practical scenarios would require these assumptions to be verified.
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equals to

E[b̃i] = E[d̃2
1 − d̃2

i + k̃i − k̃1] . (6.34)

Considering the independent nature of the noises of the anchor positions and RSSI-induced

distances, (6.34) can be rewritten as

E[b̃i] = E[d̃2
1]−E[d̃2

i ] +E[k̃i]−E[k̃1] . (6.35)

To calculate E[d̃2
i ], note that d̃2

i using (4.10) is equal to

d̃2
i = d2

i exp
(√

2unpi

)
(6.36)

where

u =
ln 10

5
√

2η
. (6.37)

Thus,

E[d̃2
i ] = d2

i E
[
exp

(√
2unpi

)]
= d2

i exp
(
u2σ2

npi

)
.

(6.38)

Note that u2σ2
npi

is small even for high values of σnpi
such as 5dB. Therefore, using the second-

order Taylor-series expansion of the function exp(u2σ2
npi

) around zero, (6.38) is approximated

as

E[d̃2
i ] = d2

i + d2
i

(
u2σ2

npi
+
u4σ4

npi

2

)
. (6.39)

The term E[k̃i] in (6.35) is equal to

E[k̃i] = x2
i + y2

i + 2σ2
nai
. (6.40)

Using (6.39) and (6.40), E[b̃] can be written as

E
[
b̃
]

= b + t (6.41)
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where the ith entry of t is

ti =

(
u2σ2

npi
+
u4

2
σ4
npi

)(
d2

1 − d2
i

)
+ 2

(
σ2
nai
− σ2

na1

)
. (6.42)

As di is not accessible, the corresponding noisy values are used in the calculation of t.

Experimental evaluation reveals that the bias due to correlation of noise in Ã and b̃ using

(6.31) is close to the real bias for only small values of anchor position error. The dependence

of bias on xi, yi makes the estimation poor for high values of σai . The estimated position,

which is bias compensated (BC), in the proposed algorithm named as HPL-BC, is calculated

as a closed form equation:

ŵ =
1

2

(
ÃTS−1Ã− L

)−1

ÃTS−1
(
b̃− t

)
. (6.43)

6.2 Experimental Setup and Results

6.2.1 Setup and Scenario

The scenario for the evaluation of this algorithm is the same as the one used for the

evaluation of the previous algorithm given in Section 5.2.1. There are six anchor nodes and

one blind node in a region of 30m by 30m. The distance and anchor position measurement

errors follow the log-normal distribution and normal distribution, respectively, as given in

the problem statement Section 4.1.

HPL-BC is evaluated for both homogeneous and heterogeneous GPS error scenarios. A

variety of node arrangements are considered in addition to a wide range of standard-deviation

for the anchor position and distance measurement errors. The algorithm is also evaluated

for imperfect knowledge of error parameters and RSSI radio propagation parameter (path-

loss exponent). The performance is evaluated for both overestimation and underestimation

of these parameters. To assess the suitability of HPL-BC in real-life implementations, the

range of overestimation and underestimation is varied from 25% to 50%.

6.2.2 Algorithm in Comparison

The performance of the proposed HPL-BC algorithm is compared with that of the so-

called weighted hyperbolic algorithm proposed in [16]. The selection is based on the similarity
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in computational requirements for both algorithms. This algorithm is referred to here as

“WLSR” and is given below for a quick reference. The WLSR algorithm is also a weighted

least-squares type algorithm but based on the assumption that only the RSSI measurements

are corrupted by noise and the anchor node positions are known exactly at the blind node.

Therefore, HPL-BC can be viewed as an improvement over the algorithm of [16] taking into

account the effects of errors in anchor node positions.

WLSR algorithm

The WLSR algorithm considers errors only in RSSI-based distance measurements between

a blind node and anchor nodes while assuming perfect knowledge of the anchor node positions.

WLSR estimates the position as

ŵ =
1

2

(
ÃTS−1Ã

)−1

ÃTS−1b̃ (6.44)

where

Ã =


x̃2 − x̃1 ỹ2 − ỹ1

x̃3 − x̃1 ỹ3 − ỹ1

... ...

x̃M − x̃1 ỹM − ỹ1

 , (6.45)

b̃ =


d̃2

1 − d̃2
2 + k̃2 − k̃1

d̃2
1 − d̃2

3 + k̃3 − k̃1

...

d̃2
1 − d̃2

M + k̃M − k̃1

 , (6.46)

ŵ =

x̂
ŷ

 , (6.47)

and

k̃i = x̃2
i + ỹ2

i . (6.48)

In (6.44), the (i, j)th entry in the covariance matrix S of b̃ is given by

sij =


Var(d̃2

1 − d̃2
i+1) if i = j

Var(d̃2
1) if i 6= j.

(6.49)
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6.2.3 Results

The localization accuracy is assessed in terms of RMSE and bias. The results given are

based on averaging over 10,000 independent trials. The true locations of the nodes are the

same in every trial; variations exist only in the noise values. The proposed algorithm with

bias compensation is presented as “HPL-BC”. The results without bias compensation are

labeled as “HPL”. The results of WLSR are marked as “existing”.

In the rest of this section, first, the results for homogeneous GPS error are given followed

by heterogeneous GPS error. Then, the performance for imperfect knowledge of error pa-

rameters is given. Finally, the performance of both proposed HNL and HPL algorithms are

compared given the accurate knowledge of error and radio propagation model parameters

used in generating simulated data.

Homogeneous GPS error

The performance of the proposed HPL-BC algorithm is evaluated over two different node

arrangements shown in Fig. 6.1. The original position of the anchor nodes and blind node are

fixed in all the trials of any experiment. Three values for the anchor position error standard-

deviation σai (1m, 3m, 5m) are considered in the experiments. The standard deviation of

error in RSSI measurements σpi varies in the range of 1dB to 10dB.

Fig. 6.2 shows the performance of different algorithms over the node arrangement given in

Fig 6.1(a). HPL-BC shows improvement over the existing algorithm in terms of both RMSE

and bias. The performance improvement is significant for high errors in the measurements.

For example, HPL-BC reduces the RMSE by up to 30%, along with reduction in bias, for
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Figure 6.1: Network node arrangements for homogeneous scenario.
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σai = 3m and 5m when σpi is in the range of 5dB to 10dB . In addition, the RMSE of

HPL-BC is also close to the CRLB. Note that CRLB sets the theoretical lower bound for

any unbiased estimator. The proposed estimator/algorithm is biased therefore, the RMSE

may sometime be lower than CRLB as visible in Fig. 6.2(a). The performance improvement

offered by HPL and HPL-BC is also visible in the cumulative error distribution plots in 6.2(g)

- 6.2(i). Similar performance trends are also noticed in the results shown in Fig. 6.3 for the

node arrangement shown in Fig 6.1(b).
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Figure 6.2: Localization performance of various algorithms for homogeneous GPS error node
arrangement given in Fig. 6.1a; (a) to (c) show the RMSE and CRLB for σai = 1m, 3m, 5m,
respectively, for different values of σpi , with their corresponding bias shown in (d) to (f); (g)
to (i) present the cumulative distribution of errors for different combinations of σpi and σai .
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Figure 6.3: Localization performance of various algorithms for homogeneous GPS error node
arrangement given in Fig. 6.1b; (a) to (c) show the RMSE and CRLB for σai = 1m, 3m, 5m,
respectively, for different values of σpi , with their corresponding bias shown in (d) to (f); (g)
to (i) present the cumulative distribution of errors for different combinations of σpi and σai .
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Heterogeneous GPS error

The results for an arbitrarily selected node arrangement with heterogeneous GPS error

are given in Fig. 6.4. In this experiment, three nodes have σai = 5m and the other three have

σai = 1m. HPL-BC significantly outperforms the existing algorithm in terms of both RMSE

and bias, especially when RSSI values have large standard deviation. In addition, HPL-BC

has a bias less than 0.5m whereas the bias in the existing algorithm is around 2.0m. The

plots of cumulative distribution of errors also shows better performance of HPL-BC compare

to the existing algorithm. It is worth noting that HPL-BC performs close to the CLRB as

well.

