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ABSTRACTThere is a strong need to better predict survival of patients with newly diagnosedmultiplemyeloma (MM). As gene expression pro iles (GEPs) re lect the biology ofMM in individual patients, we built a prognostic signature based on GEPs.GEPs obtained from newly diagnosed MM patients included in the HOVON-65/GMMG-HD4 trial (n = 290) were used as training data. Using this set, a prog-nostic signature of 92 genes (EMC92-gene signature) was generated by super-vised principal components analysis combined with simulated annealing.Performance of theEMC92-gene signaturewas con irmed in independent val-idation sets of newly diagnosed (TT2, n = 351; TT3, n = 142; MRC-IX, n = 247)and relapsedpatients (APEX,n = 264). In all sets, patients de ined as high-risk bythe EMC92-gene signature show a clearly reduced overall survival with hazard-ratios (HR) of 3.4 (95%CI : [2.2− 5.3]) for the TT2 study, HR: 5.2 [2.5− 11] for theTT3 study, HR: 2.4 [1.7− 3.4] for the MRC-IX study and HR: 3.0 [2.1− 4.4] for theAPEX study (p < 1× 10−4 in all studies). In multivariate analyses this signaturewas proven independent of currently used prognostic factors.The EMC92-gene signature is better or comparable to previously publishedsignatures. This signature contributes to risk assessment in clinical trials andcouldprovide a tool for treatment choices in high-riskmultiplemyelomapatients.
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EMC92: A risk classi ier for multiple myeloma

INTRODUCTIONMultiple myeloma (MM) is characterized by accumulation of malignant mono-clonal plasma cells in the bone marrow. The median overall survival (OS) fornewly diagnosed patients treated with high dose therapy varies from 4 to 10years.1,2The International Staging System (ISS), basedon serumβ2-microglobulin andalbumin, is widely used as a prognostic system for patientswith newly diagnosedMM. ISS has been con irmed as a solid prognostic factor in clinical trials.1 Addi-tional clinical factors to de ine high-risk disease have not been consistently re-produced, with the exception of extensive disease represented by renal failureand plasma cell leukemia.2,3 In addition to ISS, cytogenetic aberrations such asdeletion of 17p (del(17p)), translocations t(4;14) and t(14;16) were shown to beassociated with an adverse prognosis. The combination of prognostic markerst(4;14), del(17p) and ISS enabled further delineation of patients into prognosticsubgroups.4A strategy to include genetic characteristics of MM is the translocation andcyclin D (TC) classi ication, which distinguishes eight subgroups based on geneswhich are deregulated by primary immunoglobulin H translocations and tran-scriptional activation of cyclin D genes.5 Subsequently, the University of Arkan-sas forMedical Sciences (UAMS) generated amolecular classi ication ofmyelomabased on gene expression pro iles of patients included in their local trials. TheUAMS molecular classi ication of myeloma identi ies seven distinct gene expres-sion clusters, including the translocation clusters MS, MF, CD-1, CD-2, a hyper-diploid cluster (HY), a cluster with proliferation-associated genes (PR), and acluster characterized by low percentage of bone disease (LB).6 More recently,we extended this classi ication based on the HOVON-65/GMMG-HD4 prospec-tive clinical trial and identi ied additional molecular clusters, i.e. NFκB, CTA andPRL3.7 Because these clusterswere discriminated based on disease speci ic geneexpression pro iles (GEP), we and others hypothesized that theymay be relevantfor therapy outcome. Indeed, the UAMS de ined clusters MF, MS and PR werefound to identify high-risk disease in the Total Therapy 2 trial.6Several survival signatures were developed based on samples from clini-
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cal trials, such as the UAMS70, the related UAMS17 and the recently publishedUAMS80 signature which have value in prognostication of MM.8–10 Other signa-tures include the Medical Research Council (MRC) gene signature based on theMRC-IX trial, the French Intergroupe Francophone du Myélome (IFM) signatureand the Millennium signature based on relapse patients.11–13 Recently, a GEPbased proliferation index was reported.14 So far, none of these signatures havebeen introduced in general clinical practice.The additional and independent prognostic signi icance of a prognosticatorbased on gene expression has been acknowledged in mSMART (Mayo Strati ica-tion forMyelomaAndRisk-adapted Therapy). Hereby, a high-riskMMpopulationcan be de ined for which alternative treatment is proposed although this has notbeen validated in prospective clinical trials.15The aim of the present study was to develop a prognostic signature for over-all survival in MM patients. This investigation was prospectively included as asecondary analysis of a randomized clinical trial for newly diagnosed, transplant-eligible patients with multiple myeloma (HOVON-65/GMMG-HD4).

34



2

EMC92: A risk classi ier for multiple myeloma

MATERIALS AND METHODS
PatientsAs training set the HOVON-65/GMMG-HD4 study (ISRCTN64455289) was used.Details of the training set are given in the online supplemental document A.16Informed consent to treatment protocols and sample procurement was obtainedfor all cases included in this study, in accordancewith the Declaration of Helsinki.Use of diagnostic tumormaterial was approved by the institutional review boardof the Erasmus Medical Center. Arrays used for analysis passed extensive qualitycontrols, as described previously.7 Of the 328 gene arrays deposited at the NCBI-GEO repository, clinical outcome data was available for 290 patients (accessionnumber: GSE19784).Four independent datasets were used as validation of which both survivaldata were available as well as GEPs of puri ied plasma cells obtained from bonemarrow aspirates of myeloma patients. The datasets Total Therapy 2 (UAMS-TT2, n = 351, GSE2658, NCT00573391), Total Therapy 3 (UAMS-TT3, n = 142,E-TABM-1138, NCT00081939) and MRC-IX (n = 247, GSE15695, ISRCTN6845-4111) were obtained from newly diagnosed patients. The APEX dataset (n =

264, GSE9782, registered under M34100-024, M34100-025 and NCT00049478/ NCT00048230) consisted of relapsed myeloma cases (see online supplementaldocument A).11,17–23
Gene expression pre-processingTo allow gene expression analysis in the HOVON-65/GMMG-HD4, plasma cellswere puri ied from bonemarrow aspirates obtained at diagnosis, using immune-magnetic beads. Only samples with a plasma cell purity of ≥ 80% were used.Gene expression was determined on an Affymetrix GeneChip® Human GenomeU133 Plus2.0 Array (Affymetrix, Santa Clara, CA, USA).To allow for validation across different studies, only probe sets present onboth the U133 Plus2.0 and the U133 A/B platforms were included (n = 44754).Probe sets having an expression value below the lowest 1% bioB hybridizationcontrol in more than 95% of the samples are excluded. This resulted in 27680
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probe sets to be analyzed. All data were MAS5 normalized, log2 transformed andmean-variance scaled, using default settings in the Affy package in Bioconduc-tor.24The normalized validation gene expression data sets were downloaded fromthe repositories NCBI-GEO (APEX, MRC-IX and UAMS-TT2) and ArrayExpress(UAMS-TT3). Datasets UAMS-TT2, UAMS-TT3 and MRC-IX were generated usingthe U133 Plus2.0 (Affymetrix, Santa Clara, CA, USA) platform whereas the Affy-metrix HG U133 A/B platform was used in the APEX study. The IFM dataset wasnot included in our analysis due to an incompatible, custom platform.The strong batch effect that exists between these GEPs studies was success-fully removed by ComBat using the non-parametric correction option.25 APEXwas run on a different array platform with an incomplete overlap in probe setswith the other datasets, and as a result ComBat correction was applied in twoseparate runs with one run for all analyses involving the APEX data set and anadditional run for all other analyses.
Survival signatureThe HOVON-65/GMMG-HD4 data were used as a training set. GEP and PFS datawere combined for building a GEP based survival classi ier. PFS was used forgenerating a classi ier for OS since PFS was the primary endpoint of the HOVON-65/GMMG-HD4 study and PFS demonstrated a higher number of events com-pared to OS (179 PFS vs. 99 OS events in total in the HOVON-65/GMMG-HD4).All evaluations of the signature are based on OS data in training and validationsets. Analyses were performed using R with the survival package for survivalanalyses.26 Out of 27680 probe sets tested, 1093 probe sets were associated toPFS in univariate Cox regression analyses (false discovery rate (FDR)< 10%; forprobe sets and survival data see online supplemental document B). Subsequently,this set was used as input into a supervised principal component analysis (SPCA)framework in combination with simulated annealing (online supplemental doc-uments A and B).27 This analysis yielded a model of 92 probe sets, termed theEMC92 signature. The survival signature is a continuous score, i.e. the sum ofstandardized expression values multiplied by the probe set speci ic weightingcoef icient (online Table S1, R-script and supplemental document C). High-risk
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EMC92: A risk classi ier for multiple myeloma

disease was de ined as the proportion of patients with an overall survival of lessthan two years in the training set.
Validation of the EMC92 signatureAmultivariate Cox regression analysis was performed for patients with availablecovariates. Covariates with < 10% of the data missing were used as input in abackward stepwise selection procedure (p< 0.05).The EMC92 signature together with seven previously described, external sig-natures forOS inmultiplemyelomahavebeenanalyzed in apair-wise comparisonusing a multivariate Cox regression analysis. This analysis was performed for allpair-wise comparisons on the pooled datasets excluding the training sets for thesignatures being tested. The models were strati ied for study.Pathway analysis was performed using the 92 genes corresponding to theEMC92 signature as well as the 1093 genes generated by univariate PFS analy-sis (FDR< 10%) with the probe sets used as input for the analysis as a refer-ence set (n = 27680, Ingenuity Systems, www.ingenuity.com). p-values werederived from right-tailed Fisher exact tests and corrected for multiple testing bya Benjamini-Hochberg correction.28
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RESULTS
The EMC92 signatureGEPs obtained from newly diagnosed MM patients were analyzed in relationto survival data, in order to generate a classi ier to distinguish high-risk fromstandard-risk disease. We used the HOVON-65/GMMG-HD4 data as a trainingset.7 After iltering for probe set intensity, using internal Affymetrix controlprobe sets, 27680 probe sets were analyzed in a univariate Cox regression anal-ysis with progression free survival (PFS) as survival endpoint. This resulted in
1093 probe sets associated with PFS with a false discovery rate of< 10% (onlinesupplemental document B). Based on these 1093 probe sets, a supervised prin-cipal components analysis based model was built in which simulated annealingwas applied to generate the optimal model settings in a 20-fold cross-validation.The inal predictive model consisted of 92 probe sets with speci ic weighting co-ef icients. The sum of normalized intensity values multiplied by this weightingis the output of the signature. This model was termed the EMC92 signature. Apositive weighting coef icient indicates that increased expression contributes toa higher value for the EMC92 signature value and thus a higher risk for poor sur-vival. Themajority of the probe sets are annotated genes (n = 85, with one of thegenes represented by two probe sets). The remaining probe sets are open read-ing frames (n = 3), expressed sequence tags (n = 2) and one additional probeset without annotation. Several known cancer genes are among these genes, ofwhich FGFR3 (weighting coef icient= 0.06), STAT1 (weighting coef icient= 0.05)and BIRC5 (weighting coef icient = 0.02) were described in detail in relationto myeloma (online Table S1).29–31 To de ine a high-risk population, the cut-offthreshold for the continuous signature score was set to a value of 0.827 based onthe proportion of patients in the training set that had an overall survival of lessthan two years (63 out of 290 patients (21.7%); online Figure S2).Four independent validation datasets were available: UAMS-TT2, UAMS-TT3,MRC-IX and APEX. Gene expression datasets UAMS-TT2 and TT3 consisted of 351and 142 transplant-eligible patients whereas the MRC-IX dataset contained bothtransplant-eligible and non-transplant-eligible MM patients (n = 247). In the
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EMC92: A risk classi ier for multiple myeloma

APEX dataset, GEPs of 264 relapse patients were collected. The results of theEMC92 signature in the validation sets are shown in Figure 1 and online Table S2.In the UAMS-TT2 dataset, the EMC92 signature identi ied a high-risk populationof 19.4%with a hazard-ratio of 3.4, 95%con idence interval (95%CI)=[2.2− 5.3](p= 5.7× 10−8). In the UAMS-TT3, 16.2%of patients were identi ied as high-riskwith a hazard-ratio of 5.2, 95%CI [2.5− 11], (p= 1.8 × 10−5). In the MRC-IXdataset, 20.2% of patients were identi ied as high-risk with a hazard-ratio of 2.4,
95%CI [1.7− 3.4], (p= 3.6 × 10−6). The high-risk signature was able to iden-tify patientswith signi icantly shorter survival in both the transplant-eligible andnon-transplant-eligible patients included in theMRC-IX study. In non-transplant-eligible patients, 23.9% high-risk patients were identi ied with a hazard-ratio of
2.4, 95%CI [1.5− 3.9], (p= 4.3×10−4), whereas 16.8%of transplant-eligible pa-tients were high-risk with a hazard-ratio of 2.5, 95%CI [1.4− 4.5], (p= 1.5 ×

10−3; Figures 1d and e). The signature was not restricted to newly diagnosedpatients as 16.3% of patients included in the APEX relapse dataset were desig-nated high-risk with a hazard-ratio of 3.0, 95%CI [2.1− 4.4], (p= 1.26 × 10−8;Figures 1f and 2e).To assess the relation between EMC92 signature outcome and treatment, weevaluated whether there is evidence for differences in survival between treat-ment arms in the high-risk group or standard-risk group. Within the high-riskpatients of the HOVON-65/GMMG-HD4 trial, the survival of bortezomib treatedpatientswas longer than patients treatedwith conventional chemotherapy (VAD)(30 months compared to 19 months), albeit not signi icant (p= 0.06; numberof bortezomib treated patients: 26 vs. 37 in the VAD arm). Within the high-risk patients of MRC-IX, no difference was observed between the treatment arms(p= 0.5: MRC-IX non-transplant eligible: CTDAn = 14 vs. MPn = 12) andp= 1.0(MRC-IX transplant eligible; CTD n = 16 vs. CVAD n = 7). For the standard-riskpatients no differences in survival between treatment arms were found in eithertrial.Multivariate analysis was performed in the training set and in the APEX andMRC-IX validation sets, for which information on a large number of variableswere available. This showed that in addition to the EMC92 signature, del(17p)was an independent predictor in HOVON-65/GMMG-HD4. Furthermore, in both
39



2 n (%) nevent HR [95%CI] p- value median n (%) nevent HR [95%CI] p- value median

Standard 283 (81%) 53 1 n.r Standard 119 (84%) 16 1 n.r

High 68  (19%) 32 3.4 [2.2 - 5.3] 5.7x10
-8 40 High 23 (16%) 12 5.2 [ 2.5 - 11 ] 1.8x10

-3 33

n (%) nevent HR [95%CI] p- value median n (%) nevent HR [95%CI] p- value median

Standard 197 (80%) 104 1 50 Standard 114 (83%) 46 1 62

High 50  (20%) 41 2.4 [ 1.7 - 3.4] 3.6x10
-6 24 High 23  (17%) 16 2.5 [1.4 - 4.5] 1.5x10

-3 34

n (%) nevent HR [95%CI] p- value median n (%) nevent HR [95%CI] p- value median

Standard 83  (76%) 58 1 33 Standard 221 (84%) 120 1 22

High 26  (24%) 25 2.4 [1.5 -3.9] 4.3x10
-4 19 High 43  (16%) 36 3.0 [2.1 - 4.4] 1.3x10
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Figure 1. Kaplan-Meier overall survival curves for EMC92 signature defined high-risk
patients versus standard-risk patients in five validation sets. The cut-off value is fixed at
0.827 based on the proportion of patients with OS< 2 years in the HOVON-65/GMMG-HD4
set. In the MRC-IX one patient had an unknown treatment status and was disregarded in
Figures d and e. a) UAMS Total Therapy 2. b) UAMS Total Therapy 3. c) MRC-IX. d)
MRC-IX transplant-eligible patients. e) MRC-IX non-transplant-eligible. f) APEX. N, number
of patients; Events, number of events; HR, hazard ratio; p-value for equality to standard-risk
group; Median, median survival time; n.r. median not reached.

