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ABSTRACT
In this paper we derive the equations of collective Thomson scattering (CTS) for an arbitrarily drifting magnetized plasma described by a
bi-Maxwellian distribution. The model allows the treatment of anisotropic plasma with different parallel and perpendicular temperatures
(with respect to the magnetic field) as well as parallel and perpendicular plasma drift. As could be expected, parallel observation directions
are most sensitive to the parallel temperature and drift, whereas perpendicular observation directions are most sensitive to the perpendicular
temperature and the perpendicular drift along the observation direction. The perpendicular drift can be related to the radial electric field.
Measurements with a spectral resolution better than 0.5MHz are necessary for the inference of the radial electric field. This spectral resolution
and the required scattering geometry are attainable with the current setup of the CTS diagnostic on Wendelstein 7-X.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5088949

I. INTRODUCTION

The most advanced fusion concepts, the tokamak and the
stellarator, both rely on thermonuclear reactions in a magnetized
plasma sustained in toroidal geometry. The plasma is heated to
about 150 million degrees by fusion alphas and auxiliary heating.
This extremely high temperature and the large size of fusion plasmas
hamper the applicability of common plasma diagnostic methods.
Microwave diagnostics, however, will work even under the condi-
tions of future fusion reactors such as ITER or DEMO.1–3 Collective
Thomson scattering (CTS) is a microwave diagnostic based on the
scattering of radiation due to fluctuations in the plasma. The inci-
dent radiation and the scattering geometry are chosen such that the
condition 1/|k|λDe > 1 ismet. λDe = √ ε0Te

nee2 is the Debye length, where
ε0, Te, ne and e are the vacuum permittivity, electron temperature,
electron density and unit charge, respectively. The scattering wave
vector is defined by k = ks − ki, where ki and ks represent wave
vectors of the incident and scattered radiation. In this regime the

scattering happens coherently on the electrons in the Debye screen-
ing clouds surrounding the ions which makes the diagnostic sensi-
tive to the ion dynamics. This is a powerful diagnostic tool enabling
simultaneous measurements of various important plasma parame-
ters such as the ion temperature, plasma composition, drift velocity,
plasma rotation, and the fast ion distribution function. In CTS one
measures a spectrum of scattered radiation from which the values
of the plasma parameters can be inferred. To this end a numerical
forward model of the scattering has to be used.

In this paper we derive the equations of CTS for a drifting
plasma described by a bi-Maxwellian distribution with arbitrary par-
allel drift in a perpendicularly drifting reference frame. We use our
arbitrarily drifting bi-Maxwellian model to investigate the effects of
anisotropic temperature as well as parallel and perpendicular drift
velocities with respect to the magnetic field. The perpendicular drift
velocities are related to the radial electric field, so that this important
parameter can also be measured by CTS. The perpendicular plasma
flow velocity and the radial electric field are linked through the force

AIP Advances 9, 035252 (2019); doi: 10.1063/1.5088949 9, 035252-1

© Author(s) 2019



AIP Advances ARTICLE scitation.org/journal/adv

balance equation4

⟨Er⟩ = 1
eniZi

∂pi
∂ρ
⟨ρ⟩ − ⟨vd⊥B⟩ (1)

where the angle brackets denote averaging, ni, Zi, pi, ρ, v�, B are
the ion density, ion charge number, ion pressure, normalized radial
flux coordinate, perpendicular flow velocity and magnetic field,
respectively.

Hence the value of the radial electric field can be calculated
from measurements of the perpendicular flow velocity provided the
other parameters are known or that the first term on the right side
of equation (1) can be neglected. Diagnostics such as X-ray imaging
crystal spectroscopy (XICS),4 correlation reflectometry5 and charge
exchange recombination spectroscopy (CXRS)6 are able to pro-
vide the measurements of the perpendicular flow velocity. However,
the signal-to-noise ratio in the plasma is often low in high-density
plasmas as many of the injected neutrals ionize before reaching
the core. There are a number of advantages of using CTS instead.
CTS directly provides local measurements and does not perturb the
plasma by introducing impurities or high energy particles. It is par-
ticularly suited for high density plasma operation since the signal
strength and the noise both scale with electron density and so the
signal-to-noise ratio does not degrade.

