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Abstract 

Warehouses employ order cut-off times to ensure sufficient time for fulfilment. To satisfy                    

higher consumer expectations, these cut-off times are gradually postponed to improve order 

responsiveness. Warehouses therefore have to allocate jobs more efficiently to meet 

compressed response times. Priority job management by means of flow-shop models has 

been used mainly for manufacturing systems but can also be applied for warehouse job 

scheduling to accommodate tighter cut-off times. This study investigates which priority rule 

performs best under which circumstances. The performance of each rule is evaluated in terms 

of a common cost criterion that integrates the objectives of low earliness, low tardiness, low 

labour idleness, and low work-in-process stocks. A real-world case study for a warehouse 

distribution centre of an original equipment manufacturer in consumer electronics provides 

the input parameters for a simulation study. The simulation outcomes validate several 

strategies for improved responsiveness. In particular, the critical ratio rule has the fastest 

flow-time and performs best for warehouse scenarios with expensive products and high 

labour costs. 
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1. Introduction 

Intense competition for speedy order fulfilment characterizes current retail markets. 

Responsiveness (Barclay et al., 1996) includes the ability to react purposefully within an 

appropriate time to external environments for securing competitive advantage. Improving order 

fulfilment responsiveness is a major challenge for boosting customer satisfaction (Doerr and Gue, 

2013) and many firms, such as Amazon Prime, invest hefty capital to propel responsiveness. 

Though responsiveness hones competitiveness, it often leads to resource misallocation (T’kindt, 

2011), and improved responsiveness leads for two-thirds of all firms to increased labour cost 

(Pearcy and Kerr, 2013). Web retailers show responsiveness by advertising ‘Place an order before 

midnight for next-day delivery.’ Customers are nowadays accustomed to such fast demand 

satisfaction in on-line markets and expect comparable off-line service. Off-line retailers therefore 

attract customers with promises like ‘Buy online now and pick up in store tomorrow’, forcing off-

line retail distributors to improve their responsiveness (Denman, 2017).  

The overall speed of order fulfilment in off-line markets depends on processing and 

transportation speeds from manufacturers through warehouses and retail shops to end-users. This 

paper focuses on speedy order fulfilment in warehouses, in particular original equipment 

manufacturing (OEM) warehouses delivering to retailer warehouses. Their order fulfilment 

process includes the inbound processes of receiving products and putting them away and the 

outbound processes of picking, packing, staging and shipping. As OEM warehouses receive 

products from their manufacturer, the inbound process is easily controlled compared to the rather 

unpredictable consumer demand leading to fast fluctuations of retailer orders. Another 

characteristic of OEM warehouses is that retailers order relatively large quantities of relatively few 

products (Bartholdi and Hackman, 2011). This distinguishes such warehouses from those 

delivering directly to consumers, where order sizes are small and range over a much wider product 

assortment. Whereas picking is usually the crucial stage for the latter type, in OEM warehouses 

the packing stage is often the most demanding one. As the receiving retailer warehouses differ in 

capacity and lay-out and trucks should be loaded efficiently, re-palletizing is a major task for OEM 

warehouses. Because of the large order volumes, the re-palletizing activities of unpacking, 

repacking and stacking are relatively labour intensive. 
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Responsiveness of OEM warehouses is measured by their flexibility to dispatch products 

ordered by retailers as fast as possible. To mitigate the effect of demand spikes, most OEM 

warehouses limit their fulfilment liability by daily order cut-off time agreements with their clients 

to ensure sufficient slack for order fulfilment by the earliest dispatch day (Van den Berg, 2007). 

To improve responsiveness, these warehouses try to postpone the cut-off time and to handle the 

same order volume with less slack. Since orders typically have different fulfilment deadlines, 

priority-based job scheduling offers the key for efficient solutions. Just as job scheduling has 

notably reduced waste from over-production and waiting times in “just-in-time” manufacturing, it 

can also improve responsiveness in warehouse order fulfilment. Job scheduling allocates tasks to 

labour resources for chosen goals (T’kindt and Billaut, 2006), and the question of central interest 

here is how OEM warehouses should schedule their orders to allow later cut-off times.  

Warehouse operations are faced with various uncertainties, including dynamic arrival, 

service and departure times (Gong and De Koster, 2011). In particular, unexpected order arrivals 

can yield long delays. Because of these uncertainties there is usually no priority rule that is 

universally optimal (Lee et al., 1997). This paper presents a general framework for cost-effective 

job scheduling using flow-shop priority methods to aid warehouses facing postponed order cut-off 

times. This framework integrates the multiple objectives of low earliness, low tardiness, low labour 

idleness, and low stocks through processing lanes into a single cost criterion, with weights derived 

from the cost structure and performance priorities of the warehouse. A simulation study shows 

which scheduling methods perform best under which circumstances. The methods and results 

presented here advance extant literature by applying traditional flow-shop theories from 

manufacturing research to real-world warehouse distribution tasks. Warehouse practitioners can 

incorporate this task-scheduling framework in their warehouse management system (WMS) to 

create and execute a string of order fulfilment jobs (Van den Berg, 1999; Ramaa et al., 2012).  

