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Abstract

Background: Single-molecule localization microscopy is a super-resolution microscopy technique that allows for
nanoscale determination of the localization and organization of proteins in biological samples. For biological
interpretation of the data it is essential to extract quantitative information from the super-resolution data sets. Due
to the complexity and size of these data sets flexible and user-friendly software is required.

Results: We developed SMoLR (Single Molecule Localization in R): a flexible framework that enables exploration
and analysis of single-molecule localization data within the R programming environment. SMoLR is a package
aimed at extracting, visualizing and analyzing quantitative information from localization data obtained by single-
molecule microscopy. SMoLR is a platform not only to visualize nanoscale subcellular structures but additionally
provides means to obtain statistical information about the distribution and localization of molecules within them.
This can be done for individual images or SMoLR can be used to analyze a large set of super-resolution images at
once. Additionally, we describe a method using SMoLR for image feature-based particle averaging, resulting in
identification of common features among nanoscale structures.

Conclusions: Embedded in the extensive R programming environment, SMoLR allows scientists to study the
nanoscale organization of biomolecules in cells by extracting and visualizing quantitative information and hence
provides insight in a wide-variety of different biological processes at the single-molecule level.
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Background
The revolutionary advancements in super-resolution mi-
croscopy techniques make it possible to study subcellular
structures at nanoscale, using fluorescence microscopy.
Single-molecule localization microscopy (SMLM) pro-
vides the highest spatial resolution that can be achieved
with light microscopy today, with a lateral resolution
between 10 and 20 nm [1, 2]. SMLM relies on detecting
single fluorescent emitters, by separating spatially overlap-
ping signals in time. By detecting and determining the
position of individual fluorescent molecules, in densely la-
belled biological samples, with high precision, images can

be reconstructed with a resolution an order of magnitude
below the diffraction limit of the light microscope.
In many biological samples a multitude of macro-

molecular assemblies and protein complexes within
one cell can be observed, such as DNA double strand
break (DSB) foci [3, 4], nuclear pores [5], focal adhe-
sions [6], virus particles [7] or neuronal spines [8].
Super-resolution microscopy is well suited to study
those assemblies, since the increased resolution per-
mits to investigate, at the single-molecule level, the
internal composition and protein distribution of these
nanoscale assemblies, which have typical diameters
ranging from 100 nm up to 2 μm.
In contrast to regular microscopy data which consists

of intensity values in a digital image format, SMLM
data typically consists of Cartesian coordinates with
corresponding localization precision. Therefore, regular
image analysis tools do not directly apply to SMLM
data. Numerous software packages for detection and
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localization of single-molecules from single-molecule
localization data are available (reviewed and bench-
marked in [9]), that allow reliable image reconstruction
for SMLM. Additionally tools have been developed
which allow more in-depth (3D) visualization of the
localization data (PALMsiever [10], ViSP [11], PYME
[12]), clustering (SR-Tesseler [13], 3DClusterVisu [14])
and extraction of quantitative information (SharpViSu
[15], LAMA [16] and Grafeo [17]) (Table 1).
Here, we present a versatile software package named

SMoLR (Single Molecule Localization in R), that enables
researchers to analyze large sets of single-molecule
localization data in a quantitative way. The pointillist na-
ture of the data gives possibilities for alternative types of
analysis, for which the resourceful R programming lan-
guage can be of great value [18]. With SMoLR we comple-
ment existing software, with a software package for
analyzing larger data sets with localization data at once in
the free open-source R environment.

Implementation
SMLM data consist of Cartesian coordinates of molecules
and their respective precision along with all possible extra in-
formation that is desired in a specific experiment (i.e. time or
frame of detection, channel, estimated number of photons de-
tected etc.). The localization data together with these add-
itional parameters can be imported into SMoLR in different
formats obtained by different single-molecule localization
software: ThunderSTORM [19], Zeiss ZEN software, SOSplu-
gin [20] or plain text (Fig. 1). SMoLR is versatile and can be
used in different ways, where one specifically useful way is to
define Regions of Interest (ROIs) from the super-resolution
images to analyze the organization of proteins in subcellular
structures. Subsequently applying a single analysis to each
ROI will result in quantitative information describing the dis-
tribution of proteins in a large number of structures.

