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Mesenchymal stem cells

Mesenchymal stem cells, alternatively named Mesenchymal stromal cells (MSC), 

are a heterogeneous population of adult stem cells that are virtually present 

throughout the whole body. MSC were first described by Alexander Friedenstein 

as a rare population of colony forming plastic-adherent cells within the bone 

marrow [1, 2]. Subsequent reports showed that these cells can also be obtained 

from adipose tissue, umbilical cord, dermis, spleen, muscle, dental pulp and 

other tissues [3-9]. The lack of a specific protein marker for MSC encouraged the 

International society for cellular therapy (ISCT) to set minimal criteria for the 

definition of MSC. These criteria state that MSC must express CD105, CD73 and 

CD90 markers, and lack expression of hematopoietic and endothelial markers 

such as CD45, CD34, CD31, CD14, CD11b and CD19 [10]. Moreover, MSC must 

have the capacity to differentiate into cells from the mesodermal lineages, such as 

osteoblasts, adipocytes and chondrocytes (figure 1). While MSC have been shown 

to also differentiate into other cell types, such as myocytes, tenocytes and neuron 

like cells, these properties are not considered requirements to define cells as MSC 

[11-15]. 

Figure 1. Multilineage differentiation capacity of Mesenchymal stem cells.  
MSC are adult stem cells that originate from Mesodermal stem cells. MSC have the capacity 
to differentiate into cells from the mesodermal lineage
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Endogenous MSC

In the body, MSC are components of the stem cell niche [16]. In the occurrence 

of mechanical, chemical or disease-mediated tissue injury, endogenous signaling 

factors are released to initiate tissue- and injury-specific immune responses. Upon 

these signals, MSC are believed to relocate through the bloodstream to sites of 

injury to repair perturbed tissue as well as immunomodulate the surrounding 

environment. However, the migration of endogenous MSC is controversial [17]. 

Solid evidence for the migration of MSC via the bloodstream is sparse. One may 

wonder whether the recruitment of MSC from distant sites is required for the 

control of immune responses and initiation of repair in tissues as MSC are found 

locally in all tissues, from skin to brain [18]. In case of injury, local tissue-resident 

MSC need to travel only short distances to get to sites of injury and thereby cut the 

blood stream route short.

Advantages of MSC for therapeutic applications 

The fact that MSC are able to differentiate into cells of the mesenchymal lineages 

in culture makes these cells the subject of investigation for potential use in 

regenerative medicine and tissue engineering. Originally it was anticipated that 

MSC could be used for replacement of dysfunctional cells via their capacity to 

differentiate into tissue cells. Over the last decades, it has become clear that MSC 

possess suppressive capabilities that could potentially be used to control several 

subsets of immune cells. For many immunological diseases, patients require 

lifelong treatment with immunosuppressive medication. Despite the improved 

quality of life of these patients on immunosuppressive medication, these drugs 

can lead to serious unwanted side effects, such as hypertension, development 

of diabetes, nephrotoxicity, infections and malignancies. Some of these side 

effects could be overcome by a shift from the use of generalized, nonspecific 

immunosuppressive drugs which inhibit both effector as well as regulatory 

immune cells, towards a more refined immune modulation to attain the optimal 

balance between effector and regulatory immune mechanisms. This led to an 

interest for the use of regulatory cells as cell-based therapies [19]. One of these 

candidates are MSC as they are relatively easy to isolate and expand in culture and 

have prospect as a therapeutic tool to promote immune tolerance. 

1
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Applications of MSC in regenerative medicine

The potential clinical applications of MSC for treatment of injured tissue have been 

abundantly tested. For example, directly injected MSC can promote tissue repair 

and have proven beneficial to treat heart damage and bone defects [20-23]. MSC 

are also studied to bioengineer functional human organs ex vivo. Macchiarini et 

al. successfully replaced the damaged bronchus of a patient by a bioengineered 

airway grew from autologous MSC and airway epithelial cells [24]. Novel 3D 

printing technology offers the possibility to generate custom-shaped MSC loaded 

hydrogels which can be transplanted at sites of injury. [25]. Although MSC have 

therapeutic potential for the promotion of tissue generation, more clinical trials 

are required to investigate the effectiveness, safety and side effects for the use of 

MSC in regenerative medicine.

Applications of MSC as immunomodulatory cell therapy

White blood cells or leukocytes are involved in protecting the body against 

infections and clean-up of aged or injured cells. Aberrant reactions of these 

immune cells can lead to autoimmune and inflammatory diseases. The 

immunomodulatory effect of MSC on immune cells in vitro is well established. 

MSC can suppress T cell proliferation induced by mitogens and alloantigens [26]. 

Along with this MSC can also alter T cell functions, such as decreasing IFNγ, IL-2, 

and TNFα production and increase of IL-4 secretion [27]. On the other hand, MSC 

promote the generation of CD4+ CD25+ CD127- Foxp3+ regulatory T cells (Tregs) 

[28, 29]. When co-cultured with B cells, MSC abrogate plasmablast formation and 

induce regulatory B cells (Bregs) [30]. Moreover, MSC can inhibit the maturation, 

activation and antigen presentation of Dendritic cells (DCs) and can induce DC 

into a distinct regulatory phenotype [31-33]. Thus, MSC are capable of both 

suppressing innate and adaptive immune responses and enhancing regulatory 

immune cells with tolerogenic properties in vitro. 

Next to their immunomodulatory capacity, MSC are regarded as low immunogenic. 

This property could prove beneficial as it argues that MSC of allogenic origin could 

be used as MSC therapy without risking anti-HLA sensitization. Low expression of 

major histocompatibility (MHC) I and lack of MHC II and co-stimulatory molecules 

such as CD40, CD80 (B7-1), and CD86 (B7-2) leads to low immunogenicity, which 



13

would prevent anti-MSC immune responses in recipients [34]. However, culture 

medium and plastic adherence have a major impact on the phenotype of MSC. 

The size of MSC dramatically increases in culture and the expression of adhesion 

molecules is strongly up regulated. We and others have demonstrated that 

activated NK cells can lyse culture-expanded MSC not only of allogeneic but also 

autologous origin [35, 36], suggesting that culture induces changes in MSC that 

makes them targets for NK cells. Therefore, further elucidation of the fate of MSC 

after infusion is needed to provide safe MSC therapy. 

Clinical MSC immunotherapy

In 2004, MSC were first used as cellular immunomodulatory therapy in a graft 

versus-host disease (GVHD) patient [37]. Promising results of this study led to the 

initiation of several other studies in GVHD patients worldwide. Similarly, in patients 

with immunological diseases such as systemic lupus erythematosus (SLE) and 

Crohn’s disease, MSC therapy showed to be feasible [38-40]. In addition, clinical 

studies with MSC therapy have been performed in patients suffering from aplastic 

anemia (AA), Type 1 diabetes mellitus, rheumatoid arthritis (RA), multiple sclerosis 

(MS) and Amyotrophic lateral sclerosis (ALS). Based on these many clinical trials, 

MSC based therapy appears safe [41]. However, the efficacy of MSC therapy is less 

clear as these studies mostly consist of low patient numbers, lack proper control 

groups and differ in MSC preparation, origin and timing and route of infusion. 

MSC are short-lived after administration

The biodistribution of MSC is likely to depend on their route of administration. 

Most studies use the intravenous (IV) route and it has become clear that a large 

proportion of MSC that are injected via this route are trapped in the micro capillary 

network of the lungs upon first passage [42-45]. After 24 hours, the majority of 

MSC has disappeared and a small fraction is relocated to other organs, in particular 

the liver and also the spleen [42, 46]. MSC have also been reported to reappear at 

injured tissue sites [46]. It is however questionable whether MSC that leave the 

lungs are still viable. The accumulation of MSC in the lungs after IV infusion, their 

short survival time and limited distribution to other sites has led to the hypothesis 

that MSC rapidly pass on their effect to recipient cells, which may subsequently 

1
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mediate the immunomodulatory and regenerative effect induced by MSC 

administration. As the majority of infused MSC are around for only a short time, 

one might wonder how MSC modulate the host immune system during their short 

lifespan. By improving our understanding on the mechanistic properties of MSC 

immunomodulation, better tailored MSC therapy can be provided to patients. 

Aim and Outline of this thesis

The aim of this thesis is to elucidate the mechanisms of action of MSC 

immunotherapy. Understanding how MSC based therapy works allows the design 

of effective MSC therapy.

In chapter 2 the efficacy of MSC therapy is evaluated in a systematic review of 

62 clinical studies which used MSC with the purpose of immunomodulation. 

In this chapter both clinical and immunological parameters that are associated 

with an immunomodulatory effect of MSC is examined to determine whether 

there is evidence that clinical MSC treatment leads to an immunomodulatory 

response and whether this is associated with an amelioration of immune disease 

severity. Chapter 3 focusses on the effect of an inflammatory environment on 

MSC as MSC infused in patients might encounter an inflammatory environment 

that could influence the immunomodulatory effect of MSC. In this study we show 

that MSC affected B cells differently under inflammatory conditions. Contrary to 

preclinical studies, MSC are often cryopreserved before their use in clinical trials. 

In chapter 4 we examine phenotypical differences between cryopreserved MSC 

and MSC from continuous culture to determine the effects of cryopreservation on 

MSC. Further, the effect of the lung microvasculature milieu on MSC properties is 

analyzed. Intravenously infused MSC do not pass the the lung barrier and have a 

half-life between 12 and 24 hours post infusion. This raises the question whether 

after IV infusion MSC live long enough to become activated by inflammatory 

conditions and exert their therapeutic effects via the secretome. In chapter 5 

we investigate whether infused MSC contribute to modulation of inflammatory 

responses by cytokine secretion and active cellular interactions or whether they 

merely trigger responses through recognition by host cells. Thereto inactivated 

MSC, that lost the capacity to respond to inflammatory stimulation and lost the 

ability to secrete factors are generated. Upon infusion, MSC rapidly disappear 

from the body. In chapter 6 the mechanism involved in the clearance of MSC after 

infusion and the effects on the immune system are investigated in more detail. 
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In chapter 7 we generate membrane particles from MSC and research the effect 

of these membrane particles on immune cells. In chapter 8 the results obtained 

in the context of this thesis are summarized and appraised with respect to the 

elucidation of MSC cell-based therapy. 
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Abstract

Mesenchymal stem cells (MSC) are widely studied for their immunomodulatory 

properties. Data from in vitro and pre-clinical models demonstrate that MSC 

suppress activated immune cells and ameliorate the severity of experimental 

immune disease. In complex human studies, the immunomodulatory efficacy of 

MSC therapy is not well established. We conducted a systematic review of clinical 

studies which used MSC with the purpose of immunomodulation and included 

at least 10 patients to investigate the efficacy of MSC therapy. Sixty-two studies 

comprising 10 different immune disorders were included in the analysis, of which 

18 studies represented controlled trials. Although several of the studies reported 

an amelioration of disease severity, other studies failed to observe a beneficial 

effect of MSC. The low number of randomized controlled trials, small number of 

studies per disease category and limited immunological readout parameters made 

it difficult to draw a definitive conclusion on the efficacy of MSC immune therapy.

Introduction

Mesenchymal stem cells (MSC) are characterized by their fibroblastic morphology 

and multilineage differentiation capacity [1]. They possess, in addition, potent 

immunosuppressive properties. MSC inhibit the proliferation and activity of 

T cells [2], modulate the differentiation of B cells [3] and induce regulatory 

macrophages in vitro [4]. MSC administration has been shown to be effective 

in ameliorating immune disease in animal models for among others colitis [5], 

sepsis [6], experimental autoimmune encephalitis [7] and prolong the survival of 

organ transplants [8]. These results have led to a vast interest in the use of MSC for 

clinical immunomodulatory therapy in a variety of immune disorders and organ 

transplantation [9,10]. 

In 2004, MSC were first used as an experimental immunomodulatory therapy in 

a graft-versus-host disease (GVHD) patient [11]. The results of this case report 

study were encouraging and led to the initiation of several other studies in 

GVHD patients worldwide. Supported by data from preclinical models, studies 

examining the effect of MSC in a range of immune disorders in man have been set 

up in recent years. Data from these trials and from trials aimed at exploiting the 

regenerative properties of MSC demonstrated that administration of MSC in over a 

1000 patients was not associated with adverse effects, indicating that MSC therapy 

is safe [12].
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While the safety of MSC therapy is now well established, the efficacy of MSC 

immunotherapy in man is under debate. There are a number of reasons for this. For 

instance, it has become clear that the in vivo immunomodulatory effects of MSC 

are not as straight forward as those seen in vitro [13]. Furthermore, a discrepancy 

may be expected between the immunomodulatory effects of MSC in experimental 

animal models and in human as inbreeding and pathogen-deprived conditions 

have a profound effect on the immune system. On top of that, large human studies 

are expensive and time consuming to set up and therefore clinical MSC studies 

are often limited to small numbers of patients, which makes it difficult to draw 

conclusions from these studies. Finally, immune therapy with MSC is examined in 

a wide variety of immune disorders that are caused by different immune cells and 

have different disease readouts.

This systematic review provides an overview of the clinical trials that have been 

performed with MSC in man with the purpose of immune modulation. Both clinical 

and immunological parameters that are associated with an immunomodulatory 

effect of MSC were analyzed with the aim to determine whether there is evidence 

that MSC treatment leads to an immunomodulatory response in man and whether 

this is associated with an amelioration of immune disease severity.

Methods

Eligibility criteria
All uncontrolled, non-randomized controlled and randomized controlled clinical 

trials examining MSC therapy in human patients of all ages with immunological 

disease were included in this review. Case reports and studies with less than  

10 patients were excluded. Trials examining the regenerative capacity of MSC or 

trials using ex vivo differentiated MSC were also excluded.

Literature search
In collaboration with an information specialist from the medical library of the 

Erasmus MC, we performed a systemic literature search in Ovid MEDLINE, Embase.

com, web-of science and the Cochrane library. Additional articles were retrieved 

from PubMed and Google Scholar. The final search date was 3 October 2014. 

Our search strategy included MSC and synonyms used for MSC in literature, 

along with immunological diseases or immunosuppression and related terms. 

When available thesaurus terms were used, MeSH terms in Medline and Emtree 

2



terms in Embase. We limited the search results to clinical or epidemiological 

studies and studies in humans, and excluded conference proceedings. 

[supplementary material can be found online at www.informahealthcare.com/

suppl/10.15861744666X.2015.1029458_Sup pl] for the complete search strategies 

for all databases.)

Study selection
All duplicates were removed from the search results. Two reviewers (FL, SFHW) 

independently screened the remaining titles and abstracts using standardized 

forms. Any discrepancies were resolved by discussion with a third reviewer (MJH).

Figure 1. Flow diagram of the inclusion and exclusion of articles for this review.
MSC: Mesenchymal stem cell.

24



Assessment of risk of bias
The risk of biases of the included randomized controlled trials was assessed 

according to the Cochrane Collaboration methods [14].

Data extraction & analysis
Studies were grouped based on disease type. The type of study, patient numbers, 

length of follow-up after MSC transplantation and MSC characteristics were 

extracted from the publications. Both clinical outcomes and immunological 

parameters measured after MSC transplantation were extracted to judge the 

immunomodulatory efficacy of MSC. A narrative synthesis was performed due 

to the heterogeneity of the studies. The included studies differed in follow-up 

time, patient population, number and source of cells used, injection techniques 

and outcome measurements. Many of the studies lacked control groups and 

randomization and blinding was performed in a minority of the studies.

Results

Study characteristics
In the initial online search 2714 studies were retrieved. Duplicates were removed 

and 1663 studies were reviewed for eligibility criteria based on title and abstract. 

Of these studies, 1513 concerned an unrelated topic and were therefore excluded. 

Of the 150 remaining studies, 90 articles were excluded from the subsequent 

review process for various reasons (Figure 1). This resulted in 60 studies that met 

the inclusion criteria. Two studies were additionally added that did not come up 

in the search string but met all the criteria. Of the studies, 44 represented non-

controlled trials whereas 18 concerned controlled trials (Table 1). Four of these 

trials made use of historic control groups [15–18], the other 14 studies were 

randomized controlled trials [19–23]. Two randomized controlled studies were 

double blinded [19,20]. The other 12 were neither blinded for the participants 

nor for the physicians. Twelve of the studies were multicenter studies [24–35]. 

The number of MSC-treated patients ranged from 6 to 105 (mean 27 ± 21). Six 

studies had a pediatric population [16,18,26,30,36,37] and 18 studies included a 

mixed adult and pediatric population [15,20,24,25,27–29,32,38–47]. The follow-up 

after MSC transplantation ranged from 0.6 to 89 months (Table 2). The majority of 

the studies used bone marrow (BM)-derived MSC, 12 studies used umbilical cord-

derived MSC and one study used adipose tissue-derived MSC. In 13 studies, the 

2

25



26

MSC were of autologous origin, in 9 studies the MSC were derived from the same 

donor as the hematopoietic or organ transplant and in the remaining 40 studies 

MSC were derived from a third party or off-the-shelf HLA matched or mismatched 

donor. The dose of MSC ranged from 0.03 to 10.1x106 cells/kg body weight and 

the frequency of infusions varied from 1- to 19-times. In most of the studies, MSC 

were infused intravenously (iv.). Other used routes of administration were intra-

arterial [39,48–50], intraportal [38], intra-BM [32], intrasplenic [51,52], epidural [53], 

intrathecal [54–56] and intrafistular [47]. 

Quality assessment
Of the 62 trials included in this study, 44 were non-controlled trials in which the 

effect of MSC was compared before and after treatment. Eighteen were controlled 

trials, of which four compared the outcome of the MSC treatment group with 

historic controls. The 14 randomized controlled trials were assessed for risk of bias 

using the Cochrane Collaboration’s tool for assessing risk of bias [9]. Twelve of the 

studies scored a ‘high’ in the risk of bias assessment for at least one of the criteria 

(Table 3). For one of the remaining two studies, risk of bias assessment was not 

possible for most of the criteria due to insufficient information in the publication. 

Overall, there is a strong risk of bias for the studies included in this systematic 

review.
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Clinical outcomes of the included studies
All studies were grouped based on disease and treatment outcome was extracted 

and described in table 4. The majority of the included studies investigated the effect 

of MSC treatment on established GVHD or on the prevention of the development 

of GVHD (n = 19 and 13, respectively). The studies on established GVHD were 

sub grouped into acute GVHD (n = 10), chronic GVHD (n = 4) or combined acute 

and chronic GVHD (n = 5). Four of the studies were randomized controlled trials 

[21,45,46,57], whereas the remainder compared clinical parameters pre- and post-

infusion. All except for one study used the iv. route of administration of MSC. In 

one study MSC were injected in the BM [32]. The main readout parameter for 

the outcome of the GVHD studies was defined as response to treatment, where 

a complete response (CR) is described as a complete resolution of all signs of 

GVHD and partial response (PR) as a reduction of GVHD to a less severe grading. 

The mean CR and PR in acute GVHD patients after MSC treatment was 51%  

(± 21%) and 15% (± 9%), respectively. The single randomized controlled trial  

in acute GVHD showed no significant difference in CR and PR rates between 

the MSC and placebo groups (Table 4). In chronic GVHD, two studies reported a 

response rate of on average 71% and two studies showed CR and PR in on average 

17 and 57% of the patients, but in none of the cases–control groups was included. 

The mixed acute and chronic GVHD trials showed a CR of 32% (± 17%) and PR of 

49% (± 16%). 

Source
Random 
sequence 

generation

Allocation 
concealment

Blinding of 
personnel

Blinding of 
outcome 

assessment

Incomplete 
outcome data

Selective 
reporting Ref.

Kuzmina et al. (2012) U U H H L L [57]
Liu et al. (2011) U U H H L L [45]
Ning et al. (2008) H U H H H U [46]
Jitschin et al. (2013) U U H H L L [21]
Tan et al. (2012) L L H H L L [63]
Peng et al. (2013) U U H H L L [49]
Zhang et al. (2012) U U H H L L [22]
El-Ansary et al. (2012) U U U U L U [58]
Xu et al. (2014) L L H H H U [50]
Shi et al. (2012) U U H H L L [23]
Peng et al. (2011) H H H H U U [48]
Hu et al. (2013) L L L L L L [20]
Weiss et al. (2013) L L L L H L [19]
Ringdén et al. (2006) H H H H L U [42]
H: High; L: Low; U: Unclear

TABLE 3. RISK OF BIAS ASSESSMENT OF RANDOMIZED CONTROLLED TRIALS ACCORDING TO THE 
COCHRANE COLLABORATION’S TOOL FOR ASSESSING RISK OF BIAS
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The studies that investigated the prevention of GVHD by MSC determined the 

outcome of treatment by the incidence of the development of acute or chronic 

GVHD. The controlled studies within this group all show less incidence of GVHD 

in the MSC group compared with the control group [16–18,46,57]. One controlled 

study failed to show a reduction in the incidence of acute GVHD in the MSC versus 

control group (51.8 vs 38.9%), but was able to show a lower incidence of chronic 

GVHD (51.4 vs 74.1%) [45]. In summary, the results of the studies on GVHD hint 

toward a clinical immunomodulatory effect of MSC, but the lack of randomized 

controlled groups in the majority of the studies make it difficult to draw decisive 

conclusions at this point. 

In seven studies, the effect of MSC on liver cirrhosis (n = 4) or liver failure (n = 3) 

was examined. These studies included two randomized [22,50] and three non-

randomized controlled trials [23,48,58]. These studies differed in follow-up time 

and route of MSC administration (Table 2) and are therefore difficult to compare. 

All studies except for one used the Model for End-stage Liver Disease (MELD) score 

as a readout for liver function. The MELD score was significantly lower in MSC-

treated groups compared with the control groups or before treatment (Table 4). 

Although there is a considerable risk for bias of the included studies, there is a 

careful indication that MSC therapy may be beneficial to improve the MELD score 

of liver disease patients. However, larger randomized controlled trials are needed 

to confirm the preliminary data. 

The seven studies on systemic lupus erythematosus (SLE) were all non-controlled 

trials. The studies were similar in follow-up time and the route and dose of MSC 

administration. All studies except for one used the Systemic Lupus Erythematosus 

Disease Activity Index score to determine the clinical improvement. In all studies, 

the Systemic Lupus Erythematosus Disease Activity Index score improved 

significantly after MSC treatment. The lack of control groups make these outcomes 

difficult to interpret. 

Five studies examined the effect of MSC on multiple sclerosis (MS) and two on 

amyotrophic lateral sclerosis (ALS). None of the studies was controlled. The effect 

of MSC was determined by the Expanded Disability Status Scale (EDSS) score for 

MS patients and by the ALS Functional Rating Scale and MRI assessment for ALS 

patients and compared between pre- and post-infusion. In two MS studies, MSC 

were infused iv., which resulted in a lower EDSS score [59,60]. In the studies where 

MSC were administered via the intrathecal route, no differences or an increase in 

EDSS score was measured [55,56]. MSC induced no differences in ALS Functional 

Rating Scale or MRI assessment in ALS patients [53,54]. 

2
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Disease Comparison Main readout parameter Outcome Ref.
Aplastic Anemia
Xiao et al. (2013) MSC infusion/historical control Response to treatment (complete and partial)

MSC: 33.3%; control: 5.56% 
[15]

COPD
Weiss et al. (2013) MSC infusion/ placebo infusion improvement in pumonary function (FEV1 , 

FVC, FEV1/FVC)
No statistically significant differences [19]

Crohn's disease
Forbes et al. (2014) pre/post infusion disease activity (CDAI score); response to 

treatment ↓ post MSC; clinical response: 80%
[35]

Mayer et al. (2013) pre/post infusion disease activity (CDAI score); IBD 
questionnaire

↓ post MSC (low dose group); ↑ IBD 
questionnaire score

[61]

Ciccocioppo et al. (2011) pre/post infusion disease activity (CDAI score; PDAI score) ↑ post MSC; ↓ post MSC [47]
Type 1 Diabetes mellitus
Hu et al. (2013) MSC infusion/ placebo infusion serum C-peptide; exogenous insulin 

requirement 
↑ in MSC group; ↓ in MSC group [20]

Vanikar et al. (2010) pre/post infusion serum C-peptide; exogenous insulin 
requirement 

↑ post MSC; ↓ post MSC [62]

GVHD
acute
Kurtzberg et al. (2014) pre/post infusion 

clinical response (responders/ no responders)
57.5% response [36]

Yin et al. (2014) pre/post infusion Response to treatment (complete, partial) CR: 50%; PR: 20% [67]
Calkoen et al. (2013) pre/post infusion Response to treatment (complete, partial) CR: 50%; PR: 27% [37]
Jitschin et al. (2013) MSC infusion/ placebo infusion Response to treatment (complete, partial) ↑ in MSC group: CR: 66,7%; PR: 16.7% 

vs. Placebo: CR: 60%; PR: 20%
[21]

Muroi et al. (2013) pre/post infusion Response to treatment (complete, partial) CR: 57.1%; PR: 0% [29]
Resnick et al. (2013) pre/post infusion Response to treatment (complete) 34% [39]
Prasad et al. (2011) pre/post infusion Response to treatment (complete, partial) CR: 58.3%; PR: 17% [30]
Kebriaei et al. (2009) pre/post infusion Response to treatment (complete, partial) CR: 77.4%; PR: 16.1% [31]
Von Bonin et al. (2009) pre/post infusion Response to treatment (complete, partial) CR: 8%; PR: 8%; [68]
Le Blanc et al. (2008) pre/post infusion Response to treatment (complete, partial) CR: 54.5%; PR: 16.4% [24]
chronic
Peng et al. (2014) pre/post infusion Response to treatment 87% [40]
Peng et al. (2014) pre/post infusion Response to treatment (complete, partial) CR: 13%; PR: 61%; [69]
Weng et al. (2012) pre/post infusion Response to treatment 55% [41]
Weng et al. (2010) pre/post infusion Response to treatment (complete, partial) CR: 21%; PR: 52,6% [70]
Acute and chronic
Introna et al (2014) pre/post infusion Response to treatment (complete, partial) CR: 27.5%; PR: 40% [27]
Herrmann et al. (2012) pre/post infusion Response to treatment (complete, partial) CR: 47.4%; PR: 31.6% [71]
Pérez-Simon et al. (2011) pre/post infusion Response to treatment (complete, partial) CR: 11%; PR: 50% [72]
Lucchini et al. (2010) pre/post infusion Response to treatment (complete, partial) CR: 23.8%; PR: 47.6% [26]
Ringdén et al. (2006) MSC infusion/ standard therapy Response to treatment (complete, partial) CR: 50%; PR: 75% [42]
profylaxis for GVHD development 
Liu et al. (2014) pre/post infusion Response to treatment (complete, partial) CR: 25%; PR: 60% [28]
Wu et al. (2014) pre/post infusion Development of acute or chronic GVHD aGVHD: 57.1%; cGVHD: 50% [43]
Xiong et al. (2014) pre/post infusion Response to treatment (complete, partial) CR: 77.3%; PR: 13.6% [25]
Wu et al. (2013) pre/post infusion Development of acute or chronic GVHD aGVHD: 42%; cGVHD: 37.7% [44]
Kuzmina et al. (2012) MSC infusion/ standard therapy Development of acute or chronic GVHD MSC group: aGVHD: 5.3%; cGVHD: 

27,8%
control group: aGVHD: 33.3%; cGVHD: 
35.3% 

[57]

Bernardo et al. (2011) MSC infusion/historical control Development of acute or chronic GVHD MSC group: aGVHD: 31%; cGVHD: 0%
control group: aGVHD: 41%; cGVHD: 
10% 

[16]

Liu et al. (2011) MSC infusion/ standard therapy Development of acute or chronic GVHD MSC group: aGVHD: 51.8%; cGVHD: 
51.4% 
control group: aGVHD: 38.9%; cGVHD: 
74.1%

[45]

ALS: Amyotrophic lateral sclerosis; ALSFRS: Amyotrophic Lateral Sclerosis Functional Rating Scale; CDAI: Crohn’s Disease Activity Index; COPD: Chronic 
obstructive pulmonary disease; CR: compete responders; EDSS: Expanded disability status scale; FEV: Forced expiratory volume; FVC: Forced vital capacity; GVHD: 
graft versus host disease; IBD: Inflammatory Bowel Disease; MELD: Model for End-stage Liver Disease; MS: Multiple sclerosis; PDAI: perianal disease activity index; 
PR: partial responders; SLE: Systemic lupus erythematosus; SLEDAI: Systemic Lupus Erythematosus Disease Activity Index; SSDAI: Sjögren Syndrome Disease 
Activity Index; Tx: Transplantation.

TABLE 4. THERAPEUTIC EFFECTS OF MSC THERAPY
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Disease Comparison Main readout parameter Outcome Ref.
GVHD
acute
Baron et al. (2010) MSC infusion/historical control Development of acute GVHD MSC group: 55%; control group: 75% [17]
Zhang et al. (2010) pre/post infusion Development of acute or chronic GVHD aGVHD : 16.7%; cGVHD : 16.7% [73]
Guo et al. (2009) pre/post infusion Development of acute or chronic GVHD aGVHD : 45.5%; cGVHD : 31% [32]
Ning et al. (2008) MSC infusion/ standard therapy Development of acute or chronic GVHD MSC group: aGVHD: 11.1%; cGVHD: 

14.3%
control group: aGVHD: 53,3%; cGVHD: 
28,6%

[46]

Ball et al. (2007) MSC infusion/historical control Development of acute or chronic GVHD MSC group: aGVHD: 14%; cGVHD: 7%
control group:  aGVHD: 30%; cGVHD: 
13%

[18]

Lazarus et al. (2005) pre/post infusion Development of acute or chronic GVHD aGVHD : 28%; cGVHD : 61% [53]
Liver diseases
Cirrhosis
Xu et al. (2014) MSC infusion/ standard therapy MELD score ↓ in MSC group [50]
Amin et al. (2013) pre/post infusion serum albumin and bilirubin

albumin: ↑ post MSC; bilirubin ↓post MSC
[51]

El-Ansary et al. (2012) MSC infusion/ standard therapy MELD score ↓ in MSC group [58]
Zhang et al. (2012) MSC infusion/ placebo infusion MELD Na score ↓ in MSC group [22]
Liver failure
Shi et al. (2012) MSC infusion/ placebo infusion MELD score ↓ in MSC group [23]
Peng et al. (2011) MSC infusion/ standard therapy MELD score ↓ in MSC group [48]
El-Ansary et al. (2010) pre/post infusion MELD score ↓ post MSC [52]
MS and ALS
Karussis et al. (2010) pre/post infusion EDSS score (MS patients) and ALSFRS 

scores (ALS patients)
EDSS score ↓ post MSC; ALSFRS score: 
no significant differences

[54]

ALS
Mazzini et al. (2010) pre/post infusion MRI assessments no changes pre and post infusion [53]
MS
Bonab et al. (2012) pre/post infusion EDSS score no significant  differences pre and post 

infusion
[55]

Connick et al. (2012) pre/post infusion EDSS score ↓ post MSC [59]
Yamout et al. (2010) pre/post infusion EDSS score ↓ post MSC [60]
Bonab et al. (2007) pre/post infusion EDSS score ↑ post MSC [56]
Kidney Tx
Peng et al. (2013) MSC infusion/ standard therapy biopsy proven acute rejection MSC group: 0%; control group: 16.7% [49]
Tan et al. (2012) MSC infusion/ standard therapy

biopsy proven acute rejection MSC group: 16.2%; control group: 25.5%
[63]

Sjögren syndrome
Xu et al. (2012) pre/post infusion SSDAI score ↓ post MSC [74]
SLE 
Gu et al. (2014) pre/post infusion SLEDAI score ↓ post MSC [75]
Wang et al. (2014) pre/post infusion SLEDAI score ↓ post MSC [34]
Wang et al. (2013) pre/post infusion SLEDAI score ↓ post MSC [76]
El-Ansary et al. (2012) pre/post infusion Serum creatinine and haemoglobin levels Creatinine: ↓ post MSC; Hb: no significant 

differences
[77]

Wang et al. (2012) pre/post infusion SLEDAI score ↓ post MSC [78]
Liang et al. (2010) pre/post infusion SLEDAI score ↓ post MSC [64]
Sun et al. (2010) pre/post infusion SLEDAI score ↓ post MSC [65]
ALS: Amyotrophic lateral sclerosis; ALSFRS: Amyotrophic Lateral Sclerosis Functional Rating Scale; CDAI: Crohn’s Disease Activity Index; COPD: Chronic 
obstructive pulmonary disease; CR: compete responders; EDSS: Expanded disability status scale; FEV: Forced expiratory volume; FVC: Forced vital capacity; GVHD: 
graft versus host disease; IBD: Inflammatory Bowel Disease; MELD: Model for End-stage Liver Disease; MS: Multiple sclerosis; PDAI: perianal disease activity index; 
PR: partial responders; SLE: Systemic lupus erythematosus; SLEDAI: Systemic Lupus Erythematosus Disease Activity Index; SSDAI: Sjögren Syndrome Disease 
Activity Index; Tx: Transplantation.

TABLE 4. THERAPEUTIC EFFECTS OF MSC THERAPY

2
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A single study was included in which refractory aplastic anemia patients were 

treated with MSC [15]. This study showed an improvement in blood count recovery 

after MSC treatment compared with the historical control group (Table 4). 

Weiss et al. [19] conducted a randomized double-blinded controlled trial in chronic 

obstructive pulmonary disease (COPD) and found no significant differences in 

pulmonary function between the MSC and control group. In this study, a large 

number of patients in the MSC group terminated the study prematurely (37 vs 

16% in the control group), which could possibly lead to attrition bias. Nevertheless, 

this well-executed study does not support the idea that MSC have a clinical 

immunomodulatory effect in COPD. 

Three non-controlled trials conducted on therapy refractory luminal Crohn’s 

disease patients are included in this review [35,47,61]. These studies showed 

improvement in disease activity score. 

Two studies on type 1 diabetes mellitus were included, one of which was a 

randomized controlled double-blind trial [20]. This study showed a significant 

increase in serum C-peptide levels, a measure for insulin production, in the 

treatment group. The dose of exogenous insulin was abated in MSC-treated 

patients. Vanikar and collaborators [62] showed in a non-controlled trial an increase 

in serum C-peptide levels and a decrease in exogenous insulin requirement post-

MSC infusion. 

Two trials examining the effect of MSC treatment in kidney transplant (Kidney Tx) 

recipients were included in this review [49,63]. Both studies showed less biopsy-

proven acute rejection after MSC therapy compared with the conventional therapy 

control groups. In the study by Tan et al. [63], MSC therapy was compared with IL-2 

receptor blocking therapy in the control group. 

One study on Sjögren syndrome was included in this review [64]. This non-

controlled study showed an improved Sjögren Syndrome Disease Activity Index 

score post-MSC infusion.

Immunological outcomes of the included studies
Of the 62 included studies, 16 studies measured immunological parameters in 

blood of patients treated with MSC. These immunological parameters are grouped 

in Table 5. 
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Immune cell subset analysis
The percentage of Tregs in patient blood was measured in 10 studies. Jitschin et 

al. and Xu et al. [21,50] found a significant increase in Treg percentages compared 

with the placebo or conventional therapy control group, respectively. Interestingly, 

both studies found a higher percentage of Tregs in the treatment group up until  

6 months after MSC infusion. Of note, Jitschin et al. also measured the percentages 

of anti-inflammatory IL-10 producing type 1 regulatory cells but no large 

differences were found between the treatment and control group. Six studies 

investigated the Treg percentages pre- and post-MSC infusion. Xiao et al. and Guo 

et al. [15,32] found no significant differences in Treg percentages at any time point 

after MSC treatment. In contrast, four studies found a significant increase in Treg 

percentages post-MSC infusion [47,54,65,66]. Xu et al. [50] measured a significant 

decrease in the percentage of Th17 cells after MSC treatment. In contrast, in 

the study by Jitschin et al. [21], Th17 cell numbers were indifferent between 

the treatment and placebo groups. Guo et al. And Weng et al. [32,41] showed a 

significant increase in CD8+ T-cell numbers post-MSC infusion. However, Peng et 

al. [49] found no significant differences in CD8+ T cells between MSC and standard 

treatment groups, whereas they observed an increase in the number of B cells  

in the MSC-treated patients. In addition, another study showed that regulatory 

CD5+ B cells and IL-10 producing regulatory CD5+ cells were significantly higher 

at 3 months post-MSC [40].