The rest of this paper is structured as follows. Section 2 reviews literature related to 

responsiveness, warehousing and flow-shop methods. Section 3 describes the operational 

challenge of responsive order fulfilment for postponed cut-off times. Section 4 presents the priority 

rules and performance indicators. Section 5 shows simulation results for the case study, and 

Section 6 discusses some operational implications and conclusions.   
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2. Literature review 

We give a brief review of literature related to the main aspects of our study, i.e., responsiveness, 

OEM warehouses, priority-based job scheduling, and performance criteria. 

   Shaw et al. (2002) defined a clear hierarchy among the concepts of agility, responsiveness 

and flexibility. Agility concerns talents for operating ‘profitably in a competitive environment of 

continually, and unpredictably, changing customer opportunities’. It involves both proactive 

initiatives and reactive responsiveness, and flexibility is one of the conditions enabling 

responsiveness. The study of Kritchanchai and MacCarthy (1999) identified four factors that 

determine responsiveness: stimuli, awareness, capabilities, and goals. In our OEM warehouse 

study, these factors consist respectively of hourly varying demand stimuli, awareness of demand 

fluctuations, job scheduling opportunities, and the goal of efficient order fulfilment.  

 Efficiency studies on warehouse processes focused mainly on picking strategies (Jarvis and 

McDowell, 1991; Hall, 1993; Petersen, 1997; Roodbergen and De Koster, 2001; Petersen et al., 

2004; De Koster et al., 2007; Chen et al., 2010; De Koster et al., 2012). Proposed strategies include 

interleaving put-away and picking (Graves et al., 1977), wave picking (Petersen, 2000), and joint 

order batching (Won and Olafsson, 2005; Van Nieuwenhuyse and De Koster, 2009). The focus on 

picking is natural for retailer warehouses delivering directly to consumers, as such warehouses 

typically process large amounts of small orders for a wide variety of products by customer totes 

via multiple processing lines. Conversely, OEM warehouses delivering to retail warehouses 

process very large orders for a comparatively narrow assortment by multiple pallets via few 

processing lines. The outbound operations constitute a tandem queue (Burke, 1956) with three 

stages: picking, packing and staging. Multiple orders from the same retailer are consolidated for 

single shipment, which requires customized re-palletizing and packing to satisfy dimension 

restrictions of trucks and retailer warehouses. This makes packing by far the most labour intensive 

phase of the outbound process in OEM warehouses (Bartholdi and Hackman, 2011).  

  Consumers can nowadays easily use the internet to compare quality and prices of products 

across different suppliers. The offered service level remains the major competitive quality, and 

warehouse clients perceive responsiveness mainly by the speed of delivery. Pagh and Cooper 

(1998) studied the effect of postponement strategies of producers on warehouse outbound 
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processes, and our study evaluates the effect of postponing order cut-off times to obtain better 

responsiveness in terms of faster delivery speed. Such cut-off rules induce order peaks just before 

the cut-off time and cause imbalanced workloads. Huang et al. (2006) showed that these 

imbalances can lead to the ‘self-contradiction of hands shortage and idleness’ within the day. Such 

imbalances can be smoothed in several ways, for example, by modelling from historical data to 

reduce uncertainty (Gong and De Koster, 2011) and by balancing the workload (De Leeuw and 

Wiers, 2015). The labour intensive packing lanes of OEM warehouses are akin to factory 

workstations or job shops in manufacturing where productivity has been scrutinized via job-shop 

theory (Johnson, 1954). Our study pioneers the analysis of OEM warehouse outbound processes 

through job-scheduling methods using priority dispatching rules to smoothen warehouse flows and 

to optimize responsiveness.  

  Without prioritising, jobs are commonly processed on a first-come first-served (FCFS) 

basis. Jackson’s rule (Jackson, 1955) orders jobs according to non-decreasing due dates, and this 

sequencing method is usually called ‘earliest due date’ (EDD). The shortest processing time (SPT) 

rule of Smith (1956) orders jobs according to non-decreasing processing times. Berry and Rao 

(1975) proposed two other rules, SLACK defined in terms of job slack (its due date minus its 

processing time) and critical ratio (CR) that corrects job slack for queuing delays. Kanet and Hayya 

(1982) presented an early application in manufacturing and compared priority methods based on 

due dates. Kiran and Smith (1984) studied dynamic job-shop scheduling by computer simulation, 

Lee et al. (1997) incorporated machine learning techniques, and Freiheit and Wei (2016) conducted 

a case study to investigate imbalance effects on flow-shop performance. Kemppainen (2005) 

presented an extensive comparison of various priority scheduling rules and their use in integrated 

order management.  

