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Abstract
Sometimes instrumental variable methods are used to test whether a causal effect is null rather than to estimate the

magnitude of a causal effect. However, when instrumental variable methods are applied to time-varying exposures, as in

many Mendelian randomization studies, it is unclear what causal null hypothesis is tested. Here, we consider different

versions of causal null hypotheses for time-varying exposures, show that the instrumental variable conditions alone are

insufficient to test some of them, and describe additional assumptions that can be made to test a wider range of causal null

hypotheses, including both sharp and average causal null hypotheses. Implications for interpretation and reporting of

instrumental variable results are discussed.
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Instrumental variables are often used in observational

studies, e.g., many Mendelian randomization studies, to

obtain numerical estimates of causal effects. The validity

of the effect estimates requires two conditions: (i) the

proposed instrumental variable is indeed an instrumental

variable, or instrument, as formalized below, and (ii) an

additional condition requiring either some form of effect

homogeneity or a monotonic relation between the instru-

mental variable and the exposure [1]. Condition (ii) is

untenable in many research settings and has been met with

skepticism by some investigators [1–4]. Because condition

(ii) is often questionable, an alternative is to change the

goal of the analysis from obtaining a numerical estimate of

the causal effect to simply determining whether the expo-

sure has any effect on the outcome [5]. For the purposes of

such causal null testing, it has been argued, condition (i) is

sufficient [5, 6].

A difficulty with causal null hypothesis testing is that it

is often unclear what the hypothesis is. For example,

studying the effect of alcohol requires the specification of

the effect in terms of a contrast of hypothetical interven-

tions sustained over time, e.g., ‘‘consume a glass of red

wine every other day throughout adulthood’’ [7, 8]. How-

ever, many studies using instrumental variable methods

leave the strategies of interest unspecified. Because there

are many such strategies, there are multiple possible con-

trasts and therefore multiple causal null hypotheses that can

be tested.

Here, we consider different versions of causal null

hypotheses, describe conditions under which the instru-

ment-outcome association can be used to test these

hypotheses, and discuss how to conduct and interpret

results from these tests. We begin by reviewing established

results in the simple setting of time-fixed treatments [9],

and then extend our discussion to more realistic settings

with time-varying treatments.
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Causal null hypotheses for time-fixed
treatments

The causal diagram in Fig. 1 depicts a causal instrument Z,

a time-fixed treatment A, and an outcome Y. For simplicity,

suppose both the instrument and the treatment are binary,

the outcome is continuous, and faithfulness holds (for

additional settings, see Appendix). An instrument-based

test of the causal null hypothesis of treatment A is a test of

whether the instrument-outcome association is null, that is,

a test of the equality of the quantities E½Y jZ ¼ 1� and

E½Y jZ ¼ 0�. We now discuss the validity of this test for

different types of causal null hypotheses.

First, let us first consider the sharp causal null hypoth-

esis: treatment does not affect the outcome for any indi-

vidual in the study population. Formally, Ya¼1
i ¼ Ya¼0

i for

all individuals i, where Ya
i is individual i’s counterfactual

or potential outcome under treatment level a. Because there

is no arrow from A to Y, Fig. 1 represents a setting in which

the sharp causal null holds.

In this setting, the quantities E½YjZ ¼ 1� and E½YjZ ¼ 0�
are expected to be equal because, in Fig. 1, Z and Y are d-

separated (for a proof based on counterfactual expressions

see the Appendix). By the contrapositive, if our estimates

of E½Y jZ ¼ 1� and E½YjZ ¼ 0� in the study population are

not equal and Z is an instrument, then we have evidence

against the sharp causal null.

Unfortunately, in real-world data analyses, we can never

know for sure that Z is an instrument. If Z were not an

instrument, as depicted in the causal diagrams of Fig. 2,

then Z and Y are not d-separated even though the sharp

causal null holds. Therefore, if our estimates of E½YjZ ¼ 1�
and E½Y jZ ¼ 0� in the study population are not equal, then

we have evidence that at least one of the following is true:

the sharp causal null does not hold or the proposed

instrument is not an instrument. Note that under Fig. 2a, b,

it would still be possible to find evidence against the sharp

causal null if E½Y jZ ¼ 1; L ¼ l� and E½Y jZ ¼ 0; L ¼ l� were
not equal in at least one stratum L = l; no such possibility

exists for Fig. 2c.

Second, let us consider the average causal null hypoth-

esis: treatment does not affect the average outcome in the

study population, or E Ya¼1½ � ¼ E Ya¼0½ �. The average

causal null hypothesis is of interest when, for example, we

plan to apply an intervention to an entire population.