40



2

EMC92: A risk classi ier for multiple myeloma

HOVON-65/GMMG-HD4 and in the APEX multivariate analysis, a component ofthe ISS was an additional independent prognostic predictor (β2-microglobulinfor the HOVON65/GMMG-HD4 set and serum albumin for the APEX data set).Trial speci ic covariateswere seen in eachmultivariate analysis such as sub-studyin the APEX dataset and the MP treatment arm in the MRC-IX set. In conclusion,in all three datasets of newly diagnosed and relapse MM patients the EMC92 sig-nature performed as the strongest predictor for survival after inclusion of avail-able covariates (Table 1). For univariate associations to survival see online TablesS3.1-S3.3.Using the nearest neighbor classi ication method, all patients in the valida-tion sets were classi ied intomolecular clusters based on the HOVON-65/GMMG-HD4 classi ication.7 A clear enrichment of the MF, MS, PR clusters and decreasedproportion of the HY cluster was found in the pooled high-risk populations of allvalidation sets (online Table S4).To de ine the biological relevance of the EMC92 signature and the 1093 probesets found by initial univariate ranking, pathway analysis of the 92 and the 1093probe sets was performed. Signi icant functions for the EMC92 signature in-cluded multiple ‘cell cycle’ pathways (p= 1.8 × 10−3 - 4.9 × 10−2; online TableS5), including genes such as BIRC5, TOP2A and CENPE. The 1093 probe sets indi-cated functions such as ‘protein synthesis’ (p= 9.5×10−31 - 1.5×10−12), ’cancer’(p= 4.8× 10−12 - 4.9× 10−2) and ‘cell cycle’ (p= 3.7× 10−9 - 4.9× 10−2; onlineTable S6). Next, we compared the chromosomal locations of the probe setswithinthe EMC92 signature to the expected proportion represented on the Affymetrixchip (online Table S7). None of the chromosomes demonstrated a signi icantenrichment in the EMC92 signature, while all somatic chromosomes are repre-sented. Within the set of 1093 probe sets, which formed the basis of the EMC92signature and were identi ied by univariate survival analyses, chromosomes 1and 4 were found to be signi icantly overrepresented. Further analysis of chro-mosome 1 demonstrated a clear enrichment of the long arm of chromosome 1 inthis set of genes (online Table S8).
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Table 1. Multivariate analysis. Shown are the EMC92 with a cut-off value of 0.827 in a) the
HOVON-65/GMMG-HD4, b) APEX and c) MRC-IX. Covariates that were non-missing in more
than 90% of the patients were included. Variants were selected into the model by a backward
stepwise approach (p≤ 0.05).
a. HOVON65/GMMG-HD4 (n=290)

HR [ 95%CI ] p
EMC92 [1/0] 3.4 [2.2− 5.4] 5.1×10−8

B2m [≥3.5mg/L] 2.4 [1.5− 3.4] 4.1×10−4

del(17p) [1/0] 2.2 [1.4− 3.7] 1.6×10−3

WHO [>=1] 2.1 [1.3− 3.3] 2.1×10−3

Likelihood ratio test: 95.8 on 4 df, p< 2×10−16, n = 257, number of events= 93; 33 observations
deleted due to missing data.
Available covariates: del(17p)[1/0], del(13p)[1/0], gain(1q)[1/0], age[yr], age[ ≥60 yr], borte-
zomib treated[1/0], ISS=2[1/0], ISS=3[1/0], female[1/0], creatinine[mg/dL], creatinine[< 20 mg/dL],
B2m[mg/L], B2m[≥3.5mg/L], B2m[≥5.5mg/L], serum albumin[g/L], serum albumin[≤ 3.5 g/L],
LDH[>ULN], IgA[1/0], IgG[1/0], light chain disease[1/0], κ light chain[1/0], diffuse osteoporosis[1/0],
hemoglobin[mmol/L], hemoglobin[<6.5 mmol/L], hemoglobin[<5.3 mmol/L], calcium[mmol/L], cal-
cium[>2.65mmol/L], WHO[>=1], WHO[>=2], WHO[>=3], WHO[=4]

b. APEX (n=264)
HR [ 95%CI] p

EMC92-gene [1/0] 2.4 [1.6− 3.6] 1.5×10−5

serum albumin [g/L] 0.95 [0.93− 0.98] 1.2×10−4

age [ ≥60 yr] 1.7 [1.2− 2.4] 1.6×10−3

IgG [1/0] 0.64 [0.46− 0.90] 1.0×10−2

studyAPEX [1/0] 0.58 [0.41− 0.82] 1.8×10−3

Likelihood ratio test: 64.5 on 5 df, p=1.43×10−12,n = 250, number of events=150; 14 observa-
tions deleted due to missing data
Available covariates: age [yr], age [≥60 yr], age [≥65 yr], bortezomib treated [1/0], female [1/0],
black [1/0], white [1/0], IgA [1/0], IgG [1/0], light chain [1/0], studyCREST [1/0], studySUMMIT
[1/0], studyAPEX [1/0], studyAPEXprogressive [1/0], serum albumin [g/L], serum albumin [≤3.5
g/L], priorlines

c. MRC-IX (n=247)
HR [95%CI] p

EMC92-gene [1/0] 2.5 [1.7− 3.6] 3.4×10−6

age [yr] 1.0 [1.0− 1.1] 3.0×10−5

hemoglobin [mg/L] 0.86 [0.79− 0.95] 1.8×10−3

MP treatment [1/0] 1.6 [1.1− 2.4] 1.8×10−2

Likelihood ratio test: 74.8 on 4 df, p=2.1×10−15,n = 246, number of events=145; 1 observation
deleted due to missing data.
Available covariates: del(13q)[1/0], IgH split[1/0], hyperdiploid[1/0], t(4;14)[1/0], t(11;14)[1/0],
t(14;16)[1/0], t(14;12)[1/0], t(6;14)[1/0], del(17p)[1/0], gain(1q) [1/0], female[1/0], bone
disease[1/0], albumin[g/L], albumin[≤3.5g/L], hemoglobin[mg/L], hemoglobin[<8.5 mg/L],
hemoglobin[<10.5 mg/L], calcium[mmol/L], calcium[>2.65mmol/L], creatinine[mg/dL], creatinine[<
20 mg/dL], WHO[>=1], WHO[>=2], WHO[>=3], WHO[=4], age[yr], age[≥60 yr], age[≥65yr],
intensive treatment[1/0], CVAD treatment[1/0], CTD treatment[1/0], MP treatment[1/0], CTDA
treatment[1/0]
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EMC92: A risk classi ier for multiple myeloma

Comparison to published gene signaturesWe set out to evaluate the performance of the EMC92 signature in relationto available GEP based prognostic signatures for OS in multiple myeloma. Tothis end, the following signatures were evaluated: UAMS70, UAMS17, UAMS80,IFM15, gene proliferation index (GPI50), MRCIX6 and, MILLENNIUM100.9–14These signatures were evaluated as continuous variables as well as using thecut-off values as published (Figures 2a-e, online Figure S2 and supplemental doc-uments A and B). Overall, the performance of the EMC92 signature is robust, con-sistent and compares favorably to previously published signatures. Speci ically,the EMC92, UAMS, IFM15, MRC-IX and GPI50 signatures demonstrated signi i-cance in all validation sets tested both for the dichotomized and the continuousvalues of the signatures. The MILLENNIUM100 signature had signi icant perfor-mance in the dichotomized model in one out of four independent studies. Thus,performance was less robust for the MILLENNIUM100 signature. Although theproliferation index GPI50 was found to be signi icant in all validation sets tested,the proportion of high-risk patients was much lower compared to the propor-tion found using either the EMC92 or the UAMS80 signatures. Ranked, weightedhigh-risk proportions are GPI: 10.0%, UAMS17: 12.4%, UAMS70: 13.0%,MRCIX6:
13.3%, EMC92: 19.1% and UAMS80: 23.4%. To determine which signature bestexplained the observed survival, pair-wise comparisonswere performed. For ev-ery comparison the EMC92 is the strongest predictor for OS tested in an indepen-dent environment (Figure 3 and online Table S9).There is a varying degree of overlapping probe sets between all signatures.Overlapping genes are shown in online Figure S3. Seven out of ifty probe setspresent in the GPI50 overlap with the EMC92 signature (BIRC5, FANCI, ESPL1,
MCM6, NCAPG, SPAG5 and ZWINT). One of the six MRC-IX genes (ITM2B) is alsoseen in the EMC92. Overlap between EMC92 and the remaining signatures is lim-ited (EMC92 vs. UAMS17/70: BIRC5 and LTBP1; EMC92 vs. MILLENNIUM100:
MAGEA6 and TMEM97 and EMC92 vs. IFM15: FAM49A).
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Figure 2. Performance per signature in available datasets. For every signature the hazard
ratio (high-risk versus standard-risk) is shown with 95% confidence interval. Grey lines
indicate results on training set. a) HOVON-65/GMMG-HD4, b) UAMS-TT2, c) UAMS-TT3, d)
MRC-IX, e) APEX. p: p-value for equal survival in high and standard-risk groups; percentage:
proportion of high-risk defined patients.

44



2

EMC92: A risk classi ier for multiple myeloma

p-value Bonferroni

EMC92 2.3 [1.7 - 3.1] 4.3x10
-8

1.2x10
-6

UAMS70 1.8 [1.2 - 2.5] 2.1x10
-3

5.8x10
-2

Hazard ratio [ 95%CI ]

Figure 3. Pair-wise comparison for all signatures. To find the signature best fitting the
underlying datasets, Cox regression models (high-risk versus standard-risk) were made for all
pair-wise signatures. These models are based on pooled independent datasets (i.e. excluding
training sets) and stratified for study. The two paired hazard ratios associated with the
signatures derived per model are shown in the two cells within the square panels. Only hazard
ratios within one panel can be compared because these are based on the same dataset. Blue
cells indicate significant hazard ratios (Bonferroni-Holm corrected p-value); red cells denote
non-significant findings. For the bottom right panel (i.e. UAMS70 vs. EMC92 signatures) the
underlying model is given. All other models can be found in online Table S9.

Combined risk classifiersThe performance of the EMC92 signature was in line with the UAMS signatures,although they were derived from quite different patient populations. The inter-45
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section of high-risk patients between the EMC92 and UAMS70 signatures wasapproximately 8% of the total population on the pooled datasets that were in-dependent of both our training set and the UAMS70 training set (i.e. MRC-IX,TT3 and APEX; online Table S11). Approximately 13% of patients were classi-ied as high-risk by either one of these signatures. The intersecting high-riskgroup had the highest hazard-ratio as compared to the intersecting standard-risk group (HR=3.9, 95%CI [2.8− 5.4], p= 3.6 × 10−15). Patients classi ied ashigh-risk by either signature, showed an intermediate risk, i.e. with an HR of
2.4, 95%CI [1.8− 3.3], for the EMC92 signature (p= 5.1 × 10−8) and an HR of
2.2, 95%CI [1.2− 4.1], for the UAMS70 signature (p= 1.1 × 10−2; online TableS12). To testwhether there is evidence for better performance if outcomes of twodichotomous predictors are merged, we took the models made in the pair-wisecomparison (online Table S9) and tested these in a likelihood-ratio test againsta single signature outcome model. Merging the EMC92 with UAMS80 (p= 2.2 ×