We start by introducing the building blocks of our newly
derived CTS model for an arbitrarily drifting bi-Maxwellian dis-
tribution function and discuss the chosen coordinate system with
respect to the applied magnetic field, emphasizing the optimal
scattering geometry for perpendicular drift velocity measurements
(Section II). The results of the study are given in Section III. The
summary and discussion outlining the implications for tempera-
ture measurements in anisotropic plasmas and for perpendicular
drift velocity and radial electric field measurements are given in
Section IV. Conclusions are given in Section V.

II. CTS FOR AN ARBITRARILY
DRIFTING BI-MAXWELLIAN
A. Theory

Collective Thomson scattering is the scattering of microwave
radiation due to fluctuations in the plasma. The fluctuations are
resolved by the measurement along the direction of k defined by
the scattering geometry. The scattered radiation is picked up by
a receiver and one measures the scattered spectral power density
which is given by the transfer equation. The transfer equation can
for our purposes be written in a simple form:

∂Ps

∂ω
= f (Pi,Ob,ωi,ωs,ne, re)GS(k,ω) (2)

where f is a function of several parameters. Pi is the probing radia-
tion power, Ob is the overlap of the probing beam and the receiver
antenna pattern, ωi and ωs are the frequencies of the incident and
scattered waves, ne is the electron density, and re is the classical
electron radius. k and ω = ωs − ωi are associated with the fluctua-
tions, andG and S are the dielectric and spectral form factors.7,8 The
dielectric and spectral form factors account for the response of the
plasma to the incident and scattered radiation and the response of
the plasma to the fluctuations interacting with the incident radiation.
In what follows we will focus on these two quantities.

For probe radiation in the GHz range, the conditions for collec-
tive scattering in a fusion plasma, 1/|k|λDe > 1, can be fulfilled while
allowing for flexible scattering geometries. For waves in this range
the particles in the plasma appear to be almost at rest, and the plasma
can therefore be considered to be cold. The dielectric form factor
G accounts for the dielectric response of the plasma to the incident
and scattered radiation.9 The cold dielectric tensor is used for the
calculation of G. Treatment of the fluctuations is entirely different.
The spectral form factor, or the spectral density function, S(k, ω)
is introduced into the CTS theory in order to account for the fluc-
tuations in the plasma. Both of these factors are functions of the
plasma parameters and the scattering geometry. In particular, the
spectral density function is a function of the ion and electron veloc-
ity distributions. Radial electric field measurements by CTS require
a model which is based on a suitable velocity distribution function.
Given that CTS measures along the direction of k, we also need to
consider the choice of the scattering geometry such that the per-
pendicular plasma flow velocity is the only flow velocity which has
a projection along k. We set the coordinate system such that v∥
refers to the velocity along the direction of the applied magnetic
field B, and the v�1 direction is in the direction of the perpendic-
ular drift component. The bi-Maxwellian allowing for different par-
allel and perpendicular temperatures with respect to the magnetic
field B, T∥ and T�, and arbitrary drifts, vd∥ and vd�, can then be
written as:10

f 3D(v∥, v⊥1, v⊥2) = n( m2π)3/2 1
T⊥T1/2∥

exp

×⎛⎝ − m(v∥ − vd∥)2
2T∥

− m((v⊥1 − vd⊥)2 + v2⊥2)
2T⊥

⎞⎠.
(3)

where n andm denote the particle density andmass. Parametrized in
coordinates with v�1 = v� cos γ and v�2 = v� sin γ, the distribution
has the form:

f 3D(v∥, v⊥, γ) = n( m2π)3/2 1
T⊥T1/2∥

exp

×⎛⎝ − m(v∥ − vd∥)2
2T∥

− m(v2⊥ − 2v⊥vd⊥ cos γ + v2d⊥)
2T⊥

⎞⎠
(4)

where we do not include the Jacobian. In either coordinate system,
the arbitrarily drifting bi-Maxwellian is described by three coordi-
nates. We can see from equation (4) that any perpendicular drift
breaks the axisymmetry. Symmetry breaking greatly complicates the
calculation of the spectral form factor. To circumvent this problem
we can restore the axisymmetry by a coordinate transformation to
the guiding center frame in the perpendicular direction such that
vd� = 0. For vd� = 0 the gyroangle γ drops out and we obtain the
axisymmetric function:

f 3D(v∥, v⊥) = n( m2π)3/2 1
T⊥T1/2∥

exp
⎛⎝ − m(v∥ − vd∥)2

2T∥
− mv2⊥
2T⊥
⎞⎠
(5)
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where we can neglect the gyroangle γ in the argument since the
axisymmetric function in the guiding center frame does not depend
on γ. Before we proceed to calculate the spectral density func-
tion for the distribution given by (5), we also need to transform
the frequencies ω to the guiding center frame in the perpendicu-
lar direction. This transformation is advantageous as we can then
use the rotation symmetric bi-Maxwellian from equation (5). The
frequency shift will be due to the bulk plasma drift vd and the inci-
dent probe frequency is transformed due to the moving coordinate
system attached to the guiding center:

ω′
i = ωi − ki ⋅ vd (6)

The scattered radiation frequency is also transformed due to emis-
sion from the moving coordinate system attached to the guiding
center:

ωs = ω′
s + ks ⋅ vd (7)

Assuming that the spectrum degenerates to a single line (cold plasma
with T=0), we have ω′

s = ω′
i , and the scattered frequency will be:

ωs = ωi + k ⋅ vd (8)

This is the scattering equation with the drift velocity instead of
the ion velocity. The scattering is calculated for ω′

s yielding a spec-
trum corresponding to the shifted gyrotron frequency ω′

i . The
spectrum is shifted according to equation (7). This is equivalent
to the entire spectrum being shifted according to equation (8).
We therefore expect to observe a systematic frequency shift ωd
given by:

ωd = k ⋅ vd = k∥vd∥ + k⊥vd⊥ cosβ= kvd∥ cosφ + kvd⊥ sinφ cosβ (9)

where k∥ = k cos φ, k� = k sin φ and φ =∠(k, B). The angle β is the
angle between the perpendicular drift velocity and the direction of k
for a given scattering geometry.11

The spectral density function is defined in the usual manner as
the ensemble average of the Fourier-Laplace transform of the fluc-
tuating quantity in the plasma.12 The quantities whose fluctuations
in general contribute to the CTS spectrum are the electron density,
ne, electric field, E, magnetic field, B, and the current density j. Often
the largest contribution comes from the electron density fluctuations
which is why only these are taken into account. The spectral density
function is defined as:

S(k,ω) = lim
δ→0,V→∞

2δ
V
⟨ ∣n1e(k,ω − iδ)∣2

n0e
⟩ (10)

where V denotes the scattering volume, δ is a small positive real
number (stems from the definition of the Laplace transform), n0e is
the mean electron density and n1e(k, ω − iδ) is the Fourier-Laplace
transform of the electron density fluctuations. A general expression
for S(k, ω) valid for arbitrary velocity distributions can be obtained
provided that the Fourier-Laplace transform of the electron den-
sity fluctuations is calculated. The calculation proceeds from the
Klimontovich formalism starting with the microscopic distribution
function and integrating over unperturbed orbits.13 The deriva-
tion is simplified by assuming that the plasma is collisionless and
by making the electrostatic approximation. The applicability of this

approximation to W7-X plasmas is discussed in Ref. 9. The main
steps in the derivation of the general expression are delineated in
Ref. 12 and the final result is:12