Serum cytokine levels
In eight studies, levels of various cytokines were measured in the blood of MSC-

treated patients. In the study by Peng et al. [49], percentages cytokine producing 

cells were determined by intracellular staining and no differences between MSC-

treated patients and the control group were found. Anti-inflammatory IL-10 levels 

were found to be reduced in a study comparing chronic GVHD patients before MSC 

infusion with patients responding to MSC post-infusion [41]. A study comparing 

SLE patients pre- and post-MSC infusion did not show a significant difference in 

IL-10 levels [66]. Levels of TGF-β were increased in liver cirrhosis patients treated 

with MSC compared with patients receiving standard therapy and in SLE patients 

post-MSC treatment [50,66]. IL-2 was increased in the MSC group compared with 

placebo control group and in responders post-infusion compared with chronic 

2
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GVHD patients pre-MSC infusion [21,41]. TNF-α and IFN-γ levels were measured 

in four studies. Weng et al. [41] showed an increase in IFN-γ in responders to MSC 

treatment. In contrast, Lucchini et al. [26] showed a decrease in IFN-γ and TNF-α 

following MSC treatment. Decreased TNF-α levels after MSC treatment were 

confirmed by Xu et al. [50]. Sun et al. [66] demonstrated no significant difference 

in IFN-γ levels post-treatment. IL-4 was measured in two studies and was found to 

be decreased post-MSC infusion in both studies [41,66]. Xu et al. [50] measured 

the levels of IL-6 and IL-17 in MSC-treated and conventional therapy-treated liver 

cirrhosis patients and found a decrease of both cytokines in the MSC-treated 

patients. Although these results indicate that MSC infusion leads to immunological 

changes, the precise response to MSC treatment remains obscured. The variation 

in study setup, administered cell dose, immunosuppressive co-medication and 

follow-up time is too large to draw balanced conclusions on the immunological 

impact of MSC treatment.

Parameters Disease + study Comparison Time of measurement Outcome Ref.
Anti inflammatory immune cell subsets

aplastic anemia
Regulatory T cells Xiao et al. (2013) pre/post infusion 0.5, 1, 3, 6 and 12 months No significant differences [14]

Crohn's disease
Ciccocioppo et al. (2011) pre/post infusion 0 and 12 months mucosal ↑ post MSC (p= <.0001); 

circulating  ↑ post MSC (p= <.001)
[47]

acute GVHD
Yin et al. (2014) responders/ non responders 1, 4, 7, 14, 21 and 28 days No significant differences [64]
Jitschin et al. (2013) MSC infusion/placebo 30, 90 and 180 days ↑ in MSC group (p= .003 at d30; 

p=.037 at d90; n.s. at d180)
chronic GVHD
Weng et al. (2012) pre/ responders post infusion 3 months No significant differences [40]

profylaxis for GVHD 
development
Guo et al. (2009) pre/post infusion 1, 3, 6, 12 and 18 months No significant differences [31]
Liver cirrhosis
Xu et al. (2014) MSC infusion/standard 

therapy
2, 4, 12 and 24 weeks ↑ in MSC group (p=<.05 at d14; 

p=<.05 at d28; p=<.05 at d84; n.s. at 
d168)

[48]

MS and ALS
Karussis et al. (2010) pre/post infusion 4 and 24 hours ↑ post MSC (p= <.05) [52]
SLE
Liang et al. (2010) pre/post infusion 1 week, 3 and 6 months ↑ post MSC (p= <.05) [61]
Sun et al. (2010) pre/post infusion 3 and 6 months ↑ post MSC (p= <.05) [62]
acute GVHD

IL-10+ Tr1 cells Jitschin et al. (2013) MSC infusion/placebo 30, 90 and 180 days similiar in both groups (n.s. at d30; 
p=.036 at d90 ↑; n.s. at d180)

[20]

chronic GVHD
Regulatory CD5+ B 
cells

Peng et al. (2014) pre/post infusion 3 months ↑ post MSC (p= <.05) [39]

IL-10 producing 
regulatory CD5+ B 
cells

Peng et al. (2014) pre/post infusion 3 months ↑ post MSC (p= <.01) [39]

TABLE 5. IMMUNOLOGICAL EFFECTS OF MSC THERAPY

ALS: Amyotrophic lateral sclerosis; GVHD: graft versus host disease; IL: interleukin; MS: Multiple sclerosis; NK: Natural killer; SLE: Systemic lupus 
erythematosus; SS: Systemic Sclerosis; Th: T helper; Tr1: Type 1 regulatory; Tx: transplantation.
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Parameters Disease + study Comparison Time of measurement Outcome Ref.
Immune cell subsets

acute GVHD
Th17 cells Jitschin et al. (2013) MSC infusion/placebo 30, 90 and 180 days similar in both groups (p= .032 at d30 

↓; n.s. at d90; n.s. at d180)
[20]

Liver cirrhosis
Xu et al. (2014) MSC infusion/standard 

therapy
2, 4, 12 and 24 weeks ↓ in MSC group (n.s. at d14; p=<.05 at 

d28; p=<.05 at d84; n.s. at d168)
[48]

MS and ALS
CD40+, CD83+, 
CD86+ and HLA-
DR+ myeloid 
dendritic cells

Karussis et al. (2010) pre/post infusion  (24hrs) 4 and 24 hours ↓ post MSC (p= <.05) [52]

chronic GVHD
CD8+ CD28- T cells Weng et al. (2012) pre/ responders post infusion 3 months ↑ post MSC (p= .008) [40]

profylaxis for GVHD 
development

CD8+ T cells, NK 
cells and NKT cells

Guo et al. (2009) pre/post infusion 1, 3, 6, 12 and 18 months ↑ post MSC (p= not mentioned) [31]

CD4+ T cells and 
CD3+CD19+ cells

Guo et al. (2009) 1, 3, 6, 12 and 18 months No significant differences [31]

T cells and CD4+ T 
cells

Liu et al. (2014) pre/post infusion 56 days ↑ post MSC (p= .015 and p=.012) [27]

MS
CD3, CD4, CD8, 
CD19, and CD56 
subsets

Connick et al. (2012) pre/post infusion 1, 2, 3 and 4 weeks No significant differences [57]

Kindey Tx
T cells, CD4+ and 
CD8+ T cells and NK 
cells 

Peng et al. (2013) MSC infusion/standard 
therapy

0, 3, 6 and 12 months No significant differences between 
groups 

[47]

B cells and CD27+ 
memory B cells

Peng et al. (2013) MSC infusion/standard 
therapy

0, 3, 6 and 12 months B cells: ↑ in MSC group at d90 
(p= <.05); memory B cells n.s

[47]

Sjögren syndrome
SS-related auto-
antibodies

Xu et al. (2012) pre/post infusion ↓ post MSC [71]

Cytokine levels
Crohn's disease

IL-2, IL-4, IL-5, IL-6, 
IL-8, IL-10, IL-
12p70, IL-13, IFNγ, 
TNFα 

Ciccocioppo et al. (2011) pre/post infusion 0, 1,2 and 12 months No significant differences [47]

Acute GVHD
TNFR1, Elafin, 
IL2RA, CK18, IL-8, 
MIG, IP10, and 
Reg3α

Yin et al. (2014) responders/ non responders 1, 4, 7, 14, 21 and 28 days ↓ in responders (p<.05) [64]

IL-2 Jitschin et al. (2013) MSC infusion/placebo 30, 90 and 180 days ↑ in MSC group (p= <.05 at d30; 
p=<.01 at d90; p= <.05 at d180)

[20]

Chronic GVHD
IL-2, IL-4, IL-10, 
IFNγ

Weng et al. (2012) pre/ responders post infusion 3 months IL-2: ↑ post MSC (p= .001); IFNγ↑ 
post MSC (p= .013); IL-10: ↓ post 
MSC (p= .004); IL-4: ↓ post MSC (p= 
.04)

[40]

Acute and chronic GVHD

TNFα and IFNγ Lucchini et al. (2010) pre/post infusion 24 hrs ↓ post MSC [25]
SDF-1α, TPO, and IL-
11

Liu et al. (2011) pre/post infusion 8, 16 and 28 days SDF-1α: n.s; TPO and IL-11 ↑ post 
MSC (p= <.05)

[44]

Liver cirrhosis
TGFβ, IL-6, IL-17 
and TNFα 

Xu et al. (2014) MSC infusion/standard 
therapy

1, 2, 4, 8, 12 and 24 weeks TGFβ ↑ in MSC group (d7, d14 and 
d28 p=<.05); IL-6, IL-17 and TNFα ↓ 
in MSC group (p=<.05)

[48]

Kidney Tx
Intracellular staining 
of TNFα, IL-4, IFNy 
and IL-10

Peng et al. (2013) MSC infusion/standard 
therapy

0, 3, 6 and 12 months No significant differences between 
groups 

[47]

SLE
TGFβ, IL-4, IFNy and 
IL-10

Sun et al. (2010) pre/post infusion 3 and 6 months TGFβ ↑ post MSC (p=<.05 at d90; n.s. 
at d180); IL-4 ↓ post MSC 
(p= <.05); IFNy and IL-10 n.s.

[62]

TABLE 5. IMMUNOLOGICAL EFFECTS OF MSC THERAPY

ALS: Amyotrophic lateral sclerosis; GVHD: graft versus host disease; IL: interleukin; MS: Multiple sclerosis; NK: Natural killer; SLE: Systemic lupus 
erythematosus; SS: Systemic Sclerosis; Th: T helper; Tr1: Type 1 regulatory; Tx: transplantation.
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Discussion

In the present systematic review, we aimed to determine whether there is evidence 

for efficacy of MSC immune therapy for the treatment of immunological diseases 

in human. In addition, the included manuscripts were screened for measurements 

of immunological parameters that would support the clinical effect of MSC on 

immunological disease outcome. Sixty-two studies met the inclusion criteria. 

Several of these studies were set up as safety studies in the first place with 

immunomodulatory efficacy as a secondary objective. Only 18 of the studies 

included control groups, and in four of them controls were historic. The lack of 

control groups in the majority of the studies made it difficult to draw decisive 

conclusions on the outcome of the studies as there is no correction for placebo 

effects. This systematic review is, therefore, limited by the lack of randomized 

controlled trials with large patients numbers. Another aim of the review was to 

determine whether there are immunological disorders in which MSC therapy is 

effective, and disorders in which this is not the case. For many disorders, there 

were however few studies included, which increases the risk of facing a publication 

bias. For instance, the results of a Phase III trial in GVHD that failed to demonstrate 

a beneficial effect of MSC are not available in the public domain [67] and a 

Phase III trial in Crohn’s disease was put on hold when the placebo effect turned 

out to be higher than expected. It seems clear that there is an underreporting 

of clinical trials with neutral/negative outcome in peer-reviewed journals [68]. 

In addition, there were differences between the small number of studies within 

the same disease category when looking at the number of cells administered, the 

route of administration, immunosuppressive co-medication and follow-up time, 

which further split up the studies. Seventeen studies described measurements 

of immunological parameters in blood of patients after MSC treatment. The main 

reason for measuring these parameters was to find a biomarker for the efficacy 

of MSC therapy. Outcomes of different cell and cytokine levels were inconsistent 

between studies, mainly because the studies differed excessively in study design, 

patient population and outcome parameters. The result of this systematic 

review is that there are indications that MSC therapy is capable of modulating 

the immune system in GVHD, liver disease, Crohn’s disease, diabetes mellitus 

and kidney transplantation, and that there are weaker indications for aplastic 

anemia, Sjögren syndrome and SLE. There is so far no convincing evidence for an 

immunomodulatory effect of MSC in COPD, ALS and MS. However, for none of the 

disease categories a decisive conclusion can be drawn. Larger studies are needed 

to study the effect of MSC in more controlled manners.
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The immunosuppressive effect of MSC is well studied in in vitro cultures and 

experimental animal models and thus, multiple clinical studies on MSC therapy 

have been initiated in recent years. Whereas it has become clear that MSC therapy 

is safe, the efficacy of the therapy is more obscure. The majority of the trials that 

have been performed on MSC therapy lacked sufficient sample size or the studies 

were not randomized, making it difficult to determine if there is a positive effect 

of MSC immune therapy. Whereas some of the controlled trials included in this 

review showed a positive effect of MSC treatment compared with the control 

group [20,50,63], other randomized studies did not show amelioration of disease 

symptoms after treatment with MSC therapy [19]. These results underline that 

it is still not known if MSC therapy is efficient and that MSC might be beneficial 

for some immunological diseases but not for all immunological diseases. The 

small amount of evidence for a clinical immunomodulatory effect of MSC that 

is available today suggests that the outcomes of future controlled studies can 

confirm as well as disapprove the effect of MSC in any of the analyzed disease 

categories. There is, however, an encouraging prospect: several larger placebo-

controlled trials are currently ongoing and reports can be expected in the 

coming years (e.g., clinicaltrials.gov registered randomized placebo-controlled 

trials on ALS patients [69,70], heart failure patients [71,72], type 1 diabetes 

mellitus patients [73] and MS patients [74] are currently recruiting). With this large 

number of clinical trial reports forecasted to be published in the years to come, 

a systematic review performed in a few years from today is likely to be able to 

generate more conclusive results. The results of these randomized trials will help 

to establish whether MSC have a clinically relevant immunomodulatory effect and 

for which disorders this can be exploited most efficiently. Moreover, if the right 

immunological parameters are measured in the patients, these studies might give 

more insight in the immunological mechanism of action of MSC therapy.
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Abstract

The immunomodulatory capacity of mesenchymal stem or stromal cells (MSC) 

makes them a promising tool for treatment of immune disease and organ 

transplantation. The effects of MSC on B cells are characterized by an abrogation 

of plasmablast formation and induction of regulatory B cells (Bregs). It is, however, 

unknown how MSC interact with B cells under inflammatory conditions. In this 

study, adipose tissue-derived MSC were pretreated with 50 ng/ml IFN-γ for 96 h 

(MSC–IFN-γ) to simulate inflammatory conditions. Mature B cells were obtained 

from spleens by CD43− selection. B cells were co-cultured with MSC and 

stimulated with anti-IgM, anti-CD40, and IL-2; and after 7 days, B cell proliferation, 

phenotype, Immunoglobulin-G (IgG), and IL-10 production were analyzed. MSC 

did not inhibit B cell proliferation but increased the percentage of CD38high 

CD24high B cells (Bregs) and IL-10 production, while MSC–IFN-γ significantly 

reduced B cell proliferation and inhibited IgG production by B cells in a more 

potent fashion but did not induce Bregs or IL-10 production. Both MSC and 

MSC–IFN-γ required proximity to target cells and being metabolically active to 

exert their effects. Indoleamine 2,3 dioxygenase expression was highly induced 

in MSC–IFN-γ and was responsible of the anti-proliferative and Breg reduction 

since addition of tryptophan (TRP) restored MSC properties. Immunological 

conditions dictate the effect of MSC on B cell function. Under immunological 

quiescent conditions, MSC stimulate Breg induction; whereas, under inflammatory 

conditions, MSC inhibit B cell proliferation and maturation through depletion of 

TRP. This knowledge is useful for customizing MSC therapy for specific purposes by 

appropriate pretreatment of MSC. 

Introduction

B cells contribute to immunological diseases in various ways by production of 

auto-antibodies, presentation of auto-antigen, and secretion of inflammatory 

cytokines. In the context of post solid organ transplantation, B cells mediate 

humoral rejection by the production of donor-specific human leukocyte antigen 

(HLA) antibodies (DSAs) and provide co-stimulatory signals to T cells [1, 2]. On 

the other hand, a population of regulatory B cells (Bregs) has been described 

that can regulate immune responses mainly via the secretion of IL-10 [3, 4]. 

Bregs have been shown to be involved in suppressing autoimmune reactions as 
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well as in maintaining transplant tolerance [5, 6]. Current treatments for B cell-

mediated disease are mainly based on global B cell depletion, thereby eliminating 

pathogenic B cells as well as Breg subsets. A more refined modulation of B cell 

activity could prove beneficial for patient treatment. Mesenchymal stem or stromal 

cells have potent immunomodulatory properties and target the proliferation and 

differentiation of a variety of immune cells [7]. The effect of MSC on T cells has 

been extensively studied but also regulation of natural killer cells [8], macrophages 

[9], dendritic cells [10], and more recently B cells by MSC has drawn attention. 

Previously, we have shown that MSC can abrogate plasmablast formation and 

induce IL-10+ and CD19+ CD38high CD24high B cells [11], which are the two 

main signatures to define Bregs [12]. However, it appears that the nature of the 

immunosuppressive and anti-proliferative effects of MSC on lymphocytes is 

dependent on the inflammatory microenvironment [13–16]. In particular, IFN-γ 

has a prominent role in potentiating the anti-proliferative capacity of MSC via 

the induction of indoleamine 2,3-dioxygenase (IDO) activity [17] and contact 

dependent mechanisms of action [18, 19]. Priming of MSC with inflammatory 

factors is likely to occur in vivo as MSC-treated patients often suffer from acute 

or chronic inflammatory diseases. MSC infused in patients might encounter an 

inflammatory environment that could influence the immunomodulatory effect 

of MSC. We previously showed that B cell proliferation is increased when B cells 

are stimulated by an anti-CD40 + anti-IgM + IL-2 cocktail as well as with activated 

T cells. MSC reduced B cell proliferation induced by stimulated T cells but not by the 

cocktail in the absence of T cells [11]. In our previous work, we hypothesized that 

the anti-proliferative effect of MSC on B cells in the presence of activated T cells was 

due to the secretion of IFN-γ by activated T cells and the subsequent activation of 

MSC. In this study, we examined how IFN-γ affected the immunomodulatory role 

of MSC on B cells by comparing the effects of MSC and IFN-γ treated MSC on B cell 

proliferation and differentiation into plasmablasts or IL-10 producing Bregs.

Methods

Isolation and culture of human subcutaneous adipose tissue MSC
Subcutaneous adipose tissue from healthy human donors that became available as 

a waste product during kidney donation procedures was collected after obtaining 

written informed consent as approved by the Medical Ethical Committee of the 

Erasmus University Medical Centre Rotterdam (protocol no. MEC-2006-190). The 
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tissue was collected in minimum essential medium-α (MEM-α) (Sigma Aldrich, 

St. Louis, MO, USA) supplemented with penicillin (100 IU/ml), streptomycin  

(100 mg/ml) (1% P/S; Lonza, Verviers, Belgium), and 2 mM L-glutamine (Lonza) and 

stored at 4°C for 3–16 h. MSC were isolated as described previously [20]. Briefly, 

adipose tissue was mechanically disrupted and digested enzymatically with  

0.5 mg/mL collagenase type IV (Life Technologies, Paisley, UK) in RPMI 1640 

Medium with glutaMAX (Life Technologies) for 30 min at 37°C under continuous 

shaking. Cultures were kept at 37°C, 5% CO2, and 95% humidity and refreshed 

weekly with MEM-α with 1% P/S, and 15% heat-inactivated fetal bovine serum 

(FBS; Lonza).

At 90% confluence, adherent cells were removed from culture flasks by incubation 

in 0.05% trypsin-EDTA (Life Technologies, Bleiswijk, The Netherlands) at 37°C and 

cells used for experiments or frozen at −150°C until further use. MSC were used 

for experiments between passages 2 and 5 and their phenotypic markers and 

osteogenic and adipogenic potential were tested as described before [21]. MSC 

from 19 different donors were used in the experiments.

Stimulation of MSC
Mesenchymal stem or stromal cells were pretreated for 4 days with IFN-γ (50 ng/ml; 

Life technologies). For co-culture experiments, MSC were washed with phosphate 

buffered saline (PBS) and detached by incubation with 0.05% trypsin-EDTA before 

seeding them in 96 well plates in Iscove’s Modified Dulbecco’s Medium (IMDM, 

Lonza) with 10% heat inactivated FBS. Phenotypical characteristics of MSC before 

and after IFN-γ were assessed measuring several markers on their surface: CD13-

PeCy7 (clone L138), CD31-V450 (clone WM59), CD45-APC-H7 (clone 2D1), HLA-

ABC-APC (clone G46-2.6), HLA-DR PerCP (clone L243) and CD73-PE (clone AD2; 

all BD Biosciences), CD90-APC (clone Thy-1A1), and CD105-FITC (clone 166707; all 

R&D Systems, Minneapolis, MN, USA) and PD-L1 PE (clone B7-H1; Biolegend, San 

Diego, CA, USA) by Flow Cytometry and optical microscopy morphology (Figure S1 

in Supplementary Material).

IDO activity measurement
The activity of IDO was determined by the measurement of L-kynurenine in 

the supernatant of four MSC cultures as described previously [22]. Briefly, MSC 

were seeded at a density of 100,000 cells/well in a 6 wells plate and cultured for  

4 days with or without 50 ng/mL IFN-γ. 30% trichloroacetic acid was added to the 

supernatant in a 1:3 ratio. Samples were incubated for 30 min at 50°C and spun 
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down at 12,000 rpm for 5 min. Samples were plated in a 96 wells flat bottom plate 

and diluted 1:1 in Ehrlich reagent [200 mg 4-dimethylaminobenzaldehyde (Sigma-

Aldrich, St. Louis, MO, USA) in 10 ml of glacial acetic acid]. Absorbance was read at 

490 nm using a Wallac Victor2 1420 multilabel plate reader (Perkin Elmer, Waltham, 

MA, USA).

Isolation of B cells from spleens
Spleens were obtained from post-mortal kidney donors (Erasmus MC Hospital, 

Rotterdam) and anonymously used for research purposes as described in article 

13 of The Netherlands law of organ donation (Wet op Orgaandonatie, WOD). 

All samples and data were analyzed anonymously. Spleens were mechanically 

disrupted and filtered through a 70-µm cell strainer (Greiner Bio-one, Alphen 

a/d Rijn, The Netherlands) to obtain a single-cell suspension. Mononuclear cells, 

isolated using Ficoll-Paque (Amersham Pharmacia Biotech, Uppsala, Sweden) 

density gradient, were stored at −150°C until use. Upon thawing, quiescent B cells 

were isolated by negative selection using anti-CD43- magnetic beads (Miltenyi 

Biotec GmbH, Bergisch Gladbach, Germany) [23]. Purity was determined by flow 

cytometry (FACS Canto II). Typically, cell suspensions consisted of >98% pure 

CD19+ B cells. B cells from spleens from 12 different donors were used it the 

experiments.

B cell stimulation
B cells were co-cultured in IMDM-10%FBS with a cocktail to mimic antigen and 

T cell help: 10 mg/ml F(ab)2 anti-IgM (Jackson, ImmunoResearch laboratories, Inc., 

West Grove, PA, USA), 103 IU IL-2 (Proleukin, Prometheus laboratories Inc., San 

Diego, CA, USA), and 5 mg/ml anti-CD40 agonistic monoclonal antibody (Bioceros, 

Utrecht, The Netherlands). In some of the experiments, 200 µM tryptophan (TRP, 

l-tryptophan, SigmaAldrich) was added to the stimulation cocktail to counteract 

the activity of IDO.

Transwell (TW) cultures
24-wells plates with 0.4 μm pore polycarbonate membrane inserts (Costar, 

Corning, Kennebunk, ME, USA) were used for the TW cultures. MSC were seeded 

on the membrane of the inserts and B cells were added to the lower chamber at a 

ratio MSC:B cells 1:5. After 7 days, inserts were removed; and B cells from the lower 

chamber were collected for further analysis and B cell subsets characterization.
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Heat inactivated MSC
To study the effect of cell surface molecules but not the secreted factors, MSC were 

inactivated as previously described [24]. Shortly, MSC were heated in suspension 

in PBS in parafilm-sealed tubes by 30 min incubation at 50°C in a temperature-

regulated waterbath. The inactivated cells were then washed and counted and 

used for further experiments.

B cell subset characterization
B cells were labeled by incubation with 5,6-carboxysuccinimidyl-fluoresceine-ester 

(CFSE) (Molecular Probes Invitrogen, Karlsruhe, Germany) for 10 min at 37°C. After 

7 days, B cells were collected and processed for flow cytometric analysis (FACS 

Canto II, Diva Software, BD Biosciences, San Jose, CA, USA), and supernatants 

were stored at −80°C for cytokine and Immunoglobulin-G (IgG) determination. 

The antibodies used for flow cytometry phenotyping were as follows: CD27-PE-

Cy7 (clone 0323), CD38-PE (clone HB7), CD19-BV512 (clone HIB19) and CD24-APC 

(clone SN3 A5-2H1D) (eBioscience, San Diego, CA, USA), IL-10-Bv421 (Clone Jes3-

9D7, Biolegend), and Via Probe for determination of cell viability (BD Biosciences, 

San Jose, CA, USA). After 7 days, proliferation of B cells was assessed by measuring 

CFSE dye dilution on a FACSCanto II flow cytometer (BD Biosciences). 12 h before 

harvesting the cells, Monensin (Golgi Stop, BD Biosciences) was added to the 

wells and the intracellular staining was performed without restimulation using 

Intrastain kit (Dako, Denmark).

Measurement of cytokine secretion
Supernatants from MSC-B cell co-cultures kept at −80°C were thawed and used 

for measurement of cytokine levels. IL-10 was quantified using a Milliplex kit 

(Merck Millipore, Amsterdam, the Netherlands) according to manufacturer’s 

instructions. Human cytokine standards were provided by the kit and a standard 

curve was prepared from 10,000 to 3.2 pg/ml. Samples and standards mixed with 

antibody-coated magnetic beads were incubated overnight in a 96-well plate at 

4°C under continuous agitation. Plates were washed and incubated with detection 

antibodies for 1 h. Finally, plates were washed and incubated with streptavidin-

phycoerythrin for 30 min. The samples were measured on a Luminex 100/200 

cytometer (Luminex, Austin, TX, USA) using Xponent software.
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IgG ELISA
Plates were coated with goat anti human Ig-UNLB (Southern Biotechnology 

Associates; Birmingham, AL, USA). Plates were washed with PBS 0.05% Tween 

and blocked with PBS 5% FBS for 2 h. Diluted samples and standard IgG (Sigma-

Aldrich) were added to the plate and incubated for 90 min. IgG-HRP (My Biosource; 

San Diego, CA, USA) was used as a conjugate and 3,3,5,5-tetramethylbenzidine 

(TMB) was used to visualize bound IgG. Absorbance was read at 595 nm using a 

Wallac Victor2 1420 multilabel plate reader (Perkin Elmer, Waltham, MA, USA).

RNA expression quantification
After 7 days of co-culture, B cells were recovered, pelleted in PBS–DEPC and snap 

frozen. RNA was isolated and 500 ng was used for cDNA synthesis as described 

previously [25]. Gene expression was determined by real-time RT-PCR using 

universal PCR master mix (Life Technologies) and an assay-on-demand for IL-10 

(Hs00174086.m1) (Applied Biosystems, Foster City, CA, USA) and analyzed on an 

ABI PRISM 7700 sequence detector (Applied Biosystems). Data are expressed as 

relative copy number of the PCR products with respect to the housekeeping gene 

GAPDH.

Statistical analysis
Data are expressed as means ± SEM. Significant differences within groups were 

calculated using repeated measures non-parametric analysis of variance (ANOVA: 

Friedman test) with Dunnett’s posttest performed by GraphPad Prism 5 software 

(GraphPad Software, San Diego, CA, USA). P values were indicated as * for P < 0.05; 

** for P < 0.01; and *** for P < 0.001.

Results

IFN-γ-pretreated MSC inhibit B cell proliferation
Previously, we showed that the inhibition of B cell proliferation by MSC was 

dependent on the presence of T cells [11]. We hypothesized that MSC needed 

to be activated by IFN-γ secreted by T cells to mediate their anti-proliferative 

effects on B cells. Here, we analyzed the anti-proliferative capacity of MSC and 

IFN-γ-pretreated MSC (MSC–IFN-γ) on anti-CD40, anti-IgM, and IL-2 stimulated 

B cells using flow cytometry. After 7 days of co-culturing with MSC or MSC–IFN-γ, 

viable naïve and memory B cells were distinguished based on intensity of CD27 
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Figure 1. IFN-γ stimulated mesenchymal stem or stromal cells (MSC) reduce B cell 
proliferation. B cells from human splenocytes were stimulated for 7 days with anti-CD40, 
anti-IgM and IL-2 in the presence of adipose tissue-derived MSC or IFN-γ-pretreated 
MSC (MSC–IFN-γ). (A) Representative FACS plots of the gating strategy of live, naïve, and 
memory B cells based on intensity of CD27 expression. (B) Proliferation of B cells in the 
presence or absence of MSC or MSC–IFN-γ at a 5:1 (B cell:MSC) ratio was assessed through 
measurement of 5,6-carboxy-succinimidyl-fluoresceine-ester (CFSE) label dilution. 
Representative histograms were shown. Gray, solid histograms represent unstimulated B 
cells. (C) Percentage of proliferation of B cells (left graph), naïve B cells (middle graph), and 
memory B cells (right graph). Bars indicate mean ± SEM of three experiments with three 
different MSC cultures and three different B cell donors.
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as shown in Figure 1A. Co-culture of B cells with MSC significantly increased the 

proliferation of the total B cell population (Figures 1B,C). MSC that were pretreated 

with IFN-γ did not increase the proliferation of B cells but, by contrast, inhibited 

B cell proliferation from 65 to 40%. Naïve and memory B cell subsets (CD27− and 

CD27+, respectively) showed similar increases in proliferation when co-cultured 

with MSC and inhibition of proliferation when co-cultured with MSC–IFN-γ. These 

results show that MSC need to be pre-activated with IFN-γ to bring about their 

anti-proliferative effect on B cells.

IFN-γ-pretreated MSC inhibit IgG production by B cells
Mesenchymal stem or stromal cells reduced IgG production by activated B cells 

(Figure 2A). Pretreatment of MSC with IFN-γ significantly enhanced the inhibitory 

effect of MSC on IgG production. In accordance with the reduced proliferation, an 

even stronger reduction of IgG levels was measured in the supernatant of B cells 

co-cultured with MSC–IFN-γ

IFN-γ conditioned MSC are poor Breg inducers
To investigate whether MSC-induced B cells with a regulatory phenotype, 

frequencies of CD19+ CD38high CD24high transitional B cells (Bregs), and IL-10 

production were measured. After 7 days of co-culturing MSC and MSC–IFN-γ with 

T cell-like stimulated B cells, the percentage of Bregs was measured using flow 

cytometry as shown in Figure 2B. MSC significantly induced an increase of this 

subset. By contrast, IFN-γ-pretreated MSC were not able to induce an increase in 

Bregs (Figures 2B,C). In accordance with this, the absolute number of Bregs was 

significantly increased when MSC were co-cultured with B cells (Figure 2D). To 

analyze whether the induced cells had regulatory potential, the anti-inflammatory 

cytokine IL-10 gene expression was analyzed. MSC induced a higher trend in IL-10 

gene expression, while MSC–IFN-γ did so only to a very low extent (Figure 2E). In 

accordance with this, IL-10 protein levels were significantly increased in the B cell 

and MSC co-cultures supernatants, whereas no increase in IL-10 levels was found 

in the supernatant of B cell and MSC–IFN-γ (Figure 2F). The proportion of IL-10-

producing B cells was also analyzed in the different conditions by intracellular 

staining and accordingly we identified a higher percentage in the co-culture 

with MSC (Figure 2G). To further analyze the phenotype of the IL-10-producing 

B cells induced by MSC we performed intracellular IL-10 staining. The transitional 

CD38high CD24high subset showed the highest percentage of IL-10+ cells, 

although also within the naïve CD38int CD24int B cell subset significant numbers 

3



60



61

of IL-10-producing cells were found (data not shown). In absolute numbers, the 

largest proportion of IL-10-producing B cells was observed in the CD38int CD24int 

subset, which corresponds to the mature naïve subset. We observed that all IL-10+ 

B cells produced in the presence of MSC were CD27− (Figure 2H).

The reduction of B cell proliferation by IFN-γ-pretreated MSC 
requires close proximity
To test whether soluble factors or cell contact-dependent mechanisms are involved 

in the effects of MSC and MSC–IFN-γ on B cell proliferation and Breg induction, 

activated B cells were cocultured with MSC and MSC–IFN-γ in a TW system to 

prevent cell–cell contact as shown in Figure 3A. By preventing direct cell–cell 

contact, the stimulatory effect of MSC on B cell proliferation was abolished (Figure 

3B). Moreover, a small decrease in memory B cell proliferation was measured when 

B cells were cocultured with MSC in a TW setting. Interestingly, prevention of 

direct cell–cell contact also abolished the anti-proliferative capacity of MSC–IFN-γ 

both in the total B cell population and in the naïve and memory B cell populations 

(Figure 3B). In accordance with the lack of proliferation inhibition in co-cultures of 

B cells with MSC–IFN-γ in a TW system, levels of IgG were not affected by MSC and 

MSC–IFN-γ (Figure 3C). No Bregs were induced when B cells were co-cultured with 

3

Figure 2. IFN-γ-pretreated mesenchymal stem or stromal cells (MSC) prevent 
immunoglobulin-G (IgG) production by B cells and regulatory B cell (Breg) 
formation. 
(A) Levels of IgG were measured in the supernatant of anti-CD40, anti-IgM and IL-2 
stimulated B cells co-cultured with or without MSC or MSC– IFN-γ at a 5:1 (B cell:MSC) 
ratio for 7 days. (B) Representative FACS plots of the gating strategy of Bregs, identified as 
CD38hiCD24hi B cells, with or without MSC or MSC–IFN-γ for 7 days. (C) Percentage of Bregs 
of total B cells after culturing with or without MSC or MSC–IFN-γ for 7 days. (D) The absolute 
number of total B cells was counted after harvesting the cells from the co-cultures (left 
graph). The absolute number of Bregs in the culture was calculated using the percentage 
of Bregs measured with flow cytometry and the absolute number of total B cells (right 
graph). Both absolute counts refer to initial 100,000 B cells in culture. (E) Gene expression 
of IL-10 depicted as a ratio to GAPDH. (F) Levels of IL-10 were measured in the supernatant 
of anti-CD40, anti-IgM, and IL-2 stimulated B cells co-cultured with or without MSC or 
MSC– IFN-γ. (G) IL-10 + B cells frequencies measured by analyzing intracellular cytokine 
by flow cytometry. B cells co-cultured with MSc showed the higher frequencies. (H) IL-10 
intracellular staining of B cells co-cultured with MSC (B + MSC group). IL-10 positive B cells 
are plotted to show the percentage of transitional (CD24hi CD38hi), CD24int CD38int, and 
CD24hi CD38− subsets. All bars indicate mean ± SEM of three experiments with three 
different MSC cultures and three different B cell donors.



