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Abstract

Time slot management refers to the design and control of the delivery time slots offered to customers
during the online ordering process. Strategic time slot management is an innovative variant in which
only a single time slot is offered each day of the week and a priori delivery routes are used to guide
time slot availability. Strategic time slot management simplifies time slot control and fulfillment center
operations. We propose a 2-stage stochastic programming formulation for the design of a priori delivery
routes and time slot assignments and a sample average approximation algorithm for its solution. An
efficient dynamic program is developed for calculating the expected revenue of an a priori route. An
extensive computational study demonstrate the efficacy of the proposed approach and provides insights
in to the benefits of strategic time slot management.

Keywords: online grocery retailing, home delivery, time slot management, a priori routing, dynamic
programming, sample average approximation

1 Introduction

This paper studies a novel variant of Time Slot Management inspired by its application in online grocery
retailing. Online retailing continue to grow, and consumers, but also small businesses, purchase more and
more products online. Many of these products require attended delivery, i.e., delivery can only take place
when the consumer is present. Examples of such products include, furniture, white goods, and groceries.
Delivery failures, for instance when the consumer is not at home, are costly, because products have to
be returned and stored, and deliveries have to be re-scheduled. In case of groceries, the cost of a delivery
failure may be even higher, as most grocery products are perishable and re-delivery of the (same) product
is not possible. To minimize the chance of delivery failures, online retailers typically allow their customers
to choose a delivery time slot. These time slots can range from 1 to 6 hours, and can have different
delivery fees. The retailer agrees to deliver any ordered products in the time slot chosen by the customer.
While offering delivery time slots improves customer service and reduces the chance of delivery failures, its
implementation is challenging as time slot management needs to balance the benefit of accepting orders
and the cost of delivering accepted orders.
∗Corresponding author. Email: t.r.visser@ese.eur.nl

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/189916313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Visser and Savelsbergh: Strategic Time Slot Management

In this paper, we focus on time slot management for online grocery retailers. During the ordering
process, customers log-in on a grocery retailer’s website, fill their order basket, and place their order by
selecting an available (delivery) time slot. Customers can select from among a set of available time slots in
the few days (or even weeks). At the cut-off time for deliveries on a particular day, usually 12 to 18 hours
before the departure of the delivery vehicles, vehicle routes and schedules for delivery of the placed orders
are generated, and, afterwards, picking of the orders can commence in the fulfillment center. Then, if no
issues arise during the execution of the delivery routes, customers receive their placed orders during their
selected time slot. Online grocery retailers face varying daily demand (i.e., the number and the location
of customers placing orders on any given day), but, because of the recurring nature of grocery purchases,
also observe recurring patterns. Customers often have a favorite time slots and delivery days, and often
order with some regularity, e.g., every week or other week.

Time Slot Management (TSM), as the name suggests, refers to the methods employed to manage
the availability of time slots during the ordering process. TSM methods can be divided in two classes:
static and dynamic (Agatz et al., 2013). Static Time Slot Management, sometimes called static slotting,
partitions the set of customer locations into geographical regions and limits the number of customer
orders that can be placed in a particular region (Agatz et al., 2011; Hernandez et al., 2017; Bruck et al.,
2018); sometimes pricing of deliveries is also considered (Klein et al., 2017). The limit on the number of
customer orders that can be placed in a region is determined upfront, and is based expected demand and
expected delivery capacity. With static TSM the management of time slots during the ordering process
is straightforward, but determining the regions and the limit for each region, given unknown varying
demand is challenging. Moreover, the number of vehicles required to deliver orders can vary from day to
day. After the cut-off time, vehicle routes and schedules are generated, and only upon completion of this
process is the number of vehicles required known, which may cause operational challenges. Furthermore,
picking of customer orders at the fulfillment center can only start once the vehicle routes and schedules
are generated, because orders delivered in the same route are typically picked together. Dynamic Time
Slot Management, sometimes called dynamic slotting, maintains partial delivery routes and schedules
during the ordering process and uses these to guide decisions on the availability of time slots (Campbell
and Savelsbergh, 2005; Ehmke and Campbell, 2014; Köhler et al., 2019) – sometimes pricing of deliveries
is also considered (Campbell and Savelsbergh, 2006; Cleophas and Ehmke, 2014; Yang et al., 2016). By
maintaining partial vehicle routes and schedules it becomes easier to adjust to variations in demand and
it allows control of the number of vehicles required to deliver orders. After the cut-off time, the vehicle
routes and schedules are re-optimized. Again, picking of customer orders at the fulfillment center can
only start once the vehicle routes and schedules have been finalized. Clearly, the management of time
slots during the ordering process is much more involved than with static TSM, especially if detailed and
accurate vehicle routes and schedules are maintained, e.g., accounting for time-dependent travel times and
driver breaks (Ehmke and Campbell, 2014). Therefore, it is not surprising, that online grocery retailers
are continuing to look for business models that simplify time slot management without reducing customer
service and increasing delivery costs.

In this paper, we investigate a novel variant of TSM which we call Strategic Time Slot Management
(STSM). It is motivated by the current practice of online grocery retailer Picnic in The Netherlands
(https://picnic.app/nl/). Picnic raised a record e100 million in venture funding after just 1.5 years

https://picnic.app/nl/
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of operations (Sterling, 2018). Picnic operates in all major city centers of the Netherlands and delivers
customer orders using small electric delivery vehicles with limited range and capacity. Picnic does not
charge a delivery fee to their customers. Picnic offers only a single 1-hour time slot each day, but it varies
over the days of the week (e.g., the same single 1-hour time slot is available to a customer every Monday,
but a different time slots is available every Tuesday). This suggests that Picnic designs, for each day of
the week, a priori routes, covering all customer locations, and assigns time slots to the customer locations
visited on these a priori routes before the order placement process. Then, during the ordering process, the
availability of time slots is managed using these a priori routes. Customers that place an order in a time
slot available to them are inserted in a delivery route associated with the a priori route. A time slot for a
customer location in an a priori route is available as long as the location can be feasibly visited given the
orders that have already been placed; otherwise, the time slot is no longer offered. Managing time slots
in this way is easy if delivery routes “follow” the a priori routes, skipping locations that can no longer be
visited during the assigned time slot.

Employing STSM implies that fewer time slots are available to customers, but it allows for more cost-
effective operations and offering free delivery to customers. Picnic’s success indicates that is a winning
business proposition. Because a priori routes are designed to be operated for a period of time, it is easier to
incorporate knowledge of the order patterns of customers, which can have advantages especially in urban
areas with large number of densely distributed customers. Maybe more importantly, no (re)optimization
of vehicle routes and schedules is required after the cut-off time, which means that a later cut-off time
can be offered to customers. And not only that, picking at the fulfillment center can usually start before
the cut-off time, as soon as (the initial part of) the delivery routes are known because of orders that have
already been placed. This not only improves efficiency of fulfillment center operations, it, again, allows
the cut-off time to be pushed later. Finally, the use of a priori routes induces delivery route consistency,
which implies that drivers familiarize themselves with their delivery routes, which is helpful in densely
populated city centers and improves customer service (Kovacs et al., 2014).

Clearly, the design of the a priori routes and time slot assignments is critical to the success of STSM.
This design problem shares some characteristics with the stochastic vehicle routing problems studied
in the literature (see Gendreau et al. (2014); Oyola et al. (2017, 2018) for recent surveys on stochastic
VRPs). However, much of the research on stochastic VRPs has focused on uncertainty regarding the size of
demand. In the context of STSM, it is not the size of demand that matters most, because vehicle capacity is
rarely constraining, but rather the uncertainty regarding the placement of orders (i.e., stochastic customer
presence), because it is the time available to make deliveries that is constraining. The concept of, or use
of the term, a priori routes is also quite common (see Campbell and Thomas (2008a) for a survey on a
priori routing). In all the considered settings, there is a design phase, in which a priori routes have to be
determined, and an execution phase, in which the uncertain quantity is revealed and the a priori routes
have to be executed, given a set of recourse actions or penalities to handle situations in which certain
constraints are violated. Typically, the a priori routes are constructed using probabilistic information
about the uncertain quantity and the set of recourse actions or penalties. A common approach is to
formulate the (design) problem as a two-stage stochastic program.