10−3), UAMS17 (p= 9.4×10−3), GPI50 (p= 3.0×10−2), MRCIX6 (p= 1.6×10−2)and UAMS70 (p= 4.0 × 10−2) demonstrated a better it to the data than any ofthe single models (online Table S10).
EMC92 signature and FISHTo compare the high-risk populations composition as de ined by the EMC92 andthe UAMS70 signatures, cytogenetic aberration frequencies in both populationswere determined using an independent set for which cytogenetic variables wereknown, i.e. MRC-IX (Figure 4 and online Table S13). As expected, poor prog-nostic cytogenetic aberrations gain(1q), del(17p), t(4;14), t(14;16), t(14;20) anddel(13q) were enriched in the high-risk populations (Figure 5), whereas thestandard-risk cytogenetic aberrations such as t(11;14) were diminished in thehigh-risk populations. In contrast, only 15% (6 out of 39) of MRC-IX cases withhigh-risk status as determined by the EMC92 signature showed absence of anypoor prognostic cytogenetic aberrations, as opposed to 44% (74 out of 168) instandard-risk cases (p= 1.8 × 10−3). Similarly, of the UAMS70 de ined high-riskpatients 4% (1 out of 23) did not have any poor prognostic cytogenetics, whereasof the UAMS70 de ined standard-risk patients this proportion was 43% (79 outof 183) (p= 5.3× 10−3).
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Figure 4. Distributions of high-risk and standard-risk patients per FISH marker in
the MRC-IX dataset. Distribution of FISH markers within the high-risk (top panels) and
standard-risk (bottom panels) groups for the EMC92 and UAMS70 signatures. The EMC92
and UAMS70 identified 50 and 42 patients out of 247 as high-risk, respectively. OR, Odds
ratio; p, Fisher exact p-value; red, presence of an aberration; blue, absence of an aberration;
white, missing data. Details are given in online Table S13.
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Figure 5. Poor prognostic cytogenetic aberrations in comparison to the EMC92
signature in MRC-IX patients. Each horizontal line represents one patient. The first column
denotes the distinction between high-risk (in red, n = 50) and standard-risk (in blue, n = 197).
Columns 2 to 7 represent cytogenetic aberrations as shown. Red, presence of an aberration;
blue, absence and white, missing data. More than half of the EMC92 standard-risk patients
are affected by one or more poor FISH markers.
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DISCUSSIONHere we report on the generation and validation of the EMC92 signature, whichwas based on the HOVON65/GMMG-HD4 clinical trial. Conventional prognosticmarkers such as ISS stage and adverse cytogenetics have been augmented by sig-natures based on gene expression in order to increase accuracy in outcome pre-diction in MM. More accurate prognosis may lead to the development of treat-ment schedules which are speci ically aimed at improving survival of high-riskMM patients. Prognostic signatures for MM include the UAMS70, the UAMS17,the UAMS80, the IFM15, the gene proliferation index (GPI50), the MRCIX6 andthe MILLENNIUM100 signatures.For clinical relevance, a signature must have both the ability to separate riskgroups as clearly as possible and to predict stable groups of relevant size. TheEMC92 signaturemeets both criteria. In all validation sets a high-risk groupof pa-tients can be signi icantly determined and the proportion of high-risk patients isstable across the validation sets. The validation sets represent different drug reg-imens, including thalidomide (MRC-IX, TT2) and bortezomib (APEX, TT3). Alsothe signature is relevant to both transplant eligible (e.g. TT3) and non-transplanteligible patients (subset of MRC-IX) as well as newly diagnosed (e.g. TT2) andrelapsed patients (APEX).In contrast, the predictions of the MRCIX6, GPI50, IFM15 and MILLENNIUM-100 were not as convincing as those of the EMC92 and UAMS signatures. Espe-cially the predictions of the MILLENNIUM100 signature in the validation sets failto reach signi icance in independent data sets such as MRC-IX, TT2 and TT3. Thedifferences in gene expression platform may have contributed to this in part. In-deed, the IFM signature is based on a custom cDNA-based gene expression plat-form, rather than the Affymetrix GeneChips, which have become common forMMGEP studies.32 The cDNA platforms have been reported to be dif icult to comparewith the Affymetrix oligonucleotide platform.12 Although the MILLENNIUM100signature was generated using Affymetrix GeneChips, the use of an earlier ver-sion of this platformmay have contributed to the limited performance of this sig-nature.11 The performance of the EMC92 signature is comparable to the UAMSderived signatures, MRCIX6 and the GPI50, as measured by the signi icance of
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prediction in validation sets. For the UAMS70 and GPI50 the proportion high-risk patients appearsmore variable, whichmay hinder clinical interpretation, es-pecially when the high-risk proportion is less than 10%. Importantly, pair-wisecomparisons of all the signatures evaluated in this paper demonstrated that theEMC92 has the best it to the observed survival times in independent sets. Strik-ingly, we found that performance can be improved by simply combining signa-tures (e.g. EMC92 with UAMS80). However, this analysis is only an indication ofthe possibilities of combining signatures, and future work involving more com-plex combined signatures is in progress.It is important to note that the genes within the signature re lect optimal per-formance of the signature rather than a biological de inition of survival in MM.The initially selected 1093 probe sets which were found to be associated withPFS in univariate testing, are more likely to give a good representation of mye-loma biology, as indicated for instance by the protein synthesis related pathways.Although an extended biological discussion is outside the scope of this paper, anumber of interesting genes are included in the signature. BIRC5 was found in4 signatures evaluated in this paper: EMC92, UAMS17, UAMS70 and the GPI50.This gene is a member of the inhibitor of apoptosis gene family, which encodesnegative regulatory proteins that prevent apoptotic cell death, and up-regulationhas been described to be associated with lower EFS and OS in newly diagnosedMM patients.11,12,31 Other important myeloma genes include FGFR3 and STAT1.
FGFR3 is deregulated as a result of translocation t(4;14), which is an adverseprognostic cytogenetic event.30 FGFR3 - a transmembrane receptor tyrosine ki-nase - is involved in the regulation of cell growth and proliferation.33 STAT1 - animportant component of the JAK/STAT signaling - is involved in multiple path-ways including apoptosis induced by interferon signaling.29A clear enrichment of the long arm of chromosome 1 was observed in the
1093 probe sets in this study. Previously the importance of chromosome 1 wasreported for the UAMS70 signature. Genes on 1q in the UAMS70 signature in-clude CKS1B and PSMD4, both of which were not in the EMC92 signature, al-though CKS1B was found to be associated with PFS in our set and thus in the
1093 set.9,10 The EMC92 signature did contain 9 genes on 1q of which S100A6has been described in relation to 1q21 ampli ication in MM and other cancer
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types.34 Thismay also be part of the explanationwhy, despite the use of the sameGEP platform, the overlap between different signatures is limited. Indeed, mul-tiple genes are found within the 1q21 amplicon with downstream factors pos-sibly over-expressed as a result of this. Which gene will be linked most signi i-cantly to survival in a speci ic set ismost likely due to factors such as variability indatasets, towhich population differences and differences in used techniquesmaycontribute. Other reasons may be found in the difference in treatment strategiesused, in which other genes could be responsible for adverse prognosis.To characterize the high-risk group in depth, we have demonstrated that inthe MRC-IX study, high-risk patients are enriched for poor cytogenetic aberra-tions gain(1q), del(17p), t(4;14), t(14;16), t(14;20) and del(13q). Still more thanhalf of the patients in the standard-risk group showed one or more poor prog-nostic cytogenetic markers indicating that the occurrence of a single poor-riskmarker does not have very strong prognostic value.Clinical use of a gene signature (UAMS70) has recently been incorporated inthe mSMART risk strati ication, which additionally includes FISH, metaphase cy-togenetics, and plasma cell labeling index. The mSMART risk strati ication is theirst risk strati ication systemadjusting treatment regimens according to risk sta-tus, although this has not been validated in prospective clinical trials.15,35 Ulti-mately, clinical use of any signature must be proven to be of use in prospectiveclinical trials, which allow treatment choice based on risk assessment. This willresult in clinical guidelines to improve treatment of patients with a poor PFS andOS on novel therapies. For practical application of the EMC92 signature it is es-sential to stress that this signature has not been designed for classi ication of asingle patient. However, collection of a set of more than ~25 patients will resultin reliable prediction, and each additional patient can be predicted as soon as itis tested.In conclusion,wedevelopeda risk signaturehighlydiscriminative for patientswith high-risk versus standard-risk MM, irrespective of treatment regime, ageand relapse setting. Use of this signature in the clinical settingmay lead to amoreinformed treatment choice and potentially better outcome for the patient.
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ABSTRACTPatientswithmultiplemyeloma have variable survival, and require reliable prog-nostic and predictive scoring systems. Currently, clinical and biological riskmarkers are used independently. Here, ISS, FISH markers and gene expression(GEP) classi iers were combined to identify novel risk classi ications in a discov-ery/validation setting.We used the datasets of HOVON-65/GMMG-HD4, UAMS-TT2, UAMS-TT3,MRC-IX, APEX and Intergroupe Francophone duMyelome (IFM-G) (total numberof patients: 4750). A total of 20 risk markers were evaluated including t(4;14)and deletion of 17p (FISH), EMC92 and UAMS70 (GEP classi iers) and ISS.The novel risk classi ications demonstrated that ISS is a valuable partner toGEP classi iers and FISH. Ranking all novel as well as existing risk classi icationsshowed that the EMC92-ISS combination is the strongest predictor for overallsurvival, resulting in a four group risk classi ication. The median survival was 24months for the highest risk group, 47 and 61 months for the intermediate riskgroups and median not reached after 96 months for the lowest risk group.The EMC92-ISS classi ication is a novel prognostic tool, based on biologicaland clinical parameters, which is superior to current markers and offers a robustclinically relevant 4-group model.
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INTRODUCTIONIn multiple myeloma (MM) patients, malignant plasma cells accumulate in thebone marrow, leading to a wide range of clinical symptoms which include bonedisease, hypercalcemia, renal impairment and anemia.1 The prognosis is vari-able, with survival for newly diagnosed patients ranging from less than two tomore than twenty years.2 Adequate prognostication of disease outcome is impor-tant in order tomake treatment choices and to allocate high-risk patients to alter-native treatment options. Clinical trials that address speci ic treatment of high-risk patients include TT4, TT5 and MUK9 (TT4: Total Therapy 4, NCT00734877;TT5: Total Therapy 5, NCT02128230; MUK9, OPTIMUM trial, Myeloma UK Clini-cal Trial Network).Heterogeneous treatment outcome can in part be explained by different bi-ological subgroups in MM, which are characterized by primary translocationsinvolving genes such as MMSET (t(4;14)), and c-MAF (t(14;16)).3,4 These sub-groups can be identi ied using gene expression pro iling.5,6 In addition, gene ex-pression pro iling has been utilized to establish classi iers for prognostication.The EMC92 is a robust riskmarker for the identi ication of high-riskMM, andwasvalidated in independent clinical trials showing a solid and independent perfor-mance in comparison to other MM GEP classi iers such as UAMS70.7–13 Clinicalprognostic systems for MM, are primarily based on beta2-microglobulin (B2m),albumin, lactate dehydrogenase, C-reactive protein, calcium and creatinine.14,15The International Staging System (ISS) is based on B2m and albumin, with stageI representing limited disease, stage II intermediate and stage III the most unfa-vorable disease.16 Today it is used as the standard clinical risk classi ication forMM.FISH based cytogenetics and gene expression pro iling are biology basedprognostic markers.17 ISS was combined with high-risk cytogenetic markerst(4;14) and deletion of 17p (del(17p)) to establish novel prognostic risk classi-ications as proposed by Neben and Avet-Loiseau.18,19 Recently, serum lactatedehydrogenase (LDH) was added as a component to this marker combination.20Other prognostic systems include combinations of cytogenetic markers, such asthe combination of del(17p), translocation t(4;14) and gain of 1q (gain(1q)).21
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The goal of this study was to evaluate all published risk markers used in MMand to compare combinations of FISH, ISS and GEP based prognostic systems.By applying a study design with independent discovery and validation sets, wedemonstrated that ISS can be combined with gene expression signatures intopowerful classi iers for MM.
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MATERIALS AND METHODS
Clinical dataThe clinical data from the the Dutch-Belgium Hemato-Oncology Group (HOVON)and German-speaking MyelomaMulticenter Group (GMMG) (HO65/HD4), Medi-cal Research Council-IX (MRC-IX), University of Arkansas for Medical SciencesTotal Therapy (UAMS-TT2 and TT3), Intergroupe Francophone du Myelome(IFM-G; all newly diagnosed patients) and APEX (relapse patients) trials wereused.7–9,19,22,23 The IFM-G cohort is a clinical database of patients not separatelypublished and was included in the ISS development.16 Treatment regimens ofthe trials from which these datasets were derived are summarized in Table 1.Overall survival (OS) or progression-free survival (PFS) and at least one prog-nostic marker were available for all patients (Table 1; Figure S1). All patientssigned an informed consent in accordance with the Declaration of Helsinki andall protocols were approved by institutional review boards.
Gene expression profiling (GEP)All GEP data are Affymetrix HG U133 Plus 2.0 platform based, except for theAPEX study (Affymetrix U133 A/B platform). HO65/HD4 GEP was performedin our lab as described previously (n = 327; GEO series GSE19784).6,7,21 OtherGEP sets were: TT2 (n = 345; GSE24080)8, TT3 (n = 238; E-TABM-1138 andGSE24080)24, MRC-IX (n = 247; GSE15695)22 and APEX (n = 264; GSE9782).23Due to unavailable survival data, the Heidelberg-Montpellier (HM) dataset (n =

206; E-MTAB-362), was used only to determine the probe set means and vari-ances for the training set of the HM19 classi ier.12
Standard prognostic markersAvailability of risk markers and patients per dataset is shown in Table 1 andFigure S1. The International staging system (ISS) was determined by combin-ing serum levels of β2M and albumin.16 Cytogenetics by Fluorescence in situhybridization (FISH) was used with a 10% cut-off level except for a 20% cut-offused for numerical abnormalities in the MRC-IX trial.19,25–27 Gain of chromo-
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Table 1. Distribution of risk markers and treatments per dataset. The numbers of patients
per data set are given with in brackets the number or percentage of positive patients according
to the markers’ risk classification.

HO65/HD4 MRC-IX
Intensive Non-intensive

N 827 701 491
median age [IQR][yrs] 57 (51 - 61) 58 (54 - 63) 74 (70-77)
Treatment [n] PAD (413) CTD(351) CTDa(257)
Control VAD(414) CVAD(350) MP(234)
High-dose alkylator YES YES NO
EMC92 [n (% high)] * 138 (17%) 109 (24%)

UAMS17 327 (12%) 138 (9%) 109 (16%)

UAMS70 327 (9%) 138 (7%) 109 (10%)

UAMS80 327 (8%) 138 (8%) 109 (9%)

MRCIX6 327 (5%) * *
IFM15 327 (25%) 138 (25%) 109 (28%)

HM19 (low/medium/high%) 327 (34/51/15%) 138 (45/48/7%) 109 (39/53/8)

GPI50 327 (34/51/15%) 138 (52/41/7%) 109 (52/38/10)

ISS [n (1/2/3%)] 756 (38/37/25) 636 (25/39/36) 449 (13/41/45)

t(4;14) [n (% positive)] 429 (12%) 619 (12%) 434 (10%)

t(11;14) 437 (16%) 617 (15%) 434 (12%)

t(14;16) 360 (2%) 612 (3%) 434 (3%)

t(14;20) 255 (0%) 612 (2%) 429 (1%)

IgH split 327 (48%) 609 (44%) 429 (40%)

gain 1q 344 (32%) 531 (37%) 371 (41%)

del(13q) 686 (41%) 612 (46%) 428 (43%)

del(17p) 351 (11%) 591 (8%) 423 (9%)

gain 9 454 (57%) 480 (60%) 351 (66%)

HR.FISH.A [n(%)] 354 (46%) 535 (48%) 368 (48%)

HR.FISH.B/ISS [n(1/2/3%)] 334 (60/22/18) *
*, training set for these markers. Only the proportion and number that are not used for building the marker,
if any, are shown.
**, intersection of patients with available data between datasets is shown in Figure S1.
***, the HR.FISH.A compound risk classification is based on a patient having either del(17p), t(4;14) or gain
of 1q. If only gain of 1q is known (in TT2 patients), these are the only patients classified with certainty as
high-risk. The remaining patients cannot be classified, since the status of t(4;14) and del(17p) are unknown.
If the missing bias is strong enough (see methods), that marker is excluded from the combination analyses.
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TT2 TT3 APEX IFM-G POOLED

351 238 264 1878 4750**
57 (49-64) 60 (53-66) 61 (54-67) 57 (51-61) 57 (51-62)
TD(175) VTD(238) BOR(188) VD(740) BOR(1579)/THAL(783)
MD(176) No controls DEX(76) VAD(1138) BOR(1628)/THAL(760)
YES YES YES YES
345 (19%) 238 (15%) 264 (16%) 1094 (18%)

* 238 (14%) 264 (12%) 1076 (12%)

* 238 (12%) 264 (8%) 1076 (9%)

345 (9%) * 264 (7%) 1183 (8%)

345 (7%) 238 (5%) 264 (3%) 1174 (5%)

345 (24%) 238 (24%) 1157 (25%)

345 (50/47/8) 238 (47/47/7) 264 (41/50/8) 1420 (44/48/8)

345 (63/31/7) 238 (58/34/8) 1159 (51/39/10)

208 (50/28/21) 202 (34/33/33) 1475 (34/39/28) 4074 (34/37/30)

1635 (14%) 3180 (13%)

1488 (15%)

456 (4%) 1862 (3%)

1296 (1%)

1410 (44%)

248 (47%) 891 (37%) 2385 (38%)

1807 (48%) 3522 (46%)

1651 (15%) 3016 (12%)

1285 (60%)

116 (100%)*** 1022 (64%) 2395 (57%)

516 (55/29/17) 850 (57/26/17)

PAD: bortezomib, doxorubicin, dexamethasone; VAD: vincristine, doxorubicin, dexamethasone;
CVAD: cyclophosphamide, vincristine, doxorubicin, dexamethasone; MP: melphalan, prednisone;
CTD(a): (attenuated) cyclophosphamide, thalidomide, dexamethasone; VTD: bortezomib, thalido-
mide, dexamethasone; (V)MD: (bortezomib,) melphalan, dexamethasone;VD: vincristine, dexam-
ethasone; BOR: bortezomib; THAL: thalidomide.
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some 9 (gain(9)) - one of the hyperdiploid chromosomes and most frequentlyavailable marker for this purpose - was used as a proxy for hyperdiploidy.28FISH probes used in MRC-IX and HO65/HD4 were described before.25,29 Cytoge-netic data obtained by methods other than FISH were excluded. High risk FISHwas de ined as having either del(17p) or t(4;14) or gain(1q), denoted here asHR.FISH.A.21 The risk classi ication described by Avet-Loiseau et al. is denotedhere as HR.FISH.B/ISS.19 This risk classi ication distinguishes grade-I (ISS=1 or2 with FISH markers t(4;14) and del(17p) both negative), grade-II (not grade-Ior III) and grade-III (ISS=2 or 3 with FISH markers t(4;14) or del(17p) positive).In case of an arbitrary situation due to missing data for one of the markers, theobservation was excluded.
Gene expression classifiersThe following MM gene expression classi iers were used: EMC927, UAMS178,UAMS708, UAMS809, IFM1510, MRCIX613 (all two risk group classi iers) andHM1912, GPI5011 (both three risk group classi iers). Normalization and cut-offswere calculated as described previously (see online supplemental methods for abrief description).
Statistical analysesIn Figure 1, a lowchart of the analyses is given. The association of risk markerswith survival was assessed using a Cox survival model (R ‘survival’ package, ver-sion 2.38-1).30–32 To account for heterogeneous survival between studies, mod-els were strati ied per trial cohort. The trial cohorts were HO65/HD4, MRC-IX in-tensive, MRC-IX non-intensive, UAMS-TT2, UAMS-TT3, IFM-G and APEX. Datasetsused for generating riskmarkerswere systematically excluded in validation anal-yses in order to avoid training bias. For instance, HO65/HD4 patients were ex-cluded in analyses involving the EMC92 classi ier (Table 1). The method for ind-ing novel combination markers (compound markers) is illustrated in online Fig-ure S2b and extensively described in the online supplemental methods. Brie ly,since missing data may confound the analyses, combinations with increased riskfor confounding were excluded (Table S1; online supplemental methods). Sub-sequently, the data were randomly split into a discovery and validation set. The62
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discovery setwas used for indingmeaningful combinations ofmarkers aswell asthe most optimal way to split patients into subgroups, using these combinations.Stringent validation was performed in the designated validation set to con irmtheir prognostic strength. Finally, all new combinations and existing markerswere ranked, with a low rank score indicating a high performing risk marker.
Confirm 20 existing risk-markers

Not significant: n=4 

gain 9; t(11;14), 

t(14;16) and t(14;20)Passed; n = 16

Passed n = 20

Not significant or 

not enough data:

n = 100 out of 120

Not passed n = 4

Perform a likelihood ratio test for all 120 possible pair-wise 

combinations of confirmed existing risk-markers

Determine optimal risk-classification for all 20 passed 

combinations 

(See online Figure S2B for details)

Apply the 20 novel risk-markers to the validation set.