  The benefits of priority-based job scheduling can be evaluated in terms of operational and 

financial performance criteria. The choice which priority rule to employ involves a trade-off 

among multiple performance attributes of the outcomes, for example, handled volume, service 

level and operational cost (Chen et al., 2010). A popular method to assist this choice is data 

envelopment analysis (Hackman et al., 2001; De Koster and Balk, 2008). Treleven and Elvers 

(1985) assessed performance in terms of mean queuing times, mean earliness and percentage of 

late jobs. Ramasesh (1990) categorised performance in terms of idle machines, stalled promises, 



6 
 

work-in-process inventories, and average value added in queue. Although contract terms often 

involve earliness and tardiness penalties (Baker and Scudder, 1990; Elsayed et al., 1993), T’kindt 

(2011) noted that most production cost models neglected just-in-time principles. Our study 

incorporates them ‘en bloc’ since warehouses face penalties both for tardiness because they have 

to meet carrier schedules and for earliness because pallets ataged for loading occupy costly storage 

space. Warehouse performance is evaluated in terms of a common cost criterion that integrates the 

objectives of low earliness, low tardiness, low labour idleness, and low work-in-process stocks. 

The values of the cost parameters are case dependent, and a real-world case study for an EOM 

warehouse in consumer electronics specifies these parameters from operational data and 

investigates various cost scenarios depending on warehouse preferences across the performance 

dimensions. Other warehouses can incorporate this methodology in their own WMS for practical 

scheduling solutions derived from cost parameters and preferences that apply for their situation. 

In this way, our study supplements earlier studies like Cakici et al. (2012) that offered only 

theoretical solutions. 

 

3. Simulation model and case study 

The research question of central interest is how job priority scheduling can help OEM warehouses 

improving their responsiveness to meet current trends of postponed daily order cut-off times for 

next-day delivery. As customers adapt their ordering policy by spiking demand briefly before the 

cut-off time, warehouses are confronted with order peaks that have to be processed faster when 

response times become shorter. OEM warehouses usually dispatch retailer orders by truck on 

agreed pick-up times on the next working day. These pick-up times are spread across the day so 

that incoming orders have different due times that help job prioritization. As suggested by Van 

den Berg (2007), workload imbalances can be alleviated by distinguishing can-ship orders from 

must-ship orders and by shifting the former from busier to quieter hours. So, instead of processing 

orders on a FCFS basis, the workflow can be balanced by postponing less pressing jobs that have 

relatively late due times. Balancing the workload has several operational advantages, including 

reduced overtime and absenteeism reported in the empirical study of De Leeuw and Wiers (2015). 

The balancing effect of job priority management is illustrated graphically in Figure 1. By 
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postponing part of the jobs stemming from demand peaks, the hourly workload becomes smoother 

with less peaks and troughs compared to FCFS scheduling. 

 

<< Insert Figure 1 about here. >> 

 

Ideally, the workload should be constant across the day as this greatly simplifies warehouse 

planning and operation. The incoming order arrival process is irregular so that this ideal situation 

cannot be achieved in reality. We investigate the performance of alternative scheduling strategies 

by a simulation study based on actual operational data of a case study warehouse. The methodology 

to improve order fulfilment responsiveness for postponed cut-off times consists of four steps:  

(1) Build a simulation model of order fulfilment that includes the following operational aspects: 

arrival distributions, order peaks, due time distribution, service time distributions per operation, 

and a set of priority rules to schedule remaining jobs for each queue.  

(2) Construct a cost objective function that incorporates penalties for earliness, tardiness, idleness, 

and work-in-process stock.  

(3) Simulate the model under various cut-off scenarios and determine the costs resulting from each 

priority rule.  

(4) Evaluate the relative performance of these priority rules for the various scenarios and identify 

which rule performs best under which circumstances.   

  For the case study warehouse, the simulation model of step (1) above has the following 

characteristics. The order fulfilment process consists of a tandem queue (Burke, 1956) with three 

service stages: picking, where a pallet or box is moved from storage to the packing lane; packing, 

where pallets are cubed according to customer requests; and staging, where pallets are moved from 

the packing lane to the staging zone. Figure 2 shows this tandem queuing process, where the three 

stages are linked without diversion and each stage consists of a set of servers with queues of 

unlimited capacity. The number of workers is fixed per service but varies between picking, packing 

and staging. Packing is the most labour intensive stage, with four workers per pallet. Packers 

perform re-palletizing and wrapping tasks to satisfy customer warehouse pallet size restrictions 

and they check that orders cubed as one pallet are complete before staging.  
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 << Insert Figure 2 about here. >> 

 

As order arrival rates vary over the day, the arrival process at the picking stage is modelled 

as a non-homogeneous Poisson process with varying rates per hour of the day. Service times are 

modelled by simple exponential distributions with rates that differ for each of the three services of 

picking, packing and staging. The service rates for picking and packing depend on the order type, 

with a distinction between relatively simple single-item pallets (SIP) with faster rates and complex 

multi-item pallets (MIP) with slower rates. For given service and order type, the service rate is 

assumed to be constant per worker and per hour of the day. This assumption ignores ergonomic 

factors like fatigue, but the warehouse employs a refined measurement system for labour 

productivity per task per worker that indicates that this simplification is not unreasonable. All 

workers are directed independently via WMS instructions transmitted by hand-held terminals and 

they work per pallet without any knowledge of job priorities or shipment structures. The picking 

process is modelled as an M(t)/M/c queue with non-homogeneous Poisson arrivals, packing 

follows a G/M/c queuing model with arrivals determined by departures from upstream picking, 

and staging also follows a G/M/c queuing model with arrivals determined by upstream packing. 

