
1 
 

 

 

 

 

 

 

Interactions between iron and fat in                                                                   

non-alcoholic fatty liver disease 

Laurence James Britton 

MBChB FRACP 

 

 

 

 

 

 

 

 

 

 

 

 

 

A thesis submitted for the degree of Doctor of Philosophy at 

The University of Queensland in 2018 

Faculty of Medicine 

 

 



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Thesis Abstract 
 
Non-alcoholic fatty disease (NAFLD) is estimated to affect approximately one billion 

people worldwide. However, the pathogenesis of this common disease is not well 

understood. This has hampered the development of effective treatments that might 

prevent complications such as liver failure, liver cancer and cardiac disease. Iron and 

mutations of the haemochromatosis gene (HFE) have long been considered to have 

pathogenic roles in the development of NAFLD although their significance and 

mechanisms of effect remain controversial. Recent data indicate a role for modest 

increases in iron in the generation of insulin resistance and adipose tissue dysfunction, 

both hallmark features of NAFLD.  

Modest increases in iron have been shown to occur with heterozygous HFE gene 

mutations. Due to their high prevalence, heterozygous HFE gene mutations are frequently 

observed in individuals with co-existent NAFLD and such mutations have been 

hypothesised to have a co-toxic role in NAFLD pathogenesis. Homozygous deletion of Hfe 

has been shown to lead to dysregulated lipid metabolism and liver injury in a mouse model 

of NAFLD. Chapter 3 describes a model of heterozygous deletion of the Hfe gene in mice 

fed a high calorie diet. This led to impaired homeostasis of both iron and glucose, although 

there were no alterations in hepatic lipid metabolism or liver injury. 

Chapter 4 seeks to further examine the links between iron and insulin resistance. Hepatic 

iron concentration (HIC) was measured using MR Ferriscan and serum concentrations of 

six adipokines were determined using a multiplex ELISA array from a cohort of 60 adults 

with NAFLD. After patients were randomised to six months of venesection and dietary 

advice (n=23) versus dietary advice alone (n=28), no differences were seen between 

groups in change in serum concentrations of adiponectin, leptin, resistin, retinol binding 

protein-4 (RBP-4), tumour necrosis factor alpha (TNFα) and interleukin-6 (IL-6). However, 

unexpectedly, a significant positive correlation between baseline HIC and serum 

adiponectin was found. This strengthened further after correction for age, gender and body 

mass index (rho=0.36, p=0.007). Furthermore, significant inverse correlations were 

identified between HIC and six surrogate measures of insulin resistance; Adipo-IR, serum 

insulin, serum glucose, HOMA-IR, HbA1C and hepatic steatosis. A positive correlation was 

noted between HIC and insulin sensitivity index. These data indicate that HIC positively 

correlates with serum adiponectin concentration and insulin sensitivity in patients with 

NAFLD, although at present, causality cannot be established. 
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Adipose tissue dysfunction secondary to iron has been increasingly implicated in NAFLD 

pathogenesis. The remainder of the thesis focuses on adipose tissue iron homeostasis 

and its effects on adipose tissue biology. A model of adipocyte-specific ferroportin (Fpn1) 

knockout (FKO) was developed in order to selectively load in into adipocytes. This 

involved an Adipoq-Cre recombinase driven floxed deletion of Fpn1 in adipocytes (Chapter 

5). This model demonstrated successful selective deletion of Fpn1, however this did not 

result in increased adipocyte iron stores. Similarly, FKO mice did not demonstrate 

evidence of adipokine dysregulation, or altered insulin sensitivity in hyperinsulinaemic-

euglycaemic clamp studies. Likewise, there was no effect of adipocyte-specific ferroportin 

deletion on liver injury. This study has demonstrated that ferroportin is not a key 

determinant of adipocyte iron homeostasis in this model. Further studies are required in 

order to establish the key factors that regulate adipocyte iron homeostasis in animal 

models and humans. 

Finally, to test the hypothesis that iron modulates adipokine release, an in vitro model of 

adipocyte iron loading using differentiated Simpson-Golabi-Behmel Syndrome (SGBS) 

pre-adipocytes was developed (Chapter 6). Using a proteomic approach of stable isotope 

labelled amino acids in cell culture (SILAC), the effects of iron on the human adipocyte 

secretome were examined. This identified 60 proteins with a greater than two-fold change 

in secretome concentration and p<0.05 with iron treatment. Of these, it was found that 

secreted apolipoprotein E (ApoE) was reduced by 58% (p=0.001) and 76% (p=0.007) by 

SILAC and western blot respectively. Intracellular ApoE levels were increased more than 

11-fold (p=0.0005) with iron treatment. These findings suggest that secretion of ApoE from 

adipocytes is inhibited by iron. This may be highly relevant with regard to NAFLD 

pathogenesis given the observation that ApoE knockout leads to steatohepatitis in mice 

fed a Western diet. Moreover, the broad range of proteins with differential secretion 

secondary to iron provides a platform for multiple future studies. 

In conclusion, this thesis describes a number of novel links between iron, insulin sensitivity 

and adipokine regulation relevant to NAFLD pathogenesis. In particular, impaired glucose 

homeostasis in a mouse model of heterozygous Hfe deletion was observed. Notably 

consistent links between HIC and multiple measures of insulin sensitivity were seen in a 

human cohort of patients with NAFLD. Finally the effect of iron on the human adipocyte 

secretome was examined, identifying profound inhibition of ApoE secretion by iron. These 

findings may offer opportunities for the development of effective new therapies for the 

treatment of NAFLD. 
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Chapter 1 : Introduction 

 

Non-alcoholic fatty liver disease (NAFLD) has emerged as a major 21st century public 

health problem, affecting around one billion people globally.[1] NAFLD increases the risk 

of death from liver failure, liver cancer and cardiac disease.[2] The epidemic of obesity and 

unhealthy lifestyles are undoubtedly major contributors to disease pathogenesis. However, 

a detailed understanding of the mechanisms leading to liver injury is lacking.[3, 4] A 

greater understanding of the pathogenesis of NAFLD will be hugely important in order to 

identify effective treatments for this disease. 

Although iron is an essential micronutrient, it is toxic in excess, such as seen in iron 

overload conditions such as hereditary haemochromatosis (HH).[5] It has been shown that 

the added insult of NAFLD in HH leads to a greater degree of liver injury.[6] However, the 

extent of adverse effects of lesser degrees of iron loading on NAFLD pathogenesis and 

disease progression are less certain. Iron has long been proposed as a co-factor in 

NAFLD pathogenesis, although a detailed understanding of the interactions between iron 

and NAFLD have remained elusive.[7, 8] Two particularly relevant aspects of the role of 

iron in NAFLD pathogenesis relate to the contribution of heterozygous HFE gene 

mutations and the emerging role of iron in the regulation of adipose tissue function.[7, 9] 

In this thesis, the effects on NAFLD pathogenesis of dysregulated iron homeostasis in 

several tissues is examined. This includes the role of dysregulated gut absorption of iron 

due to HFE and hepcidin deficiency. In addition, the relationships between hepatic iron 

and insulin resistance are studied. Finally, the effects of adipocyte iron on adipose tissue 

function are addressed in detail and form the major focus of the latter part of this thesis. 

Generally throughout this thesis, the term NAFLD is used rather than non-alcoholic 

steatohepatitis (NASH), despite steatohepatitis being the more significant lesion on liver 

histology. There are two reasons for this choice of term. Firstly, it is increasingly 

recognised that many of the insults previously referred to as “second hits” in Day and 

James’ two-hit hypothesis [10] have since been shown to drive steatosis itself, leading us 

to consider NAFLD as a disease of multiple concurrent and additive “hits”. [11] Secondly, 

much of the proposed effect of iron on NAFLD and NASH pathogenesis relates to insulin 

resistance, a near universal observation across the spectrum of NAFLD. [12] 
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Chapter 2 reports on a review of the literature regarding links between iron and NAFLD in 

humans as well as the proposed mechanisms of co-toxicity of iron and fat determined from 

animal and tissue culture models. 

One such mechanism of iron’s involvement in NAFLD pathogenesis relates to mutations in 

the HFE gene. Heterozygous p.C282Y mutations of the HFE gene are found in 

approximately 11% of Caucasian populations and are associated with increased iron 

stores.[13] Such mutations are very commonly seen in individuals with NAFLD and a role 

for these mutations in NAFLD pathogenesis has been postulated.[14] Previously it has 

been shown that homozygous deletion of Hfe in mice fed a high calorie diet leads to 

dysregulated hepatic lipid metabolism, steatohepatitis and early fibrosis, compared to 

simple steatosis alone in wild-type controls fed the same diet.[15] Chapter 3 examines a 

mouse model of Hfe heterozygous knockout fed a high calorie diet.  Effects on iron, 

glucose and lipid metabolism as well as liver injury are assessed. 

Continuing on the theme regarding the impact of modest alterations of iron homeostasis, 

Chapter 4 explores the relationships between iron and NAFLD in a cohort of human 

participants with NAFLD. This study focuses on the relationship between iron and multiple 

measures of insulin resistance, a hallmark feature of NAFLD.[2] In addition the 

relationships between hepatic iron concentration and polypeptides that undergo regulated 

secretion from adipose tissue, termed adipokines, are explored. Many adipokines have 

been shown to have significant roles in promoting insulin resistance and liver injury in 

NAFLD. [16] Serum concentrations of six such adipokines with established roles in NAFLD 

pathogenesis, namely adiponectin, leptin, resistin, retinol binding protein-4 (RBP-4), 

tumour necrosis factor-alpha (TNFα) and interleukin-6 (IL-6) are studied.[16] Adiponectin, 

leptin, resistin and RBP-4 have all been proposed to be regulated by iron, although 

substantial human data is lacking.[17-20]   

Chapters 5 and 6 continue to focus on adipose tissue as a site of iron-related 

dysregulation in NAFLD pathogenesis. It is increasingly recognised that adipose tissue 

function has an important role in metabolic health and also the pathogenesis of insulin 

resistance and NAFLD.[21] Recently it has been shown that adipocytes utilise much of the 

same iron handling apparatus as other cells such as hepcidin and transferrin receptor.[22, 

23] It has become increasingly recognised that adipose tissue rather than the liver itself, 

may be the key site at which iron mediates liver injury in NAFLD.[7] Indeed it has recently 
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been shown that mice fed a high fat diet undergo a repartitioning of iron from the liver to 

adipocytes, with a four-fold increase in adipocyte iron concentration.[24] 

In order to scrutinise the relationships between iron and adipose tissue function, in vivo 

(Chapter 5) and in vitro (Chapter 6) models of adipocyte iron overload were developed. 

Chapter 5 examines the effects of adipocyte specific deletion of the iron-exporter, 

ferroportin, using a Cre-lox mouse model (Adipoq-Cre:Fpn1fl/fl) in the setting of a dietary 

model of NASH (the fast food diet model[25]). Adipocyte specific deletion of ferroportin has 

been proposed as a method of generating adipocyte specific iron loading in mouse 

models.[17, 18] However the iron loading phenotype has not been well described and the 

hepatic effects are unknown. Also, models previously used have relied on an adipocyte 

protein-2 (AP2) Cre. AP2 has been shown to be expressed in other cell types, in particular 

macrophages and as such, the AP2-Cre: Fpn1fl/fl
 model may be regarded as insufficiently 

specific for its purpose.[26] Therefore, the more adipocyte specific Adipoq-Cre,[27] in 

which a bacterial artificial chromosome with a Cre recombinase in the promoter region of 

the adiponectin gene (Adipoq) is employed.  

In Chapter 6, differentiated human pre-adipocytes, Simpson-Golabi-Behmel Syndrome 

(SGBS) cells, are exposed to increased concentrations of iron. A proteomic approach is 

employed to describe the differential secretion of adipokines in response to iron. The 

technique of stable isotope labelled amino acids in cell culture (SILAC) has enabled a 

detailed characterisation of the human adipocyte secretome and the effects of iron upon it. 

This serves as broad platform for multiple funding studies investigating iron-related 

adipocyte dysfunction. 

In Chapter 7, a summary of the major findings from the thesis is made. The potential 

implications of these findings and future directions for research in this field are discussed 

in detail.  
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Chapter 2 : Iron and non-alcoholic fatty liver disease (Literature Review) 
 

In this literature review, the relationships between iron and NAFLD, based on data from 

tissue culture, animal models and human studies are explored. 

 

This review is published in the World Journal of Gastroenterology. 

 

Britton LJ, Subramaniam VN, Crawford DHG 

Iron and non-alcoholic fatty liver disease 

World J Gastroeneterol. 22(36): 8112-22, Sep 2016 
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Iron and non-alcoholic fatty liver disease 

 

Laurence J Britton1,2,3, V. Nathan Subramaniam3, Darrell HG Crawford1, 

1. Gallipoli Medical Research Institute, The University of Queensland, Brisbane, Australia 

2. The Princess Alexandra Hospital, Brisbane, Australia 

3. QIMR Berghofer Medical Research Institute, Brisbane, Australia  

Abstract 
 

The mechanisms that promote liver injury in non-alcoholic fatty liver disease (NAFLD) are 

yet to be thoroughly elucidated. As such, effective treatment strategies are lacking and 

novel therapeutic targets are required. Iron has been widely implicated in the pathogenesis 

of NAFLD and represents a potential target for treatment. Relationships between serum 

ferritin concentration and NAFLD are noted in a majority of studies, although serum ferritin 

is an imprecise measure of iron loading. Numerous mechanisms for a pathogenic role of 

hepatic iron in NAFLD have been demonstrated in animal and cell culture models. 

However, the human data linking hepatic iron to liver injury in NAFLD is less clear, with 

seemingly conflicting evidence, supporting either an effect of iron in hepatocytes or within 

reticulo-endothelial cells. Adipose tissue has emerged as a key site at which iron may 

have a pathogenic role in NAFLD. Evidence for this comes indirectly from studies that 

have evaluated the role of adipose tissue iron with respect to insulin resistance. Adding 

further complexity, multiple strands of evidence support an effect of NAFLD itself on iron 

metabolism. In this review, we summarize the human and basic science data that has 

evaluated the role of iron in NAFLD pathogenesis. 

Introduction 
 

The worldwide epidemic of obesity has led to a disturbing rise in the incidence of non-

alcoholic fatty liver disease (NAFLD) and its complications.[1, 28] NAFLD, regarded as the 

“hepatic manifestation of the metabolic syndrome”, is now estimated to affect one billion 

individuals worldwide.[1] Non-alcoholic steatohepatitis (NASH), the aggressive form of the 

disease, can lead to cirrhosis and liver failure.[2, 29] Indeed, NASH is predicted to soon 

become the predominant cause of advanced liver disease in the developed world [30] and 

the leading indication for liver transplantation.[29] NAFLD has also been increasingly 

recognized as an independent risk factor for the development of type II diabetes mellitus, 

cardiovascular disease and hepatocellular carcinoma, the latter of which may occur even 
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in non-cirrhotic individuals.[2, 31, 32] The factors that predispose patients to the 

development of steatohepatitis and fibrosis in NAFLD are not well understood and 

effective treatment strategies are lacking.[4] 

There is evidence that a modest degree of iron overload is associated with more advanced 

liver injury in NAFLD, although the mechanisms by which this might occur remain 

unclear.[7, 8] A syndrome of increased hepatic iron in conjunction with the metabolic 

syndrome is commonly observed and has been termed dysmetabolic iron overload 

syndrome (DIOS).[7, 33]  

To date, the majority of studies have focused mainly on the role of hepatic iron and 

mutations in the HFE gene, the gene mutated in type 1 hereditary hemochromatosis. 

Recently, however, it has become increasingly evident, that adipose tissue iron plays an 

important role in the pathogenesis of insulin resistance and therefore possibly NAFLD.[3, 

34] 

In this review, the potential involvement of iron in NAFLD pathogenesis is explored using 

the available data from human studies, as well as animal and cell culture models. In 

addition, the counterview that implicates NAFLD itself in the dysregulation of iron 

metabolism is outlined. 

Human iron homeostasis  
 

Iron is an essential nutrient required for erythropoiesis and multiple cellular metabolic 

functions.[35, 36] An excess of iron is also, however, a potent cause of cellular injury from 

oxidative stress due to the generation of reactive oxygen species by the Fenton 

reaction.[5] Under usual conditions, intracellular protection from iron-induced oxidative 

stress is facilitated by sequestration of iron within ferritin.[35]  

Total body iron homeostasis is achieved predominantly by regulation of iron release from 

duodenal enterocytes and macrophages by the hormone hepcidin.[36-38] Predominantly 

produced by hepatocytes, hepcidin binds the enterocyte basal membrane iron transporter, 

ferroportin, causing its internalization and eventual degradation, thus reducing iron release 

from duodenal enterocytes and other cells.[36, 38] Ferroportin has been shown to be 

highly expressed in enterocytes, reticuloendothelial cells, and more recently, in 

adipocytes.[17, 36] Thus, hepcidin regulates systemic iron balance by reducing intestinal 

iron absorption.[36] 
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An understanding of the regulation of hepcidin (HAMP) gene expression has come about 

from studying human subjects with various forms of hereditary hemochromatosis, and by 

analysis of gene knockout rodent models. Hepcidin is regulated by many factors, including 

erythropoiesis, iron status, intracellular oxygen tension and inflammation.[38] 

Pathologic states of iron overload often lead to saturation of serum iron transporter, 

transferrin. As a result, serum levels of toxic non-transferrin bound iron (NTBI) rise. NTBI is 

readily absorbed by tissues such as the liver and cardiac muscle.[38] Tissue iron overload 

with NTBI results in increased oxidative stress and lipid peroxidation, leading to organ 

dysfunction. The common causes of iron overload include hereditary hemochromatosis, 

iron loading anemias (such as thalassemia) and parenteral iron overload from multiple 

blood transfusions.[38] 

Insulin resistance and the pathogenesis of NAFLD 
 

It has become evident that insulin resistance is associated with a more subtle degree of 

iron overload than is seen in hereditary hemochromatosis and thalassemia.[7, 8, 34] This 

is important as insulin resistance is central to the pathogenesis of NAFLD.[2, 39] The 

presence of abdominal obesity and accompanying insulin resistance provide fertile 

conditions for the development of NAFLD. Indeed, NAFLD is often considered as the 

hepatic manifestation of insulin resistance and the metabolic syndrome.[2] Central obesity 

is associated with adipose tissue dysfunction, characterized by infiltration of adipose tissue 

with macrophages.[40] Dysfunctional adipose tissue produces adipokines that promote the 

development of insulin resistance.[34] The key sites of insulin action and resistance are 

the liver, skeletal muscle and adipose tissue.[41] In adipose tissue itself, insulin resistance 

potentiates lipolysis of triglycerides by hormone sensitive lipase.[42] This generates the 

majority of free fatty acid flux to the liver in NAFLD.[43] Insulin resistance in skeletal 

muscle leads to reduced uptake of glucose, whereas in the liver, insulin resistance 

enhances gluconeogenesis.[44] The resultant compensatory hyperinsulinemia and relative 

hyperglycemia promote hepatic de novo lipogenesis and cholesterol synthesis and 

reduced catabolism of free fatty acid by oxidation.[2] 

Increased hepatic free fatty acid flux resulting from this dysregulation of hepatic lipid 

metabolism and more importantly by adipose tissue lipolysis, appears to be central to the 

pathogenesis of steatohepatitis via direct lipotoxicity.[2, 45, 46]  A number of other 

mechanisms have been well demonstrated to be responsible for not only the development 



50 
 

of steatohepatitis, but also steatosis itself. These mechanisms include dysregulated 

adipokine production,[16, 21] abnormal bile acid signaling,[47] cytokine mediated 

effects[48], in particular as a result of increased gut cell permeability and TLR-4 receptor 

activation,[49] endoplasmic reticulum stress[50, 51] and oxidative stress[48, 52]. 

Hepatocellular injury promotes cell death and steatohepatitis through a combination of 

apoptosis and cell necrosis.[2] These mechanisms also contribute to hepatic stellate cell 

activation and resultant development of hepatic fibrosis.[53] 

Iron and insulin resistance 
 

The association between hyperferritinemia, insulin resistance and type II diabetes is 

compelling. There is an increased prevalence of type II diabetes associated with two 

common iron overload conditions, HFE-hereditary hemochromatosis (HH) and β-

thalassemia major.[34]  HH can lead to β-cell pancreatic loss and type I diabetes,  but 

whether HH causes type II diabetes by unmasking insulin resistance through pancreatic β-

cell loss or by causing insulin resistance itself remains controversial.[34] Animal data 

suggest that insulin sensitivity is enhanced in HH, but it has been difficult to tease out the 

relative contributions of β-cell loss and insulin resistance in human studies.[34, 54] The 

case of β-thalassemia major is more clear, with evidence suggesting that both β-cell loss 

and insulin resistance are at play.[34] 

In those who have neither hereditary hemochromatosis nor another cause of overt iron 

overload such as thalassemia, the evidence for a pathogenic role of iron is also strong. In 

the National Health and Nutritional Education Survey (NHANES), 9486 US adults were 

studied.[55] The odds ratios for developing diabetes in those with elevated serum ferritin 

levels were high at 3.61 for women and 4.94 for men.[55] A further analysis of the 

NHANES cohort revealed that even after accounting for other factors such as age, race, 

alcohol consumption and C-reactive protein (CRP) levels, elevated serum ferritin 

concentration still accounted for a two-fold increase in the risk of the metabolic 

syndrome.[55]  The risk of diabetes itself, has been shown to be strongly linked to serum 

ferritin concentration in healthy women, even within the normal range of ferritin.[56] In 

2012, the European Prospective Investigation in Cancer and Nutrition (EPIC)-Potsdam 

study followed 27,548 European adults for 7 years.[57] In this time, 849 subjects 

developed type II diabetes. Serum ferritin concentration in the highest vs lowest quintile 

had a relative risk (RR) of 1.73 for the development of diabetes. This observation was 

made after adjusting for multiple variables including age, sex, body mass index, waist 
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circumference, sports activity, education, occupational activity, alcohol, liver function test 

parameters, high sensitivity CRP (hsCRP), adiponectin, high density lipoprotein (HDL) and 

serum triglyceride concentration.[57]  

A recent review of 43 studies further supported these findings.[58] In this meta-analysis, 

the cohorts with the highest and lowest quartile of serum ferritin concentration were 

compared. The multivariable adjusted RR for the presence of diabetes was 1.91. This 

finding was consistent after including only studies that adjusted for inflammation (mostly 

hsCRP), RR 1.67. This related to a serum ferritin that was 43.54ng/ml higher in type II 

diabetics compared to controls. Studies assessing the relationship between type II 

diabetes and transferrin saturation have yielded conflicting results.[58-60] 

The persistence of association between serum ferritin concentration and type II diabetes 

after correction for hsCRP implies that inflammation alone does not entirely explain the 

association between hyperferritinemia and diabetes. However, it might be argued that 

even hsCRP may not reflect subtle degrees of inflammation as strongly as serum ferritin 

concentration.  

Serum ferritin concentration and NAFLD 
 

The association between hyperferritinemia and histologic markers of liver injury in NAFLD 

is reasonably strong. In 2004, Bugienesi et al. found that serum ferritin concentration is not 

associated with hepatic iron concentration in NAFLD, but is a marker of severe histologic 

damage.[61] Kowdley et al. demonstrated in the large NASH Clinical Research Network 

(CRN) cohort of 628 patients that a serum ferritin concentration greater than 1.5 times the 

upper limit of normal was independently associated with advanced fibrosis and increased 

NAFLD activity score.[62] Sumida et al., have demonstrated the utility of incorporating 

serum ferritin into a clinical scoring system to predict steatohepatitis in Japanese patients 

with NAFLD.[63] 

However, other studies have not found such a clear association.[64, 65] Notably, Valenti et 

al. showed in an Italian cohort of 587 patients with NAFLD that serum ferritin concentration 

did not predict fibrosis stage >1, although the proportion of patients with fibrosis stage >1 

in this cohort was relatively small.[64] As would be expected, serum ferritin concentration 

was higher in the patients who had hepatic iron staining than those who did not, but those 

with non-parenchymal iron had much higher ferritin values (606μg/L) than those with 

hepatocellular iron (serum ferritin 354μg/L) p<0.0001. This might suggest that macrophage 
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iron can cause hyperferritinemia either by direct release of ferritin or cytokine-mediated 

stimulation of ferritin release by other cells. An earlier study by Chitturi et al. of 93 patients 

with NASH, 33% of whom had advanced fibrosis, found that serum ferritin concentration 

was not an independent predictor of advanced fibrosis.[66]  

In a large prospective population-based study from South Korea, 2410 healthy men aged 

30 to 59 without sonographic evidence of steatosis were followed for 7545.9 person 

years.[67] Of these, 586 (24.3%) patients developed ultrasongraphically detectable fatty 

liver. Baseline serum ferritin concentration was found to be a strong predictor of steatosis. 

This evidence is notable as it demonstrates an association early in the disease suggesting 

that the process that elevates serum ferritin concentration is contributing to NAFLD 

pathogenesis very early in the disease and pre-dates the development of steatosis. This 

implies that the ferritin association with NAFLD is not simply a result of NAFLD itself 

causing hyperferritinemia. Moreover, the results might tend to suggest that the link 

between hyperferritinemia and NAFLD could be explained by insulin resistance. 

The strengths of these studies lie in the large numbers of individuals studied. However, 

serum ferritin concentration is an imprecise surrogate for body iron stores and its 

associations with both NAFLD and, type II diabetes are clearly not enough to attribute 

causality with respect to iron in either of these conditions. 