Because the sharp causal null hypothesis implies the

average causal null hypothesis, the latter holds under the

causal diagram in Fig. 1.

When the average causal null hypothesis holds, E½Y jZ ¼
1� and E½YjZ ¼ 0� are not guaranteed to be equal without

additional conditions. One additional condition that would

guarantee equality is a monotonic treatment effect: for a

binary A, the treatment is either beneficial or harmful for all

individuals in the study population (e.g., Ya¼1
i � Ya¼0

i for

all individuals i) [9]. By the contrapositive, whenever our

estimates of E½Y jZ ¼ 1� and E½YjZ ¼ 0� are not equal, we

have evidence that at least one of the following is true: the

average causal null does not hold, the proposed instrument

is not an instrument, or the treatment effect is not

monotonic.
Fig. 1 Causal diagram depicting a causal instrument Z, a time-fixed

treatment A, an outcome Y, and unmeasured confounders U

Fig. 2 Causal diagrams depicting some violations of the instrumental

conditions for a proposed instrument Z, a time-fixed treatment A, and

an outcome Y. The scenarios represent a a violation of the

instrumental exchageability condition via confounding, b a violation

of the instrumental exchangeability condition via selection bias, and

c a violation of the instrumental exclusion restriction condition via a

direct path from Z to Y. In (a, b), Z would satisfy the instrumental

conditions conditional on L
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Finally, another causal null hypothesis is the ‘‘complier’’

average causal null hypothesis: E Ya¼1jAz¼0\Az¼1½ � ¼
E½Ya¼0jAz¼0\Az¼1� [10]. Because this expression has no

analogue for time-varying treatments, we do not consider it

here.

Importantly, if testing were the only goal, we would not

need the common instrumental variable analysis or related

methods developed to estimate treatment effects. Yet,

many published analyses focus on whether or not their

results demonstrated a non-null causal effect, but use

instrumental variable analyses and report numeric effect

estimates. This is perhaps due to investigators recognizing

the additional assumptions needed for these effect esti-

mates to be valid are biologically implausible, let alone the

additional issues with interpretation of these effect esti-

mates when the treatment strategies are sustained over time

[2, 7, 8, 11]. Therefore, if the investigators are reluctant to

interpret the magnitude of the point estimate as that of an

average causal effect, they can increase the transparency of

their analysis by either making their reluctance explicit or

restricting the presentation of results to the testing of the

null.

Causal null hypotheses for time-varying
treatments

The causal diagram in Fig. 3 depicts a binary instrument Z,

a time-varying treatment measured at two time points (A0,

A1), and an outcome measured at two time points (Y0, Y1).

The causal null hypothesis of interest is now concerning

whether the joint effect of the time-varying treatment (A0,

A1) on the outcome Y1 is null. (Results for the effect of A0

on Y0 follow immediately from the time-fixed treatment

setting discussed above.) An instrument-based test of the

joint causal null hypothesis of treatment (A0, A1) is a test of

the equality of the quantities E½Y1jZ ¼ 1� and E½Y1jZ ¼ 0�.
We now discuss the validity of this test for different types

of causal null hypotheses.

First, consider the joint sharp causal null hypothesis:

treatment at any time does not affect the outcome for any

individual in the study population. Formally, Y
a0¼1;a1¼1
1i ¼

Y
a0¼0;a1¼1
1i ¼ Y

a0¼1;a1¼0
1i ¼ Y

a0¼0;a1¼0
1i for all individuals

i. Because there is no arrow from either A0 or A1 to Y1,

Fig. 3 represents a setting in which the joint sharp causal

null hypothesis holds.

When the joint sharp causal null holds and Z is a true

instrument, then the quantities E½Y1jZ ¼ 1� and E½Y1jZ ¼
0� are equal because, in Fig. 3, Z and Y1 are d-separated. By

the contrapositive, if our estimates of E½Y1jZ ¼ 1� and

E½Y1jZ ¼ 0� are not equal and Z is an instrument, then we

have evidence against the joint sharp causal null hypothe-

sis. However, knowing that E½Y1jZ ¼ 1� and E½Y1jZ ¼ 0�
are not equal does not inform which of the four counter-

factual outcomes are not equal: even if Z were an instru-

ment, we have evidence that at least one of these

counterfactual outcomes is not equal to the others for at

least one individual, but we would not have evidence

against a sharp causal null comparing only (for example)

continuous treatment [Y
a0¼1;a1¼1
1i ] and continuous non-

treatment [Y
a0¼0;a1¼0
1i ].