The performance of HPL-BC is evaluated in another arbitrarily selected node arrangement
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Figure 6.4: Localization performance for heterogeneous GPS error; (a) the network topology;
(b) the RMSE of the proposed and existing algorithms as well as the corresponding CRLB for
different values of σpi ; (c) the bias of the proposed and existing algorithms for different values
of σpi ; (d) to (f) the cumulative distribution of errors for values of σpi = 2dB, 5dB and 8dB,
respectively.
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Figure 6.5: Localization performance for heterogeneous GPS error; (a) the network topology;
(b) the RMSE of the proposed and existing algorithms as well as the corresponding CRLB for
different values of σpi ; (c) the bias of the proposed and existing algorithms for different values
of σpi ; (d) to (f) the cumulative distribution of errors for values of σpi = 2dB, 5dB and 8dB,
respectively.

given in Fig. 6.5. Here, three anchor nodes with σai = 4m and three with σai = 0.5m are

considered. HPL-BC performs better as compared to the existing algorithm in this node

arrangement as well. Overall, HPL-BC reduces the RMSE by more than 1m, in addition to

the reduction of bias.

6.2.4 Performance for Imperfect Knowledge of the Model Param-

eters

The results for overestimation of σai , σpi , and path-loss exponent η in both node ar-

rangements shown in Figs. 6.4(a) and 6.5(b) are given in Fig. 6.6. HPL-BC shows robust

behaviour with overestimation of the parameters. HPL-BC shows no major change in the

RMSE and bias up to 25% of overestimation of the parameters in both node arrangements.

However, in comparison to the existing algorithm, HPL-BC still performs better even when
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Figure 6.6: Localization performance with overestimation of parameters: σai , σpiand η; sce-
nario1: (a) node arrangement; (b) the RMSE with overestimated parameters; (c) the bias
with overestimated parameters; scenario2: (d) node arrangement; (e) the RMSE with over-
estimated parameters; (f) the bias with overestimated parameters.

the parameters are overestimated by 50%.

The underestimation results for corresponding node arrangements are given in Fig. 6.7.

HPL-BC performs better than the existing algorithm for up to 25% underestimation of pa-

rameters in both node arrangements.

In summary, the proposed HPL-BC algorithm significantly improves the localization per-

formance compared to the existing WLS algorithm of [16] in terms of RMSE and bias. In

addition, HPL-BC is also robust against overestimation and underestimation of the param-

eters up-to 25%.
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Figure 6.7: Localization performance with underestimation of parameters σai , σpiand η; sce-
nario1 (a) node arrangement;(b) the RMSE with overestimated parameters; (c) the bias
with overestimated parameters; scenario2 (d) node arrangement;(e) the RMSE with over-
estimated parameters; (f) the bias with overestimated parameters.

6.2.5 Comparison Between HPL-BC and HNL

The performance comparison of both proposed algorithms over an arbitrarily selected

node arrangement is given in Fig. 6.8. The experiment assumes the perfect knowledge of

various simulation model parameters (σai , σpi and η).

As expected, the HNL algorithm performs better than HPL-BC in terms of RMSE with a

better cumulative distribution of errors. However, the improved performance of HNL comes

at the cost of extra computation time as shown in Fig. 6.8(f). HNL requires roughly five times

more processing time than HPL-BC to reduce the RMSE by approximately 20%. As well

as the advantage of low-computational time, HPL-BC does not require any initial position

estimate.

In summary, both proposed algorithms have their own advantages and disadvantages.

91



0 5 10 15 20 25 30
(m)

0

5

10

15

20

25

30
(m

)

anchor node
blind node

(a)

1 2 3 4 5 6 7 8 9 10
σpi  (dB) 

0

2

4

6

8

10

12

14

R
M

S
E
 (

m
)

proposed HNL
proposed HPL-BC
CRLB

σai = 5m

(b)

1 2 3 4 5 6 7 8 9 10
σpi  (dB) 

0

1

2

3

4

5

b
ia

s 
n
o
rm

 (
m

)

proposed HNL
proposed HPL-BC

σai = 5m

(c)

0 5 10 15 20 25
localization error (m)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
liz

e
d
 f

re
q
u
e
n
cy

proposed HNL

proposed HPL-BC

σai = 5m, σpi = 5dB

(d)

0 5 10 15 20 25
localization error (m)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
liz

e
d
 f

re
q
u
e
n
cy

proposed HNL

proposed HPL-BC

σai = 5m, σpi = 10dB

(e)

1 2 3 4 5 6 7 8 9 10
σpi  (dB) 

0

2

4

6

8

10

ti
m

e
 (

m
s)

proposed HNL
proposed HPL-BC

σai = 5m

(f)

Figure 6.8: Performance comparison between the proposed HPL-BC and HNL algorithms;
(a) node arrangement; (b) the RMSE for various values of σpi ; (c) the bias for various values
of σpi ; (d) cumulative distribution of errors for σai = 5m and σpi = 5dB; (e) cumulative
distribution of errors for σai = 5m and σpi = 10dB; (f) time taken by a single run of each
algorithm for different values of σpi .

HNL comes with an advantage of low positioning error with the limitation of 2D positioning

and the requirement of an initial position estimate. HPL-BC has low computational time

compared to HNL (at the cost of higher RMSE) and is applicable to 3D positioning as well.

6.3 Conclusions

This chapter presents a heuristic pseudo-linear solution to the self-localization problem

stated in Section 4.1. The proposed algorithm, called HNL-BC, is of WLS type in which

weights are calculated using statistical properties of the errors. In addition, various sources

of the bias in the proposed algorithms are estimated and accounted for.

The performance of HPL-BC is compared to the WLS-based hyperbolic algorithm pre-

sented in [16]. The proposed algorithm significantly outperforms this existing algorithm. To
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assess the suitability of HBL-BC in real-life applications, its performance is also evaluated

for overestimation and underestimation of various noise parameters and radio propagation

model. HPL-BC is robust against up to 25% overestimation and underestimation of error

and radio propagation model parameters.

