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Abstract 
We introduce tests for multi-horizon superior predictive ability. Rather than 
comparing forecasts of different models at multiple horizons individually, we 
propose to jointly consider all horizons of a forecast path. We define the 
concepts of uniform and average superior predictive ability. The former entails 
superior performance at each individual horizon, while the latter allows inferior 
performance at some horizons to be compensated by others. The paper 
illustrates how the tests lead to more coherent conclusions, and how they are 
better able to differentiate between models than the single-horizon tests. We 
provide an extension of the previously introduced Model Confidence Set to allow 
for multi-horizon comparison of more than two models. Simulations demonstrate 
appropriate size and high power. An illustration of the tests on a large set of 
macroeconomic variables demonstrates the empirical benefits of multi-horizon 
comparison. 

Keywords: Forecasting, Long-Horizon, Multiple Testing, Path Forecasts, 

Superior Predictive Ability 
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1 Introduction 

Forecasts at multiple horizons should rarely be judged in isolation. The full 

forecast path plays an important role in many policy decisions. For instance, 

in the context of macro-economic variables such as unemployment and 

inflation, policymakers require forecasts at different horizons to make 

informed decisions; the user does not only care about the value many periods 

from now, but the full intermittent path the variable takes between now and 

some time in the future. The importance of the path is not restricted to 
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economics, as evidenced by for instance the large literature on forecasting 

climate data. As such, when comparing two or more different models in terms 

of their ability to make path forecasts, it is useful to compare the accuracy of 

the complete path. 

The standard approach is to compare various models at different horizons 

independently, potentially leading to incoherent conclusions. For example, in 

a given sample, we might find that a first model is significantly better at 

predicting two and five periods ahead, the second model has significantly 

better predictions three periods ahead, while the difference in forecasting 

performance is insignificant at all other horizons. The fact that either model 

performed worse at a single horizon, should not necessarily disqualify the 

model, and neither should the fact that the difference between the two models 

is insignificant at some horizons. Indeed, when we compare performance at 

multiple horizons, we implicitly face a multiple testing problem. As such, in 

finite samples we are likely to find that a mis-specified model will outperform 

even the population model at one of the many horizons one could consider. 

Comparing all horizons jointly guards us against this problem. 

We therefore propose a test for multi-horizon superior predictive ability. There 

are at least three reasons why one might be interested in such a test. First, it 

entails a more robust definition of a model’s superior predictive ability. 

Second, jointly considering multiple horizons allows us to construct a powerful 

test to disentangle models. Finally, as stated before, it guards us against 

spurious results induced by the multiple testing issues arising from 

considering multiple horizons individually. 

We introduce two bootstrap-based test statistics, which can be used to test for 

two alternative definitions of multi-horizon superior predictive ability (SPA). 

The first statistic considers uniform multi-horizon SPA, which is defined as a 

model with lower loss at each individual horizon. The second statistic is used 

to test for average multi-horizon SPA, which allows poor performance at some 

horizons to be compensated by superior performance at other horizons. The 

first definition is clearly far more stringent, but by properly controlling the 
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family-wise error rate using bootstrap methods, equality of the models’ 

forecast performance may still be rejected, even if the resulting superior 

model’s empirical performance is inferior at some horizons. Importantly, both 

uniform and average multi-horizon SPA, as well as their respective tests, are 

defined in such a way that they reduce to the standard Diebold and 

Mariano (1995) test when only considering a single horizon. 

In addition to the pairwise tests, we propose a multi-horizon version of the 

Model Confidence Set (MCS) of Hansen, Lunde, and Nason (2011), which 

allows the comparison of more than two models at once. The multi-horizon 

MCS contains the set of models that have the best joint performance across 

horizons with given probability. Other multiple-model comparison techniques, 

such as those of White (2000) and Hansen (2005) can also easily be adapted 

to the multi-horizon framework. 

The tests proposed in this paper fall into the framework implicitly defined in 

Diebold and Mariano (1995), and explicitly set out in, amongst others, 

Hansen (2005) and Giacomini and White (2006). We test for finite-sample 

multi-horizon predictive ability; the accuracy of forecasts at estimated values 

of parameters. This is in contrast to the literature set out by West (1996), and 

greatly expanded on by amongst others Clark and McCracken (2005, 2012) 

and Clark and West (2007), whose aim is to use the forecasts to learn 

something about population-level predictive ability; accuracy of forecasts at 

the population value of the parameters. Clark and McCracken (2013) provide 

an excellent overview of the literature. The asymptotic theory in this finite-

sample setting requires non-vanishing estimation error, and as such a 

limitation of our tests is that they do not accommodate forecasts derived from 

models with recursively estimated parameters. We do permit the common 

rolling-window forecasting scheme, and a situation where parameters are 

estimated once at the beginning of the forecasting period. 

In practice, the proposed tests should be viewed as applicable to a spectrum 

of potential hypotheses. On the one extreme, a potential user may be 

interested in just a single horizon, in which case the proposed tests reduce to 
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the standard Diebold and Mariano (1995) test. On the other extreme, the test 

can be used to show that a model has uniform SPA across all horizons that 

can reasonably be forecasted, which is strong evidence in favor of a 

specification. However, in many cases, users may have different models for 

different ranges, i.e. short-, mid- and long-term forecasts. In such a scenario 

the tests may equally be applied to subsets of horizons. 

There is a large empirical literature that reports forecasts at multiple horizons. 

Typically, these forecasts are evaluated and compared based on tests applied 

to each horizon separately. Exceptions are the work of Patton and 

Timmermann (2012), who propose a test for multi-horizon forecast optimality, 

and Jordà and Marcellino (2010), who call it path forecast evaluation. Their 

tests regard internal consistency of a single model, rather than comparing the 

performance of multiple models across horizons. In the context of model 

comparison, Capistrán (2006) introduces an unweighted version of the 

average SPA test. Subsequent research by Martinez (2017) provides a 

generalization of the unweighted average SPA test in a GFESM context 

(Clements and Hendry, 1993), explicitly allowing for differences in covariance 

dynamics of the various models, while we target the loss-differential directly 

as a primitive. Finally, the literature on vector forecasts, concerning multiple 

variables rather than multiple horizons, faces the similar problem of forecast 

comparison in the presence of correlated forecast errors (e.g. Clements and 

Hendry, 1993; Komunjer and Owyang, 2012). 

We analyze the finite sample properties of the tests in simulation studies. We 

consider the two pairwise tests and the multi-horizon model confidence set. 

We demonstrate that the tests have appropriate size and good power, even in 

moderately sized samples. In addition, the simulations are used to investigate 

the conditions under which the multi-horizon comparisons will lead to more 

frequent rejection than a test applied to a subset of the same paths. Naturally, 

this is determined by the relative increases in average loss differentials and 

the variance of the loss differential as a function of horizon. 
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As an empirical illustration, we revisit Marcellino, Stock, and Watson (2006), 

who investigate the relative merits of iterated and direct long-horizon 

forecasts. We test for both uniform and average SPA using 2 to 24 month 

horizon forecasts on their dataset of 170 macroeconomic time-series. By 

jointly considering all horizons, we find stronger evidence of iterated forecasts 

outperforming direct forecasts. When looking at individual series, we find that 

many of the incoherent results across horizons can be attributed to the 

multiple testing issues and lack of power. 