For stochastic customer presence, most research has focused on the Probabilistic Traveling Salesman
Problem (PTSP) and its variants (see for instance Jaillet, 1988; Campbell and Thomas, 2008b; Voccia
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et al., 2013; Angelelli et al., 2017). The basic problem seeks an a priori route with minimum expected
cost. Campbell and Thomas (2008b) consider a variant in which customers have deadlines and Voccia
et al. (2013) consider a variant in which customers have time windows. Erera et al. (2009) study a related
a priori routing problem in which customers with time windows are assigned to both a primary and a
backup route, and once customer presence is revealed, recourse actions can move the customers from the
primary to a backup route to improve costs or to recover feasibility. The setting we consider is somewhat
different, in the sense that there are no recourse actions or penalties. Time slot management ensures
the feasibility of the delivery routes at the end of the ordering processing, i.e., customers are revealed
sequentially and are only shown time slots for which delivery is still feasible. To the best of our knowledge,
such a setting, i.e., an ordering process with time slot management, has not yet been considered in the a
priori routing literature.

The planning problem at the heart of STSM seeks not only a set of a priori routes, but also the
assignment of a time slot to each of the locations visited on the a priori routes. The assignment of time
slots to vehicle routes has been investigated in other contexts. In the Time Window Assignment Vehicle
Routing Problem (TWAVRP) (Spliet and Gabor, 2015; Spliet and Desaulniers, 2015) time slots have
to be assigned to customers before their demand is known, and vehicle routes are generated only when
demand is revealed. Spliet and Gabor (2015) formulate the problem as a two-stage stochastic program
and develop a branch-and-cut-and-price approach. The Consistent Vehicle Routing Problem (Groër et al.,
2009), and its singe-vehicle variants (Subramanyam and Gounaris (2016), Subramanyam and Gounaris
(2018)), seek vehicle routes that are to be executed on multiple days, with known, but varying customer
presence on each of the days, and that minimize the difference in the time of service of a customer on the
different days. In these settings all customer demand needs to be served, whereas in our setting time slot
management during the ordering process may result in some realized customer demand not being served.
Furthermore, in our setting a priori routing and time slot assignment are integrated into a single planning
problem, rather than treating these aspects separately.

The contributions of this paper are as follows:

• We introduce the concept of strategic TSM, a novel variant of TSM inspired by operations of a
Dutch online grocery retailer.

• We derive a number of properties of the single-vehicle variant of the strategic TSM planning problem,
and use these observations to develop an efficient dynamic programming algorithm for exactly
calculating the expected revenue of an a priori route.

• We present a two-stage stochastic programming formulation for the single-vehicle variant of the
strategic TSM planning problem, and develop a Monte-Carlo Sample Average Approximation (SAA)
Method (Kleywegt et al., 2002). Time slot management during the ordering process, i.e., when orders
are sequentially revealed, leads to an “evaluation” recourse, which has not been seen in the context
of SAA.

• We propose a number of heuristic methods for the single-vehicle variant of the strategic TSM
planning problem, which balance quality and solution time.

• We compare solution approaches on instances with up to 12 customer locations on an a priori route,
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which implies around 1.3 · 109 possible customer arrival scenarios. Moreover, we investigate the
impact of different time slot configurations (time slot width and whether or not time slots overlap)
and the relation between the duration of an a priori route and the target duration of the delivery
route (which impacts time slot management).

The paper is structured as follows. In Section 2, we introduce the Strategic TSM problem, focusing
specifically on the “simpler” single-vehicle case, and we present some observations that help guide the
design of solution approaches. In Section 3, we discuss algorithms to exactly evaluate the expected revenue
of an a priori route, which is a core component of our solution approaches. In Section 4, we formulate the
problem as a two-stage stochastic program and propose an SAA method for its solution. In Section 5, we
present heuristic solution approaches seeking to balance quality and solution time. In Section 6, we discuss
the results of an extensive computational study. Finally, in Section 7, we present concluding remarks and
suggest future research directions.

2 Problem Description

We consider a retailer that offers its online customers a small number of time slots during which a delivery
can take place. The retailer has a fleet of identical vehicles to make deliveries. Each vehicle starts and
ends its delivery route at the retailer’s fulfillment center. For each of its customers, the retailer knows the
delivery location, the order size, the revenue, and the order placement probability. Observe that the only
stochastic feature in this setting is whether or not a customer places an order. In practice, a customer’s
order size and revenue are likely to be stochastic as well.

Customers can place an order up to a cut-off time, some hours before delivery will take place. We
assume that the likelihood that a customer places an order is independent of the delivery time slots offered
and is not correlated to the order placement of other customers. When placing an order, a customer must
select a delivery time slot during which delivery will take place at his delivery location. A vehicle that
arrives early at a delivery location must wait.

The retailer seeks to design a set of delivery routes, such that each customer, i.e., its delivery location,
is visited on at least one of the routes, and associated time slots, one for each location visited, so as to
maximize the expected revenue.

We assume that the set of possible time slots that can be assigned to a customer location has already
been decided. The time slots may overlap, but they all have the same width, and they cover the entire
planning horizon. The subset of possible time slots for a delivery location contains those time slots that
are feasible for that location, i.e., that overlap with the time period defined by the earliest time a vehicle
can reach the location and the latest time a vehicle can depart the location to return to the fulfillment
center before the end of the planning horizon.

As will become evident soon, even solving the special case in which the retailer has only a single
vehicle with infinite capacity and assigns only a single time slot to each delivery location is surprisingly
challenging and gives rise to insightful observations. For the remainder, therefore, we focus on this special
case, leaving the general case for future research.
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2.1 The Single-Vehicle Case

The problem is defined on a directed graph G = (V,A), with V = Vc ∪ {o, d} the set of vertices, where
Vc = {1, 2, . . . , n} is the set of customer delivery locations and where, for convenience, we represent
the fulfillment center with a start and an end node, o and d, respectively, to be able to distinguish the
departure and return of the vehicle, and with A the set of (directed) arcs connecting the nodes. We let
tij ≥ 0 denote the travel time associated with arc (i, j) ∈ A. We assume that service times are included in
the travel times, and that travel times satisfy the triangle inequality. The retailer has a single vehicle with
unlimited capacity to make deliveries, which reflects that it is time rather than capacity that restricts the
delivery route. When a time slot s = [as, bs] is assigned to a location in the delivery route, the earliest time
a delivery can be made at that location is as and the latest time a delivery can be made at that location
is bs. A vehicle arriving early must wait at the location. A set T of possible time slots to be assigned to
delivery locations is given. The time slots in T may overlap, but we assume their width is equal, and they
cover the entire planning horizon [0, T ], with T the planning horizon. The set of possible time slots Ti ⊂ T
for location i contains the time slots which overlap with the period defined by the earliest time a vehicle
reach that location, i.e., to,i, and the latest time a vehicle has to depart from that location (to return to
the fulfillment center before the end of the planning horizon), i.e., T − ti,d. The fulfillment center has time
window [ao, bo] = [ad, bd] = [0, T ]. We identify the set of customers C with their delivery locations, i.e., Vc
(and use these interchangeably from now on). Each customer c ∈ C has an order placement probability
pc ∈ (0, 1], and, when served, results in a revenue rc for the retailer. We assume that order placement
probabilities are iid and independent of the time slot assigned to the delivery location.

The retailer seeks to design an a priori delivery route, visiting all delivery locations, and associated
time slots, one for each location, so as to maximize the expected revenue.