This chapter also presents a comparison between the proposed HNL and HPL-BC algo-

rithms. HNL gives up to 20% low RMSE but requires five times more computational effort

compared to HPL-BC. In addition to low computational time, HPL-BC has also the advan-

tage of being applicable to 3D localization. In conclusion, both algorithms have their own

merits and demerits and a choice can be made depending on the accuracy requirements of

the application and the available computing and energy resources.
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Chapter 7

Multi-Mode Tracking

This chapter explores the fourth research question which is “How can additional information

of error characteristics be used to improve the tracking accuracy of such groups of mobile

nodes?”

For static or slowly-varying sensor networks, a relatively straightforward answer to this

research question is to use multilateration-based tracking such as the one proposed in this

project (e.g. Chapter 6). However, such solutions are not directly applicable to long-term

tracking of dynamic groups of resource-constrained mobile nodes such as humans, animals,

and vehicles. The dynamic group structure brings the challenges of frequently changing

neighbouring nodes and available resources for localization. In some instances, the number

of neighbouring nodes may not be sufficient to run multilateration. To address these chal-

lenges, this chapter proposes a group-based multi-mode tracking algorithm. The proposed

algorithm has three modes namely multilateration mode, cluster-based mode and standalone

mode. At any particular time instance, the proposed algorithm selects the best mode given

the group size and available resources. A clustering approach is used where a cluster head

(CH) is responsible for position update process and other cluster management related activ-

ities. In some scenarios, the statistical properties of the anchor position errors is not known.

Therefore, evaluation is performed for two variants of the proposed group-based multi-mode

algorithm namely “Multi-mode WLSR” and “Multi-mode HPL” based on the WLSR, the

hyperbolic solution proposed in [16], and HPL solutions.

The energy-accuracy trade-off of the proposed algorithm is evaluated for fixed sampling

intervals ranging from 5s to 50s. The evaluation is based on the 2D position tracks of 40

nodes generated using Reynolds’ flocking model [12]. The proposed multi-mode algorithm
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provides significant improvements over the cluster-based tracking algorithm proposed in [127]

and over cooperative localization assuming a node’s position to be the same as a neighbouring

node [87]. The results are also compared with the Individual case when a node only uses its

own GPS for a position update and is not involved in any cooperation with other nodes. The

proposed multimode algorithm is as accurate as the individual-based tracking while using

about half the energy.

The rest of the chapter describes the proposed algorithm followed by experimental eval-

uations, results and conclusion.

7.1 Proposed Algorithm

The description of the proposed group-based multi-mode tracking algorithm is as follows:

7.1.1 Cluster Formation and CH selection

The first task is to form clusters among a group of nodes based on a pre-defined commu-

nication range. For this, all the nodes get their position information using GPS. Then, the

position information is shared with the nodes within their communication range. To decide

the CH, there are multiple strategies such as deterministic (node ID, node degree), adaptive

( energy level etc.) and hybrid metric [129]. Given that the focus of proposed algorithms is

to get the range of energy-accuracy benefits which can be achieved under cooperative sce-

nario, therefore, the simplest random timer approach is being used. However, in future one

can investigate the effects of various CH selection strategies on the range of energy-accuracy

benefits. In random-timer strategy each node runs a random timer and the node with the

least value of the timer is selected as the CH. The random timer is exactly a random number

generator for each node, plus a communication message to identify the “winner”, minimizing

the messages to be sent. The ties in the timer value are resolved on the basis of lowest

node identifier value. A cluster member may have connectivity to only some of the cluster

members but all members have assured connectivity to the CH. Each node can belong to one

cluster only and selection among multiple clusters is made on the basis of the distance to the

CH.
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7.1.2 Cluster Merging and Node Splitting

There can be multiple clusters with varying numbers of nodes in each cluster at any given

instant of time. Both the number of clusters and their members change over time. For the

situation where two or more CHs come within the communication range, a cluster merging

is performed. The cluster merging process follows the rule of “the bigger cluster absorbs the

smaller cluster”.

A node leaves its current cluster and looks to join a new one if it does not receive three

scheduled updates (based on GPS sampling interval) from its current CH. In case there is no

nearby CH, the node starts a new cluster formation process.

7.1.3 Position Update Process

The CH is responsible for all the cluster management activities. It is also responsible for

providing support in position update activity to the cluster members. Whenever a position

update is required, CH checks the number of members in its cluster and their energy levels

to choose one of the following modes accounting for the temporary grouping behaviour of the

nodes.

Multilateration Mode

The algorithm enters into this mode if the cluster size Cs is more than a predefined

threshold Ct and uses A number of nodes as anchor nodes randomly selected by CH. One

can perform multilateration as long as A nodes are available. However, it would not be

energy-efficient to use for example six anchor nodes (A = 6) to get position of one blind

node, in case where anchor nodes are also energy and resource constrained as blind nodes.

A combination of a large value of Ct and low value of A means higher energy benefit but

low position accuracy. The anchor nodes update their position through GPS and share their

positions among the cluster members. Then, all the cluster members use an RSSI-based

multilateration technique (WLSR or HPL) to estimate their current positions. Here, an

assumption is made that change in the cluster-geometry is negligible while taking the GPS

and the corresponding RSSI measurements. A cluster member discards a position estimate

if the distance between any anchor node and the estimated position is greater than double

the communication range. The node then assumes its position to be the same as the nearest
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Figure 7.1: Movement data insights. (a) A time-slice view of the angle between two consec-
utive velocity vectors of a node. Variation in the angle implies that the track followed by the
node is not a straight line. (b) Numbers of the clusters formed for a particular position sam-
pling interval over the entire simulation period. The variation shows the dynamic clustering
nature of the simulated data.

anchor node selected based on the RSSI-based distance. This helps the member nodes to

filter the bad position estimates given by the RSSI-based multilateration technique.

Cluster-Based Mode

The algorithm enters into this mode, if 1 < Cs ≤ Ct. In this, CH selects the nodes with

available minimum energy required for GPS sampling from its member list and randomly

selects only one node as the anchor node. Cluster members assume their position is the same

as that the anchor node. In the absence of new GPS position updates either from the GPS

or from any neighbor, the node uses its last position as the current position estimate.

Standalone Mode

The algorithm enters into this mode if Ct = 1 or if a particular node does not receive

three consecutive updates from either Cluster-based mode or multilateration mode. In this

mode, the node activates its own GPS for current position update and later on searches for an

existing cluster. In case of no nearby existing cluster, the node starts the process of forming

a new cluster.