CONFIRM EXISTING MARKERS

DISCOVER NOVEL MARKERS

VALIDATE  NOVEL MARKERS

Passed n = 16

RANK NOVEL AND EXISITNG MARKERS

Rank order 16 novel and 16 existing risk-markers by 

performance. (See online Figure S2C for details)

①
②

③

④
Figure 1. Flowchart of analyses. The analyses are organized as follows: 1) confirmation of
existing risk markers, 2) systematically finding novel risk markers with improved prognostic
strength by combining existing risk markers and 3) validating them; 4) ranking of confirmed
existing- and validated novel risk markers. See Figure S2a-c for more details.
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RESULTS
Confirmation of existing risk markersThe value of 20 existing risk markers was evaluated in a data set of 4750 pa-tients. The markers and used cohorts are given in Table 1. The prognostic valuewas evaluated correcting for the differences in survival between cohorts (Fig-ure 2, online Figures S3-S5 and Table S2). For all markers at least 2 cohortswere available. All gene expression (GEP) classi iers demonstrated a highly sig-ni icant performance for OS. Hazard ratios for GEP classi iers ranged from 2.0(95%CI [1.6− 2.4]; IFM15) up to 3.3 (2.6− 4.3] (UAMS70). Furthermore, haz-ard ratios for GEP classi iers were consistently higher than any of the other riskmarkers, including all FISH markers and ISS. This suggests better risk separa-tion for GEP classi iers compared to FISHmarkers. GEP classi iers generally per-formed better for OS than for PFS (Figures S3A-B, S4 and S5; Table S2) with PFShazard ratios between 1.8 [1.5− 2.1] (IFM15) up to 2.3 [1.9− 2.7] (EMC92). Thepercentage of high-risk patients varied between classi iers: 18% (EMC92), 12%(UAMS17), 10% (GPI50), 9% (UAMS70), 8% (UAMS80 and HM19; Table 1).FISH markers with prognostic strength can be distinguished from mark-ers with no or disputable value. For OS, markers t(4;14), del(17p), gain(1q)and del(13q) performed well with hazard ratios ranging between 1.7, 95%CI
[1.5− 1.8] for del(13q) up to 2.3 [2.0− 2.6] for del(17p). The markers gain9,t(11;14), t(14;16) and t(14;20) were clearly not signi icant or had high variancedue to lack of predictive value or small number of positive cases. These markerswere excluded from further analyses. A similar pattern was found for PFS, butthe strength of the markers was generally lower with PFS hazard ratios rangingfrom 1.4 [1.3− 1.5] (del(13q)) up to 1.8 [1.6− 2.0](t(4;14)).ISS was con irmed as a valuable and highly signi icant prognostic marker. Ahazard ratio of 1.6 95%CI [1.4− 1.8] (ISS = 2) and 2.3 [2.1− 2.6] (ISS = 3) wasfound for OS and 1.4 [1.3− 1.6] (ISS = 2) and 1.7 [1.6− 1.9] (ISS = 3) for PFS.Otherpreviously published compound risk markers, denoted here as HR.FISH.A21 (ei-ther t(4;14) ordel(17p)or gain(1q)) anda combinedFISH/ISSmarker (HR.FISH.B-/ISS)19 showedgoodperformance. Thehazard ratiowas2.3 [2.0− 2.5] (HR.FISH.A).
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For the three groupHR.FISH.B/ISS risk classi ication, hazard ratios of1.8 [1.4− 2.4](intermediate risk) and 3.6 [2.7− 4.7] (high-risk) were found.To correct for heterogeneity between studies, all analyses were corrected forthe survival differences between trials as a result of differences in treatment, dis-ease stage and patient populations. To evaluate the effect of this correction, allanalyses were repeated per cohort and highly similar results were obtained, sug-gesting that these riskmarkers perform similarly across different cohorts (onlinesupplemental results).
Pair-wise combinations of risk markersThe next analysis was performed to explore combinations of risk markers. As in-dicated above, 16 of 20 evaluated markers had signi icant associations with OSand/or PFS. Based on these 16, all possible pair-wise combinations were gen-erated. Twenty combinations were signi icant in the discovery set of which 16remained signi icant in the independent validation set (Figure 2, online FigureS8a-b and Table S2-S3). In 10 of 16 combinations, ISS was combined with eitherGEP classi iers (n = 5) or FISH markers (n = 5), illustrating the strong additivepower of ISS to these markers. Combinations of GEP (n = 3) and FISH markerswere observed (n = 3), but no combinations of FISHwith GEP. Two combinationsdivided patients in 3 groups, ten in 4 groups and four into 5 groups.
Ranking of existing and novel markersThe markers described above, i.e. 16 existing plus 16 validated new risk mark-ers, were ranked on the basis of performance, as described in the Supplementalmethods. ISS-GEP combinations consistently ranked at the top with the EMC92-ISS compound risk marker having the best median rank score (RS) (Figure 3;
RS = 0.05). Other high scoring markers included ISS-UAMS17 (RS = 0.11), ISS-HM19 (RS = 0.13) and ISS-UAMS70 (RS = 0.19). TheHR.FISH.B/ISS compoundmarker ranked in 5th place (RS = 0.20) and ISS ranked in 23rd place (out of 32;
RS = 0.61). In general, compound markers tended to score better than singlemarkers. The best single marker was EMC92 in 7th position (RS = 0.26).EMC92-ISS classi ies patients into four groups with proportions of 38%, 24%,
22%and 17% for the lowest to the highest risk group, respectively (Figure 4A-B).65
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Figure 2. Risk markers in relation to overall survival. Both existing markers and validated
novel combinations are shown. For novel combinations, the results shown represent the
validation. For confirmation of existing markers no discovery/validation split is required and
results shown are based on all available data. In the left panel, existing markers and novel
combinations (denoted by an asterisk) are listed. For each marker, the number of risk groups
(#groups) and number of available patients is given (# patients). Markers are sorted by the
number of risk groups. In the center panel, the hazard ratios are shown (open circle), with
Bonferroni adjusted 95% confidence intervals (indicated by two lines and closed circles).
For coherent notation, hazard ratios are expressed relative to the lowest risk group. Every
additional risk group results in an extra hazard ratio. For instance, for the novel combination
EMC92 – ISS, 4 risk groups result in 3 hazard ratios, as indicated in the text and Table S2A
(intermediate low risk relative to low risk: hazard ratio (HR) 2.6, 95%CI [1.6 - 4.5] intermediate
high-risk relative to low risk: HR: 3.2, 95%CI [1.9 - 5.4] and high-risk relative to low risk: HR
6.9, 95%CI [4.1 - 12]. In the right panel, a plus sign indicates whether a data set could be used
for the analysis of a specific marker or combination (for details of available data, see Table
1 and Figure S1). For the EMC92-ISS combination, the following datasets could be used:
APEX, MRC-IX, TT2 and TT3.

The hazard ratios relative to the lowest risk group were 2.6 [1.6− 4.5] (interme-diate low), 3.2 [1.9− 5.4] (intermediate high) and 6.9 [4.1− 11.7] (high). Mediansurvival times were 24 months (high), 47 (intermediate high) and 61 months(intermediate low) for the three highest risk groups, with median survival notreached after 96 months for the lowest risk group. To gain insight into the per-formance of this marker over time, we determined the proportions of survivingpatients in each risk group and analyzed the EMC92-ISS at different time points.This marker is clearly applicable to younger as well as older and relapsed pa-tients, and holds its value during follow up (Table 2 and online Figure S10).The composition of the four groups in terms of ISS, EMC92 and FISHmarkersis shown in Table 3. Interestingly, within the EMC92-ISS lowest risk group, 75%of patients – with truly favorable prognosis (Table S4) – were positive for eithert(4;14), del(17p) or gain(1q). In the other risk categories 32%, 42% and 86% ofpatients were positive (intermediate low-, intermediate high- and high-risk, re-spectively) indicating that EMC92-ISS andFISHonly partly represent overlappingpatient sets.
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Table 2. Proportion of surviving patients at multiple time points per EMC92-ISS
risk group in a Kaplan Meier analysis on the validation data (from top to bottom:
6, 12, 24 and 72 months respectively). In the left column patient groups are pooled
(n = 328). Subsequent columns show percentages for newly diagnosed patients younger
than 65 years (n = 174), newly diagnosed older than 65 years (n = 90) and relapsed pa-
tients (n = 64) respectively. For the relapse category the 72 months’ time point is not available.

6 months Pooled <65yr. ≥65yr. Relapse
Low-risk 98% 97% 96% 95%

Intermediate low-risk 96% 95% 91% 85%
Intermediate high-risk 86% 93% 73% 79%

High-risk 84% 88% 56% 57%
Total survival 92% 94% 81% 83%

12 months Pooled <65yr. ≥65yr. Relapse
Low-risk 97% 97% 96% 89%

Intermediate low-risk 87% 93% 91% 54%
Intermediate high-risk 74% 93% 73% 42%

High-risk 67% 72% 56% 57%
Total survival 84% 91% 81% 60%

24 months Pooled <65yr. ≥65yr. Relapse
Low-risk 92% 97% 92% 55%

Intermediate low-risk 76% 88% 73% 23%
Intermediate high-risk 57% 77% 58% 24%

High-risk 46% 56% 31% 0%
Total survival 72% 84% 67% 30%

72 months Pooled <65yr. ≥65yr. Relapse
Low-risk 77% 86% 96% −

Intermediate low-risk 43% 59% 32% −

Intermediate high-risk 27% 39% 28% −

High-risk 22% 33% 0% −

Total survival 48% 62% 36% −

Table 3. Distribution of markers in each of the four EMC92-ISS based risk groups. Shown
are the numbers in the data for which the EMC92-ISS risk classification could be determined.
n, number of patients in the EMC92-ISS based risk group for which the specified marker
was available. Positive, the percentage of patients positive for the specified marker; HR,
the percentage of patients indicated as high-risk according to the specified marker. For the
classifications based on del(13q), 1q gain and HR.FISH.A, a clear correlation was found to the
EMC92-ISS classifications. For instance, 93% of EMC92-ISS high-risk patients are positive
for HR.FISH.A compared to 44% - 55% of the intermediates and 75% of the low-risk patients.

EMC92 ISS del(17p) del(13q) gain 1q HR.FISH.A
EMC92 - ISS HR n 1 2 3 n pos. n pos. n pos. n HR n

Low 0% 365 100% 0% 0% 365 8% 39 44% 39 34% 154 75% 76
Interm. low 0% 231 0% 100% 0% 231 5% 60 37% 60 34% 92 44% 70
Interm. high 0% 211 0% 0% 100% 211 8% 66 44% 66 41% 101 55% 84

High 100% 166 30% 32% 39% 166 16% 38 74% 39 76% 90 93% 76
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IGH split
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0%  10%   20%   30%   40%  50%  60%   70%  80%   90%  100%

Rank score

Figure 3. Ranking of confirmed existing risk markers and validated novel risk markers,
in relation to overall survival on the validation data. The markers are vertically ordered by
rank score, which reflects the observed proportion of risk markers with a better performance.
Each box shows the interquartile range of the rank score per marker.
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prop. HR [95%CI] p- value prop. HR [95%CI] p- value

EMC92 SR + ISS I 39% 1 EMC92 SR + ISS I 35% 1

EMC92 SR + ISS II 24% 1.6 [1.1 - 2.2] 0.016 EMC92 SR + ISS II 23% 2.6 [1.6 - 4.5] 3x10
-4

EMC92 SR + ISS III 20% 2.3 [1.6 - 3.2] 3.9x10
-6 EMC92 SR + ISS III 24% 3.2 [1.9 - 5.4] 5.9x10

-6

EMC92 high-risk 17% 4.5 [3.2 - 6.3] ≤1x10-15 EMC92 high-risk 17% 6.9 [4.1 - 12] 5.9x10
-13
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Figure 4. Survival analysis of EMC92-ISS, FISH and ISS. Given are Kaplan-Meier curves
(not stratified) and Cox models (stratified; i.e. corrected for differences in survival in different
cohorts). a) EMC92-ISS in the discovery set; b) EMC92-ISS in the validation set; c) EMC92 in
all data; d) ISS in all data; e) HR.FISH.A in all data; f) HR.FISH.B/ISS in all data. In order of
increasing risk: low-risk (blue); intermediate low-risk (purple); intermediate high-risk (orange);
high-risk (red); SR = standard-risk; HR = high-risk. Below the Kaplan-Meier curves, results
of the stratified Cox model are found. prop. = proportion of patients within the specified risk
group. HR [95%CI] = hazard ratio relative to the lowest risk group with 95% confidence inter-
val; p-value= p-value relative to the lowest risk group; The bottom line shows the result of the
likelihood ratio goodness of fit test.