We proceed as follows. Section 2 sets out our theoretical framework and 

introduces the tests. Section 3 provides simulation evidence of size and 

power of the tests. Section 4 provides the empirical illustration, and finally 

Section 5 concludes. 

2 Setup 

In this section we discuss the general setup. We consider the problem of 

comparing forecasts for potentially multivariate time series  over the time-

period . We are interested in point forecasts  at multiple horizons, 

. The forecasts may come from econometric models, professional 

forecasters, or any other alternative. Whenever the forecasts are derived from 

models, the forecasts  are based on estimated parameters . 

We have two or more competing sets of forecasts, which may be based on 

different information sets and they may be based on nested or non-nested 

models. We will use the term ‘model’ loosely to refer to all potential sources of 

forecasts. 

The main contribution of this paper is to not ‘only’ consider the one-step 

ahead, or the h-step ahead forecast in isolation, but to jointly compare the 

quality of the full path of 1 to H-step ahead forecasts. That is, for model 

 we have forecasts , where  is model i’s 

forecast of  based on the information set . We define a general loss 

function , which maps the forecast errors into an H-dimensional 

vector, with elements . 
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For any loss function, and any two sets of forecasts, we compare models in 

terms of their loss differential 

 (1) 

which is an H-dimensional vector, with elements . Our hypotheses are 

defined in terms of the expected loss differentials,  and as such we 

focus on the properties of . In particular, we make the following 

assumption. 

Assumption 1. The vector of loss differences  is  Near Epoch 

Dependent (NED) on  with NED coefficients vk of size , 

where  is α-mixing of size , for some r > 2 and 

, and  for all . 

The assumption allows for considerable heterogeneity in the mean 

, as well as dependence. However, our object of interest remains 

, although conditional tests in the spirit of Giacomini and 

White (2006) could be developed. We make the following assumption on the 

amount of time-variation, where  is the block-length parameter of 

the bootstrap, defined below in Section 2.1.2. 

Assumption 2.  for some  and all 

. 

Assumption 2 limits the potential degree of heterogeneity, but still allows for, 

for instance, a case with a finite number of properly behaved breaks in the 

mean. See Gonçalves and White (2002) for details. 

The assumptions are needed to ensure that population moments of  are 

well defined, and to justify the bootstrap techniques introduced in Section 

2.1.2. Under the stated assumption a central limit theorem applies 

(e.g. De Jong, 1997; Gonçalves and White, 2002), such that 
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 (2) 

where . 

Note that  is implicitly defined as a function of estimated parameters. 

Indeed, our focus is on finite-sample predictive ability. This contrasts with the 

population-level framework, first analyzed by West (1996), where the 

hypotheses are defined in terms of expected loss at the population values of 

the parameters. Construction of such tests requires a different asymptotic 

framework, extensively discussed in West (2006). 

While the finite-sample predictive ability hypothesis is practically appealing, 

seeing as we typically only have the estimated parameters, it does come with 

some restrictions. In particular, the framework permits parameters that are 

estimated on a (bounded) rolling window, or just once (fixed scheme), but it 

prohibits the use of forecasts generated by recursive parameter estimates, or 

(asymptotically) expanding windows. It can however handle both nested and 

non-nested models, as non-vanishing estimation error prevents the singularity 

that may occur in nested models when parameters are at their probability 

limits. See Giacomini and White (2006) for a broad discussion of this 

framework. 

The assumption on  is sufficient for validity of one of the most common 

tests for comparing two models’ forecasting performance at a single horizon 

h, the Diebold and Mariano (1995) test. They test the null hypothesis that 

 (3) 

using a standard t-test: 

 (4) 

where , and , the square root of the diagonal element 

corresponding to the h-th horizon. In such a setting, taking into account the 
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heterogeneity, the variance can be estimated using a HAC-type estimator, as 

in for instance Giacomini and White (2006) or, following Hansen et al. (2011), 

it may be obtained using bootstrap methods. 

2.1 Multi-Horizon Hypotheses 

The Diebold and Mariano (1995) test can be used to compare model 

performance at each horizon individually. This can lead to a number of 

different conclusions. In an ideal situation this procedure finds significant 

evidence that a single model performs best at each horizon, or at the very 

least, not significantly worse than the other model. Another potential outcome 

that tells a consistent story, is that one model works well for short horizons, 

while the other model performs better at longer horizons. However, we may 

also come across situations in which the individual tests do not lead to 

coherent results. For instance, we may encounter a situation in which model i 

performs better than model j at most horizons, except for two or three non-

consecutive horizons. This lack of coherency is most likely due to simple 

sampling error, which may cause even the population model to be beaten by 

a mis-specified model at some horizons. 

To illustrate such a situation, consider Figure 1, which presents a preview of 

the empirical analysis in Section 4. We plot the Diebold-Mariano statistics 

over horizons 2 to 24 of the mean square forecast error comparison between 

direct and iterated autoregressive forecasts for a series of earnings of 

production workers. The statistic at the majority of horizons is negative 

indicating that direct forecasts outperform the iterated ones. However, all but 

six of the statistics are individually insignificant, and out of the insignificant 

ones, six have a positive statistic. Similar results can be found all throughout 

the forecasting literature. 

The question arises whether this picture may provide joint evidence to 

conclude that either model significantly outperforms across all horizons. The 

negative point estimates may simply be due to sampling error, and the 

insignificance of the remaining horizons may potentially be attributed to lack of 
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power. Alternatively, perhaps we can at least find statistical evidence for the 

claim that the average loss across horizons is either positive or negative. 

We therefore propose the notion of multi-horizon superior predictive ability. 

The most natural, and strongest, notion is that a superior model should have 

better forecasts at each individual horizon. To that effect, define 

 (5) 

We refer to a situation with  as uniform superior predictive ability 

(uSPA) of model j. 

The definition of uSPA is strict, and we may often fail to find evidence for such 

relative forecasting performance. A milder definition of multi-horizon SPA is 

average superior predictive ability (aSPA). Here, we compare models based 

on their weighted average loss difference 

 (6) 

with weights  summing to one. Obvious candidates for  are 

equal-weighted or weights decaying in horizon. Note that we take the average 

loss, which is distinct from the loss of the average, which is just one aspect of 

the forecast path. 

The concepts of uniform and average SPA have clear links to the concepts of 

first- and second order forecast dominance respectively, and the tests in the 

next section also bear resemblance to tests for stochastic dominance 

(e.g. Linton, Maasoumi, and Whang, 2005; Linton, Song, and Whang, 2010). 

Similar to those concepts, uSPA implies aSPA, while the reverse is not 

necessarily true. We may be able to determine a ranking based on aSPA, 

even if uSPA fails to do so. However, aSPA requires the user to take a stand 

on the relative importance of under-performance at one horizon against out-

performance at another. More generally, the tests are closely related to work 

on multivariate inequality tests (e.g. Bartholomew, 1961; Wolak, 1987). In 
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particular, Patton and Timmermann (2010) propose a solution similar to our 

uSPA test in the context of testing for monotonicity in asset pricing 

relationships. 