Workflow
ROIs can be either manually or automatically selected in
image analysis software such as ImageJ [21], the localization

data of these ROIs can be imported in SMoLR (Fig. 1). Al-
ternatively, ROIs can also be automatically selected using
localization clustering functions in SMoLR. The localization
data within the different ROIs is selected and stored in a list
with localization data from the different ROIs. These ob-
jects can subsequently be analyzed by SMoLR at once,
using single commands. To visually inspect the ROI data,
we provide an interactive application which shows the ROIs
in the full super-resolution image together with several stat-
istical parameters (Additional file 1: Figure S1).

Visualization
SMLM data can be visualized in many ways. The most fre-
quently used method is to plot Gaussian distributions for
all localizations with standard deviations corresponding to
the localization precision (Fig. 2a) [22]. However, with this
method intensity values do not directly depend on the
density of localizations, but also depend on localization
precision. As an alternative approach we implemented a
2D-Kernel density estimation (KDE) method, in which the
density of detections per area is normalized to the total
number of localizations in the images (Fig. 2b). Therefore,
this method is quantitative, making thresholding of the
data at a given density of localizations per pixel possible.
A third visualization method implemented in SMoLR is
an adapted scatter plot that depicts the Cartesian coordi-
nates and can add additional data using the size and color
of the plotted points (Fig. 2c). This type of visualization
can be used to easily assess the quality of the data and de-
tect potential artefacts such as drift during image acquisi-
tion or incorrect grouping. Additionally, we provide a
function that formats the single-molecule data in such a
way that it can be used in the Spatial Point Pattern Ana-
lysis R package spatstat [23]. This opens up the possibility
to also include spatstats’ wide range of visualization and
clustering options in the analysis.

Clustering
Clustering of SMLM data is comparable to object seg-
mentation in conventional image analysis. Similar to

Table 1 Comparison of different software packages for visualization and analysis of Single Molecule Localization data

Programming environment Visualization Clustering/ segmentation Quantification GUI Batch mode/Scriptable Reference

VisP C++ + – – + – [11]

PALMsiever Matlab + – – + + [10]

SR-Tesseler C++ + Voronoi + + – [13]

PYME Python + – – + + [12]

SharpViSu Matlab + Ripley/Voronoi + + – [15]

LAMA Python – Ripley/DBSCAN + + – [16]

3DClusterViSu Matlab/Python + 3D Voronoi + + + [14]

Grafeo Matlab + Ripley/Voronoi + + + [17]