The final phase of the order fulfilment process involves waiting, and the waiting time of pallets is 

defined as the length of time they stay at the staging zone after packing and before shipping.   

  Historical warehouse operational data are used to specify the simulation input parameters 

for hourly arrival rates (17, one for each hour of the working day from 6 am until 11 pm), service 

rates (6, one for SIP and one for MIP for picking, packing and staging), and the mix of SIP and 

MIP orders (with probability 0.77 for SIP and 0.23 for MIP). Due times are uniformly distributed 

over the 17 hours of the next working day, because the OEM warehouse planned its agreements 

with retailer warehouses to spread truck arrivals optimally over the day. Multiple orders from the 

same client are consolidated and have the same due time to reduce transport costs.  
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4. Priority rules and performance criteria 

The literature review mentioned some well-known priority rules for job scheduling from flow-

shop production theory, which will now be described in more detail. The simplest rule is first-

come first-served (FCFS), where jobs that arrive earlier get higher priority. The so-called earliest 

due date (EDD) rule gives higher priority to jobs with earlier due time. Jackson (1955) proposed 

this priority rule and showed that it minimizes the maximum of job tardiness. In our OEM 

warehouse case study, the operational due time of dispatch by the carrier is already assigned upon 

arrival of the order owing to pre-arrangements with the retailers placing the orders. Smith (1956) 

proposed an alternative priority rule where jobs with shortest processing time (SPT) get highest 

priority to get minimal mean flow time, that is, minimal work-in-process inventories. This result 

is related to Little’s law (Little, 1961), which states that in steady state the mean number of units 

in the system (L) equals the product of the mean arrival rate (λ) and the mean time the unit spent 

in the system (W), so that L = λ×W. An opposite rule gives highest priority to jobs with longest 

processing time (LPT). In our case study, processing times are defined in terms of the expected 

total service time of all remaining operations, i.e., picking plus packing plus staging for the picking 

queue; packing plus staging for the packing queue; and staging for the staging queue.  

EDD and SPT focus on tardiness performance, but earliness and post-completion costs are 

also relevant. Berry and Rao (1975) studied the slack time (SLACK) and critical ratio (CR) rules 

to improve inventory performance. For given time (t), the slack time (St) of a job with due time 

(D) is defined as the difference between remaining time (Dt = D – t) and (expected) remaining 

processing time (Pt) with correction factor (c > 1) to account for expected queuing and other time 

losses in the process, so that St =  Dt – c×Pt. SLACK gives higher priority to jobs with less slack 

time and constitutes a trade-off between EDD and LPT, as it assigns higher priority to jobs with 

earlier due times that take longer to process. Berry and Rao (1975) showed that this rule averts 

both inventory surpluses from early replenishment and inventory shortages from late supplier 

deliveries. Similar to EDD and SPT, the SLACK priority of a job is static in the sense that all 

priority parameters (due times and expected remaining processing times) are known upon arrival. 

CR is a dynamic rule and replaces the correcting factor (c) by the expected queuing times that 

apply during dynamic operation. This rule assigns highest priority to the job with the smallest 

value of remaining time until due time (Dt = D – t) divided by the sum of expected remaining 

processing time (Pt) and currently expected remaining queuing time (Qt), that is, (D – t)/(Pt + Qt). 
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Here Pt depends on the stage of the job; for example, at the packing stage it involves the expected 

service times of packing and staging. Qt depends not only on the stage of the job, but also on the 

queues it should still pass. These queues are dynamic and Qt depends on the expected processing 

times of all unfinished jobs with higher priority. Putnam et al. (1971) reported that the CR rule 

reduces uncertainty by trimming lateness variance. In general, CR is expected to perform better 

than SLACK because it employs relevant extra dynamic information. 

Table 1 provides a summary of the considered priority rules. EDD and SLACK reduce 

tardiness but may result in longer flow times than the alternatives. SPT and CR aim for short flow 

times but often lead or lag due dates with resulting weaker just-in-time and tardiness performance. 

Both SLACK and CR leverage processing times to account for other factors. CR provides dynamic 

corrections by means of “live” waiting times and is therefore expected to give shorter flow times 

than SLACK. 

 

<< Insert Table 1 about here. >> 

 

 Next we consider performance criteria to evaluate OEM warehouse operations. The 

warehouse outcomes are evaluated in terms of a common cost criterion that integrates the four 

objectives of low earliness, low tardiness, low labour idleness, and low work-in-process stocks. 