Let Ω be the set of all possible scenarios of order placements. A single scenario ω ∈ Ω can be described
by a sequence of delivery locations, representing which customers have placed an order and in what
sequence – the exact times of the order placements are not important. Furthermore, we assume that
each permutation of customer placements is equally likely, meaning that there is no dependence between
customers and their position in the sequence. Each customer is equally likely appear early in the sequence
as to appear late in the sequence. (Note that when the order placement probabilities are equal, i.e., pc = p

for c ∈ C, all possible scenarios are equally likely – given the iid assumption.)
The revenue for a scenario ω ∈ Ω is determined as follows. During the order placement phase, an

arriving order is inserted in the actual delivery route, i.e., the delivery route to be executed after the
cut-off time, based on the delivery location’s position in the a priori route. That is, the delivery location is
inserted in the actual delivery route after the delivery locations of orders placed earlier and that precede
it in the a priori route, and before the delivery locations of orders placed earlier and that succeed it in
the a priori route. After the insertion of an order, any delivery location that has become time infeasible,
i.e., for which it is no longer possible to make a delivery during its assigned time slot, is removed, and
orders for these locations will be skipped from that point on. After all orders in ω have been processed,
i.e., have either been inserted or skipped, the revenue of the scenario is simply the sum of the revenues of
the orders that have been inserted in the actual delivery route. The expected revenue for an a priori route
is the sum of the revenues of all possible scenarios for that a priori route weighted by the probability of
occurrence of the scenarios.
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Observe that (to keep operations simple) the delivery locations in the actual delivery route are visited
in the same order as in the a priori route.

2.1.1 Small Example

o

1

[2, 3]

2

[3, 4]

3
[4, 5]

2

2

2

2

(a) An a priori route with
assigned time slots.

o

1

[2, 3]

2

[3, 4]

3
[4, 5]

2

2

2

2

2.8

(b) Delivery route for
customer realization
(3, 1, 2). After customers
3 and 1 place an order,
customer 2 cannot by
infeasibility.

o

1

[2, 3]

2

[3, 4]

3
[4, 5]

2

2

2

2

2.8

(c) Delivery route for cus-
tomer realization (2, 1, 3).
Now customer 3 cannot
place an order.

Figure 1: Small example of Strategic Time Slot Management.

To illustrate the single-vehicle problem, we now present a small example. Let us consider three customer
locations Vc = {1, 2, 3} with coordinates {(2, 0) , (2, 2) , (0, 2)}, respectively, and a fulfillment center located
at coordinates (0, 0) with a planning horizon [0, T ] = [0, 7]. Each customer location has equal order proba-
bility p = 1

2 and equal revenue r = 1. The set of possible time slots is given by T = {[0, 1] , [1, 2] , . . . , [6, 7]}.
The travel times are given by the Euclidean distances.

A solution to the single-vehicle problem consist of an a priori route and a time slot assignment. Let
us consider the a priori route ρ = (o, 1, 2, 3, d) and time slot assignment {[2, 3] , [3, 4] , [4, 5]} for locations
{1, 2, 3}, respectively. This solution is shown in Figure 1(a).

Suppose now, with this design in place, that customer 3, then customer 1, and then customer 2,
(each in C) seek to place an order. This corresponds to scenario ω = (3, 1, 2) ∈ Ω. After placement of
customer 3, the delivery route will be (o, 3, d), and after placement of customer 1, the delivery route will
be (o, 1, 3, d), since each customer is inserted at their corresponding position in the a priori route and
both can be inserted without violating time slots or the fulfillment center time window. This is shown
in Figure 1(b). Notice that now, insertion of customer 2 at its position in the a priori route, resulting in
delivery route (o, 1, 2, 3, d), will violate the fulfillment center time window. This latter route requires a
total of 8 time units while the fulfillment center time window is [0, 7]. Therefore, the time slot for customer
2 will be removed, and this customer cannot place an order. The resulting delivery route has revenue 2. In
Figure 1(c), we now consider scenario ω = (2, 1, 3) ∈ Ω. Now customer 3 cannot place an order, resulting
in a different delivery route (o, 1, 2, d) with revenue 2. Notice that not only which customers arrive, but
also the sequence in which they arrive determines the eventual delivery route. We have to take this into
account when designing the a priori route and time slot assignment.
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2.1.2 Observations

We highlight some interesting (and possibly unexpected) observations regarding this single-vehicle design
problem.

Observation 1. When the planning horizon T is greater than or equal to TTSP, the minimum duration
tour visiting all customer locations, the single-vehicle problem is trivial. An optimal a priori route is a
minimum duration tour and an optimal time slot assignment is one in which the time slot assigned to a
customer location contains the arrival time of the tour at that location. The expected revenue is

∑
i∈Vc piri.

It is natural to think that by increasing the planning horizon T , i.e., the time available for the delivery
route, the expected revenue will increase (or at least not decrease). However, it turns out that this is not
always true.

Observation 2. Increasing the planning horizon T , i.e., the delivery route time limit, for a given a prior
route may decrease the expected revenue.

Figure 2 shows a simple example of this with three customers. Customers have probability p = 1
2 and

coordinates {(0, 2), (0, 1), (0,−1)}, respectively, and the travel times are equal to the Euclidean distances.
Customer 1 has revenue 10, and customers 2 and 3 each have revenue 1. Suppose all customers are assigned

o

1

[0, 6]

2 [0, 6]

3
[0, 6]

2
1

3
2

Figure 2: A design for a small example with three customers for which increasing the planning horizon
from 6− ε to 6 results in a decrease in expected revenue.

time slot [0, 6]. When increasing the planning horizon from 6 − ε to 6, the expected revenue (associated
with the optimal solution) decreases from 4.646 to 4.625. The reason is that when the planning horizon is
6− ε, the revenue for scenario ω = (2, 3, 1) is 11 (customer 3 cannot place order), but when the planning
horizon is 6, the revenue reduces to 2 (customer 3 can place order, but customer 1 not). This decrease
in revenue in this scenario is more than the increase in revenue in the other scenarios, and therefore the
expected revenue decreases. We observe this effect also in larger instances, even when customers have
equal revenue r = 1, equal probability p = 1

2 , and the minimum duration tour is taken as the a priori
route.

It is natural to think that the a priori route has to be a minimum duration tour visiting all customer
locations. However, it turns out that this is not always true.
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o

1

[2, 3]

2

[5, 6]

3
[5, 6]

2

3

2.24

4

(a) An optimal solution with expected rev-
enue 1.083 when a priori route is fixed to
the TSP optimal tour.

o

1

[6, 7]

2

[3, 4]

3
[5, 6]

3.61 2.244.472

(b) An optimal solution with expected rev-
enue 1.25, without fixing the a priori route.

Figure 3: Two designs for a small example with three customers and planning horizon T = 9.85.

Observation 3. The optimal a priori route is not always a minimum duration tour.

We can show this with an example, depicted in Figure 3, with three customers, each with probability
p = 1

2 and revenue r = 1, planning horizon T = 9.85, and possible time slots T = {[0, 1], [1, 2], . . .}.
Customers have coordinates {(2, 0), (2, 3), (0, 4)}, respectively, and the travel times are equal to the Eu-
clidean distances. Figure 3(a) shows the optimal design when the a priori route is forced to be a minimum
duration tour (the design decision involves the direction in which the minimum duration tour is traversed
in the time slot assignment). The expected revenue is 1.083. In this design, customers {1, 2} can be served
together, but customers {2, 3} cannot be served together due to their assigned time slots, and customers
{1, 3} cannot be served together due to the available time in planning horizon. Figure 3(b) shows the
optimal design when the a priori route is not forced to the minimum duration tour. The expected revenue
is 1.25. In this design, customers {1, 2} and customers {2, 3} can be served together, while only customers
{1, 3} cannot be served together.

It is natural to think that the time slots along the a priori route should be ascending in both start-
and end times, i.e., the start- and end times of the time slots increase along the a priori route. However,
it turns out that this is not always true.

Observation 4. In an optimal design, the time slots assigned to the customer locations are not always
ascending along the a priori route.