SMoLR R + KDE/DBSCAN + + + this paper
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Fig. 1 Workflow for analysis of SMLM data with SMoLR. Workflow across external single-molecule localization software (blue), ImageJ/FIJI (green)
and SMoLR (pink). (a) SMLM data is extracted from microscopy images, and represented in table format with as minimum information x and y
coordinates, and localization precision. (b) The extracted data is analyzed with SMoLR or other visualization programs as an entire image. (c) Using
either ImageJ/FIJI or SMoLR regions of interest are determined and selected, either manually or automatically using selection criteria. (d) The
localization data is split by SMoLR into a list containing data of each ROI, these individual ROIs can be analyzed in more detail at once. Resulting
parameters can easily be statistically explored using R
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Fig. 2 Analysis of DSB foci with SMoLR Human (U2Os) cells were indirectly immunostained for RAD51 (Atto488, green) and BRCA2 (Alexa647,
red) and imaged by dual color dSTORM. Visualization (a-c), clustering (d-f) and statistical exploration (g-h) as featured in SMoLR is shown. (a)
Single DSB foci plotted as Gaussian distributions, (b) kernel density estimation and (c) as an extended scatter plot where the size of the points
represents the localization precision. Three clustering algorithms: (d) KDE, (e) DBSCAN and (f) Voronoi tessellation. Clusters are shown in separate colors
for KDE and DBSCAN. Voronoi tessellation is depicted with a color intensity that correlates with area of the tiles, hence the local density of localizations.
Graphical representations of cluster information: (g) Histogram with the number of clusters per DSB focus for the two proteins, (h) 2D histogram of
cluster Size (FWHM) versus number of localizations of the BRCA2 foci. (i) Template free particle averaging of multiple (n = 186) DSB foci; the center and
orientation of the RAD51 signal was determined and used to align and rotate the foci. Additionally the foci were oriented in such a way that their
highest intensity was at the left side of the merged image. For reference, the crosshair indicated the center of rotation. Scale bars are 200 nm
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the analysis of objects from segmented images, features
can be extracted from the clustered objects to describe
the shape and spatial organization within the object.
For SMLM data several different approaches for clus-
tering have been proposed in literature, where some of
the algorithms are useful to give a global description in
the amount of observed clustering, such as Ripley’s K
and its derivates, or the recently nonparametric de-
scriptor, J0(r) for clustering density [24]. As previously
mentioned, from within SMoLR, the R-package spatstat
offers several of these clustering and correlation
methods (Ripley-K function, linearized L-function and
pair-correlation functions). However, in general, identi-
fication of individual clusters is preferred because this
allows to analyze the size, shape and spatial distribution
of the clusters. In SMoLR, multiple clustering algo-
rithms are available. First, a clustering method based on
the binary KDE image can be used to quantify the num-
ber of clusters in an image or region of interest (Fig.
2d). We incorporated functions from the EBImage
package to calculate image features, such as shape and
size, from single clusters [25]. These features together
with descriptive statistics (number of localizations,
mean position, mean precision, etc.) can be used to
categorize individual clusters. Second, the Density
Based Clustering Algorithm with Noise (DBSCAN) al-
gorithm is integrated in SMoLR (Fig. 2e) [26, 27]. This
frequently used algorithm allows clustering of data
based on localization data only. From the defined clus-
ters with localizations, statistics can be calculated such
as the cluster area, convex hull and elongation. The
earlier mentioned interactive application (Additional
file 1: Fig. S1) at this point also allows to manually as-
sess the features (obtained with KDE or DBSCAN clus-
tering) within a data set. Additionally, all parameters
can be used for exploration of the data set either
manually or using multivariate analysis or machine
learning algorithms. Although DBSCAN is able to de-
fine clusters and deal with noise, in literature alterna-
tive clustering algorithms have been proposed that
work better for certain biological samples. Examples are
Voronoi tessellation, Bayesian cluster identification and
the use of a Gaussian-mixture model [13, 28–30]. A com-
parison of our KDE and DBSCAN implementations with
clustering algorithms by Voronoi tessellation [13, 17] and
Bayesian statistics [29] can be found in Additional file 2:
Figure S2.

Particle averaging
Merging the localizations from a large number of indi-
vidual SMLM images of single biological structures
such as the nuclear pore complex, synaptonemal com-
plex or viral particles proved to be a powerful tool to

reconstruct ultrastructure [5, 31–33]. However, tem-
plate free particle averaging is a computationally de-
manding procedure or requires expensive software [33].
Particle averaging also assumes that individual struc-
tures represent identical or at least highly similar struc-
tures. However, for some biological structures there
might be quite some variation in the organization of
the individual structures, although they can have cer-
tain features in common. We therefore implemented an
alignment algorithm, as will be described below, based
on extracted features from the individual images, which
can be very informative to observe common features
from the imaged structures.
Alignment of individual structures can be achieved

using features that can be extracted with the SMoLR
package (using pixel- or localization-based features).
For example, the center of mass of clusters can be used
to center the structures. In some cases, the clusters
may have specific shapes that enable to rotate and over-
lay the individual ROIs. For example, elongated struc-
tures can be aligned using the major axis of the
structure. The presence of multiple clusters within indi-
vidual ROIs that can be distinguished from each other
(for instance on the basis of shape, size or distance to
the center of mass), provides another possibility to
align structures by rotating the similar clusters towards
the same point. The alignments can be averaged or
overlaid, and subsequently used to visualize and extract
common features from the individual images. This can
be used to compare biological structures at different
biological conditions or time points. Additionally, these
alignments can reveal the relative location of different
proteins within the structure, when aligning the struc-
tures using one protein as a reference.
The functions in SMoLR are developed based on

2D-localization data. However, 3D data can be visual-
ized in the scatterplot of SMoLR visualizing the
z-coordinate using color or size of the plotted points.
In principle the DBSCAN algorithm is not limited to
2D data, however 3D clustering is not implemented dir-
ectly in SMoLR.