Biological relevance of GEP classifiersGenes within GEP classi iers are selected based on association with survival,rather than a direct link to biology. Still, a gene ontology enrichment analysis33can highlight biological processes important for a poor outcome (online TablesS5a-h). All GEP classi iers had enrichment of cell-cycle related genes. When allprobe-sets in all classi iers were pooled 191 biological processes were found tobe enriched (FDR< 0.05). Top processes included ‘nuclear division’, ‘mitosis’and ‘cell division’, processes sharing the genes BIRC5, BUB1 and UBE2C. Otherprominent processes included ‘DNA metabolic process’, ‘DNA packaging’ and‘DNA replication’ (genes such as TOP2A andMCM2).
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DISCUSSIONImportant prognostic markers in MM are based on ISS, FISH markers and GEPclassi iers.7–13,16,17 Previously, we showed that combining various GEP classi iersresulted in a stronger prediction of the high-risk population.7 Here we systemat-ically evaluated additional, new combinations of prognostic markers. We limitedthe search for new compound riskmarkers to pair-wise combinations of existingmarkers. This choice is mainly driven by the lack of complete data sets whichcontain all risk markers (online Figure S1), which hinders the analyses of morecomplex risk models. The number of patients positive for speci ic markers wasremarkably stable between cohorts, irrespective of the type of marker. This addsstrength to the belief that these markers, and thus decisions based on them canbe reliably replicated.Three indings are of particular interest: irst, ISS has a clear and independentvalue in combination with either GEP classi iers or FISHmarkers. GEP classi ierscombined with ISS are the strongest risk classi ications found here. By combin-ing the EMC92 gene classi ier with ISS, patients are effectively strati ied into fourrisk groups including a distinctive low risk group of 38% and a high-risk groupof 17%. This strong additive strength of ISS to GEP has been recognized beforein a previous smaller study.34 Also ISS was integrated with GEP and other fac-tors, but this risk score did not take into account correlations between markers,and was generated without using a solid discovery/validation design.35 In con-trast, we have opted for a study design in which part of the data was reserved forvalidation.Secondly, our study con irmed that FISH markers can be divided into thoseconsistently associatedwith shorter OS as opposed to inconsistentmarkers. Con-sistent FISH markers included t(4;14), gain(1q), del(17p) and del(13q). Combi-nations of any of these markers with ISS constituted solid prognostic predictorsreported previously, t(4;14) and del(17p) are currently regarded as the most im-portant high-risk FISHmarkers.17 Thirdly, by combining these FISHmarkers intothe previously de ined risk classi ications HR.FISH.A and HR.FISH.B/ISS, a majorimprovement of prognostic strength is achieved. Interestingly, patients classi iedas high-risk according to the HR.FISH.A marker but that actually had favorable
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survival, were correctly identi ied as low risk patients by the EMC92-ISS com-pound marker. In addition to validating EMC92-ISS, we have now also validatedthe HR.FISH.B/ISS risk classi ication for the irst time in independent data by ex-cluding training data from the analyses. Combining FISH and ISS is thus a validchoice for routine clinical practice, including the existing HR-FISH.B/ISS, as pro-posed by Avet-Loiseau et al.19 Incorporating LDH and bone imaging was outsidethe scope of this study because these markers were not consistently available.20CombiningGEPwith ISSmaybecome an attractive option for prognostication.The EMC92-ISS classi ication is independent from therapy choice: the EMC92was shown to function in bortezomib clinical trials as well as in thalidomide andmore conventional regimens.7 In contrast, bortezomib and other novel agentsmay abrogate the unfavourable impact of some FISH markers on PFS.29 EMC92-ISS is useful since it can identify both high-risk and low riskMM. This is an advan-tage over FISHmarkerswhich only seem to identify high-risk patients. Moreover,the technical applicability of GEP and its costs are thought to be comparable toFISH.36 The agreement between GEP classi iers in terms of pathways is of inter-est. Although the primary force for classi ier discovery is association with sur-vival, the genes within classi iers appear to converge on the cell cycle pathways.Indeed, proliferative capacity, assessed as the plasma cell labeling index or by Ki-67 staining, has long been recognized to be an important prognostic factor.37,38The clinical applicability of strati ication into four risk groupswill be increas-ingly relevant in the era of novel treatment modalities being available. First, in-creased accuracy of prognosis can improve patient counseling.17 Secondly, andmore important, risk strati icationmay lead to adaptation of treatment accordingto risk status. This composite risk marker opens the way to better risk strati i-cation in clinical trials and explore novel drugs in different risk groups.39,40 Thiscould effectively be a irst step towards amore individual treatment, using patientspeci ic markers as a directional key.Based on the current study we conclude that the combination of EMC92 withISS is a strong disease based prognosticator for survival in MM. This risk classi-ication is a good candidate to stratify patients for treatment options in a clinicaltrial.
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ABSTRACTRecently, cereblon (CRBN) expression was found to be essential for the activityof Thalidomide and lenalidomide. In the present study, we investigated whetherthe clinical ef icacy of Thalidomide in multiple myeloma is associated with CRBNexpression in myeloma cells. Patients with newly diagnosed multiple myelomawere included in the HOVON-65/GMMG-HD4 trial, in which postintensi icationtreatment in 1 arm consisted of daily Thalidomide (50mg) for 2 years. Gene-expression pro iling, determined at the start of the trial, was available for 96 pa-tientswhostartedThalidomidemaintenance. In this patient set, increaseofCRBNgene expression was signi icantly associated with longer progression-free sur-vival (p =.005). In contrast, no association between CRBN expression and survivalwas observed in the arm with Bortezomib maintenance. We conclude that CRBNexpression may be associated with the clinical ef icacy of Thalidomide. This trialhas been registered at the Nederlands Trial Register (www.trialregister.nl)as NTR213; at the European Union Drug Regulating Authorities Clinical Trials(EudraCT) as 2004-000944-26; and at the International Standard RandomizedControlled Trial Number (ISRCTN) as 64455289.
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INTRODUCTIONIntroduction of Thalidomide, Bortezomib, and lenalidomide has greatly im-proved induction treatment for multiple myeloma (MM).1–4 Attention is nowshifting toward improving consolidation and maintenance therapy.5 Thalido-mide and lenalidomide represent immunomodulatory drugs (IMiDs) with vari-able ef icacy during maintenance after high-dose therapy and in the nontrans-plantation setting.6–8 So far, there are no biomarkers for prediction of outcomeafter Thalidomide and/or lenalidomide treatment. CRBN was recently identi iedas the target gene responsible for the teratogenic effects of Thalidomide.9 CRBNlevels were also shown to be critical for the antitumor activity of lenalidomideand Thalidomide in both in vitro model systems and in lenalidomide-resistantpatients.10 In the present study, we report that CRBN expression is associatedwith outcome of Thalidomide maintenance in newly diagnosed MM patients.
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MATERIALS AND METHODS
Patients and proceduresIn the HOVON-65/GMMG-HD4 trial, patients with newly diagnosed MM wererandomly assigned to receive either VAD (Vincristine, Adriamycin, and Dex-amethasone) induction, intensi ication with high-dose Melphalan (HDM), andautologous stem cell transplantation (ASCT) followed by maintenance therapywith Thalidomide or PAD (Bortezomib, Adriamycin, and Dexamethasone), HDM,and ASCT followed by maintenance with Bortezomib. The maximum duration ofmaintenance therapy in both arms was 2 years.11 Patients randomized to VADreceivedmaintenance with Thalidomide 50mg daily for 2 years starting 4 weeksafter HDM. This study was approved by the ethics committees of the ErasmusUniversity MC, the University of Heidelberg, and the participating sites. All pa-tients gave written informed consent and the trial was conducted according tothe European Clinical Trial Directive 2005 and the Declaration of Helsinki.
Response assessments and end pointsClinical characteristics were registered at diagnosis. Cytogenetic studies wereperformed as described previously.12 For this subanalysis, progression-free sur-vival (PFS) and overall survival (OS) were measured from start of the mainte-nance treatment. For PFS, progression was used as the end point and for OS,death from any cause. Patients alive at the date of last contact were censored.Evaluation of response is described in detail in supplemental Table S4.
GEP and statistical analysisThe gene-expression pro iling (GEP) dataset GSE19784 was used, which wasderived from patients included in the HOVON-65/GMMG-HD4 trial.11,13 CRBNexpression was assessed using the intensity values of the probe sets 218142_s_atand 222533_at, combined using the method of Dai et al.14 Presence calls for
CRBN expression were determined with the PANP algorithm using standardsettings (see the PANP reference manual on the Bioconductor web site, http:
//bioconductor.org/packages/panp/).15 Details of the quantitative RT-PCR
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are given in online Figure S3. Multivariate Cox regression analysiswas performedto assess the value of CRBN as a prognostic factor in relation to the InternationalStaging System (ISS) and high-risk cytogenetics, as described previously.11
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RESULTS AND DISCUSSION
Patients and responseA total of 833 patients were enrolled in the HOVON65/GMMG-HD4 trial. Of thepatients randomized to the VAD arm, 77 of 347 (22%) went off protocol afterHDM because of allo-SCT (n = 21, 6%), persisting toxicity (n = 11, 3%), or otherreasons (n = 45, 13%),whereas 270 (78%)patients startedThalidomidemainte-nance treatment. Normal completion of Thalidomide maintenance was achievedin 73 of 270 (27%) patients. Eleven of 270 Thalidomide maintenance patientsunderwent allo-SCT and were not considered in this subanalysis. Of the remain-ing 259 patients, GEP and survival data were available for 96. Baseline charac-teristics between this subgroup (n = 96) and the remainder (n = 163) werecomparable (online Table S1). Present calls were found for both CRBN probe setsin 95 of 96 Thalidomide maintenance cases, with one patient demonstrating aborderline present call (“M”) for one probe set and a present call for the other.A signi icant correlation was found between CRBN gene expression measured bymicroarray (National Center for Biotechnology Gene Expression Omnibus [NCBI-GEO] repository: GSE19784) and quantitative RT-PCR (Spearman ρ = 0.67, p= .002, n = 18; online Figure S3). The EMC clustering represents our gene ex-pression based classi ication of MM.16 Of the clusters evaluated, the CTA clusterdemonstrated a signi icantly higher CRBN expression compared with the otherclusters (Bonferroni-Holm corrected p = .01, online Figure S2).16In univariate Cox regression analysis, CRBN expression was signi icantly as-sociated with PFS (hazard ratio = 0.68; 95% con idence interval, [0.52− 0.89]; p= .005) and with OS (hazard ratio = 0.65; 95% con idence interval, [0.43− 0.97];
p = .04; Table 1). Kaplan-Meier analysis was used solely for visualization with
CRBN expression split in 2 or 4 groups using median or quartile intensities: pa-tients with CRBN expression above the median demonstrated longer PFS com-pared with patients with CRBN levels below the median (p = .009; Figure 1a-bquartile intensities andonline Figure S4). In addition, anoptimalCRBN cutoffwascalculated (online Table S2). For this calculation, the PFS data that prohibit use ofthis cutoff in this dataset for any analyses related to PFS were used. In contrast,
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Table 1. Cox regression analyses. HR indicates hazard ratio; and 95%CI, 95% confidence
interval

a. Univariate PFS
Covariate HR [95%CI] p
CRBN 0.68 [0.52− 0.89] 0.005

b. Univariate OS
Covariate HR [95%CI] p
CRBN 0.65 [0.43− 0.97] 0.04

c. Multivariate PFS
Covariate HR [95%CI] p
CRBN 0.66 [0.45− 0.96] 0.03
ISS = 2 2.35 [1.2− 4.8] 0.02
ISS = 3 2.55 [1.2− 5.4] 0.01
High-risk FISH* 2.82 [1.59− 5.00] 0.0004

d. Multivariate OS
Covariate HR [95%CI] p
CRBN 0.75 [0.42− 1.3] 0.32
ISS = 2 4.66 [1.4− 15.8] 0.01
ISS = 3 5.49 [1.7− 18.1] 0.005
High-risk FISH* 3.65 [1.5− 8.7] 0.003

*High-risk FISH is defined as having del(17p) and/or 1q gain and/or t(4;14).

the median expression value was arbitrarily chosen and used for analysis in re-lation to response upgrade. Multivariate Cox regression analysis was performedon 81 patients for whom the following covariates were available: ISS, continu-ous CRBN levels, and high-risk FISH [del(17p) and/or 1q gain and/or t(4;14)].Higher CRBN levels remained signi icantly related to longer PFS, but not OS, witha hazard ratio of 0.66 (p = .03) and 0.75 (p = .3), respectively (Table 1). No signi i-cant correlation was found between any of these covariates and CRBN, but lower
CRBN expressionwas found in ISS=III comparedwith either ISS=I or ISS=II (Bon-ferroni corrected p = .10 by Kruskal Wallis test). The CRBN gene is positioned onchromosome 3. Chromosome 3 trisomies are frequently found in patients withhyperdiploidy and, indeed, CRBN levels were signi icantly higher in hyperdiploidpatients compared with nonhyperdiploid patients (p = .005). However, in a mul-tivariate Cox regression analysis, CRBN levels, but not hyperdiploidy, were foundto be related to PFS (p = .006 and p = .8, respectively; data not shown).

CRBN expressionwas not associatedwith an upgrade of response, consideredto be improvement of response during Thalidomide maintenance (p = .3, online
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Figure 1. CRBN expression in HOVON-65/GMMG-HD4 Shown is CRBN expression in
relation to PFS and OS Kaplan-Meier curves of CRBN expression in relation to survival in
Thalidomide treated patients (a-b) and in relation to Bortezomib treated patients (c-d). PFS
is shown at left; OS on the right. Log-rank p-values are shown in the right corner of each
panel. Broken lines indicate CRBN expression levels below the median and solid lines indicate
expression levels above the median. Remaining patients at risk are shown above the x-axis
(PFS at 1, 2, 3, and 4 years and OS at 1, 2, 3, 4, and 5 years). The median CRBN expression
was determined on the combined data of both Thalidomide and Bortezomib treated patients:
45 of 96 patients were below the median in the Thalidomide subset, whereas 50 of 95 were
below the median in the Bortezomib subset.

Table S4). To determine whether CRBN expression was speci ically relevant forthe outcome of Thalidomide treatment, we also examined the relationship be-tween CRBN expression and survival in patients treatedwith Bortezomibmainte-nance. No association was observed between CRBN expression and PFS/OS afterBortezomib maintenance (Figure 1c-d). For validation of these results, the MRC-IX study was evaluated.17 Only 30 patients with gene expression were availablewho received Thalidomide during maintenance but not during induction. Thissubset was too small to allow solid analysis of the relationship between CRBN ex-pression and outcome after Thalidomide maintenance. Finally, CRBN forms an
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E3 ubiquitin ligase complex with the proteins DDB1 and CUL4A.9 This complexhas been suggested to be involved in the regulation of β-catenin activity, which inturn affects downstream targets such as CCND1 and C-MYC. CRBNwas also foundto bind to AMPKα1 (PRKAA1) and to the large conductance Ca2+-activated potas-sium channel KCNMA1.18 In a multivariate model with CRBN levels, only CCND1andCRBNwere found to be independently related to longer PFS (onlineTable S3).A relationship with PFS was not found for either CCND1 or CRBN in the patientstreated with Bortezomib in the maintenance phase.In conclusion, in the present study, we observed that higher expression ofCRBN was associated with increased PFS during maintenance treatment withThalidomide, but not in patients with Bortezomib maintenance. This corre-sponds well to the report of reduced CRBN expression in > 85% of MM patientswho were lenalidomide resistant.10 Our observations warrant analysis of thepredictive effect of CRBN expression in newly diagnosed and relapsed/refractorypatients treated with IMiDs as part of induction and consolidation treatment.
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ABSTRACTBortezomib induced peripheral neuropathy is a dose-limiting side effect and amajor concern in the treatment of multiple myeloma. To identify genetic risk fac-tors associated with the development of this side effect in Bortezomib treatedmultiple myeloma patients, a pharmacogenetic association study was performedusing a discovery set (IFM 2005-01; n = 238) and a validation set (HOVON-65/GMMG-HD4 and a Czech dataset; n = 231). After multiplicity correction,none of the 2149 single nucleotide polymorphisms tested revealed any signi i-cant association with Bortezomib induced peripheral neuropathy. However, 56single nucleotide polymorphisms demonstrated an association with Bortezomibinduced peripheral neuropathy with pointwise, uncorrected signi icance. Path-way analysis of these polymorphisms demonstrated involvement of neurologicaldisease (FDR< 20%). Also a clear enrichment of major Bortezomib metaboliz-ing genes was found. Univariate evaluation of these 56 polymorphisms in thevalidation set demonstrated one single nucleotide polymorphismwith pointwisesigni icance: rs619824 in CYP17A1.
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INTRODUCTIONThe introduction of Bortezomib (Millennium Pharmaceuticals, Cambridge, MA,USA), an inhibitor of the 26S proteasome, has greatly improved the managementof multiple myeloma (MM).1 The dose-limiting toxicity of Bortezomib is periph-eral neuropathy, which frequently requires a dose reduction or treatment dis-continuation.2–4 Bortezomib induced peripheral neuropathy (BiPN) differs frompre-existing peripheral neuropathy associated with 10% of untreated MM pa-tients. BiPN, described in detail by Delforge et al.,4 is predominantly sensory,reversible inmost cases, and characterized by distal paresthesias, numbness andneuropathic pain.A multifactorial pathogenesis for BiPN seems likely, with suggested mech-anisms including blockade of nerve-growth-factor-mediated neuronal survivalthrough inhibition of the activation of nuclear factor κB (NFκB),5 damage to mi-tochondria and the endoplasmic reticulum through activation of apoptosis,6 dys-regulation of mitochondrial calcium homoeostasis,7 autoimmune factors, inter-ferencewithmRNAprocessing, and translation8 and in lammation.9,10 Anumberof studies, including a report by our own group, have looked at the pharmaco-genetic characterization of BiPN.11,12 In the study carried out by our group, thecomparison between early onset (within one treatment cycle) BiPN and late on-set (after two or three treatment cycles) BiPN revealed that genes for apoptosiscontribute to early onset BiPN, whereas genes that have a role in in lammatorypathways and DNA repair contribute to the development of late onset BiPN, indi-cating that distinct genetic factors are involved in the development of early onsetand late onset forms of this side effect.11 Recently, Favis et al. reported on theassociation between SNPs and the time to Bortezomib induced peripheral neu-ropathy within the VISTA trial with associated SNPs including a SNP in the gene
CTLA4.12In this study, we further explore the genetic risk factors associated with thedevelopment of BiPN in patients with MM who had not been previously treatedwith Bortezomib. A large dataset from the IFM 2005-01 trial was used as discov-ery set. In addition, a dataset based on the patients from the HOVON-65/GMMG-HD4 trial were used as a validation set.11
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MATERIALS AND METHODS
PatientsThe study was performed on patients who had been included in two randomizedclinical trials, i.e. the Institutional Review Board-approved HOVON-65/GMMG-HD4 (ISRCTN64455289) trial for newly diagnosed patients with MM (n = 833),and the IFM 2005-01 trial (NCT00200681; n = 493) approved by the ethicscommittee of the University of Nantes, both of which compared standard in-duction treatment (VAD) with a Bortezomib combination prior to high-dosetherapy (HDT) and stem cell transplantation (online Figure S1a). In addition,as part of the cooperative program of the International Myeloma Foundation(IMF) and International Myeloma Working Group (IMWG), a set of 56 patients(i.e. 56 unique DNA samples), uniformly treated with Bortezomib and Dexam-ethasone at relapse, were obtained. In addition, a prospectively collected set ofsamples (n = 56) from the Babak Research Institute (Czech Republic) was in-cluded as part of the cooperative program of the IMF and IMWG. All patients gavewritten informed consent for this genetic study. Patients with amyloidosis ormonoclonal gammopathy of undetermined signi icance (MGUS) were excluded.Adverse events (AEs) were prospectively assessed using standard National Can-cer Institute Common Toxicity Criteria for Adverse Events, version 3.0 (CTCAE3.0). To ensure homogeneity of allelic frequencies, 15 patients of non-Europeandescent were excluded from the study. In total, 238 of 246 patients from IFM2005-01, 183 of 412 patients from HOVON-65/GMMG-HD4 and 48 of 56 from theCzech Republic who were randomized for treatment with Bortezomib were in-cluded in the analysis. Samples were divided into a discovery and validation set(online Figure S1B and online Table S1).
GenotypingDNAwas extracted fromperipheral blood nucleated cells or CD138negative bonemarrow cells. Genotyping was performed using an Affymetrix targeted geno-typing custom built panel, comprising 3404 SNPs. These were selected using ahypothesis-driven strategy, targeting genes and SNPs with previously described
132
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associations or putative functional effects.13
Statistical analysisAfter imputation and applying SNP exclusion criteria (minor allele frequency(MAF)< 0.05, HardyWeinberg equilibrium< 1×10−5), a panel containing 2149SNPswas analyzed by univariate association analysis using the software packagePLINK.14 Categorical comparisons with respect to frequencies were performedwith the χ2 or Fisher’s exact test, and continuous variables were analyzed usingthe Mann-Whitney U test (online Table S1).SNP association analysis comparing grade 1–4 BiPN with no BiPN patients inthe discovery set (IFM 2005-01) was performed as previously described.11The associated gene sets were subjected to Ingenuity Pathway Analysis (In-genuity System Inc., USA) using 2149 SNPs as a reference set. Only the top threeassociated pathways with a FDR≤20% are reported.As validation, a Cochran Mantel-Haenszel strati ied association test wasperformed in an independent dataset comprised of patients from the HOVON-65/GMMG-HD4 trial and patients from the Czech Republic to evaluate crossvalidating SNP associations and odds ratios (ORs). Speci ically, ORs from signi i-cant SNPs (pointwise p< 0.05) in the discovery set were selected for validation.A one-sided test for OR was performed to test whether the observed effects inthe validation set were associated with the same effect direction as observed inthe discovery set.Based on the numbers of the discovery and validation set, a conservativepower calculation for both sets was performed. According to this calculation,ORs need to be higher than 2.28 or lower than 0.44 to be found at a signi icancelevel of α = 0.05 for SNPs with a MAF of 0.5. These ORs diverge as the MAF de-creases (online Figures S2 and S3, online Tables S1 and S2). Please note this is aconservative analysis inwhichmultiplicity correction is performedbyBonferronicorrection and no linkage is taken into account.
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RESULTS AND DISCUSSIONTheBiPN rates and clinical characteristics of both the discovery set (n = 238) andthe validation set (n = 231) are shown in the online Table S1. In the discovery set,
27 patients developed BiPN grade 1, 57 grade 2, 11 grade 3, and 4 grade 4. OnlineFigure S4 shows the time to BiPN for each grade separately in patients from theHOVON-65/GMMG-HD4 trial, who are included in the validation set. Themediantime to BiPN grade 1 was six weeks, and seven weeks to grade 2, 3 or 4. Theperipheral neuropathy rates in the VAD treatment arm (i.e. not Bortezomib) ofthe HOVON-65/GMMG-HD4 trial, will not be discussed further here (online TableS3).After imputation and applying PLINK exclusion ilters, a panel containing2149 SNPs was analyzed for association by conducting a χ2 association analy-sis. None of the SNPs were found to be signi icantly associated with BiPN us-ing the permutated p-value correction for multiple testing in the discovery set(IFM2005-01; Table 1). The highest ranking SNP, with corrected p-value of 0.3,is in the locus of the cell cycle gene CDKN1B. This SNP, rs3759217, has been eval-uated in a number of cancer studies, but was not reported to be signi icantlyassociated with any cancer type.15 Using the pointwise, uncorrected p-value, 56SNPs were found to be associated with BiPN in this set (Table 1).The results of the analysis performed in the discovery set (IFM 2005-01 trial)were validated using an independent dataset from the Czech Republic combinedwith the dataset from the HOVON-65/GMMG-HD4 trial (online Figure S1). ACochran Mantel-Haenszel strati ied association test was performed. AssociatedSNPs (pointwise p< 0.05) in this validation set are shown in online Table S5. Toinvestigate whether associated SNPs (pointwise p < 0.05) in the discovery setand available in the validation set (n = 51) had the same direction of effect, aone-sided test for ORs was performed in the validation set. This resulted in onepointwise signi icantly cross validating SNP; rs619824 in CYP17A1 (online TableS6).