We can show this with an example, depicted in Figure 4, of three customers with equal probability
p = 1

2 and revenue of 1 for customers 1 and 2 and revenue of 5 for customer 3. Customers have coordinates
{(−1, 3), (1.5, 3), (0,−5.25)}, respectively, and the travel times are, again, equal to the Euclidean distances.
The set of possible time slots is T = {[0, 3.3], [3.3, 6.6], . . .} and the planning horizon is T = 19.29.
Figure 4(a) shows the optimal design when time slots are forced to be ascending along the a priori route,
which results in an expected revenue of 3.208. Figure 4(b) shows the optimal design when there are no
restrictions on the time slot assignments, which results in an expected revenue of 3.250. Note that time slot
of customer 2 is [3.3, 6.6] and that the time slot of the next customer on the a prior route, i.e., customer
1, is [0, 3.3]. The increase in expected revenue is due to scenarios ω = {1, 2, 3} and ω = {2, 1, 3}. When
the time slots are forced to be ascending, the resulting design allows customers 1 and 2 to place their



10 Visser and Savelsbergh: Strategic Time Slot Management

o

1

[0, 3.3]

2

[3.3, 6.6]

3
[9.9, 13.2]

3.16

2.5

8.39

5.25

(a) Time slots restricted to be
ascending; expected Revenue:
3.208.

o

1

[0, 3.3]

2

[3.3, 6.6]

3
[9.9, 13.2]

3.35

2.5

8.31

5.25

(b) Time slots not restricted;
expected Revenue: 3.250.

Figure 4: Two designs for a small example with 3 customers and planning horizon T = 19.29.

orders, which prevents customer 3 the higher revenue to place its order. When the time slot assignment is
unrestricted, this situation is averted. We observe this effect also in larger instances, even when customers
have equal revenue r = 1 and probability p = 1

2 .

3 Expected Revenue Calculation

In this section, we present two algorithms for calculating the expected revenue of a given a priori route
and time slot assignment. Calculating the expected revenue of a given solution efficiently is of critical
importance to our solution methods. While sampling can be used to approximate the expected revenue,
it turns out that exact calculation of the expected revenue, over all possible scenarios, can be done quite
efficiently.

Obtaining the revenue of a single scenario ω, i.e., a sequence of arriving customers, can be done by
checking whether an arriving customer can feasibly be inserted in the (partial) delivery route, and, if
so, inserting it into the route. This requires O

(
k2) operations for a scenario with k arriving customers.

However, the number of scenarios |Ω| gets extremely large quickly, as the number of scenarios for an
instance with n customer locations is O(n!), making brute-force enumeration computationally prohibitive.
Fortunately, the observations presented earlier allow us to reduce the number of operations required
substantially.

In the following, we present a naive enumeration algorithm and a customized dynamic programming
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algorithm for calculating the expected revenue of an a priori route. Both algorithms exploit the observa-
tions presented in Section 2.1.2.

3.1 Enumeration Algorithm

The expected revenue r̄ of a given a priori route ρ and time slot assignment y can be calculated as follows:

r̄ =
∑
ω∈Ω

r̄ω =
∑
S⊆Vc

∑
ω∈Perm (S)

r̄ω =
∑
S⊆Vc

∑
ω∈Perm (S)

pωrω, (1)

with Perm (S) the set of all permutations of set of customers S, and r̄ω the probability-weighted revenue
collected in scenario ω. Using our problem assumptions on the probability distribution of ω ∈ Ω, the
probability pω of a single scenario ω, which is an ordered sequence of customer arrivals, can be determined
as follows:

pω =
∏
i∈ω

pi
∏

j∈Vc\ω
(1− pj)

1
|ω|! , (2)

with |ω| the number of customers wanting to place an order in scenario ω. The first part of the expression
on the right-hand side represents the probability that the customers in ω want to place an order and the
second part of the expression on the right-hand side represents the probability that they do so in the
sequence specified by ω. The revenue collected in scenario ω is given by

rω =
∑
i∈ω

riz
ω
i , (3)

with zωi for customer i in ω an indicator variable specifying whether or not customer i can place an order
given the orders that have already been accepted from customers arriving before i in the sequence.

While the expected revenue can be calculated by summing the probability-weighted revenues r̄ω,
for every scenario ω ∈ Ω, the enumeration algorithm exploits the following observation to reduce the
number of terms in the summation. For every subset S ⊆ Vc of customers, if all can be feasibly inserted
together in the a priori route with the time slot assignment, then all customer arrival sequences which
are a permutation of subset S will result in the same delivery route and thus give the same revenue. In
particular, the contribution r̄S to the expected revenue of all permutations of subset S, which is the sum
r̄S =

∑
ω∈Perm (S) r̄ω, in that case reduces to

r̄S =
∏
i∈S

pi
∏

j∈Vc\S
(1− pj)

∑
ω∈Perm (S)

1
|S|!

∑
i∈S

ri

=
∏
i∈S

pi
∏

j∈Vc\S
(1− pj)

∑
i∈S

ri, (4)

where we use the fact that all permutations ω of S are equally likely.
The enumeration algorithm evaluates every subset S ⊆ Vc, and starts by checking only one particular

permutation ω of S. If all customer locations in ω can be inserted together in the given a priori route
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and time slot assignment, then the running expected revenue, the partial sum of r̄, is increased by
r̄S given by (4) and the algorithm continues evalutating another subset S. However, if one or more
customers in ω cannot be feasibly inserted together in the given a priori route and time slot assignment,
the enumeration algorithm needs to calculate the contribution r̄ω = pωrω to the running expected revenue
of each permutation ω of the subset S separately using (2) and (3).

For n customer locations, there are 2n possible unordered subsets of customers and |Ω| =
∑n
k=0

n!
k!

possible ordered subsequences of customer arrivals (see Sequence A000522 in Sloane, 2010). All unordered
subsequences are checked by the enumeration algorithm, and typically not all ordered subsequences.
However, in worst-case all ordered subsequences need to be checked. The naive enumeration algorithm
therefore has a worst-case complexity of O

(∑n
k=0

n!
k! · n

2
)

= O
(
e · n! · n2) = O((n+ 2)!). We notice that

the run-time of this algorithm suffers from the many redundant calculations that are done. These redun-
dant calculations can be avoided by using a dynamic programming label extension algorithm.

3.2 DP Label Extension Algorithm

The Dynamic Programming algorithm exploits the following observations to reduce the number of opera-
tions needed for the revenue calculation. For any two scenarios ω1 and ω2, sequences of arriving customers
(willing to place an order), which have equal sets of arriving customers (but in a different order) and equal
sets of placed customers, i.e., their resulting delivery routes are equal, will also have the same contribu-
tion to the expected revenue, i.e., r̄ω1 = r̄ω2 . Moreover, in this case, the scenario ω′1 = ω1 ◦ {i}, in which
customer i arrives after the customers of scenario ω1, will have the same placed customer set, resulting
delivery route and contribution to the expected revenue as scenario ω′2 = ω2 ◦ {i}, for each customer
i ∈ Vc \ ω1 = Vc \ ω2.

These observations lead to the following label definition. A label L =
(
Varr, Vplaced, m

)
is characterized

by: (1) a subset Varr(L) ⊆ Vc of arrived customers (wanting to place an order), (2) a subset Vplaced(L) ⊆
Varr(L) of placed customers (arrived and able to place their order), and (3) a multiplier m(L) denoting
the total number of scenarios which share the same subsets of arrived and placed customers. Notice that
the contribution r̄(L) of a single label L, which represents all scenarios that share the subsets of arrived
and placed customers, to the expected revenue is:

r̄(L) =
∏

i∈Varr(L)
pi

∏
j∈Vc\Varr(L)

(1− pj)
m(L)
|Varr(L)|!

∑
i∈Vplaced(L)

ri. (5)

The expected revenue r̄ for the given a priori route and time slot assignment is the sum of all label
contributions r̄(L):

r̄ =
n∑
k=0

∑
L∈Lk

r̄(L), (6)

with Lk the set of all possible labels with exactly |Varr(L)| = k arriving customers.