62

Figure 3. The reduction of B cell 
proliferation by IFN-γ-pretreated 
mesenchymal stem or stromal cells 
(MSC) requires close proximity. 
(A) B cells were stimulated with anti-
CD40, anti-IgM, and IL-2 and cultured 
in direct contact with MSC or MSC– 
IFN-γ or in transwell ( TW ) system 
to prevent direct cell contact of the 
B cells and MSC. (B) Proliferation 
of B cells was assessed through 
m e a s u re m e n t  o f  5 , 6 - c a r b ox y -
s u c c i n i m i d y l - f l u o r e s c e i n e -
ester label dilution. (C) Levels of 
immunoglobulin-G measured in 
the supernatant with an ELISA assay. 
(D) Percentage of CD24hiCD38hi 
regulatory B cells within CD19 + cell 
gate measured by flow cytometry. 
(E) Levels of IL-10 measured in the 
supernatant with an ELISA assay. All 
bars indicate mean ± SEM of three 
experiments with three different MSC 
cultures and three different B cell 
donors.
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MSC and MSC–IFN-γ in TW system (Figure 3D), and, in correspondence, no increase 

in IL-10 levels was found (Figure 3E). These results indicate that the inhibition of 

B cell proliferation, inhibition of IgG production, and induction of IL-10 production 

by MSC is dependent on cell contact or at least close proximity of MSC and B cells.

The reduction of B cell proliferation requires metabolically active 
MSC–IFN-γ
To examine whether the inhibition of B cell proliferation by MSC–IFN-γ requires 

merely interaction via membrane proteins or requires metabolically active MSC–

IFN-γ, activated B cells were co-cultured with heat-inactivated MSC (HI-MSC) 

(Figure 4A). HI-MSC are immunophenotypically intact but release no soluble 

factors, as previously described [24]. Culturing B cells with HI-MSC abolishes the 

stimulatory effect of MSC on B cell proliferation (Figure 4B) and furthermore the 

proliferation of B cells was not significantly inhibited by HI-MSC–IFN-γ (Figure 4B). 

HI-MSC and HI-MSC–IFN-γ induced an increase in Bregs but this increase was not 

linked to an increase in IL-10 production (Figures 4C,D). These data indicate that 

the inhibition of B cell proliferation is dependent on metabolic activity of MSC–

IFN-γ. Furthermore, the induction of Bregs cannot be recuperated by inactivating 

MSC–IFN-γ but requires metabolically active MSC. Activating MSC with IFN-γ 

appears to overrule the Breg inducing capacity of MSC.

Inhibition of B cell proliferation by IFN-γ stimulated MSC Is largely 
dependent on TRP catabolism by IDO 
We hypothesized that the inhibition of B cell proliferation by MSC is mediated 

by IFN-γ triggered IDO induction, leading to degradation and depletion of TRP. 

When MSC were cultured for 4 days with IFN-γ high levels of l-kynurenine, the 

breakdown product of TRP, were detected (Figure 5A). When 200 µM TRP was 

added to B cell and MSC–IFN-γ co-cultures to counteract the effect of IDO activity, 

B cell proliferation increased from 17 to 48% in the total B cell population, from 

19 to 52% in the case of naïve B cell proliferation, and from 16 to 36% in the case 

of memory B cell proliferation (Figure 5B). TRP supplementation, furthermore, 

reversed the effect of MSC–IFN-γ on IgG production by B cells (Figure 5C).

TRP supplementation rescues Breg induction by IFN-γ stimulated 
MSC
We showed that IFN-γ-pretreated MSC were not able to induce an increase 

in Bregs. TRP supplementation to MSC–IFN-γ and B cell co-cultures showed a 
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Figure 4. The reduction of B cell proliferation by IFN-γ-pretreated mesenchymal 
stem or stromal cells (MSC) requires viable cells. 
(A) MSC were incubated for 30 min at 50°C to heat inactivate the cells (HI-MSC). B cells were 
stimulated with anti-CD40, anti-IgM, and IL-2 and cultured for 7 days with HI-MSC or HI-
MSC–IFN-γ. (B) Proliferation of B cells was assessed through measurement of 5,6-carboxy-
succinimidyl-fluoresceine-ester label dilution. (C) Percentage of induced CD24hiCD38hi 
regulatory B cells within CD19 + cell gate measured by flow cytometry. (D) The levels of 
IL-10 were measured in the supernatant of B cells cultured in the presence of viable MSC or 
MSC– IFN-γ or HI-MSC or HI-MSC–IFN-γ. All bars indicate mean ± SEM of three experiments 
with three different MSC cultures and three different B cell donors.
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trend toward increased frequencies of CD38high CD24high Bregs (Figure 5D). 

In accordance with this, the levels of IL-10 in the supernatant of the MSC–IFN-γ 

cultures were significantly increased when B cell proliferation was rescued with 

TRP supplementation (Figure 5E). Stimulation of MSC and MSC–IFN-γ with T cell-

like stimulation and TRP did not induce IL-10 secretion by MSC, eliminating the 

possibility that the IL-10 in the stimulated cultures is secreted by MSC–IFN-γ (data 

not shown). These data indicate that the incapability of MSC–IFN-γ to induce Bregs 

is caused by TRP depletion mediated by IFN-γ triggered IDO activity in MSC.

Discussion

The immunomodulatory properties of MSC are under strict control of pro-

inflammatory factors, such as IFN-γ [13]. In this study, we show that inflammatory 

signals alter the effect of MSC on B cells. In the absence of immune activation, MSC 

promote the survival of B cells and induce the formation of Bregs, whereas they 

have little effect on B cell proliferation and IgG production [11]. However, after 

pretreatment with IFN-γ, MSC inhibit B cell proliferation, reduce IgG production, 

but they also lose the capacity to induce Bregs (Figure 6). During immune 

responses, immune cells involved in graft rejection such as T cells, monocytes, or 

macrophages can provide IFN-γ to MSC [26, 27]. We previously showed that in the 

absence of T cells, MSC fail to inhibit activated B cell proliferation [11]. Our results 

indicate that IFN-γ production by T cells is required to activate MSC to dampen 

the proliferative response of B cells. The decreased levels of IgG and Bregs found 

when B cells were co-cultured with IFN-γ-stimulated MSC are likely a consequence 

of the inhibited proliferation of B cells. These data indicate that the effects of MSC 

on B cells may be very different in situations where no T cells are around, such as, 

for instance, in patients in which T cells have been depleted with anti-thymocyte 

globulin after solid organ transplant rejection [28]. 

The interaction between MSC and B cells has been investigated in a number of 

studies, although study outcomes have been contrasting with respect to effects of 

MSC on B cell proliferation and antibody production [29]. In this study, we clarified 

that the effect of MSC on B cells depends on local immunological conditions. 

Under immunological quiescent conditions, MSC are supportive for B cells; they 

promote B cell survival and Breg formation. Bregs will subsequently contribute to 

maintenance of immunological homeostasis. Under inflammatory conditions, in 

our study mimicked by the addition of IFN-γ, MSC suppress the activity of B cells; 
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Figure 5. Inhibition of B cell proliferation by IFN-γ stimulated mesenchymal stem 
or stromal cells (MSC) is largely dependent on tryptophan (TRP) catabolism by 
indoleamine 2,3-dioxygenase (IDO). 
(A) IDO activity was measured by accumulation of l-kynurenine in MSC supernatant after 4 
days culture with or without 50 ng/mL IFN-γ. (B) anti-CD40, anti-IgM, and IL-2 stimulated B 
cells were co-cultured with MSC or MSC–IFN-γ for 7 days in the absence or presence of 200 
µM TRP. Proliferation of CFSE labeled B cells is depicted as mean ± SEM of 3 experiments 
with different MSC cultures. IgG (C) and IL-10 (E) levels were measured in the supernatant 
of the cultures using ELISA. (D) Percentage of induced regulatory B cells within CD19 + 
cells with or without added MSC or IFN-γ in the presence or absence of 200 µM TRP for 7 
days. All bars indicate mean ± SEM of three experiments with three different MSC cultures 
and three different B cell donors.
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they inhibit B cell proliferation and reduce antibody production. At the same time, 

they inhibit Bregs induction. This may seem counterintuitive, but may reflect a 

state in which all B cell activity is shut down by MSC. Our results imply that in 

vivo, resident MSC are supportive for B cells and induce tolerogenic B cells under 

immunological quiescent conditions, whereas under inflammatory conditions 

MSC suppress humoral responses. For the generation of therapeutic MSC our 

results suggest that custom-made MSC can be generated with either B cell 

suppressive properties or with B cell homeostasis supportive properties. Distinct 

mechanisms have been described to be responsible for immunomodulation by 

MSC. Both soluble factors and contact-dependent ligand–receptor interaction 

have been proposed to participate to the MSC-mediated immunomodulation [30]. 

We show that MSC effects on B cells do not solely depend on soluble factors as no 

Bregs or IL-10 production were induced when MSC were cultured in a TW culture 

system. Moreover, the presence of dead but phenotypically intact MSC [24] was 

not enough to induce IL-10 producing B cells, implying that modulation of B cells 

by MSC is mediated by an active metabolic process and needs close proximity of 

MSC and B cells. 

Indoleamine 2,3-dioxygenase-mediated TRP catabolism has been described as 

an important mechanism of activated MSC to modulate T cell proliferation [17]. 

We demonstrated that the inhibition of B cell proliferation by MSC also largely 

depends on the TRP depleting activity of IDO activity and can be recovered by 

supplementing TRP in vitro. We show that the ability of MSC to induce IL-10-

producing B cells was lost when MSC were pretreated with IFN-γ but could be 

recovered when TRP was supplemented to the culture. Thus, in the tested 

experimental conditions, MSC–IFN-γ act in a similar way to non-activated MSC 

upon TRP supplementation, indicating that IFN-γ-induced IDO activity plays a 

major role in the effect of IFN-γ-activated MSC on B cells. 

In this study, we named the transitional B cell subset characterized by CD19+ 

CD24hi CD38hi as Bregs, since this is one of the most commonly used phenotypes 

for this subset of B cells in humans and we have previously proven it is consistently 

upregulated in the presence of MSC. We further characterized this subset by 

quantification of IL-10 production as IL-10 is the most widely used to define Bregs 

function. The definition of the Breg population is an important discussion point 

in our manuscript and in current literature. There is no unique signature that 

identifies the Breg subset and probably there are many different Breg subsets 

with different phenotypes. In our setting, we have previously observed that 

MSC increase the proportion of naïve (CD19+ CD27−) and transitional (CD19+ 

3
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Figure 6. Model for the interactions between adipose tissue-derived mesenchymal 
stem or stromal cells (MSC) and B cells in immunological quiescent and in 
inflammatory conditions.
MSC have a stimulatory effect on B cell proliferation and regulatory B-cell formation in an 
immunological quiescent environment. Under inflammatory conditions, MSC break down 
tryptophan (TRP) through indoleamine 2,3-dioxygenase (IDO). The depletion of TRP leads 
to an inhibition of B cell proliferation and prevents regulatory B-cell formation.
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CD24high CD38high) B cells, which was correlated to an increase of IL-10 gene 

expression and protein production [11]. However, the intracellular IL-10 staining 

in this study reveals that there is no complete match between the transitional B 

cells immunophenotype and IL-10-producing cells, so further marker discovery is 

needed to unravel a more suitable signature or a master transcription factor that 

would allow to properly label Bregs. While such key markers are not discovered, 

we used both the transitional B cell immunophenotype and the amount of IL-10 

released in the culture medium to semi-quantify the Breg population in this study.

Better understanding of the interaction between MSC and B cells under different 

immunological conditions is important for designing therapeutic approaches 

targeting B cells using MSC. Conventional MSC therapy can potentially be used 

to induce Breg formation and thereby promote tolerance such as after organ 

transplantation. Peng et al. show that MSC therapy in chronic graft versus host 

disease patients led to increased number of IL-10-producing CD5+ Bregs and 

increased IL-10 production by these cells [31]. On the other hand, IFN-γ-activated 

MSC as therapy could be beneficial in B cell-mediated diseases where suppression 

of B cell proliferation and IgG production is desired. 

To summarize, we show that immunological conditions can dictate the effect of 

MSC on B cell function. MSC induce B cells with a regulatory phenotype but are 

not capable to dampen B cell proliferation. Under T cell-mediated inflammatory 

conditions, MSC strongly inhibit B cell proliferation and, as a consequence, IgG 

production although they do not induce formation of Bregs. This shows for the 

first time that MSC adapt their effect on B cells to the inflammatory climate. In vivo 

this means that resident MSC are supportive for B cells and induce tolerogenic 

B cells under immunological quiescent conditions, whereas under inflammatory 

conditions MSC suppress humoral responses. For therapeutic MSC, this means 

that we can generate MSC with either B cell suppressive properties, or MSC that 

support B cell homeostasis. With this knowledge specific MSC therapy can be 

designed for different immune disorders or transplantation.
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Abstract

Mesenchymal stromal cells (MSC) are increasingly used as an investigative 

therapeutic product for immune disorders and degenerative disease. Typically, 

MSC are isolated from human tissue, expanded in culture, and cryopreserved until 

usage. The safety and efficacy of MSC therapy will depend on the phenotypical 

and functional characteristics of MSC. The freeze-thawing procedure may change 

these characteristics. Furthermore, the cells encounter a microenvironment after 

administration that may impact their properties. It has been demonstrated that 

the majority of MSC localize to the lungs after intravenous infusion, making 

this the site to study the effects of the in vivo milieu on administered MSC. 

In this study, we investigated the effect of freeze-thawing and the mouse lung 

microenvironment on human adipose tissue-derived MSC. There were effects of 

freeze-thawing on the whole genome expression profile of MSC, although the 

effects did not exceed inter-donor differences. There were no major changes in 

the expression of hemostatic regulators on transcriptional level, but significantly 

increased expression of procoagulant tissue factor on the surface of thawed 

adipose MSC, correlating with increased procoagulant activity of thawed cells. 

Exposure for 2 h to the lung microenvironment had a major effect on MSC gene 

expression and affected several immunological pathways. This indicates that 

MSC undergo functional changes shortly after infusion and this may influence 

the efficacy of MSC to modulate inflammatory responses. The results of this study 

demonstrate that MSC rapidly alter in response to the local milieu and disease-

specific conditions may shape MSC after administration.

Introduction

Mesenchymal stromal cells (MSC) are used as an investigative therapy for 

degenerative and immune disease. On the road to development of an effective 

therapy, MSC are being examined in numerous in vitro, preclinical, and clinical 

studies. The outcomes of these studies have so far shown to be variable and the 

efficacy of MSC in clinical studies does not always match the expectations raised 

by preclinical and in vitro findings [1]. There are a few factors concerning MSC 

functionality that could explain some of the discrepant outcomes. First, culture-

expanded MSC may not be fully compatible with human blood and trigger 

the instant blood-mediated inflammatory reaction (IBMIR) when administered 
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intravenously [2]. Second, one of the recurring differences between preclinical 

and clinical studies is the use of MSC from continuous cultures in vitro and in 

most preclinical studies as opposed to the use of cryopreserved MSC in the large 

majority of clinical studies [3]. Third, the phenotype and functionality of MSC may 

change upon encounter with the in vivo microenvironment after administration. 

The IBMIR reaction toward MSC may on the one hand compromise therapeutic 

cell survival, but on the other hand also trigger their beneficial paracrine effects in 

vivo [2]. Triggering of IBMIR results in release of factors that can activate MSC, but 

may also promote priming of anti-inflammatory effector cell types (e.g., regulatory 

T cells, myeloid-derived suppressor cells, and alternatively activated macrophages) 

in response to opsonized MSC [4,5]. There are indications for significant differences 

between MSC that are thawed shortly before use and MSC that come straight 

from the culture flask. Frozen–thawed MSC have impaired immunomodulatory 

properties and demonstrate increased triggering of IBMIR compared to MSC from 

continuous culture [6]. Thawed MSC furthermore show elevated levels of heat 

shock proteins and impaired responsiveness to inflammatory conditions within 

the first 24 h after thawing [7]. It is therefore possible that cryopreserved MSC are 

less effective than MSC from continuous culture for certain purposes, whereas for 

other applications cryopreserved MSC may be particularly suitable. It is important 

for the advancement of MSC therapy that the effects of cryopreservation on cell 

functionality are mapped in detail so that optimally effective MSC can be used 

for therapy. Working with living cells implies that the cells can change their 

phenotypical and functional properties in response to environmental stimuli. 

The in vivo milieu that cells encounter upon administration may influence cellular 

function. However, insufficient knowledge of the homing habits of administered 

MSC, limited cell survival, and the complexity of the in vivo environment make it 

difficult to analyze the changes that MSC undergo after administration [8]. Some 

studies have demonstrated the isolation and reculture of administered MSC from 

mice [9,10], but none have been able to analyze the function of administered MSC 

in vivo. It has become clear that intravenously injected MSC initially accumulate 

in the lungs due to size restrictions of the lung microvasculature [11]. In the 

lungs, MSC encounter pulmonary microvascular endothelial cells and resident 

macrophages and may undergo reciprocal interactions with these cells. It has 

been demonstrated that MSC affect lung endothelial cells by restoring endothelial 

permeability by the secretion of hepatocyte growth factor [12]. We have previously 

demonstrated that the expression levels of multiple cytokines and chemokines in 

the lungs are modulated after infusion of MSC [13]. The cytokines and chemokines 

4
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are most likely derived from lung endothelial cells and lung-resident immune cells. 

Lung-derived factors and intercellular cell surface molecule interactions may have 

an effect on administered MSC. This would suggest that the functionality of MSC 

can change already shortly after administration when MSC are present in the lungs 

and this may alter the therapeutic effect of MSC. A better understanding of the 

interplay between MSC and the lung tissue-resident cells may lead to optimization 

of current MSC therapy protocols. In this study, we examined phenotypical 

differences between cryopreserved MSC and MSC from continuous culture and 

analyzed the effect of the lung microvasculature milieu on MSC properties. 

Methods

Isolation and culture of human MSC
MSC were isolated from abdominal subcutaneous adipose tissue of healthy 

individuals that became available upon kidney donation procedure after written 

informed consent (protocol no. MEC-2006-190 approved by the Medical Ethics 

Committee of the Erasmus Medical Center). After collection, the tissue was 

kept in minimum essential medium-α (MEM-α) (Sigma-Aldrich, St. Louis, MO) 

supplemented with 1% penicillin/streptomycin solution (P/S; 100 IU/mL penicillin, 

100 IU/mL streptomycin; Lonza, Verviers, Belgium) at 4C and MSC isolated within 

24 h. The tissue was minced and enzymatically digested with sterile 0.5 mg/mL 

collagenase type IV (Life Technologies, Paisley, United Kingdom) at 37°C for 30 

min under continuous shaking. The obtained cell suspension was then washed 

twice, resuspended in culture medium consisting of MEM-α with 1% P/S, 2 mM 

l-glutamine (Lonza), and 15% fetal bovine serum (FBS; Lonza) and seeded in culture 

flasks. After 3 days, nonadherent cells were removed. The cultures were kept at 

37°C, 5% CO2, and 95% humidity and the medium refreshed once a week. When 

the cultures reached 90% confluence, MSC were trypsinized using 0.05% trypsin–

ethylenediaminetetraaceticacid (EDTA; Life Technologies, Bleiswijk, Netherlands) 

and subcultured. MSC were used for experiments at passage 3. 

Freeze–thawing procedure 
For cryostorage, MSC were removed from their culture flasks by trypsinization 

and washed in MEM-α with 1% P/S and 15% FBS. They were then resuspended in 

MEM-α with 1% P/S and 15% FBS at 1 · 106 cells per mL and mixed 1:1 with MEM-α 

with 20% dimethyl sulfoxide (Merck, Darmstadt, Germany) and 20% FBS, aliquoted 
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in cryovials, and placed in a freezing box (Coolcell; Biocision, San Rafael, CA) at 

-150C. To thaw the cells, cryovials were placed in a 37C water bath until nearly all 

the ice was melted. The cells were then washed and kept in MEM-α with 1% P/S,  

2 mM l-glutamine, and 15% FBS for 1 h at 37C before they were used in 

experiments. 

Immunophenotyping of MSC 
Flow cytometric analysis was conducted on MSC labeled with monoclonal 

antibodies as outlined in the supporting information (Supplementary Table 

S1; Supplementary Data are available online at www.liebertpub.com/scd) and 

acquired on a FACS Aria (Becton Dickinson, Franklin Lakes, NJ); 2,000–5,000 gated 

events were quantified and analyzed with Summit v.4.1 software (Dako, Glostrup, 

Denmark). 

In vitro blood clotting assay 
The clotting time of human blood was recorded on a semiautomatic 10-channel 

ball coagulometer (MC10plus; Merlin Medical ABW Medizin und Technik GmbH, 

Lemgo, Germany), as reported earlier [14]. MSC directly from the culture flask or 

after thawing were washed twice and resuspended in a buffer containing 5% 

human serum albumin. Sodium citrate-anticoagulated human blood was obtained 

from healthy volunteers who had not received any medication for at least 10 days. 

The cuvette was filled with 100 mL of citrated blood diluted 1:1 in phosphate-

buffered saline (PBS). Blood was then supplemented with 50 mL of buffer with or 

without 3,000 MSC or with 50 mL of positive control reagent. To initiate clotting,  

50 mL of 40 mM Ca2+ solution was added to a final concentration of 10 mM. 

The final concentration of MSC was 15,000 cells/mL, corresponding to a dose of 

1–2x106 cells/kg commonly used in clinical trials.

Administration of human MSC in mice 
MSC of four healthy human donors were trypisinized, washed, put through a  

40 mm cell strainer, and 1 · 106 MSC in 200 mL PBS were administered in female 

C57BL/6 mice (Charles River, Wilmington, MA) through tail vein injections. After 

2 h, the animals were anesthetized, blood collected in EDTA tubes, and lung 

tissue removed and snap-frozen for RNA isolation. The animal experiments were 

approved by the Animal Care and Use Committee of the Erasmus Medical Center 

(protocol no. EMC-3004).

4
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Human MSC gene expression analysis by RNA sequencing 
MSC gene expression was analyzed immediately after removal of MSC from 

culture flasks, after thawing of cryopreserved MSC, and in MSC that were trapped 

in the lungs after intravenous administration in mice using mRNA sequencing. For 

the first group, RNA was isolated from MSC that were snap-frozen immediately 

after trypsinization (group C). For the second group, RNA was isolated from froze–

thawed MSC that were snap-frozen 1 h after recovery at 37C (group FT). For the 

third group, RNA was isolated from lung tissue 2 h after infusion of MSC (group I). 

These samples contained mouse RNA mixed with human RNA from the injected 

MSC. For each group, MSC of the same three donors of the same passage were 

used. Lung tissue of a mouse that was injected with PBS was used as a negative 

control (sample M). 

RNA was isolated using Trizol reagent (Life Technologies). Frozen lung tissue was 

sectioned in 20 mm slices before RNA isolation. Quantity and quality of RNA was 

assessed using the RNA 6000 Nano kit on a 2100 Bio-analyzer (Agilent, Palo Alto, 

CA). Samples with an RNA-integrity >8.5 were used. Samples were prepped with 

TruSeq RNA (v2, Illumina), sequenced SR43 bp on Hiseq2500 in rapid mode, and 

demultiplexed with CASAVA 1.8.4. Alignment was performed with TopHat 2.0.13 

(large index mode, http:// tophat.cbcb.umd.edu; with Bowtie 2.2.4.0) against a 

reference genome containing all human (hg19) and mouse (mm10) chromosomes, 

with their Refseq gene annotation (Illumina iGenomes, http://support.illumina.

com/sequencing/sequencing_software/igenome.html). This custom reference 

was intended to eliminate cross-alignment from mouse originating fragments 

onto their human homologous for the group I samples. 

Fragment counts per gene were calculated from the TopHat BAM files, using a 

custom R (http://r-project.org) script based on the IRanges (Bioconductor; 

http://bioconductor.org) package and the RefSeq gene annotation. Differential 

expression analysis was performed with edgeR (Bioconductor), using only the 

human chromosomes and genes. 

Including the mouse chromosomes in the reference genome was not enough to 

prevent all cross-alignment, as for regions identical between human and mouse, 

reads get assigned randomly to one of them. This results in human genes having 

a high read count for sample M, where no alignment against human genes is 

expected. In samples from group I, this results in highly nonuniform coverage over 

the transcript for human genes with regions identical between mouse and human. 

These genes show high peaks in the homologous regions originating from mouse 

RNA. These genes show up spuriously as significantly differentially expressed. We 
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filtered these genes out of the final list of differentially expressed genes for the 

comparison of group I versus group C, using a custom-built R script and the dplyr 

package (CRAN; http://cran.r-project.org). We used two filtering criteria; first, we 

removed genes that had more than five counts in the negative mouse control 

sample (M). Second, we removed genes where the counts were localized in less 

than half of their exons, and the other exons did not show any counts. Ingenuity 

software (Qiagen, Venlo, Netherlands) was used for pathway analysis. 

Detection of C3 activation fragment a and thrombin–
antithrombin complex in murine plasma 
Formation of blood activation markers thrombin–antithrombin complex (TAT) 

and complement component C3 activation fragment a (C3a) in murine plasma 

was measured with enzyme-linked immunosorbent assay (Cusabio Biotech 

Ltd., Wuhan, China), at 2, 8, and 24 h post MSC infusion. Detection of cytokine/

chemokine levels in lung tissue To detect levels of cytokines and chemokines in 

lung tissue, frozen lung tissue was weighted and sliced in 10-mmthick slices. The 

sliced tissue was centrifuged at 15,000 g and tissue fluid collected for cytokine/

chemokine measurement by mouse cytokine/chemokine magnetic bead panel 

multiplex assay (Merck Millipore, Billerica, MA). The panel contained granulocyte 

colony-stimulating factor (GCSF), granulocyte-macrophage colony stimulating 

factor (GM-CSF), interferon (IFN)g, interleukin (IL)1b, IL6, IL7, IL10, CXCL1, CXCL5, 

CXCL10, CCL11, monocyte chemoattractant protein 1 (MCP1), MIP1a, and tumor 

necrosis factor (TNF)a. The samples were measured by Luminex 100/200 cytometer 

(Luminex, Austin, TX) using Xponent software. Statistical analysis Data were tested 

for significance using analysis of variance and Student’s t-test. If the data did not fit 

a normal distribution, the Mann-Whitney test or the Wilcoxon matched-pairs test 

was used (two-tailed, 95% confidence intervals). Post hoc analysis was performed 

using Bonferroni test for multiple comparisons. P-values <0.05 were considered 

statistically significant.

Results

Gene expression profiling of MSC from continuous culture versus 
frozen–thawed MSC 
To examine the effect of freeze–thawing on MSC, human adipose tissue-derived 

MSC of three healthy donors from continuous culture (C1, C2, C3) and of frozen-

4
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thawed MSC of the same donors (FT1, FT2, FT3) were used for transcriptome 

profiling by RNA sequencing. Gene expression clustering analysis demonstrated 

that inter-donor gene expression differences were larger than the effects of 

cryopreservation, as frozen–thawed and cryopreserved MSC clustered per donor 

(Figure 1A). Between the frozen–thawed MSC and continuous culture MSC 

groups, there were 294 genes that showed a significantly different expression. 

Of these genes, 167 were upregulated in the frozen–thawed MSC and 127 were 

downregulated (Figure 1B). The magnitude of gene expression differences was 

limited to a maximum increase of 10.9-fold and a maximum decrease of 5.1-fold. A 

summary of the most significant gene expression changes can be found in Table 1. 

The full data set can be accessed at GEO accession number GSE76081. 
Figure 1
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Figure 1. mRNA expression analysis of human MSC from continuous culture (C) and 
frozen–thawed MSC (FT).
(A) Clustering ofthe samples shows that inter-donor variation (numbers indicate donors) 
is larger than the variation between MSC from continuous culture and frozen–thawed 
MSC (left panel). (B) Heatmap depicting expression patterns of genes significantly different 
expressed between MSC from continuous culture and frozen-thawed MSC. Data are 
normalized per row. 



83

Pathway analysis of MSC from continuous culture versus frozen–
thawed MSC 
A number of individual genes involved in the inhibition of cellular proliferation 

and induction of growth arrest were upregulated, but pathway analysis did not 

reveal differential expression of cell survival or cell apoptosis pathways. Freeze–

thawing of MSC had an effect on innate immunity pathways (Table 1). These 

pathways indicated an activation of the acute phase response in frozen-thawed 

MSC, macrophage inhibitory factor signaling, and activation of Tolllike receptor 

pathways through high-mobility group protein B1 signaling. A number of genes 

that are involved in actin rearrangement were upregulated in frozen–thawed 

cells, such as a number of Rho GTPases and actin-related protein, suggesting 

active cytoskeletal reorganization processes in MSC after recovering from 

cryopreservation.

Effects of freeze–thawing on MSC immunophenotype and IBMIR 
induction 
The cell surface expression of a panel of MSC markers was unaffected by freeze–

thawing (Figure 2A). However, a small, but significant increase in the expression of 

the coagulation factor CD142 (tissue factor, TF) was found on thawed compared 

to fresh MSC (62% vs. 54% positive). Flow cytometry revealed that higher surface 

expression of TF on thawed cells went in hand with a small, but significant increase 

in the number of propidium iodide incorporating cells (84% vs. 91% viable, Figure 

2B). This indicates a small increase in membrane permeability post-thawing, which 

may well explain the increase in TF expression, normally stored in sub-membrane 

intracellular granules [2]. To examine whether freeze–thawing would affect IBMIR 

triggering, the effect of MSC from continuous culture and frozen–thawed MSC 

on the clotting time of human blood was examined in vitro. The addition of MSC 

from continuous culture accelerated blood clotting time (Figure 2C). Frozen–

thawed MSC induced a further, small but signifi- cant, acceleration of clotting time 

compared to continuously cultured MSC.

To corroborate our in vitro findings with the in vivo situation, we analyzed murine 

EDTA-plasma for formation of complement and coagulation markers at 2, 8, and 

24 h post-MSC infusion (Figure 2D). Infusions of thawed cells lead to significantly 

higher formation of complement activation marker C3a and coagulation marker 

TAT at 8 h post-infusion (both P < 0.05). 
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Table 1. Summary of Gene Expression Differences Between Frozen–Thawed
Mesenchymal Stromal Cells Versus Mesenchymal Stromal Cells from Continuous Culture

Gene expression changes of frozen–thawed MSC vs. MSC from continuous culture

Gene name
Fold

change up Gene name
Fold change

down

LYPD3 10.9 SMOC2 5.1
Cell–matrix adhesion Extracellular matrix organization

NRARP 10.9 RGS5 4.7
Negative regulation of Notch signaling Negative regulation of signal transduction

EGR3 7.0 MIR17HG 3.9
Response to growth factors Cell survival, proliferation

NPPB 6.2 NEAT1 3.6
Diuretic hormone activity unknown

RGS2 5.7 CCDC39 3.4
Beta-tubulin binding Cell motility, movement

RASD1 5.6 C6orf155 3.2
Negative regulation of transcription Unknown

SNAI1 5.2 MARCH1 3.1
Development, epithelial to mesenchymal
transition

Antigen processing, immune response

NR4A3 5.1 CHI3L1 3.0
Apoptosis, proliferation, survival Inflammatory response

EGR2 5.0 CLDN1 2.8
Development, negative regulation of
apoptosis

Cell adhesion, cell–cell junction

NR4A2 4.8 TTC14 2.7
Stress response Unknown

DUSP5 4.5 SEL1L2 2.7
Activation of MAPK activity unknown

NR4A1 4.5 MASP2 2.6
Positive regulation of apoptosis and
proliferation

Complement activation

DUSP2 4.4 SAA2-SAA4 2.5
Inactivation of MAPK activity Acute-phase response

ID1 4.0 EVI2B 2.5
Angiogenesis Unknown

RRAD 3.9 SAA1 2.4
Negative regulation cell growth Acute-phase response

Pathways differentially expressed and genes involved

MIF regulation of innate immunity[: z-score 2.2, P < 0.05, 5 of 40 genes different; FOS[, JUN[, NFKBIA[, PLA2G2A[,
PTGS2[

ILK signaling[: z-score 3.0, P < 0.05, 10 of 180 genes different; FOS[, JUN[, MYC[, PTGS2[, RHOB[, RHOG[,
SNAI1[, SNAI2[, TMSB10/TMSB4X[, VIM[

Acute phase response signaling[: z-score 0.82, P < 0.05, 9 of 166 genes different; CARBP2[, FOS[, JUN[, IL6[,
NFKBIA[, SAA1Y, SAA2Y, SOCS3[, TNFRSF11BY

Actin nucleation by ARP-WASP complex[: z-score 1.34, P< 0.05, 5 of 55 genes different; ARPC1B[, ITGA2Y,
PPP1R12BY, RHOB[, RHOG[

HMGB1 signalling[: z-score 1.9, P< 0.05, 7 of 117 genes different; FOS[, JUN[, IL6[, IL11[, RHOB[, RHOG[,
TNFRSF11BY

Fifteen genes with the largest increases and 15 genes with the largest decreases are shown. All gene expression changes in the table are
significant with P-values <0.05. Brief descriptions of gene functions are indicated underneath the gene names. Five pathways that showed
the most significant up or downregulated activity patterns are listed with genes involved.
MSC, mesenchymal stem cells; [, upregulation; Y, downregulation.
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Effect of MSC from continuous culture and frozen–thawed MSC 
on lung immune homeostasis 
To investigate whether MSC from continuous culture and frozen–thawed MSC had 

a differential effect on the microenvironment after infusion, 1 · 106 human MSC 

were injected intravenously in C57BL/6 mice. As MSC accumulate in the lungs after 

intravenous administration, they may interact with endothelial cells of the lung 

microvasculature and innate immune cells such as macrophages and granulocytes. 

Two hours after injection of MSC, lungs were removed and mouse cytokine 

and chemokine expression analyzed by multiplex assay. Injection of MSC from 

continuous culture as well as frozen–thawed MSC demonstrated a clear tendency 

for increased levels of mouse G-CSF, CXCL1, CXCL10, MCP1, and IL6 and a decrease 

in CXCL5 in lung tissue (Figure 3). MSC did not induce changes in the expression of 

IFNg, CCL11, GM-CSF, IL1b, IL7, IL10, MIP1a, and TNFa (Supplementary Figure S1). 

We have previously demonstrated that MSC induce a mild inflammatory response 

in the lungs, which may be associated with the immunomodulatory effect of 

MSC [13]. The present data demonstrate that there was no difference between 

the effects of MSC from continuous culture and frozen–thawed MSC, suggesting 

that the two cell preparations have a similar immunomodulatory effect in the 

lungs. To examine whether MSC are stabile after in vivo administration or whether 

they undergo changes under influence of the in vivo environment, we carried 

out transcriptome analysis on administered MSC. Human MSC from continuous 

culture (1x106) were infused in the tail vein of C57BL/6 mice. The lungs, containing 

entrapped MSC, were removed 2 h after infusion and total RNA isolated (I1, I2, I3). 

RNA of all samples was sequenced and mapped against the combined human/

mouse genome, thus reflecting human MSC gene expression in the mouse lung. 