Second, consider the joint average causal null hypoth-

esis: treatment does not affect the average outcome in the

study population, or E Y
a0¼1;a1¼1
1

h i
¼ E Y

a0¼0;a1¼1
1

h i
¼

E Y
a0¼1;a1¼0
1

h i
¼ E Y

a0¼0;a1¼0
1

h i
: As for a time-fixed treat-

ment, our observed data on E½Y1jZ ¼ 1� and E½Y1jZ ¼ 0�
provides no evidence for or against the average causal null

without further assumptions. We can extend the monotonic

treatment effect condition above to time-varying treat-

ments: for example, specifying Y
a0¼1;a1¼1
1i is the minimum

value and Y
a0¼0;a1¼0
1i is the maximum value across all

possible outcomes for each individual i in the study pop-

ulation (see Appendix for more general expressions of a

monotonic treatment effect condition). Under this addi-

tional condition, then we indeed would expect the quanti-

ties to be equal. By the contrapositive, this implies that

whenever our estimates of E½Y1jZ ¼ 1� and E½Y1jZ ¼ 0� are
not equal, we have evidence that at least one of the fol-

lowing is true: the joint average causal null does not hold,

the proposed instrument is not an instrument, or the treat-

ment effect is not monotonic.

Finally, we could also consider causal null hypotheses

regarding the effect of A1 on Y1 without reference to the

earlier treatment time A0: a sharp causal null hypothesis of

Ya1¼1
1i ¼ Ya1¼0

1i for all individuals i, and an average causal

null hypothesis of E Ya1¼1
1

� �
¼ E Ya1¼0

1

� �
. For estimating

E½Y1jZ ¼ 1� and E½Y1jZ ¼ 0� to provide evidence for or

against either of these conditions, however, there cannot be

a path from Z to A0 to Y1 (either directly or through Y0). In

Fig. 3 Causal diagram depicting a causal instrument Z, a treatment

A measured at two time points (A0, A1), an outcome Y measured at

two time points (Y0, Y1), and unmeasured confounders U
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other words, Z needs to satisfy the instrumental condi-

tions (i) for A1 by itself, not necessarily jointly for A0 and

A1. A similar line of reasoning applies to considerations of

causal null hypotheses related to the effect of A0 on Y1.

These observations are summarized in Table 1 and

formalized in the Appendix. Specifically, the Appendix

covers results for non-binary instruments and treatments

(including continuous treatments, as are common for

Mendelian randomization studies), provides proofs that

also apply to non-causal instruments [1, 2], and extends the

above observations to an arbitrary number of treatment and

outcome times.

On evidence regarding the direction
and magnitude of causal effects

Suppose we find evidence against a causal null hypothesis

and accept condition (i) that the proposed instrument is

indeed an instrument. Can we infer the direction and

magnitude of the average causal effect without making the

homogeneity conditions (ii) that lead to point identifica-

tion? (Estimation of average causal effects under homo-

geneity assumptions is discussed at length elsewhere

[1, 11–13].)

If we find that E Y1jZ ¼ 1½ � 6¼ E Y1jZ ¼ 0½ � then, assum-

ing Z is an instrument, we have no information about the

direction or the size of an effect. This observation has been

made for time-fixed treatments [9]; here we extend it to

time-varying treatments as well.

Using only the instrumental conditions (i), we can

compute bounds for the average causal effect. If both the

lower and upper bound were on the same side of the null

(i.e., both positive or both negative) we would identify the

direction of the average causal effect. However, in most

practical settings, the lower and upper bounds straddle the

null and thus do not identify the direction of the effect

[8, 12, 14]. If we additionally assume the monotonic

treatment effect condition, then we tautologically identify

the direction. As we show in the Appendix, this monotonic

treatment effect condition can also provide a bound on the

minimum effect of continuous treatment: for example, we

may infer that E Y
a0¼1;a1¼1
1

h i
� E Y

a0¼0;a1¼0
1

h i���
���� E Y1jZ ¼½j

1� � E Y1jZ ¼ 0½ �j; which aligns with the common state-

ment that the intention-to-treat effect estimate in a trial

with non-compliance underestimates the per-protocol

effect size (but only under the conditions described here!).

While the direction of the effect is not identified under

only the instrumental conditions (i), it has been previously

argued in the setting of time-fixed treatments that relatively

large sources of heterogeneity would need to be present in

order for the direction of the proposed instrument’s effect

on the outcome to not align with the direction of the effect

of the exposure [7]. Future work is needed to explore how

heterogeneity in the time-varying treatment setting affects

this conclusion.

Revisiting Mendelian randomization
findings of sustained treatment strategies

To put the above results in context, we revisit two sets of

canonical Mendelian randomization results: studies of the

causal effects of (i) C-reactive protein (CRP) and (ii)

alcohol consumption on risk of cardiovascular disease.