CYP17A1, cytochrome P-450c17α, is involved in steroid hormone biosynthe-sis, and has both steroid 17α-hydroxylase activity and 17,20-lyase activity.16Steroids have been shown to affect nerve cells, and have even been suggested for
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use as a therapeutic option to prevent the development of neuropathy.17 Treat-ment with progesterone has been reported to increase the expression of myelinprotein zero in both rat sciatic nerve and Schwann cells.17 Due to the paucity ofcross validated SNPs, we have examined the SNPs with a signi icant pointwise
p-value in the discovery set (Table 1). Foremost, we have performed a pathwayanalysis based on this set of SNPs. This analysis showed enrichment of genesinvolved in cardiovascular disease (11 genes), genetic disorder (22 genes) andneurological disease (21 genes). The latter include the genes NEFL, PON1, PTGS2and ABCG2, which have been reported frequently in relation to neurological dis-ease such as Alzheimer’s. Previous studies showed that Bortezomib is primarilymetabolized by cytochrome P450 isoforms CYP3A4, CYP2C19, CYP1A2, with aminor contribution of CYP2D6 and CYP2C9.18 The results show an enrichmentof themajor Bortezomibmetabolizing genes within the top 56 SNPs (p= 0.0013).Previously, genes involved in in lammation were found to be associated withlate onset BiPN.11 Indeed, one of the most associated SNPs, rs3136516 (point-wise p= 0.008) was an intronic SNP located in prothrombin (coagulation factorII; F2), which has been reported in relation to the neuro-toxic cascade leadingto neurodegenerative diseases.19 Two SNPs that lie within or in close proximityto the TNFα gene (rs2857605 and rs2228088; online Figure S5) were associatedwith BiPN. TNFα has been implicated in the pathogenesis of several neurodegen-erative diseases, including multiple sclerosis, Alzheimer’s disease, and humanimmunode iciency virus-related encephalopathy.20 Additionally, the TNFα sys-tem is activated in diabetic polyneuropathy, which leads to increased microvas-cular permeability, hypercoagulability and even direct nerve damage. Improve-ment of diabetic polyneuropathy following suppression of TNFα has been shownin several animal models.21 Furthermore, neuropathic pain, one of the deter-minants of the CTCAE-neuropathy score, and thus of BiPN severity, is mediatedthrough TNF-mediated induction of stress-activated kinasesap like p38MAPK.22The NFκB pathway is central to the immune response and two associatedSNPs are located in the IKBKAP gene; rs10979601 and rs10759326. This is aparticularly relevant association because hereditary sensory and autonomic neu-ropathy type III, or familial dysautonomia (FD), can be caused bymutations in the
IKBKAP gene, leading to poor development, reduced survival, and progressive de-
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generation of the sensory and autonomic nervous system.23Mutations in neuro ilament light polypeptide (NEFL) cause Charcot-Marie-Tooth Neuropathy Type 2E/1F, the most common inherited peripheral neuropa-thy.24 Two promoter SNPs (rs2976437 and rs2976436) in NEFL were associatedwith BiPN. Two SNPs were located in the nerve growth factor receptor (NGFR;
rs11466155 and rs584589), a gene particularly important with respect to neu-rological functions. The NFGR signals via NFκB activation and binds neutrophinprecursors that stimulate neuronal cell survival and differentiation. These re-sults support the inding in our previous study that late onset BiPN is associatedwith genes involved in the development and function of the nervous system.11 Ina recent paper, the time to BiPN was found to be associated with the occurrenceof the SNP rs4553808 in the gene CTLA4.12 Comparisonwith that study is not fea-sible, due to the fact that the SNP set tested had only minimal overlap with ourSNP set (2% overlap).We evaluated genetic risk factors associated with BiPN in MM patients whohad not been previously treated with Bortezomib in the largest study to date us-ing a hypothesis-driven approach. This method is limited by the possibility ofpopulation heterogeneity. However, a limited set of patients with different ge-netic backgrounds were selected out, as described in the Material and Methodssection and as reported previously.11 Further limitations are: i) the inability ofassessing SNPs outside the candidate panel; and ii) the possibility of inding false-positive associations as a result ofmultiple testing. To address both issues, we arecurrently performing a genome-wide scan that will clarify and possibly con irmthe associations reported in this study. The power analysis indicated in this studyhas suf icient power to detect associations with an OR of less than 0.44 or an ORof more than 2.28 and diverging with MAF. It is unlikely that smaller effects canbe found. Using the custom BOAC SNP array in a discovery set of 238 patients,no SNP was found to be signi icantly associated to BiPN at the corrected p< 0.05signi icance level. However, based on the highest-ranking SNPs found using theuncorrected p-value in the discovery set, pathway analysis did demonstrate clearenrichment of neurological disease SNPs.
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ABSTRACTPainful peripheral neuropathy is a frequent toxicity associated with bortezomibtherapy. This study aimed to identify loci that affect susceptibility to this toxic-ity. A genome-wide association study (GWAS) of 370605 SNPs was performed toidentify risk variants for developing severe bortezomib-induced peripheral neu-ropathy (BiPN) in469patientswithmultiplemyelomawhoreceivedbortezomib–dexamethasone therapyprior to autologous stemcell in randomized clinical trialsof the Intergroupe Francophone du Myélome (IFM) and indings were replicatedin 114 patients with multiple myeloma of the HOVON-65/GMMG-HD4 clinicaltrial. An SNP in the PKNOX1 gene was associated with BiPN in the exploratorycohort (rs2839629; OR=1.9, 95% con idence interval: [1.5–2.4]; p= 7.6 × 10−6)and in the replication cohort (OR= 2.0 [1.1–3.3]; p= 8.3 × 10−3). In addition,
rs2839629 is in strong linkage disequilibrium(r2 = 0.87) with rs915854, lo-cated in the intergenic region between PKNOX1 and cystathionine-ß-synthetase(CBS). Expression quantitative trait loci mapping showed that both rs2839629and rs915854 genotypes have an impact on PKNOX1 expression in nerve tissue,whereas rs2839629 affects CBS expression in skin and blood. The use of GWAS inmultiple myeloma pharmacogenomics has identi ied a novel candidate geneticlocus mapping to PKNOX1 and in the immediate vicinity of CBS at 21q22.3 asso-ciated with the severe bortezomib-induced toxicity. The proximity of these twogenes involved in neurologic pain whose tissue-speci ic expression is modi iedby the two variants provides new targets for neuroprotective strategies.
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INTRODUCTIONSome patientswithmultiplemyeloma have subclinical or even clinical peripheralneuropathy at diagnosis. This peripheral neuropathy can be related to comor-bidities, such as diabetes mellitus, or associated with the M-protein itself. Inthe course of the disease, peripheral neuropathy is mostly induced by therapies,especially thalidomide (thalidomide-induced peripheral neuropathy, TiPN) andbortezomib (bortezomib-induced peripheral neuropathy, BiPN), which may beconsidered as distinct clinical entities.1 TiPN may arise after prolonged admin-istration of thalidomide (in 30–55% of patients treated for 12months, including
15–25% with grade 2 or higher peripheral neuropathy) and appears to be dueto a cumulative effect. Initial symptoms include sensory changes, such as pares-thesia and hyperesthesia, later followed by motor symptoms and autonomicdysfunction. BiPN is characterized by neuropathic pain and a length dependentdistal sensory neuropathy with suppression of re lexes. Motor neuropathy mayfollow and infrequently results in mild to severe distal weakness in the lowerlimbs. Theremay also be a signi icant autonomic component, whichmanifests asdizziness, hypotension, diarrhea or constipation, and/or extreme fatigue. BiPN isthought to occur at a certain threshold of treatment (within ive cycles but rarelybeyond) in 40− 60%of the patients, including 15− 40%whowill develop severeperipheral neuropathy (grade 2 or higher). This drug-induced toxicity is wellknown by physicians and nurses, and patients are now systematically informedabout these potential side effects. The use of subcutaneous bortezomib reducesthe incidence of BiPN but does not abrogate this toxicity.2 As no effective prophy-lactic treatment is available, prompt action in case of symptoms, including dosereduction and weekly administration of bortezomib, is crucial to manage thissevere toxicity, which may dramatically affect the quality of life.3–5 Therefore,the identi ication of patients at risk of developing BiPN or TiPN is an importantissue. This is especially true because the triplet combination of bortezomib–thalidomide–dexamethasone is considered one of the best induction regimensprior to high-dose therapy and autologous stem cell transplantation for the treat-ment of younger patients with de novo multiple myeloma.6 The interindividualdifferences in the onset of BiPN or TiPN is in agreement with an underlying
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genetic susceptibility to this toxicity. Rare variants in bortezomib or thalido-mide target proteins could affect the patient’s sensitivity to these drugs. Amongthe pharmacogenomic methods to discover genetic loci associated with drug-induced toxicities, the candidate gene approach has shown a signi icant geneticcontribution to the risk of developing TiPN or BiPN.7–10 However, a genome-wide association study (GWAS) has the capacity to identify new genetic variantsthat will have a direct or indirect effect on drug sensitivity. Here we report theresults of a GWASof 583 patientswithmultiplemyeloma treatedwith bortezomibto discover genetic variants associated with severe BiPN. This is the irst GWApharmacogenomic study of bortezomib treatment toxicity and provides novelinsights into bortezomib-related pathways.
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MATERIALS AND METHODS
Clinical samplesPeripheral blood DNA samples were collected from 598 patients with newlydiagnosed multiple myeloma who received bortezomib–dexamethasone (VD)induction therapy. Patients were treated in randomized clinical trials of theIntergroupe Francophone du Myélome (IFM; IFM 2005-01, IFM2007-02) orroutine practice in France (n = 482) and in a randomized clinical trial of theDutch/Belgian Haemato-Oncology Foundation for Adults in du the Netherlands(HOVON)and theGerman-SpeakingMyelomaMulticenterGroup (GMMG;HOVON-65/GMMG-HD4; n = 116). The IFM VD treatment consisted of four 3-week cy-cles of bortezomib 1.3mg/m2 administered intravenously on days 1, 4, 8, and 11plus dexamethasone 40 mg on days 1 to 4 (all cycles) and days 9 to 12 (cycles 1and 2). The HOVON-65/GMMG-HD4 VD treatment consisted of three cycles ofbortezomib 1.3 mg/m2 administered intravenously on days 1, 4, 8, and 11 plusdexamethasone 40mg on days 1 to 4, 9 to 12, and 17 to 20 (patients enrolled in theHOVON-65/GMMG-HD4 trial received doxorubicin 9mg/m2/day on days 1 to 4,in addition to VD according to the bortezomib, doxorubicin, and dexamethasone(PAD) regimen. Adverse events including peripheral neuropathy were gradedby NCI Common Toxicity Criteria Version 3.0. All patients provided written in-formed consent for both the treatment and companion protocols.
GenotypingData quality assessment and control steps carried out during GWAS are summa-rized in online Figure S1. A total of 482 multiple myeloma samples in the ex-ploratory IFM cohort and 116 multiple myeloma samples in the Dutch and Ger-man replication cohort were genotyped using Affymetrix SNP6.0 Human DNAchips. Affymetrix CEL iles were analyzed either by using Affymetrix Genotyp-ing Console software v4.0 (GTC 4.0), followed by application of the AffymetrixBirdseed algorithm v2.0 to generate SNP genotype calls for the IFM exploratorycohort (GEO accession GSE65777) or by application CRLMMv2 algorithm to gen-erate SNP genotype calls for the replication cohort (GEO accession GSE66903).
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Samples quality controlStringent quality control (QC) thresholds were applied to ilter out poorly geno-typed subjects: if contrast QC < 0.4, call rate < 97% and outlying heterozygos-ity rate (het_rate > mean het_rate + 3SD), the individual was removed. Princi-pal component analysis (PCA) was performed to visualize the genetic ancestry ofthe IFM samples that passed the QC and assess whether population adjustmentshould be made (online Figure S2). Random 60000 genotypes of IFM subjects(IFM, n = 469) and unrelated individuals from three HapMap phase III popula-tions representing Northwest European (CEU, n = 162), African (YRI, n = 163),and Chinese (CHB, n = 82) ancestries were combined to calculate the PCA. Thismethod identi ied samples not clustering with the Northwestern European indi-viduals (IFM outliers, n = 34), given that these patients were equally distributedbetween the case and control groups (Fisher exact test p= 0.36), no adjustmentwas needed, and therefore they were kept for the GWAS. Inspection of the ob-served and expected distribution of the neuropathy association statistic showedabsence of hidden population substructure (Cochran–Armitage test of associa-tion; genomic in lation factor λ = 1.05).
Marker QCSNP QC was conducted in four steps to remove suboptimal markers of the GWAdata (Figure S1). i) unannotated SNPs according to hg19 na32 SNP6.0 Affyme-trix annotations (n = 130) along with SNPs from mitochondrial and sex chro-mosomes (n = 37326) were not considered in the study, ii) SNPs with missinggenotype in more than 5% of the subjects (n = 16743), iii) SNPs of low minorallele frequency (MAF) less than 5% (n = 483984), iv) SNPs showing extensivedeviation from Hardy–Weinberg equilibrium (HWE) with an HWE p< 1 × 10−5(n = 834).
Statistical analysisStatistical analyses were performed using SNPTEST v2.5.11 First, we compared
370605 genotypes from 155 grade ≥ 2 BiPN IFM patients to 314 control IFM pa-tients de ined as grade 1 BiPN or no BiPN. Second, we performed a validation us-
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ing the HOVON-65/GMMG-HD4 cohort for the highest associated SNPs ( ptrend<
1 × 10−5) as identi ied in the exploratory cohort. We compared 41 bortezomib-treated grade≥ 2 BiPN patients with 75 bortezomib-treated control patients. Weapplied a one-sided logistic regression with 10000 label-swapping permutationsto correct for multiple testing to con irm BiPN association in this independentcohort. The predictive value of the SNP validated in the external series was as-sessed on the overall population (n = 583, i.e. 195 cases and 388 controls) with
1× 107 label-swapping permutations.
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RESULTSWe conducted a pharmacogenomic GWA study to identify genetic variants asso-ciated with bortezomib toxicity in newly diagnosed patients with multiple mye-loma who received VD induction therapy. Using SNP6.0 Affymetrix arrays, wegenotyped 909622 tagging SNPs in 482multiple myeloma cases. Of the 482 DNAsamples genotyped, 469 cases passed strict QC criteria (online Figure S1). Weconsidered only the 370605 autosomal SNPs with homozygosity in at least 5% ofpatients, a genotype call in at least 95%of patients andwith anHWE p> 1×10−5.We compared the genetic contribution of patients who developed BiPN of grade
≥ 2 (n = 155) with that of patients who did not develop severe BiPN or withoutBiPN (n = 314). We separated grade 0 and 1 versus grade 2 ormore based on theclinical impact of such a toxicity. Grade 1 neuropathy requires a careful follow-up, but doses of bortezomib are notmodi ied. Doses of bortezomib in the routineclinical practice must be adapted (from 1.3mg/m2 to 1.0mg/m2, or from the bi-weekly to the weekly schedule administration) according to the onset of grade 2peripheral neuropathy, or stopped in case of grade 3ormore, and resumed in caseof recovery. The GWA study showed association for six SNPs with OR> 1.8 and
ptrend< 1× 10−5 (Table 1 and online Table S1; online Figure S3 and S4), althoughnone reached the actual signi icance in a GWA study ( 0.05