A couple of remarks need to be made regarding testing multiple horizons 

jointly. First, increasing the number of horizons will not always increase our 

ability to differentiate models. The variance of loss differences typically 

increases with horizon, and as such adding an additional horizon may actually 

decrease power. Moreover, forecasts beyond a certain limiting horizon may 

become uninformative (Breitung and Knüppel, 2017). Figure 1 shows 

however, that the single-horizon statistics are hardly affected by increasing 

variance, as the mean loss differential also tends to increase in horizon. The 

relative speed of accumulation across horizons will play an important role in 

the power of multi-horizon tests, which will be studied in the simulations. 

Second, since forecast errors tend to be correlated across both horizon and 

time, the increase of information from considering, say, two horizons rather 

than one, does not necessarily provide a similar increase in information as 

doubling the out-of-sample period length. The tests introduced below should 

therefore mostly be interpreted as a guard against the implicit multiple testing 

issue, with the increase of power through H times as many loss observations 

being a secondary benefit. 

2.1.1 Choice of Test Statistic 

First, we consider a test on the minimum loss differential . If model j is 

better than model i, the minimum loss difference over all h should be greater 

than zero. Here we test the null hypothesis 

 (7) 

against the alternative that . We consider one-sided hypotheses, as 

models i and j can easily be switched. In order to test this hypothesis, we 

simply consider the minimum over all the individual Diebold-Mariano statistics 

: 
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 (8) 

For validity of our procedures  can be estimated using any consistent HAC-

type estimator. We use the Quadratic Spectral kernel (Andrews, 1991) for 

reasons elaborated on below, but the more standard Bartlett kernel of Newey 

and West (1987) is also consistent. 

Note that we take the minimum of the studentized test statistic, rather than 

studentizing the minimum. The main advantage of this is that we only require 

estimates of the diagonal of the covariance matrix of  rather than the full 

matrix. This is of particular importance when H grows too large to obtain a 

sensible estimate of the covariance matrix. The downside is that the statistic 

will be non-pivotal, as its distribution does depend on the full covariance 

matrix, which makes  a nuisance parameter. As discussed before, this 

nuisance parameter problem is handled by the bootstrap methods, which 

implicitly deal with these problems. This feature has previously been used by 

White (2000), Hansen (2005), Clark and McCracken (2005) and Hansen 

et al. (2011). For a related discussion on the relative merits of non-quadratic 

statistics, see Hansen (2005) in the context of loss differences between a 

benchmark model and many alternative competing models. 

Next, we consider a simple test for average SPA, based on the weighted-

average loss differential. The associated null is 

 (9) 

with alternative . A simple studentized statistic takes the form 

 (10) 

where . Similar to the uSPA statistic, we avoid estimating the full 

covariance matrix , and choose to estimate  directly based 

on  using the HAC estimator. 
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Throughout the paper we will simply use an equal weighted average with 

, for all h. Different weights would correspond to different utility 

functions of the forecaster. Alternatively, one could use ‘efficient’ weights to 

minimize ζij by setting the weights for each horizon inversely proportional to 

their variance , or more generally the inverse of an estimate of the full 

covariance matrix of . Weighting may be of particular importance in the 

scenario where one makes aggregate h-period ahead forecasts, i.e. , 

which results in clear scale differences that should be inversely weighted. 

Note that the aSPA test is simply a Diebold-Mariano test on the weighted 

average loss-series, . Moreover, the test for uSPA is in fact a special 

case of aSPA, with wh = 1 for h equal to the ‘minimum’ horizon, and zero 

otherwise. Typically, the weighted averages will converge to a standard 

normal distribution, such that standard critical values may be used. Special 

choices of weights, such as those amounting to quantiles of the distribution 

will require non-standard critical values. Moreover, critical values obtained via 

bootstrap techniques may lead to better finite sample properties in the equal-

weighted case as well, and as a result we suggest obtaining bootstrapped 

critical values regardless of the choice of weights. 

2.1.2 Bootstrap Implementation 

The minimum over multiple t-statistics will not follow a student distribution, 

and is dependent on the number of statistics H. Rather than the standard 95% 

one-sided critical value of 1.645, the appropriate critical value will be lower 

and may actually be negative for large H. As a result, depending on the 

degree of sampling variation, observing a negative statistic at any of the 

horizons may not be sufficient evidence to stop us from rejecting the null in 

favor of uSPA, and shows the need for appropriate multiple testing 

techniques. 

We obtain the distribution of the statistics under the null using bootstrap 

techniques. The chosen method needs to take into account the dependence 

across horizons and the likely serial correlation in forecast errors. Throughout 
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the paper we will use the moving block bootstrap of Künsch (1989) and Liu 

and Singh (1992). In the moving block bootstrap (MBB), a pseudo time-series 

of length T is generated by means of randomly drawn blocks of length  from 

the original data. Assume for simplicity that . Let  be i.i.d. 

random variables uniformly distributed on , and define the array 

. The pseudo time-series is therefore 

, with elements . 

By computing either of the test statistics on many MBB re-samples, we 

approximate the distribution of the original statistics under the null. Validity of 

the bootstrap for studentized statistics requires careful choice of the variance 

estimators of both the original statistic and the bootstrapped statistics. 

Regarding the original statistic, for first order validity, the variance estimator 

merely needs to be consistent, which is true for most HAC-type estimators. 

But as Götze and Künsch (1996) note, for asymptotic refinements the kernel 

weights need to be chosen more carefully. In particular, triangular weights 

should be avoided in favor of rectangular or quadratic weights, which 

motivates our choice of the Quadratic Spectral kernel. 

For the bootstrapped statistics, the appropriate estimator differs from both the 

HAC-estimator above and the closed-form expression, which is known for the 

moving block bootstrap (Künsch, 1989). Instead, Götze and Künsch (1996) 

and Gonçalves and White (2004), demonstrate the validity of the block 

bootstrap for studentized statistics using the ‘natural’ estimator, which uses 

the fact that each block’s means are conditionally i.i.d.: 

 (11) 

where . 

Based on the above, we summarize how to obtain the critical values of the 

test for uSPA and aSPA under the null: 
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Algorithm 1 (Multi-Horizon SPA Bootstrap). 

For : 

1. Re-sample  using a moving block bootstrap with block length , to 

obtain , with elements . 

2. uSPA: Compute  for each h. 

Compute  using (11) applied to  for each h. 

Compute the uSPA statistic:  

aSPA: Compute . 

Compute  using (11) applied to . 

Compute the aSPA statistic:  

Finally, obtain an appropriate critical value  as the α-quantile of the 

bootstrap distribution of either of the two . Rejection occurs if 

. Alternatively, a p-value may be computed as 

. 

The following Theorem provides the foundation for the validity of the bootstrap 

algorithm for both the test for uSPA and aSPA. 

Theorem 1 (Bootstrap Validity Studentized Statistics). Let 

 and  analogously defined using  and . Let 

Assumption 1 hold, and moreover, assume that  and 

, then 

 (12) 
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where Pb denotes the bootstrap probability measure. 

The proof is provided in Appendix A and mostly follows from the results of 

Gonçalves and White (2004), who prove validity of the MBB for Wald statistics 

under similar assumptions. From Theorem 1 we obtain the following Corollary. 

Corollary 1. Let the Assumptions from Theorem 1 hold. Then, 

 (13) 

and 

 (14) 

The Corollary demonstrates that the bootstrap may be used to obtain the 

critical values for both the uSPA and aSPA, test statistics. It follows directly 

from Theorem 1 and the continuous mapping theorem combined with the fact 

that the average and minimum are smooth functions of the elements of the 

vector . Weighted averages are obviously smooth functions and, as shown 

in Proposition 2.2 of White (2000), the minimum of a vector of differences is a 

continuous function of the elements of the vector. 