Hepatic iron and NAFLD 
 

The role of hepatic iron in NAFLD pathogenesis has largely focused on the generation of 

oxidative stress by iron. Given that oxidative stress is an established key component of 

NASH pathogenesis, [48] a role for iron mediating liver injury in NAFLD via this 

mechanism has been well studied. In NASH, oxidative stress leads to cell death via 

depletion of ATP, NAD and glutathione, and by direct damage to DNA, lipids and proteins 

within hepatocytes.[48] Furthermore, oxidative stress leads to an increase in the 

production of pro-inflammatory cytokines and a fibrogenic response.[48] Not only does 

oxidative stress potentiate steatohepatitis, characterized by inflammation and cell death, it 

can also increase steatosis by preventing the secretion of very low density lipoprotein 

(VLDL) by causing increased degradation of apolipoprotein B100 (ApoB100).[68] In 

cultured primary rodent hepatocytes, the iron chelator desferrioxamine was able to restore 

ApoB100 and enhance VLDL export.[68]  
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Reduced oxidative stress has been observed in the livers of rats fed an iron-deficient diet 

and after phlebotomy.[69] In a series of liver biopsies from patients with NAFLD, increased 

hepatic iron stores were found to be associated with increased lipid peroxidation.[70] In 

humans, iron overload has been shown to correlate with hepatic immunohistochemical 

staining for 7,8-dihydro-8-oxo-2’ deoxyguanosine (8-oxodG), a product of oxidative 

damage to DNA.[71] In this study, staining for 8-oxodG was significantly reduced with 

venesection.[71] Patients with NASH have been shown to have elevated levels of serum 

thioredoxin, a marker of oxidative stress, which declined following venesection.[72] In 

cultured AML-12 hepatocytes iron generated oxidative stress and led to impaired insulin 

signaling.[73] 

Iron also appears to have a direct role in the activation of hepatic macrophages and 

hepatic stellate cells. In humans with NAFLD, reticulo-endothelial iron has been shown to 

be associated with apoptosis, indicated by increased serum cytokeratin-18 (CK-18) 

fragments and increased hepatic TUNEL staining of liver sections.[74] In vitro, iron 

activates inflammatory signaling via hepatic macrophages.[75] Recently, dietary iron 

loading in leptin-receptor deficient mice was found to lead to inflammasome and immune 

cell activation with hepatocellular ballooning.[76] Furthermore, ferritin treatment of rat 

hepatic stellate cells has been shown to lead to a pro-inflammatory cascade by nuclear 

factor kappaB signaling.[77]  

Iron may also contribute to liver injury in NAFLD by generating endoplasmic reticulum 

stress.[50, 51] In a mouse model of dietary iron overload and NAFLD, iron induced an 

unfolded protein response and endoplasmic reticulum stress.[78] Additionally, hepatic iron 

loading in mice up-regulates cholesterol biosynthesis pathways and this has been 

proposed as an additional mechanism of iron-induced liver injury in NASH.[79] The 

proposed mechanisms relating to hepatic iron in NAFLD pathogenesis are summarized in 

Table 2.1. 
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Table 2.1 Proposed mechanisms for the involvement of iron in NAFLD pathogenesis 
 

Site Mechanism 

Hepatic iron Oxidative Stress[32, 53-57] 

 Reduced VLDL export[52] 

 Macrophage activation[58-60] 

 Stellate cell activation[61] 

 Endoplasmic reticulum stress[62] 

 Increased cholesterol synthesis[63] 

Adipose tissue iron Reduced adiponectin[19,75] 

 Reduced leptin[77] 

 Increased resistin[76] 

 Increased lipolysis[78,79] 

 

A number of studies have looked at the relationship between hepatic iron concentration 

(HIC) and liver injury in NAFLD. George et al. showed that HIC was associated with 

increased fibrosis in 51 patients with NASH.[80] Three subsequent and similar studies, 

however, have failed to reproduce these results.[61, 81, 82] Two much larger studies have 

looked at the association between hepatic iron (Perls’) staining and liver histology in 

NAFLD with conflicting results. In a study of 587 Italian patients with NAFLD, Valenti et al. 

found that hepatocellular rather than reticulo-endothelial iron was associated with 1.7 fold 

increased risk of significant fibrosis compared to those without iron staining.[64] Reticulo-

endothelial iron was found to have a trend towards an association with a lower risk of 

significant fibrosis. Nelson et al., however, found seemingly contradictory results, with 

reticulo-endothelial iron being associated with greater risk of advanced fibrosis, lobular 

inflammation and hepatocellular ballooning in the US cohort of 849 patients enrolled in the 

NASH Clinical Research Network (CRN) database.[83] In this study, the mean NAFLD 

Activity Score (NAS) [84] was 4.8 in the reticulo-endothelial iron staining group compared 

to 4.0 in the hepatocellular iron staining group. The exact reasons for this discrepancy 

between these two large well-designed studies is unclear, although it is noted that there 

were some differences between the Italian and US cohorts including the frequency of 

steatohepatitis and beta-globin mutations.[7]  
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One might argue, however, that the sum of the human data indicates that if hepatic iron 

does promote liver injury in NAFLD, then its effect is likely to be relatively small. 

Adipose tissue iron and insulin resistance 
 

In recent years, there has been increasing recognition of the role of adipose tissue 

dysfunction in the development of insulin resistance and NAFLD.[21] Adipose tissue is 

undoubtedly a significant endocrine organ.[85] It is comprised of adipocytes (fat cells), a 

mixture of cells categorized as the stromal-vascular fraction including reticuloendothelial 

cells, predominantly macrophages.[85] Central obesity and the metabolic syndrome are 

characterized by infiltration of bone marrow-derived macrophages into adipose tissue.[40, 

86] Macrophage accumulation in adipose tissue is associated with obesity and the 

development of NAFLD.[21, 40]  A loss of regulatory T-cells and an increase in CD8+ 

effector T-cells characterizes visceral adipose tissue in insulin resistance.[21, 87, 88] The 

net effect of this adipose tissue infiltration with immune cells is a state of systemic low 

grade inflammation that is mediated by a number of adipose tissue cytokines, termed 

adipokines.[85] Ectopic fat, such as omental (visceral) and epicardial or mediastinal fat, is 

dysfunctional tissue that is more likely to undergo inflammation.[89] In the case of visceral 

fat, this inflammation is particularly problematic with regards to liver physiology due to the 

direct transfer of adipokines to the liver via the portal vein.[16]  

Adipokines are polypeptides that are expressed significantly in adipose tissue in a 

regulated manner.[16] Of these, a number of important macrophage derived adipokines 

appear to play an important role in the development of NAFLD. Both tumor necrosis factor 

alpha (TNFα) and interleukin-6 (IL-6) have a pro-inflammatory role that may contribute 

directly to liver pathology in an endocrine fashion, and also via paracrine mechanisms that 

influence the production of other adipokines from adipocytes.[21] Adipokines produced by 

adipocytes which have been shown to influence NAFLD pathogenesis include adiponectin, 

leptin, resistin, suppressor of cytokine signalling-3 (SOCS-3) and secreted frizzled related 

protein 5 (SFRP5).[16, 21] 

Adipose tissue has been proposed as a site at which iron may have a major pathogenic 

role in NASH.[7] Unfortunately, to our knowledge, direct human data reporting iron 

concentrations in visceral adipose tissue and its significance in disease are lacking and 

this area represents both a target for future research and a technical challenge. 
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Evidence for the role of adipose tissue iron in NAFLD pathogenesis mainly comes 

indirectly from the association between adipocyte iron and insulin resistance. In 2012, 

Gabrielsen et al. demonstrated that adipocyte iron reduced adiponectin gene expression, 

serum adiponectin levels and glucose tolerance in an adipocyte-specific Ferroportin 

knockout mouse model.[17] Using the novel Ap2-Cre:Fpnfl/fl model they were able to 

selectively load iron into adipocytes. The model was developed following the observation 

that adipocytes are high expressers of ferroportin.[17] Using cultured pre-adipocytes (3T3-

L1 cells) and chromatin immunoprecipitation (ChIP) analysis, iron was shown to alter 

acetylation and binding of the forkhead transcription factor Foxo1 to adiponectin gene 

promoter binding sites. In a human arm of the same study, they were able to demonstrate 

an inverse correlation between serum ferritin concentration and adiponectin that was 

independent of inflammation. This observation has subsequently been replicated in 492 

Dutch individuals with risk factors for type II diabetes.[90] Moreover, in obese patients 

undergoing bariatric surgery, two gene expression markers of increased adipocyte iron 

loading: increased hepcidin gene (HAMP) mRNA expression and decreased transferrin 

receptor 1 (Tfr1) mRNA expression were associated with reduced quantities of Adipoq 

(adiponectin gene) mRNA.[91]  

Iron-mediated dysregulation of two other adipokines has been demonstrated in rodent 

models. Dongiovanni et al. have shown that dietary iron loading in mice leads to increased 

expression of resistin via SOCS-3 which are mediators of insulin resistance.[19] Recently, 

data from mouse and 3T3-L1 cell culture models found that iron down-regulates the 

expression of the appetite-suppressing adipokine, leptin – a hormone strongly implicated 

in NAFLD pathogenesis.[16, 18]  Intriguingly, this may help explain the symptom of 

anorexia in iron deficiency, although the significance of these findings in NAFLD is 

uncertain. 

Adipose tissue iron has been shown to directly enhance lipolysis in isolated rat adipocytes 

and cultured 3T3-L1 cells.[92, 93] As adipose tissue is the predominant source of free fatty 

acid flux to the liver [43], this is potentially a very important mechanism of adipose tissue 

iron action in NAFLD, although these findings are yet to be demonstrated in animal models 

or humans. Potential mechanisms relating to adipose tissue iron in NAFLD pathogenesis 

are summarized in Table 2.1. 

In summary, iron has been increasingly recognized as a regulator of adipose tissue 

function. Evidence supports a role for iron in the regulation of adipose tissue inflammation, 
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adipokine regulation and adipose tissue lipolysis. At present, most of the evidence 

supports a role for adipose tissue iron in the pathogenesis of insulin resistance and type II 

diabetes, although clearly these mechanisms may be highly relevant in NAFLD.  

Iron-related genetic polymorphisms in NAFLD pathogenesis 
 

The most common inherited disorder affecting the hepcidin-ferroportin axis is type I 

hereditary hemochromatosis.[5, 38] This usually results from homozygous p.C282Y 

mutation of HFE (HFE-hemochromatosis).[94] The additional insult of NAFLD acts as a co-

factor for the development of liver injury in C282Y homozygotes with hereditary 

hemochromatosis.[6] In non-hemochromatotics, the broader significance of HFE gene 

mutations as co-factors in the pathogenesis of NAFLD has received intense interest in 

recent years. The two most significant HFE mutations in Caucasian populations are the 

p.C282Y and p.H63D mutations.[38]  

Heterozygosity for the C282Y mutation is found in approximately 10-11% of individuals in 

Caucasian populations.[13, 95] C282Y heterozygosity is associated with a mild increase in 

serum iron markers, but not with overt hemochromatosis.[13]  

Many studies have looked at the association between HFE gene mutations and the 

incidence of NAFLD, but with conflicting results. These studies may have been limited by 

inadequate statistical power and heterogeneity of the cohorts. In 2011, Hernaez et al. 

published the results of a meta-analysis of 13 case-control studies specifically aimed at 

determining the association between HFE gene mutations and NAFLD.[96] In contrast to a 

previous meta-analysis by Ellervic et al., [14] they found no association between the 

C282Y/C282Y genotype and NAFLD. Similarly the presence of neither the C282Y 

mutation nor the H63D mutation resulted in an increased risk of NAFLD in Caucasians. In 

a sub-analysis of three studies of non-Caucasians, an association was found between the 

presence of the H63D mutation and the presence of NAFLD.[96]  

A limitation of the meta-analysis, as noted by its authors, is that it was not able to 

determine whether HFE gene mutations might have a disease modifying role in subjects 

after they have developed NAFLD.[96] This study appears to show that HFE gene 

mutations are generally no more common in subjects with NAFLD than in those without, 

however, the investigators were unable to determine whether those patients with NAFLD 

and HFE gene mutations are more likely to develop steatohepatitis and progressive liver 

injury than those without mutations.  
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The issue concerning the effect of heterozygous mutations in progression to NASH was 

highlighted by an analysis of HFE mutations within the NASH CRN cohort.[97] This is a 

well-defined cohort of patients with biopsy proven NAFLD. Subjects with the H63D 

mutation had higher steatosis grades and NAS than their wild-type controls. However, 

those NAFLD patients with C282Y mutations had lower rates of hepatocyte ballooning and 

steatohepatitis. 

Our group has previously shown that mice with homozygous knockout of the Hfe gene 

develop severe steatosis, steatohepatitis and early fibrosis when fed a high fat diet, 

whereas wild-type mice develop mild steatosis and no steatohepatitis or fibrosis when fed 

the same diet.[15] Hfe null mice had only modest increases in HIC, and it was proposed 

that the increased histologic injury seen in these animals may have been due to the lack of 

HFE protein rather than iron overload per se. Hfe null mice demonstrated dysregulated 

hepatic lipid metabolism with increased transcription of genes associated with de novo 

lipogenesis and reduced transcription of those associated with fatty acid oxidation.[15] 

A number of other non-HFE iron-loading polymorphisms have been proposed as 

modulators of NAFLD pathogenesis.[7, 98] Of these, the A736V polymorphism of the 

Trans-membrane protease serine-6 (TMPRSS6) gene has been studied in patients with 

NAFLD. The TMPRSS6 gene encodes for matriptase-2, an enzyme responsible for 

hemojuvelin cleavage that inhibits the bone morphogenetic protein-6 (BMP-6) pathway, 

thus reducing hepcidin expression and increasing duodenal iron absorption.[38, 98] Of 216 

Italian patients with NAFLD, 38% had the AA genotype, 47% AV and, 15% VV.[98] The VV 

genotype is associated with increased hepcidin expression and reduced iron loading and 

in this study was associated with a trend (p=0.05) towards a reduction in hepatocyte 

ballooning.[98]  

In summary, human and animal model data support a role for a co-toxic liver injury in the 

setting of hereditary hemochromatosis and NAFLD. Other more mild iron loading 

phenotypes such as heterozygous HFE gene mutations and polymorphisms of TMPRSS6 

may have disease modifying roles in NAFLD, although their effect is likely to be small. 

Clinical trials of iron reduction therapy 
 

Although associations of modest iron overload with NAFLD and diabetes appear 

reasonably well established, causality is difficult to determine using these studies alone. 
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The most useful information with which to more directly assess causality comes from 

human studies that have assessed the response to iron removal by venesection. 

Venesection has been shown to improve glucose tolerance in healthy individuals and 

improve insulin sensitivity in type II diabetics with a high serum ferritin concentration.[99, 

100] Moreover, in patients with the metabolic syndrome, venesection has been shown to 

improve metabolic syndrome parameters, including reduced blood pressure, blood 

glucose, glycosylated hemoglobin (HbA1C) and low-density lipoprotein/high density 

lipoprotein (LDL/HDL) ratio.[101] In patients with NAFLD and carbohydrate intolerance, 

venesection to near iron deficiency (decrease in serum ferritin from 299 ±41μg/L to 

15±1μg/L) not only improved insulin sensitivity, as measured by fasting glucose, insulin 

and homeostatic model assessment-insulin resistance (HOMA-IR) score, but also 

improved serum alanine aminotransferase levels from 61 ± 5U/L to 32 ± 2U/L.[102]  

Two randomized controlled trials investigating venesection efficacy in NAFLD have 

recently been published. In a study of 38 Italian patients with NAFLD and 

hyperferritinemia, participants were randomized to venesection versus no venesection with 

liver biopsy before and after treatment.[103] Of the 38 enrolled participants, 21 underwent 

liver biopsy at the end of treatment. Despite the small numbers, histological improvement, 

defined by an improvement in NAS, was seen in 8 of 12 participants in the venesection 

group compared to 2 of 9 participants in the control group (p=0.04).[103]  

The largest randomized study of venesection in NAFLD to date involved 74 Australian 

participants with NAFLD.[104] These included patients with sonographically detected 

NAFLD and a wide range of serum ferritin concentration, including many within the normal 

range. Non-invasive assessment was performed to assess response to randomized 

therapy of either venesection with lifestyle advice versus lifestyle advice alone. There was 

no observed effect of venesection on hepatic steatosis determined by magnetic resonance 

imaging, serum ALT or CK-18 fragments. Somewhat surprisingly, there was also no effect 

on static and dynamic measures of glucose homeostasis including the HOMA-IR score 

and insulin sensitivity index.[104] 

Overall, although there are promising results from small studies, venesection cannot 

currently be recommended as a suitable therapy for the majority of patients with 

NAFLD.[105] However, whether there are sub-groups of non-hemochromatotic NAFLD 

patients with increased iron that would benefit from venesection, remains to be determined 

by further studies. 
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Iron metabolism in NAFLD 
 

So far, we have discussed the effect of iron on the pathogenesis of NAFLD and insulin 

resistance. It is also necessary to consider to what extent NAFLD and associated 

conditions, such as insulin resistance and obesity, might themselves mediate iron 

metabolism. 

Serum hepcidin levels are typically elevated in individuals with NASH.[106] As this in itself 

fails to explain iron loading in NASH, one might consider that dysregulated iron 

metabolism occurs in NASH independently of hepcidin. In this regard, Transferrin receptor-

1 (Tfr1) has been shown to be upregulated as a consequence of a high fat diet in mice 

which may lead to hepatocellular uptake in NAFLD despite already increased 

hepatocellular iron.[107] Also, divalent metal transporter 1 (DMT-1), which is responsible 

for import of iron from the duodenal lumen into enterocytes is up-regulated in patients with 

NASH, despite increased serum hepcidin.[108] Another intriguing finding is that increased 

red cell fragility in response to a high fat diet in rabbits leads to increased 

erythrophagocytosis.[109] This may explain increases in hepatic reticuloendothelial iron 

that have been observed in some NASH cohorts.[83] 

It seems likely that elevated hepcidin in NASH is either a reflection of hepatocellular 

inflammation or simply that increased iron, which induces hepcidin, pre-dates the 

development of NASH. Indeed, hepcidin expression appears to be directly enhanced by 

insulin and down-regulated in the setting of insulin resistance, thus indicting a possible 

mechanism for iron loading as an early event in the pathogenesis of NAFLD and type II 

diabetes.[110] Furthermore, it has been observed that hepcidin is expressed in white 

adipose tissue and is increased in obesity.[23] Although the contribution of adipose tissue-

derived hepcidin to the serum hepcidin pool is uncertain, this is another potential factor 

that may explain increased serum hepcidin in NASH. Further complexity in these 

relationships arises when one considers that iron deficiency has been shown to be 

associated with obesity and in women with obesity and NAFLD.[111, 112] Together, these 

findings suggest that the interaction between iron and lipid metabolism is multi-faceted. It 

seems that ‘just enough’ but ‘not too much’ iron may be critical in preventing dysfunctional 

lipid metabolism. 

If one accepts a causal role for iron in NASH pathogenesis, then variations in dietary iron 

may explain much of the spectrum of iron loading in NASH. Although there is no specific 

evidence relating iron intake to NASH pathogenesis in humans, increased dietary iron, 
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particularly from red meat, seems to predispose individuals to the development of insulin 

resistance and type II diabetes.[113-115]  

Conclusions 
 

In summary, there is considerable evidence that links increased iron stores with insulin 

resistance and NAFLD. This includes a number of studies that have identified serum 

ferritin concentration as a predictor of liver injury. Hepatic iron itself is attractive culprit for 

liver injury, although the cellular location of iron within the liver may vary between 

genetically distinct populations. Increasingly, adipose tissue iron has been linked with 

adipose tissue dysfunction, including the dysregulation of adipokines, enhanced adipose 

tissue lipolysis and adipose tissue inflammation. These are plausible candidate 

mechanisms that may link adipose tissue iron to liver injury. However, assessment of 

adipose tissue iron concentrations in individuals with well characterized NAFLD remains a 

goal for future studies. 

Iron-related genetic polymorphisms, such as those of the HFE gene, may contribute to 

NAFLD pathogenesis, although it would appear that, other than for individuals with 

hereditary hemochromatosis, the effect of these polymorphisms, is likely to be small. The 

complexity of these relationships between iron and NAFLD is further increased when one 

considers the possibility that NAFLD itself is likely to have a number of effects on iron 

metabolism. 

Finally, venesection studies have offered a unique opportunity with which to assess 

causality of iron loading in the pathogenesis of NAFLD. The available data suggest that 

venesection is unsuitable as a general treatment for all patients with NAFLD. Therefore, 

the key for future human studies will be to determine whether a subset of patients with 

NAFLD can be identified that might still benefit from therapeutic manipulation of iron 

homeostasis. 
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Chapter 3 : Heterozygous Hfe gene deletion leads to impaired glucose 
homeostasis but not liver injury in mice fed a high calorie diet 
 

As described in Chapter 2, numerous human studies have evaluated the links between 

HFE gene mutations and NAFLD. It has previously been shown that homozygous deletion 

of Hfe in mice leads to a far greater severity of liver injury than wild-type mice when 

exposed to a high calorie diet.[15] The effects of heterozygous Hfe deletion, analogous to 

commonly observed heterozygous mutations have not been well studied in animal models 

of NAFLD. In this chapter, the effects of heterozygous Hfe gene deletion in a dietary 

mouse model of NAFLD are studied. 

This chapter is published in Physiological Reports. 
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Abstract 
 

Background & Aims: Heterozygous mutations of the HFE gene have been proposed as 

co-factors in the development and progression of non-alcoholic fatty liver disease 

(NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated 

hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD. 

We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver 

injury when mice are exposed to a high calorie diet (HCD). Methods: Eight-week-old wild 

type and Hfe+/- mice received eight weeks of a control diet or HCD. Liver histology and 

pathways of lipid and iron metabolism were analyzed. Results: Liver histology 

demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis 

and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype.  Hepatic 

iron concentration (HIC) was increased in Hfe+/- mice of both dietary groups. HCD resulted 

in a hepcidin-independent reduction in HIC. Hfe+/- mice demonstrated raised fasting serum 

glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin 

concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, 

Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by 

genotype. Conclusions: Heterozygous Hfe gene deletion is associated with impaired iron 
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and glucose metabolism.  However, unlike homozygous Hfe deletion, heterozygous gene 

deletion did not affect lipid metabolism pathways or liver injury in this model. 

Background 
 

Non-alcoholic fatty liver disease (NAFLD) is increasingly common in the developed and 

developing world, affecting around 30% of many adult populations [116, 117]. The 

advanced form of the disease, non-alcoholic steatohepatitis (NASH) can lead to life-

threatening complications including liver failure and liver cancer [2]. At present, effective 

treatment strategies to halt or reverse the natural history of NASH are lacking. Co-factors 

such as type II diabetes mellitus and iron overload have been implicated in NASH 

pathogenesis and represent readily treatable therapeutic targets [3, 7]. A greater 

understanding of the mechanisms by which such co-factors promote NASH disease 

progression is essential in order to develop effective treatments. 

Iron overload due to homozygous p.C282Y mutation of HFE is responsible for the majority 

of cases of hereditary hemochromatosis seen worldwide [118]. Heterozygous p.C282Y 

mutations are found in approximately 11% of Caucasian populations and are associated 

with increased iron stores, but not with liver disease in the absence of an additional co-

factor [13]. In a large meta-analysis, HFE gene mutations have been shown to convey an 

increased risk of non-alcoholic steatohepatitis [14]. Amongst individuals with NAFLD, the 

presence of the heterozygous p.H63D mutation of HFE has been shown to be associated 

with more advanced histological injury as assessed by the NAFLD activity score [97].  

Liver injury in both hemochromatosis and NASH is characterized by the presence of 

oxidative stress [48, 118]. Insulin resistance, itself associated with oxidative stress, is 

commonly observed both in individuals with NASH and also in those with 

hemochromatosis [3, 34]. Given the prevalence of HFE gene mutations and shared 

pathogenic mechanisms with NASH, they have received intense interest in recent years as 

potential co-factors in NAFLD disease progression.  

Previous work from our group has demonstrated that mice with homozygous Hfe deletion 

which are fed a high calorie diet (HCD) develop steatohepatitis and early fibrosis [15]. This 

effect of diet is not seen in wild type controls which develop only simple steatosis. In this 

model, Hfe null mice demonstrated up-regulation of gene expression of de novo 

lipogenesis pathways and down-regulation of fatty acid oxidation pathways. This 

imbalance of fatty acid synthesis and oxidation, may explain the liver injury seen in these 
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Hfe null mice. However, the mechanisms by which Hfe deletion might dysregulate hepatic 

lipid metabolism remain to be defined.  

These findings led us to consider whether a partial deficiency of functional HFE, as seen in 

those with heterozygous C282Y and H63D mutations, might be sufficient to dysregulate 

hepatic lipid metabolism and promote liver injury in NAFLD. In this paper, we sought to 

explore the mechanisms of interaction between heterozygous HFE gene mutations and 

non-alcoholic fatty liver disease. We hypothesized that heterozygous Hfe deletion 

promotes dysregulated hepatic lipid metabolism as seen in the homozygous model. To 

test this hypothesis, we used a high calorie diet model of NAFLD in mice with and without 

heterozygous deletion of Hfe. 

Methods 
 

Experimental Animals: Eight-week-old male C57BL6/J Hfe+/- mice (bred at the QIMR 

Berghofer Medical Research Institute, Brisbane, Australia) and wild-type (WT) littermate 

controls were assigned to receive a control diet (CD) or a high calorie (40.5% sucrose, 

23.5% fat, 0.19% cholesterol by weight) diet (HCD), for eight weeks (n=10 per group). The 

constituents of these diets are summarized in Table 3.1. Both diets contained 1.3μmol/g 

iron. The high calorie diet is analogous to a ‘Western’ style diet, containing a high content 

of fat, simple carbohydrates and cholesterol [15]. Both diets were supplied by Specialty 

Feeds, Glen Forrest, Western Australia. All animals were cared for in accordance with the 

NHMRC code for the care and use of animals for scientific purposes and with approval of 

the Animal Ethics Committee of the QIMR Berghofer Medical Research Institute. Mice 

were housed in a temperature controlled environment (23°C) with a 12:12 hour light: dark 

cycle. Mice had ad libitum access to diet and water. 
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Table 3.1: Major components of experimental diets 
 

Dietary Component 

 

Control Diet (CD) High Calorie Diet (HCD) 

Protein (% weight) 19.4% 19.4% 

Total fat (% weight) 7.0% 23.0% 

Total carbohydrate (% weight) 61.7% 50% 

Digestible energy (MJ/kg) 16.1 20 

Cholesterol (% weight) 0% 0.19% 

Casein (acid) (g/kg) 200 200 

Sucrose (g/kg) 100 405 

Canola oil (g/kg) 70 50 

Cellulose (g/kg) 50 50 

Wheat starch (g/kg) 404 50 

Dextrinized starch (g/kg) 132 0 

Cocoa butter (g/kg) 0 50 

Hydrogenated vegetable oil (g/kg) 0 131 

 

Sixteen-week-old mice were sacrificed by general anesthesia with intraperitoneal injection 

of ketamine and xylazine, following a five hour fast. Blood was collected by cardiac 

puncture and serum was stored at -80°C. Livers were excised, and pieces of tissue were 

either dried at 100°C for 72 hours for hepatic iron concentration determination, fixed in 

formalin for histology or snap frozen in liquid nitrogen and stored at -80°C. Small bowel 

enterocytes were collected as previously described [119, 120]. In brief, 10 cm sections of 

proximal small bowel were cut longitudinally then washed in ice cold phosphate buffered 

saline (PBS). Samples were then gently rotated for 30 minutes at 4oC in 1.5mM 

ethylenediaminetetraacetic acid (EDTA) in PBS. The gut tissue was removed and the 

remaining sample containing enterocytes was centrifuged at 500 x g to pellet the 

enterocytes. 

Histological assessment: Formalin fixed samples were embedded in paraffin. Sections 

were stained with hematoxylin and eosin (H&E) for assessment of liver injury. Sirius Red 

staining was used to detect the presence of hepatic fibrosis. Histological scoring was 

performed by an expert histopathologist blinded to the study groups according to criteria 

described by Kleiner et al [84].  
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Hepatic iron concentration: Oven dried liver samples were weighing 4-9mg were added 

to 300μL of concentrated nitric acid. Duplicate samples for each liver were then digested in 

a heated sand bath. Chromagen reagent was prepared (0.1% banthophenanthroline 

sulphate, 1% mercaptoacetic acid). One part chromagen reagent was added to five parts 

saturated sodium acetate to make working chromagen reagent immediately prior to use. 

When fully digested, the volume of each sample was determined by pipette and 25μL was 

added to 125μL working chromagen reagent. Absorbance was measured at 540nm on a 

plate reader, Tecan infinite F200, Tecan, Switzerland. The iron concentration by dry weight 

was determined with reference to an iron standard (Iron standard for AAS, Sigma, St. 

Louis, USA).  

Serum analysis: Serum alanine aminotransferase (ALT) was measured on a Beckman 

(DxC800) General Chemistry Automated Analyzer (Beckman Coulter, Fullerton, USA). 

Serum glucose and insulin were measured on a Cobas Integra 400 Chemistry Automated 

Analyzer (Roche Diagnostics, Basel, Switzerland).  