97



Algorithm 4: Multi-mode Tracking (MMT)
/* initialization of variables */

1 number of nodes; maximum battery capacity ; CM current battery level ( initialization with
maximum battery capacity ); minimum battery (required for tracking activity) ; sampling interval ;
total tracking period ; radio range, Ct, A ;

2 Initially all nodes get GPS lock // Use of own GPS to get position update ;
/* cluster formation and cluster head (CH) selection process */

3 while every node is either becomes a CH or a cluster member (CM) do
4 check clustering eligible nodes // (the nodes which are neither a CH nor a CM and CM current battery level

≥ minimum battery) ;
5 if count of clustering eligible nodes ≤ 0 then
6 exit ;
7 else
8 All clustering eligible nodes exhachage their position with nodes in radio range ;
9 clustering eligible nodes run a random timer and node with lowest timer value wins the CH race, a tie on

timer value is resolved using lowest node ID ;
10 a node joins the nearest CH if multiple CH in radio range and changes own status to CM ;

11 end

12 end
/* cluster merging */;

13 if distance between CH ≤ radio range (two or more clusters in range) then
14 merge clusters (the bigger cluster absorbs the smaller cluster);
15 end

/* position updates based on sampling interval */

16 while CM current battery level ≥ minimum battery ∧ trajectory tracked ≤ total tracking period do
17 for every CH do
18 Cs( number of CM with bettery level ≥ minimum battery, also termed as cluster size);
19 if Cs≤ 0 then
20 CM current postion to CM last position (update all CM icluding CH) ;
21 break the current clsuter;
22 all CM and the CH search for an active CH within radio range;

23 end
24 if 0 < Cs < C t then

// Cluster-Based Mode;
25 random selection of a CM from active CM list to get GPS lock by the CH ;
26 GPS lock by the selected CM and GPS position received stored as position update ;
27 energy used = GPS enegy + MCU energy + radio energy ;
28 update CM current battery level −= energy used;

/* distribution of position update to all the CM by the CH */

29 if distance to CH ≤ radio range then
30 update CM current postion = position update;
31 energy used = MCU energy + radio energy ;
32 update CM current battery level −= energy used;

33 else
34 if position update not received ≤ 3 // (number of scheduled updates not received from the

CH) then
35 update CM current postion = CM last position;
36 energy used = MCU energy + radio energy ;
37 update CM current battery level −= energy used;
38 position update not received += 1;

39 else
// Standalone mode;

40 update CM current postion = GPS lock ;
41 energy used = GPS energy + MCU energy + radio energy ;
42 update CM current battery level −= energy used;
43 position update not received = 0 ;
44 leave current CH and search for new CH or initiate a new clustering process;

45 end

46 end

47 end
48 if Cs ≥ Ct then

// Multilateration Mode;
49 CH randomly select A number of active nodes (anchor nodes) for GPS lock;
50 distribution of anchor positions to all blind nodes;

// energy update for all the anchor nodes;
51 energy used = GPS energy + MCU energy + radio energy ;
52 update CM current battery level −= energy used;

// energy update for all the blind nodes nodes;
53 energy used = MCU energy + radio energy ;
54 update CM current battery level −= energy used;
55 if only σpi is available then
56 Blind nodes use WSR solution to calculate their positions;
57 end
58 if both σpi and σai is available then
59 Blind nodes use HPL solution to calculate their positions;
60 end

61 end

62 end

63 end
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Figure 7.2: Time-slice view of the trajectories of some nodes.

7.2 Experimental Setup

7.2.1 Movement Data Insights

The data generated is quite similar to the data generated in 3.2.1 of chapter 3 with the

difference that the positions generated are in 2D only. The dimension reduction from 3D to

2D is to save simulation time for the large number of trials. The Python based simulator

is used to generate group movements of 40 mobile nodes (for example, bats) in an area of

50km×50km. This scenario also consists of two living areas and one foraging area. All nodes

start their journey from living areas towards the foraging area at a maximum speed of 6m/s

while trying to maintain an inter-node distance of around 20m. A total of 43200 positions per

node at the time resolution of one second are generated for the experiments. Again Reynolds’

flocking model is used to generate the positions during the journey [12] and a random walk

movement model is used in the foraging area. During the journey, there are formations of

different clusters among the nodes. Both the number of clusters and the number of their

respective members vary in time. Some further insight into the data generated through the

considered simulation framework are given in Fig. 7.1 and Fig. 7.2.
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Table 7.1: Energy consumption summary

Activity Energy/activity
GPS (Eg) 0.436J
Radio (Er) 34.78 µJ

7.2.2 Energy Model

The energy model used for evaluation is the same as described in section 3.2.2 of chapter

3.

7.2.3 Experiment Details

Four scenarios are simulated which are differentiated based on the amount of error in the

GPS-based positions and RSSI measurements. The key simulation parameters for all four

scenarios are summarized in Table 7.2. In all four scenarios, 50% of the nodes have a high

GPS performance (small values of σai e.g. 1m to 5m) and 50% have a low GPS performance

(large values of σai e.g. 6m to 10m). Therefore, at any particular moment, a cluster can

have a mixture of devices with low and high GPS performance. The value of σai is kept in

the range of 1m to 10m. The clustering performance highly depends on the accuracy of the

underlying ranging technique. Hence, the performance of the proposed algorithm is evaluated

for values of σpi = 1dBm and σpi = 3dBm. The clustering threshold Ct = 10, i.e. clusters on

average have 10 members. The number of anchor nodes, N , is set to 6 for all simulations.

This value N is based on the results of our preliminary experiments performed in chapter 4

to find the number of anchors required to achieve a reasonable mean localization error with

the assumed tracking environment. The value of Ct is based on a trade-off between N and

the average cluster size in the simulated data.

7.3 Experiment Results

The mean tracking error and mean energy consumption of all nodes at a given sampling

interval are considered as the performance evaluation criteria. To calculate the mean tracking

error, first, a linear interpolation is performed between any two consecutive points of the

sampled trajectory of a node to match the maximum available resolution of 1s in the original

trajectories. Then, the individual tracking error is calculated for each node as the mean of the
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Figure 7.3: Performance of evaluated algorithms in different errors scenarios. The top-
left, bottom-right points of curves shows the results for sampling interval of 50s and 5s
respectively, with rest of intervals following the order. (a) σpi = 1dB and σai = 1m, 10m;
(b) σpi = 1dB and σai = 5m, 10m; (c) σpi = 3dB and σai = 1m, 10m; (d) σpi = 3dB and
σai = 5m, 10m.

Note: In all cases sampling Interval goes from 50s top left (high tracking error) to 5s bottom
right (low tracking error) in intervals of 5s.
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Table 7.2: Simulation parameters

Parameter Value
Clustering threshold (Ct) 10
Number of anchor nodes(N) 6
scenario-1
σpi 1dB
σai 1m or 10m
scenario-2
σpi 1dB
σai 5m or 10m
scenario-3
σpi 3dB
σai 1m or 10m
scenario-4
σpi 3dB
σai 5m or 10m

Euclidean distances between the points of the trajectory obtained after linear interpolation

and their corresponding points of the original trajectory. Finally, the mean tracking error

is calculated as the mean of all nodes’ individual tracking errors. Similarly, the energy

consumption of each node is calculated based on its individual activities during tracking

through the energy model calculated using (3.7), (3.8) and table 3.1 and summarized in

table 7.1 for quick reference. The mean energy consumption is calculated by taking the mean

of nodes’ individual energy consumption.

The results are presented in Fig. 7.3 for two variants of the proposed algorithm called

multi-mode WLSR and multi-mode HPL, which, respectively, use WLSR and HPL solutions

for multilateration. The tracking algorithms based on solely multilateration (WLSR or HPL)

had large errors due to lack of sufficient number of anchor nodes at some instances of localiza-

tion; hence, they are not included. “CBT” is the cluster-based tracking used in [27, 87, 127].