S(k,ω) = limδ→0 2δ
�����������1 −

He

ε

�����������
2 ∫ dv ∑+∞l=−∞ J2l (k⊥ρe)f0e(v)(ω − k∥v∥ − lΩe)2 + δ2

+ lim
δ→0

2δZ2i
�����������
He

ε

�����������
2 ∫ dv ∑+∞l=−∞ J2l (k⊥ρi)f0i(v)(ω − k∥v∥ − lΩi)2 + δ2 (11)

where δ is a small positive quantity, Jl(k�ρ) denote the Bessel func-
tions of the first kind of order l, ρe(i) = ve(i)⊥

Ωe(i)
denotes the correspond-

ing gyroradii, Ωe(i) are the corresponding cyclotron frequencies. The
dispersion relation is ε = 1 + He + Hi in which the electron and ion
susceptibilities are respectively defined as:12

He(k,ω) = 4πe2n0ek2me
∫ dv

∑+∞l=−∞ J2l (k⊥ρe)k∂f0e(k,v,ω)
∂v

ω − iδ − k∥v∥ − lΩe
(12)

Hi(k,ω) = 4πZ2i e2n0ik2mi
∫ dv

∑+∞l=−∞ J2l (k⊥ρi)k∂f0i(k,v,ω)
∂v

ω − iδ − k∥v∥ − lΩi
(13)

where n0e(i) refer to the mean electron and ion densities.
The integrals in equations (11), (12) and (13) can be solved ana-

lytically for the parallel drifting bi-Maxwellian distribution function,
given by equation (5), exploiting that it is separable into an integral
over the ignorable gyroangle γ (the result of which is just a factor
of 2π), an integral over the parallel velocity and an integral over the
perpendicular velocity. For the parallel-drifting bi-Maxwellian, we
have vd� = 0 and hence ωd = ωd∥ = k∥vd∥. Solving the first integral in
equation (11) over the electron velocity distribution is thus broken
into solving the integral over the parallel velocity:

lim
δ→0

2δ
+∞∫

−∞

dv∥
e
−

me(v∥−vd∥)
2

2Te∥(ω − k∥v∥ − lΩe)2 + δ2 = 2πk∥ e−(
ω−ωd∥−lΩe

vt∥ek∥
)2

(14)

and the integral over the perpendicular velocity:

C
+∞∫
0

v⊥dv⊥
+∞∑

l=−∞
J2l (k⊥ρe)e− mev2⊥

2Te⊥ = CTe⊥

me

+∞∑
l=−∞

e
−( k2⊥Te⊥

Ω2e me
)
Il(k2⊥Te⊥

Ω2eme
)
(15)

where C = (me
2π )3/2 1

Te⊥T
1/2
e∥
, and we used the following property of the

Bessel function of the first kind for calculating the integral over the
perpendicular velocity:14

+∞∫
0

J2l (bt)e−p2t2 tdt = 1
2p2

e
−( b2

2p2
)
Il( b2

2p2
) (16)

Collecting the terms from (14)–(16) we find the result of the inte-
gral from equation (11) over the electron velocity distribution. The
integral over the ion velocity distribution from equation (11) can be
completed in an analogous manner. The resulting spectral density
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function is:

S(k,ω) = �����������1 −
He

ε

�����������
2
2π1/2

vt∥ek∥

+∞∑
l=−∞

e
−( k2⊥Te⊥

Ω2e me
)
Il(k2⊥Te⊥

Ω2eme
)e−( ω−ωd∥−lΩe

vt∥ek∥
)2

+
�����������
He

ε

�����������
2
2π1/2Z2i ni
nevt∥ik∥

+∞∑
l=−∞

e
−( k2⊥Ti⊥

Ω2i mi
)
Il(k2⊥Ti⊥

Ω2i mi
)e−( ω−ωd∥−lΩi

vt∥ik∥
)2
(17)

where vt∥e = √ 2Te∥
me
, vt∥i = √ 2Ti∥

mi
. The derived expression for the

spectral density function given by equation (17) is valid for single ion
species plasma but can easily be generalized to multiple ion species
plasma by summation of the second term over all ion species.