Lung tissue of a mouse that did not receive human MSC was used as a negative 

control (M). In sample M, positive expression of several human genes was 

detected, reflecting cross-alignment of mouse RNA on the human genome. These 

particular genes, which represented 30% of the originally upregulated and 60% 

of the downregulated genes, were disregarded in samples I1-3. Genes in which 

<50% of exons showed positive reads in samples I1-3, also reflecting alignment of 

mouse RNA on the human genome, were also disregarded (20% of the originally 

differentially expressed genes). The gene expression profile of the administered 

MSC differed considerably from both non-injected MSC groups, as can be seen 

in Figure 4A, where samples C1-3 and FT1-3 now appear to overlap, whereas I1-3 

stand out. Negative control sample M stands out from all the other samples (Figure 

4A, B). Comparison of gene expression profiles between MSC from continuous 

culture before infusion (C1–3) and after infusion (I1–3) revealed differential 
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Figure 2. Effect of freeze– thawing on MSC immunophenotype and triggering of 
innate immune cascade activation after whole blood exposure in vitro and in vivo.
(A) Cell surface marker expression. N= 7 MSC donors. (B) Cell viability measured by 
propidium iodide exclusion. (C) MSC from continuous culture and frozen–thawed MSC 
(15,000 cells per mL) were tested for their triggering of the clotting cascade by exposing 
them to fresh recalcified human whole blood. Blood clotting time in seconds indicated. 
Pos, clotting inducing control; 10 mM Ca2+ solution. Buffer: negative control; no clotting 
inducing factors added. (D) Quantification of complement factor C3a (ng/mL) and TAT (ng/
mL) in murine plasma after systemic infusion of human MSC (n = 5 MSC donors, two tests 
each). Bar graphs depict mean – standard deviation. Dashed lines indicate background 
levels of C3a and TAT. C3a, C3 activation fragment a; TAT, thrombin–antithrombin complex
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expression of 2,060 genes. Of these genes, 720 were upregulated in the infused 

MSC and 1,340 were downregulated (Figure 4C). The maximum increase in gene 

expression in the injected MSC was 1,607-fold. The decreases in gene expression 

were smaller, with 1,326 of the downregulated genes showing a fold change of <4. 

The maximum decrease was -10.3-fold. A summary of the most significant gene 

expression changes can be found in Table 2. The full data set can be accessed at 

GEO accession number GSE76081.

Pathway analysis of MSC after in vivo administration 
Pathway analysis 2 h after administration demonstrated that the lung 

microenvironment affected pathways with an immunological function in MSC. 

MSC showed strongly increased expression of various human leukocyte antigen 

class II molecules, which are upregulated in response to inflammatory cytokines. 

Furthermore, there was a strong upregulation of IFNγ-induced protein 10 (or 

CXCL10), of the common gamma chain of the receptor for IL2, IL4, IL7, IL9, IL15, 

and IL21, of nuclear factor of activated T cells, which modulates gene expression 

during immune activation, and of IFN-regulatory factor 4. The four pathways that 

showed the most significantly altered patterns of activation had an immunological 

function. Immune signaling through the OX40 Tumor Necrosis Factor family 

pathway and the cytosolic pattern recognition receptor pathway showed reduced 

activity, whereas the TNF receptor 2 pathway and the phospho-kinase C signaling 

pathway showed enhanced activity (Table 2), indicating a modulation of the 

immunomodulatory activity of MSC upon administration. Even though it is known 

that MSC have a short survival after intravenous infusion, cell death pathways were 

not activated. The apoptosis signaling pathway showed no pattern of activation, 

while the HIV-induced apoptosis pathway showed reduced activity. Interestingly, 

multiple genes involved in tyrosine metabolism, such as tyrosinase and tyrosinase-

related proteins 1 and 2, were among the most highly upregulated genes.

Production of soluble factors by injected MSC 
As the therapeutic effect of MSC is thought to be partly dependent on secreted 

factors, the expression of genes encoding proteins with an extracellular function 

was analyzed. Eighteen soluble factors showed upregulated expression of at 

least 10-fold in injected MSC (Table 3). These factors included factors with an 

immune function, such as CXCL10, IL11, and IL33, and growth factors and factors 

that stimulate regeneration by progenitor cells, such as wingless-type MMTV 

integration site family member (WNTs) and bone morphogenetic protein (BMP)2.
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 FIG. 3. Effect of infusion of human MSC from continuous culture (C) and frozen–
thawed MSC (FT) on mouse cytokine and chemokine expression in the mouse lung. 
1 · 106 MSC were infused through the tail vein and 2 h later, lungs removed for analysis. N = 
4 MSC donors. Bar graphs depict mean – standard deviation. *P < 0.05. G-CSF, granulocyte 
colony-stimulating factor; MCP1, monocyte chemoattractant protein 1.

Figure 4 mRNA expression analysis of human MSC from continuous culture (C), 
frozen–thawed MSC (FT), and injected MSC (I).
(A) Clustering of the samples shows that the effect of the microenvironment on injected 
MSC is much larger than the effect of freeze–thawing on MSC. Mouse mRNA (M) clearly 
stands out. (B) Manhattan clustering confirms this. (C) Heatmap depicting expression 
patterns of genes significantly different expressed between MSC from continuous culture 
and injected MSC. Data are normalized per row.
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Discussion 

The efficiency of MSC therapy will depend for a great part on the phenotype of 

MSC preparations. In contrast to conventional molecular drugs that, apart from 

being metabolized by the recipient, do not change, cells can undergo dramatic 

alterations in response to changes in their microenvironment. Freeze–thawing 

has been indicated to affect the in vitro immunomodulatory properties of MSC 

[6,7]. However, MSC functionality is completely recovered after a 24-h culture 

period. In this study, we found limited gene expression changes in MSC 1 h after 

thawing. There were changes in genes involved in innate immunity pathways 

and cytoskeletal rearrangement. The cryopreserved cells were kept in suspension 

for 1 h after thawing and it is possible that these conditions induced the cells to 

upregulate cytoskeletal protein expression. 

MSC from continuous culture and frozen–thawed MSC induced comparable 

immunological responses in the mouse lung, the major site of MSC embolization 

upon intravenous infusion. Indeed, a study by Cruz et al. demonstrated only 

limited differences between the effects of cryopreserved and continuously 

cultured MSC in ameliorating airway inflammation, supporting the concept that 

both MSC preparations are equally effective in vivo [15]. It is likely that the type 

of model used is determinative for detecting differences between frozen–thawed 

and continuously cultured MSC or not, as freeze–thawing may affect particular 

properties of MSC that are employed in particular models, but not in others. It 

has previously been demonstrated that islets of Langerhans [16], but also 

culture expanded MSC, can induce IBMIR [2]. The induction of IBMIR was weakly 

augmented with frozen-thawed MSC [6,17]. A strong induction of IBMIR would 

reduce the survival time of MSC after administration and could potentially lead to 

adverse effects, providing a possible explanation for the limited engraftment of 

therapeutic MSC [18] and adverse transfusion reactions at higher doses [14]. We 

found a strong induction of IBMIR for the adipose MSC used in this study, which 

is in agreement with other reports attributing a strong procoagulant activity 

to adipose tissue-derived MSC [19–21]. We measured a weak, but significantly 

augmented triggering of IBMIR with frozen–thawed cells. The physiological 

significance of this difference between continuously cultured and frozen–thawed 

MSC is unclear. However, most importantly, both cell types elicited strong 

responses. Thus, in vivo persistence will be rather limited with both continuously- 

and frozen–thawed adipose-derived MSC alike, not necessarily compromising 

their bioactivity.
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Figure 5. Schematic overview of the changes in MSC 2 h after intravenous 
administration. Infused MSC end up in the lungs and at 2 h, increase the expression of 
a range of immunomodulatory and growth factors and change the activity of immune 
and metabolic pathways. Apo C2, apolipoprotein C2; Apo E, apolipoprotein E; BMP2, bone 
morphogenic protein 2; FGF9, fibroblast growth factor 9; Wnt7A, wingless-type MMTV 
integration site family member 7A; Wnt9A, wingless-type MMTV integration site family, 
member 9A.

Discussion

The efficiency of MSC therapy will depend for a great
part on the phenotype of MSC preparations. In contrast to
conventional molecular drugs that, apart from being me-
tabolized by the recipient, do not change, cells can undergo
dramatic alterations in response to changes in their micro-
environment. Freeze–thawing has been indicated to affect
the in vitro immunomodulatory properties of MSC [6,7].
However, MSC functionality is completely recovered after a
24-h culture period. In this study, we found limited gene
expression changes in MSC 1 h after thawing. There were
changes in genes involved in innate immunity pathways and
cytoskeletal rearrangement. The cryopreserved cells were
kept in suspension for 1 h after thawing and it is possible
that these conditions induced the cells to upregulate cyto-
skeletal protein expression.

MSC from continuous culture and frozen–thawed MSC
induced comparable immunological responses in the mouse
lung, the major site of MSC embolization upon intravenous
infusion. Indeed, a study by Cruz et al. demonstrated only
limited differences between the effects of cryopreserved and
continuously cultured MSC in ameliorating airway inflam-
mation, supporting the concept that both MSC preparations
are equally effective in vivo [15]. It is likely that the type of
model used is determinative for detecting differences be-
tween frozen–thawed and continuously cultured MSC or not,
as freeze–thawing may affect particular properties of MSC
that are employed in particular models, but not in others.

It has previously been demonstrated that islets of Lang-
erhans [16], but also culture expanded MSC, can induce
IBMIR [2]. The induction of IBMIR was weakly augmented
with frozen-thawed MSC [6,17]. A strong induction of IB-
MIR would reduce the survival time of MSC after admin-
istration and could potentially lead to adverse effects,

providing a possible explanation for the limited engraftment
of therapeutic MSC [18] and adverse transfusion reactions at
higher doses [14]. We found a strong induction of IBMIR
for the adipose MSC used in this study, which is in agree-
ment with other reports attributing a strong procoagulant
activity to adipose tissue-derived MSC [19–21]. We mea-
sured a weak, but significantly augmented triggering of
IBMIR with frozen–thawed cells. The physiological sig-
nificance of this difference between continuously cultured
and frozen–thawed MSC is unclear. However, most im-
portantly, both cell types elicited strong responses. Thus,
in vivo persistence will be rather limited with both contin-
uously- and frozen–thawed adipose-derived MSC alike, not
necessarily compromising their bioactivity.

In contrast to the minimal effects of freeze–thawing,
in vivo administration had a major effect on the transcrip-
tional phenotype of MSC. The observed changes induced in
MSC could derive from a number of factors, among them
the effects of sheer-stress induced by transport through the
bloodstream, factors induced by triggering of IBMIR or the
effects of blood cells, and proinflammatory mediators on
MSC. MSC accumulate in the lungs upon the first passage
[11] and thus within minutes of administration, the majority
of MSC are exposed to the microenvironment of the lung
microvasculature, where lung endothelial cells and macro-
phages may undergo interactions with MSC. The gene ex-
pression changes in MSC after administration indicate a
response to inflammatory signals, eliciting immunological
cross talk between entrapped MSC and tissue-resident im-
mune cells. This suggests that cells in the lung microvas-
culature become activated upon encounter of MSC and
respond with inflammatory signals. We have demonstrated
previously that lung tissue shows an inflammatory gene ex-
pression profile within hours after infusion of MSC [13] and
in this study, we demonstrated that levels of the mouse

Table 3. List of Soluble Factors with at Least 10-Fold Upregulated Gene Expression
in Injected Mesenchymal Stromal Cells Compared to Noninjected Mesenchymal Stromal Cells

Soluble factors upregulated in injected MSC

Gene name Fold change up Function

Apolipoprotein C2 1,261 Increases free fatty acid availability
CXCL10 274 Chemoattraction immune cells
Melanoma inhibitory activity 256 Migration, inhibition of adhesion
WNT7A 239 Development
Neural pentraxin 1 68.6 Innate immunity, acute phase protein
Urocortin 2 64.0 Cardiovascular stimulation
Suppressor of Ty20 homolog like 2 55.7 Nucleic acid-templated transcription
Pleiotrophin 48.5 Growth factor
Apolipoprotein E 42.2 Cholesterol metabolism
Serpin A1 34.3 Protease inhibitor
WAP four-disulfide core domain protein 1 24.3 Protease inhibitor
Parathyroid hormone-like hormone 22.6 Increases Ca2+ in the blood
IL11 21.1 Megakaryocyte maturation, osteotrophic
Bone morphogenetic protein 2 18.4 Osteoblast differentiation
IL33 16.0 Drives Th2 immune response
Angiopoietin 4 13.9 Angiogenesis
WNT9A 10.6 Development
Fibroblast growth factor 9 10.6 Growth factor

All gene expression changes listed are highly significant (P < 10-5, or smaller).

594 HOOGDUIJN ET AL.
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In contrast to the minimal effects of freeze–thawing, in vivo administration had 

a major effect on the transcriptional phenotype of MSC. The observed changes 

induced in MSC could derive from a number of factors, among them the effects 

of sheer-stress induced by transport through the bloodstream, factors induced 

by triggering of IBMIR or the effects of blood cells, and pro-inflammatory 

mediators on MSC. MSC accumulate in the lungs upon the first passage [11] and 

thus within minutes of administration, the majority of MSC are exposed to the 

microenvironment of the lung microvasculature, where lung endothelial cells and 

macrophages may undergo interactions with MSC. The gene expression changes 

in MSC after administration indicate a response to inflammatory signals, eliciting 

immunological cross talk between entrapped MSC and tissue-resident immune 

cells. This suggests that cells in the lung microvasculature become activated upon 

encounter of MSC and respond with inflammatory signals. We have demonstrated 

previously that lung tissue shows an inflammatory gene expression profile within 

hours after infusion of MSC [13] and in this study, we demonstrated that levels of 

the mouse inflammatory factors IL6, CXCL1, CXCL10, and MCP1 were increased in 

lung tissue upon administration of human MSC. 

There is a possibility that the gene expression changes observed in human MSC 

after infusion in mice are caused by incompatibility of human cells with mouse 

microenvironment. However, in our earlier study, we found upregulation of 

immune parameters in mice infused with syngeneic mouse MSC [13]. Interestingly, 

in this study, we found that human MSC are well capable of responding to mouse 

cytokines and chemokines. Therefore, we assume that we are not merely looking 

at a xeno-response. The nature of the analysis used does, unfortunately, not allow 

administration of syngeneic cells to test this assumption. 

The main question of this study is how the phenotypical changes in MSC affect 

their function. MSC are known to enhance their immunomodulatory function 

in response to inflammation [22,23], and we found evidence for increased 

expression of IL11 and IL33, cytokines of the IL6 and IL1 families, respectively, 

and for the activation of immune signaling pathways (Figure 5). There were 

also non-immunological pathways that were upregulated in MSC in response 

to the in vivo environment. There was for instance a dramatic increase in 

apolipoprotein expression, which is a family of soluble proteins involved in lipid 

transport. Apolipoproteins may, however, also have anti-inflammatory functions 

[24]. Furthermore, multiple genes involved in tyrosine metabolism, including 

tyrosinase, tyrosinase-related protein 1, and dopachrome tautomerase, were 

strongly upregulated. The significance of these gene expression changes is 

4



92

unknown. MSC showed large increases in WNT7a and WNT9a gene expression. 

WNT signaling pathways have been identified to play important roles in the 

control of MSC proliferation and differentiation [25]. Through WNT secretion, 

MSC may thus target proliferation and differentiation of resident progenitor 

cells. These gene expression changes indicate that the microenvironment of the 

lung affects immunological and metabolic activity of MSC. As MSC have a short 

survival time after infusion, intrinsic changes in, for instance, MSC proliferation 

rate or differentiation potential are not relevant for the therapeutic effect of MSC. 

However, changes in cytokine and growth factor secretion by MSC may affect the 

function of resident cell types, even after MSC have disappeared. In this study, 

we have not examined the effect of the gene expression changes in MSC on 

tissues and have not determined whether concentrations of secreted factors reach 

effective levels. However, we can conclude from the gene expression changes 

that administered MSC respond rapidly to their new microenvironment and 

change their immunological and metabolic function. Earlier studies have shown 

that a large majority of intravenously infused MSC disappear within 24 h after 

administration [9]. We therefore expected to see an upregulation of apoptosis 

pathways in MSC upon intravenous administration. This was not the case, which 

would suggest that the disappearance of MSC is independent of the induction of 

apoptosis. Our data can however not completely prove this. First, apoptosis may 

be induced independently of gene expression changes. Second, the filter that we 

used to avoid cross-reactivity of RNA of the mouse lung tissue with the human 

genome may have filtered out apoptosis genes that are conserved between 

mouse and human [26]. Therefore, we cannot rule out the possibility that infused 

MSC undergo apoptosis in the lungs. 

Over the last two decades, it has been shown that MSC therapy is safe [27], and 

the current challenge is to develop efficient therapy. Effort is put in identifying 

MSC subsets that possess superior immunomodulatory properties and in the 

development of culture protocols that generate MSC with optimized function. 

Efficacy testing should allow discrimination between more- and less potent MSC 

batches. The findings of this study indicate that MSC show high responsiveness 

and plasticity upon systemic infusion. Properties that are present in vitro are not 

necessarily maintained after administration, and vice versa. This is a fact to be 

taken into account in the development of efficient MSC therapy. 

In summary, this study demonstrates that freeze–thawing procedures have 

little impact on MSC gene expression, but tend to sensitize the cells for stronger 

recognition by the IBMIR. However, MSC from continuous culture and frozen–
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thawed MSC had a similar impact on immunological parameters in the lungs. Upon 

intravenous injection, MSC underwent major gene expression changes, reflecting 

a response to inflammatory activation. This study describes for the first time that 

MSC change phenotype and potentially function upon systemic administration, 

which is important for understanding MSC therapy and improving its efficiency.
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Abstract

Mesenchymal stem cells (MSC) are studied as a cell therapeutic agent for treatment 

of various immune diseases. However, therapy with living culture-expanded 

cells comes with safety concerns. Furthermore, development of effective MSC 

immunotherapy is hampered by lack of knowledge of the mechanisms of action and 

the therapeutic components of MSC. Such knowledge allows better identification 

of diseases that are responsive to MSC treatment, optimization of the MSC product, 

and development of therapy based on functional components of MSC. To close 

in on the components that carry the therapeutic immunomodulatory activity of 

MSC, we generated MSC that were unable to respond to inflammatory signals or 

secrete immunomodulatory factors, but preserved their cellular integrity [heat-

inactivated MSC (HI-MSC)]. Secretome-deficient HI-MSC and control MSC showed 

the same biodistribution and persistence after infusion in mice with ischemic 

kidney injury. Both control and HI-MSC induced mild inflammatory responses in 

healthy mice and dramatic increases in interleukin-10, and reductions in interferon 

gamma levels in sepsis mice. In vitro experiments showed that opposite to control 

MSC, HI-MSC lacked the capability to suppress T-cell proliferation or induce 

regulatory B-cell formation. However, both HI-MSC and control MSC modulated 

monocyte function in response to lipopolysaccharides. The results of this study 

demonstrate that, in particular disease models, the immunomodulatory effect of 

MSC does not depend on their secretome or active crosstalk with immune cells, 

but on recognition of MSC by monocytic cells. These findings provide a new view 

on MSC induced immunomodulation and help identify key components of the 

therapeutic effects of MSC. 

Introduction

Mesenchymal stem cells (MSC) are present in most adult human tissues and can 

be easily obtained from adipose tissue and bone marrow. They are characterized 

by their ability to adhere to plastic, their rapid proliferation in culture, and their 

capacity to differentiate into osteoblasts, adipocytes, myocytes, and chondrocytes 

[1]. In addition, MSC possess immunosuppressive properties as demonstrated in 

experimental inflammatory disease models for autoimmune diseases, graft-versus-

host disease (GvHD), and allograft rejection [2–9]. The promising results obtained 

from these models have triggered the investigation of MSC therapy in clinical trials 

for a range of immune disorders, including GvHD, Crohn’s disease, diabetes mellitus, 
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systemic lupus erythematosus, and allograft rejection [10–15]. While some clinical 

trials have described positive effects of MSC treatment, others have not been able 

to demonstrate amelioration of disease symptoms [16,17]. The indistinct efficacy 

of MSC immunotherapy is debit to the lack of understanding of the mechanisms of 

action of MSC after administration, which hampers rational timing and dosing of 

MSC therapy and identification of disease conditions that can potentially benefit 

from MSC therapy. First, the homing characteristics of MSC after administration 

are not fully elucidated. Some studies have reported homing of infused MSC to 

sites of injury [18,19], but others showed poor homing capabilities of MSC [20]. 

We previously reported that intravenously (IV) infused MSC do not pass the lung 

barrier and have a half-life between 12 and 24 h [21]. Second, the exact nature of 

the interaction between MSC and immune cells after administration is not clear. 

In vitro studies show that under the influence of inflammatory cytokines such as 

interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), MSC inhibit the 

proliferation of immune cells by soluble mechanisms such as transforming growth 

factor beta (TGF-β), prostaglandin E2 (PGE2), and indolamine 2,3-dioxygenase 

[22–29]. It is therefore proposed that MSC mediate their immunomodulatory 

effect through their secretome [30]. There is, however, no conclusive evidence that 

the anti-inflammatory secretome is responsible for the immunomodulatory effects 

of exogenously administered MSC. The entrapment of IV-infused MSC in the lung 

capillaries and the short half-life of MSC after infusion [31,32] raise the questions 

whether administered MSC localize to the right location and live long enough to 

become activated by inflammatory conditions to exert their therapeutic effects 

through their secretome. It has become clear that MSC exert at least some of 

their effects after infusion through intermediate cells. For example, it has been 

shown that MSC have a stimulatory effect on cardiac infarct repair by activation 

of macrophages, since macrophage depletion partially reduced the therapeutic 

effect of MSC [33]. We have recently demonstrated that infusion of MSC triggers an 

immediate and mild systemic inflammatory response, which may be the initiator 

of subsequent immunosuppression [34]. It is unknown how MSC trigger such 

responses by host cells. In this study, we investigated whether MSC that lost the 

capacity to respond to inflammatory stimulation and lost the ability to secrete 

factors maintain their capacity to modulate immune responses. We show that 

such MSC maintain the ability to modulate sepsis immune responses and indicate 

that MSC can act as passive immunomodulatory vehicles. Our results are a step 

toward the development of immunomodulatory therapy based on subcellular 

components of MSC.
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Methods

Isolation and culture of human MSC
Human MSC were isolated from subcutaneous adipose tissue that was surgically 

removed from the abdominal incision of healthy kidney donors. Adipose tissue 

was collected after written informed consent, as approved by the Medical Ethics 

Committee of the Erasmus University Medical Center Rotterdam (protocol 

No. MEC-2006-190). MSC were isolated from the adipose tissue as described 

previously [35,36]. In short, the tissue was mechanically disrupted and washed 

with phosphate-buffered saline (PBS). The adipose tissue was then digested 

enzymatically with 0.5 mg/mL collagenase type IV (Life Technologies, Paisley, UK) 

in RPMI 1640 Medium with glutaMAX (Gibco BRL, Life Technologies, Paisley, UK) 

for 30 min at 37°C under continuous shaking. The stromal vascular fraction was 

resuspended in minimum essential medium Eagle alpha modification (MEM-α; 

Sigma- Aldrich, St. Louis, MO) containing 2mM L-glutamine (Lonza, Verviers, 

Belgium) and 1% penicillin/streptomycin solution (P/S; 100 IU/mL penicillin,  

100 IU/mL streptomycin; Lonza). MSC were cultured in a 175-cm2 cell culture 

flask in MEM-α supplemented with 2mM L-glutamine, P/S, and 15% fetal bovine 

serum (FBS; Lonza) and kept at 37°C, 5% CO2, and 20% O2. The medium was 

refreshed once a week and MSC were passaged at around 80% confluence using 

0.05% trypsin-EDTA (Life Technologies, Bleiswijk, the Netherlands). All MSC used in 

experiments were between passage 2–8. 

Isolation and culture of mouse MSC
Mouse MSC were isolated from the adipose tissue of male C57BL/6 mice as 

described previously [34] and cultured as the human MSC. The cells were frozen in 

10% DMSO at -150°C at passage 1. Cells were later thawed in MEM-α supplemented 

with 2mML-glutamine, P/S, and 10%FBS and transferred to a 175-cm2 cell culture 

flask to expand. MSC used in experiments were between passage 2–9 as mouse-

derived MSC maintain their capacities up to high passages (passage 10) [37].

Inactivation of MSC
MSC were inactivated in suspension in PBS in parafilm sealed tubes by 30 min 

incubation at 50°C in a temperature regulated water bath. The inactivated cells 

were then washed and used for further experiments or resuspended in MEM-α 

supplemented with 2mM L-glutamine, P/S, and 15% FBS and seeded in a culture 

plate.
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Immunophenotyping of human MSC
MSC were trypsinized, washed with FACSflow (BD Biosciences, San Jose, CA), and 

stained with CD13-PeCy7 (clone L138), CD31-V450 (clone WM59), CD45-APC-H7 

(clone 2D1), CD73-PE (clone AD2; all BD Biosciences), CD90-APC (clone Thy-1A1), 

and CD105-FITC (clone 166707; all R&D Systems, Minneapolis, MN). Measurements 

were done on a FACSCanto II flow cytometer (BD Biosciences) and analyzed using 

FlowJo 7.6 software (Tree Star, Inc., Ash-land, OR).

Protein analysis by multiplex assay
Levels of vascular endothelial growth factor ( VEGF), FGF2, granulocyte 

colony-stimulating factor (G-CSF), monocyte chemotactic protein-1 (MCP-

1), and interleukin (IL)-1Ra, IFN-γ, IL-1b, IL-10, IL-6, and IL-8 were measured in a 

conditioned medium of human MSC after 24 h of culture in MEMa supplemented 

with 2mML-glutamine and P/S without FBS. In mouse serum samples, levels of IL-6, 

IL-10, MCP-1, CXCL1, CXCL5, G-CSF, IFN-γ, and TNF-α were measured. Cytokine and 

chemokine levels were quantified using a “Human cytokine/chemokine magnetic 

bead panel multiplex assay” (Merck Millipore, Billerica, MA) for the supernatant 

samples or a “Mouse cytokine/chemokine magnetic bead panel multiplex assay” 

(Merck Millipore) for the mouse serum samples. The samples were measured on a 

Luminex 100/200 cytometer (Luminex, Austin, TX) using Xponent software.

Cell viability measurements
The viability of MSC was analyzed by measuring the ability of cells to reduce 

MTT to formazan. Briefly, 20 mL of 5mg/mL 3-[4,5-dimethylthiazol-2-yl]-2,5 

diphenyltetrazolium bromide (MTT; Sigma-Aldrich, Munich, Germany) was added 

to 5,000 MSC seeded in a flat-bottom 96-well plate and incubated for 5 h at 37°C.

The culture medium was then removed and formazan crystals were dissolved in 

100 mL DMSO. The absorbance was measured at 550nm using a Victor Wallac 2 

multilabel microplate reader (Perkin Elmer, Life Sciences, Boston, MA).

Proliferation measurement
The proliferation of MSC over time was measured using PKH26 Red Fluorescent 

Cell Linker Kit for General Cell Membrane Labeling (Sigma-Aldrich Chemicals, 

Steinheim, Germany). Briefly, control and heat-inactivated mesenchymal stem 

cells (HI-MSC) were stained for 3 min with PKH26 dye. The cells were washed with 

FBS and 1x104 control or HI-MSC was seeded in a 12-well plate for 7 days at 37°C. 

Dye dilution was measured on a FACS Canto II flow cytometer (BD Biosciences).

5



102

Apoptosis staining
Early and late apoptosis of MSC was assessed by staining with Annexin V and 

7-amino-actinomycin D (7-AAD) using the PE Annexin V Apoptosis Detection Kit 

I according to the manufacturer’s guidelines (BD Biosciences). Flow cytometric 

analyses were performed using a FACSCanto II flowcytometer (BD Biosciences).

Mixed lymphocyte reaction
Inactivated and control MSC were plated in round-bottom 96-well plates in MEM-α 

supplemented with 2mM L-glutamine, P/S, and 10% heat-inactivated (30 min, 

57°C) human serum in various numbers; 20, 10, 5, and 2.5x103 MSC/well. The  

next day, 5x104 carboxyfluorescein succinimidyl ester (CFSE)-labeled healthy 

donor-derived peripheral blood mononuclear cells (PBMC) and 5x104 g-irradiated 

(40 Gy) HLA-mismatched PBMC were added to the MSC. After 7 days, PBMC were 

harvested and stained for 30 min with CD3-PERCP (clone SK7; BD Biosciences). Cell 

proliferation was determined by CFSE dilution measured on a FACSCanto II flow 

cytometer (BD Biosciences).

MSC–B-cell cocultures
Splenocytes were isolated from spleens of deceased organ donors (Biobank 

Erasmus MC protocol No. MEC-2012-022) by Ficoll density gradient separation 

(GE Healthcare, Uppsala, Sweden). Quiescent B cells were obtained by negative 

selection using anti-CD43 magnetic beads (Miltenyi BiotecGmbH, Bergisch 

Gladbach,Germany). B cells were cultured for 7 days in Iscove’s modified Dulbecco’s 

medium (Lonza) supplemented with 10%HI FBS and stimulated with F(ab)2 anti-

IgM (Jackson, ImmunoResearch laboratories, Inc., West Grove. PA), IL-2 (103 IU, 

Proleukin; Prometheus Laboratories, Inc., San Diego, CA), and 5mg/mL anti-CD40 

agonistic monoclonal antibody (Bioceros, Utrecht, The Netherlands). Inactivated 

and control MSC were added to the culture at day 0 in a MSC:B cell ratio of 1:5. IL-10 

levels in the supernatant were measured using a human IL-10 ELISA kit (U-Cytech, 

Utrecht, The Netherlands) according to the manufacturer’s protocol.

MSC-monocyte cocultures
PBMC were isolated from the blood of healthy volunteers using Ficoll density 

gradient separation. Monocytes were obtained by positive selection using CD14 

magnetic beads (Miltenyi Biotec GmbH). Monocytes (40,000) were co-cultured 

overnight with 40,000 control or inactivated MSC in round-bottom 96 wells in 

RPMI 1640 Medium with gluta-MAX (Gibco BRL, Life Technologies, Paisley, UK) 

supplemented with P/S and 10% heat-inactivated FBS.
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Lipopolysaccharides (LPS; Sigma Aldrich, Gillingham, UK) were added the next day 

at a concentration of 100 ng/mL. TNF-α levels in the supernatant were measured 

7 h after addition addition of LPS using a human TNF-α ELISA kit (U-Cytech) 

according to the manufacturer’s protocol.

Infusion of MSC
Healthy 8-week-old female C57BL/6 mice were purchased from Charles River 

(Lyon, France). The mice were housed in a facility with a 12-h light–12-h dark cycle 

and allowed free access to food and water. All animal studies were approved by an 

independent institutional ethics committee on animal care and experimentation 

(DEC protocol EMC No. 127-12-14). In these studies, syngeneic mouse MSC were 

used to avoid xenogeneic and allogeneic responses.C57BL/6 adipose tissue 

derived MSC were trypsinized and resuspended in PBS, and one batch was 

inactivated by heating as described above. The MSC were then put through a  

40 mm sieve and 0.3x106 cells in 200 mL PBS infused in the tail vein. Control mice 

received 200 mL of PBS. After 2 h, mice were sacrificed by cervical dislocation 

and blood was collected in serum separation tubes (Minicollect; Greiner Bio-One, 

Alphen a/d Rijn, The Netherlands) and spun down at 3,000 rpm for 10 min. Lungs 

were collected, snap frozen in liquid nitrogen, and stored at -80°C. 

LPS infusion 
Female C57BL/6 mice were injected with 2.5 mg/kg body weight LPS (LPS; Sigma-

Aldrich, Gillingham, UK) dissolved in PBS through the tail vein. After 1 h, mice 

received 0.3x106 living or inactivated MSC through the tail vein. Animals were 

sacrificed by cervical dislocation 6 h after LPS infusion and blood was collected in 

serum separation tubes (Minicollect; Greiner Bio-One).

Kidney ischemia/reperfusion injury model
Unilateral ischemia/reperfusion injury (IRI) was surgically performed as described 

previously [38]. Briefly, female C57BL/6 mice were anaesthetized by isoflurane 

inhalation (5%isoflurane initially and then 2%–2.5%with 1:1 air/oxygen mixture for 

maintenance). Mice were kept on 37°C heating pads during the whole procedure 

to maintain body temperature. A midline abdominal incision was made and the left 

renal artery was occluded using atraumatic microvascular clamps. The incision was 

covered with PBS-soaked gauze and the animal was covered with aluminum foil 

to maintain the right body temperature. After 37 min, the clamp was released and 

restoration of blood flow was macroscopically confirmed by the kidney returning 

to normal color. The abdominal wound was closed in two layers using 5/0 sutures 

5
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and animals were given 0.5 mL PBS and 0.05 mg/kg buprenorphine as analgesic 

subcutaneously. Six or 24 h after clamp removal, the mice were either sacrificed by 

cervical dislocation and both kidneys collected, snap frozen in liquid nitrogen, and 

stored at -80°C or whole mice were frozen in Tissue-Tec O.C.T. Compound (Sakura 

Finetek Europe B.V., Alphen aan den Rijn, The Netherlands) for MSC tracking.

MSC tracking
One batch of MSC was labeled with fluorescent Qtracker 605 beads (control MSC; 

Life Technologies, Grand Island, NY). Another batch of MSC was labeled with 

Qtracker 655 beads and heat inactivated as described previously. Inactivated and 

control MSC were mixed 1:1 and in total, 0.3x106 cells were injected in the tail 

vein of healthy mice or mice with unilateral ischemic kidney injury. After 2 and 

24 h, whole mice were frozen in Tissue-Tec O.C.T. Compound and 3D anatomical 

and molecular fluorescence videos were generated by CryoViz_imaging. CryoViz 

imaging allows 3D visualization of the distribution of MSC and identification of 

single cells.

mRNA expression analysis
Human MSC were snap frozen directly after trypsinization, immediately after or 

4 h after heat inactivation. RNA was isolated from frozen mouse lung and kidney 

tissues using Trizol reagent (Invitrogen, Life Technologies, Carlsbad, CA, USA) 

and cDNA was synthesized from 1,000 ng RNA with random primers (Promega). 

Quantitative gene expression was determined using TaqMan gene expression 

master mix (Life Technologies, Carlsbad, CA) and assay-on-demand primer/probes 

for Hsp27 (Hs03044127_g1), Hsp70 (Hs00359163_s1), BAX (Hs00180269_m1), 

kidney injury molecule-1 (KIM-1; Mm00506686_m1), MCP-1 (Mm00441242_

m1), macrophage inflammatory protein-1a (MIP1a; Mm00441258_m1), IL-10 

(Mm00439614_m1), TGF-β (Mm01178820_m1), IL-1b (Mm01336189_m1), and 

housekeeping gene HPRT (Mm01545399_m1; all assay on demand primers are 

from: [Applied Biosystems, Foster City, CA]). Results were expressed as copy 

numbers (efficiency-DCT) ratio to HPRT.

Neutrophil gelatinase-associated lipocalin ELISA
Neutrophil gelatinase-associated lipocalin (NGAL) levels were measured in the 

serum of mice that underwent IRI to determine acute kidney injury. Serum samples 

were diluted 10,000x and a mouse NGAL ELISA Kit (BioPorto Diagnostics, Hellerup, 

Denmark) was used according to the manufacturer’s protocol.
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Statistical analysis
Data were analyzed using Prism software v5.04 (GraphPad Software, Inc., La Jolla, 

CA). Unpaired two-tailed t-tests were performed unless otherwise stated. P values 

were indicated as * for P < 0.05; **P for <0.01; and *** for P < 0.001. Two-tailed P 

values are stated.

Results

Heat inactivation of MSC
Human MSC were isolated from subcutaneous adipose tissue. To study the 

contribution of MSC-immune cell cross talk to the immunomodulatory effects of 

MSC, we generated inactivated MSC by heating human MSC for 30 min to 50°C. 