370065 = 1.35 × 10−7).To replicate these indings, a validation was performed using SNP6.0 Affyme-trix arrays in 114 newly diagnosed patients with multiple myeloma enrolled inthe HOVON-65/GMMG-HD4 clinical trial who received VD induction therapy. Asigni icant association was seen for rs2839629 (OR = 2.04; 95%CI [1.11–3.33](p= 8.3× 10−3; Table 2) which maps within the 3’UTR of PKNOX1 (transcriptionfactor PBX/knotted 1 homeobox 1). The overall estimate for rs2839629 was anORof 1.89 [1.45–2.44]; p= 5×10−7). Moreover, rs2839629 is in strong linkage dis-equilibrium (LD) with rs76516641 (r2 = 0.94) and rs915854 (r2 = 0.86) whichmap within the intergenic region of 19.5kb between PKNOX1 and cystathionine-ß-synthetase (CBS; Figure 1).Both PKNOX1 and CBS appear to be strong candidates for BiPN susceptibil-ity genes. PKNOX1 is known to modulate transcriptional activity of chemokinemonocyte chemoattractant protein-1 (MCP-1) gene.12–15 Through interaction
148



8

Novel locus associated with BiPN in myeloma

Table 1. Six highest associated SNPs. SNPTEST results for exploratory population for the
six highest associated SNPs
SNP CHR BIPN ≥ 2 BIPN < 2 Odds ratio [95%CI] ptrend

A B #AA #AB #BB #AA #AB #BB AB/AA BB/AA global
rs10862339 12 A C 40 79 36 147 135 32 2.2[1.4–3.4] 4.1[2.3–7.5] 2.1[1.6–2.7] 5.47× 107

rs1344016 12 A G 41 79 35 145 135 34 2.1[1.3–3.2] 3.6[2.0–6.5] 1.9[1.5–2.6] 3.81× 106

rs2414277 15 T C 21 70 64 86 155 73 1.9[1.3–3.0] 3.6[2.0–6.3] 1.9[1.5–2.6] 6.17× 106

rs2839629 21 G A 33 79 43 128 137 49 1.5[0.93–2.5] 3.5[2.0–5.9] 1.9[1.5–2.5] 7.64× 106

rs4776196 15 T C 21 70 64 85 155 74 1.9[1.2–2.9] 3.5[2.0–6.3] 1.9[1.4–2.5] 9.31× 106

rs11145770 9 G A 46 72 37 141 144 29 2.6[1.5–4.6] 3.9[2.2–7.1] 1.9[1.4–2.5] 9.70× 106

with its cognate receptor CCR2, MCP-1 contributes to paclitaxel CIPN throughchanges in dorsal root ganglion neurons.16 MCP-1 is universally increased indifferent models of neuropathic pain and may be considered as a biomarker ofchronic pain.17 MCP-1 is an important mediator of macrophage-related neu-ral damage in different animal models of inherited neuropathies and acute in-lammatory demyelinating neuropathy.18,19 CBS encodes the endogenous H2S-producing enzyme CBS. CBS–H2S signaling pathway is implicated in the patho-genesis of a variety of neurodegenerative and in lammatory disorders, diabeticgastric hypersensitivity and plays a crucial role in in lammatory pain in temporo-mandibular joint.20–23 To explore the possibility that this association might bemediated throughdifferential expression ofPKNOX1 or CBS or both, we examinedthe correlations between rs2839629, rs76516641, and rs915854 genotypes andtissue-speci ic gene expression levels by using the expression quantitative traitlocus analysis available on the SNiPA portal (www.snipa.org) that used GTExPortal v6 and MuTHER consortium as primary sources.24–26 PKNOX1 expressionwas signi icantly associated with rs2839629 and rs915854 genotypes in tibialnerve tissue (p= 5.6 × 10−8 and p= 1.9 × 10−7, respectively; online Tables S2and S3) with higher expression associated with rs2839629 risk alleles (Figure
Table 2. Logistic regression results One-sided logistic regression in the validation cohort
to test whether the direction of association found in the exploratory cohort can be confirmed.
ORglobal, odds ratio estimate; p, uncorrected parametric p-value; ppointwise, pointwise p-value as
determined by permutation; pFWER, permuted p-value (familywise error rate correction).

SNP ORglobal [95%CI] p ppointwise pFWER
rs10862339 1.02[0.58–1.79] 0.53 0.54 0.96
rs1344016 1.05[0.60–1.85] 0.43 0.44 0.91
rs2414277 1.20[0.71–2.08] 0.24 0.22 0.66
rs2839629 2.04[1.11–3.33] 9.6× 10−3 8.3× 10−3 0.036
rs4776196 1.19[0.71–2.08] 40.24 0.27 0.70
rs11145770 1.43[0.75–2.33] 0.14 0.13 0.46
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Figure 1. SNP associations with BiPN on the 21q22.3 locus. Showing genome-wide level
of evidence of BiPN in multiple myeloma. Illustration of the locus with the local LD and recom-
bination rate over 500kb centred on rs2839629 (blue triangle). Each diamond, triangle, circle,
or square represents an SNP found in this locus, rs76516641 and rs915854 are indicated (red
diamond). The figure was generated using the web-based tool SNiPA (www.snipa.org; ref. 24).

2), whereas CBS expression was signi icantly associated only with rs2839629 inskin (p= 2.6 × 10−15) and in blood (p= 3.1 × 10−8; online Table S2). rs915854is annotated with a regulatory feature cluster characterized by histone marksH3K27ac and H3K4me1 enrichment in blood and cervix cells (online Table S3).In addition, a rs915854 minor allele is predicted to disrupt the binding site forthe general pioneer factor FOXA1, this could render the enhancer less active fortarget gene expression such as PKNOX1 (Figure 3). Conversely, the rs76516641genotype has no signi icant effect on the gene expression of both PKNOX1 and
CBS (data not shown).As we show that the risk allele A for rs2839629 is associated with higher lev-els of PKNOX1 expression and previous report have demonstrated that PKNOX1binds preferentially to the -2578G (rs1024611G) polymorphism leading to in-crease MCP-1 levels,14 we analyzed the relationship between rs2839629A and
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Figure 2. PKNOX1 expression vs. rs2839629 genotype. Relationship between tibial nerve
PKNOX1 expression and rs2839629 genotype from the GTEx Portal v6 (www.gtexportal.org;
ref. 25).

rs1024611G in the IFM exploratory cohort. We found a signi icant associationbetween the rs2839629 A/A homozygous genotype and the rs1024611G-bearingallele (Fisher exact-test p= 0.01) suggesting a possible epistatic interaction be-tween rs2839629 and rs1024611 to regulateMCP-1 expression. The current phar-macogenomic GWA study also con irmed themodest association of the rs619824genotypewith BiPN (p= 0.043) previously identi ied by Corthals et al.8 Althoughthere has been no overlapwith a previous study on late-onset of BiPN-associatedvariants reported by Broyl et al.10 as shown in online Table S4. This lack ofoverlap could re lect the potential complexity of predisposition to BiPN. Moreimportantly, the design of the custom SNP chip used previously only contained
3404 SNPs in 983 hypothesis-driven genes which were thought to be function-ally relevant in abnormal cellular functions, in lammation and immunity, as wellas drug responses rather than adverse drug reactions which are less obviouscandidates.27
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DISCUSSIONTo date there are no established predictors of BiPN, it is impossible to predictwhich patient will develop neuropathy. Previous studies performed by our groupand others using candidate gene approach have revealed signi icant associationbetween SNP and BiPN; however, the clinical relevance of these indings is notclear.8–10 To increase our chance to discover variants that might provide newinsights in the mechanisms underlying gene phenotype, we used a hypothesis-free approach. GWAS in cancer pharmacogenomics is challenging and fewreportshave been published to date. This is mainly due to insuf icient statistical powerin studies.28 To partially overcome these limitations, we designed our analysis toidentify high-effect SNP (OR> 1.8) with MAFs greater than 0.05, in a large cohortof IFM patients with multiple myeloma (n = 469) uniformly treated to achieveconvincing statistical power29 and we veri ied our indings in an independentcohort of Dutch and German patients with multiple myeloma. Furthermore, ourGWAS approach eliminates selection case–control bias as both case–control stud-ies included patients in cohort studies, i.e. IFM or HOVON/GMMG clinical trialscohorts. When evaluating toxicity, it is sometimes dif icult to distinguish betweenBiPN and neuropathic pain in general. It is also recognized that the sole use ofthe NCI CTC for assessment of sensory peripheral neuropathy is suboptimal. It isalso recognized that detailed patient-reported symptomdata and a quality-of-lifeassessment more accurately describes this toxicity and that physician-reportedNCI-CTC grading underreports peripheral neuropathy. These systematic evalua-tions are dif icult to apply in a multicenter study in the context of pharmacoge-nomics analyses. Of note, our study has enrolled patientswithout peripheral neu-ropathy at baseline, and patients were treated with the doublet combination ofbortezomib and dexamethasone, and did not receive other neurotoxic agents.Our analysis revealed a SNP associated with BiPN (rs2839629; OR= 1.89;
p= 7.6 × 10−6) that was replicated in an independent cohort (OR= 2.04; p=
8.3×10−3) in high LDwith SNP rs915854. Both variants are in noncoding regions;
rs2839629 is located in the 3’UTR of PKNOX1, and rs915854 is in the intergenicregion between PKNOX1 and CBS. Expression quantitative trait loci showed thatthese variants alter PKNOX1 and CBS expression presumably via cis-regulatory
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Fig-
ure 3. Histone marks PKNOX1 locus. UCSC Genome Browser views of histone marks
H3K27ac and H3K4me1 enrichment and H3K4me3 depletion within the region covering
PKNOX1 and CBS in Hela cells. Arrow indicates the variant sequence and location in
position-weight matrix for FOXA1.

elements in the case of rs915854 as it falls within a regulatory region (Figure 3).Finally, we found a signi icant association between rs2839629A and rs1024611Gthat could have an impact on MCP-1 expression levels. Given that these genesencode proteins, directly or indirectly, involved in neuropathic16 and in lamma-tory23 pain, the functional signi icance of these predictive SNPs is established.This discovery opens the way to investigate novel pathways linked to PKNOX1and CBS activities for a better understanding ofmechanisms underlying this neu-rotoxicity. This work generated a new hypothesis hypothesis regarding neuro-toxicity mechanisms and provides new targets for neuroprotective strategies;however, additional international collaborative efforts including non-Europeancountries are warranted to con irm or refute these indings and examine the im-pact of differential expression of both PKNOX1 and CBS effects on bortezomibexposure in cell model. Our results are preliminary and cannot be proposed yetfor a systematic use in the routine clinical practice. Nevertheless, our indings areone of the irst steps that may allow for the identi ication of patients at increasedrisk of severe BiPN, and these patients may bene it from the use of alternativedrugs, such as car ilzomib, and/or a more focused clinical management of thistoxicity.
153



8

REFERENCES
1. Cavaletti G & Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Nat Rev Neurol .2010; 6(12):657–66.
2. Moreau P, Pylypenko H, Grosicki S, et al. Subcutaneous versus intravenous administrationof bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol . 2011; 12(5):431–40.
3. Delforge M, Blade J, Dimopoulos MA, et al. Treatment-related peripheral neuropathy in mul-tiple myeloma: the challenge continues. Lancet Oncol . 2010; 11(11):1086–95.
4. Mohty B, El-Cheikh J, Yakoub-Agha I, Moreau P, Harousseau JL, & Mohty M. Peripheral neu-ropathy and new treatments for multiple myeloma: background and practical recommenda-tions. Haematologica . 2010; 95(2):311–9.
5. Richardson PG, Delforge M, Beksac M, et al. Management of treatment-emergent peripheralneuropathy in multiple myeloma. Leukemia . 2012; 26(4):595–608.
6. Moreau P, San Miguel J, Ludwig H, et al. Multiple myeloma: ESMO Clinical Practice Guidelinesfor diagnosis, treatment and follow-up. Ann Oncol . 2013; 24 Suppl 6:vi133–7.
7. Johnson DC, Corthals SL, Walker BA, et al. Genetic factors underlying the risk of thalidomide-related neuropathy in patients with multiple myeloma. J Clin Oncol . 2011; 29(7):797–804.
8. Corthals SL, Kuiper R, Johnson DC, et al. Genetic factors underlying the risk of borte-zomib induced peripheral neuropathy in multiple myeloma patients. Haematologica . 2011;

96(11):1728–32.
9. Favis R, Sun Y, van de Velde H, et al. Genetic variation associated with bortezomib-inducedperipheral neuropathy. Pharmacogenet Genomics . 2011; 21(3):121–9.