RNA extraction and real-time quantitative PCR (RT-qPCR): RNA was extracted from 

tissue homogenates using QIAZOL reagent (Qiagen, Hilden, Germany). After treatment 

with deoxyribonuclease 1, cDNA was synthesized from 1µg RNA, using superscript III 

reverse transcriptase (Invitrogen, Mulgrave, Australia). RT-qPCR was performed in a ViiA 

7 real-time PCR machine (Invitrogen) with a Quantifast SYBR Green master mix (Qiagen) 

and thermal cycling as follows: 95⁰C for 5 minutes then 40 cycles at 95⁰C for 10 seconds 

followed by 60⁰C for 30 seconds prior to a melt curve analysis for validation. Relative 

mRNA expression was determined by calibration of Ct values to a standard curve of 

dilutions of a pooled mix of cDNA samples. Expression was then normalized to geometric 

mean of three reference genes Glyceraldehyde 3-phosphate dehydrogenase (Gapdh), 

Basic transcription factor-3 (Btf3) and Beta-2 microglobulin (B2-mg). Primer sequences 

that were used are shown in table 3.2. 
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Table 3.2:  RT-qPCR primer sequences (5’ to 3’)  
 

 Forward primer Reverse primer 

Hamp1 TTGCGATACCAATGCAGAAG GGATGTGGCTCTAGGCTATGTT 

Dmt1 CCAGCCAGTAAGTTCAAGGATC GCGTAGCAGCTGATCTGGG 

Hephaestin CCGACCTTACACCATTCACC GGACAGAATCATCCGCTTTC 

Fas TACCAAGCCAAGCACATTCG TGGCTTCGGCATGAGA 

AdipoR2 TACACACAGAGACGGGCAAC TGGCTCCCAAGAAGAACAAG 

Pparα CATGTGAAGGCTGTAAGGGCTT TCTTGCAGCTCCGATCACACT 

Cpt1 AGACCGTGAGGAACTCAAACCTA TGAAGAGTCGCTCCCACT 

Gapdh TCCTGCACCACCAACTGCTTAGC GCCTGCTTCACCACCTTCTTGAT 

Btf3 TGGCAGCAAACACCTTCACC AGCTTCAGCCAGTCTCCTTAAAC 

B2-mg CTGATACATACGCCTGCAGAGTTAA ATGAATCTTCAGAGCATCATGAT 

 

Western blotting: Serum adiponectin levels were determined by western blotting. 

Samples of 1:1000 serum (5μL) were electrophoresed in 2% Agarose (in Tris-Glycine) gels 

(Lonza, Basel, Switzerland) at 70V for 60 minutes. Protein levels of phosphoAKT (pAKT) 

and sterol regulatory element binding protein-1 (SREBP-1) were determined using western 

blotting of liver tissue extracts. Protein concentration was quantified using a Pierce BCA 

Protein Assay Kit (Thermo Scientific, Rockford, USA). 30µg of protein from whole liver 

protein extracts (pAKT) and 20μg of protein from liver nuclear extracts (SREBP-1) were 

electrophoresed in 10% sodium dodecyl sulfate-10% polyacrylamide gels for 10 minutes at 

75V then 50 minutes at 150V. Samples were then transferred onto polyvinylidene fluoride 

(PVDF) membranes (BioRad, Hercules, USA) at 100V for 60 mins. Membranes were 

blocked in 5% skim milk before immunostaining with primary antibodies. Secondary 

antibody binding was performed using horseradish peroxidase (HRP) antibodies (see 

supplementary information). Visualization was performed using a standard 

chemiluminescent kit (Supersignal West Femto, Thermo Scientific, Waltham, USA) on a 

4000MM pro Image Station (Carestream Health, Inc., New York, USA). pAKT and SREBP-

1 band net intensity were normalized to the reference proteins GAPDH and Histone-H3 

respectively. Primary and secondary antibodies used for Western blots were as follows: 

Adiponectin: (MAB3608, Millipore) 1:10,000, Goat anti-mouse HRP (Invitrogen) 1:200,000; 

pAKT: (sc-7985-R, Santa Cruz) 1:1000, Goat anti-rabbit HRP (Invitrogen) 1:200,000; 

SREBP-1: (sc-367, Santa Cruz) 1:500, Goat anti-rabbit HRP (Invitrogen). 1:100,000; 

GAPDH: (MAB374, Millipore) 1:150,000, Goat anti-mouse HRP (Invitrogen) 1:100,000; 
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Histone-H3: (FL-136, sc10809, Santa Cruz) 1:100, Goat anti-rabbit HRP (Invitrogen). 1: 

6000. All samples were processed concurrently using three gels with a minimum of three 

samples per group on each gel. 

Statistical analysis: Statistical analysis was performed using GraphPad Prism 6 software 

(GraphPad, San Diego, CA, USA). For normally distributed continuous data, groups were 

compared using two-way ANOVA based on diet and genotype. For instances in which a 

significant interaction existed between diet and genotype, two pre-defined post-hoc 

comparisons to evaluate the effect of genotype for each diet were performed using Sidak’s 

multiple comparisons test. These comparisons were: i) WT CD vs Hfe+/- CD and ii) WT 

HCD vs Hfe+/- HCD. In cases in which a significant interaction did not occur, p values 

relating to overall effect by two-way ANOVA of diet and genotype are reported. As initial 

body weight was measured prior to dietary intervention, an analysis between the two 

genotypes (n=20 per group) was performed using an unpaired Student’s t-test.  

For continuous data that were not normally distributed, a Kruskal-Wallis test was 

performed. When the results of this test were significant (p<0.05), post-hoc comparisons to 

evaluate the effect of genotype were performed using Dunn’s multiple comparisons test 

(group comparisons as for Sidak’s, above). Data for continuous variables are represented 

graphically with box and whisker plots, demonstrating the maximum, minimum, 25th and 

75th centile and median values. Categorical data were analyzed by Fisher’s exact test and 

represented in tabular form. 

Results 
 

Weight gain between 8 and 16 weeks of age was largely comparable between 

genotypes except for a small increase in weight gain in WT HCD fed mice compared 

to their Hfe+/- counterparts (13.1g vs 11.0g, p=0.04, Sidak’s multiple comparison test 

after two-way ANOVA). (figure 3.1A and 3.1B). This effect may be related to a higher initial 

weight at 8 weeks in WT mice. (28.4g vs 26.0g, p=0.016). The higher initial weight is 

unlikely to be a true genotype effect as a difference was not seen between the two CD 

groups. All four groups of mice (CD and HCD) had been fed only CD diet up until this 

stage. Mean initial weight for all WT mice (n=20) was 27.5g, compared to 26.9g for Hfe+/- 

mice (n=20) p=0.39 (Student’s t-test).  
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Figure 3.1: Body weight and serum ALT.  

(A) Initial body weight (8 weeks). An interaction between diet and genotype was present (p=0.0044, two-way ANOVA). 

Post hoc analysis found increased weight in WT mice fed a HCD compared to Hfe+/- mice (p=0.016, Sidak’s multiple 

comparisons test). No significant changes were seen in CD mice. (B) Weight gain (8 to 16 weeks). An interaction 

between diet and genotype was present (p=0.040, two-way ANOVA). Post hoc analysis found increased weight gain in 

WT mice fed a HCD compared to Hfe+/- mice (p=0.040, Sidak’s multiple comparisons test). No significant changes were 

seen in CD mice. (C) Serum alanine aminotransferase (ALT) is not influenced by diet or genotype. A significant 

interaction by two-way ANOVA was present (p=0.047). However, differences between genotype (Sidak’s multiple 

comparisons test) were not significant for either mice fed control diet or HCD. (n= 9-10 per group). 

 

Diet, but not Hfe genotype influences liver injury in this model. There was no 

observed genotype effect on serum ALT (figure 3.1C). Mice fed HCD of both genotypes 

developed steatosis without overt steatohepatitis (figure 3.2). Table 3.3 shows the 

histological scoring of liver sections. NAFLD activity score (NAS) (p=0.003), steatosis 

(p<0.001) and hepatocyte ballooning (p=0.038) were associated with experimental group 

by Fisher’s exact test. These associations evidently relate to diet rather than genotype. No 

more than minimal fibrosis was seen in any of the groups (data not shown). 
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Figure 3.2: High calorie diet leads to increased hepatic steatosis and ballooning 

degeneration in Hfe+/- mice.  

Light microscopy of representative liver sections stained with hematoxylin and eosin are shown (original magnification x 

100). (A) WT CD. (B) Hfe+/- CD. (C) WT HCD. (D) Hfe+/- HCD.  
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Table 3.3: High calorie diet, but not heterozygous Hfe gene deletion leads to 

increased hepatic steatosis, ballooning degeneration and NAS score.  

Number of mice (%) with NAS (≥2), any macrovesicular steatosis (≥ grade 1), lobular inflammation (≥ grade 1), or 

ballooning (≥ grade 1). P-value is the result of Fisher’s exact test. (n=10 per group)  

 

  Control diet High Calorie Diet   

  
WT Hfe+/- WT Hfe+/- 

p-
value 

NAS (≥2) 0 (0%) 0 (0%) 5 (50%) 5 (50%) 0.003 

Steatosis (Yes) 0 (0%) 0 (0%) 8 (80%) 8 (80%) <0.001 

Lobular Inflammation (Yes) 4 (40%) 3 (30%) 6 (60%) 6 (60%) 0.54 

Ballooning (Yes) 0 (0%) 0 (0%) 4 (40%) 2 (20%) 0.038 

 

Hepatic iron concentration (HIC) is increased in Hfe+/- mice in both dietary groups, 

consistent with the expected phenotype (figure 3.3A). Hamp1 is the gene encoding 

hepcidin, the master regulator of iron homeostasis. When Hamp1 is expressed as a ratio 

of HIC, expression was found to be approximately 50% lower in Hfe+/- mice across both 

dietary groups (figure 3.3C). This observation is consistent with haploinsufficiency of the 

HFE protein in Hfe+/- mice and supports HFE being the predominant regulator of Hamp1 

expression in this model. 
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Figure 3.3: High calorie diet induced reduction in hepatic iron concentration (HIC) 

occurs independently of hepcidin.  

(A) Hepatic Iron Concentration. HCD was associated with reduced HIC (p<0.0001, two-way ANOVA). Hfe+/- mice had 

increased HIC compared to WT mice (p<0.0001, two-way ANOVA). (B) Hepatic Hamp1 mRNA expression. Hamp1 was 

lower in animals fed HCD (p=0.0012, two-way ANOVA). Gene effect was not significant (NS). (C) Hepatic Hamp1 

mRNA/HIC. Hfe+/- mice had lower Hamp1/HIC ratios (p=0.0003, 2way ANOVA). Diet effect was NS. (D) Gut cell Dmt1 

mRNA expression. Diet effect and gene effect were both NS (two-way ANOVA). (E) Gut cell Hephaestin mRNA 

expression. Hfe+/- mice had lower Hephaestin expression than WT mice (p=0.015). Diet effect was NS (two-way 

ANOVA). (n= 6-10 per group). 

 

High calorie diet induced reduction of HIC occurs independently of hepcidin. HIC 

was significantly reduced by HCD in both genotypes (p<0.0001, two-way ANOVA) (figure 

3.3A). The explanation for this is unclear. Hamp1 mRNA expression was lower in HCD-fed 

mice (diet effect p=0.0012, two-way ANOVA, figure 3.3B). The Hamp1/HIC demonstrate 

that Hamp1 expression when normalized to HIC is unaffected by diet (figure 3.3C). As the 

hepcidin-ferroportin axis did not appear to be the cause of the reduced HIC, we sought to 

evaluate two further regulators of intestinal iron absorption, the divalent metal transporter-1 

(DMT1) and Hephaestin. There was no significant diet effect at the mRNA level for either 

of these by two-way ANOVA (figures 3.3D, 3.3E). 

Hfe+/- mice display impaired glucose homeostasis.  As glucose and insulin are 

established drivers of hepatic de novo lipogenesis [121], we measured their fasting serum 

concentrations. Serum glucose was significantly higher in Hfe+/- than WT animals 

(genotype effect p=0.0007, two-way ANOVA). 8.1 vs 7.3 mmol/L in CD fed mice and 8.0 vs 
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7.2 mmol/L in HCD fed mice (figure 3.4A). A trend towards a similar effect was seen for 

serum insulin although this did not reach statistical significance (figure 3.4B). HOMA-IR 

score, which is the product of serum glucose, serum insulin and a constant, has been 

shown to be a useful static measure of insulin resistance in the fasting state [122]. HOMA-

IR was significantly higher in Hfe+/- mice fed both CD (p=0.038) and also HCD (p=0.039) 

using Dunn’s multiple comparison test after a significant Kruskal-Wallis test (p=0.0024) 

(figure 3.4C). Serum adiponectin has previously been shown to be regulated by iron in 

mice and is a known key determinant of insulin resistance [17]. However, we did not find 

any significant effect of genotype on total serum adiponectin (figures 3.4D, 3.4E). 

Moreover, when we looked specifically at the active form, high molecular weight (HMW) 

adiponectin, we again found no genotype effect irrespective of whether we analyzed 

absolute HMW adiponectin serum concentration or HMW adiponectin as a fraction of total 

adiponectin. 

Figure 3.4: Hfe+/- mice have impaired glucose homeostasis irrespective of diet.  

(A) Serum glucose. Serum glucose was higher in Hfe+/- mice compared to WT mice (p=0.0007), Diet effect was NS (two-

way ANOVA). (B) Serum Insulin (mIU/L). Presented on logarithmic (base 10) scale. A difference between groups was 

present p=0.004 (Kruskal-Wallis test). Post hoc comparisons by genotype for CD and HCD mice were both NS (p=0.057, 

p=0.084 respectively by Dunn’s multiple comparison test). (C) HOMA-IR. Presented on logarithmic (base 10) scale. A 

difference between groups was present p=0.0024 (Kruskal-Wallis test). Hfe+/- was associated with increased HOMA-IR 

score for mice fed CD (p=0.038) and HCD (p=0.039) (Dunn’s multiple comparison test). (D, E) Immunoblotting for total 

serum adiponectin (D) densitometry, (E) representative blots. HMW = high molecular weight adiponectin. LMW= Low 

molecular weight adiponectin. Diet and gene effects were both NS (two-way ANOVA). (n= 9-10 per group).  
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Despite increased serum glucose and HOMA-IR score, downstream regulators of de 

novo lipogenesis and fatty acid oxidation are largely unaffected by heterozygous 

Hfe deletion (figure 3.5). The active form of serine/threonine kinase AKT, phospho AKT, 

which is a central regulator of insulin signaling to lipogenesis pathways, was entirely 

unaltered by diet or genotype (figures 3.5A, 3.5C). Similarly, nuclear extract quantities of 

sterol regulatory element binding protein-1 (SREBP-1), the main transcription factor 

responsible for regulation of de novo lipogenesis were also unaffected by genotype 

(figures 3.5B, 3.5C). HCD diet however was associated with an increase in nuclear 

SREBP-1 protein, which may be substrate driven. mRNA quantities of fatty acid synthase 

(Fas) and stearoyl coA desaturase- 1 (Scd1) which are enzymes involved in hepatic 

lipogenesis and are downstream targets of SREBP-1 were also unaffected by genotype 

(figures 3.5D, 3.5E). Similarly there was no effect of Hfe heterozygosity on mRNA 

quantities of three key regulators of fatty acid oxidation; adiponectin receptor-2 (Adipo R2), 

peroxisome proliferator activated receptor alpha (Pparα), and carnitine palmitoyl 

transferase-1 (Cpt1), except for a small increase in Cpt1 expression in Hfe+/- mice fed a 

HCD (p=0.040, Sidak’s multiple comparisons test) (Figure 3.6A, 3.6B, 3.6C). 
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Figure 3.5: Hepatic de novo lipogenesis pathways are not up-regulated despite 

hyperglycemia.  

(A) Immunoblotting densitometry of pAKT (whole liver protein extracts) normalized to GAPDH. Diet and genotype effect 

were both NS (two-way ANOVA). (B) Immunoblotting densitometry of SREBP-1 (nuclear protein extracts) normalized to 

Histone-H3. HCD was associated with increased nuclear SREBP-1 (p=0.022). Gene effect was NS (two-way ANOVA). 

(C) Representative immunoblots for pAKT, GAPDH, SREBP-1, Histone-H3. (n= 9-10 per group). (D) Hepatic fatty acid 

synthase (Fas) mRNA expression. Diet and genotype effect were both NS (two-way ANOVA). (E) Hepatic stearoyl coA 

desaturase- 1 (Scd1) mRNA expression. HCD was associated with increased Scd1 expression. Gene effect was NS 

(two-way ANOVA). 

 

 

Figure 3.6: Hepatic lipid metabolism mRNA  

(A) Hepatic adiponectin receptor-2 (Adipo R2) mRNA expression. HCD was associated with increased AdipoR2 

expression (p=0.0039). Gene effect was NS (two-way ANOVA). (B) Hepatic peroxisome proliferator activated receptor 

alpha (Pparα) mRNA expression. Pparα expression was increased by HCD. Gene effect was NS. (C) Hepatic carnitine 

palmitoyl transferase-1 (Cpt1) mRNA expression. There was a significant interaction between diet and genotype 

(p=0.045). Post hoc analysis found increased Cpt1 expression due to Hfe+/- in HCD fed mice (p=0.040). In CD fed mice 

the results are NS (Sidak’s multiple comparisons test). (n=10 per group). 
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Discussion 
 

In this study, we have demonstrated that heterozygous Hfe gene deletion in our mouse 

model of NAFLD leads to impaired glucose homeostasis in the fasted state, characterized 

by raised serum glucose concentrations and HOMA-IR scores. Despite this, the 

dysregulation of hepatic lipid metabolism and histological evidence of increased liver injury 

seen previously in Hfe-/- mice were not seen in Hfe+/- mice.  

Increased serum glucose in Hfe+/- mice is a notable finding and is significant in relation to 

HFE’s role in insulin sensitivity, type II diabetes mellitus and NAFLD [97, 123]. This study 

however was not primarily designed to investigate glucose homeostasis. Undoubtedly, 

dynamic measures of glucose homeostasis such as glucose and pyruvate tolerance 

testing with hyperinsulinemic-euglycemic clamp studies would help future studies to 

characterize the extent and specific location of insulin resistance in this model.  

The links between iron, insulin resistance and type II diabetes have been extensively 

studied [34]. Two large longitudinal cohort studies have demonstrated increased risk of 

diabetes associated with hyperferritinemia [55, 57]. These associations remained valid 

even after accounting for known confounders such as inflammation. Furthermore, 

therapeutic phlebotomy as a method of iron depletion has been shown in small studies to 

improve glycemic control in non-diabetic, pre-diabetic and diabetic subjects [99-101].  

Somewhat counterintuitively, previous studies have suggested enhanced insulin sensitivity 

in homozygous Hfe null mice [54, 124]. This has been proposed to be due to 

internalization of adipocyte ferroportin resulting in adipocyte iron loading and down-

regulation of the expression of the insulin sensitizing adipokine, adiponectin [17]. This 

effect however was not seen in our model, as heterozygous Hfe+/- deletion did not appear 

to be sufficient to interfere with serum adiponectin levels. 

The findings of our study are relevant if one considers the human data regarding HFE 

mutations and type II diabetes mellitus risk. A large meta-analysis that reviewed studies 

describing HFE gene polymorphisms and the risk of type II diabetes concluded that the 

heterozygous H63D mutation was associated with increased risk of diabetes [123]. In the 

context of this human data, our study provides a clear framework and suitable model for 

future animal studies exploring the mechanistic links between HFE and type II diabetes. 
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Amongst individuals with NAFLD, the presence of heterozygous H63D mutation has been 

associated with higher steatosis grades and NAS score [97]. Given that H63D has less 

iron loading potential than the C282Y mutation, this raises the intriguing possibility of an 

iron-independent role for the HFE protein in macronutrient metabolism that might protect 

against diabetes and NASH. 

Heterozygous Hfe deletion did not appear to influence liver injury in this model, but it may 

be possible that histological differences between Hfe+/- and WT mice would only become 

evident in older mice with a more prolonged exposure to HCD and greater hepatic iron 

loading. Alternatively, it may be that these alterations in lipid and glucose metabolism are 

simply insufficient to impact on liver injury over even a prolonged period of time. It was 

suggested in previous studies of Hfe-/- mice that liver injury may have been attributed 

directly to a deficiency of Hfe protein rather than iron overload per se. Given the lack of 

genotype effect on liver injury seen in the Hfe+/- model, it is not possible to confirm this 

hypothesis. Further studies are planned to investigate the effect of an iron deficient diet in 

Hfe-/- animals in order to address this issue. 

An interesting finding in this study was the effect of both diet and genotype on hepatic iron 

concentration (HIC). Increased hepatic iron in Hfe+/- mice is consistent with reduced 

stimulation of hepcidin-ferroportin axis in the setting of HFE deficiency. Humans with 

heterozygous C282Y mutations have been shown to have increased levels of serum 

ferritin, a marker of tissue iron stores, when compared to wild type controls [13]. The lower 

HIC observed with HCD is consistent with other previous studies [15, 125]. Whether lower 

HIC in association with HCD might be a protective or injurious response is difficult to 

determine. However, the lack of dietary effect on Hamp1 mRNA when normalized to HIC 

suggests that hepcidin response remains appropriate in this model. Similarly, we found no 

dietary effect on the mRNA levels of two other regulators of iron absorption, the enterocyte 

iron transporter DMT1 and the ferroxidase, Hephaestin, despite a previous report of 

dysregulation of the mRNA transcripts of these genes in response to a high fat diet [125]. 

Recently Orr et al have demonstrated a repartitioning of iron from the liver to adipose 

tissue in the setting of a high fat diet [24]. This may explain the reduced HICs with HCD 

noted in our study. This will be further evaluated in future studies (Chapter 5).  

In conclusion, we have demonstrated impaired glucose and iron homeostasis with 

heterozygous Hfe gene deletion in a mouse model of NAFLD. The genetic defect however 

was not associated with increased liver injury or impaired hepatic lipid metabolism. 
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Chapter 4 : Hepatic iron concentration correlates with insulin sensitivity 
in non-alcoholic fatty liver disease 
 

The previous chapter demonstrated that heterozygous Hfe gene deletion in mice leads to 

impaired iron and glucose homeostasis. In order to further explore the relationships 

between iron and insulin resistance, data and human serum samples from a randomized, 

controlled trial of venesection in NAFLD were utilised.[104] Firstly associations between 

measures of iron status, serum ferritin, hepatic iron concentration (HIC) and multiple 

measures of insulin resistance were studied. Secondly, the effect of iron depletion through 

venesection on six adipokines with potential relevance to iron’s role in NAFLD 

pathogenesis was determined. 

This chapter is published in Hepatology Communications. 

Britton LJ, Bridle KR, Reiling J, Santrampurwala N, Wockner L, Ching H, Stuart KA, 

Subramaniam VN, Jeffrey G, St Pierre T, House M, Gummer J, Trengove R, Olynyk J, 

Crawford DHG, Adams LA 

Hepatic iron concentration correlates with insulin sensitivity in non-alcoholic fatty liver 
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Abstract 

Rodent and cell-culture models support a role for iron-related adipokine dysregulation and 

insulin resistance in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), 

however substantial human data is lacking. We examined the relationship between 

measures of iron status, adipokines and insulin resistance in NAFLD patients in the 

presence and absence of venesection. This study forms part of the IIRON2 study, a 

prospective randomized controlled trial of venesection for adults with NAFLD. Paired 

serum samples at baseline and six months (end of treatment) in controls (n=28) and 

venesection patients (n=23) were assayed for adiponectin, leptin, resistin, retinol binding 

protein-4, TNFα and IL-6 using a Quantibody customized multiplexed ELISA array. Hepatic 

iron concentration (HIC) was determined using MR FerriScan. Unexpectedly, analysis 

revealed a significant positive correlation between baseline serum adiponectin 

concentration and HIC, which strengthened after correction for age, gender and body 

mass index (rho 0.36, p=0.007). In addition there were significant inverse correlations 

between HIC and measures of insulin resistance; Adipo-IR, serum insulin, serum glucose, 

HOMA-IR, HbA1C and hepatic steatosis whereas a positive correlation was noted with 

insulin sensitivity index. Changes in serum adipokines over six months did not differ 

between the control and venesection groups. Conclusion: HIC positively correlates with 

serum adiponectin and insulin sensitivity in patients with NAFLD. Further study is required 

to establish causality and mechanistic explanations for these associations and their 

relevance in the pathogenesis of insulin resistance and NAFLD.  

Background 
 

The epidemic of obesity in both the developed and developing world has led to a major 

rise in the prevalence of non-alcoholic fatty liver disease (NAFLD). NAFLD is estimated to 

be present in 20-30 percent of the adult population.[28] Non-alcoholic steatohepatitis, the 

aggressive form of NAFLD, predisposes individuals towards liver failure and hepatocellular 

carcinoma.[30] Furthermore, NAFLD has been shown to be an independent risk factor for 

cardiovascular disease and type II diabetes.[2]  

 

Unfortunately, currently available treatment options for NAFLD are largely ineffective and 

novel therapeutic targets are urgently needed for this disease. Iron has long been 

considered to have role in the pathogenesis of NAFLD and insulin resistance, a hallmark 
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feature of NAFLD.[7, 8, 34] Therefore, iron has been considered as a potential therapeutic 

target in NAFLD and type 2 diabetes mellitus.[7, 34] 

In recent years, there has been considerable interest in the role of iron in adipose tissue 

biology and the regulation of adipokines.[7, 21] Adipokines are defined as "polypeptides 

that are secreted in the adipose tissue in a regulated manner”.[16] Many of these 

adipokines have endocrine effects on the liver as well as local effects on adipose 

tissue.[16] Altered adipose tissue biology and dysregulation of adipokine synthesis may 

promote liver injury via increased insulin resistance and also by other direct and indirect 

effects on hepatic and adipose tissue lipid metabolism.[16] Studies in animals and tissue 

culture models have demonstrated an iron-induced dysregulation of the synthesis of three 

adipokines with such roles, namely adiponectin, leptin and resistin.[17-19]  

 

Adiponectin is the most abundant adipokine in serum and has a number of hepato-

protective effects in NAFLD.[16, 21] Iron has been shown to down-regulate adiponectin in 

a rodent model of selective adipocyte iron loading and also in cultured 3T3-L1 pre-

adipocytes via decreased acetylation of the transcription factor FOX01.[17] More recently, 

it has been demonstrated that iron down-regulates the appetite-suppressing hormone, 

leptin in mice fed a high iron diet via iron-dependent activation of cAMP-responsive 

element binding protein (CREB).[18] Two other adipokines, resistin and retinol binding 

protein-4 (RBP-4), have been associated with insulin resistance [16] and iron has been 

proposed as a regulator of serum concentrations of both of these hormones.[19, 20] 

Tumor necrosis factor-alpha (TNFα) and interleukin-6 (IL-6) are cytokines secreted from 

adipose tissue as adipokines as well as from other tissues.[16] Both have important roles 

in the induction of insulin resistance in NAFLD and type II diabetes[16, 126, 127] and iron 

has been shown in cell culture studies to promote a pro-inflammatory phenotype in 

macrophages.[75]   

 

To date, studies regarding iron and the regulation of adipokines in humans are relatively 

sparse. Recently, a randomized controlled trial of 274 adults with dysmetabolic iron 

overload syndrome showed that venesection did not affect serum adiponectin levels, 

however other adipokines were not assessed.[128] Venesection in a cohort of six patients 

with type 2 diabetes led to a reduction in serum levels of RBP-4.[20] 

 

At present therefore, there is a clear need for more comprehensive human data to 

determine whether iron-adipokine interactions observed in animal studies might translate 
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to humans.  We hypothesized that iron is a key determinant in the regulation of insulin 

sensitivity and a number of adipokines relevant to NAFLD pathogenesis. To investigate 

these relationships further, we analyzed the relationships between hepatic iron 

concentration and serum ferritin with markers of insulin resistance and serum 

concentrations of six target adipokines. We also assessed the effect of iron removal by 

venesection on serum levels of these adipokines.  

 

The IIRON2 study is a multi-center, prospective, randomized, controlled trial evaluating the 

effect of venesection on liver injury in adults with NAFLD.[104]  As a component of this 

larger study, this report describes the relationships between baseline iron loading and 

measures of insulin resistance as well as the effect of venesection and lifestyle advice 

versus lifestyle advice alone on serum concentrations of adiponectin, leptin, resistin, RBP-

4, TNFα and IL-6.  