In CBT, the blind node assumes its position to be the same as the position estimate of its

neighboring node with the latest position information. “Individual” refers to a tracking algo-

rithm based on standalone GPS sampling. The group tracking performance is evaluated over

sampling intervals ranging from 5s to 50s. The top-left and bottom-right points of each curve

in Fig. 7.3 show the results for a sampling interval of 50s and 5s, respectively. The points in

between correspond to the intermediate intervals following the order with equal step size of

5s.

First, let us consider the effects of various combinations of error levels on the performance
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Figure 7.4: Cumulative distribution of mean tracking error of the simulated algorithms with
a sampling interval of 5s, σai = 5, 10m, and (a) σpi = 1dB or (b) σpi = 3dB.

of evaluated group-based tracking algorithms. The individual tracking algorithm has no

dependence on the RSSI measurements. Therefore, the performance of individual tracking

is the same in Fig. 7.3a and Fig. 7.3c and similarly in Fig. 7.3b and Fig.7.3d. The effect of

the increase in the standard deviation of noise in anchor position σai on the performance of

individual tracking can be seen as the increase in the error from 6m to 9m for low sampling

intervals in Fig. 7.3a and Fig. 7.3b. It appears that linear interpolation errors dominate the

localization errors in high-sampling intervals reducing the effect of an increase in the value of

σai . All the other algorithms have dependence on the RSSI measurement errors resulting in

performance change from one scenario to another. The effect on the performance of various

combinations of errors is more noticeable at lower sampling intervals due to the dominance

of the linear interpolation errors at the higher sampling intervals.

Both variants of the proposed multi-mode group-based tracking algorithm provide sig-

nificant energy savings over the individual tracking while performing similarly in terms of

mean tracking error. As an example, for the sampling interval of 10s, the proposed algorithm

consumes 50% less energy than the individual tracking. In a point-to-point sampling-interval-

wise comparison, both variants of the proposed algorithm have lower tracking error than the

CBT algorithm but consume more energy with most of the sampling intervals. For low sam-

pling intervals such as 20s, both variants of the proposed algorithm have roughly half the

tracking error while consuming similar amount of energy.
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The performance of the multi-mode HPL and multi-mode WLSR variants is comparable

for higher sampling intervals in all the scenarios. However, multi-mode HPL performs better

for low sampling intervals. For example, in Fig. 7.3a, the multi-mode HPL has 20% less

tracking error as compared to the multi-mode WLSR with a sampling interval of 10s. In

general, taking into account the anchor noise error (by multi-mode HPL) is more beneficial

in low sampling intervals.

The cumulative distributions of mean tracking error for two arbitrary scenarios is given

in Fig. 7.4. The cumulative distributions of both variants of the proposed algorithm are

close to that of the individual-based tracking algorithm and attest to a significantly better

performance compared with the CBT algorithm.

In summary, the proposed multi-mode group-based tracking algorithm offers substantial

improvements in terms of energy efficiency and tracking accuracy over the individual as well

as CBT tracking algorithms. The offered performance benefits are more prominent with high

error levels and low sampling intervals.

7.4 Conclusions

This chapter proposes an energy-efficient multi-mode group-based tracking algorithm by

combining efficient and accurate multilateration techniques with practical and flexible cluster

processing to address the challenges of tracking a dynamic group of mobile agents. The

performance of the proposed algorithm is evaluated in comparison with the existing related

algorithms using a dataset generated via Reynolds’ flocking algorithm and considering various

amounts of error in RSSI and anchor position information. The proposed algorithm was

shown to preform favorably against the existing cluster-based and individual-based group

tracking algorithms. For a given energy budget, the proposed algorithm reduces the mean

tracking error by up to 20% in comparison with the existing energy-efficient cooperative

algorithms. Moreover, the proposed algorithm is as accurate as the individual-based tracking

while using around 50% less energy. The performance improvement afforded by the proposed

algorithm was more pronounced when having high error levels and low sampling intervals.
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Chapter 8

Conclusions and Future Work

This thesis examined a number of research questions around localization and tracking of

mobile nodes constrained in the available energy and computational resources. Specifically,

the thesis considers the localization of mobile nodes exhibiting a grouping behaviour.

In general, this thesis first develops the required mathematical framework and then uses

extensive simulations to validate the results. The group movement data required for valida-

tion is generated using a well-known flocking algorithm due to Reynolds [12]. The energy

model used is based on Camazotz, the CSIRO’s in-house developed tracking device [9]. The

thesis uses the log-normal shadowing path-loss model for radio propagation and model pa-

rameters used in the simulations are based on the results reported in [63].

The rest of the chapter first presents, in Sections 8.1 -8.4, the answers to the four re-

search questions posed in chapter 2. Thereafter, Section 8.5 summarizes the key original

contributions. Finally, Section 8.6 proposes directions for future work.

8.1 Research Question 1

RQ1: How can GPS sampling load and position readings be shared among a group of

mobile nodes to improve individual tracking accuracy given a limited energy budget?

To answer this question, a cluster-based tracking (CBT) algorithm for resource-

constrained mobile nodes has been proposed in this thesis. Three variants of CBT, without

any KF, with KF, and with KF and inertial sensors were evaluated on the group movement

data generated using Reynolds’ flocking algorithm.

It is found that significant energy reduction and accuracy improvements can be gained by
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distributing the GPS sampling load among a group of nearby mobile nodes. For example, the

proposed CBT technique results in 27% energy saving while staying in the error range of indi-

vidual tracking or 43% less error by consuming the same energy as individual tracking. Hence,

the proposed CBT algorithm and its variant CBT-CKF with accelerometer-magnetometer

answer this research question.

8.2 Research Question 2

RQ2: What is the theoretical minimum bound on localization performance of a blind

node in the presence of normally distributed errors in anchor positions and log-normally

distributed errors in RSSI-based distances estimations?

This question is answered by deriving the Cramer-Rao lower bound (CRLB) on the RMSE

of self-localization by a blind node, which can be achieved by any unbiased estimator given

normally distributed errors in anchor positions and log-normally distributed errors in RSSI-

based distance estimations due to the underlying path-loss model.

The evaluation of the CRLB under different topologies and varying noise scenarios re-

vealed its dependence on both node arrangements (topology) and the number of anchor nodes.

It is noticed that when there are errors in both anchor positions and distance estimates, a

minimum of six anchor nodes are required to obtain a reasonably good estimate of the blind

node position.

8.3 Research Question 3

RQ3: How can the theoretical minimum bound on localization be approached or achieved

in the assumed scenario of resource-constrained mobile nodes?

To answer this research question, this thesis proposed two different algorithms.

The first algorithm called heuristic non-linear (HNL) solves an appropriately-weighted

non-linear least-squares problem. The calculation of the weights is a key component of the

proposed algorithm and is done using the statistical properties of the perturbations present

in the observations of both anchor positions and RSSI-induced distances. The results of HNL

are compared with a previously proposed ML-based algorithm, SPEAR. The experimental

evaluations in which only single measurements for both RSSI and anchor positions are pro-

vided to both algorithms show that HPL reduces the RMSE up to 30% in comparison to
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SPEAR while requiring only 10% to 20% of its computation time.