2.2 The Multi-Horizon Model Confidence Set 

The two tests introduced in the previous section can only be used for a 

pairwise comparison of models. In this section we extend this to a general M-

dimensional set of models , by adapting the Model Confidence Set (MCS) 

approach of Hansen, Lunde, and Nason (2011) to allow for joint multi-horizon 

testing. They propose an algorithm that selects a subset of  that contains 

the set of best models with a given probability, which we denote . The 

standard MCS can broadly be interpreted as a sequential Diebold-Mariano 

test, and as such, it readily extends to the case with either the  or  

statistics. 
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For the multi-horizon MCS, analogous to Hansen et al. (2011), we define the 

MCS as the subset of models for which we find no statistical support to 

differentiate them: 

 (15) 

 (16) 

The associated null hypotheses are 

 (17) 

 (18) 

with . 

The multi-horizon model confidence set, based on either uSPA or aSPA, is 

obtained sequentially as 

1. Set . 

2. Test  using an equivalence test at level . 

3. If  is not rejected, define . 

If the null is rejected, use the elimination rule to remove a model from , 

and go back to Step 2. 

The equivalence test has to be adapted to the multi-horizon setting. Hansen 

et al. (2011) propose the maximum of all pairwise  statistics to test for 

equivalence, but since the critical value of the  statistics are not 

necessarily the same for all pairs {i, j}, we cannot simply consider the 

maximum of the . Due to the fact that the critical values can be both 

positive and negative, we instead consider the maximum of the centered 

statistics . To obtain the distribution of this maximum 

statistic, we require the use of a double bootstrap. The computational cost is 

therefore relatively high, but the multi-horizon MCS remains feasible as it 
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merely involves bootstrapping studentized means, without re-estimation of 

models. 

Algorithm 2 (Multi-Horizon MCS Bootstrap). 

1. For each pair , compute the statistic . Apply Algorithm 1, 

with a common set of indices, τt, for all pairs, to obtain estimates of the 

associated critical values . 

2. Define , i.e. the test statistic furthest 

from its critical value. 

3. For each of the bootstrap samples , obtained in Step 1: 

a. For each pair , apply Algorithm 1 to the bootstrap 

sample  directly, to obtain . 

b. Compute the bootstrapped  

4. Obtain the appropriate critical value as the -quantile of the bootstrap 

distribution , or define the p-value as . 

The combination of equivalence test and elimination rule adhere to the 

definition of coherency of Hansen et al. (2011). Algorithm 2 is a standard 

application of the double bootstrap, and therefore we conjecture validity 

follows by extension of Theorem 1 and validity of the bootstrap in the original 

MCS of Hansen et al. (2011, Appendix 1.1). 

To obtain reasonable p-values we follow Hansen et al. (2011) in imposing that 

a p-value for a model can not be lower than any previously eliminated model, 

and follow the convention that the last remaining model obtains a p-value of 

one. Also, note that the level of the critical values of the pairwise tests, α, and 

the one for the MCS , may differ. In large samples, the choice of α is of little 

importance as all  are approximately normally distributed with unit 

variance. However, in small samples, the choice of α may impact the ordering 

of the different models. 

3 Simulations 
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In this section we report the results of Monte Carlo experiments to 

demonstrate appropriate size and good power of the single tests, as well as 

desirable properties of the Multi-Horizon Model Confidence Set. Throughout 

the remainder of the paper, we set the block length to , and we use B = 

999 bootstrap re-samples. All results reported in this paper are based on 

programs written in Ox version 7.0 (Doornik, 2012). Ox and Matlab code 

detailing the implementation of the various tests, simulations and empirical 

results, is available on Quaedvlieg’s website. 

3.1 Data Generating Process 

First, we describe how we generate ‘losses’ of a given model i. Our design 

closely resembles that of the simulations in Hansen et al. (2011), where 

losses are simulated directly, rather than obtained indirectly through the 

forecasting performance of various models on generated data. This allows us 

to easily increase the number of models, to control their relative performance 

directly, and to impose the notions of uniform and average SPA. However, in 

contrast to Hansen et al. (2011), who simulate one-step-ahead losses, we 

need to simulate forecast-path losses, which requires a certain dependence 

structure. We calibrate this dependence to that of the loss differential between 

an AR(1) and AR(2) when the true model is the latter. 

We consider simulation set-ups with two and ten models. For the ten-model 

setup, the average loss of each model is parametrized by an H-dimensional 

vector , which governs the loss differentials. We will consider two different 

definitions pertaining to the uSPA and aSPA below. Each model i has average 

loss equal to , with , and therefore . For the 

two-model setting we will only consider  and , such that the population 

difference between the models equals . 

The elements of , determine how loss varies across horizons. A 

misspecified model is expected to lead to greater divergence at longer 

horizons, and as such, we assume loss is increasing in horizon. We consider 
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two different definitions in order to highlight the tests for uSPA and aSPA. 

First, we set 

 (19) 

The loss differential is non-negative at all horizons, implying that the superior 

model has both uniform and average superior predictive ability. λ governs the 

size of the loss-differential, while  governs how fast the average loss 

increases as a function of horizon. When  the loss is equal at all 

horizons, while for  loss is increasing in horizon. 

Next, we set 

 (20) 

with , such that . We impose 

non-uniformity through the first horizon, to ensure that the single negative 

differential is included in all multi-horizon tests. Note that under this definition, 

the first model does have aSPA for H > 1, but no uSPA at any horizon. 

We generate the losses as follows: 

 (21) 

where  and  denotes the Hadamard product. The losses are 

serially correlated through  and correlated across horizons through . 

While for h = 1, a case can be made that forecast errors will be uncorrelated 

over time if the model is well-specified, long horizon forecasts are likely to be 

strongly autocorrelated, even for a perfectly specified model. We set the first 

order autocorrelation to , which ranges between 0 for h = 1 and 

0.87 for h = 20. 
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The forecast errors at different horizons are not independent. First, we define 

the covariance structure across horizons, at a single point in time. Since most 

models will converge to the unconditional mean when h becomes large, the 

correlations should be close to one for adjacent horizons when h is large, and 

smaller for short-horizons. We define the correlation matrix , with elements 

: 

 (22) 

Our simulations will use H = 20, so the corner points of the correlation matrix 

are  and . Next, the variance should be 

increasing in horizon. For simplicity we set it to . The variance 

plays a crucial role in the multi-horizon tests. If the variance is increasing too 

quickly, adding additional horizons may actually decrease the power of the 

test, rather than increasing it. We combine the variance and correlation to 

. 

Note that in our simulation set-up , for all models i and j and 

all horizons g and h. A positive correlation, holding individual variances fixed, 

would decrease the variance of the loss-difference and make it easier to 

differentiate models. A negative correlation would conversely increase the 

variance of the difference, but is unlikely to occur in this particular setting. The 

results below can thus be interpreted as a lower bound. 