Methods 
 

Participants 

 

Subjects were recruited from hepatology clinics at the Sir Charles Gairdner and Fremantle 

Hospitals in Western Australia and Greenslopes Private Hospital, Queensland, Australia 

between November 2010 and December 2012, by the physicians involved in the study 

(LA, JO, DC and KS).[104] Subjects were adults with hepatic steatosis evident on 

ultrasonography or computed tomography scan and serum ferritin >50 ng/ml. Exclusion 

criteria included the presence of an HFE hemochromatosis genotype (C282Y/C282Y or 

C282Y/H63D), liver disease other than NAFLD, ischemic heart disease, uncontrolled 

diabetes (HbA1C>8.0%) or evidence of decompensated liver disease. Detailed inclusion 

and exclusion criteria have been previously described.[104] The current study also 

excluded those screened with hemochromatosis range HIC (greater than two times the 

upper limit of normal) in order to avoid bias in parametric correlation analyses. The IIRON2 

study was registered with the Australia New Zealand Clinical Trials Registry (Registration 

no. ACTRN12610000868088). This registration included an ‘a priori’ assessment of serum 

adipokine levels as a secondary endpoint (secondary endpoint 4). Written informed 

consent was obtained from all participants. The study protocol conforms to the ethical 

guidelines of the 1975 declaration of Helsinki and was approved by the human research 
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ethics committees of the Sir Charles Gairdner, Fremantle and Greenslopes Private 

Hospitals.  

 

Randomization 

 

Participants were randomized, using a randomization sequence generated by the study 

research coordinator from a computerized random number generator, to venesection with 

lifestyle advice (venesection group) or lifestyle advice alone (control group) at a ratio of 1:1 

as previously described.[104] Allocation concealment prior to randomization was achieved 

using numbered sealed opaque envelopes. Assignment was performed by the research 

coordinators. All subjects received dietary advice regarding the institution of a hypocaloric 

diet from an accredited dietician and all received standardized advice regarding exercise. 

Participants in the venesection group underwent two to three weekly venesections 

targeting a serum ferritin of <45ng/ml. 

 

Clinical and laboratory assessment 

 

A thorough clinical assessment including history and physical examination was performed 

at baseline, three months and at six months (end of study). Standard laboratory 

parameters were measured including liver function tests, serum triglycerides, high density 

lipoprotein (HDL-cholesterol), free (non-esterified) fatty acids (FFA), glucose, insulin, 

glycosylated hemoglobin (HbA1C), 75g oral glucose tolerance test, transferrin saturation, 

serum ferritin and full blood count. Hepascore, a validated serum measure of hepatic 

fibrosis in NAFLD [129]  was performed at the Western Australia state referral laboratory 

(Pathwest, Queen Elizabeth II Medical Centre, Nedlands, Australia). Serum cytokeratin-18 

(CK-18) fragments were measured using an m30 Aptosense ELISA kit (Peviva, Nacka, 

Sweden). 

 

Serum concentrations of adiponectin, leptin, resistin, RBP-4, TNFα and IL-6 were 

measured using a customized multiplexed Quantibody enzyme-linked immunosorbent 

assay (ELISA) array (Human Obesity Array Q3, Raybiotech, Norcross, USA). Assays of 

participant serum samples at 1:2 dilution and adipokine control dilutions for a standard 

curve were performed in quadruplicate by Jomar Life Research, Scoresby, Australia 

according to the manufacturer’s instructions. Hepcidin-25 was isolated from patient serum 

by solid phase extraction, and measured by liquid chromatography quadrupole time-of-
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flight mass spectrometry (LC-qTOF-MS) as previously described.[130-132] Quantitation 

was by reference to a synthetic hepcidin-25 (13C18,15N3) peptide internal standard 

(Peptides International, Inc., Kentucky, USA). 

 

Imaging studies 

 

Hepatic steatosis and hepatic iron concentration (HIC) were measured using non-invasive 

magnetic resonance imaging (MRI) methods on a 1.5T Avanto scanner (Siemens Medical 

Systems, Erlagen, Germany). Hepatic steatosis was quantified, as a volumetric 

percentage, using a validated opposed phase, in-phase gradient echo protocol.[133] A 

validated MRI method (FerriScan) was used to determine HIC.[134]  

 

Statistical analysis 

 

Comparison of baseline variables between groups was performed using two-tailed 

Student’s t-test for continuous variables and Pearson’s Chi-squared or Fisher’s exact test, 

as appropriate, for categorical variables. Baseline correlation analyses were performed 

using Pearson’s correlation.  As the dependency between adipokines and measures of 

iron is unknown, bivariate correlation analysis was used to detect associations. The 

relationships between serum adipokine concentrations, measures of insulin resistance, 

serum ferritin and HIC after correction for body mass index (BMI), age and gender were 

assessed using a partial correlation analysis. The relationships between serum hepcidin 

and surrogates of insulin resistance were assessed using a partial correlation analysis 

correcting for HIC.  

 

For each of the six adipokines, comparisons between the venesection and control groups 

of the change of serum concentration were made using a two-sided independent-sample t-

test. A further analysis of this data was performed using analysis of covariance (ANCOVA) 

with correction for BMI, age and gender. 

Results  
 

Participant characteristics. 

Seventy-four participants were randomized in the study.[104] This cohort was used to 

analyze baseline relationships of measures of insulin resistance and serum adipokines 
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with measures of iron status. The characteristics of this cohort are summarized in Table 

4.1. Of these, 60 patients had serum stored at baseline available for measurement of 

serum adipokine concentrations. Fifty-one also had serum available from the end of the 

study and this cohort was used in the analysis comparing the effect of venesection (n=23) 

versus control (n=28) as shown in Figure 4.1. The baseline characteristics of the 

participants from each randomized group with available paired sera are outlined in Table 

4.2. Baseline characteristics including serum adipokine concentrations were not 

significantly different between groups.  

 

Table 4.1: Baseline characteristics of randomized participants.  

Data is presented as mean and standard deviation except for diabetes and male gender, for which the total number of 

participants and percentage of participants is presented. 

 

Characteristic (n=73) Mean (standard deviation) 

  

Age, years 51.3 (10.8) 

Male gender (%) 43 (59%) 

BMI, kg/m2 31.4 (5.0) 

Waist circumference, cm 105 (13) 

Diabetes (%) 13 (18%) 

ALT, IU/L 72 (56) 

Hepascore 0.33 (0.26) 

Glucose, mmol/L 6.1 (2.1) 

Serum ferritin, ng/mL 507 (442) 

Transferrin saturation, % 31.6 (13.5) 

Hepatic iron concentration, mmol/kg 23.0 (11.3) 

Hepatic steatosis, % by volume 18.1 (10.9) 
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Figure 4.1: Patient flow diagram for the analysis of venesection effect on serum 

adipokine concentrations 
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Table 4.2: Baseline characteristics of participants with available paired sera  

Data is presented as mean and standard deviation except for diabetes, male gender and metabolic syndrome, for which 

the total number of participants and percentage of participants is presented. Values presented are mean values with 

standard deviation in parentheses except where indicated otherwise. p values are the result of unpaired t-tests unless 

indicated otherwise. * p <0.05, # Exact p value from Fisher’s exact test, ‡ Pearson’s Chi-squared test. 

Characteristic 
Control group 

(n=28) 

Venesection 

group (n=23) 

p 

value 

Age, years 51.8 (11.3) 54.0 (9.7) 0.45 

Male gender 18 (64%) 14 (61%) 0.80‡ 

BMI, kg/m2 30.9 (5.3) 31.8 (4.4) 0.52 

Waist circumference, cm 103.4 (13.9) 108.5 (11.3) 0.17 

Diabetes 5 (18%) 4 (17%) 1.0 # 

ALT, IU/L 65.0 (37.7) 81.6 (74.0) 0.31 

AST, IU/L 41.8 (20.5) 47.4 (36.6) 0.49 

Bilirubin, μmol/L 13.8 (5.5) 14.0 (6.5) 0.92 

Alkaline Phosphatase, IU/L 84.5 (19.9) 89.2 (24.8) 0.45 

Albumin, mg/dl 45.0 (3) 43.5 (2.6) 0.054 

CK-18, U/L 287.2 (286.9) 367.8 (322.5) 0.36 

Hepascore 0.29 (0.2) 0.42 (0.3) 0.059 

Triglycerides, mmol/L 1.74 (0.9) 1.63 (0.8) 0.65 

HDL-cholesterol, mmol/L 1.16 (0.3) 1.07 (0.3) 0.26 

Free fatty acids, mmol/L 0.32 (0.2) 0.38 (0.2) 0.28 

Glucose, mmol/L 5.64 (0.8) 6.16 (2.3) 0.27 

Insulin, mU/L 15.6 (12) 14.1 (6.8) 0.60 

HbA1C, % 5.89 (0.7) 6.10 (1.2) 0.46 

HOMA-IR 4.24 (4.1) 4.07 (2.9) 0.86 

ISI 3.44 (3.4) 3.55 (2.9) 0.91 
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Hemoglobin, g/L 152.7 (13.7) 149.2 (12.1) 0.34 

Platelet, x109/dL 216.7 (33.8) 231.6 (99.2) 0.46 

Ferritin, ng/mL 448.1 (388.2) 587.2.1 (353.1) 0.19 

Transferrin saturation, % 31.6 (11.1) 33.4 (14.0) 0.63 

Hepatic iron concentration, mmol/kg 22.1 (10.2)  24.6 (12.7) 0.44 

Hepatic steatosis, % 17.0 (12.7) 18.0 (8.6) 0.76 

Metabolic syndrome 17 (61%) 16 (70%) 0.57# 

Adiponectin, ng/ml 538.4 (249.8) 471.2 (216.7) 0.32 

Leptin, ng/ml 19.5 (18.8) 22.7 (14.2) 0.50 

Resistin, ng/ml 7.55 (2.6) 8.01 (2.0) 0.49 

RBP-4, ng/ml 42.8 (20.1) 38.4 (12.7) 0.37 

TNFα, pg/ml 292.2 (395.4) 249.2 (336.6) 0.68 

IL-6, pg/ml 114.9 (171.4) 114.2 (136.3) 0.99 

 

Correlation of measures of iron loading with baseline serum adipokine 

concentrations 

The 61 participants with available baseline serum were assessed to evaluate the 

relationships between serum adipokine concentrations with two baseline measures of iron 

status, serum ferritin and HIC (Table 4.3). All participants had serum ferritin measured and 

HIC was available for 57 of the 61 participants. A single participant with hemochromatosis-

range HIC (99mmol/kg) was excluded from the analysis. HIC was corrected for steatosis 

percentage volume as determined by MRI in order to provide a true, comparable iron 

concentration in the aqueous (non-lipid) fraction of the liver. Baseline serum hepcidin data 

was available for 37 of the randomized participants. 
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Table 4.3: Correlation between baseline serum ferritin, HIC and serum adipokine 

concentrations 

*p<0.05, df = degrees of freedom 
 

 

 

 

 

 

 

 

 

 

 

 

 

Baseline serum ferritin was not associated with serum concentrations of any of the six 

adipokines. HIC however, showed a significant positive correlation with serum adiponectin 

(p=0.048, rho= +0.26, Table 4.3, Figure 4.2(a)), but not with the other five adipokines. In 

the cohort, six subjects were taking the insulin sensitizing drug, metformin. No other insulin 

sensitizing drugs were in use amongst the cohort. In particular, no subjects were using 

thiazolidinediones. As metformin might increase serum adiponectin concentrations [135], 

an analysis of the correlation between HIC and adiponectin was performed after excluding 

those subjects taking metformin.  In this analysis, the association between HIC and serum 

adiponectin lost statistical significance, (n= 51, rho= +0.25, p= 0.08), however significance 

was maintained after correction for age, BMI and gender with partial correlation analysis 

(df= 46, rho= +0.34, p= 0.02). BMI correlated with serum leptin concentration (p<0.0001, 

rho=0.585), but not with other adipokines (data not shown). Baseline serum ferritin and 

HIC were correlated (n=65, rho=+0.41, p=0.001). 

  

Pearson’s correlation 
Partial correlation, 

corrected for age, gender 
and BMI 

  
Ferritin 

n=60 
HIC 

n=57 
Ferritin 
df=55 

HIC 
df=52 

Adiponectin 
rho 
p 

-0.06 
0.67 

+0.26 
0.048* 

+0.02 
0.90 

+0.36 
0.007* 

Leptin 
rho 
p 

-0.20 
0.13 

-0.20 
0.13 

-0.01 
0.92 

-0.12 
0.38 

Resistin 
rho 
p 

-0.01 
0.93 

-0.04 
0.77 

+0.10 
0.46 

+0.05 
0.73 

RBP-4 
rho 
p 

+0.05 
0.68 

+0.11 
0.44 

+0.07 
0.60 

+0.14 
0.31 

TNFα 
rho 
p 

+0.07 
0.58 

-0.04 
0.79 

+0.10 
0.45 

-0.02 
0.90 

IL-6 
rho 
p 

+0.07 
0.59 

-0.09 
0.50 

+0.06 
0.65 

-0.10 
0.46 
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Figure 4.2: Relationships between HIC and insulin sensitivity 

HIC and a) adiponectin, b) adipo-IR, c) percentage hepatic steatosis, d) HOMA-IR, e) HbA1C, f) insulin sensitivity index 

(ISI) 

 

Correlation analysis of the baseline data was repeated for all adipokines using partial 

correlation adjusting for three potential confounders: baseline age, gender and BMI (Table 

4.3). This correction strengthened the positive relationship between serum adiponectin and 

HIC (p=0.007, rho= +0.36). There remained no association between HIC and the other five 

adipokines. When also corrected for the same factors, there was no significant correlation 

between serum ferritin and the six adipokines. An analysis of the correlation between 

adiponectin and HIC in non-diabetics and particularly in diabetics is limited by sample size. 

In non-diabetics, there was no significant correlation between adiponectin and HIC (n=49, 

rho=+0.21, p=0.15), however after correction for age, gender and BMI, partial correlation 

remained just significant (df=43, rho=+0.33, p=0.0496). 

 

Correlation of HIC with measures of insulin resistance 

Next, we sought to determine whether the association between HIC and adiponectin was 

an isolated finding or whether HIC is associated with measures of insulin resistance. We 

found that HIC negatively correlated with six surrogates of insulin resistance relating to 

different sites of insulin action. These were: Adipo-IR [136] percentage hepatic steatosis, 

serum insulin, serum glucose, homeostatic model assessment of insulin resistance 
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(HOMA-IR)[122] and HbA1C (Table 4.4 and Figure 4.2(b-e)). Furthermore, the insulin 

sensitivity index (ISI)[137] was significantly positively correlated with HIC (Table 4.4 and 

Figure 4.2(f)). After correction for age, gender and BMI by partial correlation, all 

associations remained significant except for Adipo-IR (Table 4.4).  

In order to determine whether insulin might mediate hepcidin response, we analyzed the 

relationships between hepcidin and the seven surrogates for insulin resistance, using a 

partial correlation analysis, correcting for HIC (Table 4.4). We found that serum insulin and 

serum hepcidin levels positively correlated (df=29, rho=+0.37, p=0.04). However, there 

were no significant relationships between serum hepcidin and the other seven surrogates 

for insulin resistance. 

Table 4.4: Correlation between HIC and hepcidin with measures of insulin resistance 

* p<0.05, df = degrees of freedom 

 

 HIC  

(Pearson’s 

correlation) 

HIC (partial 

correlation, 

correction for age, 

gender and BMI) 

Serum hepcidin  

(partial correlation 

corrected for HIC) 

n rho p df rho p df rho p 

Adipo-IR 62 -0.26 0.045* 57 -0.23 0.08 29 +0.14 0.46 

Steatosis(%) 65 -0.28 0.03* 60 -0.28 0.03* 29 +0.09 0.63 

Insulin 65 -0.26 0.04* 60 -0.28 0.03* 29 +0.37 0.04* 

FFAs 62 -0.21 0.10 57 -0.14 0.29 29 -0.34 0.06 

Glucose 65 -0.31 0.01* 60 -0.26 0.04* 29 -0.12 0.53 

HOMA-IR 65 -0.31 0.01* 60 -0.30 0.02* 29 +0.30 0.10 

HbA1C 64 -0.36 0.003* 59 -0.31 0.01* 29 +0.09 0.63 

ISI 59 +0.30 0.02* 54 +0.28 0.04* 24 +0.05 0.80 

* p<0.05, df = degrees of freedom 
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Serum adipokine concentrations in response to venesection 

Subjects in the venesection group underwent a median of 7 venesections (range 2-19). 

This is roughly equivalent to 1.58g of iron (range 450mg to 4.28g). [118] Change in body 

mass index (BMI) during the study did not differ between groups (-0.67kg/m2 (control 

group) vs +0.24kg/m2 (venesection group), p=0.08, Student’s t-test). BMI, serum 

triglycerides, HDL, LDL cholesterol, HOMA-IR and ISI were not significantly different 

between groups at the end of the study.  

Serum adipokine concentrations did not significantly change between baseline and six 

months for each of the six adipokines in each group except for a 63pg/ml (26%) rise in 

serum TNFα in the venesection group (p=0.048). When comparing the difference in 

absolute change of serum concentration for each adipokine between the control and 

venesection groups, there were no significant differences (Figure 4.3). An ANCOVA 

analysis was performed correcting for baseline body mass index, age and gender and no 

significant differences between groups were observed for each of the six adipokines (data 

not shown).  
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Figure 4.3: Change in serum adipokine concentrations over six months 

Mean change is represented as a percentage of the baseline mean for each adipokine. No significant differences were 

observed for each adipokine between the control (n=28) and venesection groups (n=23). Values represented are mean 

absolute change in serum adipokine concentration with error bars to represent standard error of the mean. Measured 

serum concentration of TNFα and IL-6 was below the lower limit of detection of the assays in 11 (of 102) and 23 (of 102) 

samples respectively. In these instances, the lower limit of detection value was used for statistical analysis. A analysis in 

which zero values were used instead of the lower limit of detection values, did not substantially alter the results (data not 

shown) 

 

Discussion 
 

In this prospective, randomized, controlled clinical trial, we have shown that venesection 

does not alter the serum concentrations of six key adipokines in participants with NAFLD. 

To our surprise however, we demonstrated a significant positive relationship between HIC 

and serum adiponectin concentration in this cohort. This observation was strengthened 

further after correction for age, gender and BMI.  Furthermore, we have shown that HIC 

negatively correlated with multiple measures of insulin resistance. We looked at eight 

surrogate measures of insulin resistance and their relationship to iron. In all cases, except 

for FFAs, a significant relationship was found associating enhanced insulin sensitivity with 
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increasing HIC. These data suggest that HIC inversely predicts insulin resistance in the 

periphery (adipose tissue and skeletal muscle) as well as within the liver. 

 

Notably, in keeping with our findings, a cross-sectional study of 80 Italian patients with 

biopsy-proven NAFLD, found that the Oral Glucose Sensitivity Index increased with 

increasing HIC.[61] Furthermore, a recently published randomized controlled study by 

Lainé et al of 274 participants with dysmetabolic iron overload and significantly elevated 

HIC (>50mmol/kg) found that venesection was associated with significantly increased 

serum insulin and HOMA-IR scores over time[128]. We found no difference between 

groups in HOMA-IR scores, ISI or change in HOMA-IR or ISI over time.[104] This 

remained the case in sub-group analyses of diabetics and non-diabetics (data not shown). 

Although we did not find that venesection altered insulin resistance, the longer duration of 

venesection (12 months versus 6 months) and higher baseline HIC in the Lainé study may 

account for the change in insulin resistance in that study. It is therefore worth considering 

however that there may be subgroups of patients with NAFLD that may develop altered 

adipokine concentrations in response to venesection, possibly over a longer duration of 

treatment.  

 

Our findings add weight to the possibility of a causal relationship between iron and insulin 

sensitivity in individuals with NAFLD. These results suggest that hepatic iron loading below 

the hemochromatosis range (less than two times the upper limit of normal, normal range 3-

33mmol/kg[138]) may actually be beneficial in terms of insulin sensitivity. In contrast, the 

association between excess hepatic iron seen in hemochromatosis and insulin resistance 

and diabetes is well established.[34] Pathologic iron overload from hereditary 

hemochromatosis can cause diabetes through both insulin deficiency from beta-cell loss in 

the pancreas as well as insulin resistance.[34]  Our data, coupled with these observed 

relationships between hemochromatosis and insulin resistance suggest that a ‘sweet-spot’ 

of HIC for maximal insulin sensitivity exits, above and below which, increased insulin 

resistance is observed. 

 

An alternative explanation for the relationship between HIC and insulin sensitivity might be 

that insulin or some aspect of insulin resistance might regulate iron homeostasis. In order 

to explore this possibility further we looked at serum hepcidin concentrations and their 

relationship to our eight measures of insulin sensitivity. Hepcidin is the key regulator of 

systemic iron absorption through its effect on small bowel enterocyte iron export.[36, 38] 
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Hepcidin is predominantly produced by hepatocytes and is transcriptionally regulated by a 

number of factors, including hepatic iron.[36, 38] As such, we examined the markers of 

insulin resistance in relation to hepcidin after correction for HIC. We found that serum 

hepcidin levels positively correlated with serum insulin. This could indicate that insulin 

signaling may play a role in hepcidin regulation, whereby insulin resistance leads to 

reduced intestinal iron absorption. However, as the other measures of insulin resistance 

were not associated with serum hepcidin levels, a direct link would seem unlikely.  

 

We found that serum concentrations of the insulin sensitizing adipokine, adiponectin, 

positively correlate with HIC. This may in part explain the relationship between iron and 

insulin sensitivity in this cohort. However, adipokines by definition, are cytokines that are 

synthesized in adipose tissue and therefore adipocyte, or adipose tissue, iron 

concentrations are likely to be most important with respect to iron-adipokine interactions.   

Indeed, HIC may not be an accurate surrogate measure of adipose tissue iron. Rodent 

data have shown that a high fat diet leads to a redistribution of iron from the liver to 

adipose tissue with a four-fold increase in adipocyte iron concentration and a two-fold 

reduction in HIC.[24] Human studies demonstrate that obesity is associated not only with 

iron deficiency, but paradoxically also with increased sub-cutaneous and visceral adipose 

tissue iron.[22, 111, 112] Furthermore, increased adipocyte iron leading to a reduction in 

adiponectin expression has been demonstrated in a variety of mouse and adipocyte 

culture models.[17] Taken together, it may be possible in NAFLD that iron redistributes 

from the liver to adipose tissue, thus contributing to insulin resistance and a reduction in 

serum adiponectin.  

 

In this study, we have measured HIC, as a well validated surrogate for total body iron 

stores.[139] We corrected HIC for percentage steatosis volume, in order to give a truer, 

more physiologically relevant HIC that is reflective of iron concentration in the aqueous 

(non-lipid) fraction of the liver. By doing this, we have demonstrated that it is not simply 

HIC dilution by lipid that erroneously explains the relationships between iron, steatosis and 

other measures of insulin resistance. It should be noted that this HIC correction is a 

conservative approach to the data that weakens the associations observed compared to 

when un-corrected HIC is used (data not shown). 

 

Contrary to our findings, a number of other studies have indicated a positive association 

between serum adiponectin and measures of human iron stores.[17, 90, 140] These 
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studies may be limited by the choice of surrogate for HIC. In all three studies, inverse 

correlations were noted between serum ferritin and serum adiponectin, however this only 

reached statistical significance in two of the studies. [17, 90]. These are interesting 

observations that were not seen in our cohort. However, although serum ferritin 

undoubtedly correlates with HIC, it is clearly an imprecise measure of HIC. Our data show 

that despite strong statistical significance (p<0.001), the association itself is not strong (r2= 

0.17), indicating that only 17% of the variance in serum ferritin is attributable to HIC. Ryan 

et al, have recently reported an inverse association between liver iron and serum 

adiponectin. [140] However, the MRI T2* values, used as an inverse surrogate for HIC, 

were not corrected for volume of hepatic steatosis. In addition there may have been a 

greater degree of liver injury in the Ryan et al cohort with 35.3% of individuals reported as 

having tissue elastography measurements indicative of bridging fibrosis or cirrhosis. These 

factors may, in part, explain the disparity between the two cohorts. 

 

A weakness of our study is that it presupposes that venesection mobilizes adipose tissue 

iron as it does for other tissues. Although it is increasingly clear that adipocytes utilize 

much of the iron metabolism apparatus that is used in other tissues, such as transferrin 

receptor 1, hepcidin and ferroportin, we are not aware of any human data that has 

addressed the degree to which adipose tissue iron is mobilized by venesection.[17, 23]  

 

Another limitation of our study is the lack of liver histology. It is likely that there was degree 

of heterogeneity of liver injury among participants studied. In addition, the lack of liver 

histology does not allow for determination of the relative distribution of iron between 

hepatocytes and reticuloendothelial cells. This may be critical to iron’s impact within the 

liver as reticuloendothelial iron has been shown to be associated with apoptosis and a 

greater risk of hepatocellular ballooning, steatohepatitis and advanced fibrosis in humans 

with NAFLD. [74, 83] 

 

A strength of this study is that it represents an ‘a priori’ assessment as part of a 

randomized, controlled trial. Our study failed to demonstrate any effect of venesection on 

serum concentrations of the six adipokines studied. It is possible that our study may be 

underpowered for some of the adipokines as these were secondary endpoints for which 

the study was not prospectively powered.  
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A number of avenues for future work in this field present themselves. Firstly, obtaining 

human adipose tissue samples for the determination of adipose tissue and adipocyte iron 

concentrations would be technically challenging but likely highly informative. A pragmatic 

approach to this would be obtaining visceral adipose tissue samples in patients 

undergoing laparoscopic cholecystectomy. Coupled with an in depth assessment of insulin 

resistance and serum adipokine concentrations, ideally using hyperinsulinemic-euglycemic 

clamps,  relationships between insulin resistance and adipose tissue iron concentrations 

could be readily evaluated in a cross-sectional cohort such as this. Another approach, 

would be to perform a study in which insulin resistance, using hyperinsulinemic-

euglycemic clamp studies and serum adipokine concentrations were assessed before and 

after and the infusion of intravenous iron. 

 

In conclusion, we have found a lack of effect of venesection on serum concentrations of 

six important adipokines in patients with NAFLD. We have however demonstrated 

significant correlations between hepatic iron, serum adiponectin and multiple surrogate 

measures of insulin sensitivity. The causality of these relationships remains uncertain. 

Mechanistic explanations for the relationships between iron metabolism and insulin 

resistance are targets for future studies. 
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Chapter 5 : Ferroportin expression in adipocytes does not contribute to 
iron homeostasis or metabolic responses to a high calorie diet 
 

The previous two chapters have demonstrated seemingly conflicting observations between 

a human and an animal study regarding the associations between hepatic iron and insulin 

resistance in NAFLD. Chapter 3 showed that mild increases in iron in the context of 

heterozygous Hfe gene deletion in mice are associated with impaired glucose 

homeostasis. In humans with NAFLD however, increased hepatic iron concentration 

appears to be associated with increased insulin sensitivity. In this chapter, the theme of 

mild increases in iron in insulin resistance and NAFLD pathogenesis is explored further. It 

is increasingly evident that the key site of iron’s impact on insulin resistance and NAFLD 

may centre upon its effects on adipocyte biology.[7, 17, 18, 34] In this chapter, a model of 

selective knockout of the iron exporter ferroportin in adipocytes is developed, focusing on 

the effects on adipocyte iron metabolism, glucose homeostasis and liver injury. 