Results
To show the use of SMoLR to analyze single-molecule
localization data, we applied the functions of the
SMoLR package on a previously published data set with
images of proteins involved in DNA double strand
break (DSB) repair [4]. Precise determination of spatio-
temporal localization and organization of these proteins
at the sites of damage and how these relate to specific
and general protein functions can help to elucidate the
mechanisms by which repair of the DSBs take place. In
this example we examined two essential DSB repair
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proteins, the recombinase RAD51 and the tumor sup-
pressor BRCA2. γ-Irradiated cells were immunostained
for RAD51 and BRCA2 and imaged using direct sto-
chastic optical reconstruction microscopy (dSTORM)
[4]. Single foci were segmented and visualized using the
three visualization techniques available in SMoLR (Fig.
2a-c). Subsequent clustering using KDE, DBSCAN and
Voronoi tesselation (spatstat) (Fig. 2d-f ) allowed for
quantitative analysis of multiple foci including number
of clusters per protein, per focus and cluster size versus
number of localizations (Fig. 2g-h). These analyses can
be extended using e.g. cluster shape, co-localization or
relative distance between clusters.
In order to gain insight in the relative distribution

of RAD51 and BRCA2 in DSBs we averaged their sig-
nal after alignment (centered and rotated) based on
the elongated shape of the RAD51 clusters (Fig. 2i).
This revealed a distinct pattern of protein distribu-
tions during DNA repair (explained in more detail in
Sánchez et al., 2017).

Conclusions
Visualization and quantitative analysis of the
localization of multiple proteins, below the diffraction
limit, within macromolecular assemblies or small or-
ganelles, under different conditions and at multiple
time points, provides the possibility to gain insight in
the spatiotemporal organization of protein function
during biological processes. In many situations, mul-
tiple similar structures are present within a cell and the
recorded super-resolution image. By combining the
presented methods and work flow to extract relevant
features from the localization data, together with the
powerful statistics available in R, it is possible to ex-
plore the variation in structures, determine common
features describing the structures while at the same
time comparing different conditions or proteins. Using
feature-based alignment and rotational analysis these
observed structural organizations can be verified, visu-
alized and combined with simulations to get more
insight. Altogether, the workflow presented in our
SMoLR package allows researchers to delve deeper into
their single-molecule localization data, beyond conven-
tional image analysis.

Availability and requirements
Project name: SMoLR
Project home page: https://github.com/ErasmusOIC/SMoLR
Operating system(s): Platform independent
Programming language: R
Other requirements: R 3.4.0 or higher
License: LGPLv3
Any restrictions to use by non-academics: no.

Additional files

Additional file 1: Figure S1. Interactive application for inspection of
SMLM data (A) Shiny application loaded with indicated data is run within
the R environment on a local server in a web browser. (B) Feature
parameters can be show in a scatter plot or (C) binned in a histogram.
(D) Data points inside the scatterplot or bins in the histogram can be
manually selected and corresponding clusters are then indicated in the
image (green is selected), structures of interested can be enlarged and
inspected. (PDF 944 kb)

Additional file 2: Figure S2. Comparison of cluster algorithms: Four
cluster algorithms were compared KDE and DBSCAN from the SMoLR
package and Voronoi and Bayesian clustering from external packages. (A)
A test data set containing 6 circular clusters of 50 localizations (1–6) and
one cluster of 100 localization consisting of two overlapping clusters (7)
(red dots) and 300 uniformly distributed (incorrect) localizations due to
noise. (B-C) KDE, DBSCAN, and Bayesian clustering of the test data set
using default settings. For Voronoi clustering, the approach as described
in Haas et al. was used, using an implementation in R (a threshold of two
times the medial tile area of Voronoi tessellation was used to select
clustered localizations). Non-clustered localizations are depicted in red,
while clustered localizations are indicated as a separate color per cluster
(orange to green) and numbered from 1 to 7. Indicated performance
parameters are: 1), the number of individual positive clusters detected
(fused clusters are counted as one), 2), number of false clusters identified
(arrow), 3), the percentage of noise localizations that have been assigned
to a cluster and, 4), the percentage of signal localizations that are
assigned to a cluster. (PDF 3804 kb)

Abbreviations
DBSCAN: Density-based spatial clustering of applications with noise;
DSB: Double strand break; dSTORM: Direct stochastic optical reconstruction
microscopy; KDE: Kernel density estimation; ROI: Region of interest;
SMLM: Single-molecule localization microscopy; SMoLR: Single-molecule
localization in R
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