The second algorithm called heuristic pseudo-linear (HPL) approximates the original sys-

tem of non-linear equations with a linear set of equations and then solves it using the weighted

least-squares method. HPL also estimates various sources of the bias and compensates for

them. The performance of HPL is compared with a related existing algorithm called WLSR.

HPL improves the performance of WLSR both in terms of RMSE and Bias (up to 30%

reduction in RMSE and 50% reduction in bias).

Compared to HNL, HPL is applicable in 3D as well and gives a closed-form solution and

only takes 20% of the computation time taken by HNL. However, this time reduction comes

at the cost of increased RMSE by up to 20%. Both HNL and HPL algorithms are robust

against up to 25% overestimation and underestimation of modeling parameters.

8.4 Research Question 4

RQ4: How can additional information of error characteristics can be used to improve the

tracking accuracy of such groups of mobile nodes?

To answer this research question, this thesis proposed a multi-mode tracking algorithm.

The proposed algorithm takes the group size and resource availability into consideration and

determines the best solution at any particular time. The proposed algorithm has three modes,

namely, multilateration, cluster-based, and standalone. The multilateration mode uses the

proposed HPL algorithm.

The evaluation is based on the position tracks generated using Reynolds’ flocking al-

gorithm. The proposed algorithm achieves the same accuracy as individual-based tracking

while using 50% less energy.

8.5 Original Contributions

This thesis makes the following original contributions:

• A CBT algorithm has been developed to distribute the GPS sampling load among the

cluster of resource-constrained mobile sensors to increases the tracking period, accuracy

or both. With the simulated data, the proposed CBT algorithm demonstrated the feasi-

bility of distributing the GPS-sampling load and reducing the energy consumption and

position accuracy compared to individual tracking. Experiments provide insights about
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usefulness of KF and inertial-sensors in the long-term tracking of resource-constrained

nodes for a range of sampling intervals. The thesis identified that KF, in the assumed

long-term tracking scenario, is only useful when provided with high-frequency inertial

sensor sampling data.

• The CRLB has been derived for localization using multilateration given log-normal

distributed errors in the distance measurements due to the underlying shadowing path-

loss model for radio propagation and normally distributed errors in the anchor posi-

tions. The CRLB provides the minimum achievable variance for an unbiased estimator

given the observations along with the errors’ statistical properties. Given the resource-

constrained scenario, like the one considered in this thesis, this helps with planning

the number of observations to be made to achieve the required localization accuracy

leading to better utilization of the available energy resources. For example, in the ex-

periments performed, it is noticed that at least six anchor nodes are required to achieve

a reasonable localization accuracy using multilateration when there are errors in both

anchor positions and distance measurements and only single observations are available.

• The HNL algorithm, minimizing an approximated non-linear cost function using WLS,

to solve a multilateration problem was developed and tested. Simulation results show

that HNL provides better localization accuracy in significantly less computation time

compared to an existing ML-based algorithm, SPEAR, when only single observations

of anchor positions and corresponding distances are available.

• The HPL algorithm, a closed form biased compensated solution for multilateration

problem. HPL improves an existing similar closed-form solution with similar compu-

tational complexity while accounting for errors in anchor node positions as well.

• A multi-mode tracking algorithm for a group of resource-constrained mobile nodes has

been developed and analyzed. The proposed algorithm takes the group size and resource

availability into consideration and determines the best solution at any particular time

instance. The proposed multi-mode algorithm achieves localization performance similar

to individual tracking while consuming only half the energy. The proposed algorithm

shows that proper accounting for grouping nature and errors in measurements can

improve the localization performance significantly.
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8.6 Future Work

There are many possible directions to extend the work done in this thesis.

First, HNL algorithm is limited to 2D only and future work could usefully extend it to

3D. In addition, considering that only limited observations are available, the solutions are

expected to have a bias. For the combination of poor geometry and limited observations, the

bias can be high and its estimation and compensation could lead to significant improvement

in the solutions.

Next, both HNL and HPL algorithms assume that the measured RSSI values are measured

relative to the reported anchor positions. In practice, however, for mobile nodes, there is

always a time gap and RSSI measurements will not be transmitted at exactly the same

time that the reported anchor position was estimated. Compensating for the movements of

the nodes (both anchors and blind node) in the proposed localization solutions is definitely

an interesting direction for future work. In addition, both HNL and HPL algorithms are

evaluated in fixed arrangements of anchor nodes. It will be useful to investigate the effect of

anchor position geometries on the performance of these algorithms.

The proposed multi-mode algorithm assumes the knowledge of the radio propagation

environment and for the case of mobile nodes that may change considerably. Learning radio

propagation such as η and σpi parameters online will definitely add value to the current work.

In addition, within the scope of a PhD thesis, it has not been possible to explore a broader

range of mobility models and parameters. Rather the purpose of this thesis is to show the

potential of this technique with one specific mobility model and one set of parameters. Rather

than explore many models and parameters here, future users of this technique should repeat

these experiments for the particular model parameters expected in their specific scenario.

While a single real-world trial is possible, that sufficiently many trials to evaluate the

long-term stability of the project would require more resources and time than were available.

Therefore, the results reported in this thesis are based on computer simulations.

109



Bibliography

[1] P. Sommer, B. Kusy, A. McKeown, and R. Jurdak, “The big night out:

Experiences from tracking flying foxes with delay-tolerant wireless networking,” in

Real-world wireless sensor networks. Springer, 2014, pp. 15–27. [Online]. Available:

http://dx.doi.org/10.1007/978-3-319-03071-5 2

[2] W. Li, Z. Shi, M. Yu, W. Ren, C. Smith, J. H. Epstein, H. Wang,

G. Crameri, Z. Hu, and H. Zhang, “Bats are natural reservoirs of SARS-like

Coronaviruses,” Science, vol. 310, no. 5748, pp. 676–679, 2005. [Online]. Available:

http://dx.doi.org/10.1126/science.1118391

[3] E. M. Leroy, B. Kumulungui, X. Pourrut, P. Rouquet, A. Hassanin, P. Yaba,
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[16] P. Tarŕıo, A. M. Bernardos, and J. R. Casar, “Weighted least squares techniques for

improved received signal strength based localization,” Sensors, vol. 11, no. 9, pp.

8569–8592, 2011. [Online]. Available: http://dx.doi.org/10.3390/s110908569

[17] C. Edwards, “Taggin along [Communications Radio-Frequency ID],” Engineering

& Technology, vol. 9, no. 8, pp. 75–79, 2014. [Online]. Available: http:

//dx.doi.org/10.1049/et.2014.0811

[18] W. Dennis, “Bees kitted out with RFID backpacks for research project,”

Engineering & Technology, vol. 9, no. 1, pp. 20–21, 2014. [Online]. Available:

http://dx.doi.org/10.1049/et.2014.0117

[19] K. Pearson, “The problem of the random walk,” Nature, vol. 72, no. 1867, p. 342,

1905. [Online]. Available: https://doi.org/10.1038/072342a0

[20] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A

performance comparison of multi-hop wireless ad hoc network routing protocols,”

in Proceedings of the 4th annual ACM/IEEE international conference on

Mobile computing and networking. ACM, 1998, pp. 85–97. [Online]. Available:

http://doi.org/10.1145/288235.288256

[21] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive GPS-based

positioning for smartphones,” in Proceedings of 8th International Conference on Mobile

Systems, Applications, and Services. ACM, 2010, pp. 299–314. [Online]. Available:

http://dx.doi.org/10.1145/1814433.1814463

[22] S. Pace, G. Frost, I. Lachow, D. Frelinger, and D. Fossum, “The global positioning

system: Assessing national policies,” RAND Corporation, Santa Monica, CA, Tech.