Calculations of the integrals from equations (12) and (13)
require the use of the definition of the plasma dispersion function15

Z(η) = 1√π

+∞∫
−∞

dx e−x
2

x − η (18)

and the following recurrence relation for Bessel functions of the first
kind14

Jl−1(z) + Jl+1(z) = 2lz Jl(z) (19)

The relation (19) enables writing out the product of the wave vec-
tor and the partial derivative of the distribution function in the
following form12

k∂f0e
∂v
= k∥ ∂f0e

∂v∥
+ lΩe

v⊥
∂f0e
∂v⊥

(20)

After the calculation we get the final expressions for the susceptibil-
ities:

He = 1
k2λ2De∥

∞∑
l=−∞

e
−( k2⊥Te⊥

Ω2e me
)
Il(k2⊥Te⊥

Ω2eme
)

× ⎛⎝1 + ω − ωd∥

vt∥ek∥
Z(ω − ωd∥ − lΩe

vt∥ek∥
)⎞⎠ (21)

Hi = Z2i Te∥ni
k2λ2De∥Ti∥ne

∞∑
l=−∞

e
−( k2⊥Ti⊥

Ω2i mi
)
Il(k2⊥Ti⊥

Ω2i mi
)

× ⎛⎝1 + ω − ωd∥

vt∥ik∥
Z(ω − ωd∥ − lΩi

vt∥ik∥
)⎞⎠ (22)

From the obtained expression it follows that the plasma drift
will cause a frequency shift of the measured spectra which is in
accordance with expectations based on rotation measurements by
CTS described in Ref. 16. The usual expressions for the isotropic
Maxwellian distribution without drifts can be recovered by setting
T� = T∥ and ωd = 0 in equations (17), (21) and (22).

For electric field measurements we need to make sure that the
frequency shift is caused only by the perpendicular drift velocity.
This is accomplished by choosing the scattering geometry such that∠(k, B) = π/2 so that k∥ = 0. This is a very convenient geometry
also due to the possibility of observing the cyclotron signature in
measured CTS spectra.16 The peaks in the spectra appear near the

cyclotron frequencies of the ions in the plasma. These features are
very narrow and thus improve the spectral resolution crucial for
resolving the frequency shift caused by the radial electric field. If we
consider the angle β between the perpendicular drift velocity and the
line of sight, the frequency shift will be given by kvd� cos β for the
φ = 90 case. If two simultaneous measurements on the same over-
lap volume are available, one can recover all the parameters of the
underlying bi-Maxwellian distribution function.

Since the spectral shift of the cyclotron signature does not
depend on the number of fluctuating quantities taken into account,
or effects captured by a full electromagnetic treatment, it will suf-
fice to calculate the spectral density function in the electrostatic
approximation accounting only for the fluctuations in the electron
density.

B. Computation
A forward model enabling numerical computation of collec-

tive Thomson scattering spectra (eCTS) has been developed and
described in Ref. 9. The eCTS code is based on the electrostatic
approximation which suffices for modeling the bulk ion feature in
CTS spectra, as well as inference of plasma composition and drift
velocities. The code has extensively been bench-marked against a
full electromagnetic model17 with which an agreement within 10%
is found for isotropic Maxwellian plasmas.9 The model has also
been validated on Wendelstein 7-X and the data analysis proce-
dure is described in Ref. 18. The model takes as input the values of
plasma and scattering geometry parameters and calculates the spec-
tral power density of the scattered radiation given by the transfer
equation (2). To investigate the effects of anisotropic temperatures
and to study the feasibility of radial electric field measurements in
Maxwellian and bi-Maxwellian plasma, we have extended the eCTS
model by implementing a spectral density function calculated for a
distribution given by equation (5).