3.2 Pairwise Tests 

In this section we investigate the properties of tests for the comparison of two 

models. The main goals of this section are to analyze the power and size of 

the newly introduced tests based on  and . We report results over 

 simulations, and vary the parameters of the DGP. We take three 

sample sizes T = 250, 500, 1000. In order to investigate the trade-off of 

adding additional horizons, we analyze the effect of the parameters that 

govern how average loss ( ) and its variance (ψ) depend on horizon h. We 

set  and . The parameter that governs the magnitude 
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of the loss differential is set to . Throughout, we consider one-

sided tests at the 5% level, i.e. we test whether model 1 outperforms model 2 

at multiple individual horizons, in uSPA, or in aSPA. We report results for 

different horizons H = 1, 5, 10 and 20. The DM test uses that specific horizon 

only, while the uniform and average SPA tests use all horizons up to and 

including H. 

We start by establishing appropriate size and good power of the three tests in 

Table 1. We vary T and λ, and keep  and  fixed at their middle 

levels. We consider both loss differentials  and , referred to as 

Uniform and Non-Uniform alternative, displayed in the top and bottom panel 

respectively. 

First consider the top panel, which is based on . When λ = 0, we are 

under the null, as the average loss of the two models is identical. We see that 

all three tests have size close to the nominal 5%, irrespective of horizon. 

When , the loss differential at each horizon is positive. For the standard 

Diebold-Mariano test, we see that power is increasing in λ, while the influence 

of the sample size T is minimal. It is evident that the horizon also plays a 

significant role in the power of the test. Given our choice of , the loss 

differential is increasing in h, which leads to higher power. On the other hand, 

the variance of the loss differential is also increasing in h, decreasing the 

ability to differentiate models. In this case, this results in the highest power at 

h = 5 for the single-horizon test, with slightly lower power for longer horizons. 

Under the alternative, in the top panel, model 1 has both uniform and average 

superior predictive ability, and as such all tests should reject. For H = 1, all 

three tests are identical, and the slight differences in rejection frequencies are 

simulation noise. For H = 5 and upwards, all tests are different. The tests for 

uSPA and aSPA use the loss-differentials of all horizons, which results in 

increasing rejection frequencies in H. In line with the results from the DM test, 

the largest increase in power is between H = 1 and H = 5. 
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Now consider the bottom panel, which is based on . Under this 

alternative, model 2 has lower loss than model 1 at h = 1, but higher loss for 

all other horizons. As a result, model 1 has average SPA for horizons h > 1, 

but never uniform SPA. 

For the Diebold-Mariano test, when h = 1, the number of rejections when λ = 0 

shows appropriate size, but when , the number of rejections of our one-

sided test appropriately converge to 0, as the second model is actually 

superior to the first. Recall that  is chosen such that over the 20 

horizons, the average  is equal to . As a result, compared to the 

top panel, for h > 1 we see that the univariate tests typically have higher 

power in the bottom panel, as the loss differential is slightly larger to 

compensate for the negative differential at h = 1. We observe similar results 

for the aSPA test, which converges to zero rejections at H = 1 when . 

For H = 5 and H = 10 it has slightly lower power than under the uniform 

alternative, as indeed the average loss differential is only equal at H = 20, at 

which point they coincide. 

The test for uSPA however shows very different results, as under this 

alternative no model has uSPA. This is clearly reflected in the rejection 

frequencies, as the results show that the test indeed does not reject the null in 

most cases. For small λ, the single negative loss differential is sometimes 

deemed within the range of random variation, and we see rejections of up to 

20% when λ = 10. However, when λ increases the test rightfully fails to reject 

in almost all iterations. 

In Table 1 we analyzed the properties of the tests keeping  and ψ fixed. 

Next, Table 2 reports on the performance of the test for uSPA, under the 

uniform alternative, whilst varying  and ψ, keeping T = 500 fixed. The aim of 

this simulation is to demonstrate that the test may not always become more 

powerful as the number of horizons increases. In particular, their properties 

depend on the degree to which the average loss differential and its variance 

evolve as a function of horizon. 
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The middle quadrant is equivalent to the set-up in Table 1, and for this table 

we mainly discuss the four extreme quadrants. When , the average 

and variance of the loss differentials are constant across horizons. Here we 

see that without exception, power is slightly increasing in h, which is due to 

the fact that our sample size increases. When  but , the average 

loss differential remains fixed, but its variance is increasing. As a result, 

adding more horizons decreases power drastically, such that the number of 

rejections at H = 20 is less then half those at H = 1. When  and ψ = 0, 

the mean loss differential is increasing, while the variance is fixed, and power 

is large. Even with λ = 5, the test using all 20 horizons rejects in over 60% of 

samples. Finally, when  and , for h > 1, the power of the test is 

only marginally increasing across horizons. As such, it presents a setting in 

which adding more or fewer horizons mainly adds in terms of interpretation 

and robustness of conclusions. 

3.3 Model Confidence Sets 

In this section, we evaluate the ability of the Multi-Horizon Model Confidence 

Set to distinguish between models. We base our conclusions on the ten-

model scenario. We use  to generate the loss differentials. Recall that 

this means that the average loss of model i equals . As such, there 

is a single superior model, and the loss differential between the first and the 

ith model increases linearly for the remaining nine models. 

As in Table 1, we investigate the effect of T and λ, and use the middle 

scenarios,  and  throughout the analysis. The effects of 

changing  and ψ on the ability of the Multi-Horizon MCS to differentiate 

models is similar to the pairwise setting. 

We summarize the Multi-Horizon MCS performance by two simple measures, 

potency and gauge. These concepts were used by Hendry and 

Doornik (2014) in the setting of model selection. The notions are similar, but 

distinct from the usual size and power. Potency is defined as the fraction of 

appropriately selected models in the MCS. For λ = 0, all models are equal, 
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and therefore defined as average fraction of models in the MCS. For , 

model 1 is the single best model, and hence the reported number is the 

fraction of times this model is in the MCS. The MCS is defined in such a way 

that the potency should, at least, equal one minus the level of the MCS, which 

we set at . Gauge is the number of inferior models wrongly included 

in the MCS. For obvious reasons, we only report the gauge for . Ideally, 

the MCS should remove the remaining nine models, and identify model 1 as 

the unique best model. Of course, potency and gauge are strongly interlinked, 

through the level of the MCS. A higher level will make the procedure more 

potent, but will worsen the gauge. 

Results are reported in Table 3. First consider λ = 0 for the various T. Recall 

that when λ = 0, all models are identical. In this case, the MCS procedure 

should not remove any model. This is a very stringent test, especially for the 

multi-horizon MCS. However, the table shows that potency is always close to 

the expected 80% for all T and H, which means that for around 80% of our 

simulations, not a single model was removed from the set. When , there 

is a single superior model, which is easier to select, and potency is close to 

100% for all combinations of T and H. 

The gauge is decreasing in all parameters H, T and λ. That is, the MCS is 

better able to remove inferior models the more horizons we consider, the 

more time-series observations we have, and the greater the loss differentials 

between the models. Note that the effect of the number of horizons is large. 

The decrease in gauge of going from H = 1 to H = 5 is of an entirely different 

magnitude than increasing the number of observations from T = 250 to T = 

1000. As such, when a model truly has multi-horizon SPA, using multiple 

horizons is a powerful, and almost always feasible, way to differentiate the 

models. 