It is convenient to also record the probability p(L) of the scenarios and the sum of revenues r(L) of
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the placed customers in the label:

p(L) =
∏

i∈Varr(L)
pi

∏
j∈Vc\Varr(L)

(1− pj), (7)

r(L) =
∑

i∈Vplaced(L)
ri. (8)

The contribution r̄(L) of label L to the expected revenue then becomes

r̄(L) = p(L) m(L)
|Varr(L)|!r(L). (9)

Algorithm 1 shows the Dynamic Programming algorithm for calculating the expected revenue r̄ over
all scenarios exactly for a given a priori route ρ and time slot assignment y by extending labels. Here, the
label sets Lk, for k ∈ {0, 1, . . . , n}, includes all labels L with |Varr(L)| = k number of arrived customers.
The contribution of each label L in Lk is added to the running expected revenue r̄, and then each label L
is extended by adding a customer i not yet arrived to that label. Then, it is checked if customer i can be
inserted in the a priori route ρ with time slot assignment y given the already placed customers in label L.
The set of placed customers and the sum of placed customers are updated accordingly. Then, it is checked
if a label L̃ with the same subset of arrived customers and the same subset of placed customers already
exists in the label set Lk+1. If so, the multiplier of the current label is added to that of the existing label.
If not, a new label is added to the label set Lk+1.

Algorithm 1 Dynamic Programming Algorithm
Input: A priori route ρ and time slot assignment y.
Output: Exact expected revenue r̄.
1: r̄ ← 0
2: Varr ← ∅, Vplaced ← ∅, p←

∏
i∈Vc (1− pi), m← 1, r ← 0

3: L0 ←
{(
Varr, Vplaced, p, m, r

)}
4: for k = 0, 1, . . . , n do
5: for each L =

(
Varr, Vplaced, m, p, r

)
∈ Lk do

6: r̄ ← r̄ + p · m
|Varr|! · r

7: for each i ∈ Vc \ Varr do
8: Ṽarr ← Varr ∪ {i}
9: if IsFeasibleInsertion(i, L, ρ, y) then

10: Ṽplaced ← Vplaced ∪ {i}
11: r′ ← r + ri
12: else
13: Ṽplace ← Vplaced
14: r′ ← r
15: if there is an L̃ ∈ Lk+1 with Varr(L̃) = Ṽarr and Vplaced(L̃) = Ṽplaced then
16: m(L̃)← m(L̃) +m
17: else
18: p′ ← p · pi

1−pi

19: Lk+1 ← Lk+1 ∪
{(
Ṽarr, Ṽplaced, m, p′, r′

)}
The following Theorem characterizes the number of operations required by the algorithm. We are able
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to give a tight lower bound and an upper bound on the number of operations. It is currently unknown to
us if the upper bound is tight.

Theorem 5. The number of operations required by the Dynamic Programming Algorithm for an a priori
route ρ and time slot assignment y with |Vc| = n customer locations is at least O

(
2nn2), but not more

than O
(
3nn2).

Proof. Each label is uniquely characterized by its set of arrived customers and set of placed customers.
This means that each label set Lk contains at most one label with a unique combination of both sets.
Furthermore, the label set Lk, for k ∈ {0, 1, . . . , n}, contains only labels L with a number of k arrived
customers: |Varr(L)| = k. There are at most

(n
k

)
possible different sets of arriving customers of size k. Also,

for each unique set of arriving customers Varr(L), there are at most 2k possible set of placed customers
Vplaced(L), since Vplaced(L) ⊆ Varr(L) holds for any label L. Therefore, the total number of labels in Lk
for k ∈ {0, 1, . . . , n} does not exceed

(n
k

)
2k. We note that this number is not necessary tight for every k.

Each label L ∈ Lk has |Vc \ Varr(L)| = n− k possible extensions, which are all checked in the algorithm.
Checking if a single customer can be feasibly inserted at a given position in a delivery route (containing
the placed customers) can be done in O(k) operations. Alternatively, earliest and latest start of service
times of the placed customers in the delivery route of a label can be kept in memory, reducing the number
of operations required by the feasibility check to O(1). However, if the insertion is feasible, these earliest
and latest start of service times need to be updated, which still requires O(k) operations and thus only
lowers the absolute number of operations. Then, the algorithm checks if a label L̃ already exists with
the same set of arrived customers and the same set of placed customers. We assume the labels in the
label sets Lk are stored in a data structure which allows search and insertion to be done in logarithmic
time complexity, for instance a binary tree data structure. This allows a number of |Lk+1| ≤

( n
k+1
)
2k+1

stored labels to be searched in O
(
log (

( n
k+1
)
2k+1)

)
= O

(
2 log 2k+1

)
= O(k) operations, and a new label

can be added in the same number of operations complexity. Alternatively, two nested binary tree data
structures, one for the possible sets Varr and one for the possible sets Vplaced, can be used. This results
in the same number of operations: O

(
log (

( n
k+1
)
) + log 2k+1

)
= O(k). Each stage k ∈ {0, 1, . . . , n− 1} of

the algorithm therefore requires no more than O
((n
k

)
2k(n− k)k

)
operations, and in total the algorithms

requires no more than O
(∑n

k=0
(n
k

)
2k(n− k)k

)
= O

(
3nn2) operations. It is currently unknown by the

authors if this number of operations is tight. However, a tight lower bound can be given by considering
the following special case. Suppose that all arriving customers can be feasibly placed together in the a
priori route, i.e., Varr(L) = Vplaced(L) for any label L. In that case the number of possible labels |Lk| ≤

(n
k

)
for k ∈ {0, 1, . . . , n}, and therefore the number of operations needed by the algorithm is then at most
O
(∑n

k=0
(n
k

)
(n− k)k

)
= O

(
2nn2).

Theorem 5 shows that the worst case number of operations needed by the Dynamic Programming
algorithm, O

(
3nn2), is much lower than the worst case number of operations needed by the Enumeration

algorithm, O
(
n! · n2). The Dynamic Programming algorithm does need more memory then the enumera-

tion algorithm: at each stage k ∈ {0, 1, . . . , n− 1} both label sets Lk and Lk+1 need to be kept in memory,
while the enumeration algorithm requires almost no memory at all. Computational experiments show that
the reduction in the number of operations allows us to calculate the expected revenue of a priori routes
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and time slot assignments with n = 12 customer locations, over |Ω| ≈ 1.3 · 109 scenarios, exactly in under
10 seconds of computation time, while the enumeration algorithm takes over 60 minutes.

4 Solution Method

We propose an Sample Average Approximation (SAA) Monte-Carlo approach to solve the Single-Vehicle
problem of Section 2.1. This method uses sampling of scenarios to solve large stochastic programs. In the
following, we present a two-stage stochastic program which solves the single-vehicle problem of Section 2.1
exactly, and then give an overview of the SAA approach.

4.1 Stochastic Programming Formulation

The single-vehicle variant can be formulated as a two-stage mixed-integer stochastic program. The a priori
route ρ and time slot assignment y are the first stage decisions, and the evaluation of the revenue of placed
customer orders is the second stage “decision”. In the second stage, there are no recourse options, so it is
purely an evaluation stage. The objective of the stochastic program is the revenue obtained by the placed
customer orders averaged over all possible scenarios. We now formulate the first stage, then the second
stage and afterwards provide the objective of the stochastic program.

We need the following decision variables for the first stage. Let binary variables xij for arc (i, j) ∈ A
be one if the arc is used in the a priori route, and zero otherwise. Let binary variables yis for customer
location i ∈ Vc and time slot s ∈ Ti be one if this time slot is assigned to this location, and zero otherwise.
These are the main decision variables of the first stage. For subtour elimination constraints we introduce
single commodity flow variables fij , which represent the position of location i ∈ V in the a priori route if
arc (i, j) ∈ A is used in the a priori route, and are zero otherwise. Note that variables fij are fixed when
binary variables xij are fixed. The first stage of the stochastic program can be formulated as follows:

∑
j∈V\{o,i}

xij = 1 ∀i ∈ Vc, (10)

∑
i∈V\{j,d}

xij = 1 ∀j ∈ Vc, (11)

∑
j∈Vc

xoj = 1,
∑
i∈Vc

xid = 1, (12)

∑
j∈V\{o}

fij −
∑

j∈V\{d}
fji = 1 ∀i ∈ Vc, (13)

foj = 0, ∀j ∈ Vc, (14)

xij ≤ fij ≤ nxij ∀ (i, j) ∈ A, i 6= o, (15)

xij ∈ {0, 1} ∀ (i, j) ∈ A, (16)∑
s∈Ti

yis = 1 ∀i ∈ Vc, (17)

yis ∈ {0, 1} ∀s ∈ Ti, i ∈ Vc. (18)

Essentially, the first stage consists of a TSP single-commodity flow formulation for the a priori route and
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the time slot assignment part. Constraints (10)–(12) ensure that the a priori route starts and ends at the
fulfillment center and that every customer location is visited. Subtours in the a priori route are eliminated
by Constraints (13)–(15). These are known as single-commodity flow constraints. Constraints (17) ensure
that every customer location i is assigned exactly one time slot from the set of possible time slots Ti.