III. RESULTS
A. Sensitivity to anisotropic ion
temperatures T � and T ∥

By resolving the plasma fluctuations along the direction k, the
CTS diagnostic measures a projection of the ion velocity distribu-
tion function along this direction. The spectrum is therefore highly
sensitive to the changes in the observation angle φ = ∠(k, B) for
anisotropic velocity distribution functions. We calculated spectra
for the three observation angles φ = 10○, φ = 80○ and φ = 90○
and for each case, we investigated the effects of changing the par-
allel and perpendicular temperatures. The results are depicted in
Figures 1, 2 and 3, respectively. Similar to the case for an isotropic
Maxwellian distribution, we expect that an increase in ion temper-
ature will in general affect the width of the spectra. For our model
which calculates CTS in a bi-Maxwellian plasma the observation
angle determines to which of the two temperatures, T� or T∥, the
width is more sensitive to. By comparing Figures 1 and 2 we con-
clude that in the first case for φ = 10○ the width of the spectrum
is dominated by the change in T∥, whereas in the second case for
φ = 80○ the width is dominated by the change in T�. This angular
dependence is strongly modified by the appearance of ion cyclotron
signatures for angles near φ = 90○ - the sharp peaks depicted in
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FIG. 1. Variation of T� (left) and T∥ (right) for a fixed observation angle of φ = 10○, showing that for more parallel observation the width of CTS spectra is more sensitive to
changes in T∥.

FIG. 2. Variation of T� (left) and T∥ (right) for a fixed observation angle of φ = 80○, showing that for more perpendicular observation the spectral width becomes more
sensitive to the changes in T�.

FIG. 3. Variation of T� (left) and T∥ (right) for a fixed observation angle of φ = 90○. For this observation angle we expect, taking into account the results depicted in Figures 1
and 2, that the spectral width reflects the changes in T�. This dependence is made less obvious due to the appearance of sharp peaks in the spectra which correspond to
the cyclotron frequency of the ions - appearance of the ion cyclotron signature.
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FIG. 4. Gradual onset of ion cyclotron signature as φ approaches 90○ with
indicated notch filter region.

Figure 3 which correspond to the ion cyclotron frequency. The onset
of the ion cyclotron signature is gradual as we approach perpendic-
ular observation. This is shown in Figure 4 in which the observa-
tion angle is systematically varied from φ = 85○ up to φ = 89○. In
experiments, notch filters block a spectral range around the prob-
ing frequency (±150 MHz) in order to protect the sensitive CTS
receiver from high power radiation. In Figure 4 an ideal notch filter
region is indicated. In practice the notch does not have ideal char-
acteristics and the actual range within which the signal is gradually
attenuated can be significantly wider. This increases the uncertainty
of the height of CTS spectra in an actual measurement. Addition-
ally the height also scales with a number of parameters such as the
incident power, the overlap volume, the electron density, and the
dielectric form factor (see equation 1). All the parameters to which
the spectrum is sensitive but which are not to be inferred from a
CTS measurement we refer to as the nuisance parameters. The sen-
sitivity of calculated CTS spectra to nuisance parameters has been
investigated for the isotropic Maxwellian case in Ref. 18.

B. Sensitivity to plasma drift
Changes in the values of plasma parameters such as the ion

and electron temperatures and densities, the applied magnetic field
and the scattering angle, affect both the height and the width of the
calculated spectra.18 The impurity concentrations, reflected in the
value of effective charge Zeff, can distort the spectral shape for high
concentrations of lighter impurities such as helium or carbon.19
Depending on the value of the projection angle φ, the diagnostic can
be made sensitive to the plasma composition which can be inferred
from the ion cyclotron signature observable under the condition of
perpendicular observation20 and as depicted in Figure 3. However,
changes in plasma parameters and scattering geometry will not affect
the centering of the spectrum around the probing frequency. Thus
the only quantity causing a spectral shift of CTS spectra will be a drift
velocity.