Several Mendelian randomization studies have found

null associations between genetic variants related to CRP

levels (e.g., variants in the CRP gene) and cardiovascular

disease [15–17]. Under the condition (i) that the proposed

instruments in these studies are indeed instruments, these

null associations provide no evidence against any of the

causal null hypotheses summarized here. That is, under

condition (i), a null association between the genetic

Table 1 Conclusions about causal null hypotheses under the assumptions encoded in the causal diagram in Fig. 3

Causal null hypothesis Null association between instrument and outcome Non-null association between instrument and outcome

Sharp causal null

A0 on Y0 No evidence against Evidence against

(A0, A1) on Y1 No evidence against Evidence against

A0 on Y1 No evidence against No evidence against

A1 on Y1 No evidence against No evidence against

Average causal null

A0 on Y0 No evidence against If monotonic treatment effect, evidence against

(A0, A1) on Y1 No evidence against If monotonic treatment effect, evidence against

A0 on Y1 No evidence against No evidence against

A1 on Y1 No evidence against No evidence against
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variants and cardiovascular disease is consistent with CRP

having no effect on cardiovascular disease, but it is also

consistent with a non-null causal effect.

Several Mendelian randomization studies have found

non-null associations between genetic variants related to

alcohol consumption (e.g., variants in the ADH1B or ALDH2

genes) and cardiovascular disease [18–20]. Under condition

(i) that the proposed instruments in these studies are indeed

instruments, these associations provide evidence against the

joint sharp null hypothesis. That is, we would conclude that,

for at least one person in the study population, changing

alcohol consumption levels by some (unspecified) amount at

some (unspecified) point in time would affect cardiovascular

disease risk. Evidence against the sharp null hypothesis may

be a useful step in the scientific process, but this evidence

alone is agnostic to whether specific interventions on alcohol

consumption in a population would have beneficial or

detrimental effects. For example, testing the joint sharp null

hypothesis does not tell us whether reducing alcohol con-

sumption in everybody across the life-course would have a

joint non-null effect (i.e., a component of the joint average

null), or whether changing alcohol consumption at a certain

point in the life-course has an effect in one or more indi-

viduals (i.e., a non-joint sharp null).

If we additionally are willing to assume a monotonic

treatment effect of alcohol consumption on cardiovascular

disease risk (which may not be plausible in this setting), the

observed associations in Mendelian randomization studies

could also provide evidence against the joint average

causal null. Collectively, the publications on alcohol con-

sumption tend to draw further conclusions about the

direction of the causal effect. For example, one meta-

analysis of Mendelian randomization studies [20] states

that ‘‘reduction of alcohol consumption, even for light to

moderate drinkers, is beneficial for cardiovascular health.’’

Such conclusions rest upon further causal assumptions, and

the biologic plausibility of these assumptions (in addition

to the instrumental variable assumptions) needs to be

carefully weighed on a case-by-case basis [11].

Discussion

We have shown that having an instrumental variable is

insufficient to test many versions of causal null hypotheses

for time-varying exposures, and at best provides evi-

dence concerning a specific joint sharp causal null hypoth-

esis that a change in the exposure at any time would have no

effect on the outcome for all individuals. We further

described assumptions that, in conjunction with the instru-

mental variable conditions, allow us to test other sharp and

average causal null hypotheses. Our results have important

implications for the reporting and interpretation of many

Mendelian randomization studies and, more generally, of

any study leveraging the instrumental variable assumptions

to study sustained treatment strategies, including using an

intention-to-treat analysis in a randomized trial to inform our

understanding of per-protocol effects.

Throughout this paper, we have ignored statistical con-

siderations about ‘‘testing of a null hypothesis.’’ Dichot-

omized p values are often used to make decisions about

whether a hypothesis (including the causal null hypothesis)

is true. Such use of p values is incorrect, as many authors

have demonstrated [21–23], and discouraged by the

American Statistical Association [24]. In addition to these

concerns, a proper use and interpretation of statistical tests

requires that the effect of interest is defined. For example,

power calculations have been described for Mendelian

randomization studies previously [25–27] primarily if not

only for time-fixed treatments. However, any discussion of

power for sustained treatment strategies would need to

specify the causal contrasts under study.

Finally, there is a discrepancy between emphasizing the

use of instrumental variables for hypothesis testing only

and epidemiologists’ more typical goal of estimating causal

effects [21–24]. Many epidemiology journals that publish

Mendelian randomization or other instrumental variable

analyses prefer (or insist upon) effect size estimation

regardless of the study design or analysis used. This paper

attempts to clarify what can and cannot be tested with an

instrumental variable, but does not address the larger issue

of whether or how null testing should be conducted.
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