Rep., 1995. [Online]. Available: http://www.dtic.mil/dtic/tr/fulltext/u2/a305283.pdf

[23] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning System:

112

http://dx.doi.org/10.1109/LCOMM.2014.020414.132780
http://dx.doi.org/10.3390/s110908569
http://dx.doi.org/10.1049/et.2014.0811
http://dx.doi.org/10.1049/et.2014.0811
http://dx.doi.org/10.1049/et.2014.0117
https://doi.org/10.1038/072342a0
http://doi.org/10.1145/288235.288256
http://dx.doi.org/10.1145/1814433.1814463
http://www.dtic.mil/dtic/tr/fulltext/u2/a305283.pdf


Theory and Practice. Wien, Austria: Springer Science & Business Media, 2012.

[Online]. Available: http://dx.doi.org/10.1007/978-3-7091-3311-8

[24] M. Matosevic, Z. Salcic, and S. Berber, “A comparison of accuracy using

a GPS and a low-cost DGPS,” IEEE Transactions on Instrumentation and

Measurement, vol. 55, no. 5, pp. 1677–1683, 2006. [Online]. Available: http:

//dx.doi.org/10.1109/TIM.2006.880918

[25] M. Lehtinen, A. Happonen, and J. Ikonen, “Accuracy and time to first fix using

consumer-grade GPS receivers,” in Proceedings of 16th International Conference on

Software, Telecommunications and Computer Networks. IEEE, 2008, pp. 334–340.

[Online]. Available: http://dx.doi.org/10.1109/SOFTCOM.2008.4669506

[26] R. Jurdak, P. Corke, A. Cotillon, D. Dharman, C. Crossman, and G. Salagnac,

“Energy-efficient localization: GPS duty cycling with radio ranging,” ACM

Transactions on Sensor Networks (TOSN), vol. 9, no. 2, p. 23, 2013. [Online].

Available: http://dx.doi.org/10.1145/2422966.2422980

[27] R. Jurdak, B. Kusy, and A. Cotillon, “Group-based motion detection for energy-

efficient localization,” Journal of Sensor and Actuator Networks, vol. 1, no. 3, pp.

183–216, 2012. [Online]. Available: http://dx.doi.org/10.3390/jsan1030183

[28] R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer, “Field testing

a wireless sensor network for reactive environmental monitoring [soil moisture

measurement],” in Proceedings of Intelligent Sensors, Sensor Networks and

Information Processing Conference. IEEE, 2004, pp. 7–12. [Online]. Available:

http://dx.doi.org/10.1109/ISSNIP.2004.1417429

[29] J. K. Hart and K. Martinez, “Environmental Sensor Networks: A revolution in the

earth system science?” Earth-Science Reviews, vol. 78, no. 3, pp. 177–191, 2006.

[Online]. Available: https://doi.org/10.1016/j.earscirev.2006.05.001

[30] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin,

“Habitat monitoring with sensor networks,” Communications of the ACM, vol. 47,

no. 6, pp. 34–40, 2004. [Online]. Available: http://dx.doi.org/10.1145/990680.990704

113

http://dx.doi.org/10.1007/978-3-7091-3311-8
http://dx.doi.org/10.1109/TIM.2006.880918
http://dx.doi.org/10.1109/TIM.2006.880918
http://dx.doi.org/10.1109/SOFTCOM.2008.4669506
http://dx.doi.org/10.1145/2422966.2422980
http://dx.doi.org/10.3390/jsan1030183
http://dx.doi.org/10.1109/ISSNIP.2004.1417429
https://doi.org/10.1016/j.earscirev.2006.05.001
http://dx.doi.org/10.1145/990680.990704


[31] L. Blazevic, J.-Y. Le Boudec, and S. Giordano, “A location-based routing method for

mobile ad hoc networks,” IEEE Transactions on Mobile Computing, vol. 4, no. 2, pp.

97–110, 2005. [Online]. Available: http://dx.doi.org/10.1109/TMC.2005.16

[32] A. Swami, Q. Zhao, Y.-W. Hong, and L. Tong, Wireless Sensor Networks: Signal

Processing and Communications. Chichester, UK: John Wiley & Sons, 2007. [Online].

Available: http://dx.doi.org/10.1002/9780470061794

[33] D. Puccinelli and M. Haenggi, “Wireless Sensor Networks: Applications and

Challenges of Ubiquitous Sensing,” IEEE Circuits and Systems Magazine, vol. 5, no. 3,

pp. 19–31, 2005. [Online]. Available: http://dx.doi.org/10.1109/MCAS.2005.1507522

[34] J. S. Esteves, A. Carvalho, and C. Couto, “Generalized geometric triangulation

algorithm for mobile robot absolute self-localization,” in Proceedings of International

Symposium on Industrial Electronics, vol. 1. IEEE, 2003, pp. 346–351. [Online].

Available: http://dx.doi.org/10.1109/ISIE.2003.1267272

[35] C. D. Mcgillem and T. S. Rappaport, “A beacon navigation method for autonomous

vehicles,” IEEE Transactions on Vehicular Technology, vol. 38, no. 3, pp. 132–139,

1989. [Online]. Available: http://dx.doi.org/10.1109/25.45466

[36] M. Betke and L. Gurvits, “Mobile robot localization using landmarks,” IEEE

Transactions on Robotics and Automation, vol. 13, no. 2, pp. 251–263, 1997. [Online].

Available: http://dx.doi.org/10.1109/70.563647

[37] D. E. Manolakis, “Efficient solution and performance analysis of 3-D position estimation

by trilateration,” IEEE Transactions on Aerospace and Electronic Systems, vol. 32,

no. 4, pp. 1239–1248, 1996. [Online]. Available: http://dx.doi.org/10.1109/7.543845

[38] K. E. Bekris, A. A. Argyros, and L. E. Kavraki, “Angle-based methods for

mobile robot navigation: Reaching the entire plane,” in Proceedings of International

Conference on Robotics and Automation, vol. 3. IEEE, 2004, pp. 2373–2378. [Online].