HI-MSC lost their capacity to adhere to plastic, whereas the majority of control 

MSC attached to plastic within 24 h after seeding (Figure 1A). To determine the 

metabolic activity of MSC after heat inactivation, the ability of cells to reduce 

MTT to formazan was measured. Twenty-four hours after heat inactivation, the 

metabolic activity of HI-MSC was not detectable (Figure 1B). The ability of MSC 

to secrete cytokines and growth factors was determined in conditioned medium 

of MSC and HI-MSC cultured for 24 h. Although control MSC secreted IL-8, MCP-

1, VEGF, G-CSF, and very low levels of IL-10, as well as various other cytokines, 

inactivated MSC were incapable of secreting these cytokines (Figure 1C and 

data not shown). To examine whether heat inactivation induced cellular stress 

and apoptosis, we measured mRNA expression of heat shock proteins Hsp27 

and Hsp70 and proapoptotic Bax immediately and 4 h after heat exposure. There 

were no significant differences in expression of these genes between control 

MSC and HI-MSC (Figure 1D), suggesting that HI-MSC are unable to respond to 

environmental stimuli. Moreover, staining with the apoptosis marker Annexin 

V and viability dye 7-AAD demonstrated that there was only minor induction 

of apoptosis in HI-MSC and the membrane integrity of majority of HI-MSC was 

intact as most of the cells were negative for Annexin V and 7-AAD, whereas DMSO-

incubated MSC were 92% positive for Annexin V and 7-AAD (Figure 1E). After 24 h, 

the majority of HI-MSC became positive for Annexin V and 7-AAD (Figure 1E). FACS 

analysis of MSC surface markers CD13, CD73, CD90, and CD105 at 0 and 24 h after 

heat inactivation showed no difference between control and HI-MSC, indicating 

that the immunophenotype of MSC was preserved after heat inactivation (Figure 

1F). All used MSC cultures were negative for pan leukocyte marker CD45 and 

5
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endothelial marker CD31 (Figure 1F). These results demonstrate that heating 

of MSC to 50°C generates MSC that lost metabolic, proliferative, and secretory 

activity, but maintained cellular integrity.

MSC do not recover from heat inactivation
To determine whether the effects of heat inactivation were reversible, human MSC 

were heat inactivated and cultured for 7 days. HI-MSC did not recover their ability 

to attach to plastic within 7 days of culture (Figure 2A). Moreover, the majority 

(96.7%) of HI-MSC became positive for Annexin V and 7-AAD (Figure 2b) and lacked 

the metabolic activity 7 days after heat inactivation (Figure 2C). To determine the 

ability of MSC to proliferate, control MSC and HI-MSC were labeled with PKH26 

and cultured for 7 days. FACS analysis showed dilution of PKH26 dye, indicating 

proliferation of control MSC, whereas HI-MSC lost the ability to proliferate (Figure 

2D). Finally, FACS analysis demonstrated that HI-MSC maintained MSC marker 

expression on their cell surface after 7 days of culture (Figure 2E). Thus, MSC do not 

recover from heat inactivation and HI-MSC provide a useful tool for studying the 

mechanisms of immunomodulation by MSC.

Figure 1. Heat inactivation abolishes human MSC proliferation, metabolic activity, 
and cytokine secretion, but preserves MSC integrity and immunophenotype. 
(A) Plastic adherence of control and HI-MSC 24 h after seeding. (B) Metabolic activity of 
control and HI-MSC was measured 0 and 24 h after heating by the ability of MSC to reduce 
MTT to formazan. Experiments were performed with MSC of seven donors; bars indicate 
mean – SEM. (C) IL-8, MCP-1, VEGF, and G-CSF secretion by control and HI-MSC after 24-h 
culture measured by multiplex assay. Experiments were performed with MSC of five 
donors; bars indicate mean – SEM. (d) Gene expression of heat shock proteins 70 and 27 
and apoptotic activator Bax in control and HI-MSC 0 and 4 h after heating depicted as ratio 
to HPRT. Bars indicate mean – SEM. (E) Representative FACS plots depicting Annexin V and 
7-AAD staining of control and HI-MSC directly and 24 h after heating. DMSO incubation 
(5min) was used as a positive control. (F) FACS plots of cell surface markers on control 
MSC (solid line and percentage top line) and HI-MSC (dotted line and percentage bottom 
line) compared to the unstained control (gray) directly and 24 h after heat incubation. 
FACS experiments were performed three times with MSC from different donors each time. 
7-AAD, 7-amino-actinomycin D; G-CSF, granulocyte colony-stimulating factor; HI-MSC, 
heat-inactivated mesenchymal stem cells; IL, interleukin; MCP-1, monocyte chemotactic 
protein-1; VEGF, vascular endothelial growth factor. P values were indicated as * for P < 
0.05; **P for < 0.01; and *** for P < 0.001.

5
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Figure 2. Heat inactivation-induced changes in MSC are irreversible. MSC were heat 
inactivated for 30 min at 50°C and cultured for 7 days. (A) Plastic adherence ability of 
control and HI-MSC after 7 days of culture 7. (B) Viability of control and HI-MSC after 7 days 
measured by Annexin V and 7-AAD staining. (C) Metabolic activity of control and HI-MSC at 
7 day measured by the ability of MSC to reduce MTT to formazan. Bars indicate mean ± SEM. 
Experiments were performed with MSC from four different donors. (D) Proliferation of HI-
MSC (dotted line and percentage bottom line) and control MSC (solid line and percentage 
top line) was assessed at day 7 by PKH26 label dilution. (E) Representative FACS plots of 
MSC surface markers on HI-MSC (dotted line) and control MSC (solid line) compared to the 
unstained control (gray) on day 7 after heat incubation. FACS experiments were performed 
three times with MSC from different donors each time.
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Control and HI-MSC show the same biodistribution and 
persistence after intravenous infusion and do not migrate to sites 
of inflammation
The biodistribution and persistence of IV-infused control and HI-MSC was 

examined in healthy C57BL/6 mice. To avoid xenoreactivity, these studies were 

performed with syngeneic MSC. C57BL/6 adipose tissue MSC were labeled with 

fluorescent Qtracker 605 beads (control MSC) or Qtracker 655 beads before heat 

inactivation (HI-MSC). The beads were readily taken up by MSC and remained 

present in control MSC for at least 24 h (Figure 3A). HI-MSC stayed intact and 

maintained the beads for at least 24 h as well (Figure 3A). Control and HI-MSC were 

mixed at a 1:1 ratio and a total of 0.3x106 cells was IV injected in healthy C57BL/6 

mice and mice imaged by CryoViz. Two hours after MSC infusion, the majority of 

control MSC were found in the lungs (Figure 3B and Supplementary Video S1). 

After 24 h, there was a >99% reduction in the number of MSC detected (Table 1). 

Interestingly, HI-MSC showed the same distribution pattern as controlMSC (Figure 

3B and Table 1). After 24 h, >99%of HI-MSC was undetectable. To examine whether 

inflammatory tissue injury would provide a trigger for MSC migration, unilateral 

kidney IRI was induced in C57BL/6 mice. Gene expression analysis in healthy and 

injured kidney tissue showed that expression of KIM-1 and MCP-1 was highly 

upregulated in the IRI kidney, confirming the injury and inflammatory state of the 

kidney (Figure 3C). In accordance with this, NGAL, a marker for kidney injury, was 

increased in the serum of mice with kidney injury compared to healthy controls 

(Figure 3D). One hour after induction of IRI, mice were infused with 0.15x106 

labeled control MSC mixed with 0.15x106 HI-MSC. Imaging showed that the 

distribution of control MSC and HI-MSC was the same as in control mice; there was 

no recruitment of either control or HI-MSC to the injured kidney after 2 h (Figure 

3E, Table 1, and Supplementary Video S2). After 24 h, the majority of control and 

Injured Healthy Injured Healthy
kidney kidney kidney kidney

2 hours  - control 150,000 47,186 - 52 150,000 82,082 - 10
24 hours  - control 150,000 210 - 0 150,000 959 - 0
2 hours  - kidney injury 150,000 36,801 126 129 150,000 137,723 17 13
24 hours  - kidney injury 150,000 3134 11 17 150,000 11,32 0 2

HI-MSC: Heat-inactivated mesenchymal stem cells; IRI: ischemia/reperfusion injury

TABLE 1. HEAT-INACTIVATED MESENCHYMAL STEM CELLS SHOW SIMILAR MIGRATION PROPERTIES AS CONTROL 
MESENCHYMAL STEM CELLS

control MSC 

Number of detected MSC recovered in whole animals and in the kidneys 2 and 24 hours after infusion of 150,000 control MSC and 
150,000 HI-MSC in healthy animals and in animals with IRI in the left kidney. 

HI-MSC

Time point - Treatment
Injected Recovered 

total Injected Recovered 
total

5
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Figure 3. Control MSC and HI-MSC distribute in the same way after infusion and do 
not migrate to distant sites of inflammation.
MSC were labeled with fluorescent Qtracker605 beads (control MSC) or Qtracker655 
beads before heat inactivation (HI-MSC) and IV infused in healthy C57BL/6 mice. (A) 
Beads remained visible in MSC and HI-MSC after culturing for 24 h. (B) Visualization of the 
distribution pattern of controlMSC(left) and HI-MSC (right) 2 h after infusion by CryoViz 
imaging. (C) Gene expression of KIM-1 and inflammatory MCP-1 in healthy and injured 
kidneys depicted as ratio to HPRT. (d) NGAL levels were measured with ELISA in the serum 
of LPS or PBS-treated mice. Bars indicate mean ± SEM. (e) CryoViz imaging of control 
MSC (green) and HI-MSC (blue) in a kidney IRI model 2 h after infusion, demonstrating 
the majority of MSC in the lungs. IRI, ischemia/reperfusion injury; IV, intravenously; LPS, 
lipopolysaccharides; KIM-1, kidney injury molecule-1; PBS, phosphate-buffered saline.
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HI-MSC was no longer detectable and there was no recruitment to the injured 

kidney. Control MSC numbers in the healthy and injured kidney were 17 and 11, 

respectively (Table 1). These data indicate that administered MSC do not actively 

migrate to injured kidney and there is no difference in the persistence of control 

MSC and HI-MSC after intravenous infusion.

Control and HI-MSC induce similar immunomodulatory effects 
after infusion in healthy mice
As described previously, MSC induce an immunomodulatory response after 

IV infusion in healthy mice that can be measured both locally in the lungs and 

systematically in the serum [34]. To investigate whether this response is dependent 

on the viability of MSC, we infused 300,000 syngeneic control MSC or HI-MSC or 

PBS as a control into the tail vein of healthy. C57BL/6 mice Control MSC induced 

upregulated gene expression of pro-inflammatory MCP-1, MIP1α, and IL-1b and 

anti-inflammatory IL-10 and TGF-β in lung tissue (Figure 4A). Furthermore, control 

MSC increased serum levels of G-CSF, CXCL1, CXCL5, MCP-1, IL-6, and IL-10 (Figure 

4B). Interestingly, HI-MSC induced very similar changes in circulating cytokine 

levels and cytokine gene expression in the lung (Figure 4A, B). IFN-γ was not 

detected in serum of mice treated with control MSC or HI-MSC (data not shown). 

These data suggest that the immune response observed after MSC infusion does 

not depend on the active immunomodulatory activity of MSC, but is derived from 

other cells that are merely triggered by the presence of exogenously administered 

MSC.

HI-MSC dampen inflammation in an LPS-induced sepsis model
To investigate whether HI-MSC possess some of the anti-inflammatory properties 

that have been reported for control MSC, C57BL/6 mice were given 2.5mg/kg LPS 

to induce nonlethal sepsis, followed by infusion of 300,000 control MSC or HI-

MSC after 1 h. LPS induced a strong increase in serum IFN-γ levels (Figure 5). After 

treatment with control MSC, IFN-γ was significantly decreased. MSC also triggered 

a 18.4-fold increase in serum levels of IL-10 with an average of 14,000 pg/mL. 

TNF-α levels were threefold increased after MSC treatment. Interestingly, HI-MSC 

modulated the LPS-induced immune response in a similar manner as control MSC; 

infusion of HI-MSC significantly decreased levels of IFN-γ and increased IL-10 and 

TNF-α (Figure 5). Thus, without being able to respond to inflammatory stimulation 

and secrete anti-inflammatory factors, HI-MSC modulate LPS-induced immune 

responses in a similar way as control MSC.

5



112

Figure 4. Control and HI-MSC induce the same immunomodulatory effect after 
infusion in healthy mice.
Control MSC (0.3x106 cells), HI-MSC (0.3x106 cells), or PBS was infused IV in healthy 
C57BL/6 mice (n = 15, n = 10, and n = 13 mice, respectively). Animals were sacrificed 2 
h after infusion. (A) Gene expression of MCP-1, MIP1α, IL-10, TGF-b, and IL-1b in the lungs 
depicted as a ratio to HPRT. (B) Serum levels of IL-6, G-CSF, CXCL1, CXCL5, MCP-1, and IL-
10 were determined with Multiplex assay. Bars indicate mean – SEM. MIP1a, macrophage 
inflammatory protein-1a; TGF-b, transforming growth factor beta. P values were indicated 
as * for P < 0.05; **P for < 0.01; and *** for P < 0.001.
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HI-MSC do not inhibit T-cell proliferation
To determine how HI-MSC modulate immune responses, we examined the 

interaction between HI-MSC and different immune cell subsets in vitro. 

Traditionally, MSC have been demonstrated to have potent inhibitory effects 

on T-cell proliferation. Thereto, the effect of HI-MSC on T-cell proliferation was 

examined in mixed lymphocyte reactions. In the absence of MSC, a strong 

proliferative activity of allogeneic stimulated T cells was measured (Figure 6A). 

Coculture with third-party MSC inhibited T-cell proliferation in a dose-dependent 

manner. In contrast, HI-MSC did not inhibit T-cell proliferation (Figure 6A, B). At 

a ratio of 1:2.5, control MSC inhibited T-cell proliferation by 36.7% (±SD 14.1), 

whereas HI-MSC even stimulated T-cell proliferation (-5.5% inhibition, ±SD 12.3) 

(Supplementary Table 1). These data indicate that HI-MSC are not able to suppress 

T-cell proliferation.

HI-MSC do not induce regulatory B-cell formation
To examine whether HI-MSC are able to induce formation of IL-10-producing 

transitional B cells, as previously demonstrated for control MSC [39], control and 

HI-MSC were cocultured with quiescent B cells obtained from human splenocytes. 

Figure 5 HI-MSC dampen inflammation in an LPS-induced sepsis model.
C57BL/6 mice received 2.5 mg/kg LPS 1 h before treatment with control MSC (0.3 · 106 
cells), HI-MSC (0.3 · 106 cells), or PBS (n = 12, n = 9, and n = 11 mice, respectively). Control 
animals (n = 4) did not receive LPS. Animals were sacrificed 6 h after infusion of LPS. Levels 
of IFN-γ, IL-10, and TNF-α were determined by Multiplex assay. Bars indicate mean – SEM. 
IFN-g, interferon gamma; TNF-α, tumor necrosis factor alpha. P values were indicated as * 
for P < 0.05; **P for < 0.01; and *** for P <0.001.

5



Figure 6 HI-MSC modulate monocyte function.
(A) T-cell proliferation was assessed through measurement of CFSE label dilution in an MLR 
with or without control MSC or HI-MSC at a 1:2.5 ratio. Representative histograms shown. 
Solid histograms represent unstimulated T cells. (B) Average inhibition of T-cell proliferation 
by control and HI-MSC in an MLR of 4 different experiments. Bars indicate mean – SEM. (C) 
Effect of control MSC and HI-MSC on the induction of IL-10-producing B cells. B cells were 
stimulated with anti-IgM, anti-CD40, and IL-2 and MSC added at a 1:5 ratio. IL-10 levels in 
supernatants were measured by ELISA. Bars indicate mean – SEM. (d) Effect of control MSC 
and HI-MSC on CD14+ monocytes. MSC were cocultured with CD14+ monocytes at a 1:1 
ratio and after 24 h, 100 ng/mL LPS was added. TNF-a levels were measured by ELISA. Bars 
indicate mean – SEM. CFSE, carboxyfluorescein succinimidyl ester; MLR, mixed lymphocyte 
reaction. P values were indicated as * for P < 0.05; **P for < 0.01; and *** for P < 0.001.
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B cells were activated by anti-IgM, anti-CD40 agonistic antibody, and IL-2. In 

contrast to control MSC, HI-MSC did not induce IL-10-producing regulatory B cells 

(Figure 6C).

HI-MSC modulate monocyte function
To determine whether the observed immunomodulatory effects of HI-MSC were 

mediated by monocytes, CD14+ monocytes were isolated from PBMC. Monocytes 

were cocultured with control and HI-MSC for 18 h. After 18 h, LPS was added to 

stimulate TNF-α secretion by monocytes. Control MSC significantly decreased LPS-

induced TNF-α production by monocytes (Figure 6D). Interestingly, monocytes 

cocultured with HI-MSC also produced significantly less TNF-α in response to 

LPS (Figure 6D). These results demonstrate that HI-MSC can modulate monocyte 

function and indicate that in vivo immunomodulating effects of HI-MSC may be 

mediated by monocytes.

Discussion

MSC are widely studied as a potential treatment option for a range of immune 

disorders. However, surprisingly, little is known about the mechanisms of 

immunomodulation by MSC after infusion. It is generally considered that the 

in vitro immunomodulatory effects of MSC translate to their effects after in 

vivo administration and MSC thus play an active role in immunomodulatory 

processes by responding to inflammatory challenge with the production of anti-

inflammatory factors. In this study, we demonstrate that MSC that are unable to 

respond to inflammatory stimulation or secrete anti-inflammatory factors are 

effective in vivo immune modulators. 

One of the controversies in the field of MSC is the effects mediated by secreted 

molecules versus those mediated by cell membrane contact. Secreted molecules 

can easily be studied using a transwell system and then contact-dependent 

effects are inferred. However, directly demonstrating the effects of membrane 

contact, separate from secreted molecules, has not been possible. We have 

developed a system to specifically assess the role of the MSC surface membrane. 

By heat inactivating MSC, the cells have ceased normal function, but the plasma 

membrane remains intact. Hence, the cell has become a “bag” of cytoplasm. 

This model affords the opportunity to specifically investigate the role of MSC 

membrane contact without the possibility of confounding effects due to secreted 
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molecules. While HI-MSC are on a course to overt cell death, they remain intact 

during the time frame of our assays, validating our experimental model to assess 

the role of the membrane. 

Up to now, the disease-modulating activity of MSC was credited primarily to the 

secretion of anti-inflammatory factors. In vitro lymphocyte proliferation assays in 

transwell culture systems or with MSC-conditioned medium demonstrate that the 

suppression of T-cell proliferation is to a large extent dependent on soluble factors 

[23,26,40]. Moreover, the MSC conditioned medium has been shown to enhance 

ischemic cardiomyocyte recovery in vitro and limit infarct size in rat hearts [41], and 

offers protection against acute kidney injury [42]. Our data confirm that the ability 

of MSC to respond to inflammatory stimulation and secrete anti-inflammatory 

factors is instrumental for the suppression of T-cell proliferation and induction of 

regulatory B cells in vitro. Our data, however, also demonstrate that the in vivo 

immunomodulatory effects of MSC depend on very different mechanisms. HI-MSC 

were equally efficient as control MSC in modulating the LPS induced inflammatory 

response. This demonstrates that the observed immunomodulatory effects of 

MSC were independent of soluble factors. Furthermore, it demonstrates that MSC 

do not have to be able to respond to environmental challenges to mediate their 

effects. In contrast, it suggests that other cells can obtain immunomodulatory 

properties merely by encounter with MSC. 

This study contributes to understanding the in vivo immunomodulatory effect 

of MSC by suggesting that MSC act as a fast trigger for immunomodulation, 

which is subsequently carried on by other cells. Other groups have already 

indicated that macrophages may play a role in the immunomodulatory effect 

of MSC. Phagocytosis of dead MSC by macrophages has been demonstrated to 

induce an immunosuppressive phenotype [43]. Nemeth et al. have shown that 

the therapeutic effects of MSC in a sepsis model depend on reprogramming  

of macrophages to release lower amounts of TNF-α and increased amounts of  

IL-10 by MSC-produced PGE2 [44]. Our data demonstrated that control as well as 

inactivated MSC dramatically increased systemic IL-10 levels in LPS-induced sepsis 

mice. In coculture experiments, control MSC did not induce IL-10 production by 

LPS activated monocytes, whereas inactivated MSC marginally increased IL-10 

production (data not shown). In this setup, however, TNF-levels were significantly 

decreased, suggesting that monocytes are able to adapt their function in response 

to inert MSC and may carry on some of the immunosuppressive effects of MSC 

after infusion. 
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A recurring matter of concern in the field of MSC therapy is the short half-life of 

MSC after infusion [31,45]. Furthermore, there is debate about the ability and 

necessity of MSC to migrate to sites of inflammation. In this study, we investigated 

the persistence and distribution of MSC after infusion by CryoViz imaging of whole 

mice and compared it with HI-MSC. We found no difference in the distribution of 

HI-MSC and control MSC in mice with unilateral kidney IRI, indicating that MSC are 

distributed by passive mechanisms. Less than 10% of the administered control or 

HI-MSC were detected 24 h after administration. As the labeling beads can only 

be detected by the CryoViz imaging system when they are concentrated in the 

MSC, the loss of signal indicates that MSC either fell apart or were phagocytosed 

by host cells. In conclusion, we show that HI-MSC induce immunomodulatory 

responses in vivo. These responses are similar to those induced by control MSC. 

This indicates that at least part of the immune modulatory response induced 

by MSC is independent on activation of MSC by inflammatory challenge and 

subsequent production of anti-inflammatory factors. Instead, passive interactions 

with host cells, potentially monocytes, are likely to mediate these effects. This has 

implications for the development of MSC immune therapy. First, it suggests that 

MSC surface phenotype is determinative of the clinical effect of MSC. Second, 

the possibility to use inactivated cells could reduce recurring concerns about 

the stability of therapeutic MSC. Finally, understanding the immunomodulatory 

mechanisms of MSC provides tools for the development of effective MSC immune 

therapy by allowing the induction of key properties of MSC to generate optimal 

effective cells.

References 

1.  Pittenger MF, AM Mackay, SC Beck, RK Jaiswal, R Douglas, JD Mosca, MA Moorman, 

DW Simonetti, S Craig and DR Marshak. Multilineage potential of adult human 

mesenchymal stem cells. Science 284:143–147 (1999).

2.  Gonzalez MA, E Gonzalez-Rey, L Rico, D Buscher and M Delgado. Adipose-derived 

mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and 

autoimmune responses. Gastroenterology 136:978–989 (2009).

3.  Constantin G, S Marconi, B Rossi, S Angiari, L Calderan, E Anghileri, B Gini, SD Bach, 

M Martinello, et al. Adipose-derived mesenchymal stem cells ameliorate chronic 

experimental autoimmune encephalomyelitis. Stem Cells 27:2624–2635 (2009).

5



118

4.  Popp FC, E Eggenhofer, P Renner, P Slowik, SA Lang, H Kaspar, EK Geissler, P Piso, 

HJ Schlitt and MH Dahlke. Mesenchymal stem cells can induce long-term acceptance 

of solid organ allografts in synergy with low-dose mycophenolate. Transpl Immunol 

20:55–60 (2008).

5.  Roemeling-van Rhijn M, M Khairoun, SS Korevaar, E Lievers, DG Leuning, JN 

Ijzermans, MG Betjes, PG Genever, C van Kooten, et al. Human bone marrow- and 

adipose tissue-derived mesenchymal stromal cells are immunosuppressive and in a 

humanized allograft rejection model. J Stem Cell Res Ther Suppl 6:20780 (2013).

6.  Gonzalez-Rey E, P Anderson, MA Gonzalez, L Rico, D Buscher and M Delgado. 

Human adult stem cells derived from adipose tissue protect against experimental 

colitis and sepsis. Gut 58:929–939 (2009).

7.  Augello A, R Tasso, SM Negrini, R Cancedda and G Pennesi. Cell therapy using 

allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-

induced arthritis. Arthritis Rheum 56:1175–1186 (2007).

8.  Tobin LM, ME Healy, K English and BP Mahon. Human mesenchymal stem cells 

suppress donor CD4(+) T cell proliferation and reduce pathology in a humanized mouse 

model of acute graft-versus-host disease. Clin Exp Immunol 172:333–348 (2013).

9.  Joo SY, KA Cho, YJ Jung, HS Kim, SY Park, YB Choi, KM Hong, SY Woo, JY Seoh, SJ Cho 

and KH Ryu. Mesenchymal stromal cells inhibit graft-versus-host disease of mice in a 

dose-dependent manner. Cytotherapy 12:361–370 (2010).

10.  Le Blanc K, F Frassoni, L Ball, F Locatelli, H Roelofs, I Lewis, E Lanino, B Sundberg, 

ME Bernardo, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, 

acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586 (2008).

11.  Bernardo ME, LM Ball, AM Cometa, H Roelofs, M Zecca, MA Avanzini, A Bertaina, 

L Vinti, A Lankester, et al. Co-infusion of ex vivo-expanded, parental MSCs prevents 

life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric 

patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow 

Transplant 46:200–207 (2011).

12.  Hu J, X Yu, Z Wang, F Wang, L Wang, H Gao, Y Chen, W Zhao, Z Jia, S Yan and Y Wang. 

Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem 

cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr J 60:347–

357 (2013).

13.  Forbes GM, MJ Sturm, RW Leong, MP Sparrow, D Segarajasingam, AG Cummins,  

M Phillips and RP Herrmann. A phase 2 study of allogeneic mesenchymal stromal cells 

for luminal Crohn’s disease refractory to biologic therapy. Clin Gastroenterol Hepatol 

12:64–71 (2014).



119

14.  Wang D, H Zhang, J Liang, X Li, X Feng, H Wang, B Hua, B Liu, L Lu, et al. Allogeneic 

mesenchymal stem cell transplantation in severe and refractory systemic lupus 

erythematosus: 4 years of experience. Cell Transplant 22:2267–2277 (2013).

15.  Franquesa M, MJ Hoogduijn, ME Reinders, E Eggenhofer, AU Engela, FK Mensah, 

J Torras, A Pileggi, C van Kooten, et al. Mesenchymal stem cells in solid organ 

transplantation (MiSOT) fourth meeting: lessons learned from first clinical trials. 

Transplantation 96:234–238 (2013).

16.  Luk F, SF de Witte, WM Bramer, CC Baan and MJ Hoogduijn. Efficacy of 

immunotherapy with mesenchymal stem cells in man: a systematic review. Expert Rev 

Clin Immunol 11:617–636 (2015).

17.  Munneke JM, MJ Spruit, AS Cornelissen, V van Hoeven, C Voermans and  

MD Hazenberg. The potential of mesenchymal stromal cells as treatment for severe 

steroidrefractory acute graft-versus-host disease: a critical review of the literature. 

Transplantation 11:2309-2314 (2016).

18.  Jin SZ, BR Liu, J Xu, FL Gao, ZJ Hu, XH Wang, FH Pei, Y Hong, HY Hu and MZ Han. Ex 

vivo-expanded bone marrow stem cells home to the liver and ameliorate functional 

recovery in a mouse model of acute hepatic injury. Hepatobiliary Pancreat Dis Int 

11:66–73 (2012).

19.  Assis AC, JL Carvalho, BA Jacoby, RL Ferreira, P Castanheira, SO Diniz, VN Cardoso, 

AM Goes and AJ Ferreira. Time-dependent migration of systemically delivered bone 

marrow mesenchymal stem cells to the infarcted heart. Cell Transplant 19:219–230. 

(2010).

20.  Barbash IM, P Chouraqui, J Baron, MS Feinberg, S Etzion, A Tessone, L Miller,  

E Guetta, D Zipori, LH Kedes, RA Kloner and J Leor. Systemic delivery of bone marrow-

derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, 

and body distribution. Circulation 108:863–868 (2003).

21.  Eggenhofer E, F Luk, MH Dahlke and MJ Hoogduijn. The life and fate of mesenchymal 

stem cells. Front Immunol 5:148 (2014).

22.  Waterman RS, SL Tomchuck, SL Henkle and AM Betancourt. A new mesenchymal 

stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an 

immunosuppressive MSC2 phenotype. PLoS One 5:e10088 (2010).

23.  Di Nicola M, C Carlo-Stella, M Magni, M Milanesi, PD Longoni, P Matteucci,  

S Grisanti and AM Gianni. Human bone marrow stromal cells suppress T-lymphocyte 

proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843 

(2002).

5



120

24.  Groh ME, B Maitra, E Szekely and ON Koc. Human mesenchymal stem cells require 

monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 33:928–

934 (2005).

25.  Spaggiari GM, A Capobianco, H Abdelrazik, F Becchetti, MC Mingari and L Moretta. 

Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and 

cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 

111:1327–1333 (2008).

26.  Hsu WT, CH Lin, BL Chiang, HY Jui, KK Wu and CM Lee. Prostaglandin E2 potentiates 

mesenchymal stem cell induced IL-10+IFN-γamma+CD4+ regulatory T cells to control 

transplant arteriosclerosis. J Immunol 190:2372–2380 (2013).

27.  Liang C, SL Chen,M Wang, WJ Zhai, Z Zhou, AM Pang, SZ Feng and MZ Han. 

Synergistic immunomodulatory effects of interferon-gamma and bone marrow 

mesenchymal stem cells. Zhonghua Xue Ye Xue Za Zhi 34:213–216 (2013).

28. Gu YZ, Q Xue, YJ Chen, GH Yu, MD Qing, Y Shen, MY Wang, Q Shi and XG Zhang. 

(2013). Different roles of PD-L1 and FasL in immunomodulation mediated by human 

placenta derived mesenchymal stem cells. Hum Immunol 74:267–276.

29.  Luz-Crawford P, D Noel, X Fernandez, M Khoury, F Figueroa, F Carrion, C Jorgensen 

and F Djouad. Mesenchymal stem cells repress Th17 molecular program through the 

PD-1 pathway. PLoS One 7:e45272 (2012).

30.  Caplan AI and D Correa. The MSC: an injury drugstore. Cell Stem Cell 9:1115 (2011).

31.  Eggenhofer E,V Benseler, AK roemer, FC Popp,EKGeissler, HJ Schlitt, CC Baan,  

MH Dahlke and MJ Hoogduijn. Mesenchymal stem cells are short-lived and do not 

migrate beyond the lungs after intravenous infusion. Front Immunol 3:297 (2012).

32.  Schrepfer S, T Deuse, H Reichenspurner, MP Fischbein, RC Robbins and MP Pelletier. 

Stem cell transplantation: the lung barrier. Transplant Proc 39:573–576 (2007).

33.  Ben-Mordechai T, R Holbova, N Landa-Rouben, T Harel-Adar, MS Feinberg, 

I Abd Elrahman, G Blum, FH Epstein, Z Silman, S Cohen and J Leor. Macrophage 

subpopulations are essential for infarct repair with and without stem cell therapy. J Am 

Coll Cardiol 62:1890–1901 (2013).

34.  Hoogduijn MJ, M Roemeling-van Rhijn, AU Engela, SS Korevaar, FK Mensah,  

M Franquesa, RW de Bruin, MG Betjes, W Weimar and CC Baan. Mesenchymal stem 

cells induce an inflammatory response after intravenous infusion. Stem Cells Dev 

22:2825–2835 (2013).

35.  Roemeling-van Rhijn M, ME Reinders, A de Klein, H Douben, SS Korevaar,  

FK Mensah, FJ Dor, JN IJzermans, MG Betjes, et al. Mesenchymal stem cells derived 

from adipose tissue are not affected by renal disease. Kidney Int 82:748–758 (2012).



121

36.  Hoogduijn MJ, MJ Crop, AM Peeters, GJ Van Osch, AH Balk, JN Ijzermans, W Weimar 

and CC Baan. Human heart, spleen, and perirenal fat-derived mesenchymal stem cells 

have immunomodulatory capacities. Stem Cells Dev 16:597–604 (2007).

37.  Soleimani M and S Nadri. A protocol for isolation and culture of mesenchymal stem 

cells from mouse bone marrow. Nat Protoc 4:102–106 (2009).

38.  Mitchell JR, M Verweij, K Brand, M van de Ven, N Goemaere, S van den Engel, T Chu, 

F Forrer, C Muller, et al. Short-term dietary restriction and fasting precondition against 

ischemia reperfusion injury in mice. Aging Cell 9:40–53 (2010)

39.  Franquesa M, FK Mensah, R Huizinga, T Strini, L Boon, E Lombardo, O DelaRosa, 

JD Laman, JMGrinyo, et al. Human adipose tissue-derived mesenchymal stem cells 

abrogate plasmablast formation and induce regulatory B cells independently of  

T helper cells. Stem Cells 33:880–891 (2015).

40.  Yang SH, MJ Park, IH Yoon, SY Kim, SH Hong, JY Shin, HY Nam, YH Kim, B Kim and  

CG Park. Soluble mediators from mesenchymal stem cells suppress T cell proliferation 

by inducing IL-10. Exp Mol Med 41:315–324 (2009).

41.  Gnecchi M, H He, N Noiseux, OD Liang, L Zhang, F Morello, H Mu, LG Melo, RE Pratt, 

JS Ingwall and VJ Dzau. Evidence supporting paracrine hypothesis for Akt-modified 

mesenchymal stem cell-mediated cardiac protection and functional improvement. 

FASEB J 20:661–669 (2006).

42.  Bi B, R Schmitt, M Israilova, H Nishio and LG Cantley. Stromal cells protect against 

acute tubular injury via an endocrine effect. J Am Soc Nephrol 18:2486– 2496 (2007).

43.  Lu W, C Fu, L Song, Y Yao, X Zhang, Z Chen, Y Li, G Ma and C Shen. Exposure to 

supernatants of macrophages that phagocytized dead mesenchymal stem cells 

improves hypoxic cardiomyocytes survival. Int J Cardiol 165:333–340 (2013).

44.  Nemeth K, A Leelahavanichkul, PS Yuen, B Mayer, A Parmelee, K Doi, PG Robey,  

K Leelahavanichkul, BH Koller, et al. Bone marrow stromal cells attenuate sepsis via 

prostaglandin E(2)-dependent reprogramming of host macrophages to increase their 

interleukin-10 production. NatMed 15:42–49 (2009).

45. Liu XB, H Chen, HQ Chen, MF Zhu, XY Hu, YP Wang, Z Jiang, YC Xu, MX Xiang and  

JA Wang. Angiopoietin-1 preconditioning enhances survival and functional recovery 

of mesenchymal stem cell transplantation. J Zhejiang Univ Sci B 13:616–623 (2012).

5



122



123

6

Chapter 6
Immunomodulation Induced 
by Mesenchymal Stem Cells 
(MSC) is Triggered through 
Phagocytosis of MSC by Innate 
Immune Cells

Samantha F.H. de Witte1*, Franka Luk1*, Jesus M. Sierra Parraga1, Madhu Gargesha2, 

Ana Merino1, Sander S. Korevaar1, Anusha S. Shankar1, Lisa O’Flynn3, Steve J. 

Elliman3, Debashish Roy2, Michiel G.H. Betjes1, Philip N. Newsome4-6, Carla C. Baan1 

and Martin J. Hoogduijn1

1  Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, 

Rotterdam, The the Netherlands
2  BioInVision Inc., Mayfield Village, OH, USA; 
3  Orbsen Therapeutics Ltd., Galway, Ireland; 
4  National Institute for Health Research Liver Biomedical Research Unit at University 

Hospitals Birmingham NHS Foundation Trust and the University of Birmingham; 
5  Centre for Liver Research, Institute of Immunology and Immunotherapy, University 

of Birmingham; 6Liver Unit, University Hospitals Birmingham NHS Foundation 

Trust, Birmingham

*  Franka Luk and Samantha F.H. de Witte contributed equally to this study

Stem Cells. 2018, 36:602–615



124

Abstract 

Mesenchymal stem or stromal cells (MSC) are under investigation as a potential 

immunotherapy. MSC are usually administered via intravenous infusion, after 

which they are trapped in the lungs and die and disappear within a day. The fate 

of MSC after their disappearance from the lungs is unknown and it is unclear 

how MSC realize their immunomodulatory effects in their short lifespan. We 

examined immunological mechanisms determining the fate of infused MSC and 

the immunomodulatory response associated with it. Tracking viable and dead 

human umbilical cord MSC (ucMSC) in mice using Qtracker beads (contained 

in viable cells) and Hoechst33342 (staining all cells) revealed that viable ucMSC 

were present in the lungs immediately after infusion. Twenty-four hours later, the 

majority of ucMSC were dead and found in the lungs and liver where they were 

contained in monocytic cells of predominantly non-classical Ly6Clow phenotype. 