We in particular seek to infer the perpendicular drift velocity.
As discussed the parallel drift velocity drops out for φ = 90○, and
the frequency shift in the spectra remains small for angles close to
90○. The radial electric field can be calculated from the equation (1)
provided the perpendicular drift velocity can be inferred from mea-
sured CTS spectra. This in practice translates into the requirement
that the frequency shift be resolvable. To investigate if this is the
case, we need to calculate the spectra within a relevant parameter
range and find the necessary spectral resolution of our CTS diagnos-
tic and thus the feasibility of using it for radial electric field mea-
surements. In the first experimental campaign of Wendelstein 7-X,
the average perpendicular flow velocity was measured by the XICS
diagnostic and corresponding values of the radial electric field have
been obtained.4We therefore chose to conduct our study for similar
plasma parameter values from 2 kV/m up to 12 kV/m as reported in
Ref. 4, for a conveniently chosen scattering geometry - perpendic-
ular observation φ = 90○. Relevant ranges of input parameters are
summarized in Table I. We have systematically changed the input
values of vd in order to quantify the corresponding frequency shift.
Changes in the value of the drift velocity, taken such as to corre-
spond to the values of the radial electric field from 2 kV/m up to
12 kV/m, cause spectral shifts of 0.35 MHz up to 4.25 MHz. A cal-
culation of the largest shift for perpendicular observation is shown
in Figure 5. The spectral shift can be calculated from a spectrum
containing the ion cyclotron signature in two ways: by fitting the
measured spectra with our model or by simply finding the shift of
the peaks and minima. Using the model has the advantage that all
data points are used in the fit. However, uncertainties in nuisance
parameters may complicate this approach. The approach to simply
find the frequency shift of the peaks exploits the symmetry of the ion
cyclotron signature about the probe frequency. The frequency shift
can be calculated by summing the frequencies of the correspond-
ing peaks on the left and the right side of the incident frequency. If
such peaks are identifiable in a measurement, one pair of frequen-
cies will suffice for the calculation of the shift which will simply be
given by:

Δω = ωright + ωleft

2
− ωi (23)

where ωi stands for the frequency of the probing radiation. In
order to decrease the noise we should use all identifiable peak and
minimum pairs by summing over frequencies:

TABLE I. Parameter ranges for the feasibility study of radial electricfield measure-
ments by CTS.

Parameter Range

Te [keV] 2 - 7
Ti [keV] 1 - 5
ne 1019m−3 2 - 8
ni 1019m−3 2 - 8
Zeff 1 - 2
B [T] 2.34
φ =∠(kδ , B) [deg] 88 - 90
θ =∠(ki, ks) [deg] 150 - 170
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FIG. 5. Calculation of the spectral shift of a CTS spectrum caused by the radial electric field in the scattering volume of a Maxwellian hydrogen plasma. On the left: the
spectrum has been calculated for perpendicular observation. The cyclotron signature is clearly visible (peaks in the spectrum). On the right: enlarged part of the spectrum,
the calculated frequency shift of 4.25 MHz corresponds to a field of Er = 12 kV/m.

FIG. 6. Spectra computed for several parallel drift velocities and two observation angles φ = 0○ and φ = 60○. The spectral shifts caused by the parallel drift are larger for
more parallel observation.

Δω = N∑
n=1

ωnright + ωnleft

2N
− ωi (24)

where N denotes the number of identifiable peak pairs and mini-
mum pairs.

For observation other than perpendicular, the parallel drift
velocity will contribute to the observed spectral shift. Computing the
spectra for parallel drift velocities at φ = 0○ and φ = 60○ are shown in
Figure 6. As can be seen from Figure 6 the spectral resolution rela-
tive to the frequency shift caused by the parallel drift velocity is larger
at smaller φ. This makes it easier to measure parallel drift for more
parallel observation.