4 Multi-Horizon Comparison of Direct and Iterated Forecasts 

In this section we revisit the results of Marcellino, Stock, and Watson (2006), 

who investigate the performance of iterated versus direct forecasts using 170 
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monthly U.S. macroeconomic time series spanning 1959 to 2002. They find 

that iterated forecasts tend to outperform direct forecasts, and the relative 

performance improves with the forecast of horizon. In their empirical analysis, 

they only consider four different horizons, h = 3, 6, 12 and 24. Based on the 

example in Figure 1, it is clear that picking just four out of all possible horizons 

may lead to unrepresentative, and potentially wrong, conclusions. Therefore, 

we test for multi-horizon superior predictive ability across horizons  

using the two tests developed in this paper. We exclude the first horizon since 

iterated and direct forecasts are equivalent for h = 1. For the sake of 

comparison, we also report the single-horizon Diebold-Mariano results. 

We use the data provided on Mark Watson’s website. The data consists of 

170 series divided up into five different categories. We apply their suggested 

data transformation to deal with the non-stationary nature of some of the 

series, such that models are estimated in levels, log-levels, differences or log-

differences. Forecasts are similarly evaluated on the transformed series. The 

number of observations per series varies between 412 and 528, with an 

average of 510 observations. For more details, we refer to Marcellino 

et al. (2006). 

We mostly follow the forecasting methodology of Marcellino et al. (2006), with 

one exception; our parameter estimates are based on a rolling window of 120 

observations, rather than an expanding window, which is required for validity 

of our tests. We perform direct and iterated AR(p) forecasts, with four different 

choices of lag orders. First, we set p equal to either 4 or 12. Second, every 

period, we choose the optimal lag-length between 1 and 12, based on either 

AIC or BIC using the estimation sample. Note that it is entirely possible that in 

any given period the lag selection based on AIC or BIC results in different lag-

lengths for the direct and iterated models. We then compare the direct and 

iterated forecasts per lag selection procedure. 

For the iterated forecasts, we estimate the parameters of the following model 

using OLS. 
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 (23) 

The iterated h-step ahead forecasts are constructed recursively as 

 (24) 

For the direct forecasts, we estimate a model on the h-step ahead 

observation, 

 (25) 

To remain strictly out-of-sample, we only use data from the 120 observations 

of our rolling window, i.e. the last observation on the left-hand side is part of 

those 120 observations. Note that this does reduce the actual number of 

observations used for parameter estimation. 

We then obtain direct h-step ahead forecasts as 

 (26) 

The forecasts are evaluated using the mean square forecasting error (MSFE) 

 (27) 

4.1 Aggregate Results 

Throughout this section we will report results of the multi-horizon tests for the 

range of maximum horizons . This should be interpreted as an 

illustration of the tests, while in practice it is recommended to choose a single 

long-term horizon H, which includes all relevant horizons h. 

We formally test for superior predictive ability using the Diebold-Mariano, 

uSPA and aSPA tests on each of the 170 series and each of the 23 horizons. 

Figure 2 summarizes the rejection frequencies for one-sided tests in either 

direction at 2.5% level. Each of the four panels corresponds to one of the lag 
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selections. The positive solid lines are the rejection frequencies in favor of 

iterated forecasts, while the negative dotted lines are the negative of the 

rejection frequencies in favor of direct forecasts. 

The results are mostly in line white those of Marcellino et al. (2006). Across 

the three tests, we find convincing evidence in favor of iterated forecasts. 

Rejection frequencies in favor of direct forecasts are typically at, or below, the 

level of the test, suggesting that iterated forecasts are no worse than direct 

forecasts. Only for lag-selection based on BIC, which tends to select the 

smallest models, we find rejection frequencies higher than the level of the 

tests for small H. Especially for the single-horizon and uSPA tests, the 

rejection frequencies in favor of direct forecasts decrease when H grows. 

Of course, none of the three tests are directly comparable, but the rejection 

frequencies at different horizons serve to highlight the merits of joint multi-

horizon tests. The Diebold-Mariano test hardly ever rejects for short horizons, 

which rises to about 30% for the two-year ahead forecast. Based on the 

AR(12) model, the number of rejections is significantly higher at about 60%. 

Importantly, the number of rejections is unstable across horizons. For 

instance, based on AR(4), looking at just horizon h = 19 we would reject for 

almost 50% of the series, while for horizon h = 20 the percentage would be 

closer to 30%. 

Naturally, we typically find fewer rejections based on the test for uSPA, 

settling at about 20% of the series for H = 24. The total amount of rejections is 

however nearly monotonically increasing in the number of horizons under 

consideration H, suggesting coherent conclusions irrespective of number of 

the actual chosen horizon. In contrast to the DM-test, the rejection rates are 

also mostly stable across the four panels. 

Of course, even if the test for uSPA fails to differentiate models, the test for 

aSPA still may, as it is the weaker hypothesis. We find that the rejection rates 

of the test for aSPA are indeed higher than those for uSPA, but also 

consistently higher than those for the single-horizon Diebold-Mariano tests. 
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Similar to the test for uSPA, the rejection frequencies are almost 

monotonically increasing in the horizon H. We find that across the 23 

horizons, iterated forecasts provide average superior predictive ability relative 

to direct forecasts for between 50% and 70% of the series. The contrast with 

the DM test is easy to understand. Mechanically, a small loss differential at a 

single horizon results in a failure to reject for the univariate test, while the 

multi-horizon test may find that the evidence at shorter horizons is sufficient to 

compensate. 

4.2 Results for Individual Series 

To better illustrate the relative merits of the various hypotheses and tests, we 

zoom in on a number of individual series in Figure 3. Each column 

corresponds to one of the three tests, Diebold-Mariano, uSPA and aSPA. The 

crosses denote the test-statistics at, or up to, horizon h. The lines provide the 

one-sided critical value at 5%. For the DM-test this is based on the Gaussian 

quantiles, while for the multi-horizon tests we report  based on 

Bootstrap Algorithm 1. Each row corresponds to a different time-series, 

chosen to highlight various facets of the tests. 

We observe a number of different patterns. For instance, IVSRRQ has a 

positive Diebold-Mariano test-statistic at each horizons, except h = 24. The 

single-horizon test is only significant at a small number of horizons and 

insignificant at all others. The test for aSPA however, aggregates the 

information over multiple horizons, which are all positive, and finds sufficient 

evidence at all horizons to conclude that the iterated forecasts outperform the 

direct forecasts. The statistics are actually increasing in horizon, due to 

reduced variance ζij. The single negative loss differential at h = 24 clearly 

does not provide sufficient evidence to reject aSPA. Moreover, it does not 

even provide sufficient evidence to reject uSPA of the iterated forecasts. As 

the bootstrapped critical values clearly illustrate, when we consider more than 

a single horizon, we might reasonably expect to observe a negative 

differential, even if the true loss differential  is positive for all h. As a result, 

we conclude that iterated forecasts provide both uSPA and aSPA, despite 
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only finding significant evidence of superior predictive ability at four horizons 

using the Diebold-Mariano test. 

FYGM6 shows a similar picture, but with more consistent relative 

performance. The iterated forecasts perform better at every horizon, and the 

single-horizon test find significant evidence for most horizons. Again, we find 

evidence for aSPA at all horizons, although this time the test statistics hardly 

increase for longer horizons H. More interesting is that we are now in a 

situation where limited variability in loss-differentials results in a case where 

the critical value of uSPA remains positive, even at H = 24. 