This chapter is published in Cellular and Molecular Gastroenterology and Hepatology   

Britton LJ, Jaskowski L, Bridle KR, Secondes E, Wallace D, Santrampurwala N, Reiling J, 

Miller G, Mangiafico S, Andrikopoulos S, Subramaniam VN*, Crawford DHG 

Adipocyte-specific Ferroportin knockout in mice: no effect on iron accumulation or 

metabolic response to fast food diet 

Cellular and Molecular Gastroenterology and Hepatology 5 (3) 319-331 Mar 2018 
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Abstract 
 

Background & Aims: Iron has an increasingly recognized role in the regulation of adipose 

tissue function, including the expression of adipokines involved in the pathogenesis of non-

alcoholic fatty liver disease (NAFLD). The cellular iron exporter, ferroportin, has been 

proposed as being a key determinant of adipocyte iron homeostasis. Methods: We studied 

an adipocyte-specific ferroportin (Fpn1) knockout (FKO) mouse model, using an Adipoq-

Cre recombinase driven Fpn1 deletion and fed mice according to the fast food diet model 

of non-alcoholic steatohepatitis. Results: We demonstrated successful selective deletion of 

Fpn1 in adipocytes, but found that this did not lead to increased adipocyte iron stores as 

measured by atomic absorption spectroscopy or histologically quantified iron granules 

after staining with DAB enhanced Perls’ stain.  Mice with adipocyte-specific Fpn1 deletion 

did not demonstrate dysregulation of adiponectin, leptin, resistin or retinol-binding protein-
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4 (RBP-4) expression. Similarly, adipocyte-specific Fpn1 deletion did not affect insulin 

sensitivity during hyperinsulinemic-euglycemic clamp studies or lead to histological 

evidence of increased liver injury. We have however shown that the fast food diet model of 

non-alcoholic steatohepatitis generates an increase in adipose tissue macrophage 

infiltration with crown-like structures, as seen in humans, further validating the utility of this 

model. Conclusions: Ferroportin may not be a key determinant of adipocyte iron 

homeostasis in this knockout model. Further studies are needed to determine the 

mechanisms of iron metabolism in adipocytes and adipose tissue. 

Background 
 

Non-alcoholic fatty liver disease (NAFLD) affects around one billion people worldwide [1]. 

Many of these individuals develop non-alcoholic steatohepatitis (NASH) and hepatic 

fibrosis, which can lead to liver failure and hepatocellular carcinoma [2, 30, 31]. 

Treatments that effectively alter the natural history of this disease are lacking and a 

greater understanding of its pathogenesis is essential in order to develop such therapies. 

Dysfunctional adipose tissue has been shown to be central to the pathogenesis of insulin 

resistance and NAFLD [21]. Adipose tissue serves as the predominant source of liver fat in 

NAFLD and is the source of adipokines that have significant roles in the regulation of liver 

injury [16, 43].  

Iron is an essential element in cellular metabolism, but has also been implicated in a wide 

range of human disease [36]. It has been reported that adipocytes within adipose tissue 

utilize the same apparatus for iron metabolism as other cell types, such as transferrin 

receptor 1 (Tfr1), hepcidin and ferroportin, [17, 22, 141]. Recent data support a role for iron 

in the regulation of adipose tissue function. Adipose tissue iron has been proposed as 

having roles in the pathogenesis of NAFLD as well as type 2 diabetes mellitus [7, 34]. 

Studies have implicated adipose tissue iron in the dysregulation of four key adipokines in 

NAFLD: adiponectin, leptin, resistin and retinol binding protein-4 (RBP-4) [17-20, 22]. 

Furthermore, iron has been shown to increase lipolysis in isolated rat adipocytes [142]. 

It has been proposed that the cellular iron-exporter ferroportin is a key determinant of 

adipocyte iron metabolism [17]. Gabrielsen et al demonstrated the down-regulation of 

adiponectin in response to iron across a range of in vivo and in vitro models [17]. The 

authors employed an AP2-Cre:Fpn1fl/fl model of selective adipocyte ferroportin deletion as 

a model of adipocyte iron loading. However, results of direct measurement of adipocyte 
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iron were not presented and an iron-loading phenotype was inferred solely on the basis of 

reduced Tfr1 mRNA quantities [143]. Tfr1 mRNA quantification remains, at best, an 

indirect surrogate for iron loading that has not been well validated in adipocytes. 

Furthermore, the AP2 gene has been shown to be significantly expressed in other cell 

types, notably macrophages [26, 27, 144]. As such, the importance of ferroportin in 

adipocyte iron handling requires further validation. The Adipoq-Cre model which utilizes a 

BAC transgene Cre recombinase in the promoter region of the adiponectin gene has been 

shown to have greater adipocyte specificity than the AP2-Cre and is considered to be a 

superior model of selective adipocyte-specific gene deletion [26, 27]. 

In this study, we sought to determine whether ferroportin regulates adipocyte iron 

metabolism by selectively knocking out Fpn1 in adipocytes using an Adipoq-Cre 

recombinase mouse model. We utilized the fast food diet model, as described by Charlton 

et al, as a model for non-alcoholic steatohepatitis in these mice [25]. This paper 

investigates the role of ferroportin in the handling of iron by adipose tissue. In addition, we 

examine the effect of adipocyte-specific ferroportin deletion on glucose metabolism and 

liver injury using the fast food diet model of NASH. We also evaluate the utility of the fast 

food diet model as a model for adipose tissue dysfunction in NASH.  

Methods 
 

Experimental Animals 

Mice with loxP fragments inserted in exons 6 and 7 of the mouse Ferroportin gene (Fpn1fl/fl 

mice) on a 129/SvEvTac background were a kind gift of Prof Nancy Andrews, Duke 

University, Durham, USA [145]. Fpn1fl/fl mice were backcrossed for at least eight 

generations onto a C57BL/6 background. Male Fpn1fl/fl mice were then crossed with 

female heterozygous C57BL/6 Adipoq-Cre+/- mice expressing Cre recombinase under the 

control of Adipoq (adiponectin gene) promotor regions on a BAC transgene (Jackson 

Laboratory, Bar Harbor, USA) [27]. This generated both Adipoq-Cre:Fpn1fl/fl, adipocyte-

specific ferroportin knockout (FKO) and Fpn1fl/fl (Flox) littermate control mice.  

After weaning, mice were housed singly. Sixteen week-old male mice were randomly 

assigned, using a computerized random allocation sequence generator, to receive either 

control diet or fast food diet for 25 weeks until the end of the experiment [25]. Control diet 

mice were provided with drinking water and fast food diet mice were supplied with 42g/L 

high fructose corn syrup (23.1g/L fructose, 18.9g/L glucose, Chem-supply, Gillman, 
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Australia) in the drinking water [146]. Diets were supplied by Specialty Feeds (Glen 

Forrest, WA, Australia). Mice had ad libitum access to diet and water (control diet) or high 

fructose corn syrup in water (fast food diet). The key constituents of the diets are outlined 

in Table 5.1.  

Table 5.1: Major components of experimental diets 
 

Dietary component Control diet Fast food diet 

Protein (% weight) 13.6 17.4 

Total fat (% weight) 4.0 20 

Total digestible carbohydrate (% weight) 64.8 48.2 

Digestible energy (MJ/kg) 15.1 18.6 

Cholesterol (% weight) 0 0.15 

Casein (acid) (g/kg) 140 180 

Sucrose (g/kg) 100 341 

Clarified butter (ghee) g/kg 0 200 

Wheat starch (g/kg) 472 82 

Dextrinized starch (g/kg) 155 0 

Iron (mg/kg) 75 75 

High fructose corn syrup in drinking water (g/L) 0 42 

 

At 41 weeks of age, mice were weighed. After a five hour fast, mice received an 

intraperitoneal injection of either 0.75 mU/g humulin R insulin (Eli-Lilly, Indianapolis, USA) 

in sterile 0.9% sodium chloride (0.15 mU/µL), (Pfizer, New York, USA) or 5 µL/g 0.9% 

sodium chloride alone. After ten minutes, mice were sacrificed as previously described 

[147]. 

Whole liver and epididymal fat pad weights were recorded. Liver and epididymal fat pad 

samples were fixed in formalin for histology. Liver samples were snap frozen in liquid 

nitrogen and stored at -80 oC. Liver and spleen samples were dried at 110 oC for 72 hours 

for measurement of tissue iron concentration. Blood was collected by cardiac puncture and 

serum was stored at -80 oC. Adipocytes were isolated from epididymal fat pads following 

collagenase-dispase digestion as previously described and stored at -80 oC [144].  

All experiments were performed with approval from the Animal Ethics Committee of the 

QIMR Berghofer Medical Research Institute and were conducted in accordance with the 
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NHMRC code for the care and use of animals for scientific purposes. Mice were housed in 

a temperature controlled environment (23 oC) in a 12:12 hour light: dark cycle. All authors 

had access to the study data and reviewed and approved the final manuscript. 

Glucose tolerance tests 

Glucose tolerance tests were performed one week prior to sacrifice, at 40 weeks of age. 

After a five hour fast, mice were given 1 g/kg glucose via the intraperitoneal route. Tail vein 

sampling was performed at 0, 15, 30, 60 and 120 minutes and blood glucose was 

measured using an Accu-Chek Performa II hand-held glucometer (Roche, Basel, 

Switzerland). 

Hyperinsulinemic-euglycemic clamp studies 

Hyperinsulinemic–euglycemic clamps were performed as previously described in 6 hour-

fasted mice [148]. An initial two minute-priming dose of insulin (150 mU/kg/min) was 

followed by a constant infusion at a rate of 15 mU/kg/min. Maintenance of euglycemia was 

achieved by a variable infusion of 25% glucose solution. Steele’s steady-state equation 

was used to calculate glucose turnover. 

Tissue iron concentration 

Hepatic and splenic iron concentrations were measured as previously described [147]. 

Adipocyte iron concentration was performed on isolated adipocytes by atomic absorption 

spectroscopy (AAS). Approximately 100 mg of adipocytes for each animal were weighed 

and then dried down at 60 oC for 60 hours and 100 µL concentrated nitric acid was added. 

Samples were then incubated at 60 oC for 30 minutes, before dilution 1:5 with zero 

standard (0.2% nitric acid). Standards over a range of 0-25 µmol/L were prepared using 

iron pure single element standard 1000 mg/L iron in 2% nitric acid (Perkin Elmer, 

Waltham, USA). All samples (including standards, quality control and analytical samples) 

were further diluted 1:3 with 10g/L palladium matrix modifier for graphite furnace AAS 

(Merck Millipore, Darmstadt, Germany). AAS was performed at a wavelength of 372nm 

using an AA280Z, Zeeman Atomic Absorption Spectrometer (Varian, Palo Alto, USA) with 

a GTA 120 Graphite Tube Atomizer (Agilent Technologies, Santa Clara, USA). Zeeman 

background correction was used. The final results were expressed per gram wet weight. 

 

 



105 
 

RNA extraction, real time quantitative (RT-qPCR) and DNA electrophoresis 

RNA was extracted from liver and adipocyte homogenates using Trisure reagent (Bioline, 

London, UK). Samples were treated with DNAse 1 (Invitrogen, Carlsbad, USA) and cDNA 

was synthesized from 1 µg RNA (liver) and 500 ng RNA (adipocytes) using a Sensifast 

cDNA synthesis kit (Bioline).  For RT-qPCR, a ViiA7 real-time PCR machine (Invitrogen) 

with a SensiFAST SYBR Lo-ROX Kit was used (Bioline). Samples underwent thermal 

cycling as follows: 95 oC for 2 minutes then 40 cycles at 95 oC for 5 seconds followed by 

63 oC for 20 seconds prior to a melt curve analysis. Relative mRNA expression was 

determined by calibration of Ct values to standard curve of pooled cDNA samples and 

normalized to the geometric mean of three reference genes (basic transcription factor-3 

(Btf3), glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and beta-2-microglobulin (β2-

mg) for liver samples and RNA Polymerase II Subunit A (Polr2a), Beta-actin and 

hypoxanthine guanine phosphoribosyl transferase (Hprt) for adipocyte samples. Primer 

sequences are provided in Table 5.2. 

Table 5.2: RT-qPCR primer sequences (5’ to 3’) 
 

 Forward primer Reverse primer 

Tfr1 GAGGCAGACCTTGCACTCTT TGACTGAGATGGCGGAAAC 

Fpn1 GCCACTGCGATCACAATCC TGGAGTTCTGCACACCATTGAT 

Hamp1 TTGCGATACCAATGCAGAAG GGATGTGGCTCTAGGCTATGTT 

Adiponectin GGAGATGCAGGTCTTCTTGG TCCAGGCTCTCCTTTCCTG 

Leptin GCAGTGCCTATCCAGAAAGTCC GGAATGAAGTCCAAGCCAGTGAC 

Resistin CATGCCACTGTGTCCCATCGAT ACTTCCCTCTGGAGGAGACTGT 

Rbp-4 TGTAGCCTCCTTTCTCCAGCGA ACAGGTGCCATCCAGATTCTGC 

Β2-mg CTGATACATACGCCTGCAGAGTTAA ATGAATCTTCAGAGCATCATGAT 

Btf-3 TGGCAGCAAACACCTTCACC AGCTTCAGCCAGTCTCCTTAAAC 

Gapdh TCCTGCACCACCAACTGCTTAGC GCCTGCTTCACCACCTTCTTGAT 

Polr2a AGCTGGTCCTTCGAATCCGC CTGATCTGCTCGATACCCTGC 

Beta-actin CATTGCTGACAGGATGCAGAAGG TGCTGGAAGGTGGACAGTGAGG 

Hprt GGACTGATTATGGACAGGA GAGGGCCACAATGTGATG 

Hmox1 CACTCTGGAGATGACACCTGAG GTGTTCCTCTGTCAGCATCACC 

 

For confirmation of adipocyte-specific ferroportin knockout, 10µl of adipocyte Fpn1 DNA 

amplification product, created using primers flanking exons 6 and 7 (Table 5.2) (thermal 
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cycling: 95 oC for 2 minutes then 40 cycles at 95 oC for 5 seconds followed by 63 oC for 45 

seconds) was mixed with 2 µl of 6X DNA loading buffer (New England Biolabs, Ipswich, 

USA). Samples were electrophoresed at 110 V for 40 minutes in a 1.5% agarose gel 

(Bioline) mixed with Sybr safe buffer (Invitrogen). The products were visualized on an 

ImageQuant LAS 500 machine (GE Healthcare Life Sciences, Little Chalfont, UK).  

Immunoblotting 

Eight µL of 1:1000 mouse serum was electrophoresed on 2% Metaphor Agarose gels 

(Lonza, Basel, Switzerland) for 75 minutes at 75 V. Protein was transferred onto 

polyvinylidene fluoride (PVDF) membranes (Biorad, Hercules, USA) over 60 minutes at 

100 V. Blocking was performed using 5% skim milk powder. A 1:10,000 dilution of primary 

antibody against adiponectin (MAB3608, Merck Millipore) was applied to the membranes. 

A 1:50,000 dilution of goat anti-mouse horseradish peroxidase antibody (Invitrogen) was 

applied as secondary antibody. Visualization was performed using a Supersignal West 

Femto chemiluminescent kit (Thermo Fisher Scientific, Waltham, USA) on an ImageQuant 

LAS 500 machine (GE Healthcare Life Sciences). 

Histological assessment and hepatic hydroxyproline assays 

Formalin fixed samples of liver and epididymal fat pad (EFP) were embedded in paraffin. 

Liver sections were stained with Hematoxylin and Eosin (H&E) for assessment of 

steatohepatitis and Sirius Red for assessment of fibrosis. Scoring was performed 

according to criteria established by Kleiner et al [84]. Further liver sections were stained 

with Oil Red O and percentage area stained was measured using ImageJ software, 

version 2. EFP sections were stained with H&E and the absolute count of macrophage 

clusters over ten high power fields (x400) was determined. Additional EFP sections were 

stained with 3,3'-diaminobenzidine (DAB) enhanced Perls’ stain and Eosin counterstain. 

The average count of iron granules within adipocytes in five adjacent high power fields 

(x400 magnification) was determined. Small iron granules were counted individually 

(score=1), granules filling the whole cell scored 10. All histological assessments were 

performed by an expert histopathologist blinded to study group. Photomicrographs were 

created using a MicroPublisher 3.3 RTV camera (Q Imaging, Surrey, Canada) and a 

Biological System Microscope CX41 (Olympus, Tokyo, Japan). Hepatic hydroxyproline 

assay was performed as previously described.[149] 
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Statistical analysis 

Statistical analysis was performed using GraphPad Prism software, version 7.03 

(GraphPad, San Diego, USA). Hyperinsulinemic-euglycemic clamp data and glucose 

concentrations during glucose tolerance tests were analyzed using two-tailed Student’s t-

tests. For liver histology scoring, Mann-Whitney tests were used to compare genotypes for 

each diet. For all remaining data, two-way ANOVA was used to assess the effect of diet 

and genotype. If a significant interaction (p<0.05) was found, Sidak’s multiple 

comparison’s test was used to compare between genotypes for each diet and between 

diets for each genotype. In cases in which no interaction was found, p values for the diet 

and genotype effect are indicated. Data presented on box and whisker plots show bars 

representing the median and interquartile range with whiskers representing the maximum 

and minimum values. 

Results 
 

Fast food diet was associated with increased body, liver and epididymal fat pad 

weights.  Initial body weight was comparable across all four groups (all non-significant 

(NS), Sidak’s multiple comparisons test, data not shown). Consistent with the description 

of the fast food diet model [25], mice fed with the fast food diet had greater final body 

weight (p<0.0001) and liver weight (p<0.0001, two-way ANOVA) (Fig. 5.1). EFP weight 

was higher in both genotypes with fast food diet (p=0.0001 Flox mice, p<0.0001 FKO 

mice, Sidak’s multiple comparisons test) (Fig. 4.1).  

Figure 5.1: Tissue and body weights.  

(A) Total body weight. Total body weight was increased in in animals fed the fast food diet (FFD), P<0.0001, genotype 

effect was not significant (NS, two-way ANOVA) (B) Liver weight. Liver weight was increased in animals fed FFD, 

P<0.0001, gene effect was NS, (two-way ANOVA) (C) Epididymal fat pad (EFP) weight. There was a significant 

interaction between diet and genotype effects (P=0.03, two-way ANOVA). Post-hoc analysis demonstrated lower EFP 

weight in FKO mice compared to Flox mice fed FFD (P=0.02) and increased weight with FFD diet for both Flox and FKO 

mice (P=0.0001 and P<0.0001 respectively, Sidak’s multiple comparisons test) n = 8-12 per group. 
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FKO mice demonstrate successful selective adipocyte knockout of ferroportin in 

adipocytes, but not in other tissues. Fpn1 primers targeting sequences in exons 5 and 

8 which flank the Fpn1 loxP sites predicted amplification products of 1048 base pairs (bp) 

for the intact gene and 163bp for Cre-recombinase-deleted Fpn1 gene. DNA 

electrophoresis of Fpn1 qRT-PCR products from isolated adipocytes demonstrated a clear 

163 bp band in all 20 samples of FKO mice and no 163bp band in all 24 samples in Flox 

mice, indicating adipocyte Fpn1 deletion in FKO, but not in Flox mice. A representative gel 

is shown in Fig. 5.2A. In all liver samples, Flox (n=9), FKO (n=8) and all spleen samples 

Flox (n=7), FKO (n=14), the 163 bp band was absent whereas a 1048 bp band was 

present indicating a lack of Cre recombinase effect in liver and spleen, irrespective of 

genotype. 
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Figure 5.2: Adipocyte-specific ferroportin knockout does not alter adipocyte iron 

phenotype.  

(A) Representative DNA electrophoresis blot of adipocyte Fpn1 RT-PCR products showing the predicted 163bp band in 

adipocytes from FKO but not Flox mice. (B) TfR1 mRNA expression. Diet and genotype effects were both NS (two-way 

ANOVA) (n = 8-12 per group). (C) Adipocyte iron concentration. Diet and genotype effects were both NS (two-way 

ANOVA) (n = 8-12 per group).  (D) Quantified adipocyte iron granules. Mean count of granules of iron in five adjacent 

high power fields (x400 magnification). Diet and genotype effects were both NS (two-way ANOVA) (n = 8-12 per group).  

(E-H) Perls’ staining of epididymal fat pads. Representative light microscopy sections are shown of Eosin and DAB 

enhanced Perls’ stained sections of epididymal fat pads with arrows indicating small iron granules (x 400 magnification) 

(E) Flox control diet. (F) Flox fast food diet. (G) FKO control diet. (H) FKO fast food diet (n = 7-12 per group). 

 

Adipocyte-specific ferroportin deletion does not alter adipocyte iron phenotype. All 

three measures of adipocyte iron loading in adipocytes consistently showed no effect of 

Fpn1 deletion on iron phenotype (Fig. 5.2B-H). Quantification of Tfr1 mRNA as an 

inversely related surrogate for cellular iron concentration found no genotype effect (NS, 

two-way ANOVA) (Fig. 5.2B). Similarly, adipocyte iron concentration by atomic absorption 

spectroscopy was not altered by Fpn1 deletion (NS, two-way ANOVA) (Fig. 5.2C). 

Histologic assessment of adipocyte iron granules using DAB-enhanced Perls’ stain found 
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that iron granule numbers were not increased in FKO mice (NS, two-way ANOVA) (Fig. 

5.2D-H). 

Fast food diet leads to reduced tissue iron concentrations via a hepcidin-

independent mechanism. Hepatic iron concentration (HIC) was reduced by fast food diet 

in FKO mice (p<0.0001, Sidak’s multiple comparison test) (Fig. 5.3A). Reduced HIC with 

fast food diet does not appear to be explained by an increase in Hamp1 (encoding 

hepcidin) mRNA, as Hamp1 mRNA levels were substantially reduced in fast food diet mice 

in both genotypes (p<0.0001, two-way ANOVA) (Fig. 5.3B). As HIC is an established 

regulator of hepcidin transcription [36, 38], we normalized Hamp1 mRNA to HIC and found 

markedly reduced Hamp1/HIC levels with fast food diet, likely indicating an appropriate 

compensatory Hamp1 response to reduced HIC (p<0.0001, two-way ANOVA) (Fig. 5.3C). 

Splenic iron concentration was also reduced by fast food diet (p<0.0001, two-way ANOVA) 

(Fig. 5.3D). 

Figure 5.3: Fast food diet leads to reduced tissue iron concentrations via a hepcidin-

independent mechanism  

(A) Hepatic iron concentration (HIC). There was a significant interaction between diet and genotype (P=0.03, two-way 

ANOVA). Post hoc analysis demonstrated significantly lower HIC in FKO animals fed fast food diet compared to control 

diet (P<0.0001, Sidak’s multiple comparisons test). (B) Hepatic Hamp1 mRNA expression. Hepatic Hamp1 mRNA was 

reduced by fast food diet (P<0.0001). Genotype effect was NS. (two-way ANOVA). (C) Hepatic Hamp1 mRNA/HIC. 

Hepatic Hamp1 mRNA/HIC ratio was reduced by fast food diet (P<0.0001). Genotype effect was NS. (two-way ANOVA). 

(D) Splenic iron concentration. Splenic iron concentration was reduced by fast food diet (P<0.0001). Genotype effect was 

NS (two-way ANOVA) (n= 8-12 per group). 
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The fast food diet model is associated with adipose tissue macrophage 

accumulation. Clusters of macrophages, resembling crown-like structures [150] (as 

indicated by arrows in Fig. 5.4C, 5.4E) were frequently observed in adipose tissue sections 

from fast food diet-fed mice but not in their control diet counterparts (p<0.0001, two-way 

ANOVA). Fpn1 deletion had no effect on the numbers of macrophage clusters (NS, two 

way ANOVA) (Fig. 5.4). 

Figure 5.4: Fast food diet is associated with adipose tissue macrophage 

accumulation  

(A) Number of macrophage clusters. Absolute count over ten high power fields. Macrophage clusters were increased by 

fast food diet (P<0.0001, two-way ANOVA). (B-E) Light microscopy of representative sections of Hematoxylin and Eosin 

stained epididymal fat pads (x 400 magnification). (B) Flox control diet. (C) Flox fast food diet. (D) FKO control diet. (E) 

FKO fast food diet. Arrows indicate examples of macrophage clusters. (n = 8-12 per group) 

 

 

Adipokine expression is unchanged in FKO mice. There was no effect of Fpn1 deletion 

on mRNA quantities of the four studied adipokines (adiponectin, leptin, resistin and RBP-4) 

in both non-insulin stimulated (basal, fasted state) animals (Fig. 5.5A-D) and in insulin 

stimulated animals (Fig. 5.6A-D) (all NS, two way ANOVA). Fast food diet led to increased 

leptin mRNA quantities in both basal-state and insulin stimulated animals (p=0.03 and 

p=0.01 respectively, two-way ANOVA). Fast food diet was associated with reduced 

adiponectin and resistin mRNA in insulin stimulated animals (p=0.0003 and p=0.01 

respectively, two-way ANOVA). A reduction in RBP-4 mRNA was seen in basal-state 
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animals (p=0.01, two way ANOVA) and insulin stimulated FKO animals (p=0.0008, Sidak’s 

multiple comparisons test). Total serum adiponectin was unaffected by diet or genotype in 

basal-state and insulin-stimulated animals (NS in all cases, two way ANOVA) (Fig. 5.5E, 

F). There were also no significant differences with diet or genotype in basal state or 

insulin-stimulated animals for high molecular weight (HMW) adiponectin or HMW/total 

adiponectin ratios (all NS, two-way ANOVA, data not shown).  

Figure 5.5: Adipokine expression is unchanged in FKO mice.  

(A-D) Relative mRNA expression of the adipocyte fraction of epididymal fad pads for non-insulin stimulated animals. (A) 

Adiponectin mRNA. Diet and genotype effects were both NS (two-way ANOVA). (B) Leptin mRNA. Fast food diet was 

associated with increased Leptin mRNA (p=0.03, two-way ANOVA). (C) Resistin mRNA. Diet and genotype effects were 

both NS (two-way ANOVA).  (D) RBP-4 mRNA. Fast food diet was associated with decreased RBP-4 mRNA (p=0.01, 

two-way ANOVA). (E) Immunoblotting densitometry of total serum adiponectin (non-insulin stimulated only is represented 

here). Diet and genotype effects were both NS (two-way ANOVA). (n = 4-6 per group)  (F) Representative immunoblots 

of serum adiponectin (presented blot includes both non-insulin and insulin stimulated animals as indicated: S=Saline 

(vehicle), I= Insulin). 
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Figure 5.6: Adipokine expression is unchanged in insulin stimulated FKO mice  

(A-D) Relative mRNA expression of the adipocyte fraction of epididymal fad pads (insulin stimulated state). (A) 

Adiponectin. Adiponectin mRNA was reduced by fast food diet (p=0.0003, two-way ANOVA). Genotype effect NS. (B) 

Leptin. Leptin mRNA was increased by fast food diet (p=0.01, two-way ANOVA). Genotype effect NS. (C) Resistin. 

Resistin mRNA was reduced by fast food diet (p=0.01, two way ANOVA). Genotype effect NS. (D) RBP-4. There was a 

significant interaction between diet and genotype (p=0.049). Post-hoc analysis found RBP-4 mRNA was reduced by fast 

food diet among FKO animals (p=0.0008, Sidak’s multiple comparisons test). In Flox mice the results were NS. (n= 4-6 

per group). 

 

Adipocyte-specific ferroportin deletion does not influence glucose homeostasis. 