The weight of each objective is determined by the associated penalty for failing to reach it, and 

this cost structure will be case dependent. The cost criterion function for fulfilling a set of orders 

is given by  

  Cost =   ∑ ሺ1ݓ ൈ iߙ ൅2ݓ ൈ iሻߚ ൅ 3ݓ ൈ ௡ߛ
௜ୀଵ ൅ 4ݓ ൈ   .ߜ

Here the symbols have the following meaning: ‘i’ denotes the order; ‘n’ is the total number of 

orders; ‘αi’ is the earliness cost of job ‘i’ and involves space costs at the staging zone for awaiting 

pick-up; ‘βi’ is the tardiness cost of the job and consists of demurrage costs for carriers from 

appointed pick-up time until actual dispatch time; ‘ߛ’ is the total idleness cost, the sum total of 

idle labour costs in the phases of picking, packing and staging; ‘ߜ’ is total work-in-process cost, 

the sum over all ‘n’ jobs of financial costs from work-in-process inventories during picking, 
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packing, and staging; and ‘wi’ (i=1,2,3,4) are selection weights that determine which objectives 

are incorporated (1 if yes and 0 if no), depending on the business environment.  

  The four objectives and expected performance of alternative priority rules are summarized 

in Table 2. Earliness penalties favour just-in-time strategies like SLACK by reducing staging 

buffer space, whereas CR and SPT exacerbate these penalties because of their shorter flow times. 

Tardiness penalties favour strategies like EDD that prevent lateness. Even though CR and SPT 

have shorter flow times, they tend to generate some very late jobs with large associated tardiness 

penalties. If favourable business relationships between warehouses and truckers allow 

rescheduling appointments without cost, then the tardiness penalty may be waived (w2=0). Idleness 

and stock penalties, which are linked since curtailed stock-in-process requires less labour, are 

related to lean production principles (Krafcik, 1988). The law L = λ×W of Little (1961) implies 

that work-in-process inventories (L) and associated stock penalties are proportional to flow time 

(W), so that CR and SPT are expected to perform well in this respect. However, if handled products 

are relatively cheap so that inventory costs are negligible, then stock penalties could be discarded 

(w4=0). 

 

  << Insert Table 2 about here. >> 

 

5. Simulation results 

We investigate the cost performance of alternative job priority rules by a simulation study with 

parameters derived from a case study OEM retail distribution centre of a multinational consumer 

electronics manufacturer. Figure 3 summarizes the interactions of this distribution centre with its 

manufacturer, sales department, retail warehouses and shops, carriers, and labour provider. The 

order arrival process is determined by the sales department, and due times for order fulfilment are 

agreed with carriers.  

 

  << Insert Figure 3 about here. >> 
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  The main question of interest is how to improve responsiveness for postponed daily order 

cut-off times. Curve A in Figure 4 shows the historical hourly average order pattern for 2012-2014, 

with steep demand peak just before the order cut-off time that was fixed at 2 pm during that period. 

The simulation study considers postponed cut-off scenarios with cut-off time at 3 pm (B), 4 pm 

(C), or 5 pm (D). The corresponding demand patterns are simply extrapolated by shifting the base 

scenario (A) forwards in time while keeping the size of demand peaks and daily totals fixed.    

 

<< Insert Figure 4 about here. >> 

 

Table 3 summarizes the input parameters for the simulations derived from historical 

operational data of the case study warehouse. The sales order desk is open from 8 am until 6 pm 

and orders rarely arrive outside these hours, resulting in relatively small means and large standard 

deviations of arrivals for out-of-office hours. Order arrivals have 77% chance to be SIP and 23% 

to be MIP, and service rates for SIP are higher than those for MIP by factors 2.83 for picking and 

1.34 for packing. Weekly idleness costs are obtained by multiplying the average non-utilisation 

ratio by the weekly sum of total labour costs of €21.93 per hour. Stock-carrying costs are derived 

from stock and space value and interest costs, with values per pallet per week of €10.14 for work-

in-process stocks and €6.96 for storage in the staging zone. Time criticality of order fulfilment for 

this warehouse is shown by high demurrage costs of €75.00 per pallet per hour. Finally, for the 

correction factor c in the definition of slack (St =  Dt – c×Pt) we choose the same value (20) as in 

the pilot study of FCFS by Kanet and Hayya (1982) to correct machine processing time for queuing 

times. The average total processing time is 0.197 hours (1/12.94 + 1/9.40 + 1/73.13) for SIP and 

0.376 hours (1/4.57 + 1/6.99 + 1/73.12) for MIP. This corresponds (for c = 20) to average 

fulfilment durations of 20×0.197 = 3.9 hours for SIP and 20×0.376 = 7.5 hours for MIP, which 

reasonably fits experiences in the case study warehouse 

 

<< Insert Table 3 about here. >> 
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  Every single simulation run corresponds to one week of warehouse operations with hourly 

order arrivals, order types, and order service times. A week consists of five days of 17 hours each 