Monocytes containing ucMSC were also detected systemically. In vitro experiments 

confirmed that human CD14++/CD16- classical monocytes polarized toward a 

non-classical CD14++CD16+CD206+ phenotype after phagocytosis of ucMSC 

and expressed programmed death ligand-1 and IL-10, while TNF-α was reduced. 

ucMSC-primed monocytes induced Foxp3+ regulatory T cell formation in mixed 

lymphocyte reactions. These results demonstrate that infused MSC are rapidly 

phagocytosed by monocytes, which subsequently migrate from the lungs to other 

body sites. Phagocytosis of ucMSC induces phenotypical and functional changes 

in monocytes, which subsequently modulate cells of the adaptive immune system. 

It can be concluded that monocytes play a crucial role in mediating, distributing, 

and transferring the immunomodulatory effect of MSC.  

Introduction

Mesenchymal stem or stromal cells (MSC) are currently being investigated in various 

animal models [1-7] and clinical trials [8-13] for their immunotherapeutic potential. 

Around 700 clinical trials with MSC were registered with clinicaltrials.gov in early 

2017. The in vitro immunomodulatory properties of MSC are well documented, 

but their mechanism of action after administration is largely unknown [14]. 

Administration of MSC is most commonly performed via intravenous infusion, 

after which they are known to end up in the micro-vasculature of the lungs from 

where the majority are lost within 24 hours [15]. The assumed short survival of 
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MSC does not appear to interfere with their effectiveness, as beneficial effects  

of MSC are seen in a variety of settings long after the cells have been cleared 

[12, 16-21]. Yet, how MSC modulate the host immune system during their short 

lifespan is still unclear.

Recently, we observed that inactivation of MSC in which their immunophenotype 

remained intact while their secretome and active crosstalk with immune cells was 

disabled, retained the cells’ immunomodulatory capacity in a lipopolysaccharide 

sepsis model [22]. In this model, the therapeutic effect of MSC appears to be 

independent of their cellular activity and depends on a mechanism potentially 

involving recognition and phagocytosis of MSC by monocytic cells [22, 23].

Monocytes can induce long-term adaptive immune responses upon 

differentiation into macrophages; moreover, in vitro studies have shown that MSC 

stimulate monocytes to adapt an anti-inflammatory IL-10 producing phenotype 

[24, 25]. In addition, we have recently shown that membrane particles that were 

generated from MSC are able to modulate the immune response by targeting pro-

inflammatory monocytes and inducing apoptosis [26]. Furthermore, intravenous 

administration of MSC has been shown to lead to the induction of regulatory 

monocytes that are capable of suppressing allo- and autoimmune responses 

independently of regulatory T cells (Tregs) [27].

In the present study, we elucidated the fate of infused MSC and their 

immunomodulatory effects after administration and demonstrated that infused 

MSC are rapidly cleared through phagocytosis by monocytes. This results in the 

polarization of monocytes toward an immunosuppressive phenotype, which 

then impacts on adaptive immune cells. Moreover, MSC-activated monocytes 

relocate via the systemic route to other body sites, in particular to the liver, thereby 

distributing their adapted immune status. This suggests that at least part of the 

immunomodulatory response seen after infusion of MSC is independent of the 

cellular activity of MSC.  

Methods 

Culture expansion of ucMSC
Human umbilical cord tissue was collected from Caesarean section deliveries 

by Tissue Solutions Ltd. (Glasgow, U.K.) from healthy donors without known 

active viral infections. All cord tissue was obtained according to the legal and 

6



126

ethical requirements of the country of collection, with the approval of an ethics 

committee (or similar body) and with anonymous consent from the donor. 

Isolation of CD362+ ucMSC was performed as previously described by de Witte 

et al. [28, 29]. After isolation, cells were counted, seeded for expansion and 

cryopreserved at passage 2 for shipment to Erasmus Medical Center. Here, ucMSC 

were cultured in minimum essential medium Eagle alpha modification (Sigma-

Aldrich, St Louis, MO) containing 2 mM l-glutamine (Lonza, Verviers, Belgium), 1% 

penicillin/streptomycin solution (P/S; 100 IU/ml penicillin, 100 IU/ml streptomycin; 

Lonza) and supplemented with 15% fetal bovine serum (FBS; Lonza) and 1 ng/ml 

basic fibroblast growth factor (Sigma-Aldrich) and kept at 37°C, 5% CO2 and air O2. 

The medium was refreshed once a week and ucMSC were passaged using 0.05% 

trypsin-EDTA (Life technologies, Paisley, U.K.) at ~80%–90% confluence. UcMSC 

were used in experiments between passage 3 and 6. 

Generation of Conditioned Medium 
For the generation of conditioned medium from ucMSC, 100,000 ucMSC were 

seeded per 6 wells plate well in 2 ml of standard culture medium. Medium was 

refreshed the following day. UcMSC were cultured for 3 days in the same medium, 

whereafter medium was collected and centrifuged for 10 minutes at 3,000 RPM to 

remove cell debris and stored at −80°C until further use.

Labeling ucMSC with Qtracker 605 beads, Hoechst33342 and 
PKH26
For in vivo tracking experiments of viable and dead cells using CryoViz imaging, 

ucMSC were dual labeled with Qtracker 605 beads (Life technologies) and 

Hoechst33342 (ThermoFisher, Bleiswijk, The Netherlands) as these labels were 

properly detected by the available detectors. UcMSC were labeled with Qtracker 

605 beads according the manufacturer’s instructions. Qtracker beads are actively 

taken up and contained within viable cells, while they disperse when cells die 

(Supporting Information Figure S1). After labeling, ucMSC were thoroughly 

washed to remove any beads that were not internalized. Subsequently, ucMSC 

were incubated with Hoechst33342 (1 µg/ml), which binds to DNA and remains 

bound even after cells die. For monocyte phagocytosis experiments, ucMSC were 

labeled with the membrane dye PKH26 (PKH26 Red Fluorescent Cell Linker Kit, 

Sigma-Aldrich, Zwijndrecht, The Netherlands) according to the manufacturer’s 

instructions.
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Mice
Healthy male C57BL/6 mice (8 weeks old) were purchased from Charles River, 

(Freiburg, Germany). The mice had free access to food and water and were kept 

at a 12-hour light-dark cycle. Animal housing conditions and all procedures 

were carried out in strict accordance with current EU legislation on animal 

experimentation. All procedures were approved by the Institutional Committee 

for Animal Research (protocol EMC No. 127-12-14).

Cell tracking by CryoViz imaging
Healthy male C57BL/6 mice were infused with ucMSC [150,000 ucMSC/200 μl 

phosphate buffered saline (PBS)] that were dual labeled with Qtracker 605 beads 

and Hoechst33342 via tail vein injections. Five minutes, 24 and 72 hours after 

ucMSC infusion, the mice were euthanized with carbon dioxide. Subsequently, 

whole mice were embedded in mounting medium for Cryotomy (O.C.T. 

compound, VWR Chemical, Amsterdam, The Netherlands), frozen in liquid nitrogen 

and stored at −80°C until shipment to BioInVision, OH, for imaging. At BioInVision 

3D anatomical and molecular fluorescence videos were generated with CryoViz 

technology. The signals of Qtracker 605 beads and Hoechst33342are spectrally 

separated from each other. Hence, a combination of hardware (optical filters) and 

software (machine learning based cell detector) was used to differentiate between 

them. UcMSC positive for Qtracker605 beads were detected by the fluorescent 

signal that arises from clustered beads present in viable cells. Non-viable ucMSC 

are not capable of containing the beads intracellular and as a consequence the 

beads will disperse and the signal may no longer be picked up. Hoechst33342, in 

contrast, is present in viable and dead cells, but its signal is not detected in live 

ucMSC as the Qtracker605 signal outshines the Hoechst33342 signal. As a result, 

the Hoechst33342 signal is detected only in dead ucMSC. Cell counts for Qtracker 

605 positive cells (live ucMSC) and Hoechst33342 positive cells (dead ucMSC) were 

quantified using imaging algorithms by BioInVision Inc.

Detection of ucMSC phagocytosis by monocytes in vivo 
The mice were infused via the tail vein with PKH26-labeled ucMSC (150,000 

ucMSC/200 ul PBS). Twentyfour hours after the ucMSC infusion, the mice were 

sacrificed by cervical dislocation and the lungs, blood, and liver were harvested. 

The lungs and livers were digested by collagenase type IV (0.5 mg/ml, Life 

Technologies, Paisley, U.K.) for 30 minutes at 37°C to obtain a single cell suspension. 
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Red blood cells were lysed with red blood cell lysis buffer (ThermoFisher) and the 

cells suspensions were then washed with FACS buffer (PBS ± 0.1% BSA +0.1% 

sodium azide). Single cell suspensions of lung tissue and heparinized whole 

blood (100 μl) were stained for CD11b-APC, Ly6C-Bv450BD (both BD Biosciences, 

San Jose, CA), CD45-Pe-Cy7, CX3CR1-PERCPCy5.5 (all Biolegend) and lung cells 

were stained in addition for CD68-PE (Biolegend) for 30 minutes at 4°C. The 

blood samples were subsequently lysed for 10 minutes with Lyse/Fix buffer (BD 

Biosciences) and washed twice with FACS buffer. Liver samples were stained for 

CD11b-APC, Ly6C-Bv450, CD45-Pe-Cy7, and CLEC4F-PE (kindly provided by Xifeng 

Yang, Biolegend) for 30 minutes at 4°C. Samples were then washed with FACS 

buffer and measured on a FACSCanto II flow cytometer.

Detection of phagocytosis of ucMSC by human immune cells 
Human peripheral blood samples were collected from healthy volunteers. 50,000 

PKH26-labeled ucMSC were added to 200 µl whole blood for 1, 4, and 24 hours 

in polypropylene tubes at 37°C, 5% CO2 and air O2. In addition, peripheral 

blood mononuclear cells (PBMC) were isolated from blood by density gradient 

centrifugation using Ficoll-Paque (GE healthcare). Monocytes were isolated from 

PBMC via the positive selection of CD14+ cells by MACS using CD14 microbeads 

(Miltenyi, Bergisch Gladbach, Germany), according to the manufacturer’s 

recommendations. Subsequently, 200,000 monocytes were co-cultured with 

50,000 PKH26-labeled ucMSC for 1, 4, and 24 hours in polypropylene tubes in RPMI 

medium supplemented with 2 mM l-glutamine, 1% P/S and 10% heat-inactivated 

FBS at 37°C, 5% CO2 and air O2.

Whole-blood or isolated monocytes incubated with ucMSC were stained for 

CD14-Pacific Blue (BD Biosciences), CD15-FITC (BD Biosciences) and CD45-APC 

(BD Biosciences) or CD14-Pacific Blue (BD Biosciences), CD16-FITC (Bio-Rad, The 

Netherlands), CD90-APC (BD Biosciences), HLA-DR-Amcyan (BD Biosciences), PD-

L1-PeCy7 (BD Biosciences), CD206-Pacific Blue (BD Biosciences), CD163-FITC (Bio-

rad antibodies), and Via-Probe (BD Biosciences) respectively, for 30 minutes at 4°C. 

Whole-blood samples were then fixed and red blood cells lysed for 10 minutes 

at 4°C with BD FACS Lysing solution (BD Biosciences). Samples were washed 

and measured on a FACSCanto II flow cytometer with FACSDiva software (BD 

Biosciences).
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Detection of Monocyte Phenotype Shift due to Phagocytosis 
ucMSC or Cytokines Secreted By ucMSC 
CD14+ selected monocytes were cultured in 50% ucMSC conditioned medium 

or co-cultured with ucMSC at a 4:1 ratio in standard culture medium for 24 hours. 

Subsequently, samples were stained for CD45-APC, CD14-Pacific Blue and CD16-

FITC or CD90-APC (BD Biosciences), PD-L1-PeCy7, CD206-Pacific Blue and CD163-

FITC, for 30 minutes at 4°C. Samples were washed and measured on a FACSCanto II 

flow cytometer with FACSDiva software (BD Biosciences).

Confocal microscopy imaging of ucMSC phagocytosis by 
monocytes 
Monocytes were isolated from PBMC via positive selection of CD14+ cells as 

described above and labeled with PKH67 (PKH67 Green Fluorescent Cell Linker 

Kit, Sigma-Aldrich) for 10 minutes at 37°C. The monocytes were cultured at 37°C 

on gelatin-coated glass slides for 1 and 16 hours in the presence of PKH26 labeled 

ucMSC at a 1:4 ratio (ucMSC:monocytes) in RPMI medium supplemented with 

2 mM l-glutamine, 1% P/S and 10% heat-inactivated FBS. As a negative control, 

monocytes were co-cultured with ucMSC for 16 hours at 4°C.

Confocal microscopy analysis of phagocytosis of PKH26-labeled ucMSC by 

monocytes was carried out on a Leica TCS SP5 confocal microscope (Leica 

Microsystems B.V., Eindhoven, The Netherlands) equipped with Leica Application 

Suite – Advanced Fluorescence software, DPSS 561 nm lasers, using a ×60 (1.4 

NA oil) objective. The microscope was equipped with a temperature-controlled 

incubator (incubator settings: 37°C and 5% CO2). Images were processed using 

ImageJ 1.48 (National Institutes of Health, Washington).

Addition of ucMSC Primed Monocytes to Mixed Lymphocyte 
Reaction (MLR) 
CD14+ monocytes were isolated from PBMC via MACS separation as described 

above. To prime CD14+ monocytes, the cells were co-cultured for 24 hours with 

ucMSC at a 1:4 ratio (ucMSC:monocytes). Thereafter, ucMSC were manually 

separated from monocytes using biotin anti-human CD73 (clone AD2, Biolegend 

Inc., San Diego, CA) and MagniSort Streptavidin Positive Selection Beads (MSPB-

6003, eBioscience, Affymetrix Inc, San Diego, CA) and the EasySep Magnet 

(StemCell technologies, Germany). The obtained untouched primed monocytes 

showed a purity of >98% (Supporting Information Figure S2).
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Primed and non-primed monocytes (10,000) were added to MLR of 50,000 

carboxyfluorescein succinimidylester (CFSE)-labeled PBMC (autologous to 

monocytes) and 50,000 γ-irradiated (40 Gy) HLA-mismatched PBMC in RPMI 

supplemented with 2 mM l-glutamine, 1% P/S and 10% heat-inactivated FBS. After 

7 days, PBMC were harvested and stained for 30 minutes at room temperature with 

CD3-PERCP (BD Biosciences), CD4-Pacific Blue (Biolegend Inc.), CD8-APC-Cy7 (BD 

Pharmingen), CD25-PE-Cy7 (BD Pharmingen), and CD127-PE (BD Pharmingen). In 

addition, intracellular staining for Foxp3 (eBiosciences) was performed with anti-

human FoxP3-APC staining kit (BD Biosciences). Cell proliferation was determined 

by CFSE dilution, measured on a FACSCanto II flow cytometer (BD Biosciences).

Real time qPCR 
mRNA was isolated from primed and non-primed monocytes using the High Pure 

RNA Isolation Kit (Roche). Complement DNA was synthesized from 500 ng mRNA 

with random primers (Promega Benelux B.V., The Netherlands). Quantitative gene 

expression was determined using TaqMan Gene Expression Assays-on-demand 

for IL1β (Hs00174097.m1), IL6 (Hs00174131.m1), IL8 (Hs00174114.m1), IL10 

(Hs00174086.m1), TGFβ (Hs00171257.m1), and TNFα (Hs99999043.m1; all Applied 

Biosystems, Foster City, CA). Results were expressed as copy number.

Statistical Analysis
Statistical analysis was performed by unpaired t tests using Prism software v5.04 

(GraphPad Software Inc., La Jolla, CA). p values of <.05 were considered significant.

Results

UcMSC accumulate in the lungs after intravenous infusion
To investigate the bio-distribution of intravenously infused ucMSC, cells were dual 

labeled with Qtracker605 beads and Hoechst33342 prior to infusion to enable 

detection of live and dead ucMSC in vivo, respectively. Live ucMSC were identified 

by Qtracker605 signal (Qtracker605 signal outshines the Hoechst33342 signal), 

whereas dead ucMSC were detected by Hoechst33342 signal. Detection of 

Qtracker605 signal 5 minutes post infusion revealed that the majority of ucMSC 

were alive and present in the lungs (Figure 1A, 1E). In addition, few dead ucMSC 

were observed in the lungs and liver as detected by Hoechst33342 signal (Figure 

1B, 1E).
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Dead ucMSC re-localize to the liver prior to their disappearance 
At 24 hours post-infusion, a large decrease in the number of live ucMSC was 

observed in the lungs (Figure 1C, 1E). The number of dead cells in the lungs was 

however increased and interestingly, there was an accumulation of dead ucMSC 

in the liver (Figure 1D, 1E). No living ucMSC were detected in the liver and by  

72 hours post-infusion, minimal numbers of cells were detected, which were all 

dead (Figure 1E).

UcMSC Are Phagocytosed and Redistributed By Host Innate 
Immune Cells 
To examine how ucMSC disappear from the lungs and reappear in the liver  

24 hours after infusion, whole blood, lungs and liver were harvested from mice 

that were infused with 150,000 PKH26-labeled ucMSC, single cell suspensions 

were prepared and stained for leukocyte markers and analyzed by flow cytometry. 

PKH26+ cells were found in the lungs (3.4% ± 0.13% of total cells), blood (0.7% 

± 0.05%), and liver (2.9% ± 0.11%) (Figure 2A, 2B). In the cell suspensions from 

lungs and blood, PKH26+ cells were mostly CD11b++, whereas in the liver, PKH26 

signal was mostly found in CD11b+ cells (Figure 2A, 2C), indicating that ucMSC 

were phagocytosed by host-innate immune cells. A minority of PKH26+ cells in the 

lungs were CD68+CD11b+ lung-resident macrophages (12.6% ± 1.0%), whereas 

32.1% ± 0.9% were CX3CR1+CD11b++ blood-derived monocytes and 47.5%  

± 1.1% were SSC++CD11b++ neutrophils (Figure 2A, 2D). In the blood, 89.3%  

± 1.3% of PKH26+ cells were CX3CR1+CD11b++ monocytes and 5.7% ± 0.7% were 

neutrophils (Figure 2A, 2E). In the liver, PKH26+ cells were mainly CLEC4F+CD11b+ 

Kupffer cells (83.8% ± 0.4%), whereas 3.8% ± 0.15% were CLEC4F-CD11b++ and 

10.1% ± 0.5% were neutrophils (Figure 2A, 2F).

Monocytes express a regulatory phenotype after phagocytosis of 
ucMSC 
Thus, monocytes and neutrophils contribute to the clearing of infused ucMSC. 

In addition to their phagocytic activity, monocytes may play immune-activating 

as well as immune-regulatory roles. To examine the function of monocytes 

that phagocytosed ucMSC, PKH26+ monocytes in lung, blood, and liver cell 

suspensions were subdivided into classical (pro-inflammatory) and non-classical 

(anti-inflammatory) monocytes, based on their expression of Ly6C (Figure 3A). 

In addition, CD68, CDX3CR1, or CLEC4F were used to indicate lung resident 

macrophages, blood circulating monocytes and Kupffer cells, respectively. In the 
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Figure 1. UcMSC strand in the lungs after infusion and re‐localize to the liver prior to their disappearance. 
CryoViz images (left: whole body, middle: lungs, right: liver) of mice after tail vein infusion of 150,000 live ucMSC. (A) 
Qtracker 605 bead signal, corresponding to live ucMSC 5 min post ucMSC infusion and (B) Hoechst33342 signal, cor‐
responding to dead ucMSC 5 min post ucMSC infusion. (C) Qtracker 605 bead signal 24h post ucMSC infusion and (D) 
Hoechst33342 signal 24h post ucMSC infusion. Scale bar in full body image of mouse (left), 1 cm; scale bar in image of 
lungs  (middle), 5mm; scale bar  in  image of  liver  (right), 5 mm.  (E) Number of Qtracker 605 bead  (red) positive  live 
ucMSC and Hoechst33342  (blue) positive dead ucMSC at 5 min, 24h and 72h post ucMSC  infusion, globally,  in  the 
lungs and in the liver. Results are shown as means ± SEM (n=6). * indicates significant difference (p<0.05). 
 

 

Figure 1. UcMSC strand in the lungs after infusion and re-localize to the liver prior to 
their disappearance.
CryoViz images (left: whole body, middle: lungs, right: liver) of mice after tail vein infusion 
of 150,000 live ucMSC. (A) Qtracker 605 bead signal, corresponding to live ucMSC 5 min 
post ucMSC infusion and (B) Hoechst33342 signal, corresponding to dead ucMSC 5 min 
post ucMSC infusion. (C) Qtracker 605 bead signal 24h post ucMSC infusion and (D) 
Hoechst33342 signal 24h post ucMSC infusion. (E) Number of Qtracker 605 bead (red) 
positive live ucMSC and Hoechst33342 (blue) positive dead ucMSC at 5 min, 24h and 72h 
post ucMSC infusion, globally, in the lungs and in the liver. Results are shown as means ± 
SEM (n=6). * indicates significant difference (p<0.05).
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lungs, non-classical blood circulating monocytes (Ly6C-CD68-) are the biggest 

population within the PKH+ cells (Figure 3B). Next, lung resident macrophages 

make up a big portion. In the blood, the majority of PKH+ monocytes demonstrate 

a non-classical Ly6C- CX3CR1+CD11b+ phenotype (Figure 3B). Furthermore, 

PKH+ cells in the liver consist mainly out of Kupffer cells (CLEC4F+) followed by 

monocytes with a non-classical (Ly6C-CLEC4F-) phenotype (Figure 3B).

ucMSC are actively phagocytosed by monocytes in vitro
To further study the interaction of ucMSC with human innate immune cells, 

PKH26-labeled ucMSC were added to human whole blood in vitro. After  

24 hours of incubation, 21% ± 8% of CD45+CD15+ neutrophils and 91% ± 3% of 

CD45+CD14+ monocytes had become positive for PKH26 (Figure 4A), thereby 

confirming the results from the in vivo experiments. In contrast, no significant 

uptake of ucMSC was measured in CD45+ SSClow lymphocytes at all time points 

(Supporting Information Figure S3).

PKH26-labeled ucMSC were subsequently incubated with human blood-derived 

CD14+ monocytes. Nearly all monocytes became positive for PKH26 within  

24 hours as measured by flow cytometry (19% ± 2% at 1 hour, 34% ± 3% at  

4 hours and 92% ± 1% 24 hours) (Figure 4B). To visualize the phagocytosis of ucMSC 

by human monocytes, serial confocal images of co-cultures of PKH67-labeled 

monocytes and PKH26-labeled ucMSC were produced. It was observed that 

monocytes actively migrated toward ucMSC within 1 hour (Figure 4C). Monocytes 

with internalized fragments of PKH26-labeled ucMSC were observed 3 hours after 

the start of the co-cultures (Figure 4D). At 16 hours, the majority of monocytes 

contained PKH26-labeled ucMSC fragments (Figure 4E). In the control co-culture, 

which was left at 4°C for 16 hours, no phagocytosis of ucMSC by monocytes was 

observed (Figure 4F), demonstrating that phagocytosis of ucMSC by monocytes is 

an active process.

Phagocytosis of ucMSC activates monocytes and induces 
polarization
UcMSC are rapidly recognized and phagocytosed by human monocytes. To 

investigate whether phagocytosis of ucMSC affects monocyte properties, 

expression of PD-L1, CD90, IL-6, IL-1β, IL-8, TGF-β, TNF-α, and IL-10 was analyzed. 

Monocytes significantly upregulated cell surface expression of PD-L1 (from 40% 

± 9% to 73% ± 3%, p<.05) and CD90 (from 21% ± 4% to 47% ± 3%, p<.05) after 

24 hours of co-culturing with ucMSC (Figure 5A, 5B). Moreover, mRNA expression 
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levels of IL-1β, IL-6, IL-8, IL-10, and TGFβ significantly increased in the presence of 

ucMSC, whereas expression of pro-inflammatory TNF-α decreased (Figure 5C). 

Activation of human monocytes is associated with a phenotype shift from 

CD14++CD16- to CD14+CD16+ [30, 31]. After co-culture of human monocytes 

with ucMSC for 24 hours, the predominant monocyte population shifted from 

CD14++CD16- (84% ± 4%) to CD14++CD16+ (55% ± 2%), known as immune 

regulatory intermediate monocytes (Figure 5D). Furthermore, after co-culture 

with ucMSC, monocytes significantly increased expression of CD163 and CD206, 

markers associated with an immune regulatory function of monocytes (Figure 5E). 

These results support the observation of the in vivo experiments that monocytes 

that had phagocytosed ucMSC were predominantly of an anti-inflammatory 

phenotype.

Skewing of Monocytes By Phagocytosis of ucMSC Differs from 
Skewing By ucMSC Conditioned Medium
Monocytes that have phagocytosed ucMSC exhibit a different phenotype than 

prior to phagocytosis. To investigate whether this is caused by factors secreted 

by ucMSC or by phagocytosis of ucMSC, monocytes were cultured in ucMSC 

conditioned medium or co-cultured with ucMSC. After 3 days the phenotype 

of monocytes (CD14, CD16, CD163, CD206, CD90, and PD-L1 expression) 

was analyzed. CD14, CD16, CD90, and PD-L1 expression by monocytes that 

phagocytosed ucMSC or monocytes that were cultured in ucMSC conditioned 

Figure 2. UcMSC are phagocytosed after infusion by host immune cells and 
distributed to blood and liver.
PKH26-labeled ucMSC were administered to mice via the tail vein and after 24h cells of 
the lungs, blood and liver were analyzed by flow cytometry. (A) Gating strategy for lungs, 
blood and liver cell suspensions to investigate the origin of PKH26 signal based on CD11b, 
CX3CR1, CD68 and CLEC4F expression of PHK26+ cells. (B) Proportion of PKH26+ cells in 
the lungs, blood and liver. (C) Proportion of CD11b+, CD11b++ and CD11b- PKH26+ cells in 
the lungs, blood and liver. (D) Proportion of lung resident macrophages (CD68+CD11b+), 
circulating monocytes (CX3CR1+CD11b++) and neutrophils (SSChighCD11b+) of 
PKH26+CD11b+/++ cells in the lungs. (E) Proportion of CX3CR1+CD11b++ and 
neutrophils in PKH26+CD11b+/++ cells in the blood. (F) Proportion of CLEC4F-CD11b++, 
CLEC4F+CD11b+ (Kupffer cells) and neutrophils in PKH26+CD11b+/++ cells in the liver. 
Results are shown as means ± SEM (n=5). * indicates significant difference (p<0.05).
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Figure 3. Monocytes that have phagocytosed ucMSC predominantly express a Ly6C‐ regulatory phenotype. 
(A)  Representative  flow  cytometry  plots  of  PKH  positive  classical  (pro‐inflammatory)  and  non‐classical  (anti‐
inflammatory) monocytes based on SSC and CD11b and Ly6C expression  in the  lungs, blood and  liver. Non‐classical 
monocytes are predominantly positive for PKH26 signal (indicating phagocytosis of MSC). (B) Distribution of PKH posi‐
tive cells in the lungs, blood and liver 24h after PBS or ucMSC infusion. Results are shown as means ± SEM (n=3 PBS 
mice and n=5 ucMSC mice). * indicates significant difference (p<0.05). 
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medium was similar (Figure 5F). However, in contrast to monocytes that 

phagocytosed ucMSC, monocytes cultured in ucMSC conditioned medium 

did not upregulate CD163 expression, nor CD206 expression (Figure 5F). The 

percentage of monocytes expressing CD163-CD206+ was significantly higher 

when monocytes phagocytosed ucMSC (31.6% ± 3%) compared to when they are 

cultured in ucMSC conditioned medium (5.3% ± 2%). Likewise, significantly more 

monocytes expressed CD163+CD206+ after phagocytosis of ucMSC (9.4% ± 2%) 

compared to after culturing in ucMSC conditioned medium (1.9% ± 1%).

Monocytes primed by ucMSC induce regulatory T cells 
Upon phagocytosis of ucMSC, monocytes are activated and polarized towards an 

immune regulatory phenotype. We investigated whether these primed monocytes 

would subsequently alter the adaptive immune response in vitro. UcMSC primed 

and unprimed monocytes were added to mixed lymphocyte reactions, in which 

the responder cells were autologous to the added monocytes. Addition of ucMSC 

primed monocytes led to a significant increase in Foxp3+ regulatory T cells from 

8.9 ± 2% to 13 ± 2% of CD4+CD25hiCD127- cells (Figure 6A,B). 

In contrast, addition of ucMSC primed monocytes to the mixed lymphocyte 

reaction led to a significant reduction in activated CD4+ T cells (Foxp3-

CD4+CD25hiCD127-). Finally, the ratio of Foxp3+/Foxp3- CD4+CD25hiCD127-  

T cells increased from 0.1 to 0.2 upon addition of ucMSC primed monocytes 

(Figure 6B).

Figure 3. Monocytes that have phagocytosed ucMSC predominantly express a Ly6C- 
regulatory phenotype.
Monocytes that have phagocytosed umbilical cord mesenchymal stem or stromal cells 
(ucMSC) predominantly express a Ly6C- regulatory phenotype. (A): Representative flow 
cytometry plots of PKH positive classical (pro-inflammatory) and non-classical (anti-
inflammatory) monocytes based on SSC and CD11b and Ly6C expression in the lungs, 
blood, and liver. Non-classical monocytes are predominantly positive for PKH26 signal 
(indicating phagocytosis of MSC). (B): Distribution of PKH positive cells in the lungs, blood, 
and liver 24 hours after PBS or ucMSC infusion. Results are shown as means±SEM (n=3 PBS 
mice and n=5 ucMSC mice). * Indicates significant difference (p<.05). Abbreviations: MSC, 
mesenchymal stem or stromal cells; PBS, phosphate buffered saline.
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Discussion

Previous work has demonstrated that intravenously administered MSC accumulate 

in the lungs and have a short survival time [15, 29, 32, 33]. The present study shows 

that monocytes and neutrophils contribute to the clearance of MSC from the lungs 

by phagocytosing MSC. Subsequently, these cells migrate via the blood stream to 

other body sites, in particular to the liver. Our in vitro data show that phagocytosis 

of MSC induces phenotypic and functional changes in monocytes, which then 

modulate the adaptive immune cell compartment.

The brief presence and restricted distribution of intravenously administered 

MSC appears to be in contrast with the short-term and long-term effects of MSC 

administration observed in numerous pre-clinical studies and in a number of 

clinical trials [8, 12, 16-21]. The short lifespan of MSC after intravenous infusion 

challenges the hypothesis that the effects of MSC are mediated via their 

secretome. MSC may lack time to secrete sufficient levels of immunomodulatory 

factors before they are cleared, although it is possible that disintegration of MSC 

leads to the release of intracellularly contained cytokines and growth factors. This 

phenomena might not be specific for MSC and may also be induced by other cell 

types as well. However, MSC have shown to be effective in several clinical trials 

as such we explored the fate of MSC after infusion into further depth. Previously, 

we showed that expression of the macrophage markers CD68 and F4/80 is 

significantly increased in the lungs of mice 2 hours after MSC infusion, suggesting 

recruitment of macrophages to the lungs after MSC infusion [34]. These cells are 

likely to play a key role in the effects of MSC infusion.

Figure 4. UcMSC are phagocytosed by human monocytes in vitro.
(A) Frequency of PKH26+ neutrophils (left) and monocytes (right) after addition of PKH26+ 
ucMSC to human whole blood. An increase in PKH26+ neutrophils and monocytes can 
be observed over time. (B) Percentage of PKH26+ monocytes after co-culture of isolated 
CD14+ monocytes with PKH26+ ucMSC. (C) Confocal images 1h after adding PKH26+ 
ucMSC (red) to PKH67+ monocytes (green). (D) UcMSC are phagocytosed by monocytes 
and fragments of ucMSC are visible intracellularly. (E) Overview image of co-culture at 16h. 
(F) Image of co-culture kept at 4 ºC for 16h, showing a lack of phagocytosis of ucMSC by 
monocytes, indicating phagocytosis is an active process. Results are shown as means ± 
SEM (n=3). * indicates significant difference (p<0.05).
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The data of the present study confirm that monocytic cells play a role in the 

clearance of infused MSC [35, 36]. Braza et al. showed a similar phenomenon of 

phagocytosis of IV infused MSC in the lungs by cells of the monocyte/macrophage 

lineage (F4/80+CD11c+). In their study different markers and terminology were 

used to define the phagocytosing cells of the monocyte/macrophage lineage, yet 

their results were in line with our data. Recently, Dazzi et al. showed that for MSC-

induced immunosuppression to occur, T cell induced cell death of MSC is essential, 

which triggers phagocytes to engulf MSC [37].

After phagocytosis of MSC, monocytes migrate to other body sites via the blood 

stream (summarized in Figure 7). In addition, some MSC may disintegrate and the 

remnants may be transported out of the lungs via the blood stream. We found 

accumulation of MSC remnants in the Kupffer cells of the liver. Kupffer cells line 

the liver sinusoids and are likely to encounter passaging MSC remnants. Kupffer 

cells are professional clean-up cells through phagocytosis of cellular debris and 

may thus contribute to the clearance of MSC. 

The clean-up of infused MSC leaves a clear footprint in the monocyte 

compartment. We observed that monocytes that phagocytosed MSC were of a 

Ly6C- regulatory phenotype. Ly6C- monocytes containing remnants of MSC were 

Figure 5. Human monocytes adapt phenotype upon phagocytosis of ucMSC in vitro.
Human monocytes adapt phenotype upon phagocytosis of ucMSC in vitro. Protein 
expression of the surface proteins (A) PD-L1 and (B) CD90 on CD14+ monocytes is 
increased upon co-culture with ucMSC. * Indicates significant difference (p<.05). (C): mRNA 
expression levels of IL-6, IL-8, IL1β, TNF-α, IL10, and TGF-β in CD14+ monocytes increase 
upon co-culture with ucMSC. * Indicates significant difference (p<.05). (D): Representative 
flow cytometry plot demonstrating changes in monocyte subset composition based on 
CD14 and CD16 expression 24 hours after co-culture with ucMSC. During co-culture, the 
frequency of CD14++CD16- monocytes decreased whereas CD14++CD16+ monocytes 
increased. * Indicates significant difference (p<.05). (E): Representative flow cytometry 
plot demonstrating increases in the frequency of CD163-CD206+ and CD163+CD206+ 
monocyte subsets after 24 hours of co-culture of monocytes with ucMSC. * Indicates 
significant difference (p<.05). (F): Percentage of monocytes expressing CD14++CD16+, 
CD14++CD16-, CD14+CD16++, CD163-CD206+, CD16+CD206+, PD-L1, and CD90 
when monocytes are cultured alone, when monocytes phagocytosed ucMSC and when 
monocytes are cultured in ucMSC conditioned medium. * Indicates significant difference 
compared to monocytes cultured alone (p<.05) and # indicates significant difference 
(p<.05). Results are shown as means ±SEM (n=3). Abbreviation: UcMSC, umbilical cord 
mesenchymal stem or stromal cells.
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observed in the lungs but also in the blood and in the liver of MSC treated animals. 