Intraperitoneal glucose tolerance tests found no significant differences in blood glucose 

concentrations for both diets at every time-point except 120 minutes (Fig. 5.7A, B). For 

control diet-fed Flox mice, mean glucose at 120 minutes was 16.1 mmol/L vs 12.8 mmol/L 

in FKO mice (p=0.02, Student’s t-test). In fast food diet-fed Flox mice, mean glucose at 

120 minutes was 13.8mmol/L vs 11.3mmmol/L in FKO mice (p=0.046, Student’s t-test) 

(Fig. 5.7A, B). Area under the curve (AUC) was measured above the minimum glucose 

value of 7.7 mmol/L as a baseline. Both diet and genotype effects for AUC were non-

significant (two-way ANOVA, data not shown). For hyperinsulinemic-euglycemic clamp 

studies performed on fast food diet-fed mice, mean body weight between the two groups 

was comparable 42.8 g (Flox) vs 43.4 g (FKO) (NS, Student’s t-test, Fig. 5.7C). Flox mice 

had similar basal plasma glucose levels to FKO mice (9.3 vs 9.9 mmol/L) and clamp 

glucose levels (8.3 vs 8.4 mmol/L), both NS, Student’s t-test (data not shown). Both 

groups of mice had substantial rises in mean plasma insulin levels during the clamp 

studies compared with basal levels (8.3 fold increase in Flox mice (15.7 vs 1.9 ng/ml) and 
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8.5 fold increase in FKO mice (19.8 vs 2.3 ng/ml), both p<0.0001, Student’s t-test, data not 

shown). Overall, there was no evidence of an effect of FKO on glucose homeostasis. 

Mean glucose infusion rate was 122.9 µmol/min/kg in Flox mice vs 121.7 µmol/min/kg in 

FKO mice (NS, Student’s t-test, Fig. 5.7D). Mean rate of whole body glucose 

disappearance was 202.5 µmol/min/kg in Flox mice vs 198.8 µmol/min/kg in FKO mice 

(NS, Student’s t-test, Fig. 5.7E). Under clamp conditions of hyperinsulinemia, both groups 

to a similar extent, failed to suppress endogenous glucose production, a measure of 

hepatic gluconeogenesis, 79.6 µmol/min/kg in Flox mice vs 77.2 µmol/min/kg in FKO mice 

(NS, Student’s t-test, Fig. 5.7F). 

Figure 5.7: Adipocyte specific ferroportin deletion does not influence glucose 

homeostasis  

(A + B) Glucose tolerance tests at 0, 15, 30, 60, 120 mins. Mean with 95% confidence intervals. * indicates p<0.05 at a 

single time-point (Student’s t-test) (n = 8-12 per group). (A) Control diet (B) Fast food diet (C-F) Hyperinsulinemic-

euglycemic clamp studies (n= 5 per group). Differences between Flox and FKO groups were all NS (Student’s t-test). C) 

Body weight. (D) Glucose infusion rate. (E) Rate of whole body glucose disappearance. (F) Endogenous glucose 

production. 

 

Fast food diet, but not adipocyte-specific ferroportin deletion, leads to 

steatohepatitis. Fast food diet in both genotypes led to steatohepatitis, characterized, by 

severe (grade 3) steatosis with lobular inflammation and prominent hepatocyte ballooning 

with perisinusoidal and periportal fibrosis. Control diet-fed mice of both genotypes typically 

had simple steatosis with few balloon cells and an absence of lobular inflammation and 

hepatic fibrosis. A summary of the histology findings is shown in Table 5.3 and 

representative liver sections stained with H&E are shown in Fig. 5.8. In both control diet 
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and fast food diet-fed animals, there were no significant differences between genotypes for 

steatosis grade, lobular inflammation, ballooning or fibrosis (all NS, Mann-Whitney tests).  

Increased percentage area of steatosis as quantified by Oil Red O staining was found in 

animals fed fast food diet (p=0.0001), whereas there was no difference between Flox and 

FKO genotypes (NS, both two-way ANOVA, Fig. 5.8E). Hepatic Heme oxygenase-1 

(Hmox1) mRNA, a marker of oxidative stress response [151], was increased by fast food 

diet (p<0.001), but unaffected by genotype (NS, both two-way ANOVA, Fig. 5.8F). Hepatic 

hydroxyproline was significantly increased by fast food diet (p<0.001), but not by FKO (NS, 

two-way ANOVA, Fig. 5.8G). 

Table 5.3: Increased liver injury with fast food diet, but not with Fpn1 deletion.  

NAFLD activity score (NAS). Median score (range) for NAS (score: 0-8), macrovesicular steatosis (grade 0-3), lobular 

inflammation (grade 0-3), ballooning (grade 0-2), fibrosis (grade 0-4). P-value is the result of Mann-Whitney tests 

comparing genotypes for each diet. (n = 8-12 per group) 

       Control diet       Fast Food Diet  

 

 Flox  FKO P   Flox   FKO P 

NAS (0-8) 4(0-6)  2 (0-5) ns  6(5-7) 6(5-7) ns 

Steatosis (0-3) 2.5(0-3)  1.5(0-3) ns  3(3-3) 3(3-3) ns 

Lobular inflammation (0-3) 0(0-1) 0(0-1) ns  1(0-2) 1(0-2) ns 

Ballooning (0-2) 1.5(0-2) 0.5(0-2) ns  2(2-2) 2(2-2) ns 

Fibrosis (0-4) 0(0-1) 0(0-2) ns  2(1-2) 2(2-2) ns 
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Figure 5.8: Fast food diet, but not genotype leads to steatohepatitis.  

(A-D) Light microscopy of representative liver sections stained with Hematoxylin and Eosin (x 200 magnification). (A) 

Flox control diet (B) Flox fast food diet (C) FKO control diet (D) FKO fast food diet (E) Percentage area of liver sections 

stained with Oil Red O. Oil red O staining was increased by fast food diet (p=0.0001), but unaltered by genotype (NS, 

both two-way ANOVA) (F) Liver Hmox1 mRNA. Fast food diet led to increased Hmox1 mRNA (p<0.001), but there was 

no genotype effect (NS, two way ANOVA). (G) Hepatic hydroxyproline. Hydroxyproline was increased by fast food diet 

(p<0.001) but was unaffected by genotype (NS, two-way ANOVA). (n=8-12 per group) 
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Discussion 
 

In this study, we have demonstrated effective adipocyte-specific ferroportin deletion using 

an Adipoq-Cre recombinase model. Our study demonstrates three key findings. Firstly, 

ferroportin deletion did not result in any alteration of adipocyte iron phenotype, glucose 

homeostasis, adipokine regulation or liver injury. Secondly, we have shown that the fast 

food diet is associated with reduced hepatic and splenic iron concentrations with a 

compensatory hepcidin response. Thirdly, we confirm the fast food diet model’s utility as a 

model for NASH and have identified adipose tissue macrophage infiltration which further 

validates this model. 

We did not find an adipocyte iron loading phenotype despite successful Fpn1 deletion in 

FKO mice. There are several possible explanations for this. Firstly, ferroportin may not 

have a significant role in adipocyte iron homeostasis. However, it is not known whether 

iron importers such as the divalent metal transporter-1 (DMT-1) or an unidentified 

alternative export mechanism may have more important roles in the regulation of iron 

content in adipocytes. Secondly, it is possible that the FKO mice would require a longer 

period of dietary iron loading to generate such a phenotype even in the absence of 

adipocyte ferroportin. As such, it may be difficult to determine the importance of adipocyte 

ferroportin to humans who may accumulate iron over many years.  

Gabrielsen et al utilized the AP2-Cre Fpnfl/fl model and reported an iron loading phenotype 

on the basis of reduced quantities of adipocyte Tfr1 mRNA leading to reduced adiponectin 

transcription and insulin resistance [17]. However, data regarding direct iron assay or 

histologic assessment of iron were not presented. Tfr1 mRNA quantity is expected to be 

reduced in iron loaded cells due to a negative feedback mechanism involving iron-

responsive elements in the Tfr1 gene 3’ untranslated region [143]. However Tfr1 mRNA is 

a surrogate that is not well validated as a measure of iron loading and particularly not in 

adipocytes.  

The disparity between the study by Gabrielsen et al and ours could relate to the difference 

in Cre recombinase site. In addition to its expression in adipocytes, the AP2-Cre has been 

reported to have some degree of expression in macrophages [26, 27, 144]. Although 

altered Fpn1 mRNA quantities were not seen in splenic extracts by Gabrielsen et al, the 

Adipoq-Cre has been regarded as a more specific Cre recombinase for adipocytes [17, 

26]. Differences between the two studies may also relate to a difference in mouse strain. 

The strain was reported as either “129/SvEvTac or C57BL6” by Gabrielsen et al. 
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Regardless, it appears that if Cre-lox models of adipocyte ferroportin deletion are to be 

used as models of adipocyte iron loading, then the iron loading phenotype needs to be 

more clearly demonstrated. 

Glucose homeostasis was assessed in this study using intra-peritoneal glucose tolerance 

tests and hyperinsulinemic-euglycemic clamp studies. FKO mice had lower blood glucose 

concentrations at the 120 minute time-point, but not at other time-points or on the AUC 

analysis, suggesting that the significance of this result in isolation is doubtful, particularly 

given the lack of observed change in iron phenotype. Glucose infusion rate and other 

measures in the clamp studies found no difference between genotypes, indicating that 

adipocyte-specific ferroportin knockout does not affect insulin resistance in this model. 

We have demonstrated reduced hepatic and splenic iron concentrations as a result of the 

fast food diet suggesting reduced body iron stores as a consequence of high calorie diet. 

The hormone hepcidin is considered the key regulator of body iron homeostasis [152]. 

Hepcidin production is reported to be raised in individuals with NAFLD [153]. It therefore 

might be expected that low HIC in these mice could be explained by increased Hamp1 

expression leading to reduced intestinal iron absorption following the internalization of 

enterocyte ferroportin [36]. However, Hamp1 expression was markedly decreased in these 

mice suggesting appropriate Hamp1 response to reduced hepatic iron stores and is 

consistent with previous studies [24, 125, 147, 154]. These findings are also in keeping 

with the established association between iron deficiency and obesity in humans [111, 112]. 

Orr et al have shown that a high fat diet led to iron repartitioning with a reduction in HIC 

and an increase in adipocyte iron concentration via an unknown mechanism, although this 

was not seen in our model [24]. In our study, it was not technically possible to accurately 

measure iron concentrations in the stromal vascular fraction of the adipose tissue, due to 

the very low volume of these samples, but this would undoubtedly be very useful 

information if this could be reliably determined in future studies. 

The fast food diet model involves five months of exposure to a high calorie diet and high 

fructose corn syrup in drinking water in mice housed singly to mimic a sedentary lifestyle 

[25]. We have found this to be a reliable model for the generation of a phenotype of 

steatohepatitis and hepatic fibrosis as demonstrated by expert histological assessment 

and supported further by quantification of Oil Red O, Hmox1 mRNA and hepatic 

hydroxyproline. Furthermore, the high residual endogenous glucose production during 

hyperinsulinemic clamp studies suggests profound insulin resistance in this model, which 
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is a highly appropriate feature for a model of human NASH. It was unexpected however 

that our mice fed control diet should develop significant amounts of simple steatosis. This 

may be partly explained by a number of factors including single housing leading to a 

sedentary existence and a relatively advanced age of the mice. 

Adipose tissue macrophage infiltration is a hallmark of obesity and steatohepatitis in 

humans [21, 40]. We have shown that the fast food diet model generates a significant 

increase in adipose tissue macrophage infiltration with crown-like structures. This further 

validates the applicability of the fast food diet model for use in the study of NASH. We had 

considered that an increase in adipocyte iron in FKO mice might create an inflammatory 

state induced by oxidative stress and lead to macrophage infiltration. However, given the 

observed lack of effect of FKO on iron phenotype, it seems unsurprising that genotype did 

not affect macrophage infiltration in this model. In our study, we found that EFP weight 

was lower in FKO mice, although this was only seen in animals fed the control and not the 

fast food diet. In the context of unaltered iron phenotype and lack of effect in fast food diet 

fed mice, the significance of this result remains uncertain. When we studied adipokine 

expression in our model, we found increased adipocyte leptin mRNA and decreased RBP-

4 mRNA with fast food diet. These findings are broadly consistent with human studies of 

NASH, although conflicting reports exist in the literature [16, 155, 156].  

In summary, our findings indicate that the physiological role of ferroportin in adipocytes 

may be limited and other factors involved in iron homeostasis may be more important in 

these cells. As adipocyte iron appears to play a key role in physiological process such as 

appetite regulation and pathophysiological process such as NAFLD and diabetes, a 

greater understanding of iron metabolism in these cells is clearly a target for future studies.  

 

 

 

 

 

 

 



120 
 

Chapter 6 : Iron inhibits the secretion of apolipoprotein E in cultured 
human adipocytes 
 

The previous chapter sought to examine the role of in vivo adipocyte iron loading. In this 

chapter, focus shifts to an in vitro model. As discussed in detail in Chapter 2, there is an 

emerging body of evidence that associates adipose tissue iron with adipose tissue 

dysfunction relevant to NAFLD.[7, 34] In particular, a number of adipokines have been 

shown to be regulated by iron, however the overall effects of iron on the adipocyte 

secretome have not been established.[17, 18] In this chapter, the development of a model 

of iron loading in cultured human adipocytes is described. A proteomic approach to 

explore the effects of iron on the adipocyte secretome relevant to NAFLD is used. 

This chapter is published as an abridged version (Research Letter) with detailed methods 

as supplementary material in Cellular and Molecular Gastroenterology and Hepatology. In 

this chapter the research is presented in its original, conventional manuscript form. The 

abridged version in press with Cellular and Molecular Gastroenterology and Hepatology is 

included as an Appendix, although the content is very similar. 

Britton LJ, Bridle KR, Jaskowski L, He J, Ng C, Ruelcke J, Mohamed A, Reiling J, 

Santrampurwala N, Hill MM, Whitehead JP, Subramaniam VN, Crawford DHG 

Iron inhibits the secretion of apolipoprotein E in cultured human adipocytes 

Cellular and Molecular Gastroenterology and Hepatology 2018 Apr 16;6(2):215-217 
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Abstract 
 

Background & Aims: Non-alcoholic steatohepatitis (NASH) is characterized by adipose 

tissue dysfunction with insulin resistance and the dysregulation of adipokines. Recent data 

indicate increased concentrations of iron in mouse model of obesity and a role for iron in 

the development of adipose tissue dysfunction, however the molecular mechanisms have 

not been established. Methods: To test the hypothesis that iron modulates adipokine 

release, we performed a quantitative proteomics analysis of the human Simpson-Golabi-

Behmel Syndrome (SGBS) adipocyte secretome following 48 hours of treatment with ferric 

ammonium citrate. Results: Treatment with 100 μM iron significantly increased intracellular 

iron concentration, however cellular viability and total protein secretion were not altered. A 

total of 338 proteins were quantified by SILAC (stable isotope labelling with amino acids in 

cell culture). Iron treatment led to differential secretion of 60 of these proteins (>2-fold 

change and p-value <0.05). We focused on iron regulation of apolipoprotein E (ApoE) 
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secretion as ApoE has been shown to have a protective role in promoting adipogenesis 

and, in mice fed a Western diet, has been shown to protect against steatohepatitis. 

Interestingly, while iron reduced secreted ApoE by 58% (p=0.001) and 76% (p=0.007), as 

measured by SILAC and western blot respectively, iron treatment increased intracellular 

ApoE levels by more than 11-fold (p=0.0005), without causing a significant change in 

mRNA levels. Conclusions: These findings indicate that ApoE secretion is inhibited by iron, 

causing ApoE to accumulate within adipocytes. Identifying the molecular mechanisms of 

iron-induced inhibition of ApoE secretion from adipocytes may reveal novel therapeutic 

strategies for improving adipocyte function in NASH. 

Background 
 

Non-alcoholic fatty liver disease (NAFLD) is estimated to affect over one billion individuals 

worldwide.[1]  It is mostly unclear at present, why some of these individuals develop liver 

failure or liver cancer and yet others do not. Greater insights into disease pathogenesis 

and regulation of liver injury will be essential in order to develop novel effective treatments. 

Much of the pathogenesis of NAFLD has been linked to dysfunctional adipose tissue.[21] 

Inflamed adipose tissue, characterized by macrophage infiltration, predisposes towards 

insulin resistance leading to dysregulated lipolysis of adipose tissue triglyceride by 

hormone sensitive lipase.[21, 42] This in turn increases free fatty acid flux to the liver and 

promotes hepatic steatosis and liver injury.[45, 46] In addition, adipose tissue, as a major 

endocrine organ, is responsible for the secretion of adipokines which are defined as 

“polypeptides that are secreted in the adipose tissue in a regulated manner.”[16] These 

adipokines can have local, paracrine effects on adipose tissue or endocrine effects on 

organs such as the liver. 

Recent data have shown markedly increased adipocyte iron concentration in a high fat diet 

mouse model of obesity.[24] Furthermore, iron has been proposed as a key determinant of 

adipose tissue function and has been linked to the dysregulation of a number of 

adipokines.[17, 19] Of these, the insulin sensitizing and hepato-protective adipokine, 

adiponectin, has been shown in tissue culture and rodent models to be down-regulated at 

a transcriptional level by iron through altered acetylation of the forkhead transcription 

factor, Fox01.[17] Similarly, in a mouse model of dietary iron enrichment, serum 

concentrations of resistin, an adipokine associated with insulin resistance were increased 

via transcriptional up-regulation.[19] Iron has also been shown to increase lipolysis in in 

vitro models using both rat and mouse adipocytes.[92, 93] These effects on adipose tissue 
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biology point towards a potential pathogenic role of iron in the generation of insulin 

resistance and NAFLD.  However, the effect of iron on the majority of proteins in the 

adipocyte secretome has not been studied. 

In order to gain a greater understanding of the role of iron in adipokine dysregulation and 

identify novel treatment targets, we developed an in vitro human adipocyte model of 

cellular iron loading using differentiated Simpson-Golabi-Behmel Syndrome (SGBS) pre-

adipocytes. We utilized stable isotope labelled amino acids in cell culture (SILAC) to 

characterize changes in the adipocyte secretome in response to iron. This technique has 

enabled direct comparison of quantities of individual proteins in the adipocyte secretome in 

response to iron using a proteomics approach. This study, therefore provides a detailed 

analysis of the effect of iron on the human adipocyte secretome as a tool for the 

identification of novel treatment targets in NAFLD. 

Methods 
 

SGBS differentiation and iron treatment 

SGBS pre-adipocytes were a gift from Martin Wabitsch (University of Ulm, Germany) and 

were passaged, proliferated and differentiated at less than 50 generations in 12 well plates 

and 100 mm dishes as previously described.[157, 158] Cells were treated with 90 μg/ml 

heparin and 1 ng/ml fibroblast growth factor-1 (FGF-1) (both Sigma-Aldrich, St Louis, 

Missouri) throughout proliferation and differentiation. After 14 days of differentiation, cells 

were incubated with 0, 25, 100 or 500 μM ferric ammonium citrate (FAC) (Sigma- Aldrich) 

for 24 hrs. After this media was replaced with the same for a further 24 hrs to the end of 

experiment. 

RNA extraction and real-time quantitative PCR (RT-qPCR) 

RNA was extracted from treated SGBS adipocytes using a PureLink RNA mini kit 

(Invitrogen, Carlsbad, California). Complementary DNA was synthesized from 1 µg RNA 

using a Sensifast cDNA synthesis kit (Bioline, London, UK) after treatment with DNase 1 

(Invitrogen). Samples underwent thermal cycling using a ViiA7 real-time PCR machine 

(Invitrogen) with a Sensifast SYBR Lo-ROX Kit (Bioline). The following protocol was used: 

2 min at 95oC, then 40 cycles of 5 sec at 95oC alternating with 20 sec at 63oC, followed by 

a melt curve analysis. Relative mRNA quantities were determined by calibration of Ct 
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values to standard curve of pooled cDNA samples. Results were normalized to Ct values 

of Cyclophillin.  

Iron, cellular viability (MTS) and protein assays. 

Iron levels were quantified using a chromagen reagent method, described by Kohyama et 

al.[159] Cellular viability was assessed using a CellTiter 96 AQueous One Solution Cell 

Proliferation Assay (Promega, Madison, Wisconsin) according to the manufacturer’s 

instructions. Whole cell lysate and secretome samples underwent protein estimation using 

a Pierce BCA protein assay kit (Thermofisher Scientific, Waltham, Massachusetts).  

SILAC proteomics 

For SILAC labelling, SGBS pre-adipocytes were grown in SILAC DMEM: F12 media 

(Thermofisher Scientific) supplemented with dialyzed fetal bovine serum (Thermofisher 

Scientific,) and 22.81mg/L 2H4-Lysine and 36.88mg/L 13C6-Arginine (K4R6) or 22.81mg/L 

13C6
15N2-Lysine and 36.88mg/L 13C6

15N4-Arginine (K8R10). Incorporation of labelled amino 

acids was confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS) on 

tryptic peptides prepared from whole cell lysates. Cell pellets were lysed in 8M urea in 

100mM TEAB (Triethylamonium bicarbonate), and protein concentration estimated using 

Bradford assay (BioRad, Hercules, California). Thirty μg of cell lysate was reduced and 

alkylated by incubating samples for 30 min at 37oC with 2.5mM TCEP (tris(2-

carboxyethyl)phosphine) and then 5mM 2CAA (2-Chloroacetamide). Urea concentration 

was diluted to 1M with 100mM TEAB before adding 0.6 μg of trypsin. Samples were 

incubated overnight then acidified to 1% trifluoroacetic acid (TFA) and cleaned with OMIX 

C18 tips according to the manufacturers’ protocol (Agilent, Santa Clara, California). LC-

MS/MS and database searching was performed as described below. The percentage of 

peptides containing labelled amino acids was then calculated.  

Labelled (>97%) cells underwent differentiation to adipocytes as described above. At day 

14 post differentiation, cells were treated with vehicle (K4R6 cells) or 100 μM FAC (K8R10 

cells) for a further 48 hours using exactly equal volumes of media, replacing the media 

after 24 hrs. Media for secretome analysis was collected from K4R6 and K8R10 cells and 

mixed 1:1 (v/v) before centrifugation at 600 x G at 4oC for 10 min to remove cell debris. 

Supernatant was then concentrated using Amicon Ultra 15ml 10 kDa centrifugal filter units 

(Merck Millipore, Burlington, Massachusetts) in a fixed angle centrifuge at 5000 x G to 

provide approximately 1 ml samples of concentrated mixed secretome. Thirty g of protein 
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was separated on 10% SDS-PAGE gels to 10 mm. Protein visualisation, excision of bands 

and in-gel trypsin digest were performed using a semi-automated method as 

described.[160] A band corresponding to the same molecular weight as transferrin (media 

additive) was removed prior to digestion in order to provide a protein sample exclusively 

secreted from cultured adipocytes. 

Mass spectrometry 

A Q Exactive Plus Orbitrap Mass Spectrometer (Thermofisher Scientific), coupled with 

Easy-nLC 1000 and EASY-spray ion source (both Thermofisher Scientific), was used to 

analyze the digested peptides. Samples were loaded onto an EASY-Spray PepMap RSLC 

C18 2 µm column (50 cm x 75 µm ID), with a Nanoviper Acclaim C18 guard (75 µm x 2 

cm) (both Thermofisher Scientific). A 90 min method was run using a combination of Buffer 

A (0.1% Formic acid) and Buffer B (0.1% Formic acid: Acetonitrile). A two-step gradient 

was run comprising a 60 min gradient from 3% to 25% Buffer B and a 12 min gradient from 

25% to 40% Buffer B. Flow rate was at 250 nL/min. The mass spectrometer was 

programmed to acquire a full mass spectrometry (MS) resolution of 70,000 with an ACG 

target of 3x106 with a maximum injection time of 100 ms. The MS scan range was from 

350 to 1400 m/z. MS/MS was set to acquire a resolution of 17,500 with an ACG target of 

5x105 and maximum injection time of 55 ms. The loop count was set to 20 with a dynamic 

exclusion after 30 sec. 

 

Raw data was processed with Spectrum mill (Rev B.05.00.181 SP1, Agilent). Selected 

modifications included fixed carbamidomethylation of cysteine and SILAC labels (Arg 0-6-

10 Da Lys 0-4-8 Da) and variable oxidized methionine. Results were searched against the 

Human Uniprot database (downloaded 06/01/2015).[161] Trypsin was selected as digest 

enzyme, with two maximum missed cleavages allowed. The precursor mass tolerance was 

set at +/- 20 ppm and product mass tolerance was +/- 20 ppm.  

 

Immunoblotting 

Western blotting using whole cell lysate samples (10 μg) and 5 μL concentrated secretome 

samples was performed as previously described.[147] A 1:500 dilution of primary antibody 

against Apolipoprotein E (ApoE) (sc-53570, Santa Cruz, Dallas, Texas) was applied to the 

membranes. A 1:100,000 dilution of goat anti-mouse horseradish peroxidase antibody 

(Invitrogen) was applied as secondary antibody. ApoE whole cell lysate densitometry was 
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normalized against densitometry using beta-actin as a reference protein (1:2000 primary 

antibody) (Cat No. 4967, Cell Signaling, Danvers, Massachusetts) and 1:20,000 goat anti-

rabbit horseradish peroxidase antibody (Invitrogen). 

Statistical analysis 

For comparisons between the four concentrations of FAC, a one-way ANOVA analysis 

was used. In the event of a p value < 0.05, Dunnett’s multiple comparison test was used to 

compare vehicle (0 μM FAC) with each of 25, 100 and 500 μM FAC treated cells. Mass 

spectrometry proteomic data were analyzed using the online Quantitative Proteomics P-

value Calculator (QPPC) using no normalization and non-adjusted p-values.[162] For 

comparison of mRNA quantities and immunoblot densitometry between two groups, ratio 

paired t-tests were used. For enrichment analysis of significantly iron-regulated proteins, 

one-tailed Fisher’s exact tests were used. All authors had access to the study data and 

have reviewed and approved the final manuscript. 

Results 

 

We first sought to identify a suitable media concentration of FAC that would load iron into 

differentiated adipocytes without compromising cellular viability. We found that compared 

to vehicle both 100 μM and 500 μM FAC caused significant increases in cellular iron 

concentration (p=0.007 and p=0.006 respectively, Figure 6.1(a)). There was no effect of 

iron loading on cellular viability (MTS) assay, total mRNA, total whole cell lysate protein or 

total secretome protein (Figure 6.1 (b-d)). 
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Figure 6.1: Optimization of iron loading in SGBS cells  

(a) Iron assay, p=0.004 (one-way ANOVA), *indicates p<0.01 (Dunnett’s multiple comparisons test compared to 0μM 

FAC, n=2 per group). (b) Total RNA (non-significant (NS) by one-way ANOVA, n=3 per group). (c) Total lysate protein 

(NS by one-way ANOVA, n=3 per group). (d) Total secretome protein (NS by one-way ANOVA, n=3 per group). (e) 

Viability assay (MTS) (NS by one-way ANOVA, n=3 per group). 

 
   

Given these findings, we selected 100 μM FAC as the concentration to compare with 

vehicle in the secretome SILAC proteomic analysis. An overview of the workflow for the 

SILAC experiment is shown in Figure 6.2. A total of 338 proteins were quantified in the 

adipocyte secretome by SILAC proteomics. These are represented graphically as a 

volcano plot in Figure 6.3 and summarized in Table 6.1.  
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Figure 6.2: SILAC workflow 
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Figure 6.3: Volcano plot of relative signal intensity of proteins identified in the 

adipocyte secretome 

The x-axis denotes log 2 of the ratio of iron treated/vehicle treated cells, with proteins to the left of zero representing 

those downregulated by iron and the those to the right representing up-regulation by iron. The y-axis denotes statistical 

significance with a line representing p-value of 0.05. Proteins above this line have p<0.05. Those proteins containing 

signal peptide (as determined by signal peptide annotations on the Uniprot database) are shown in red. Those without 

signal peptide are shown in blue. 