It should be emphasized that there are two ways of computing
the shifted spectra, namely by using the equations (6)–(8), and by
using equations (17), (21), (22) resulting from a formal derivation
or by applying the spectral-shift method (shifting the spectrum for
vd = 0 by k⋅vd). The two methods have been applied to the calcula-
tion of spectra in Figure 6 confirming that the two are equivalent.
The calculation of the perpendicular drift can only be handled by
the spectrum-shift method since we need to retain the rotational
symmetry.

IV. SUMMARY AND DISCUSSION
In this work we have derived the equations enabling us to

calculate CTS spectra for a plasma described by a bi-Maxwellian
distribution function with arbitrary parallel drift in a perpendicu-
larly drifting reference frame. The equations were incorporated into
the forward model of CTS in the electrostatic approximation eCTS
described in Ref. 9. This further allowed investigation of two top-
ics: first, the effects of anisotropic temperatures, T� and T∥, as well
as perpendicular and parallel drifts, vd� and vd∥, on CTS spectra in
magnetized high-temperature plasmas with bi-Maxwellian distribu-
tions and the investigation of the feasibility of radial electric field
measurements in such plasmas. We have shown that the width of
CTS spectra calculated for a bi-Maxwellian plasma is affected by
the changes in both T� and T∥. Depending on the chosen obser-
vation angle φ the width is more sensitive to either T� or T∥. This
is in agreement with expectations based on the projection equations
for bi-Maxwellian plasma given in Ref. 11 where it is shown that
the T� and T∥ drop out in the projection of the velocity distribu-
tion function onto the line-of-sight (here k) for the limiting cases of
φ = 0○ and φ = 90○, respectively. However, for φ = 90○ the
appearance of the ion cyclotron signature modifies the expected
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dependence on the perpendicular and parallel temperatures and the
sensitivity to T∥ is retained, as can be seen in Figure 3. This has
implications for the inference of bulk ion temperature from CTS
spectra. Therefore, if powerful NBI or ICRF heating is employed in
low-density plasma, accounting for anisotropy could be essential for
a correct interpretation of the measurements.

For the measurements of small spectral shifts from which Er
can be determined, high resolution and a narrow notch filter are
required. The notch filter can be very narrow (up to 10 MHz) pro-
vided the gyrotron frequency is stable.21 This will enable observa-
tion of the ion cyclotron signature even for narrow spectra. If a
narrow notch filter is not available, we will benefit from heating sce-
narios such that T� > T∥ in which we expect spectral broadening for
close to perpendicular observation as illustrated in Figure 3.

The spectral resolution in modern CTS DAQ systems, such as
the ones employed on Wendelstein 7-X22 and AUG,23 is flexible.
The receiver samples with the rate of 5-12 GS/s. A Fourier transform
is made in order to obtain the scattering spectrum and the spectral
resolution is then given by 1/T where T stands for the duration of
the acquisition period. This allows for a high spectral resolution bet-
ter than 1 MHz. The limiting factor can be background subtraction.
Nevertheless, provided that the right scattering geometry and for-
ward model are used, the measurement of the radial electric field by
means of CTS is feasible.

V. CONCLUSION
The forward model based on the herein outlined equa-

tions (17), (21) and (22) should be used for interpretation of CTS
measurements in drifting bi-Maxwellian plasmas produced by NBI
or ICRH heating in which the anisotropy in temperature has to be
taken into account. The model formalizes the intuitive interpreta-
tion of spectral shifts in CTS measurements by explicitly relating
the shifts to plasma drift velocities. We have demonstrated that per-
pendicular observation in conjunction with the relation given by
equation (24) can be used for perpendicular drifts measurements
fromwhich the radial electric field can be inferred. The CTS can thus
provide the radial electric field values in plasmas where impurity
based diagnostics would be hampered by the large plasma volume
and density.
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