The second stage of the stochastic program ensures that the expected revenue of an a priori route
and time slot assignment is obtained. We introduce some additional notation. Let variable ui denote the
position of customer location i ∈ Vc in the a priori route. Let the second stage binary decision variable zωi
for customer location i ∈ ω arriving in scenario ω denote if this customer can place an order in scenario ω
using the first stage a priori route and time slot assignment solution. Furthermore, let the set of vertices
Vωhc ⊆ Vc contain the first h customer locations that arrived in scenario ω, for h ∈ {1, . . . , |ω|}. Also, let
Vωh = Vωhc ∪{o, d}. Similarly, let the arc set Aωhc contain all arcs in A that are between vertices in Vωhc and
the arc set Aωh contain all arcs in A that are between vertices in Vωh. In the second stage, we essentially
have for each scenario ω and for each number of arrived customers h ∈ {1, . . . , |ω|} in that scenario a
partial graph which is used to find the current delivery (execution) route containing the currently placed
customer locations. Binary decision variables xωhij are one if arc (i, j) is used in the delivery route of placed
customers in scenario ω with the first h customers arrived. Continuous decision variables tωhi denote the
time at which service starts at location i ∈ Vωh, or, in case of fulfillment center start vertex o and in case
of fulfillment center end vertex d, the time of departure or arrival at the fulfillment center, respectively.
In case a customer cannot place an order, the corresponding start of service time decision variable is not
used.

The second stage of the stochastic program can be formulated as follows:

ui =
∑

j∈V\{o,i}
fij ∀i ∈ Vc, (19)

∑
j∈Vωh\{o,i}

xωhij = zωi ∀i ∈ Vωhc , h ∈ {1, . . . , |ω|} , ω ∈ Ω, (20)

∑
i∈Vωh\{j,d}

xωhij = zωj ∀i ∈ Vωhc , h ∈ {1, . . . , |ω|} , ω ∈ Ω, (21)

∑
j∈Vωh\{o}

xωhoj = 1,
∑

i∈Vωh\{d}
xωhid = 1 ∀h ∈ {1, . . . , |ω|} , ω ∈ Ω, (22)

ui + 1 ≤ uj + n
(
1− xωhij

)
∀ (i, j) ∈ Aωhc , h ∈ {1, . . . , |ω|} , ω ∈ Ω, (23)

tωhi + tij ≤ tωhj + T
(
1− xωhij

)
∀ (i, j) ∈ Aωh, h ∈ {1, . . . , |ω|} , ω ∈ Ω, (24)∑

s∈Ti

asyis ≤ tωhi ≤
∑
s∈Ti

bsyis ∀i ∈ Vωhc , h ∈ {1, . . . , |ω|} , ω ∈ Ω, (25)

ui ≥ 1 ∀i ∈ Vc, (26)

zωi ∈ {0, 1} ∀i ∈ ω, ω ∈ Ω, (27)

xωhij ∈ {0, 1} ∀ (i, j) ∈ Aωh, h ∈ {1, . . . , |ω|} , ω ∈ Ω, (28)

0 ≤ tωhi ≤ T ∀i ∈ Vωh, h ∈ {1, . . . , |ω|} , ω ∈ Ω. (29)

The position variables ui are set by constraints (19) using the first stage commodity flow variables fij .
Constraints (20)–(22) ensure that the delivery route in scenario ω after the first h customer arrivals
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contains only locations of the placed customer, and start and end locations of the fulfillment center.
Notice that the zωj variables couple the different h stages: If a customer j arriving as hth customer in
a scenario ω may place the order (zωj = 1), then the customer location must be included in the current
delivery route, stage h, as well as all subsequent delivery routes of stages, h + 1, . . . , |ω|. Otherwise, if
the customer j may not place the order (zωj = 0), then this location should not be visited in the current
delivery route and also all subsequent delivery routes, i.e., stages h, h+ 1, . . . , |ω|. Constraints (23) make
sure that the placed customer locations in the delivery route follow their position in the a priori route.
Furthermore, these constraints ensure that the delivery routes do not contain subtours. Start of service
times along the (partial) delivery routes are set by constraints (24), and constraints (25) ensures that the
start of service times of the placed customer locations are feasible with respect to their assigned time slot.
Both sets of constraints also ensure that the delivery route respects the fulfillment center time window
[0, T ] (planning horizon). As a result, arriving customers (willing to place their order) cannot place their
order if including them in the current delivery route will violate the time slots- or the fulfillment center
time window restrictions.

The objective of the stochastic program is given by

max
∑
ω∈Ω

pω
∑
i∈ω

riz
ω
i . (30)

This is the expected revenue, which is obtained by summation of the revenues obtained in each scenario
ω ∈ Ω weighted by the probability of each scenario pω. These probabilities are given by (2).

The two stages, i.e., constraints (10)–(29), together with objective (30) form a stochastic program
which can be solved as a MIP. Although this formulation can be solved for small instances, it has a
“flaw”: the MIP has full information of the complete customer sequence ω and can therefore anticipate
not yet arrived customers. That is, even when a customer i = ω(h) arrives as the hth customer in ω

and can be feasibly inserted in the current delivery route, the MIP may decide to prohibit the customer
from placing an order, i.e., set zωi = 0. This can be beneficial as it may allow placement of high revenue
customers arriving later in scenario ω. However, in our setting this look-ahead is not possible: If an arriving
customer can feasibly be served, the customer is allowed to place an order. Forcing non-anticipation can be
incorporated in the model, but requires the introduction of (many) variables and constraints. Essentially,
earliest and latest arrival time decision variables, eωhi and lωhi , respectively, allow determination of whether
the insertion of an arriving customer i′ = ω(h) will violate eωhi′ ≤ lωhi′ given earliest and latest arrival times
of the other locations in the current delivery route. This customer must place an order if the insertion
is feasible, and a customer must be prohibited from placing an order if the insertion is not feasible.
The non-anticipatory constraints are ‘big-M’ type constraints, as they are linearizations of constraints
with max {·, ·} and min {·, ·} operations. The non-anticipatory constraints can be found in Appendix A.
The stochastic program for our problem, i.e., with non-anticipation constraints, is therefore given by
constraints (10)–(29) and constraints (37)–(60) together with the objective (30).

4.2 Sample Average Approximation

When the number of customer locations n gets large, the above stochastic programming formulation is
intractable as the number of scenarios becomes prohibitive (it grows exponentially – O(n!)). A Sample
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Average Approximation (SAA) approach alleviates this issue by repeatedly solving the stochastic program
with only a sampled subset of scenarios. We refer the interested reader to Kleywegt et al. (2002), who
investigate the mathematical details of the method. For convenience, but also since our evaluation of the
true solution objective differs slightly from the method described by Kleywegt et al. (2002), we summarize
here the most important results.

Let ΩN be a single sample consisting of N randomly sampled scenarios. Then the sample problem for
our stochastic programming formulation becomes

R(ΩN ) = max 1
N

∑
ω∈ΩN

riz
ω
i ,

subject to constraints (10)–(29) and (37)–(60), in which the set of all scenarios Ω is replaced by the sample
ΩN .