 

Table 6.1: Summary of iron effects on the adipocyte secretome by SILAC 

proteomics.  

Number of proteins with a greater than 2-fold change are shown in parentheses. 

 

 Number of 
proteins down-

regulated 

Number of 
proteins up-

regulated 

Total  
(>2 fold 
change) 

Significant (p<0.05) 61 (53) 11 (7) 72 (60) 

Non-significant (p>0.05) 152 114 266 

Total 213 125 338 

 

To explore the relationships further between proteins that appear to be significantly 

dysregulated in the adipocyte secretome (greater than two-fold change and p<0.05), we 

performed a STRING network interaction analysis. This is represented graphically in 

Figure 6.4. This analysis highlighted central roles for Apolipoprotein E (APOE) and 

Adioponectin (ADIPOQ) which have been shown to have hepatoprotective effects in 
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NAFLD. However, major linked pathways of dysregulation relevant to NAFLD were not 

clearly identified.  

 

Figure 6.4: STRING pathway analysis of secreted proteins.  

STRING pathway network summary of secretome proteins with a greater than two fold change in signal intensity in 

response to iron and p<0.05. Each node represents an individual secretome protein, labelled by gene name (as indicated 

in Table 6.2). Line thickness of network edges indicates the strength of data supporting interactions between individual 

proteins. 
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We then manually reviewed Uniprot database descriptions of the 60 proteins with both a 

greater than two-fold change in response to iron and p-value < 0.05. This generated a list 

of 20 proteins of interest (highlighted in bold in Table 6.2). These proteins of interest and 

their synonyms were then entered into a Pubmed title/abstract search in association with 

NAFLD and its synonyms. This identified three proteins as candidate intermediates for 

iron-induced adipose tissue dysfunction in NAFLD. These proteins were adiponectin, 

apolipoprotein E (ApoE) and annexin A1.  

 

Table 6.2: List of SGBS secretome proteins with significantly altered signal intensity 

in response to iron.  

Proteins shown have a greater than 2-fold change in signal intensity in response to iron, with a p-value <0.05. Proteins 

highlighted in bold represent the 20 proteins of interest after review of Uniprot protein descriptions. 

 

Accession 
number 

Gene 
name 

Protein name Mean signal 
intensity 
ratio 
(iron/vehicle) 

Standard 
deviation 

P value 

Q8IX30 SCUBE3 Signal peptide, CUB 
and EGF-like domain-
containing protein 3 

0.026 0.016 0.001 

P61353 RPL27 60S ribosomal protein 
L27 

0.060 0.005 0.001 

Q9NQH7 XPNPEP3 Probable Xaa-Pro 
aminopeptidase 3 

0.076 0.004 0.001 

P07996 THBS1 Thrombospondin-1 0.083 0.047 0.001 

Q76M96 CCDC80 Coiled-coil domain-
containing protein 80 

0.090 0.031 0.001 

P78539 SRPX Sushi repeat-containing 
protein SRPX 

0.096 0.620 0.001 

Q9UHI8 ADAMTS1 A disintegrin and 
metalloproteinase with 
thrombospondin motifs 
1 

0.114 0.090 0.002 

Q92538 GBF1 Golgi-specific brefeldin 
A-resistance guanine 
nucleotide exchange 
factor 1 

0.118 0.024 0.004 

Q15063 POSTN Periostin 0.121 0.149 0.001 

P08238 HSP90AB1 Heat shock protein HSP 
90-beta 

0.125 0.038 0.004 

P24593 IGFBP5 Insulin-like growth 
factor-binding protein 
5 

0.154 0.069 0.001 

Q15113 PCOLCE Procollagen C-
endopeptidase 

0.155 0.088 0.001 
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enhancer 1 

Q9NTX5 ECHDC1 Ethylmalonyl-CoA 
decarboxylase 

0.158 0.068 0.001 

P25788 PSMA3 Proteasome subunit 
alpha type-3 

0.176 0.442 0.001 

Q12931 TRAP1 Heat shock protein 75 
kDa, mitochondrial 

0.186 0.028 0.018 

P04083 ANXA1 Annexin A1 0.192 0.049 0.001 

P30101 PDIA3 Protein disulfide-
isomerase A3 

0.198 0.059 0.001 

Q99985 SEMA3C Semaphorin-3C 0.199 0.225 0.001 

Q6NZI2 PTRF Polymerase I and 
transcript release factor 

0.210 0.134 0.001 

Q8TAV4 STOML3 Stomatin-like protein 3 0.220 0.084 0.006 

Q9UKZ9 PCOLCE2 Procollagen C-
endopeptidase 
enhancer 2 

0.226 0.030 0.001 

Q05469 LIPE Hormone-sensitive 
lipase 

0.231 0.196 0.023 

Q13642 FHL1 Four and a half LIM 
domains protein 1 

0.263 0.006 0.029 

P02749 APOH Beta-2-glycoprotein 1 0.286 0.310 0.048 

P02462 COL4A1 Collagen alpha-1(IV) 
chain 

0.286 0.351 0.001 

P15311 EZR Ezrin 0.296 0.077 0.003 

P42765 ACAA2 3-ketoacyl-CoA 
thiolase, mitochondrial 

0.308 0.136 0.001 

P68104 EEF1A1 Elongation factor 1-
alpha 1 

0.309 0.215 0.001 

Q9NQC3 RTN4 Reticulon-4 0.312 0.119 0.007 

Q8IY17 PNPLA6 Neuropathy target 
esterase 

0.316 0.028 0.026 

Q92743 HTRA1 Serine protease HTRA1 0.324 0.075 0.001 

P08294 SOD3 Extracellular 
superoxide dismutase 
[Cu-Zn] 

0.339 0.027 0.005 

Q16836 HADH Hydroxyacyl-coenzyme 
A dehydrogenase, 
mitochondrial 

0.348 0.207 0.011 

Q99715 COL12A1 Collagen alpha-1(XII) 
chain 

0.348 0.183 0.001 

P07355 ANXA2 Annexin A2 0.354 0.111 0.001 

P26038 MSN Moesin 0.362 0.110 0.034 

P23284 PPIB Peptidyl-prolyl cis-trans 
isomerase B 

0.374 0.122 0.001 

O94769 ECM2 Extracellular matrix 
protein 2 

0.375 0.060 0.005 

Q9NRN5 OLFML3 Olfactomedin-like 
protein 3 

0.389 0.066 0.002 

P53396 ACLY ATP-citrate synthase 0.389 0.066 0.001 
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Q16363 LAMA4 Laminin subunit alpha-4 0.407 0.091 0.001 

P14625 HSP90B1 Endoplasmin 0.414 0.068 0.025 

Q9BU40 CHRDL1 Chordin-like protein 1 0.419 0.264 0.001 

P02649 APOE Apolipoprotein E 0.421 0.053 0.001 

Q9NS98 SEMA3G Semaphorin-3G 0.425 0.161 0.001 

P02751 FN1 Fibronectin 0.441 0.146 0.001 

P14543 NID1 Nidogen-1 0.442 0.190 0.006 

Q08431 MFGE8 Lactadherin 0.446 0.167 0.026 

Q15848 ADIPOQ Adiponectin 0.449 0.652 0.005 

O75390 CS Citrate synthase, 
mitochondrial 

0.454 0.183 0.012 

Q92626 PXDN Peroxidasin homolog 0.457 0.200 0.001 

P07942 LAMB1 Laminin subunit beta-1 0.484 0.110 0.001 

Q08629 SPOCK1 Testican-1 0.497 0.055 0.014 

O00462 MANBA Beta-mannosidase 2.180 2.560 0.034 

Q13510 ASAH1 Acid ceramidase 2.222 3.135 0.048 

P02794 FTH1 Ferritin heavy chain 2.451 0.769 0.030 

Q02952 AKAP12 A-kinase anchor protein 
12 

2.665 0.572 0.047 

A6NCN2 KRT87P Putative keratin-87 
protein 

4.113 0.011 0.022 

P23468 PTPRD Receptor-type tyrosine-
protein phosphatase 
delta 

10.687 2.199 0.003 

P10586 PTPRF Receptor-type tyrosine-
protein phosphatase F 

11.935 3.955 0.001 

 

Of these candidate proteins, we focused on ApoE for two main reasons. Firstly, the effects 

of iron on ApoE secretion from adipocytes has not to our knowledge previously been 

studied. Secondly, ApoE has been proposed as having a protective role in NAFLD 

pathogenesis.[163] We found a consistently reproducible effect of iron on ApoE by western 

blot in both 12 well plate (non-SILAC) and 100mm plate (SILAC) models. Densitometry of 

secretome ApoE was reduced by 76% (p=0.007), consistent with effect seen with SILAC 

signal intensity analysis of 58% reduction (p=0.001) (Figures 6.5(b) and 6.5(d)). 

Conversely, whole cell lysate samples demonstrated a greater than 11-fold increase in 

intracellular ApoE in response to iron (p=0.0005), without a significant change in ApoE 

mRNA levels (Figures 6.5(a), 6.5(c) and 6.5(e)).  
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Figure 6.5: SBGS ApoE expression following FAC treatment  

(a) ApoE mRNA (NS, ratio paired t-test), (b) Secretome ApoE densitometry (* denotes p=0.001, ratio paired t-test), (c) 

Lysate ApoE densitometry normalized to β-actin (# denotes p=0.0005, ratio paired t-test), (d) Secretome ApoE 

immunoblot, (e) Whole cell lysate ApoE and β-actin immunoblots (n=3 per group) 

 

 

In order to evaluate whether, the effects of FAC were iron-specific or a more generalised 

toxic effect, we examined oxidative stress, inflammatory and endoplasmic reticulum (ER) 

stress responses. We found transcriptional upregulation of anti-oxidant responses with an 

increase in heme-oxygenase-1 (HO-1) (p=0.01) and glutathione peroxidase-1 (GPX-1) 

mRNA (p=0.049). Interleukin-6 (IL-6) mRNA as a marker of inflammation was not 

significantly altered by iron, although there was a trend towards a decrease in IL-6 mRNA 

with iron treatment (43% decrease, p=0.08). (Figures 6.6(a-c)) 

We also examined X-box binding protein (XBP-1) mRNA (spliced and unspliced) which in 

its spliced form is a master regulator of the unfolded protein response caused by 

endoplasmic reticulum (ER) stress.[164] Iron had no effect on quantities of both unspliced 

and spliced XBP-1 mRNA. (Figures 6.6(d) and 6.6(e)) In addition, there was no effect on 

downstream transcriptional targets of spliced XBP-1, such as immunoglobulin binding 

protein (BiP) and ER-degradation-enhancing-α-mannidose-like protein (EDEM). (Figures 

6.6(f) and 6.6(g))  Furthermore, signalling in the ER stress induced apoptosis pathway was 

evaluated by quantifying activating transcription factor 4 (ATF4) and CCAAT/enhancer-

binding protein homologous protein (CHOP) mRNA. (Figures 6.6(h) and 6.6(i)) Again 

these were unaffected by iron.  

Given that a large number of proteins had lower secretome signal intensity in response to 

iron, we hypothesized that iron targets selected mechanisms of protein secretion. To 

investigate the potential secretion pathways regulated by iron, we evaluated two 

characterized protein secretion mechanisms, namely, the classical secretory pathway 
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mediated by signal peptide and vesicle-mediated secretion. The effect of iron on the 

classical secretion pathway was evaluated using signal peptide annotations from the 

Uniprot database.[161] To do this, we performed an enrichment analysis comparing the 61 

significantly down-regulated proteins (p<0.05) with the remaining 277 proteins in the 

adipocyte secretome. Of the 61 significantly downregulated proteins, 62% (38/61) had 

signal peptide, whereas of the remaining proteins only 47% (129/277) had signal peptide 

(Figures 6.3, 6.6(j) and 6.6(k)). One-tailed Fisher’s-exact test showed significant 

enrichment with signal peptide (p=0.02) amongst the significantly downregulated group. In 

contrast, there was no significant enrichment of the exosomal pathway (p=0.51, one-tailed 

Fisher’s-exact test), as 15% (9/61) of significantly down-regulated proteins and 14% 

(39/277) of the remaining secretome proteins had been previously reported in the high 

confidence proteins from the EVpedia database, [165] (Figures 6.6(l) and 6.6(m)). These 

results suggest that iron selectively blocks the classical secretory pathway. 

Figure 6.6: Mechanistic aspects of iron-related dysregulation of protein secretion  

(a) Interleukin-6 (IL-6) mRNA (non-significant (NS), paired t-test, n=3 per group). (b-c) Oxidative stress * indicates 

p<0.05, both n=3 per group (b) Heme-oxygenase (HO-1) mRNA (p=0.01, paired t-test). (c) Glutathione peroxidase 1 

(GPX-1) mRNA (p=0.049, paired t-test). (d-i) Endoplasmic reticulum (ER) stress, all n=3 per group. (d) Unspliced X-box 

binding protein (XBP-1) mRNA (NS, paired t-test). (e) Spliced X-box binding protein (XBP-1) mRNA (NS, paired t-test). 

(f) Immunoglobulin binding protein (BiP) mRNA (NS, paired t-test). (g) ER-degradation-enhancing-α-mannidose-like 

protein (EDEM) mRNA (NS, paired t-test). (h) Activating transcription factor 4 (ATF4) mRNA (NS, paired t-test). (i) 

CCAAT/enhancer-binding protein homologous protein (CHOP) mRNA (NS, paired t-test). (j-m) Enrichment with signal 

peptide and exosome proteins. (j) Proportion of proteins significantly down regulated by iron with signal peptide vs no 

signal peptide. (k) Proportion of proteins not significantly down regulated by iron with signal peptide vs no signal peptide. 

(l) Proportion of proteins significantly down regulated by iron with exosome secretion vs no exosome secretion. (m) 

Proportion of proteins not significantly down-regulated by iron with exosome secretion vs no exosome secretion. Of the 

61 significantly down-regulated proteins, 62% (38/61) had signal peptide, whereas of the remaining proteins only 47% 

(129/277) had signal peptide. One-tailed Fisher’s-exact test showed significant enrichment with signal peptide (p=0.02) 

amongst the significantly down-regulated group. In contrast, there was no significant enrichment of the exosomal 

pathway (p=0.51, one-tailed Fisher’s-exact test), as 15% (9/61) of significantly down-regulated proteins and 14% 

(39/277) of the remaining secretome proteins had been previously reported in the high confidence proteins from the 

EVpedia database.  
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Discussion 
 

In this study, we have identified 72 proteins secreted from human adipocytes which were 

significantly dysregulated in response to iron. Of these, we have identified a number of 

proteins with particular relevance to NAFLD, including ApoE, adiponectin and annexin A1.  

Furthermore, we showed using immunoblotting that ApoE becomes sequestered within 

adipocytes in response to iron. This may be an important pathogenic phenomenon in 

humans with NAFLD, as ApoE appears to protect against steatohepatitis. In a mouse 

model of ApoE knockout, unlike wild type controls, mice fed seven weeks of Western diet 

developed impaired glucose tolerance, steatohepatitis and hepatic fibrosis.[163] ApoE is a 

component of lipoproteins, such as Very Low Density Lipoprotein (VLDL) and High Density 

Lipoprotein (HDL) and promotes VLDL induced adipogenesis.[166] ApoE knockout mice 

also readily develop atherosclerosis on an atherogenic diet and have been widely used as 

models for this condition.[167]  

As ApoE is also synthesized by other tissues, notably the liver, it is important to consider 

the role of ApoE derived from other tissues in the phenotypes seen in global knockout 

models. In order to overcome this issue, Huang et al utilized an AP2 Cre-lox model of 

adipocyte-specific ApoE deletion which demonstrated increased insulin sensitivity 

compared to genetic controls.[168] This suggests that ApoE deficiency in other cells types, 

such as hepatocytes, may offset this benefit in global knockout models. Therefore, in 

future studies, it will be essential to determine whether iron impacts on ApoE secretion in 

other cells, particularly hepatocytes. 

With regards to other cell types, iron has been shown to dysregulate ApoE in primary 

cultured astrocytes and in cortical neurons. This is important, as the ApoEε4 polymorphism 

of the ApoE gene is common and is the strongest genetic risk factor for Alzheimer’s 

disease.[169] In addition, impaired iron homeostasis has been strongly linked to disease 

pathogenesis in this condition.[170] It has recently been shown that in primary cultured 

astrocytes and cortical neurons, iron treatment led to increased intracellular concentrations 

of ApoE and reduced ApoE secretion.[171] Taken together with our data, it seems 

possible that iron may indeed have similar effects on a range of cell types and represents 

a clear target for further investigation.  

Our SILAC analysis showed that iron treatment resulted in an 81% reduction in Annexin 

A1 secretome signal intensity. This is interesting as AnnexinA1 knock-out mice exhibit 
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greater degrees of hepatic lobular inflammation and fibrosis than controls when fed a 

methionine-choline deficient diet.[172] Annexin A1 therefore is potentially an important 

mechanism of iron-related adipocyte dysfunction in NAFLD and a candidate for future 

research. Furthermore, adipocyte iron has previously been shown to down-regulate serum 

adiponectin in a mouse derived adipocytes, 3T3-L1 cells. [17] Our findings support this in a 

human adipocyte cell line with a 55% reduction in adiponectin signal intensity in iron-

treated SGBS cells. 

In order to understand better whether FAC was having an iron-specific effect or a more 

general effect, we examined pathways of oxidative stress, inflammation and ER stress. 

Treatment with iron in our study, demonstrated an upregulation of anti-oxidant responses 

(heme-oxygenase-1 (HO-1) and glutathione peroxidase-1 (GPX-1) mRNA) indicating the 

presence of oxidative stress. However, interleukin-6 (IL-6) mRNA as a marker in 

inflammation was not increased with iron treatment, nor was there any difference among 

multiple markers of endoplasmic reticulum stress. Taken together, our model 

demonstrates oxidative stress responses without any evidence of ER stress or unfolded 

protein responses and no evidence of an impairment of cellular viability. 

We considered whether iron may have a generalized effect on pathways of protein 

secretion, utilized by a variety of proteins. We evaluated the role of iron in the secretion of 

proteins by the classical and exosomal pathways using the Uniprot and EVpedia 

databases respectively. We found enrichment of signal peptide-containing, but not 

exosome-secreted proteins amongst the iron-dysregulated proteins suggesting that iron 

may have a specific effect on proteins secreted via the classical pathway. Further 

investigation is still needed to clarify the mechanistic details of this effect. 

STRING pathway analysis has identified central roles for a number of important proteins in 

relation to dysregulation by iron. No clear unifying pathway was identified however. It is 

worth noting though, that such network analysis is primarily designed for identifying 

intracellular pathway and as such, it may be considered unsurprising that a clear and 

clinically relevant pathway has not been identified.  

Given the lack of quality human data regarding physiological adipocyte iron 

concentrations, a limitation of this study is that it is difficult to determine the physiological 

relevance of the concentrations of iron used. Nonetheless, it is reassuring that there was 

no observed iron-effect on cellular viability, total mRNA, or total protein. 
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This research has characterized the effect of iron on the adipocyte secretome. These data 

provide a platform for multiple avenues for future research. In addition, we have been able 

to show that increased iron results in sequestration of ApoE within adipocytes, which may 

be of key importance in the regulation of insulin resistance and liver injury in NAFLD. 

Further work is required to identify how iron and oxidative stress might regulate this effect 

and whether therapeutic manipulation of adipocyte iron in humans may be of benefit in 

NAFLD. 
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Chapter 7 : Conclusions 

 
The burden of non-alcoholic liver disease (NAFLD) represents a global epidemic.[1] The 

condition can lead to cirrhosis, liver failure and hepatocellular carcinoma.[2] The 

pathogenesis of this condition is not well understood and treatments that are substantially 

and consistently beneficial have not been developed. Dealing with this issue effectively will 

require major societal changes in diet and lifestyle and will almost certainly depend heavily 

upon governmental and public health initiatives. Nevertheless, for the foreseeable future, 

we are faced with an extraordinary burden of disease that urgently requires the 

development of improved medical therapy. 

Given the multifaceted nature of its pathophysiology and the heterogeneous nature of the 

disease, it seems unlikely that a single treatment approach will be effective for the majority 

of people with NAFLD. It may even be that fatty liver disease or steatohepatitis becomes 

regarded as a histologic result of a series of sub-classifications of fatty liver disease, 

including alcohol, insulin resistance and diabetes predominant, other genetic 

predispositions, iron-related, a number of other as yet unknown co-factors and various 

combinations of the above. Given the probable heterogeneity in pathogenesis, NAFLD 

treatment is likely to require a personalised-medicine approach. 

Manipulation of iron homeostasis, by venesection has been used in medicine for 

thousands of years. [173] More recently, venesection has proven to be an effective 

treatment for conditions such as haemochromatosis. Indeed venesection has been 

proposed as a treatment for NAFLD, although no large scale randomised trial has 

convincingly demonstrated effectiveness.[104] It could be argued though, that a 

subpopulation of NAFLD patients with certain iron phenotype may yet benefit from this 

treatment. Alternatively, it may be considered that venesection is too blunt a tool with 

which to benefit patients with NAFLD who may have complex derangements in iron 

homeostasis. Our understanding of cellular and systemic iron homeostasis mechanisms 

including the hepcidin-ferroportin axis have raised the promise of a more sophisticated and 

targeted manipulation of iron homeostasis.[152] Before such treatments might be 

developed for conditions such as NAFLD and possibly type II diabetes, it is essential that 

we more clearly define whether iron really might have an important role and if so, what the 

mechanism and location of iron’s effect might be. 

This thesis has examined the role of iron homeostasis in NAFLD pathogenesis across a 

range of tissues. The effect of subtle changes in enterocyte, and therefore systemic, iron 
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homeostasis in the context of HFE and hepcidin deficiency has been evaluated in an Hfe 

heterozygous knockout mouse model of NAFLD. Focus then shifted to examining the links 

between hepatic iron concentration (HIC) and insulin sensitivity, before evaluating the role 

of adipose tissue iron using in vivo and in vitro models. The key findings from these 

studies are described below. 

In the first of four original research chapters, Chapter 3, describes the use of an animal 

model of heterozygous Hfe deletion fed a high calorie diet as a model for humans with 

heterozygous HFE gene mutations who have co-existent NAFLD. This is a commonly 

encountered clinical scenario, given the high prevalence of both HFE gene polymorphisms 

and NAFLD.[14, 96] Given the observed co-toxic effect of HFE-haemochromatosis and 

NAFLD seen in humans and in mice with homozygous Hfe deletion, it has been important 

to explore the role of heterozygous gene mutations in NAFLD pathogenesis. Indeed it has 

been suggested that functional HFE deficiency itself may play an iron-independent role in 

NAFLD pathogenesis.[15] Human data and meta-analyses have led to conflicting results, 

yet this topic had not previously been studied in an animal model.[14, 96] 

Although increased hepatic iron accumulation with heterozygous Hfe deletion was 

observed, there was no evidence of increased liver injury as a result. It is unclear however 

whether effects may have been seen with a more prolonged exposure high calorie diet. 

Hamp1 (encoding Hepcidin) mRNA / HIC ratios demonstrated an approximate 50% 

decrease in Hfe+/- mice in both dietary groups compared with wild-type littermate controls. 

These findings are consistent with true haploinsufficiency regarding the translation of HFE 

and its interaction with Hamp1.  

The most remarkable finding from the study was the observation of increased serum 

glucose concentrations and HOMA-IR scores in Hfe+/- mice compared with wild-type 

controls. Unfortunately, the experiment was primarily designed to investigate liver injury 

and hepatic lipid metabolism As such, a detailed understanding of the impairment in 

glucose metabolism in this model would only be possible with a repeat study involving the 

use of techniques such as glucose tolerance tests and hyperinsulinaemic-euglycaemic 

clamps. Such a study would be readily achievable and is required to confirm these findings 

and explore the mechanisms by which HFE deficiency and/or mild iron excess can disrupt 

glucose homeostasis. 

In order to explore further the role of iron in glucose homeostasis and insulin resistance, 

Chapter 4 draws upon human data and stored serum samples from a prospective, 
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randomised, controlled trial of venesection in humans with NAFLD.[104] The original 

study, by Adams et al, showed a lack of effect of venesection on hepatic steatosis, serum 

ALT and measures of insulin sensitivity.[104] Nonetheless, given the quality of data 

available and unique access to paired serum samples before and after venesection, this 

was a useful opportunity with which to examine the relationships between iron, insulin 

resistance and adipokines further.  

There is an increasing body of evidence, described in depth in Chapter 2 that links 

alterations in adipocyte iron content to the dysregulation of adipokines implicated in 

NAFLD pathogenesis.[17, 19, 92, 147] Although there is a conspicuous lack of human 

data describing adipocyte iron concentration in NAFLD, a four-fold increase in adipocyte 

iron content was observed in a mouse model of obesity using a high fat diet.[24] This was 

shown to be associated with a reduction in HIC. A repartitioning of iron from the liver to 

adipose tissue was therefore proposed, but a mechanistic explanation remains elusive.[24] 

Chapter 4 describes the effect of venesection on serum concentrations of six key 

adipokines over a six month period, compared to randomised controls in participants with 

NAFLD. In addition, the relationships between, measures of iron homeostasis and insulin 

resistance were explored in depth. 

Venesection had no impact on serum concentrations of the six adipokines; adiponectin, 

leptin, resistin, RBP-4, TNFα and IL-6. There are a number of possible explanations for 

this. These include 1) these six adipokines are not regulated by iron, 2) venesection did 

not significantly mobilise adipose tissue iron, either due to treatment intensity or other 

unknown reasons, or 3) the study was insufficiently powered to detect changes in these 

adipokine concentrations. It should be noted however, that there was no real suggestion of 

a trend towards venesection effect for any of the adipokines studied. 

Further analysis of baseline data did however uncover modest but highly consistent 

associations between multiple surrogates of insulin sensitivity demonstrating an HIC. In 

addition there was a significant positive correlation between HIC and serum adiponectin 

concentration. These results challenge the conventional assumption that increasing HIC in 

the non-haemochromatotic range is associated with insulin resistance and diabetes. 

Indeed, other recently published data indicate that in the non-haemochromatotic range, 

increasing iron may be metabolically advantageous with respect to insulin resistance.[61, 

128] However, causal relationships based on our study cannot be established. This is in 

keeping with the observation of improved glucose tolerance in mice with homozygous Hfe 
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deletion [124]. However, this is seemingly at odds with the observation in Chapter 3 that 

heterozygous Hfe gene deletion is associated with a small increase in HIC, raised fasting 

serum glucose and HOMA-IR scores. The unknown factor though, in the human study and 

in both mouse models is the concentration of iron in adipose tissue and in particular 

adipocytes. This is particularly relevant when one considers the data that show increased 

adipocyte iron concentration in mice fed a high fat diet. [24] 

In order to explore further the relationships between adipose tissue iron and insulin 

resistance in NAFLD pathogenesis, Chapters 5 and 6 utilise in vivo (Chapter 5) and in vitro 

(Chapter 6) models of adipocyte iron loading. In Chapter 5, a model of selective adipocyte 

ferroportin knockout using a Cre-lox system driven by Cre in the promotor region the 

adiponectin gene (Adipoq) was developed. This model convincingly demonstrates effective 

selective knockout of the ferroportin gene (Fpn1) in adipocytes. However, this did not lead 

to increased adipocyte iron levels as measured by multiple means, implying that 

ferroportin may not be a key determinant of mammalian adipocyte iron homeostasis. It was 

then as expected that adipocyte ferroportin deletion did not lead to increased liver injury or 

evidence of altered glucose homeostasis. It remains unclear whether a higher dietary iron 

content would help to expose the desired phenotype or whether ferroportin really does 

have an insignificant role in iron homeostasis in adipocytes.  