The third series, LHNAG, has no clear winner at short horizons, but iterated 

forecasts appear to dominate direct forecasts at longer horizons. The single-

horizon statistic picks up on this, with significant differentials at thirteen 

consecutive horizons starting at h = 10. The test for aSPA combines the joint 

evidence and rejects the null from . The test for uSPA is severely 

impacted by the negative statistic at h = 2. However, this negative statistic 

was small, and is not surpassed at higher horizons. As a result, starting from 

H = 11 and up, we conclude that the negative short-horizon statistic was likely 

sampling error, and find support for uSPA of iterated forecasts. 

The final example, FYAAAC is a series where the direct forecasts appear to 

mostly outperform the iterated ones. All forecast differentials are negative but 

small. Their level results in a situation in which the univariate and average 

statistic are insignificant at all horizons, but h = 24. However, its consistently 

negative values results in the fact that the uniform statistic does reject at all 

horizons . Hence, we find evidence for uSPA, but not for aSPA until we 

consider all 24 horizons. While the definition of uSPA implies aSPA in any 

given sample, the tests may of course not reach this conclusion. A result like 

this occurs rarely though. Across the 170 series we perform both these tests, 

we only find evidence for uSPA and not for aSPA a negligible three times, 

while the reverse is pervasive throughout. 
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Overall, Figure 3 makes it clear that comparing forecast path accuracy by 

looking at individual horizons is often insufficient to understand whether a 

model has superior predictive ability or not. The joint performance over 

multiple horizons provides a clearer and more coherent picture then the 

single-horizon statistics. 

5 Conclusion 

We introduce the notion of multi-horizon forecast comparison. We propose to 

jointly evaluate multiple horizons when testing for superior predictive ability, 

rather than considering multiple horizons individually. We argue that this has 

three advantages. First, multi-horizon superior predictive ability provides a 

more complete definition of a model’s superior performance. Second, by using 

multiple horizons we can construct a powerful test, allowing us to disentangle 

models more easily. Finally, it guards us against the implicit multiple testing 

issue arising from picking and choosing (potentially multiple) individual 

horizons. 

We propose two bootstrap-based tests that evaluate different hypotheses of 

multi-horizon forecasting performance. The first tests for uniform superior 

predictive ability, which is defined as superior forecasts at each individual 

horizon. The second tests the weaker hypothesis that the (weighted) average 

loss across horizons is lower. Both tests reduce to the standard Diebold-

Mariano test when only considering a single horizon. We demonstrate that the 

ability to differentiate models empirically increases with the number of 

horizons under consideration. While forecast error variance increases in 

horizon, model mis-specification also tends to increase the average forecast 

loss as a function of horizon, which is the main driver of the increased power. 

The basic tests allow the statistical comparison of two models. In addition, in 

order to compare a larger number of models directly, we extend the Model 

Confidence Set methodology to allow for multi-horizon comparison. The 

procedure allows us to find the set of models that contains the model with 

multi-horizon superior predictive ability with a certain confidence level. Both 
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the pairwise tests and the Model Confidence Set are shown to be properly 

sized and powerful in simulations. 

The pairwise comparison is illustrated by means of a comparison between 

direct and iterated forecasts of macro-economic variables, based on the data 

in Marcellino et al. (2006). We find that despite conflicting evidence when 

looking at individual horizons, we are often able to find statistical evidence for 

either average SPA or uniform SPA, or both, when considering multiple 

horizons jointly. This suggests that the incoherence is typically the result of 

the implicit multiple-testing issue of picking and choosing a few horizons. 
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A Bootstrap Validity 

Proof Theorem 1: 

Under either null hypothesis , where , and 

 denotes convergence in distribution. By standard arguments, the 

Quadratic Spectral HAC estimator (Andrews, 1991) is consistent for  and 

therefore, . 
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Next, we show that the bootstrap consistently estimates the distribution of 

. Under the stated assumptions, it follows from Theorem 2.2 of 

Gonçalves and White (2002) that 

 (28) 

where Pb denotes the bootstrap distribution. While this demonstrates that the 

bootstrap distribution can be used to approximate the distribution of 

, it does not immediately justify the validity of the bootstrap for the 

studentized statistics, just valid bootstrap confidence intervals. Theorem 3.1 of 

Gonçalves and White (2004) applied to studentized statistics shows that 

under the null, the studentized statistic is approximated by the bootstrap; 

 (29) 

provided that for any . This condition is established 

for the estimator in Equation  under Assumptions 1 and 2 of this paper for 

the the moving block bootstrap in Lemma B.1 of Gonçalves and White (2004). 

Fig. 1 Diebold-Mariano Tests at different Horizons for Earnings of Production 

Workers. 

Note: This Figure presents the forecast comparison of direct and iterated 

forecasts of earnings of production workers (LEHM). It plots the Diebold-

Mariano test statistics as a function of forecast horizon ( ), for the 

loss differential of direct minus iterated forecasts. Lag lengths of the 

autoregressive models are selected based on BIC. 
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Fig. 2 Rejection Frequencies equal forecasting performance across horizons. 

Note: This figure plots fraction of rejections out of 170 series, as a function of 

horizon. The tests in either direction are performed at the 2.5% significance 

level. Positive, solid lines plot the rejections in favor of Iterated forecasts, 

while the negative, dotted lines plot rejections in favor of Direct forecasts. The 

different plots depict the fractions for different lag-selection methods. 
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Fig. 3 Results for Individual Series 

Note: This figure plots test statistics with critical values for the univariate, 

uniform and average SPA tests as a function of horizon. A positive value of 

the statistic indicates iterated forecasts have lower loss than direct forecasts. 

The x-axis contains the evaluation horizon ranging from 2 to 24 steps. Lag 

lengths of the autoregressive models are selected based on BIC. We highlight 

four series from the Marcellino et al. (2006) dataset. IVSRRQ is log-difference 

of the Inventory over Sales Ratio of retail trade. FYGM6 is the log of the 6 

month US treasury bill interest rate. LHNAG is the log-difference of non-

agricultural employed civilian labor force. FYAAC is the log of bond yield on 

AAA securities. Acc
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Table 1 Univariate Simulation Results: Size and Power 

  Diebold-Mariano Test Test for uSPA Test for aSPA 

 H 1 5 10 20 1 5 10 20 1 5 10 20 

T λ Uniform Alternative 

250 0 0.054 0.052 0.053 0.054 0.053 0.054 0.054 0.054 0.053 0.050 0.051 0.052 

 5 0.118 0.199 0.185 0.164 0.115 0.198 0.221 0.239 0.113 0.217 0.251 0.258 

 10 0.203 0.478 0.440 0.356 0.199 0.425 0.504 0.548 0.199 0.526 0.612 0.616 

 20 0.478 0.933 0.900 0.804 0.468 0.808 0.890 0.929 0.467 0.961 0.984 0.988 

 40 0.934 1.000 1.000 1.000 0.930 0.994 0.998 0.999 0.929 1.000 1.000 1.000 

500 0 0.051 0.051 0.053 0.051 0.049 0.052 0.052 0.052 0.050 0.051 0.050 0.052 

 5 0.110 0.203 0.180 0.162 0.109 0.191 0.221 0.241 0.109 0.224 0.254 0.259 

 10 0.197 0.486 0.441 0.355 0.195 0.422 0.500 0.546 0.195 0.535 0.617 0.619 

 20 0.478 0.941 0.909 0.804 0.476 0.814 0.891 0.933 0.474 0.966 0.989 0.989 

 40 0.936 1.000 1.000 1.000 0.934 0.994 0.997 0.999 0.933 1.000 1.000 1.000 
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  Diebold-Mariano Test Test for uSPA Test for aSPA 