This demonstrates that MSC infusion induces the distribution of monocytes with 

immunoregulatory properties throughout the body. This is in line with previous 

findings by Miteva et al. where MSC were also seen to induce the distribution of 

anti-inflammatory monocytes in mice with Coxsackievirus B3-induced myocarditis 

[38]. It is however unclear why Ly6C- monocytes specifically localize to the liver, 

but this may be part of an established clean-up route. It appears clear, however, 

that by recruitment of anti-inflammatory monocytes that phagocytosed MSC and 

by phagocytosis of MSC remnants by Kupffer cells, the liver is a target for MSC 

immune therapy.

The question remains whether Ly6C- monocytes selectively phagocytose MSC, 

or whether Ly6C+ monocytes undergo phenotypic changes after phagocytosis 

of MSC. Our in vitro data suggest the latter. We showed that upon phagocytosis 

of ucMSC, human monocytes increased surface expression of the co-inhibitory 

molecule PD-L1 and polarized from CD14++CD16- classical monocytes toward 

CD14++CD16+ intermediate monocytes. We have previously also observed this 

phenomena in our lab when using adipose derived MSC instead of umbilical 

cord derived MSC (data not shown). This phenomena when co-culturing 

monocytes with ucMSC was accompanied by an increased expression of CD206 

on a subpopulation of monocytes. This is in accordance to what Cutler et al. 

observed when co-culturing ucMSC together with human adult PBMC [39]. In 

our hands, upregulation of CD206 solely occurred when monocytes were able to 

phagocytose ucMSC and not by exposure to soluble factors that were secreted 

by ucMSC. CD206 is a known marker for alternatively activated monocytes  

[40, 41]. Along with an increased CD206+ monocyte population, a population 

of CD206+CD163+ co-expressing monocytes was significantly increased upon 

phagocytosis of ucMSC. This again exclusively occurred when monocytes were 

Figure 6. UcMSC primed monocytes induce regulatory T cells.
CD14+ monocytes were co-cultured for 24h with or without ucMSC and subsequently 
separated from the ucMSC using MACS separation. Primed and unprimed monocytes 
were added to a mixed lymphocyte reaction. (A) Gating strategy of mixed lymphocyte 
reaction with primed monocytes after 7 days. (B) Frequencies of Foxp3-CD25+CD127- 
CD4+ activated T cells and Foxp3+CD25hiCD127-CD4+ regulatory T cells of CD4 T cells 
(left two graphs) and fluorescence intensity of Foxp3 within Foxp3+CD25hiCD127-CD4+ T 
cells (right graph). Plots indicate means ± SEM (n≥4).
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Figure 7. Overview of the interaction of monocytic cells with infused MSC.
UcMSC get entrapped in the lungs after intravenous infusion and are rapidly cleared 
from the system through phagocytosis by neutrophils, lung resident macrophages and 
circulating monocytes. Monocytes containing ucMSC migrate via the blood stream to 
other sites, in particular to the liver. In addition, debris of ucMSC ends up in the liver 
where it is phagocytosed by liver-resident Kupffer cells. Phagocytosis of ucMSC induces 
an immunomodulatory phenotype in monocytes and ucMSC-primed monocytes induces 
Foxp3+CD25hiCD127-CD4+ regulatory T cells. 
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able to phagocytose ucMSC. These CD206+CD163+ co-expressing monocytes 

have been described in the literature as important cells for the generation of 

CD4+CD25hiFoxP3+ T cells and as high IL-10 producing cells with the capacity to 

take up apoptotic cells [42-44]. In our study, we observed significant increases in 

IL-10 production by monocytes upon co-culture with ucMSC, alongside a decrease 

in TNFα and increase in IL-6 and TGFβ. This is well in conformity with earlier studies 

that demonstrated that phagocytosis of MSC induces an immunosuppressive 

phenotype in macrophages [23, 35]. These cells produce increased amounts of 

IL-10 and IL-6 while their production of IL-12 and TNF-α decreases [45, 46]. Other 

studies have shown different ways in which monocytes are immunomodulated 

by MSC in vitro, by the secretion of soluble factors [25, 44, 47]. These studies were 

performed in different experimental settings such as whereby MSC were plastic 

adhered, which is in contrast to our setting as we used polypropylene tubes to 

avoid baseline activation of monocytes adhering to the plastic. Moreover, in vivo 

when MSC are infused they remain in suspension the first time frame, hence usage 

of polypropylene tubes more closely resembles more the in vivo setting.

Clearance of infused MSC leaves a phenotypical and functional footprint in 

the monocyte compartment. To examine whether these changes affected 

monocyte function, ucMSC-primed monocytes were added to mixed lymphocyte 

reactions. We were able to show that ucMSC-primed monocytes increased 

Foxp3+CD25hiCD127-CD4+ Tregs cells. Multiple studies have reported increased 

frequencies of Tregs cells in experimental animal studies [48, 49] and in patients 

treated with MSC [50-53]. It has furthermore been shown that immunosuppressive 

macrophages (M2) can induce Tregs cells in vitro [54]. Our results give insight in 

how MSC driven polarization of monocytic cells may mediate increasing Tregs cell 

numbers after MSC infusion.

In conclusion, we have demonstrated that the rapid clearance of infused MSC is 

largely mediated by phagocytosis by monocytes, which subsequently relocate 

from the lungs to the bloodstream and the liver. UcMSC-primed monocytes change 

their phenotype and function and change the course of immune responses. 

The described mechanisms are likely to play a role in the immunomodulatory 

response after MSC infusion in disease models and clinical trials. Future studies 

will determine whether monocyte polarization can be attributed to specific 

components of MSC. This could eventually lead to more defined therapies 

based on the most active components that can be produced in an efficient and 

controlled manner.

6
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Abstract 

Mesenchymal stromal cells (MSC) are a promising therapy for immunological 

disorders. However, culture expanded MSC are large and get trapped in the 

capillary networks of the lungs after intravenous infusion, where they have a 

short survival time. Hypothetically, living cells are a risk for tumor formation. To 

reduce risks associated with MSC infusion and improve the distribution in the 

body, we generated membrane particles (MP) of MSC and MSC stimulated with 

IFN-γ (MPγ). Tracking analysis and electron microscopy indicated that the average 

size of MP was 120 nm, and they showed a round shape. MP exhibited ATPase, 

nucleotidase and esterase activity, indicating they are enzymatically active. MP 

and MPγ did not physically interact with T cells and had no effect on CD4+ and 

CD8+ T cells proliferation. However, MP and MPγ selectively bound to monocytes 

and decreased the frequency of pro-inflammatory CD14+CD16+ monocytes by 

induction of selective apoptosis. MP and MPγ increased the percentage of CD90 

positive monocytes, and MPγ but not MP increased the percentage of anti-

inflammatory PD-L1 monocytes. MPγ increased mRNA expression of PD-L1 in 

monocytes. These data demonstrate that MP have immunomodulatory properties 

and have potential as a novel cell-free therapy for treatment of immunological 

disorders.

Introduction

Mesenchymal stromal cells (MSC) are studied as an experimental therapy for 

immunological disorders due to their diverse immunomodulatory properties [1–3]. 

Multiple clinical trials with MSC in inflammatory disease and transplantation have 

been conducted, such as in graft versus host disease [4], kidney transplantation 

[5], and Crohn’s disease [6]. The outcomes of several of these trials hint towards 

a beneficial immunomodulatory effect of MSC, but they are not conclusive [7]. 

This is partly due to the small patient numbers, to the lack of understanding of 

the effects of MSC after administration, and perhaps because MSC derived from 

different tissue sources are used which display distinct paracrine potential and 

immune regulatory properties. Several authors have compared the capacity 

of MSC from various tissue sources to suppress peripheral blood B, T and NK 

cells, and it has been reported that adipose tissue-derived MSC (AT-MSC) have 

a stronger immunomodulatory effect than MSC from other tissue sources [8,9]. 
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The function of MSC as immunomodulatory agent has been attributed to a 

variety of mechanisms, notably cytokine and chemokine secretion [10,11]. 

Multiple pathways have been identified to play a role in in vitro assays, but it is 

unknown whether they play a role in the immunomodulatory effects of MSC 

administered to animals or patients. Intravenous infusion has been used as the 

route of MSC delivery for most preclinical studies [12,13] and clinical trials [7]. It 

was the assumption that intravenous infusion of MSC would lead to a broad bio-

distribution of MSC. However, tracking studies have shown that the majority of 

MSC localize to the lungs after intravenous infusion. The detainment of MSC in the 

lungs is due to their size (>20 μm in diameter) [14,15], which exceeds the width of 

the micro-capillaries of the lungs. It has furthermore become clear that MSC have a 

short-term survival after infusion [16,17]. Over 90% of infused MSC are lost within 

24h after infusion. Even though infused MSC end up in the lungs and disappear 

rapidly, they exert immunomodulatory effects. The short lifespan of MSC after 

intravenous infusion questions the contribution of secreted anti-inflammatory 

factors by MSC to the modulation of immune responses.

Recent work demonstrated that heat inactivated MSC that lost their capacity to 

secrete factors maintain their immunomodulatory capacity after intravenous 

infusion in an LPS-induced sepsis model, suggesting that cell membrane 

dependent interactions with immune cells are responsible for the immune 

regulatory effects [18]. MSC express immunomodulatory molecules on their 

membrane such as Toll-like receptors (TLRs) [19], ATPases [20] and CD73 (ecto-5’-

nucleotidase, Ecto5’NTase) which dephosphorylate ATP into AMP and AMP into 

adenosine, respectively [21]. This is an important immunomodulatory function as 

adenosine has immunosuppressive properties [22]. MSC also express receptors 

involved in differentiation pathways such as CD90 (Thy-1 membrane glycoprotein) 

that is known for its participation on the differentiation of MSC by acting as an 

obstacle in the pathway of differentiation commitment [23]. The ability of MSC to 

modulate the immune system can be enhanced by treatment of MSC with pro-

inflammatory cytokines, in particular interferon-γ (IFN-γ) and tumor necrosis factor 

(TNF)-α [24–26]. Under inflammatory conditions MSC upregulate the expression of 

cell surface proteins with immune regulatory function, such as programmed death 

ligand 1 (PD-L1), and Fas ligand via which they directly target immune cells and 

inhibit their activation and function [27].

Despite of the great potential, several factors including the practical difficulties 

that come with the use of living cells, their short survival after intravenous 

infusion and their poor biodistribution, have been major technical challenges to 
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be overcome before MSC based therapy can be used for clinical application in a 

consistently therapeutic manner [28]. A modification in the treatment that avoids 

these complications but preserves the diverse immunoregulatory properties of 

MSC would therefore improve the applicability of this therapy. We propose a new 

cell-free therapy based on the generation of small plasma membrane particles 

(MP) from AT-MSC cultured under different conditions. Therefore, the aim of this 

study was to generate and characterize MP derived from MSC cultured with and 

without IFN-γ, analyze their immunomodulatory properties, and their interaction 

with the immune system. 

Methods

Ethics statement and human tissue samples
The MSC were provided by Internal Medicine Department, Transplantation 

laboratory of the Erasmus MC (The Netherlands). The cells were isolated from 

subcutaneous adipose tissue from healthy donors that became available during 

the kidney donation procedure. The tissues were not procured from prisoners, 

and were collected after obtaining written informed consent for all patients, as 

approved by the Medical Ethical Committee of the Erasmus University Medical 

Centre Rotterdam (protocol no. MEC-2006-190). All experiments were performed 

in accordance with the approved guidelines.

Isolation and culture of MSC from adipose tissue
Subcutaneous adipose tissue from five healthy human kidney donors became 

available during the donation procedure. The adipose tissue was collected 

in minimum essential medium-α (MEM-α) (Sigma-Aldrich, St. Louis, MO) 

supplemented with 100 IU/ml penicillin, 100 mg/ml streptomycin (P/S) (Lonza, 

Verviers, Belgium), and 2 mM L-glutamine (Lonza).

The tissue was mechanically disrupted and enzymatically digested with 0.5 mg/

ml collagenase type IV in RPMI for 30 min at 37 °C under continuous shaking. 

Thereafter, the cells were resuspended in MEM-α with 15% fetal bovine serum 

(FBS; Lonza), 2 mM L-glutamine and 1% P/S, filtered through a 100 µm cell strainer, 

and transferred to a 175 cm2 culture flasks (Greiner Bio-one, Essen, Germany). 

Cultures were kept at 37 °C, 5% CO2, and 95% humidity, at 90% confluence; 

adherent cells were removed from culture flasks by incubation in 0.05% trypsin-

EDTA (Life Technologies, Bleiswijk, The Netherlands) at 37 °C.
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Two MSC culture conditions were used for the experiments: unstimulated MSC, 

and pretreated with IFN-γ (50 ng/ml, Sigma-Aldrich). After incubation for 3 days, 

MSC were collected to generate cell membrane particles. MSC were used for 

experiments between passages 2 and 6.

Immunophenotypic characterization of AT-MSC
Unstimulated and IFNγ-stimulated AT-MSC were trypsinized and washed with 

FACS Flow (BD Biosciences, San Jose, CA). Cell suspensions were incubated with 

mouse-antihuman monoclonal antibodies against CD13-PE-Cy7; HLA-DR-PERCP; 

HLA-ABC-APC; CD31-FITC; CD73-PE; PD-L1-PE (all BD Biosciences); CD90-APC and 

CD105-FITC (R&D Systems, Abingdon, UK) at room temperature in the absence of 

light for 30 min. After two washes with FACS Flow, flow cytometric analysis was 

performed using FACSCANTO-II with FACSDIVA Software (BD Biosciences).

Generation of cell Membrane Particles 
Unstimulated and IFN-γ stimulated AT-MSC were trypsinized and washed twice 

with PBS. Then, the MSC were incubated in milliQ water at 4 °C until the cells 

exploded and liberated the nuclei (about 20 min). This step of the protocol was 

checked by microscopy. Then, the plasma membrane of cells was fractionated by 

passing them through a 29G needle several times.

Cell extracts were cleared of unbroken cells and nuclei by centrifugation at 

2,000 × g for 20 min. The obtained supernatant was transferred to an Amicon 

Ultra-15 100 kDa device and concentrated by centrifugation at 4,000 x g at 4 °C. 

The concentrated pellet consisted of crude plasma membrane and was diluted 

in 1 ml of 0.2 µm filtered PBS, cell culture medium or water. All procedures were 

performed on ice.

Nanoparticle tracking analysis (NTA)
Analysis of absolute size distribution and concentration of MP was performed 

using NanoSight NS300 (NanoSight Ltd.). With NTA, particles are automatically 

tracked and sized based on Brownian motion and the diffusion coefficient. The 

analysis settings were optimized using as control filtered PBS and bovine serum 

albumin (BSA, Sigma-Aldrich) solution and kept constant between samples. The 

NTA measurement conditions were: detect threshold 3 (determined with the BSA 

solution), three measurements per sample (30 s/measurement), temperature 23.61 

± 0.8 °C; viscosity 0.92 ± 0.02 cP, frames per second 25. Each video was analyzed 

to give the mean, mode, median and estimated concentration for each particle 
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size. The samples were diluted to obtain the right number of particles (1 × 108 

particles/ml) in accordance with the manufacturer’s recommendations.

Transmission electron microscopy examination of MP
After fixation with paraformaldehyde (2%), all the samples were adsorbed for 

20 min to glow-discharged carbon coated grids by floating the grids on 10 μL 

drops on parafilm. Grids with adhered MP were washed with water, stained with 

2% uranyl acetate in water and examined in the electron microscope Tecnai T12 

Spirit equipped with an Eagle CCD camera 4kx4k (FEI Company, Eindhoven, The 

Netherlands).

ATPase assay 
ATPase activity from MP and MPγ was measured using an ATPase assay kit 

according to the manufacturer’s instructions (Sigma-Aldrich). A phosphate 

standard was used for creating a standard curve. MP (1 × 1012, 1 × 1011,  

1 × 1010 and 1 × 109 particles/ml) were incubated with 4 mM ATP for 30 min at 

room temperature in assay buffer with malachite green reagent. The formation 

of the colorimetric product that formed in the presence of free phosphates was 

measured with a spectrophotometer at 620 nm.

As a control for possible phosphate contamination, the four MP concentrations 

were incubated in assay buffer without ATP. The signal from these samples was 

subtracted from the samples incubated with ATP.

CD73 activity assay
A modified protocol of CD73 inhibitor screening assay kit (BPS Bioscience) 

was used to determine whether MP were able to degrade AMP into adenosine 

plus phosphate. MP and MPγ (1 × 1012, 1 × 1011 and 1 × 1010 particles/ml) 

were incubated with AMP (500 μM) during 25 min at 37 °C. Then, colorimetric 

detection reagent was added to measure the free phosphate from the CD73 

reaction. Samples without AMP were measured as a control for free phosphate 

contamination. CD73 enzyme (2 and 1 ng) was used to calculate the concentration 

of CD73 in the MP, and MPγ.

Esterase activity by CFSE
CFDA-SE, which is non-fluorescent, enters the cytoplasm of cells where intracellular 
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esterases remove the acetate groups and convert the molecule to a fluorescent 

ester (CFSE). This conversion was used to detect whether MP have esterase activity. 

After MP generation, 1 × 1010, 1 × 109, 1 × 108 and 1 × 107 particles/ml were 

labeled with 50 μM of CFDA-SE and incubated at 37 °C for 30 min. Dilution of the 

MP was performed to obtain a proper stoichiometry of the CFSE staining. PBS + 

CFDA-SE and non-stained MP were used as controls.

CFSE fluorescence was measured by flow cytometry (FACS Canto II, BD Biosciences). 

Due to the small size of the MP, reliable FSC and SSC measurements could not 

be obtained. Instead, MP were identified by setting a fluorescence threshold 

triggering on the CFSE fluorescence so that events above the threshold could be 

identified as CFSE-loaded MP.

CD3/CD28 T cell proliferation assay
To evaluate the immunomodulatory capacity of MP, PBMC were labeled with  

1 μM of CFSE and plated in round bottom 96-well culture plates at a density of 5 × 

104 cells/well. T cell proliferation was stimulated by adding human anti-CD3/anti-

CD28 antibodies (1 µl/ml each) with a linker antibody Ig (2 µl/ml) (BD Biosciences). 

PBMC were incubated with different ratios of MP, or MPγ (1:5,000, 1:10,000, 

1:40,000, 1:80,000) for 4 days. On the fourth day, non-adherent PBMC were 

removed from the plate, washed with FACS Flow and incubated with monoclonal 

antibodies against CD4-PerCP and CD8-PE-Cy7 (antibodies were purchased from 

BD Biosciences) at room temperature for 30 min. When a CFSE-labeled cell divides, 

its progeny are endowed with half the number of CFSE-tagged molecules and 

thus each cell division can be assessed by measuring the corresponding decrease 

in cell fluorescence by flow cytometry.

Interaction of MP with monocytes
CD14+ cells were purified from PBMC using auto-MACS Pro by positive-selection. 

Monocyte purity was measured by flow cytometry after staining with mouse-

antihuman monoclonal antibodies against CD14-PerCP (BD Biosciences) and CD3-

PacBlue (BD Biosciences). Isolated CD14+ monocytes (2 × 105 cells/200 µl) were 

cultured in RPMI 1640 medium (Life Technologies), supplemented with 10% FBS 

and 1% P/S. Monocytes were cultured with MP, or MPγ at different ratios (1:10,000, 

1:40,000, 1:80,000) in polypropylene tubes. After 24 h of incubation, monocytes 

were collected for PCR analysis or flow cytometry after staining with CD14-PacBlue, 

CD3-PerCP, CD16-FITC, PD-L1-PE and CD90-APC (all BD Biosciences).

7
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Quantitative RT-PCR analysis
Monocytes were harvested, washed with PBS-diethylpyrocarbonate (DEPC; 

Sigma-Aldrich) and stored at −80 °C. Total RNA was isolated and 500 ng used 

for complementary DNA (cDNA) synthesis. Gene expression was determined 

by Quantitative Real-Time PCR (qPCR) using the TaqMan Universal PCR Master 

Mix (Life Technologies), and the assay-on-demand primer/probes for CD90 

(Hs00264235_s1), PDL-1 (Hs00204257.m1), interleukin-6 (IL-6; Hs00174131.m1), 

IL-10 (Hs00174086.m1), tumor necrosis factor-α (TNF-α; Hs99999043.m1) (Thermo 

Fisher), and indoleamine 2,3-dioxygenase (IDO; Hs00158627.m1). Glyceraldehyde 

3-phosphate dehydrogenase (GAPDH) mRNA served as housekeeping gene for 

normalization (Hs99999905.m1; Thermo Fisher).

Apoptosis of monocyte subsets 
Monocytes were cultured with MP, or MPγ at different ratios (1:10,000, 1:40,000 

and 1:80,000) in polypropylene tubes overnight. Then, cells were incubated with 

monoclonal antibodies against CD14-Pacific Blue and CD16-FITC (antibodies were 

purchased from BD Biosciences) at room temperature for 30 min. After washing 

step, cells were stained with fluorochrome-conjugated Annexin-V for 15 min at 

RT to assess the apoptotic cells. All data were measured on a FACSCanto II flow 

cytometer (BD) and analyzed using FACSDiva software.

MP uptake assays
To obtain fluorescent MP, MSC were labeled with the red fluorescent PKH-26 dye 

(PKH-MP), which intercalates into lipid bilayers, according to the manufacturer’s 

instructions (Sigma-Aldrich).

Human PBMC from healthy donors were isolated by density gradient centrifugation 

(Ficoll Isopaque, Sigma Aldrich) and cultured with PKH-MP (ratio 1:40,000). The 

incubation conditions were 37 °C, 5% CO2, and 95% humidity. As a control for 

the uptake process, PBMC were incubated with PKH-MP at 4 °C. PKH-MP uptake 

by lymphocytes and monocytes was analyzed by flow cytometry (FACS Canto II, 

Becton Dickinson) at 1 h, and 24 h.

Confocal microscopy analysis of PKH-MP uptake by monocytes was carried out 

by isolating CD14+ cells from PBMC using auto-MACS Pro by positive-selection 

(Miltenyi Biotec, Leiden, The Netherlands). Then, monocytes were labelled with 

PKH-67 (Life Technologies) and cultured with PKH-MP (ratio 1:4 × 104) for 24 h. 

The nuclei of the monocytes were stained with DAPI. Images of monocytes were 

performed on a Leica TCS SP5 confocal microscope (Leica Microsystems B.V., 
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Science Park Eindhoven, Netherlands) equipped with Leica Application Suite – 

Advanced Fluorescence (LAS AF) software, DPSS 561 nm lasers, using a 60 X (1.4 

NA oil) objective. Images were processed using ImageJ 1.48 (National Institutes of 

Health, Washington, USA).

Statistical Analysis 
Data were analyzed for statistical significance either by Student’s t-test or one-

way ANOVA analysis using GraphPad Prism 5 software. P < 0.05 was considered 

significant.

Results

Characterization of adipose tissue derived mesenchymal stromal 
cells
Commonly used AT-MSC surface markers were analyzed in unstimulated and IFN-γ 

stimulated AT-MSC by flow cytometry (Figure 1A). Both types of cells were negative 

for the markers CD45 and CD31, and positive for CD13, CD73, CD90 and CD105. 

There was no statistical significant difference in the percentage of unstimulated 

and IFN-γ stimulated AT-MSC expressing these markers. However, stimulation with 

IFN-γ significantly increased the percentage of cells positive for immune-markers 

such as HLA-I, HLA-II, and PD-L1 (Figure 1B). The mean fluorescence intensity of 

the various markers was determined and a significant increase in the expression of 

CD105, HLA-II, and PD-L1 was observed after IFN-γ treatment (Figure 1C).

Generation and characterization of Membrane Particles (MP)
MP were generated from unstimulated and IFN-γ stimulated AT-MSC. The 

number of cells used for each analysis was between 1 × 106–1.5 × 106 cells 

(80% confluency). The size distribution of the obtained MP was studied using 

Nanoparticle tracking analysis (NTA). The size of the particles ranged from 63 to 

700 nm (Figure 2A), and the mode size of the samples was 121.7 ± 35.5 nm for MP 

and 138.3 ± 62.1 nm for MPγ (Figure 2B). The percentage of particles with a size 

larger than 200 nm was lower than 5% in every sample.

Based on the particle concentration per ml, the average number of particles 

generated from each MSC was 1.2 × 105 ± 2.7 × 104 for MP and 1.1 × 105 ± 2.8 × 

7
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Figure 1 Immunophenotype of unstimulated and IFN-γ stimulated AT-MSC. 
(a) Representative flow cytometry analysis of the commonly used markers for MSC (CD45 
and CD31, both negative, and CD105, CD13, CD73, CD90), and the immune-markers HLA-I, 
HLA-II, and PD-L1. Isotype (white histograms), unstimulated AT-MSC (grey histograms) and 
IFN-γ AT-MSC (black histograms). (b) Percentage positive cells and (c) Mean fluorescence 
intensities (MFI) of the markers on unstimulated and IFN-γ stimulated AT-MSC. Data are 
presented as mean ± SD from 5 independent experiments. P values refer to the condition 
without IFN-γ. Unpaired t-test was used for statistical analysis.
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104 for MPγ (Figure 2C). There was no significant difference in size distribution or 

concentration (MP/MSC) between MP and MPγ.

The transmission electron microscopy images illustrate that MP consist of a 

population of particles heterogeneous in size with most of the particles showing 

a size of less than 200 nm (Figure 2D) but some showing larger sizes. This result 

confirms the NTA analysis. It can be clearly observed that both the larger and 

smaller MP have a round shape.

Membrane Particles from AT-MSC possess enzyme activity
To analyze whether MP have enzyme activity, we examined the ability of MP 

and MPγ to convert ATP to ADP by ATPase activity, and AMP to adenosine by 

the nucleotidase activity of CD73. The last product of these two reactions is free 

phosphate, so the samples for these assays were prepared in milliQ water to avoid 

contamination with free phosphates from saline buffers. Before measurement 

of enzyme activities, MP (diluted in milliQ water) were analyzed by NTA for 

determination of their concentration.

Figure 3A shows the ATPase activity (units/l) calculated from the standard curve 

generated with known free phosphate concentrations. MP and MPγ were able to 

convert ATP to free phosphate and the level of free phosphate was dependent on 

the concentration of MP. There was no statistical difference between MP and MPγ.

To examine whether MP and MPγ possess CD73 activity, the production of 

free phosphates by 2, and 1 ng of purified CD73 was compared with different 

concentrations of MP, and MPγ. Both types of MP were able to produce free 

phosphates after adding the substrate (AMP). The detection of free phosphate was 

dependent on concentration of MP and the amount of CD73 present in MP was 

calculated through the CD73 controls (Figure 3B).

Esterase activity was measured by the conversion of non-fluorescent CFDA-SE 

to fluorescent CFSE by MP using flow cytometry based on a FITC fluorescence 

triggering strategy (Figure 3C). This fluorescent-based flow cytometry protocol 

allows detection of particles based on positive fluorescence signals, not on 

size, as the average MP size of 120 nm is too small to be detected by most flow 

cytometers. Controls used for this flow cytometry protocol were PBS + CFDA-SE, 

and non-labeled MP (top 2 graphs). As expected, these controls were negative as 

no CFSE fluorescence can be expected. When MP were incubated with CFDA-SE, 

they converted CFDA to fluorescent CFSE, as demonstrated by the detection of 

fluorescent events (lower 4 graphs) showing that MP have esterase activity. As 

7
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Figure 2. Characterization of Membrane Particles generated from unstimulated 
and IFN-γ stimulated AT-MSC (MP and MPγ, respectively). 
(A) Nanoparticle tracking analysis (NTA) profiles of MP and MPγ. The NTA software 
generates a distribution graph on a particle-by-particle basis, a count (in terms of 
absolute number and concentration), and (B) size distribution of MP and MPγ. (C) The 
average number of particles generated per MSC. Data are presented as mean ± SD from 
10 independent preparations of MP. There was no statistical difference with respect 
to concentration and size between MP and MPγ. The statistic test used was unpaired 
t-test. (D) Transmission electron microscopy analysis of MP. White arrows point to areas 
zoomed in on at the images on the right side. Most of the MP showed a round shape 
and a size below 200 nm. 

Figure 2. Phenotypic properties of MP
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an additional control, MP were diluted before CFSE staining. The results shown 

indicate the recording of all samples during 1 min. The number of detected 

particles decreased for more diluted samples, but the MFI of the CFSE staining of 

the particles remained the same. This means that single MP can be detected with 

the used flow cytometry strategy. Fluorescent-based flow cytometry protocols 

were recently described in literature [29,30].

Effects of Membrane Particles on T cell proliferation
CFSE loaded human peripheral blood mononuclear cells (PBMC) stimulated 

with anti-CD3/antiCD28 antibodies were cultured with different ratios of MP for  

4 days (1:5,000, 1:10,000, 1:40,000, 1:80,000). To analyze lymphocyte proliferation, 

CFSE dilution was measured in CD4+ and CD8+ T cells. Addition of increasing 

concentrations of MP or MPγ did not affect the proliferation of CD4+ and CD8+  

T cells (Figure 4a and b).

Membrane Particles decrease the proportion of CD16+ 
monocytes and increase CD90+ and PD-L1+ monocyte subsets 
Monocytes were cultured with different ratios of MP for 24 h (1:10,000, 1:40,000, 

1:80,000) to determine whether MP could affect monocyte cell surface markers 

expression and immune function. Monocytes were cultured in polypropylene 

tubes to avoid the adherence of the cells and differentiation into macrophages. 

Culture of monocytes in the presence of MP or MPγ treatment decreased the 

frequency of pro-inflammatory CD14+CD16+ cells at ratios of 1:40,000 (by 45% 

and 49%, respectively) and 1:80,000 (by 48% and 35%, respectively) (Figure 5A).

Monocytes treated with MP at ratios of 1:40,000 and 1:80,000 furthermore 

increased the expression of CD90 by 17% and 25%, respectively. Meanwhile, 

the MPγ group showed an increase in CD90 expression at ratios of 1:10,000 by 

8%, 1:40,000 by 16% and 1:80,000 by 20% (Figure 5B). Moreover, MPγ treatment 

induced anti-inflammatory PD-L1 expression in monocytic cells by 16% at a 

1:10,000 ratio, 43% at a 1:40,000 ratio and 62% at a 1:80,000 ratio. MP had a smaller 

effect on PD-L1 expression with a 15% increase at a ratio of 1:40,000 (Figure 5C).

Membrane Particles affect the expression of pro- and anti-
inflammatory genes in monocytes 
In order to examine the effect of MP on monocyte immune function, and to 

examine whether the immunophenotypic changes observed were a result of 

protein transfer or of gene expression regulation, mRNA expression of a number of 
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Fi g u re  3 .  E n z y m a t i c  a c t i v i t y  o f 
M embrane Par t ic les
(A) ATPase activity was measured at four 
different concentrations of MP (1 x 1012, 
1 x 1011, 1 x 1010 and 1 x 109 particles/
ml). MP and MPγ were able to catalyze 
the breakdown of ATP and the detection 
of free phosphate was dependent on the 
concentration of MP. (B) The nucleotidase 
activity of the MSC marker CD73 was 
measured for three concentrations of MP 
(1 x 1012, 1 x 1011 and 1 x 1010 particles/
ml). MP and MPγ were able to produce free 
phosphates after adding AMP substrate in 
a dose-dependent fashion. CD73 enzyme 
(2 and 1 ng) was used to calculate the 
concentration of CD73 in the MP. There 
was no statistical difference in enzyme 
activity between MP and MPγ. (C) Esterase 
activity of three concentrations of MP (1 x 
109, 1 x 108 and 1 x 107 particles/ml) was 
measured by the conversion of CFDA-SE 
to CFSE by flow cytometry. Fluorescent 
events were observed in MP labeled 
with CFSE (CFSE-MP), and the number 
of CFSE-MP detected was dependent on 
the concentration of MP. There was no 
statistical difference between MP and MPγ 
in esterase activity. Controls (PBS+CFSE 
and non-labeled MP) were negative. Data 
are presented as mean ± SD. Enzyme 
activities were detected in MP generated 
from 5 different MSC donors.

Figure 3. Enzyme activity of MP
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genes with pro- and anti-inflammatory function was analyzed in monocytes by 

qPCR after 24 h of stimulation with MP. Upregulation of CD90 gene expression as 

a result of particles stimulation was observed in MP and MPγ treated monocytes  

(p < 0.05) (Figure 5D). Moreover, expression of the anti-inflammatory factors IDO 

and PD-L1 was increased in monocytes treated with MPγ, but not MP (p < 0.05) 

(Figure 5D). There was a trend for increased expression of IL-6 after MP and MPγ 

treatment, but this was not significant. Significant changes in gene expression 

were also not observed for the pro-inflammatory cytokines TNF-α and anti-

inflammatory cytokine IL-10. 

Membrane particles induce selective apoptosis of pro-
inflammatory CD14+CD16+ monocytes
Monocyte incubated for 24 h with MP and MPγ (1:10,000, 1:40,000, and 1:80,000 

ratios) were analyzed by flow cytometry for apoptosis by Annexin V staining. 

MP and MPγ did not significantly induce apoptosis in classical monocytes 

(CD14+CD16−) (Figure 6A). However, pro-inflammatory monocytes (CD14+CD16+) 

showed an increase (p < 0.05) in apoptosis after incubation with MPγ at a ratio of 

Figure 4. Effect of MP on T cell proliferation
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Figure 4. Effect of Membrane Particles on lymphocyte proliferation.
CFSE loaded PBMC stimulated with anti-CD3/antiCD28 antibody were cultured with 
different ratios of MP for 4 days (1:5,000, 1:10,000, 1:40,000 and 1:80,000). CFSE dilution in 
CD4+ and CD8+ T cells was measured. (A and B) Addition of MP or MPγ did not affect the 
proliferation of CD4+ and CD8+ T cells. (n = 8; mean ± SD). Two-way ANOVA was used for 
statistical analysis. 
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Figure 5. Effect of MP on CD14+ cells.
Monocytes were cultured with different ratios of MP for 24 h (1:10,000, 1:40,000 and 
1:80,000) to determine the effect of MP on monocyte immunophenotype. (A) Expression 
of CD16 on monocytes cultured in the presence of MP or MPγ (n = 6; mean ± SD). (B and 
C) Monocyte cell surface levels of CD90 and PD-L1 in the presence of MP or MPγ (n = 7; 
mean ± SD). (D) mRNA expression of monocytes after culture with MP. After 24 h of culture 
with MP or MPγ, monocytes were separated from MP and assessed by real-time RT-PCR for 
CD90, IDO, PD-L1, IL-6, TNF-α and IL-10 expression (n = 6; mean ± SD). Multiple comparison 
test (two-way ANOVA) was used for statistical analysis, *p < 0.05, **p < 0.01 and ***p < 
0.001 vs control; #p < 0.05 and ##p < 0.01 vs MP group.
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1:40,000, and after incubation of MP and MPγ at ratios of 1:80,000 (Figure 6B). This 

indicated that MP specifically induce apoptosis of pro-inflammatory monocytes.

Monocytes but not lymphocytes are able to take up Membrane 
Particles
Since the previous results showed that MP had immunomodulatory properties on 

monocytes but not on lymphocytes, we analyzed the interaction of MP with both 

types of immune cells. For that purpose, MP labeled with PKH membrane dye were 

added to PBMC (ratio 1:40,000) and incubated during 1 h and 24 h at 37 °C. As a 

control the cells were incubated at 4 °C, at which temperature no active uptake of 

MP is expected. A representative flow cytometry analysis is showed in Figure 7A 

and B. 