In Chapter 6, a proteomic approach was employed in order to identify novel therapeutic 

targets in relation to dysregulation of adipokines by iron. Using stable isotope labelled 

amino acids in cell culture (SILAC), the iron-effect on the human Simpson-Golabi-Behmel 

syndrome (SGBS) adipocyte secretome was characterised. Sixty proteins with a greater 

than two-fold change in secretion and statistical significance of p<0.05 in response to iron 

were identified. Notable proteins that have been implicated in NAFLD pathogenesis were 

highlighted after a literature review relating to these proteins. Of these, adiponectin, 

annexin A1 and apolipoprotein E (ApoE) may be particularly relevant. The findings of a 

reduction in mass spectrometry signal intensity of adiponectin in response to iron replicate 

in human adipocytes, a similar observation, previously only seen in mouse 3T3-L1 

adipocytes. [17] Similarly a knockout model of annexin A1 has previously indicated a 

protective role for this protein in NAFLD pathogenesis. [172] 

The most striking finding from this study relates to ApoE. Immunoblotting of the secretome 

and intracellular protein indicated that iron profoundly inhibits secretion of ApoE causing it 

to become sequestered within adipocytes. There was evidence of transcriptional 
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responses to oxidative stress, without an upregulation of IL-6 or ER stress responses. This 

finding may be of importance in NAFLD given that ApoE appears to have a strongly 

protective effect against diet induced steatohepatitis in mice. [163]  

The research reported in this thesis has described a recurring theme regarding the 

interplay between iron and insulin resistance. Hfe heterozygous knockout in mice was 

associated with modest increases in hepatic iron and serum glucose. In humans however, 

HIC in the non-haemochromatotic range positively correlated with multiple measures of 

insulin sensitivity, including fasting serum glucose. Increasing adipocyte iron has been 

shown in animal and tissue culture models to lead to dysregulation of adipokines that 

typically are associated with increased insulin resistance and hepatic injury, such as 

reduced adiponectin, leptin and increased resistin. [17-19] Some of the discordance 

between these findings may be explained by the proposed repartitioning of iron from the 

liver to adipocytes that is seen in mice fed a high fat diet. [24] If this were the case in 

humans, the association between lower HIC and insulin resistance could, in part, be 

explained by an increase in adipocyte iron with reduced adiponectin transcription and 

increased adipose tissue insulin resistance. 

The missing data that would go some way to evaluating this hypothesis of iron-

repartitioning are human adipocyte iron concentrations in NAFLD. Perhaps unsurprisingly, 

it has been learned during the course of this research that individuals with NAFLD are 

generally reluctant to undergo percutaneous adipose tissue biopsy for ethically approved 

clinical research purposes. One way around this issue would be a cross sectional study of 

patients with NAFLD undergoing elective laparoscopic surgery, such as cholecystectomy. 

Such a study would provide a relatively safe means with which to collect adipose and liver 

tissue samples and correlate with a range of fasting serum parameters including 

adipokines. This is a clear and immediate target for future study. 

The model of adipocyte-specific ferroportin knockout did not lead to a phenotype of 

adipocyte iron overload. The development of a reliable in vivo model of adipocyte-specific 

iron loading would therefore undoubtedly be a hugely valuable tool for research in this 

field. However, the findings indicating that ferroportin may not be a key regulator of 

adipocyte iron homeostasis are in themselves instructive. If adipocyte iron is as important 

as we might imagine in NAFLD and diabetes pathogenesis, then identifying novel iron 

transport mechanisms that are unique to adipocytes may enable the development of 

relatively simple adipocyte-specific treatments targeting iron. 
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Finally, the use of a proteomic approach to analyse the effects of iron on the adipocyte 

secretome has provided a wealth of publicly available data as a platform for future studies. 

To date, there has only been a scratching of the surface of the potential of this data. Other 

than the effects on ApoE which need to be explored in more depth, the dysregulation of a 

number of other proteins may represent novel mechanisms pertaining to adipocyte iron’s 

role in NAFLD pathogenesis.  

In conclusion, multi-faceted links between iron, insulin sensitivity and the dysregulation of 

adipokines have been identified. These findings provide a strong rationale for further 

translational study in this field.  
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Appendix A: Research letter: Iron inhibits the secretion of 
apolipoprotein E in cultured human adipocytes 
 

Below is the abridged version of Chapter 6 that is currently undergoing peer review after 

re-submission with revisions for Cellular and Molecular Gastroenterology and Hepatology. 

 

Britton LJ, Bridle KR, Jaskowski L, He J, Ng C, Ruelcke J, Mohamed A, Reiling J, 

Santrampurwala N, Hill MM, Whitehead JP, Subramaniam VN, Crawford DHG 

Iron inhibits the secretion of apolipoprotein E in cultured human adipocytes 
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Non-alcoholic steatohepatitis (NASH) is characterized by adipose tissue dysfunction with 

insulin resistance and the dysregulation of adipokines. [21] Recent data indicate 

repartitioning of iron from the liver to adipocytes in obesity and a role for iron in the 

development of adipose tissue dysfunction. [24, 34] However the molecular mechanisms 

have not been established. To test the hypothesis that iron modulates adipokine release, 

we performed a quantitative proteomics analysis of the human Simpson-Golabi-Behmel 

Syndrome (SGBS) adipocyte secretome following 48 hours of treatment with ferric 

ammonium citrate (FAC). We utilized stable isotope labelled amino acids in cell culture 

(SILAC) to characterize changes in the adipocyte secretome in response to iron. This 

technique has enabled direct comparison of quantities of individual proteins in the 
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adipocyte secretome in response to iron using a proteomics approach as a tool for the 

identification of novel treatment targets in NASH. 

We first showed that 100μM FAC causes significant adipocyte iron loading without 

compromising cell viability. We found that compared to vehicle both 100 μM and 500 μM 

FAC caused significant increases in cellular iron concentration (p=0.007 and p=0.006 

respectively, Figure 8.1(a)). There was no effect of iron loading on cellular viability (MTS) 

assay, total mRNA, total whole cell lysate protein or total secretome protein (Figure 8.1 (b-

e)). 

Figure 8.1: Optimization of iron loading in SGBS cells  

(a) Iron assay, p=0.004 (one-way ANOVA), *indicates p<0.01 (Dunnett’s multiple comparisons test compared to 0μM 

FAC, n=2 per group). (b) Total RNA (non-significant (NS) by one-way ANOVA, n=3 per group). (c) Total lysate protein 

(NS by one-way ANOVA, n=3 per group). (d) Total secretome protein (NS by one-way ANOVA, n=3 per group). (e) 

Viability assay (MTS) (NS by one-way ANOVA, n=3 per group). Data are presented as mean and standard error of the 

mean. 

 

Given these findings, we selected 100 μM FAC as the concentration to compare with 

vehicle in the secretome SILAC proteomic analysis. A total of 338 proteins were quantified 

in the adipocyte secretome by SILAC proteomics. These are represented graphically as a 

volcano plot in Figure 8.2 and the proteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository 
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(www.proteomexchange.org) with the dataset identifier PXD006341. Iron treatment led to 

significant differential secretion of 60 of these proteins (>2-fold change and p-value <0.05). 

We then manually reviewed Uniprot database descriptions of these 60 proteins. This 

generated a list of 20 proteins of interest (highlighted in bold in Table 8.1). These proteins 

of interest and their synonyms were then entered into a Pubmed title/abstract search in 

association with NASH and its synonyms. This identified three proteins as candidate 

intermediates for iron-induced adipose tissue dysfunction in NASH. These proteins were 

adiponectin, annexin A1 and apolipoprotein E (ApoE). 

Figure 8.2: Volcano plot of relative signal intensity of proteins identified in the 

adipocyte secretome 

The x-axis denotes log 2 of the ratio of iron/vehicle treated cells, with proteins to the left of zero representing those 

downregulated by iron and those to the right representing up-regulation by iron. The y-axis denotes statistical 

significance with a line representing a p-value of 0.05. Proteins above this line have p<0.05. SILAC labelled adipocytes 

generated 338 proteins that were identified in the secretome by mass spectrometry. Of these 213, had reduced signal 

intensity in response to iron, whereas 125 had increased signal intensity. Of the 213 proteins with reduced signal 

intensity, 61 had a statistically significant (p < 0.05) downregulation in response to iron. Of these, 53 had a greater than 

2-fold decrease in response to iron. Of the 125 proteins with increased signal intensity, 11 had a statistically significant (p 

< 0.05) upregulation in response to iron. Of these, 7 proteins had a greater than 2-fold increase response to iron. Those 

proteins containing signal peptide (as determined by signal peptide annotations on the Uniprot database) are shown in 

red. Those without signal peptide are shown in blue. 
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Table 8.1: List of SGBS secretome proteins with significantly altered signal intensity 

in response to iron 

Proteins shown had a greater than 2-fold change in signal intensity in response to iron, with a p-value <0.05. Proteins 

highlighted in bold represent the 20 proteins of interest after review of Uniprot protein descriptions. Data were analyzed 

using the online Quantitative Proteomics P-value Calculator (QPPC) using no normalization and non-adjusted p-values. 

n=3 per group 

 

Accession 
number 

Gene 
name 

Protein name Mean signal 
intensity 
ratio 
(iron/vehicle) 

Standard 
deviation 

P value 

Q8IX30 SCUBE3 Signal peptide, CUB 
and EGF-like domain-
containing protein 3 

0.026 0.016 0.001 

P61353 RPL27 60S ribosomal protein 
L27 

0.060 0.005 0.001 

Q9NQH7 XPNPEP3 Probable Xaa-Pro 
aminopeptidase 3 

0.076 0.004 0.001 

P07996 THBS1 Thrombospondin-1 0.083 0.047 0.001 

Q76M96 CCDC80 Coiled-coil domain-
containing protein 80 

0.090 0.031 0.001 

P78539 SRPX Sushi repeat-containing 
protein SRPX 

0.096 0.620 0.001 

Q9UHI8 ADAMTS1 A disintegrin and 
metalloproteinase with 
thrombospondin motifs 
1 

0.114 0.090 0.002 

Q92538 GBF1 Golgi-specific brefeldin 
A-resistance guanine 
nucleotide exchange 
factor 1 

0.118 0.024 0.004 

Q15063 POSTN Periostin 0.121 0.149 0.001 

P08238 HSP90AB1 Heat shock protein HSP 
90-beta 

0.125 0.038 0.004 

P24593 IGFBP5 Insulin-like growth 
factor-binding protein 
5 

0.154 0.069 0.001 

Q15113 PCOLCE Procollagen C-
endopeptidase 
enhancer 1 

0.155 0.088 0.001 

Q9NTX5 ECHDC1 Ethylmalonyl-CoA 
decarboxylase 

0.158 0.068 0.001 

P25788 PSMA3 Proteasome subunit 
alpha type-3 

0.176 0.442 0.001 

Q12931 TRAP1 Heat shock protein 75 
kDa, mitochondrial 

0.186 0.028 0.018 

P04083 ANXA1 Annexin A1 0.192 0.049 0.001 

P30101 PDIA3 Protein disulfide-
isomerase A3 

0.198 0.059 0.001 

Q99985 SEMA3C Semaphorin-3C 0.199 0.225 0.001 
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Q6NZI2 PTRF Polymerase I and 
transcript release factor 

0.210 0.134 0.001 

Q8TAV4 STOML3 Stomatin-like protein 3 0.220 0.084 0.006 

Q9UKZ9 PCOLCE2 Procollagen C-
endopeptidase 
enhancer 2 

0.226 0.030 0.001 

Q05469 LIPE Hormone-sensitive 
lipase 

0.231 0.196 0.023 

Q13642 FHL1 Four and a half LIM 
domains protein 1 

0.263 0.006 0.029 

P02749 APOH Beta-2-glycoprotein 1 0.286 0.310 0.048 

P02462 COL4A1 Collagen alpha-1(IV) 
chain 

0.286 0.351 0.001 

P15311 EZR Ezrin 0.296 0.077 0.003 

P42765 ACAA2 3-ketoacyl-CoA 
thiolase, mitochondrial 

0.308 0.136 0.001 

P68104 EEF1A1 Elongation factor 1-
alpha 1 

0.309 0.215 0.001 

Q9NQC3 RTN4 Reticulon-4 0.312 0.119 0.007 

Q8IY17 PNPLA6 Neuropathy target 
esterase 

0.316 0.028 0.026 

Q92743 HTRA1 Serine protease HTRA1 0.324 0.075 0.001 

P08294 SOD3 Extracellular 
superoxide dismutase 
[Cu-Zn] 

0.339 0.027 0.005 

Q16836 HADH Hydroxyacyl-coenzyme 
A dehydrogenase, 
mitochondrial 

0.348 0.207 0.011 

Q99715 COL12A1 Collagen alpha-1(XII) 
chain 

0.348 0.183 0.001 

P07355 ANXA2 Annexin A2 0.354 0.111 0.001 

P26038 MSN Moesin 0.362 0.110 0.034 

P23284 PPIB Peptidyl-prolyl cis-trans 
isomerase B 

0.374 0.122 0.001 

O94769 ECM2 Extracellular matrix 
protein 2 

0.375 0.060 0.005 

Q9NRN5 OLFML3 Olfactomedin-like 
protein 3 

0.389 0.066 0.002 

P53396 ACLY ATP-citrate synthase 0.389 0.066 0.001 

Q16363 LAMA4 Laminin subunit alpha-4 0.407 0.091 0.001 

P14625 HSP90B1 Endoplasmin 0.414 0.068 0.025 

Q9BU40 CHRDL1 Chordin-like protein 1 0.419 0.264 0.001 

P02649 APOE Apolipoprotein E 0.421 0.053 0.001 

Q9NS98 SEMA3G Semaphorin-3G 0.425 0.161 0.001 

P02751 FN1 Fibronectin 0.441 0.146 0.001 

P14543 NID1 Nidogen-1 0.442 0.190 0.006 

Q08431 MFGE8 Lactadherin 0.446 0.167 0.026 

Q15848 ADIPOQ Adiponectin 0.449 0.652 0.005 

O75390 CS Citrate synthase, 0.454 0.183 0.012 
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mitochondrial 

Q92626 PXDN Peroxidasin homolog 0.457 0.200 0.001 

P07942 LAMB1 Laminin subunit beta-1 0.484 0.110 0.001 

Q08629 SPOCK1 Testican-1 0.497 0.055 0.014 

O00462 MANBA Beta-mannosidase 2.180 2.560 0.034 

Q13510 ASAH1 Acid ceramidase 2.222 3.135 0.048 

P02794 FTH1 Ferritin heavy chain 2.451 0.769 0.030 

Q02952 AKAP12 A-kinase anchor protein 
12 

2.665 0.572 0.047 

A6NCN2 KRT87P Putative keratin-87 
protein 

4.113 0.011 0.022 

P23468 PTPRD Receptor-type tyrosine-
protein phosphatase 
delta 

10.687 2.199 0.003 

P10586 PTPRF Receptor-type tyrosine-
protein phosphatase F 

11.935 3.955 0.001 

 

Our SILAC analysis showed that iron treatment resulted in an 81% reduction in Annexin 

A1 secretome signal intensity (p=0.001). This may be important as AnnexinA1 knock-out 

mice exhibit greater degrees of hepatic lobular inflammation and fibrosis than controls 

when fed a methionine-choline deficient diet.[172] Adipocyte iron has also previously been 

shown to transcriptionally down-regulate serum adiponectin in a mouse derived 

adipocytes, 3T3-L1 cells. [17] Our findings now support this in a human adipocyte cell line 

with a 55% reduction in adiponectin signal intensity in iron-treated SGBS cells (p=0.005). 

We next focused on the iron-regulation of ApoE secretion. ApoE appears to protect 

against steatohepatitis in mice. In an ApoE knockout model, unlike wild type controls, 

ApoE KO mice fed seven weeks of a Western diet developed impaired glucose tolerance, 

steatohepatitis and hepatic fibrosis.[163] ApoE is a component of lipoproteins and 

promotes VLDL induced adipogenesis.[166] ApoE knockout mice also readily develop 

atherosclerosis on an atherogenic diet.[167]  

Iron reduced secreted ApoE by 58% (p=0.001) and 76% (p=0.007), as measured by 

SILAC and western blot respectively. Conversely, iron treatment increased intracellular 

ApoE levels by more than 11-fold (p=0.0005), without causing a significant change in 

mRNA levels (Figure 8.3). It therefore appears that iron inhibits the secretion of ApoE from 

adipocytes, causing ApoE to become sequestered intracellularly. 
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Figure 8.3: SBGS ApoE expression following FAC treatment  

(a) ApoE mRNA (NS, ratio paired t-test), (b) Secretome ApoE densitometry (* denotes p=0.001, ratio paired t-test), (c) 

Lysate ApoE densitometry normalized to β-actin (# denotes p=0.0005, ratio paired t-test), (d) Secretome ApoE 

immunoblot, (e) Whole cell lysate ApoE and β-actin immunoblots (n=3 per group). Data are presented as mean and 

standard error of the mean. 

 

Similar effects on ApoE secretion have been shown with iron treatment in primary cultured 

astrocytes and cortical neurons. [171] Taken together with our data, it seems possible that 

iron may have similar effects on a range of cell types and represents a clear target for 

further investigation. Treatment with iron in our study, demonstrated an upregulation of 

anti-oxidant responses (heme-oxygenase-1 (HO-1) and glutathione peroxidase-1 (GPX-1) 

mRNA) indicating the presence of oxidative stress. Interleukin-6 (IL-6) mRNA however 

was not increased with iron treatment, nor was there any difference among multiple 

markers of endoplasmic reticulum stress (Figure 8.4 (a-i))  

We considered whether iron may have a generalized effect on pathways of protein 

secretion, utilized by a variety of proteins. We evaluated the role of iron in the secretion of 

proteins by the classical and exosomal pathways using the Uniprot and EVpedia 

databases respectively [161, 165]. We found enrichment of signal peptide-containing 

(p=0.02), but not exosome-secreted proteins (p=0.51) among the iron-dysregulated 

proteins suggesting that iron may have a specific effect on proteins secreted via the 

classical pathway (Figure 8.4(j-m)). 
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Figure 8.4: Mechanistic aspects of iron-related dysregulation of protein secretion 

(a) Interleukin-6 (IL-6) mRNA (non-significant (NS), paired t-test, n=3 per group). (b-c) Oxidative stress * indicates 

p<0.05, both n=3 per group (b) Heme-oxygenase (HO-1) mRNA (p=0.01, paired t-test). (c) Glutathione peroxidase 1 

(GPX-1) mRNA (p=0.049, paired t-test). (d-i) Endoplasmic reticulum (ER) stress, all n=3 per group. (d) Unspliced X-box 

binding protein (XBP-1) mRNA (NS, paired t-test). (e) Spliced X-box binding protein (XBP-1) mRNA (NS, paired t-test). 

(f) Immunoglobulin binding protein (BiP) mRNA (NS, paired t-test). (g) ER-degradation-enhancing-α-mannidose-like 

protein (EDEM) mRNA (NS, paired t-test). (h) Activating transcription factor 4 (ATF4) mRNA (NS, paired t-test). (i) 

CCAAT/enhancer-binding protein homologous protein (CHOP) mRNA (NS, paired t-test). (j-m) Enrichment with signal 

peptide and exosome proteins. (j) Proportion of proteins significantly down regulated by iron with signal peptide vs no 

signal peptide. (k) Proportion of proteins not significantly down regulated by iron with signal peptide vs no signal peptide. 

(l) Proportion of proteins significantly down regulated by iron with exosome secretion vs no exosome secretion. (m) 

Proportion of proteins not significantly down-regulated by iron with exosome secretion vs no exosome secretion. Of the 

61 significantly down-regulated proteins, 62% (38/61) had signal peptide, whereas of the remaining proteins only 47% 

(129/277) had signal peptide. One-tailed Fisher’s-exact test showed significant enrichment with signal peptide (p=0.02) 

amongst the significantly down-regulated group. In contrast, there was no significant enrichment of the exosomal 

pathway (p=0.51, one-tailed Fisher’s-exact test), as 15% (9/61) of significantly down-regulated proteins and 14% 

(39/277) of the remaining secretome proteins had been previously reported in the high confidence proteins from the 

EVpedia database.  
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This research has characterized the effect of iron on the adipocyte secretome. These data 

provide a platform for multiple avenues of future research. In addition, we have been able 

to show that increased iron results in sequestration of ApoE within adipocytes, which may 

be of key importance in the regulation of insulin resistance and liver injury in NASH. 

Identifying the molecular mechanisms of iron-induced inhibition of ApoE secretion from 

adipocytes, particularly relating to the role of oxidative stress, may reveal novel therapeutic 

strategies for improving adipocyte function in NASH. 

Supplementary methods 
 

SGBS differentiation and iron treatment 

SGBS pre-adipocytes were a gift from Martin Wabitsch (University of Ulm, Germany). 

[158, 174] SGBS cells were passaged, proliferated and differentiated at less than 50 

generations in 12 well plates and 100 mm dishes as previously described.[157] Cells were 

treated with 90 μg/ml heparin and 1 ng/ml fibroblast growth factor-1 (FGF-1) (both Sigma-

Aldrich, St Louis, Missouri) throughout proliferation and differentiation. After 14 days of 

differentiation, cells were incubated with 0, 25, 100 or 500 μM ferric ammonium citrate 

(FAC) (Sigma- Aldrich) for 24 hrs. After this media was replaced with the same for a 

further 24 hrs to the end of experiment. 

RNA extraction and real-time quantitative PCR (RT-qPCR) 

RNA was extracted from treated SGBS adipocytes using a PureLink RNA mini kit 

(Invitrogen, Carlsbad, California). Complementary DNA was synthesized from 1 µg RNA 

using a Sensifast cDNA synthesis kit (Bioline, London, UK) after treatment with DNase 1 

(Invitrogen). Samples underwent thermal cycling using a ViiA7 real-time PCR machine 

(Invitrogen) with a Sensifast SYBR Lo-ROX Kit (Bioline). The following protocol was used: 

2 min at 95oC, then 40 cycles of 5 sec at 95oC alternating with 20 sec at 63oC, followed by 

a melt curve analysis. Relative mRNA quantities were determined by calibration of Ct 

values to standard curve of pooled cDNA samples. Results were normalized to Ct values 

of Cyclophillin.  

Iron, cellular viability (MTS) and protein assays. 

Iron levels were quantified using a chromagen reagent method. [159] Cellular viability was 

assessed using a CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega, 

Madison, Wisconsin) according to the manufacturer’s instructions. Whole cell lysate and 
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secretome samples underwent protein estimation using a Pierce BCA protein assay kit 

(Thermofisher Scientific, Waltham, Massachusetts).  

SILAC proteomics 

SILAC incorporates stbale amino acids isotopes, without altering cellular biology, allowing 

direct comparison of the secretome by mass spectrometry between treatment groups. 

[175] SGBS pre-adipocytes were grown in SILAC DMEM: F12 media (Thermofisher 

Scientific) supplemented with dialyzed fetal bovine serum (Thermofisher Scientific,) and 

22.81mg/L 2H4-Lysine and 36.88mg/L 13C6-Arginine (K4R6) or 22.81mg/L 13C6
15N2-Lysine 

and 36.88mg/L 13C6
15N4-Arginine (K8R10). Incorporation of labelled amino acids was 

confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS) on tryptic 

peptides prepared from whole cell lysates. Cell pellets were lysed in 8M urea in 100mM 

TEAB (Triethylamonium bicarbonate), and protein concentration estimated using Bradford 

assay (BioRad, Hercules, California). Thirty μg of cell lysate was reduced and alkylated by 

incubating samples for 30 min at 37oC with 2.5mM TCEP (tris(2-carboxyethyl)phosphine) 

and then 5mM 2CAA (2-Chloroacetamide). Urea concentration was diluted to 1M with 

100mM TEAB before adding 0.6 μg of trypsin. Samples were incubated overnight then 

acidified to 1% trifluoroacetic acid (TFA) and cleaned with OMIX C18 tips according to the 

manufacturers’ protocol (Agilent, Santa Clara, California). LC-MS/MS was performed as 

described below.  

Labelled (>97%) cells underwent differentiation to adipocytes as described above. At day 

14 post differentiation, cells were treated with vehicle (media) (K4R6, medium weight cells) 

or 100 μM FAC (in media) (K8R10, heavy weight cells) for a further 48 hours using exactly 

equal volumes of media, replacing the media after 24 hrs. Media for secretome analysis 

was collected from K4R6 and K8R10 cells and mixed 1:1 (v/v) before centrifugation at 600 

x G at 4oC for 10 min to remove cell debris. Supernatant was then concentrated using 

Amicon Ultra 15ml 10 kDa centrifugal filter units (Merck Millipore, Burlington, 

Massachusetts) in a fixed angle centrifuge at 5000 x G to provide approximately 1 ml 

samples of concentrated mixed secretome. Thirty µg of protein was separated on 10% 

SDS-PAGE gels to 10 mm. Protein visualization, excision of bands and in-gel trypsin 

digest were performed using a semi-automated method as described.[160] A band 

corresponding to the same molecular weight as transferrin (media additive) was removed 

prior to digestion, in order to provide a protein sample exclusively secreted from cultured 

adipocytes. 
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Mass spectrometry 

A Q Exactive Plus Orbitrap Mass Spectrometer (Thermofisher Scientific), coupled with 

Easy-nLC 1000 and EASY-spray ion source (both Thermofisher Scientific), was used to 

analyze the digested peptides. Samples were loaded onto an EASY-Spray PepMap RSLC 

C18 2 µm column (50 cm x 75 µm ID), with a Nanoviper Acclaim C18 guard (75 µm x 2 

cm) (both Thermofisher Scientific). A 90 min method was run using a combination of Buffer 

A (0.1% Formic acid) and Buffer B (0.1% Formic acid: Acetonitrile). A two-step gradient 

was run comprising a 60 min gradient from 3% to 25% Buffer B and a 12 min gradient from 

25% to 40% Buffer B. Flow rate was at 250 nL/min. The mass spectrometer was 

programmed to acquire a full mass spectrometry (MS) resolution of 70,000 with an ACG 

target of 3x106 with a maximum injection time of 100 ms. The MS scan range was from 

350 to 1400 m/z. MS/MS was set to acquire a resolution of 17,500 with an ACG target of 

5x105 and maximum injection time of 55 ms. The loop count was set to 20 with a dynamic 

exclusion after 30 sec. 

Raw data were processed with Spectrum mill (Rev B.05.00.181 SP1, Agilent). Selected 

modifications included fixed carbamidomethylation of cysteine and SILAC labels (Arg 0-6-

10 Da Lys 0-4-8 Da) and variable oxidized methionine. Results were searched against the 

Human Uniprot database (downloaded 06/01/2015).[161] Trypsin was selected as digest 

enzyme, with two maximum missed cleavages allowed. The precursor mass tolerance was 

set at +/- 20 ppm and product mass tolerance was +/- 20 ppm. Data were analyzed using 

the online Quantitative Proteomics P-value Calculator (QPPC) using no normalization and 

non-adjusted p-values.[162] 

Immunoblotting 

Western blotting using whole cell lysate samples (10 μg) and 5 μL concentrated secretome 

samples was performed as previously described.[147] A 1:500 dilution of primary antibody 

against Apolipoprotein E (ApoE) (sc-53570, Santa Cruz, Dallas, Texas) was applied to the 

membranes. A 1:100,000 dilution of goat anti-mouse horseradish peroxidase antibody 

(Invitrogen) was applied as secondary antibody. ApoE whole cell lysate densitometry was 

normalized against densitometry using beta-actin as a reference protein (1:2000 primary 

antibody) (Cat No. 4967, Cell Signaling, Danvers, Massachusetts) and 1:20,000 goat anti-

rabbit horseradish peroxidase antibody (Invitrogen). 
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