Available: http://dx.doi.org/10.1109/ROBOT.2004.1307416

[39] D. Niculescu and B. Nath, “Ad hoc positioning system (APS) using AOA,”

in Proceedings of 22nd Annual Joint Conference of the IEEE Computer and

114

http://dx.doi.org/10.1109/TMC.2005.16
http://dx.doi.org/10.1002/9780470061794
http://dx.doi.org/10.1109/MCAS.2005.1507522
http://dx.doi.org/10.1109/ISIE.2003.1267272
http://dx.doi.org/10.1109/25.45466
http://dx.doi.org/10.1109/70.563647
http://dx.doi.org/10.1109/7.543845
http://dx.doi.org/10.1109/ROBOT.2004.1307416


Communications Societies, vol. 3. IEEE, 2003, pp. 1734–1743. [Online]. Available:

http://dx.doi.org/10.1109/INFCOM.2003.1209196

[40] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal,

“Locating the nodes: cooperative localization in wireless sensor networks,” IEEE

Signal Processing Magazine, vol. 22, no. 4, pp. 54–69, 2005. [Online]. Available:

http://dx.doi.org/10.1109/MSP.2005.1458287

[41] A. Ahmed, R. Arablouei, F. de Hoog, B. Kusy, R. Jurdak, and N. Bergmann,

“Estimating angle-of-arrival and time-of-flight for multipath components using wifi

channel state information,” Sensors, vol. 18, no. 6, p. 1753, 2018. [Online]. Available:

https://doi.org/10.3390/s18061753

[42] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial

filtering,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 4–24, 1988. [Online]. Available:

http://dx.doi.org/10.1109/53.665

[43] B. Ottersten, M. Viberg, P. Stoica, and A. Nehorai, “Exact and large sample ML

techniques for parameter estimation and detection in array processing,” in Radar Array

Processing, S. Haykin, J. Litva, and T. Shepherd, Eds. New York: Springer-Verlag,

1993, p. 99–151. [Online]. Available: https://doi.org/10.1007/978-3-642-77347-1 4

[44] W. Li, W. Yao, and P. J. Duffett-Smith, “Comparative study of joint TOA/DOA

estimation techniques for mobile positioning applications,” in Proceedings of IEEE

Consumer Communications and Networking Conference. IEEE, 2009, pp. 1–5.

[Online]. Available: http://dx.doi.org/10.1109/CCNC.2009.4784819

[45] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless location:

challenges faced in developing techniques for accurate wireless location information,”

IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 24–40, 2005. [Online]. Available:

http://dx.doi.org/10.1109/MSP.2005.1458275

[46] N. B. Priyantha, H. Balakrishnan, E. D. Demaine, and S. Teller, “Mobile-

assisted localization in wireless sensor networks,” in Proceedings of 24th Annual Joint

Conference of the IEEE Computer and Communications Societies., vol. 1. IEEE, 2005,

pp. 172–183. [Online]. Available: http://dx.doi.org/10.1109/INFCOM.2005.1497889

115

http://dx.doi.org/10.1109/INFCOM.2003.1209196
http://dx.doi.org/10.1109/MSP.2005.1458287
https://doi.org/10.3390/s18061753
http://dx.doi.org/10.1109/53.665
https://doi.org/10.1007/978-3-642-77347-1_4
http://dx.doi.org/10.1109/CCNC.2009.4784819
http://dx.doi.org/10.1109/MSP.2005.1458275
http://dx.doi.org/10.1109/INFCOM.2005.1497889


[47] J. J. Caffery, “A new approach to the geometry of TOA location,” in Proceedings of

52nd Vehicular Technology Conference, vol. 4. IEEE, 2000, pp. 1943–1949. [Online].

Available: http://dx.doi.org/10.1109/VETECF.2000.886153

[48] X. Wang, Z. Wang, and B. O’Dea, “A TOA-based location algorithm reducing

the errors due to non-line-of-sight (NLOS) propagation,” IEEE Transactions on

Vehicular Technology, vol. 52, no. 1, pp. 112–116, 2003. [Online]. Available:

http://dx.doi.org/10.1109/TVT.2002.807158

[49] A. R. J. Ruiz and F. S. Granja, “Comparing ubisense, bespoon, and decawave

uwb location systems: Indoor performance analysis,” IEEE Transactions on

instrumentation and Measurement, vol. 66, no. 8, pp. 2106–2117, 2017. [Online].

Available: http://dx.doi.org/10.1109/TIM.2017.2681398

[50] B. Kusy, J. Sallai, G. Balogh, A. Ledeczi, V. Protopopescu, J. Tolliver, F. DeNap, and

M. Parang, “Radio interferometric tracking of mobile wireless nodes,” in Proceedings

of 5th International Conference on Mobile Systems, Applications and Services. ACM,

2007, pp. 139–151. [Online]. Available: http://dx.doi.org/10.1145/1247660.1247678

[51] S. M. Williams, K. D. Frampton, I. Amundson, and P. L. Schmidt, “Decentralized

acoustic source localization in a distributed sensor network,” Applied Acoustics,

vol. 67, no. 10, pp. 996–1008, 2006. [Online]. Available: http://dx.doi.org/10.1016/j.

apacoust.2005.12.008

[52] M. Kotaru, P. Zhang, and S. Katti, “Localizing low-power backscatter tags using

commodity wifi,” in Proceedings of the 13th International Conference on emerging

Networking EXperiments and Technologies. ACM, 2017, pp. 251–262. [Online].

Available: http://dx.doi.org/10.1145/3143361.3143379

[53] P. Pannuto, B. Kempke, and P. Dutta, “Slocalization: sub-µw ultra wideband

backscatter localization,” in Proceedings of the 17th ACM/IEEE International

Conference on Information Processing in Sensor Networks. IEEE Press, 2018, pp.

242–253. [Online]. Available: http://dx.doi.org/10.1109/IPSN.2018.00052

[54] G. Mao, B. Fidan, and B. D. Anderson, “Wireless sensor network localization

techniques,” Computer Networks, vol. 51, no. 10, pp. 2529–2553, 2007. [Online].

Available: http://dx.doi.org/10.1016/j.comnet.2006.11.018

116

http://dx.doi.org/10.1109/VETECF.2000.886153
http://dx.doi.org/10.1109/TVT.2002.807158
http://dx.doi.org/10.1109/TIM.2017.2681398
http://dx.doi.org/10.1145/1247660.1247678
http://dx.doi.org/10.1016/j.apacoust.2005.12.008
http://dx.doi.org/10.1016/j.apacoust.2005.12.008
http://dx.doi.org/10.1145/3143361.3143379
http://dx.doi.org/10.1109/IPSN.2018.00052
http://dx.doi.org/10.1016/j.comnet.2006.11.018


[55] S. Y. Seidel and T. S. Rappaport, “914mhz path loss prediction models for

indoor wireless communications in multifloored buildings,” IEEE Transactions on

Antennas and Propagation, vol. 40, no. 2, pp. 207–217, 1992. [Online]. Available:

http://dx.doi.org/10.1109/8.127405

[56] R. Peng and M. L. Sichitiu, “Robust, probabilistic, constraint-based localization for

wireless sensor networks,” in Proceedings of IEEE Communications Society Conference

on Sensor and Ad Hoc Communications and Networks,. IEEE, 2005, pp. 541–550.

[Online]. Available: http://dx.doi.org/10.1109/SAHCN.2005.1557106

[57] T. S. Rappaport, Wireless communications: principles and practice. Prentice Hall

PTR New Jersey, 1996, vol. 2.

[58] J. Miranda, R. Abrishambaf, T. Gomes, P. Gonçalves, J. Cabral, A. Tavares,
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