1 h after the addition of MP, a small percentage of CD3-lymphocytes (1.3 ± 0.2%) 

were positive for PKH-MP (Figure 7C) while 20 ± 5.3% of CD14-monocytes was 

able to uptake MP (p < 0.05) (Figure 7D). The difference between the MP uptake 

by monocytes and lymphocytes was higher after 24 h (lymphocytes: 5.2 ± 1.4%, 

Figure 6. Apoptosis of monocyte subsets 
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Figure 6. Effect of MP on apoptosis 
of monocyte subsets measured by 
Annexin V staining. 
Monocytes were cultured overnight 
with 3 ratios of MP or MPγ (1:10,000, 
1:40,000 and 1:80,000). (A) Percentage 
of Annexin V positive CD14+CD16- 
c l a s s i c a l  m o n o c y te s ,  a n d  ( B ) 
percentage of Annexin V positive 
CD14+CD16+ pro-inflammatory 
monocytes. Data represent mean ± 
SD of 5 experiments using MP from 
3 different donors. Two-way ANOVA 
was used for statistical analysis. P 
values (*p < 0.05) refer to the control 
without MP.
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Figure 7. Uptake of MP by monocytes. MSC were labeled with PKH-26 before 
generation of MP (PKH-MP). 
PKH-MP were added to PBMC (ratio 1:40,000) and incubated for 1 h and 24 h at 37°C. As 
a control the experiment was incubated at 4°C. (A and B) Representative flow cytometry 
analysis of PKH-MP uptake by lymphocytes (CD3) and monocytes (CD14) at time points 1 
h and 24 h at 4°C and at 37°C. (C) Percentage of CD3+ T cells positive for PKH-MP, and (D) 
Percentage of CD14+ monocytes positive for PKH-MP. Data are presented as mean ± SD 
from 6 experiments. Two-way ANOVA was used for statistical analysis. P values (*p < 0.05) 
refer to the 4°C control at the 1 h time point.
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monocytes: 93 ± 4.3%; p <0.05). The 4 °C control for uptake was always below 3% 

for monocytes and lymphocytes in all the time points. This result indicated that MP 

uptake was mediated in an energy-dependent process.

To examine whether MP could be internalized by monocytes, confocal 

immunofluorescence microscopy was performed with isolated CD14+ cells from 

PBMC. The membrane of the monocytes was labeled with PKH-67 and cultured 

with PKH-MP (1:40,000). Time-lapse recordings showed that MP bound to the 

plasma membrane of the monocytes but they were not internalized. To look in 

detail at the localization of MP on the monocytes, z-stack images were analyzed 

by confocal microscopy (Figure 8). These images confirmed that MP remained 

localized to the cell surface of the monocytes.

Discussion

The immunomodulatory capacity of MSC is often attributed to the secretion of 

soluble factors [11]. We recently demonstrated that inactivated MSC without the 

capacity to secrete factors can modulate immune responses in vitro and in vivo [9]. 

Inactivated MSC showed similar bio-distribution as living MSC as both are trapped 

in the lungs following intravenous administration. Here, we went one step further 

and generated nanoparticles from the membranes of adipose tissue MSC with 

diverse immunomodulatory properties by induction of regulatory proteins on the 

plasma membrane after treating the MSC with IFN-γ.

To generate MP, supernatants of MSC cultures were discarded and the cells were 

washed several times with PBS. Hereby the inclusion of soluble proteins in the 

MP preparations is avoided, which is a major challenge in the field of natural 

extracellular vesicles (EV) and causing misinterpretation of results [31]. The 

isolation methods for obtaining EV allow the co-precipitation of proteins, and RNA 

associated to lipoproteins secreted by the cells [32]. These contaminations mask 

the functional properties of EV and hamper their therapeutic application. With our 

novel protocol, we avoid the inclusion of artefacts from soluble molecules, and 

make MP a good alternative to EV.

Nanosight technology and electron microscopy were used for the characterization 

of MP. Most of the MP showed a size below 200 nm, and a round shape. Both 

7
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characteristics make the MP an attractive therapeutic tool. Firstly, because their 

small size MP can easily maneuver through the capillary network of the lungs 

and reach sites of action beyond the lungs. Secondly, their morphology (closed 

circular structures) would allow loading of MP with compounds of interest and use 

MP as a delivery vehicle for future applications. Sun et al. provided evidence that 

anti-inflammatory drugs can be loaded into EV from myeloid cells and thereby 

enhance the delivery of the drug to activated monocytes in a LPS-induced septic 

shock model [33]. The use of MP from MSC as a natural delivery vehicle would 

have the advantage that the vehicle per se show immunomodulatory properties, 

which gives the carrier additional value. It is also important to consider that the 

production and manipulation of MP is easier and cheaper than the methodology 

used for the collection of EV, as it is possible to generate about 1.5 × 105 particles/

cell.

In addition to their morphological characteristics, MP were shown to possess 

enzyme activity. It has been reported that extracellular vesicles from MSC have 

a cargo rich in enzymatically active glycolytic enzymes, ATPases, and ATP-

generating enzymes, such as adenylate kinase and nucleoside-diphosphate 

kinase [34]. Enzymatic activity has been demonstrated to be important for 

modulating the conditions in the vesicle nano-environment by consuming or 

generating metabolic energy. Katsuda et al. demonstrated the unique potential of 

extracellular vesicles from adipose tissue derived MSC for treatment of Alzheimer’s 

disease. These authors found that these extracellular vesicles carry Neprilysin, 

a metalloprotease, which ameliorates the disease’s symptoms [35]. We showed 

that MP possess nucleotidase and esterase activity, which are major enzymes 

regulating immunity and inflammation [21,22].

Lymphocyte proliferation is the most commonly used assay to demonstrate the 

immunomodulatory capacity of MSC and it has been used as a standard assay 

Figure 8. Confocal microscopy analysis of MP uptake by monocytes at 24 h. 
Z-stack images were collected at 1.2 μm intervals ranging from 0 to 17.6 μm. Staining for 
monocyte membrane (green), MP (red), and nucleus (blue) shows that MP are localized on 
the membrane of the monocytes (white arrows) and are not internalized. Scale bars: 5 μm.

7
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to compare the immunosuppressive effect of MSC from different tissue sources. 

Comparative studies have sometimes however produced conflicting results. 

Puissant et al. have reported similar inhibition of T cell proliferation by bone 

marrow and adipose tissue MSC [36], whereas Ribeiro et al. found that adipose 

tissue MSC to have stronger suppressive effects than bone marrow and umbilical 

cord MSC8. In pilot experiments, we generated MP from bone marrow derived 

MSC. These MP demonstrated similar properties as MP from adipose tissue MSC.

The mechanisms through which MSC suppress lymphocyte proliferation are 

largely dependent on soluble mediators. In our study, we found no effect of MP on 

lymphocyte proliferation. This can be explained by the fact that MP cannot secrete 

soluble factors, but also because lymphocytes were shown to be unable to bind 

or uptake MP. However, MP induced modulation of monocyte cell surface markers 

expression and changed their immune function. Furthermore, MP and MPγ 

induced the selective apoptosis of proinflammatory CD14+CD16+ monocytes.

CD16+ monocytes are major producers of inflammatory cytokines such as TNF-α 

and IL-12 [37,38] and high numbers of CD16+ monocytes are associated with 

acute and chronic inflammatory conditions [39]. Our results therefore suggest 

that MP act as immunomodulators that eliminate pro-inflammatory monocytes. 

Importantly, we also found that the immunomodulation induced by MP and 

MPγ is different. MPγ but not MP increased PD-L1 in the membrane of the 

monocytes and the mRNA expression of the anti-inflammatory factor IDO. Thus, 

the modification of the membrane protein composition of MSC by treatment of 

the cells with various stimuli provides us the opportunity to generate MP adapted 

for treatment of a specific immunological disorder. For example, MPγ with their 

enhanced capacity to induce PD-L1 and IDO by monocytes may be suitable for 

treatment of more severe immune responses involving inflammatory monocytes, 

while MP derived from MSC pre-treated with factors that induce proteins with 

regenerative function may be useful for inducing regenerative processes after 

resolving inflammation. As there is a lot of knowledge about modulation of MSC 

properties by cytokine treatment, there are tools in hand to control the make-up 

of MP. Thus, the potential therapeutic applications of MP are far reaching.

We demonstrated that the interaction of MP with monocytes is by binding and 

fusion with the plasma membrane of the monocytes. This is an active and specific 

mechanism for monocytes because at low temperatures MP were unable to fuse 
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with the monocyte membranes. It is furthermore specific because MP do not 

bind to lymphocytes. The confocal microscopy images showed that there is no 

internalization of MP into monocytes, indicating phagocytosis plays no role in 

the uptake of MP. The mechanism of binding and fusion of MP with monocyte 

membranes supports the idea that MP can be a natural delivery vehicle for 

monocyte-targeting drugs.

In conclusion, MP represent a therapeutic strategy that combines the potential 

of MSC therapy with reduced risks associated with the use of living cells and 

improved ability to reach sites beyond the lungs. Our data demonstrates that MP 

target monocytes, via which they may have a broad immunomodulatory effect 

(Figure 9). These data suggest that MP can serve as a novel cell-free therapeutic for 

treating immunological disorders. Additional studies, both in vitro and in vivo, are 

needed to improve our understanding the mechanisms of action of this potential 

immunosuppressive tool.

Figure 9. Schematic overview of the 
interaction of MP with monocytes
MP generated from MSC bind to 
monocyte plasma membranes. As an 
effect of the MP-monocyte interaction, 
MP modulate monocyte function 
by affecting gene expression and 
inducing apoptosis of pro-inflammatory 
monocytes.

7
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Summary

Mesenchymal stem or stromal cells (MSC) are adult stem cells that possess 

immunosuppressive capacities. Over the last decade, MSC have been under the 

investigation as immunotherapy in a wide range of immunological diseases. 

The most common route of administration of MSC is via IV injection. Upon IV 

injection MSC are trapped in the micro capillary network of the lungs and within 

24 hours the majority of the MSC have disappeared. Despite this short survival 

time and limited bio-distribution, long term immunomodulatory effects have 

been observed in experimental animal models (chapter 1) as well as in clinical 

trials. However, clinical MSC trials are often limited to small number of patients and 

tested in wide variety of diseases that are caused by different immune cells and 

have different disease readouts. In chapter 2 a systematic review was conducted of 

clinical studies using MSC with the purpose of immunomodulation to investigate 

the efficacy of MSC therapy. Although some of the included studies showed 

amelioration of disease symptoms after treatment with MSC therapy, other studies 

failed to show a positive effect of MSC therapy. Moreover, measurements of 

immunological parameters in blood of patients after MSC treatment were largely 

inconsistent between studies, mainly because of the large differences in study 

design, patient population and timepoints of the measurements. The results of 

this review underline that currently there is still a lack in understanding of the 

mechanisms of action of MSC immunotherapy.

In chapter 3 the effect of an inflammatory environment on MSC was examined 

as they are likely exposed to inflammatory factors upon infusion in patients 

that suffer from acute or chronic inflammatory diseases. In this chapter, it was 

shown that inflammatory signals alter the effect of MSC on B cells. MSC have a 

stimulatory effect on B cell proliferation and regulatory B-cell formation in 

an immunological quiescent environment. Under inflammatory conditions, 

MSC inhibit B cell proliferation and plasmablast formation, while the induction 

of regulatory B cells is reduced. One of the molecular pathways involved is the 

tryptophan catabolic pathway via break down of tryptophan (TRP) through 

indoleamine 2,3-dioxygenase (IDO). The depletion of TRP leads to an inhibition of 

B cell proliferation but also prevents regulatory B-cell formation. These data show 

that immunological conditions can dictate the effect of MSC on B cell function. 

Apart from the inflammatory signals that MSC might encounter, cells are also 

greatly altered by culture conditions. In chapter 4 we show that cryopreservation 

of MSC induced minor gene expression changes involved in innate immunity 
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pathways and cytoskeletal rearrangement and increased triggering of the instant 

blood-mediated inflammatory reaction. In this chapter, we furthermore showed 

that upon infusion, the lung microenvironment has a major effect on MSC genes 

reflecting a response to inflammatory signals. Upon IV administration, MSC change 

their phenotype and may potentially change their function. 

These data show that upon infusion, there is immunological cross talk 

between entrapped MSC and tissue-resident immune cells and cells in the 

lung microvasculature seem to become activated upon encounter of MSC. In 

chapter 5 we further investigated the response of host cells triggered by infused 

MSC. By infusion of MSC that were unable to respond to inflammatory signals or 

secrete immunomodulatory factors but preserved their cellular integrity [heat-

inactivated MSC (HI-MSC)], we show that the immunomodulatory effect of MSC 

does not depend on their secretome or active crosstalk with immune cells, but on 

recognition of MSC by monocytic cells. 

In chapter 6 we further elucidated the interaction of MSC with monocytic cells 

upon infusion. Here we show that MSC are rapidly cleared upon infusion through 

phagocytosis by hosts neutrophils, lung resident macrophages and circulating 

monocytes. Subsequently, MSC-primed monocytes change their phenotype 

towards an immunosuppressive phenotype and migrate from the lungs to the 

bloodstream and the liver. These data show the fate of MSC upon IV infusion.

Immunotherapy with living MSC comes with challenges as in vitro expansion of 

MSC is labor intensive and time consuming. In chapter 7 we generated membrane 

particles from MSC, which are smaller than MSC and will thus pass the lung 

microvasculature and are easier to store. In in vitro cultures, these particles bind 

to monocyte plasma membranes and modulate monocyte function by affecting 

gene expression and inducing specific apoptosis of pro-inflammatory monocytes.

Discussion

In this thesis the mechanisms of actions of MSC immunotherapy were 

investigated. Promising results of in vitro experiments and experimental animal 

models have led to clinical studies investigating primarily safety and secondly 

immunomodulatory efficacy of MSC therapy in immunological diseases. Although 

the safety of clinical MSC therapy is well established by now [1] the efficacy of 

MSC immune therapy for the treatment of immunological diseases is not yet clear. 

Difficulty in drawing decisive conclusions is mainly caused by lack of sufficient 

8



184

sample size and/or well controlled control groups in the majority of the clinical 

trials. Moreover, underreporting of clinical trials with neutral or negative outcomes 

leads to publication bias [2], variation in study setup, administrated cell dose, 

immunosuppressive co-medication and follow up time makes it difficult to draw 

conclusions about the immunological impact of MSC treatment. These studies 

underline that to obtain reproducible and consistent data on MSC therapeutic 

efficacy, larger studies including appropriate endpoints and standardized immune 

monitoring assays should be initiated [3]. Knowledge on the efficacy of MSC 

therapy is also hampered by the lack of understanding the mechanisms of action 

of MSC treatment upon infusion in patients. Better understanding of MSC based 

therapy helps to design optimal MSC therapeutic product and better tailored MSC 

therapy for different immunological diseases. 

The present thesis and previous work show that the in vitro immunosuppressive 

and anti-proliferative effects of MSC are dependent on their pre-activation with 

inflammatory factors [4-7]. Priming of MSC with inflammatory factors is likely to 

occur after MSC administration as patients treated with MSC often suffer from 

acute or chronic inflammatory diseases. Tailor made MSC can be generated 

by mimicking inflammatory conditions in vitro by the addition of IFN-γ. Under 

these conditions, MSC suppress the activity of B cells, they reduce antibody 

production and inhibit B cell proliferation, but they also lose the capacity to 

induce Bregs. On the other hand, MSC promote B cell survival and Breg formation 

under immunological quiescent conditions. This way custom-made MSC can be 

generated with either B cell suppressive properties, or MSC that support B cell 

homeostasis that can be used for different immune diseases. 

Culture expansion, necessary to obtain sufficient cells for MSC therapy, greatly 

affects MSC phenotype. Culture medium and plastic adherence have a major 

impact on MSC size and expression of (adhesion) molecules [8]. Due to these 

phenotypical changes, MSC get trapped in the lung capillaries upon IV infusion 

[9-11]. In the lung microenvironment, infused cells can change their phenotypical 

and functional properties in response to environmental stimuli [12]. As the 

majority of MSC disappears within 24 hours after infusion, intrinsic phenotypical 

changes may be of limited relevance for the therapeutic effect of MSC. Therefore, 

outcomes of in vitro studies of the effect of MSC on other cell types, for example on 

B cells, might differ from in vivo outcomes. Nonetheless, upon in vivo IV infusion, 

changes in secretion of soluble factors by MSC might affect tissue-resident host 

cells and these changes might even persist after disappearance of MSC. In this 

thesis it is shown that that upon infusion, the host lung microenvironment reacts 
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to MSC by secretion of inflammatory factors. Moreover, gene expression of both 

pro- and anti-inflammatory factors as well as neutrophil and macrophage markers 

was increased in the lung tissue just hours after MSC infusion [11, 13]. In this thesis 

it is shown that infusion of inactivated MSC that lost their capacity to actively 

secrete soluble factors evoked the same response on the lung microenvironment 

as living cells did. Moreover, even in a lipopolysaccharide induced sepsis model 

inactivated MSC retained their immunomodulatory capacity. Although it would 

be possible that disintegration of inactivated MSC leads to release of intracellularly 

contained cytokines and other factors, the disappearance of the cells within  

24 hours indicates that these cells are actively cleared. These data imply that MSC 

affect host cells upon infusion and this affect is independent of the secretion of 

soluble factors. Furthermore, it demonstrates that MSC do not have to be able to 

respond to environmental challenges to mediate their effects. In chapter 6, data 

show that upon coculture, monocytes rapidly migrate towards and phagocytose 

MSC. This same phenomenon is seen in vivo where remnants of MSC can be found 

in lung resident macrophages and circulating monocytes as well as liver-resident 

Kupffer cells. This suggest that although the bio-distribution of infused MSC is 

limited to the lungs, MSC-derived signals travel throughout the body. Cleaning 

up the remnants of MSC polarizes monocytes towards an immunosuppressive 

“MSC primed” phenotype as also described by other papers [14, 15]. Monocytes 

can directly trigger immunosuppression through secretion of cytokines and 

chemokines affecting the local microenvironment but also indirectly trigger 

immunosuppression through induction of adaptive regulatory cells. It has 

previously been shown that MSC can induce Treg formation in vitro through 

secretion of a whole range of soluble factors such as HLA-G5CCL1, leukemia 

inhibitory factor (LIF), TGF-β, IL-1β and IL-2 [16, 17] well as through direct cell-cell 

contact (Notch-1 pathway). However, the induction of Tregs by MSC might differ 

in vivo as their short survival time prevents MSC to actively induce Tregs. Despite 

their limited presence, increased numbers of Tregs can be found in patients even 

weeks to months post MSC infusion [18-22]. In this thesis we show that “MSC 

primed” monocytes can increase Foxp3+CD25hiCD127-CD4+ Tregs. The capability 

of “MSC primed” monocytes to increase Foxp3+CD25hiCD127-CD4+ Tregs in 

vitro indicates that MSC merely function as catalysts for inducing long lasting 

immunoregulation in treated patients. 

If the induction of immunosuppression by MSC upon IV infusion is caused by 

their rapid clearance, cell membrane dependent interactions of MSC with host 

immune cells seem to be largely responsible for the immunomodulatory effects. 

8
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The generation of small membrane particles from MSC can provide for a therapy 

that is safer, easier and less time consuming to generate. These particles may be 

able to pass the lung barrier and migrate throughout the body. Using particles 

eliminates the risks that come with the use of living cells. They can be tailored to 

bind to specific cell types, such as for instance endothelial cells or specific myeloid 

cell subtypes. This could lead to novel therapy with the same immunomodulatory 

effect as conventional MSC therapy. 

Conclusion

Understanding the mechanisms of action of MSC immunomotherapy contributes 

to generating more effective and safer therapy and can help to better treat 

patients with different immunological diseases. This thesis shows that upon 

the most common way of infusion, MSC function mainly as catalysts inducing 

immunosuppression through the host’s own immune cells. Monocytic cells seem to 

play an important role in the first step of inducing immunosuppression by altering 

their phenotype upon phagocytosis of MSC. Long term immunosuppressive effects 

seen in patients treated with MSC suggests that MSC primed innate immune cells 

induce a long term immune response by interaction with adaptive immune cells. 

Better understanding of this process to induce long term immunosuppression 

helps to provide novel and cell-free therapeutics to treat immunological disorders. 
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Mesenchymale stamcellen (MSC), ook wel Mesenchymale stromale cellen 

genoemd, zijn voorloper cellen die kunnen uitgroeien tot volwassen steunweefsels 

zoals bot-, kraakbeen- en vetcellen wanneer zij de juiste signalen hiervoor 

ontvangen. Op het lab kunnen we deze cellen isoleren uit vrijwel alle weefsels 

van zowel embryo’s als volwassenen. Doordat MSC nog kunnen uitgroeien tot 

de verschillende celtypen van het Mesenchym is er veel onderzoek gedaan 

naar het gebruik van deze cellen voor regeneratieve therapie met het idee dat 

de MSC disfunctionele cellen in zieke organen van patiënten zouden kunnen 

vervangen. De laatste decennia is duidelijk geworden dat MSC ook in staat zijn om 

afweerreacties van het immuunsysteem te remmen. Deze eigenschappen maken 

MSC interessant als celtherapie voor bijvoorbeeld patiënten met immunologische 

ziekten of orgaantransplantatie patiënten Vooral in het laboratorium is veel 

onderzoek gedaan naar de werkingsmechanismen achter hoe MSC cellen van 

het immuunsysteem kunnen onderdrukken. Daarnaast laten klinische trials met  

MSC-therapie zien dat MSC-celtherapie veilig is voor patiënten. Echter, er is minder 

bekend over de werkzaamheid van MSC als behandeling van patiënten. Zo wijzen 

studies met diermodellen erop dat na het intraveneus (IV, in de ader) inspuiten 

van MSC, de grote meerderheid van de cellen na 24 uur niet meer aanwezig is 

in het lichaam. Desondanks de korte aanwezigheid van de cellen in het lichaam 

laten sommige klinische trials langdurige positieve effecten zien bij patiënten 

nadat zij met MSC behandeld zijn (hoofdstuk 1). Om een beter beeld te krijgen 

van de effectiviteit van MSC-celtherapie werden in hoofdstuk 2 62 klinische 

trials waarbij MSC als celtherapie gegeven werd aan patiënten met verschillende 

ziekten vergeleken. Er werd gekeken naar data die vermindering van symptomen 

bij patiënten beschreef en parameters die veranderingen van het afweersysteem 

van patiënten aanduiden. Sommige van de beschreven studies lieten verlichting 

van symptomen zien na behandeling met MSC maar bij andere studies werd geen 

zichtbaar effect gemeten. Daarnaast is het lastig om een conclusie te baseren op 

de studies omdat de studies erg verschillen in studie-opbouw, patiëntpopulatie 

en het moment van het meten van symptoomveranderingen. Ook zijn de patiënt 

groepen vaak klein en ontbreekt een goede controlegroep. De resultaten van deze 

review benadrukken dat er momenteel nog steeds een gebrek aan inzicht is in  

wat er gebeurd met het afweersysteem van de patiënten na het toedienen van 

MSC-celtherapie en hoe patiënten baat hebben van MSC-therapie. 

In hoofdstuk 3 werd het effect van een inflammatoire omgeving op MSC 

beschreven. Wanneer MSC worden ingespoten in patiënten is de kans groot dat 

zij blootgesteld worden aan een inflammatoire omgeving omdat de behandelde 
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patiënten vaak lijden aan acute of chronische inflammatoire ziekten. In dit 

hoofdstuk werd beschreven dat inflammatoire signalen het effect van MSC 

op B-cellen veranderen. B-cellen zijn immuuncellen die betrokken kunnen 

zijn bij orgaanafstoting na transplantatie door bijvoorbeeld de productie van 

donorspecifieke antistoffen en cytokines (celsignalererende moleculen). Na 

activatie kunnen B-cellen uitrijpen tot plasmablasten en plasmacellen die grote 

hoeveelheden antistoffen uitscheiden. Op basis van o.a. cytokine productie 

kunnen B-cellen worden onderverdeeld in verschillende populaties, variërend 

van effector B-cellen en regulatoire B-cellen die de immuunreactie kunnen 

onderdrukken. Onder normale omstandigheden hebben MSC een stimulerend 

effect op B-cel expansie en regulatoire B-celvorming. Echter, onder inflammatoire 

omstandigheden remmen MSC B-celproliferatie en plasmablastvorming, terwijl 

de inductie van regulatoire B-cellen wordt verminderd. In een inflammatoire 

omgeving zetten MSC tryptofaan (TRP) om in L-kynurenine via indoleamine 

2,3-dioxygenase (IDO). De depletie van TRP in de omgeving leidt tot een remming 

van B-cel expansie maar voorkomt ook de aanmaak van regulatoire B-cellen. 

Deze gegevens tonen aan dat immunologische factoren het effect van MSC op 

B-celfunctie beïnvloeden. 

Afgezien van de inflammatoire signalen die MSC kunnen tegen komen hebben 

ook de kweekomstandigheden in het laboratorium grote invloed op de cellen.

In hoofdstuk 4 werd het effect van invriezen (cryopreservatie) op MSC 

onderzocht. Uit vergelijking van MSC uit kweek en vers ontdooide MSC bleek 

dat cryopreservatie weinig invloed heeft op de MSC genexpressie. Echter, 

cryopreservatie leidt tot een iets grotere kans op het in gang zetten van een 

directe bloed-gemedieerde ontstekingsreactie. Deze ontstekingsreactie zou de 

overlevingstijd van MSC na toediening verkorten en zou mogelijk kunnen leiden 

tot negatieve effecten op de gezondheid van patiënten. Na het inspuiten van MSC 

werden belangrijke veranderingen in de genexpressie van MSC gemeten die een 

reactie op inflammatoire activering weerspiegelen. Deze data laten zien dat er na 

het inspuiten van MSC sprake is van interactie tussen MSC en cellen in het long 

micromileu en dat immuuncellen in de long lijken te worden geactiveerd na het in 

aanraking komen met MSC. 

In hoofdstuk 5 is meer onderzoek gedaan naar de respons van long residente-

cellen na interactie met MSC. Door infusie van hitte geïnactiveerde MSC (HI-MSC) 

werd laten zien dat het immuunmodulerende effect van MSC niet afhankelijk is 

van productie van cytokines of actieve interactie met immuuncellen, maar op 

herkenning van MSC door monocytische cellen. Deze cellen zijn gespecialiseerd 

9
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in het opruimen van resten van dode of beschadigde cellen, dit proces wordt 

fagocytose genoemd.

Deze interactie tussen MSC en monocytische cellen is vervolgens verder 

onderzocht en beschreven in hoofdstuk 6. Hier werd beschreven dat MSC 

binnen korte tijd na infusie worden opgeruimd door verscheidene fagocyten. 

Na het opruimen van MSC zien we dat monocyten (een type monocytische cel) 

van fenotype veranderen naar cellen met een regulatoir fenotype. Dit hoofdstuk 

toont het lot van MSC na infusie en het mogelijke werkingsmechanisme van  

MSC-celtherapie. 

Aan immunotherapie met levende MSC zijn risico’s verbonden zoals infectie van 

de kweek of mutatie van de cellen, daarnaast is het in vitro kweken van MSC een 

arbeidsintensief en tijdrovend proces. In hoofdstuk 7 werden membraandeeltjes 

van de celwand van MSC gegenereerd. Deze deeltjes zijn kleiner dan MSC en 

zijn in tegenstelling tot MSC in staat om de haarvaten van de long te passeren. 

Tevens kan het genereren van membraandeeltjes van MSC zorgen voor een 

therapie die veiliger, gemakkelijker en minder tijdrovend is om te ontwikkelen. 

In kweekschaaltjes bonden deze deeltjes aan monocyten waarna zij de functie 

van deze monocyten konden moduleren door genexpressie te beïnvloeden 

en specifieke celdood van pro-inflammatoire monocyten te induceren. Door 

het op maat maken van membraandeeltjes die kunnen binden aan specifieke 

celtypen kan een nieuwe therapie met hetzelfde immuunmodulerende effect als 

conventionele MSC-therapie maar die minder risico’s met zich mee brengt worden 

ontwikkeld.

Het begrijpen van de werkingsmechanismen van MSC-therapie draagt bij aan het 

genereren van een effectievere en veiligere therapie en kan helpen om patiënten 

met verschillende immunologische aandoeningen of na orgaantransplantatie 

beter te behandelen.

Samenvattend laat dit proefschrift zien dat MSC na IV inspuiten voornamelijk 

functioneren als katalysatoren die immunosuppressie induceren door de eigen 

immuuncellen van de gastheer. Monocytische cellen lijken een belangrijke rol 

te spelen in de eerste stap van het induceren van immunosuppressie door hun 

fenotype te veranderen na fagocytose van MSC. Langdurige immunosuppressieve 

effecten waargenomen bij patiënten behandeld met MSC suggereren dat 

fagocterende immuuncellen van de host na contact met MSC in staat zijn 
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een langdurige immuunrespons te induceren door interactie met andere 

immuuncellen.

Meer onderzoek over hoe deze langdurige immunosuppressie wordt geïnduceerd 

is noodzakelijk voor de ontwikkeling van betere en mogelijk cel-vrije therapieën 

voor de behandeling van immunologische ziekten en voor patiënten na 

orgaantransplantatie.

9
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Transplantatie Vereniging, Bournemouth, UK 

2015 European Society for Organ Transplantation (ESOT) 

congress, Brussels

2016 International Society for Cellular Therapy (ISCT) 

congress, Seville, Spain 

2016 Bootcongres, nederlandse transplantatie vereniging, 

Groningen 

2016 Nantes Actualités Transplantation (NAT ) annual 

event, Nantes, France

2016 International congress of The Transplantation Society 

(TTS), Hong Kong

2017 MiSOT, Regensburg, Germany 

2017 Science days, Dept. of internal medicine, Antwerp, 

Belgium 

2017 Molmed day, Rotterdam  

2017 bootcongres, Nederlandse Transplantatie Vereniging 

(NTV), Utrecht

2018 ESOT, Barcelona, Spain 

2018 TTS, Madrid, Spain   

Travel grants and awards
2018 Mentor – mentee Award TTS, Madrid, Spain 

Attendance at (Inter)national conferences
2014 Science days, Dept. of internal medicine, Antwerp, 

Belgium

2014 Molmed day, Rotterdam

2014 Annual meeting NTV (bootcongres), Leiden 

oral

oral

poster

oral 

oral

poster

oral

oral, chair and poster

oral

oral

poster

poster

oral

oral

oral
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2. Teaching

 

Supervising practicals and excursions, Tutoring
2014-2017 Lab rotations masters’ I&I students

2014 Junior med school students 

2015 Junior med school students   

Other
2017 Published article for ‘Frontiers for young minds’ (children aged 13-15)

2016 Cover design for “Stem Cells and Development” 
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Members of the “real grownup MSC group” thank you guys for being such an 

instructive and fun group! Ana, we started in the same week and quickly bonded 
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for being such a good listener when I came to you with my problems and being a 
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were such a nice and considerate colleague and I appreciate all the little cheeses 

you brought us back from your visits abroad.  Marcel.la, your positive look on 

life and great sense of humor often made my working day. When Sam and I told 

you we could not touch our toes you made it your mission to practice yoga with 

us daily and I am proud to say that even now I am still able to touch my toes. 

Thank you for your trust in me to finish the B cell paper that is now part of this 
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had to put up with a lot of our jokes, even before you officially started working 

at the Tx lab. You were a very relaxed person to work with and visiting you in 

Copenhagen was a lot of fun! Anusha, wat superleuk dat je van vriendin ook mijn 
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to cold and rainy Netherlands! Marieke, van jou nam ik het MSC-stokje over als de 
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ik je verder vergeet te noemen) graag bedanken voor alle samenwerkingen, 

spelletjesavonden, etentjes, efteling-uitjes en (foute) feestjes.  

Nynke, door onze gezamenlijke verjaardag maand startten we de vissen op het 

kantoor trend. Je was een heel leuk kamergenootje en op gegeven moment mocht 

ik zelfs je nagels lakken voor speciale gelegenheden. Gretchen al snel vonden 

we elkaar in dezelfde flauwe donkere humor en voorliefde voor alles roze, lange 
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kunnen delen over crunchy dierverblijfsokken, mislukte muis-experimenten en 

het moment van verstandsverbijstering waarin we besloten de Bruggenloop 

te doen.  Je bent een van de slimste en liefste personen die ik ontmoet heb. 

Bedankt voor de leuke tijd en heel veel succes met je nieuwe baan als klinisch 

chemicus in opleiding! Fleur, mijn kantoorbuurvrouw. Bedankt voor alle keren 
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dat ik je vragen kon stellen of even met je bij kon kletsen. Samen deelden we een 
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het afronden van je boekje. Rens, Al snel vond ik een bondgenoot in Darkness 

in jou. Ik herinner me eindeloze Sortdagen waarop we naar rockmuziek luisterde 

(Peaches!) en over films en series praatten, daarnaast deelden we hetzelfde gevoel 

voor ‘lame wordjokes’ humor. Zonder jou op de afdeling was mijn PhD lang niet zo 

leuk geweest! Marieke, je was de nieuwste AIO in de Bela-groep en ik wil ook jou 

bedanken voor je gezelligheid en vriendelijkheid. Veel succes met je PhD.

Ook de postdocs wil ik graag bedanken voor jullie bijdrage: Nicolle, bedankt 

voor je super goede tips en bijdrage aan het onderzoek, als ik bij Martin’s bureau 

stond kon ik ook altijd jouw mening vragen over experimenten. Daarnaast kon 

ik je ook altijd om raad vragen en gezellig even met je kletsen. Heel veel succes 

met de verdere ageing projecten. Karin naast je goede raad over experimenten 
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dochtertjes. Bedankt voor de fijne gesprekken en succes met je groeiende groep. 

Nicole je was erg geïnteresseerd in het PhD-leven van je collega’s. Succes met de 

Elispot projecten.

Aan alle analisten van het Tx lab: zonder jullie kennis van protocollen en 

experimenten, onderhoud van het lab en bestellingen van materiaal kon het Tx lab 

niet bestaan. Bedankt voor al jullie inzet. Wenda, ik kon altijd bij jou aankloppen 

voor lastige vragen over de vreemde experiment gerelateerde producten die ik 

wilde bestellen en opname van vakantiedagen. Je was altijd vrolijk en had altijd 

tijd om me even te helpen. Dank je voor een gezellige tijd op het lab. Marjolein, 

met zo’n groep AIO’s om je heen was je toch een beetje onze AIO mama. Dit nam 

niet weg dat je aanwezig was bij alle feestjes en etentjes. Bedankt voor je goede 

zorgen tijdens mijn PhD tijd. Ik vond het fijn dat ik altijd over van alles met je 

kon praten. Jeroen, Bunny J, met jou kon ik naast heel veel grappen maken ook 

serieuze gesprekken voeren. Als het iets minder ging stond je altijd voor me klaar. 

Dat je naar een andere afdeling ging betekende gelukkig niet dat je niet meer 

langs kwam bij het Tx lab en alle feestjes en dinners buiten werktijd. Heel veel 

geluk in je nieuwe appartement! Joke bedankt voor je goede labmanagement. 

Zonder jouw betrokkenheid kon het lab niet draaien. Derek, wat was ik blij toen 

je ons kwam helpen met alle muisexperimenten. Ik vond het altijd gezellig met je, 

zowel op het lab als tijdens foute feestjes. 
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Anja, Mariska, Ronella, Annemieke, Elly, Frieda, Thea, Thierry, Ruben, Lin, 
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Anne-Marie, Nadine en Erik dankzij de leervolle stages bij jullie ben ik met 
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