1000 0 0.052 0.056 0.049 0.051 0.051 0.055 0.051 0.054 0.051 0.053 0.054 0.054 

 5 0.105 0.189 0.189 0.157 0.104 0.191 0.215 0.227 0.106 0.217 0.250 0.253 

 10 0.195 0.467 0.444 0.347 0.196 0.421 0.499 0.543 0.197 0.532 0.613 0.618 

 20 0.471 0.932 0.906 0.802 0.469 0.808 0.893 0.931 0.468 0.966 0.987 0.988 

 40 0.933 1.000 1.000 0.999 0.934 0.994 0.998 1.000 0.933 1.000 1.000 1.000 

  Non-Uniform Alternative 

250 0 0.056 0.056 0.054 0.055 0.056 0.054 0.058 0.055 0.055 0.055 0.053 0.056 

 5 0.023 0.213 0.199 0.167 0.022 0.099 0.134 0.166 0.022 0.183 0.243 0.254 

 10 0.009 0.500 0.463 0.363 0.009 0.073 0.133 0.200 0.009 0.426 0.581 0.616 

 20 0.001 0.943 0.918 0.819 0.001 0.013 0.031 0.064 0.001 0.890 0.978 0.985 

 40 0.000 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 1.000 1.000 1.000 

500 0 0.053 0.052 0.053 0.052 0.052 0.052 0.054 0.053 0.053 0.052 0.052 0.052 

 5 0.022 0.210 0.204 0.164 0.022 0.099 0.138 0.166 0.022 0.183 0.242 0.254 

 10 0.009 0.487 0.450 0.366 0.010 0.069 0.127 0.183 0.009 0.419 0.577 0.614 

 20 0.001 0.947 0.918 0.828 0.001 0.013 0.030 0.066 0.001 0.901 0.981 0.989 

 40 0.000 1.000 1.000 1.000 0.000 0.000 0.000 0.001 0.000 1.000 1.000 1.000 

1000 0 0.049 0.051 0.053 0.053 0.048 0.053 0.054 0.056 0.050 0.051 0.052 0.054 

 5 0.022 0.211 0.198 0.159 0.021 0.095 0.134 0.159 0.021 0.184 0.242 0.253 

 10 0.008 0.494 0.459 0.354 0.008 0.071 0.130 0.193 0.008 0.429 0.585 0.618 

 20 0.001 0.942 0.922 0.820 0.001 0.015 0.036 0.071 0.001 0.895 0.981 0.988 

 40 0.000 1.000 1.000 1.000 0.000 0.000 0.001 0.001 0.000 1.000 1.000 1.000 

Note: This table provides rejection frequencies over  simulations 

according to the DGP outlined in Section 3.1. The parameters  and ψ are 

fixed at 1 and 0.125 respectively, while the other parameters vary as 

indicated. In the panel denoted Uniform Alternative, the losses are generated 

according to , while the Non-Uniform Alternative panel results are 

generated using . 
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Table 2 Univariate Simulation Results: Varying loss properties at different 

horizons 

  ψ = 0   

 H 1 5 10 20 1 5 10 20 1 5 10 20 

 λ Uniform Alternative 

 0 0.054 0.054 0.053 0.052 0.056 0.053 0.055 0.054 0.047 0.048 0.049 0.049 

 5 0.109 0.123 0.128 0.138 0.103 0.103 0.092 0.086 0.107 0.101 0.085 0.082 

 10 0.200 0.238 0.252 0.274 0.197 0.183 0.162 0.149 0.198 0.156 0.132 0.114 

 20 0.470 0.567 0.616 0.671 0.476 0.425 0.355 0.300 0.473 0.336 0.256 0.198 

 40 0.930 0.971 0.982 0.991 0.926 0.869 0.756 0.618 0.932 0.738 0.551 0.400 

 0 0.49 0.052 0.052 0.052 0.053 0.050 0.052 0.052 0.053 0.053 0.052 0.049 

 5 0.101 0.233 0.338 0.475 0.109 0.191 0.221 0.241 0.107 0.164 0.166 0.155 

 10 0.199 0.501 0.655 0.780 0.195 0.422 0.500 0.546 0.204 0.359 0.374 0.359 

 20 0.472 0.820 0.900 0.950 0.476 0.814 0.891 0.933 0.473 0.772 0.805 0.774 

 40 0.932 0.994 0.998 0.999 0.934 0.994 0.997 0.999 0.926 0.992 0.996 0.996 

 0 0.048 0.051 0.050 0.050 0.050 0.050 0.052 0.057 0.050 0.049 0.049 0.047 

 5 0.103 0.330 0.480 0.627 0.105 0.274 0.355 0.413 0.109 0.231 0.261 0.273 

 10 0.201 0.539 0.689 0.808 0.195 0.537 0.677 0.775 0.203 0.505 0.592 0.624 

 20 0.464 0.816 0.903 0.951 0.471 0.817 0.904 0.953 0.481 0.815 0.899 0.941 

 40 0.928 0.995 0.998 0.999 0.929 0.993 0.997 0.999 0.936 0.994 0.998 0.999 

Note: This table provides rejection frequencies for the test for uniform superior 

predictive ability over  simulations according to the DGP outlined in 

Section 3.1. The losses are generated according to , and the sample 

size T = 500 for all results. 

Table 3 Multivariate Simulation Results: Potency and Gauge 

  Potency Gauge 
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  Potency Gauge 

 H 1 5 10 20 1 5 10 20 

T λ         

250 0 0.787 0.793 0.797 0.807     

 5 0.966 0.939 0.922 0.916 4.481 1.941 1.448 1.166 

 10 0.937 0.970 0.979 0.973 1.554 0.379 0.214 0.120 

 20 0.950 0.998 1.000 1.000 0.165 0.012 0.002 0.000 

 40 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 

500 0 0.781 0.790 0.792 0.797     

 5 0.960 0.946 0.929 0.921 4.441 2.038 1.494 1.238 

 10 0.934 0.959 0.967 0.981 1.533 0.412 0.208 0.080 

 20 0.953 1.000 1.000 1.000 0.183 0.008 0.002 0.000 

 40 0.998 1.000 1.000 1.000 0.002 0.000 0.000 0.000 

1000 0 0.787 0.799 0.806 0.802     

 5 0.953 0.938 0.926 0.923 4.346 1.952 1.468 1.166 

 10 0.909 0.955 0.975 0.979 1.472 0.447 0.195 0.114 

 20 0.960 0.998 0.999 1.000 0.166 0.010 0.003 0.000 

 40 0.999 1.000 1.000 1.000 0.001 0.000 0.000 0.000 

Note: This table provides the potency and gauge of the multi-horizon MCS 

over  simulations according to the DGP outlined in Section 3.1. The 

potency is defined as the fraction of correct superior models in the MCS. The 

gauge is defined as the number of models incorrectly included in the MCS. 

The parameters  and ψ are fixed at 1 and 0.125 respectively, while the other 

parameters vary as indicated. The losses are generated based on the uniform 

alternative . 
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