(85 hours in total) with expected total arrival orders of around 3,200 pallets. One common set of 

1,000 simulation runs is employed to study the outcomes of the five considered priority rules for 

each of the four cut-off scenarios (A-D). Each of these twenty scenarios is evaluated in terms of 

operational performance. The flow time of a job is the total time it spends in the shop, that is, the 

time elapsing between arrival and completion. Lateness is defined as the difference between 

completion time and due time, so that negative values correspond to timely completion. For 

smooth operation it is preferred to have not only small mean but also small variation of flow times 

and lateness, so that we consider both the mean and the standard deviation of these two 

characteristics across the set of jobs within a given simulation run, that is, a given week of 

warehouse operations. Tardiness occurs if lateness is positive, that is, if jobs are completed after 

the due time limit. Maximum tardiness is defined as the maximum value of (positive) lateness 

across all jobs within a given simulation run.  

  The operational outcomes of 1,000 simulation runs (weeks of order fulfilment) are 

summarized in Table 4 and Figure 5.  Table 4 shows that postponed cut-off times lead, as expected, 

to shorter flow times, less lateness and more tardiness. FCFS does not perform well across all 

performance dimensions and has the worst tardiness outcomes, especially for tight cut-off 

scenarios. Of the five priority rules, CR performs by far the best in terms of flow time, whereas 

EDD and SLACK have excellent tardiness results as none of their jobs have positive lateness. 

Figure 5 shows some outlying tardiness results for CR, both in the benchmark cut-off scenario (A, 

2 pm) and in the most ambitious scenario (D, 5 pm). SLACK and EDD perform roughly similar, 

but because SLACK amplifies the weight of processing times it has smallest lateness and longest 

flow times of all priority rules. Compared to these two methods, SPT has shorter flow times but 

more tardiness. The outcomes in Table 4 are in line with those in Table 1, because CR and SPT 

have shortest flow times, EDD and SLACK have lowest tardiness, and SLACK comes closest to 

just-in-time planning as it has highest lateness. 

 

<< Insert Table 4 and Figure 5 about here. >> 
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Table 5 summarizes the financial outcomes of the simulation experiments. These outcomes 

consist of costs associated with earliness, tardiness, idleness, and stock costs. We consider an 

integrated cost function that includes all four cost components as well as two restricted versions. 

One version excludes stock costs, which is relevant for warehouses at urban locations with just-

in-time planning that have relatively low stock value compared to high storage rental costs. 

Another version excludes tardiness costs for warehouses that handle high-priced goods with high 

storage rental costs and that have flexible pick-up agreements with carriers to skip tardiness 

penalties. EDD performs best if all components are included, SLACK is best if there are no stock 

costs, and CR is best if there are no tardiness costs. These rankings of priority rules do not depend 

on the cut-off scenario and get more pronounced for tighter scenarios. In scenario A (2 pm), the 

percentage of simulation runs for which EDD, SLACK and CR are optimal are respectively 46.5, 

48.1, and 56.6, and for scenario D these percentages are respectively 93.7, 66.6, and 59.4. The 

outcomes illustrate that there is no priority rule that is universally best for all business situations, 

but each warehouse may find a suitable rule by selecting the performance objectives that apply for 

its specific situation.  

 

<< Insert Table 5 about here. >> 

 

As EDD and SLACK perform roughly similar, we provide a more detailed comparison of these 

two rules by means of paired t-tests (Welch, 1947) for operational and financial performance for 

the tightest cut-off scenario (D, 5 pm). The sample size of 1,000 runs far exceeds the usual rule-

of-thumb threshold (30) so that we employ the conventional standard normal distribution to 

compute p-values. The results in Table 6 show significant differences between the two methods. 

In terms of operational performance, SLACK is more just-in-time and EDD has shorter flow time. 

From a financial perspective, SLACK requires less staging space but EDD has higher server 

utilization and less work-in-process stocks. The two rules do not show significant differences in 

tardiness and associated demurrage costs.  

 

<< Insert Table 6 about here. >> 
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6. Some operational implications and conclusions 

Enhanced competitiveness in retail markets asks for higher levels of responsiveness to satisfy 

consumer expectations. OEM warehouses, for example, can improve their order delivery speed by 

postponing order cut-off times for next-day delivery. To smoothen warehouse operations for 

efficient resource allocation, priority rules help in sequencing outstanding jobs at various stages of 

the warehouse process. The choice which rule to apply depends on the objectives and cost structure 

of the warehouse. The methodology proposed in this paper suggests careful examination of the 

business environment to identify relevant performance objectives and cost parameters. Historical 

operational warehouse data can be used to model the stochastic nature of the order arrival process 

and of the service and queuing times for the various stages of the outbound warehouse process.   