In the SAA approach, we generateM samples Ω1
N , Ω2

N , . . ., ΩM
N , each containing N randomly sampled

scenarios. For each sample Ωm
N with m = 1, . . . ,M , the sample problem is solved to obtain an optimal

solution (ρm, ym) with objective R(Ωm
N ). Among these M solutions (ρm, ym), we pick the best solution

(ρ∗, y∗) using exact evaluation of the expected revenue:

(ρ∗, y∗) ∈ arg max
m=1,...,M

{r(ρm, ym)} ,

with r(ρm, ym) the exact expected revenue of solution (ρm, ym). This can be calculated efficiently by our
customized Dynamic Programming algorithm (see Section 3.2). We obtain an estimate of the optimality
gap by using the average objective R̄ over the M sample problems given by

R̄ = 1
M

M∑
m=1

R(Ωm
N ).

An estimation of the optimality gap is given by

∆ = R̄− r(ρ∗, y∗). (31)

The variance σ2
R̄−r(ρ∗,y∗) of this optimality gap estimator is estimated by

σ2
R̄−r(ρ∗,y∗) = σ2

R̄
= 1

(M − 1)M

M∑
m=1

(R(Ωm
N )− R̄)2.

Notice that this does not include any variance associated with the expected revenue of the solution,
since we can determine this expected revenue exactly, while typically in an SAA approach the expected
revenue is obtained by estimation. The variance of the optimality gap estimator can be used to construct
a one-sided (1− α) confidence interval for the estimated optimality gap:

R̄− r(ρ∗, y∗) + Φ−1(1− α) σR̄√
M
, (32)

with Φ−1 the inverse cumulative standard normal distribution function. This one-sided confidence interval
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is useful in assessing the quality of the current best solution (ρ∗, y∗) and providing statistical bounds on
the objective value of the optimal solution.

5 Heuristic Methods

In this section, we present four heuristic methods for solving the strategic time slot management problem
for a single vehicle. The first three simplify the stochastic programming formulation to make it more
tractable, the last one is a simple pragmatic heuristic that ignores the uncertainty. The three simplifica-
tions of the stochastic programming formulation can be solved using the SAA approached presented in
Section 4.2.

5.1 SAA with Fixed A Priori Route

In the first simplification, an a priori tour is generated independently and the SAA approach is used to
assign a time slot to each customer location. Although we have shown that an optimal TSP tour, one
that minimizes travel times, is not always the best a priori tour (Observation 3), it is likely to be a good
a priori tour. Furthermore, obtaining an optimal TSP tour is not difficult for the instance sizes we are
interested in (n ≤ 12). Note that when the travel times are symmetric, the optimal TSP tour has to be
made directed by choosing an orientation.

Once an a priori tour has been generated, the time slot assignment can be obtained using the stochastic
program of Section 4.1 and fixing the decision variables related to the a priori tour. That is, all decision
variables related to the a priori tour, xij , fij , ui, are fixed, the first stage constraints reduce to only
(17) and (18), and the second stage reduces to (20)–(29) and (37)–(60). The SAA approach presented in
Section 4.2 can be used to solve this stochastic program, which is likely to be more efficient than solving
the full stochastic program of Section 4.1.

It seems natural to use an optimal TSP tour, one that minimize the travel time, as a priori tour, but
this not required.

5.2 SAA with Ascending Time Slots

In the second simplification, we enforce that the time slots are ascending along the a priori route, i.e., if
the a priori route is (o, 1, 2, . . . , n, d), then a1 ≤ a2 ≤ . . . ≤ an. Although we have shown that ascending
time slots along the a priori route is not always optimal (Observation 4), in most cases an optimal solution
in which the time slots are ascending exists. Therefore, it is natural to consider a variant of our SAA
approach in which the assigned time slots are restricted to being ascending along the a priori tour. We
simply add the following constraints to the stochastic program:

∑
s∈T

asyis ≤
∑
s∈T

asyjs + T (1− xij) ∀i, j ∈ Vc, i 6= j, (33)

∑
s∈T

bsyis ≤
∑
s∈T

bsyjs + T (1− xij) ∀i, j ∈ Vc, i 6= j, (34)

Adding these constraints decreases the solution space, which is likely to result in a faster solution times.
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5.3 SAA without Non-Anticipation

In the third simplification, we drop the non-anticipatory constraints (37)–(60). Most of these are ‘big-M’
constraints, which typically result in weak LP relaxation bounds and large search trees. Therefore, it might
be computationally advantageous to use a variant of the stochastic program in which the non-anticipation
constraints are omitted (i.e., only use (10)–(29)). Note that the bounds obtained in the SAA method now
correspond to a relaxation of the problem and therefore do not provide insights in the optimal objective
value of the original problem. However, the MIP might be easier to solve than the full stochastic program,
and therefore might speed-up the SAA method.

5.4 A Linear Scaling Heuristic

The Linear Scaling Heuristic (LSH) is a two-phase heuristic (similar to SAA with Fixed A Priori Route)
in which an a priori tour is generated first and then, given this a priori tour, time slot are assigned to
each customer location using a simple linear scaling rule. The time slot assignment rule is based on the
idea of linearly scaling the visit times of the customer locations in the a priori route to “fit” the planning
horizon.

Before describing the time slot assignment rule, it is useful to introduce some additional notation. Let
ei and li for each customer location i ∈ Vc be the earliest and latest times that delivery can start at the
customer location when directly visited after- and before the fulfillment center, respectively, i.e.,

ei = ao + toi = toi,

li = bd − tid = T − tid,

for each i ∈ Vc. Note that these quantities are independent of the a priori tour. We assume that ei ≤ li

holds for each customer location i ∈ Vc, i.e., it is possible to service each customer location. The time
slot to be assigned to customer location i needs to have overlap with [ei, li], or else the customer location
cannot be served in tour and will always be rejected. By definition, the set of possible time slots Ti of
customer location i contains only time slots which have overlap with [ei, li]. Let the a priori route be
ρTSP = (o, 1, 2, . . . , n, d). Note that, typically, the a priori route is not feasible itself, i.e., the length of
the a priori route is more than T . As we have seen in Observation 1, in case the a priori route is feasible,
then it is optimal to assign each customer location i a time slot which contains tTSPi , the time the a priori
route visits customer location i.

LSH linearly scales down times tTSPi to ensure that these times lie within the planning horizon [0, T ].
The resulting scaled times t̃i are then used to assign the time slot s∗i ∈ Ti to customer location i. More
specifically, we obtain the scaled time t̃i for customer location i ∈ Vc as

t̃i = tTSPi · min{T, tTSPd }
tTSPd

.

Should the scaled time t̃i lie outside the interval [ei, li], then we adjust it to the boundary of the interval,
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i.e.,

t̃i =


li if t̃i > li,

t̃i if t̃i ∈ [ei, li] ,

ei if t̃i < ei.

To select a time slot for customer i using the scaled time t̃i, we calculate a score cis for each time
slot s ∈ Ti, and pick the time slot s∗ with the highest score: s∗ = arg maxs∈Ti

cis. Should there be a tie
between multiple time slots, then the time slot starting the earliest is chosen. We consider the following
score function:

cis = (t̃i − as) · (bs − t̃i).

This score function can be calculated quickly. It has the property that positives scores are given for scaled
times inside the time slot and have a peak in the center of the time slot. Remember that we assume that
the set of possible time slots T has time slots with equal width. Therefore, should the time slots in T
be non-overlapping, then using these score functions simply results in selecting the time slot which has
overlap with the scaled time. However, when the time slots in T overlap, then using these score functions
results in selecting the time slot with its center closest to the scaled time.

6 Computational Experiments

In this section, we present the results of numerical experiments in which we use the presented methods
on randomly generated instances. The methods have been implemented in Python version 2.7.11, and the
MIPs are solved using Gurobi version 8.0.1 with the default settings. The runs are executed as a single
thread on an Intel R© Xeon R© E5-2650 v2 with 2.6 GHz (Turbo Boost up to 3.6 GHz) and 32 GB of RAM
running Debian Linux version 9. All CPU times reported have been obtained using the wall-clock timer
timeit.default_timer(). Only a single Python thread was active at any time on the CPU, while the
MIP solver Gurobi had access to all available CPU cores.