10. Broyl A, Corthals SL, Jongen JL, et al. Mechanisms of peripheral neuropathy associated withbortezomib and vincristine in patientswith newly diagnosedmultiplemyeloma: a prospectiveanalysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol . 2010; 11(11):1057–65.
11. Marchini J, Howie B, Myers S, McVean G, & Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet . 2007; 39(7):906–13.
12. Rovin BH, Lu L, & Saxena R. A novel polymorphism in the MCP-1 gene regulatory region thatin luences MCP-1 expression. Biochem Biophys Res Commun . 1999; 259(2):344–8.
13. Wright J E K, Page SH, Barber SA, & Clements JE. Prep1/Pbx2 complexes regulate CCL2 expres-sion through the -2578 guanine polymorphism. Genes Immun . 2008; 9(5):419–30.
14. Page SH, Wright J E K, Gama L, & Clements JE. Regulation of CCL2 expression by an upstreamTALE homeodomain protein-binding site that synergizes with the site created by the A-2578GSNP. PLoS One . 2011; 6(7):e22052.
15. PhamMH, Bonello GB, Castiblanco J, et al. The rs1024611 regulatory region polymorphism isassociated with CCL2 allelic expression imbalance. PLoS One . 2012; 7(11):e49498.
16. Zhang H, Boyette-Davis JA, Kosturakis AK, et al. Induction of monocyte chemoattractantprotein-1 (MCP-1) and its receptor CCR2 inprimary sensoryneurons contributes to paclitaxel-induced peripheral neuropathy. J Pain . 2013; 14(10):1031–44.
17. Zhang J&DeKoninckY. Spatial and temporal relationship betweenmonocyte chemoattractant154



8

Novel locus associated with BiPN in myeloma

protein-1 expression and spinal glial activation following peripheral nerve injury. J Neurochem. 2006; 97(3):772–83.
18. Groh J, Heinl K, Kohl B, et al. Attenuation of MCP-1/CCL2 expression ameliorates neuropathyin a mouse model for Charcot-Marie-Tooth 1X. HumMol Genet . 2010; 19(18):3530–43.
19. Yuan F, Yosef N, Lakshmana Reddy C, et al. CCR2 gene deletion and pharmacologic blockadeameliorate a severe murine experimental autoimmune neuritis model of Guillain-Barre syn-drome. PLoS One . 2014; 9(3):e90463.
20. Wang Y, Qu R, Hu S, Xiao Y, Jiang X, & Xu GY. Upregulation of cystathionine beta-synthetaseexpression contributes to visceral hyperalgesia induced by heterotypic intermittent stress inrats. PLoS One . 2012; 7(12):e53165.
21. Schemann M & Grundy D. Role of hydrogen sul ide in visceral nociception. Gut . 2009;

58(6):744–7.
22. Zhang HH, Hu J, Zhou YL, et al. Promoted interaction of nuclear factor-kappaB with demethy-lated cystathionine-beta-synthetase gene contributes to gastric hypersensitivity in diabeticrats. J Neurosci . 2013; 33(21):9028–38.
23. Miao X, Meng X, Wu G, et al. Upregulation of cystathionine-beta-synthetase expression con-tributes to in lammatory pain in rat temporomandibular joint. Mol Pain . 2014; 10:9.
24. ArnoldM, Raf ler J, PfeuferA, SuhreK,&Kastenmuller G. SNiPA: an interactive, genetic variant-centered annotation browser. Bioinformatics . 2015; 31(8):1334–6.
25. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis:multitissue gene regulation in humans. Science . 2015; 348(6235):648–60.
26. Grundberg E, Small KS, Hedman AK, et al. Mapping cis- and trans-regulatory effects acrossmultiple tissues in twins. Nat Genet . 2012; 44(10):1084–9.
27. Van Ness B, Ramos C, Haznadar M, et al. Genomic variation in myeloma: design, content, andinitial application of the Bank On A Cure SNP Panel to detect associations with progression-free survival. BMC Med . 2008; 6:26.
28. Low SK, Takahashi A, Mushiroda T, & Kubo M. Genome-wide association study: a useful toolto identify common genetic variants associated with drug toxicity and ef icacy in cancer phar-macogenomics. Clin Cancer Res . 2014; 20(10):2541–52.
29. Wang WY, Barratt BJ, Clayton DG, & Todd JA. Genome-wide association studies: theoreticaland practical concerns. Nat Rev Genet . 2005; 6(2):109–18.

155





CHAPTER10
Summaries



10

English summaryThe studies in this thesis cover two main topics: development and comparisonof prognostic markers in Multiple Myeloma (MM) (chapters 2-6), and characteri-zation of the genetic basis of peripheral neuropathy, an important toxicity of MMtreatment (chapters 7 and 8).
Chapter 2 (Kuiper et al. 2012): By gene expression pro iling of 290 MM pa-tients included in the HOVON-65/GMMG-HD4 clinical trial, a 92 gene classi ier(EMC92)was developed, enabling the classi ication of patients into high- or stan-dard risk. This classi ier was validated in four external patient cohorts (newlydiagnosed and relapsed) in which its performance was shown to be independentof other prognostic factors.
Chapter 3 (Kuiper et al. 2015): By exploiting the value of twenty knownprognostic factors, which were systematically combined pair-wisely, we selectedthose combinations that improved prognostication. Among the most promisingwas the EMC92-ISS combination, enabling the classi ication of patients into fourrisk groups. The combinations that were found in the discovery phase were thenvalidated in a similar group of patients that were left out of the discovery phaseprior to the analysis.
Chapter 4 (submitted): Although approximately 65% of newly diagnosedMM patients are older than 65 years and thus likely non-transplant eligible, theEMC92-gene classi ier has been validated using mainly newly diagnosed trans-plant eligible or relapsed patients. Only in a subset of the MRC-IX, newly diag-nosed non-transplant eligible patients were included. Therefore, we applied theEMC92-gene classi ier to 178 patients included in the HOVON-87 trial with ame-dian age of 73 years. Also in this setting the classi ier has a strong performance,independent of other prognostic factors.
Chapter 5 (submitted): The most important aspect of a prognostic predictoris its prognostic value. Precision is also important, i.e. upon repeatedly classi-fying a patient under similar conditions, the resulting outcome should remainthe same. We have described a method to quantify the concordance between re-peated measurements and a test for equal concordances.
Chapter 6 (Broyl et al. 2013): Recently, cereblon (CRBN) expression was
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found to be essential for the activity of the immune modulatory drugs, thalido-mide and lenalidomide. Using 96 thalidomide treated patients of the HOVON-65/GMMG-HD4 trial, we showed that higher levels CRBN expression were sig-ni icantly associated with longer progression-free survival. In contrast, no as-sociation between CRBN expression and survival was observed in the arm withbortezomib maintenance.
Chapter 7 (Corthals et al. 2011): Peripheral neuropathy (PNP) is the doselimiting toxicity for bortezomib. Patients with higher grades of PNP requiredose-reduction or even discontinuation of the treatment. Identi ication of anincreased risk before start of the treatment could help treatment decisions.Therefore we tested the association between germline single nucleotide poly-morphisms (SNPs) and the occurrence of PNP during bortezomib treatment inthe IFM-2015-01 clinical trial. The SNPs were detected using an early SNP chip(with hypothesis drivendesign) containing 3400 features ofwhich 56were foundto be univariately associated in the discovery set. However, neither in the discov-ery set, nor in the HOVON-65/GMMG-HD4 validation set, any of these reachedsigni icance after multiple testing correction. Based on the highest-ranking SNPsfound using the uncorrected p-value in the discovery set, pathway analysis diddemonstrate clear enrichment of neurological disease SNPs, possibly indicativefor a combination of many small effects.
Chapter 8 (Magrangeas et al. 2016): The bortezomib treated HOVON65/-GMMG-HD4 patients have been re-genotyped using amore recent type of SNP ar-ray (with unbiased design) containingmore than 900.000 SNPs. Similar analyseswere performed with a slight alteration in the phenotype de inition: PNP grades0 and 1 versus grades >1. A SNP mapping to the 3’ UTR of PKNOX1 was amongthe highest associations in the IFM discovery cohort that could be validated inthe HOVON-65/GMMG-HD4 validation data in which it reached signi icance aftermultiple testing correction.
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Nederlandse samenvattingDe studies in dit proefschrift beschrijven twee hoofdlijnen, namelijk: de ont-wikkeling en vergelijking van prognostische markers in multiple myeloma (MM;hoofdstukken 2 tot enmet 6), en onderzoek naar de genetische basis van perifereneuropathie, wat een ernstige en veel geziene bijwerking is tijdens de behande-ling van MM (hoofdstukken 7 en 8).
Hoofdstuk 2 (Kuiper et al. 2012): Een prognostische classi ier op basis van92 genen is ontwikkeld in gen expressie pro ielen van 290 MM patiënten diewaren geı̈ncludeerd in de HOVON-65/GMMG-HD4 klinische studie. De classi ieris gevalideerd in vier externe cohorten (zowel nieuw gediagnostiseerde als reci-dief patiënten) waarin de ona hankelijke prognostische waarde ten opzichte vanbestaande prognostische markers aangetoond kon worden.
Hoofdstuk 3 (Kuiper et al. 2015): Door twintig bekende prognostischemarkers systematisch paarsgewijs met elkaar te combineren is getracht die com-binaties te selecteren die een verbeterde voorspelling gaven van de prognose.De beste prestaties werden onder meer bereikt door de EMC92/ISS combinatiedie patiënten categoriseerde in een van vier risico groepen. Deze classi ier isgevalideerd in een ona hankelijke subset van de data.
Hoofdstuk4 (submitted): Ondanksdat 65%vandenieuwgediagnostiseerdepatiënten ouder zijn dan 65 jaar en dus waarschijnlijk ongeschikt zijn om been-merg transplantie te ondergaan, is de EMC92 classi ier voornamelijk gevalideerdop jongere nieuw gediagnosticeerde patiënten die wel een transplantatie on-dergingen. Daarom is deEMC92 toegepast op178patiënten die zijn geı̈ncludeerdin de HOVON87 studie. Deze patiënten hebben een mediane leeftijd van 73 jaar.Ook in deze setting bleef de prognostische waarde van de EMC92 behouden.
Hoofdstuk 5 (submitted): Naast het onderscheidend vermogen is ook pre-cisie een belangrijk aspect van een classi ier. Dat wil zeggen, het herhaaldelijkclassi iceren van een patiënt zou tot consistente uitkomsten moeten leiden. Wijhebben een algemenemethode beschreven omdemate van overeenkomst tussenherhaaldelijke metingen te kwanti iceren en de mate van overeenkomst tussenmethodes te vergelijken.
Hoofdstuk 6 (Broyl et al. 2013): Onlangs bleek dat het tot expressie komen
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van cereblon (CRBN) essentieel is voor de effectiviteit van zogenaamde ‘im-mune modulatory’ drugs zoals thalidomide en lenalidomide. Daarom hebbenwe gekeken naar de overleving op thalidomide of bortezomib onderhoudsbe-handeling in HOVON65 patiënten ten opzichte van de gemeten CRBN expressiebij diagnose. Een toegenomen CRBN expressie was signi icant geassocieerd metlangere progressie vrije overleving bij thalidomide onderhoudsbehandeling. Bijbortezomib was dit verband afwezig.
Hoofdstuk 7 (Corthals et al. 2011): Perifere neuropathie (PNP) is de do-sisbeperkende toxiciteit voor bortezomib. Patiënten met ernstige neuropathiemoeten behandeldwordenmet lagere dosis of de behandeling zal zelfs beëindigdmoeten worden. Het herkennen van een verhoogd risico op PNP voor de startvan de behandeling van belang zou gewenst zijn. Daarom hebben we gezochtnaar verbanden tussen het optreden van PNP en het hebben van speci ieke geno-types genaamd ‘single nucleotide polymorphisms’ (SNPs) bij patiënten in de IFM-2015-01 klinische studie. Met behulp van een van de eerste SNP chips kondenwe 3400 (hypothese gedreven) SNPs per patiënt bepalen. Hiervan werden er 56univariaat gelinkt aan PNP in de IFM data. Geen van deze was echter signi icantna correctie voor multiple testing. De hoogst gerangschikte SNPs waren verrijktmet SNPs die in eerdere studies in verband werden gebracht met neurologischeaandoeningen. Dit duidt mogelijk op het aanwezig zijn van vele SNPs die zwakgeassocieerd zijn met PNP en dus enkel gevonden kunnenworden in studies metmeer patiënten.
Hoofdstuk 8 (Magrangeas et al. 2016): Patiënten zijn opnieuw gegeno-typeerd op een nieuwere SNP chip met meer dan 900.000 SNPs. Soortgelijkeanalyses zijn gedaan met een kleine aanpassing in de de initie van het fenotype:PNP grades 0 en 1 zijn vergelijken met grades >1. Een univariaat signi icant ver-band tussen hogere graads PNP en een variant in het PKNOX1genwerd gevondenin de IFM data. Deze bevinding konworden gevalideerd in de HOVON65 validatiedata waarin de SNP signi icant was na correctie voor multiple testing.
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Term De inition

95%CI 95% Con idence intervalAE Adverse eventANOVA Analysis of varianceASCT Autologous stem cell transplantationB2m Beta-2-microglobulinBiPN Bortezomib induced Peripheral NeuropathyBiTE Bispeci ic T-cell EngagersBOR Drug: BortezomibCAR Chimeric Antigen ReceptorCD1, CD2 Cluster: Cyclin D1 or D2 gene translocationcDNA Complementary DNACE Conformité EuropéeneCEU Central EuropeanCHB Han Chinese in BeijingCHR ChromosomeCRAB Diagnostic criteria forMM: hyperCalcemia, Renal failure,Anemia, or lytic Bone lesionsCTA Cluster: Cancer Testis AntigensCTCAE Common Toxicity Criteria for Adverse EventsCTDa Treatment: attenuated Cyclophosphamide, Thalido-mide, DexamethasoneCVAD Treatment: Cyclophosphamide, Vincristine, Doxoru-bicin, DexamethasoneDNA Deoxyribonucleic acidEFS Event free survivalEMC92 Erasmus Medical Center 92-gene classi ierFDR False Discovery Rate



Term De inition

FISH Fluorescence in Situ HybridizationFRMA Frozen Robust Multi-Array normalizationFWER Family-Wise Error RateGCRMA Guanine Cytosine adjusted Robust Multi-Array normal-izationGEO Gene Expression OmnibusGEP Gene Expression Pro ilingGMMG German-Speaking Myeloma Multicenter GroupGPI50 Gene Proliferation Index 50-gene classi ierGWAS GenomeWide Association StudyHDM High dose MelphalanHM19 Heidelberg-Montpelier 19-gene classi ierHO-<xx> HOVON study with trial number <xx>HOVON Haemato Oncology Foundation for Adults in the Nether-landsHR Hazard ratio or High-riskHWE Hardy–Weinberg equilibriumHY Cluster: HyperdiploidICC Intra Class Correlation coef icientIFM15 IntergroupeFrancophoneduMyélome15-gene classi ierIgH, IgH Immunoglobulin-H or GIMiD Immunomodulatory DrugIMWG International MyelomaWorking GroupInterm IntermediateISS International Staging SystemIVD In Vitro DiagnosticLB Cluster: Bone diseaseLD Linkage disequilibriumLDH Lactate dehydrogenaseMPR-R Treatment: Melphalan, Prednisone, Lenalidomide plusLenalidomide maintenance



Term De inition

M-protein Monoclonal proteinMAF Minor allele frequency or MAF geneMAS5 Microarray suite 5.0 gene expression normalizationmethodMDE Myeloma De ining EventsMF Cluster: MAF gene translocation clusterMGUS Monoclonal Gammopathy of Undetermined Signi icanceMM Multiple MyelomaMP Treatment: Melphalan PrednisoneMPT-T Treatment: Melphalan, Prednisone, Thalidomide plusThalidomide maintenanceMRCIX6 Medical Research Council IX 6-gene classi iermRNA messenger RNAMS Cluster: MMSET gene translocation clustermSMART Mayo Strati ication forMyeloma And Risk-adapted Ther-apyn.r. Median not reachedNA Not Applicable or Not AvailableNCBI National Center for BiotechnologyNeg NegativeNMSG Nordic Myeloma Study GroupNopaco Non-parametric concordance coef icientOR Odds RatioOS Overall SurvivalPAD Treatment: Bortezomib, Adriamycin, DexamethasonePANP Presence-Absence Calls from Negative Strand MatchingProbesetsPCA Principal Component AnalysisPCL Plasma Cell LeukemiaPCLI Plasma Cell Labeling IndexPFS Progression Free Survival



Term De inition

PI Proteasome InhibitorPNP Peripheral NeuropathyPos PositivePR Cluster: Proliferation clusterProp. ProportionQC Quality ControlR-ISS Revised International Staging SystemRd Treatment: Lenalidomide, low dose DexamethasoneRMA Robust Multi-array Averaging gene expression normal-izationRNA Ribonucleic acidRS Rank ScoreRT-PCR Real-Time Polymerase Chain ReactionSD Standard DeviationSKY92 Skyline 92-gene classi ierSMM Smoldering Multiple MyelomaSNP Single Nucleotide PolymorphismSR Standard-riskSWOG Southwest Oncology GroupTC-classi ication Translocation and Cyclin-D classi ication systemThal ThalidomideTiPN Thalidomide induced Peripheral NeuropathyTT2, TT3 Total therapy 2, Total therapy 3Tx TreatmentUAMS17 -70 -80 University of Arkansas for Medical Sciences 17, 70 or 80gene classi iersUTR Untranslated RegionVAD Treatment: Vincristine, Adriamycin, DexamethasoneVCD Treatment: Bortezomib, Cyclophosphamide and Dexam-ethasoneVD Treatment: Vincristine, Dexamethasone



Term De inition

VMD Treatment: Bortezomib, Melphalan, DexamethasoneVMP Treatment : Bortezomib, Melphalan, PrednisoneVTD Treatment: Bortezomib, Thalidomide, DexamethasoneWHO World Health OrganizationYRI Yoruba from Ibadan