In our analysis we distinguished performance along four dimensions by preventing 

earliness (staging costs), tardiness (demurrage costs), idleness (labour costs), and work-in-process 

inventories (stock costs). It depends on the business environment which of these dimensions are 

actually relevant. Preventing tardiness, for example, is imperative if delayed delivery spoils all 

product virtues, whereas it is less relevant if delays can be solved by penalty-free rescheduling of 

pick-up times. The latter situation often applies for OEM warehouses that deliver to retailer 

warehouses and shops. Our simulation results show that the critical ratio (CR) priority rule 

performs well in such situations. It offers shortest flow time with fewest work-in-process stock, 

which is valuable for businesses that handle expensive products with high labour costs.  

The case study warehouse currently uses the earliest due date (EDD) strategy for 

sequencing its order fulfilment jobs. The simulation results based on the warehouse-specific cost 

parameters indicate potential benefits of the CR rule. Compared to the other priority rules, CR has 

the unique property that it incorporates the dynamic queuing status of jobs in determining their 

priority. The simulation study employs a rough estimate of queuing times based on expected 

processing times of jobs with higher priority. These estimates could be refined by studying actual 

workflow patterns and queuing data from the warehouse process and by forecasting queuing times 

using statistical and machine learning methods. The case study warehouse is interested in refining 

the job scheduling strategy in its WMS. 
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Summarizing the contributions of this paper, the current retail market leverages 

responsiveness of order fulfilment and forces higher levels of efficiency in distribution. From 

this perspective, job scheduling using flow-shop priority rules offers solutions for distribution 

centres facing cut-off time pressures. By prioritising each job, warehouses can efficiently maintain 

responsiveness without increasing labour to satisfy compressed order-fulfilment deadlines. The 

paper presents a simulation-based methodology for selecting priority rules by evaluating 

alternative rules in terms of composite cost objectives that can be tailored to warehouse-specific 

settings. Simulation results indicate good performance of the SLACK rule for just-in-time 

operations with high storage costs and of the CR rule for high-value product operations with 

flexible pick-up schedules.  

Further research is needed to analyse the trade-off between potential revenue gains through 

better service with postponed cut-off times against increased costs due to tighter processing 

conditions. It is also of interest to study historical workflow patterns in more detail to refine CR-

type priority rules by improving forecasts of remaining processing and queuing times. 
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Figure 1. Daily incoming orders and two job management methods 

 

 

 

 

 

Figure 2. Actual warehouse process (left) and queuing model (right) 
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Figure 3. Retail distribution centre (OEM warehouse) and SCM partners 

 

 

 

Figure 4. Average hourly incoming orders per for four cut-off scenarios (current is A) 
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Figure 5. Histograms of simulated outcomes for lateness (0 on horizontal axis means -4.99 to 0.00) 
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Low tardiness Short flow time Just-in-time Dynamic

First-come first-served (FCFS) -- o o o o

Earliest due date (EDD) Jackson (1955) + o o o

Shortest processing time (SPT) Smith (1956) - + - o

Minimum slack (SLACK) Berry and Rao (1975) + - + o

Critial Ratio (CR) Putnam et al. (1971) - + - +

Table notes

Table 1. Performance of five priority rules for a set of four responsiveness goals

For each rule, + means advantage, - disadvantage, and o neutral performance for the objective.

Priority rule Source
Performance objectives

Cost Driver Count Unit cost Advantage Disadvantage

Earliness Staging, appointment Just-in-time Staging stocks Max
Storage cost
(€ per pallet per week)

SLACK CR / SPT

Tardiness Appointment, dispatch Early in time Late hours Sum
Demurrage cost 
(€ per pallet per hour)

EDD CR / SPT

Idleness Picking, packing, staging Short flow time Idle hours Sum
Labour cost
(€ per hour)

CR / SPT SLACK

Stock Picking, packing, staging Short flow time
Work-in-process 
inventory

Average
Inventory value
(€ per pallet per week)

CR / SPT SLACK

Table notes
The sequence of operations consists of picking, packing, staging, appointment, and dispatch.

Table 2. Performance of various priority rules along four cost dimensions 

Objective
Priority rulePenalty Calculation

Penalty Operations
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Unit Specification Value
6-7 am 0.01 / 0.41
7-8 am 0.85 / 20.86
8-9 am 12.00 / 30.59
9-10 am 38.82 / 54.65
10-11 am 36.23 / 50.74
11-12 am 40.70 / 57.53
12-1 pm 41.46 / 58.94
1-2 pm (cut-off) 158.84 / 116.53
2-3 pm 118.00 / 142.31
3-4 pm 57.88 / 71.95
4-5 pm 68.68 / 86.70
5-6 pm 50.64 / 84.02
6-7 pm 3.94 / 21.62
7-8 pm 0.34 / 5.17
8-9 pm 0.53 / 7.94
9-10 pm 0.43 / 6.90
10-11 pm 0.01 / 0.33
SIP 12.94                 
MIP 4.57                   
SIP 9.40                   
MIP 6.99                   
SIP 73.13
MIP 73.13

Earliness € per pallet per week storage cost 6.96                   
Tardiness € per pallet per hour demurrage cost 75.00
Idleness € per hour labour cost 21.93
Stock € per pallet per week work-in-process stock 10.14
Queuing Scalar value c Slack = Dt - c×Pt c = 20

Table notes

Arrival rate

Parameter

Pallets per hour

Reported values are mean and standard deviation for arrival rates, mean for service rates, and financial
penalty costs in terms of prime interest rates published by The Wall Street Journal for December 2016.

Table 3. Operational parameters for the case study warehouse (scenario A)

SIP and MIP denote respectively single-item pallets (77%) and multi-item pallets (23%).

Pallets per hour per server

Pallets per hour per lane

Pallets per hour per server

Penalty 

Service rate

Picking

Packing

Staging
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Cut-off Priority mean std mean std mean std mean std mean std mean std
FCFS 8.7 2.3 2.9 0.2 -16.6 2.3 7.2 0.2 2.6 2.5 1.1 1.5
SPT 7.3 2.1 5.0 0.7 -18.0 2.1 6.9 0.2 2.3 2.4 0.6 0.8
EDD 8.7 2.3 6.9 1.0 -16.6 2.3 3.2 1.0 0.0 0.0 0.0 0.0
SLACK 9.3 2.4 7.2 0.9 -16.0 2.4 3.3 0.9 0.0 0.0 0.0 0.0
CR 4.8 0.5 6.9 2.2 -19.9 0.6 6.8 1.5 33.7 24.4 1.0 0.8

FCFS 8.5 2.2 2.9 0.2 -14.9 2.2 7.2 0.3 3.9 2.8 2.2 2.5
SPT 7.1 2.0 5.2 0.7 -16.4 2.0 6.9 0.2 3.6 2.7 1.1 1.4
EDD 8.5 2.2 7.0 0.9 -15.0 2.2 3.0 1.1 0.0 0.0 0.0 0.0
SLACK 9.2 2.3 7.3 0.9 -14.3 2.3 3.2 0.9 0.0 0.0 0.0 0.0
CR 4.5 0.6 6.9 2.3 -18.3 0.6 6.7 1.5 35.2 23.2 1.1 0.8

FCFS 8.4 2.3 2.8 0.2 -13.0 2.3 7.3 0.2 5.8 2.9 4.5 4.0
SPT 6.9 2.1 5.1 0.6 -14.5 2.2 6.9 0.2 5.5 2.9 2.4 2.4
EDD 8.4 2.3 7.0 0.9 -13.1 2.3 2.8 1.1 0.0 0.0 0.0 0.0
SLACK 9.0 2.4 7.2 0.8 -12.4 2.4 3.0 0.9 0.0 0.0 0.0 0.0
CR 4.3 0.6 6.8 2.4 -16.4 0.7 6.6 1.6 36.0 25.5 1.1 0.9

FCFS 8.1 2.4 2.7 0.3 -11.7 2.4 7.2 0.2 7.0 3.1 6.8 5.2
SPT 6.6 2.3 4.8 0.5 -13.2 2.3 6.9 0.2 6.7 3.1 3.9 3.3
EDD 8.1 2.4 6.7 0.8 -11.7 2.4 2.7 1.1 0.0 0.0 0.0 0.0
SLACK 8.8 2.5 7.0 0.7 -11.0 2.5 2.9 0.9 0.0 0.0 0.0 0.0
CR 4.1 0.6 7.0 2.4 -15.0 0.7 6.5 1.6 37.7 25.2 1.2 0.8

Underscored mean values are for the best performing priority rule per objective and per cut-off scenario.
Flow time, lateness and tardiness are measured in hours, and fraction of tardiness is measured as percentage.
The standard deviation columms (std) show the variation of outcomes across the 1,000 simulation runs. 

Table 4. Simulated performance of five priority methods                                              

Tardiness
Maximum Fraction (%)

Table notes

Flow time
Mean Standard dev.Mean

5 pm

Standard dev.

2 pm

3 pm

4 pm

Lateness
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Evaluation Objective Unit EDD SLACK GAP t-statistic p-value Differ

Flow time Hour 8.1 8.8 -0.7 -6.050 0.000 Yes

Lateness Hour -11.7 -11.0 -0.7 -6.034 0.000 Yes
Tardiness % 0.0000 0.0002 -0.0002 -1.415 0.157 No

Max pallet staging (α) Pallet 508 480 28 6.992 0.000 Yes
Truck penalty (β) € / week 0.000 0.057      -0.057 1.416 0.157 No
Server utilization (γ) % 82.4 82.1 0.3 5.710 0.000 Yes
Stock in progress (δ) Pallet 306 331 -25 -6.050 0.000 Yes

GAP is the difference between EDD and SLACK.
The p-value is based on the two-tailed t-distribution.
The column 'Differ' shows whether EDD and SLACK differ significantly (at 5% level).

Table 6. Welch t-test results for differences between EDD and SLACK priority rules (cut-off scenario 5 pm)

Table notes

Financial

Mean Value

Operational

Significance