6.1 Instance Generation and Parameters

We generated sets of 10 instances for n = 4, 8, and 12 customer locations. These locations have integer
coordinates which are randomly uniform in a [0, 60] × [0, 60] square. The fulfillment center is located in
the center of the region (coordinates (30, 30)). The travel times between two locations is taken to be the
Euclidean distance rounded up to two decimals and the service time at a location is taken to be zero. The
customers have equal order placement probability p = 0.5 and result in equal revenue r = 1.

For each instance, it is also necessary to specify a horizon T and set of time slots T . To account for
the fact that not all customers will place an order, the company may design an a priori route with a
duration that exceeds the operating horizon T . Depending on the company’s risk tolerance (and service
level targets), the company may choose an a priori route with a duration that results in an expected
delivery route length of T or less (where the expected delivery route length is a function of the order
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placement probabilities of the customers). Indeed, by Observation 1, a horizon T equal to the minimum
duration tour visiting all customer locations TTSP implies that all customers can place an order (regardless
of the sequence in which they place an order) and the company has no risk (while the actual delivery
routes may vary in duration). Therefore, to reflect these choices, we model the company’s risk tolerance,
e.g., low, medium, and, high, by setting the horizon T as a function of TTSP, specifically T = 0.9TTSP,
T = 0.75TTSP, and T = 0.6TTSP. (That is, to simplify instance generation, rather than designing instances
for which the a priori route has duration of 1

0.9T ,
1

0.75T , or
1

0.6T , we do the reverse.) Thus, we generate
three “regimes” of instances, characterized by the associated risk tolerance. Note that within a regime
(set of instances), the duration TTSP can vary substantially. Instances with locations that are relatively
close together typically have a shorter a priori tour than instances with locations that are relatively far
apart. The benefit of setting the horizon as a fraction of the minimum duration tour rather than as an
absolute value is highlighted in Figure 5. The expected revenue is more consistent when the horizon is set
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Figure 5: Exact expected revenues for the c60 instances with 8 customers using the minimum duration
tour as a priori route and no time slots, T = {[0, T ]}, plotted using (a) an absolute horizon and (b)
plotted using a horizon relative to the duration of the optimal tour (TTSP).

as a fraction of the minimum duration tour rather than as an absolute value.
We consider two time slot sets T : non-overlapping and overlapping. Both sets have time slots with a

fixed width w. The non-overlapping time slot set is given by

T = {[0, w] , [w, 2w] , [2w, 3w] , . . .} , (35)

and the overlapping time slot set is given by

T =
{

[0, w] ,
[1

2w,
3
2w
]
, [w, 2w] ,

[3
2w,

5
2w
]
, . . .

}
. (36)

The latter set has two overlapping time slots for each time t ∈ [0, T ]. Similar to the horizon, we choose
the time slot width as fraction of the duration of the a priori route, i.e., w = 0.25TTSP and 0.125TTSP.
As a benchmark, we also consider the case of “no slots”, in which essentially each customer locations gets
a time slot equal to the full horizon, i.e., a possible time slot set of T = {[0, T ]}.
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The instances generated are recorded in VRP-REP XML format (Mendoza et al. (2014), see http:

//vrp-rep.org). We also include an optimal directed TSP tour and its duration. This directed TSP
tour is used by the methods that require a fixed a priori route. The TSP tour is obtained by solving the
formulation (10)–(16) with the objective of minimizing tour duration. For convenience, the horizons and
time slot sets are also included in each instance file.

All SAA methods are run with sample sizes varying from N = 2 up to N = 64 (depending on instance
size). Each SAA run uses a fixed sample size and M = 20 repetitions. After solving each MIP, the exact
expected revenue is calculated using the DP algorithm presented in Section 3.2. During the run, the best
solution found so far is kept in memory and used as starting solution for the MIP solver.

Not surprisingly, the full SAA method described in Section 4 is very demanding computationally.
Therefore, we decided to run the SAA with Fixed A Priori Route method one time (M = 1) using the
same sample and use the solution obtained as starting solution for the first MIP of the full SAA method
run. This computation time is included when reporting solution time for the full SAA method. In our
experiments, we solve all MIPs to optimality, i.e., no time limit was set. (Imposing a time limit increased
the optimality gap estimates and decreased the solution quality significantly.)

6.2 Expected Revenue Calculation

We use exact calculation of the expected revenue in all our presented methods. While the Linear Scaling
Heuristic of Section 5.4 requires only one evaluation at the end to obtain the expected revenue, the SAA
methods require M evaluations. Thus, for the SAA methods, it is critical that the expected revenue
calculation are done efficiently, in a reasonable amount of time.

In Table 1, we compare the computing times of the enumeration algorithm (ENUM) presented in Sec-
tion 3.1 with the customized dynamic programming algorithm (DP) presented in Section 3.2 on instances
of different sizes, where the Linear Scaling Heuristic (LSH) was used to obtain the solutions. Both algo-
rithms were given a time limit of 1 hour for evaluation of the expected revenue of each instance. The time
slot width w is set to 0.25TTSP and the horizon T is set to 0.90TTSP, 0.75TTSP and 0.60TTSP. We also
report the total number of scenarios |Ω| over which the expected revenue is calculated. The computing
times reported are averages over the 10 instances in a set and given in seconds. For convenience, we also
report the speed-up of the DP algorithm over the ENUM algorithm.

Table 1: Comparison of the computing times required to evaluate the exact expected revenue using the
enumeration algorithm and the dynamic programming algorithm.

CPU time (s) Speed up

n |Ω| w T ENUM DP DP

c60 4 65 0.25 0.90 0.0012 0.0031 0.38
0.25 0.75 0.0011 0.0034 0.33
0.25 0.60 0.0015 0.0036 0.42

c60 8 109601 0.25 0.90 4.42 0.12 37.87
0.25 0.75 4.16 0.16 25.35
0.25 0.60 3.85 0.17 22.31

c60 12 1.3 · 109 0.25 0.90 > 3600 2.58 > 1398
0.25 0.75 > 3600 4.80 > 750
0.25 0.60 > 3600 6.07 > 592

http://vrp-rep.org
http://vrp-rep.org
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While the ENUM algorithm is slightly faster on small instances with 4 customer locations, the DP
algorithm outperforms the ENUM algorithm on mid and large size instances with 8 and 12 customer
locations. Moreover, we see that the ENUM algorithm reaches the time limit of 1 hour for the evaluation
of the expected cost of solutions for instance with 12 customer instances, while the DP algorithm takes
less than 10 seconds for these instances. We observe too that the computing time depends on the horizon
T . Whereas the ENUM algorithm requires less computing time for instances with a shorter horizon T ,
the DP algorithm requires more computing time for instances with a shorter horizon T . This is probably
due to the fact that the required number operations, which we investigated in Section 3.2, tends towards
the lower bound O

(
2nn2) in case of a long horizon, while it tends more to the upper bound O

(
3nn2) in

case of a short horizon.

6.3 Non-overlapping Time Slots

LSH (Section 5.4), SAA with Fixed A Priori Route (Section 5.1) and Full SAA (Section 4) are tested
on the instance sets with non-overlapping time slot sets (35). The expected revenue of the best found
solution and the computation time in seconds, both averaged over each set of 10 instances, are presented
in Table 2. We also report the expected revenue when the a priori tour is chosen to be the minimum
duration tour and each location can be visited at any time during the horizon (“No Slots”). This expected
revenue serves as an upper bound on the expected revenue, although it must be noted that it is not an
exact upper bound. The time slot width w is set to 0.25TTSP and 0.125TTSP, and the horizon T is set to
0.90TTSP, 0.75TTSP and 0.60TTSP. For n = 4 customers, sample size N = 64 is used for both SAA with
Fixed A Priori Route and Full SAA. For these small instances, however, the complete stochastic programs
of Section 4.1 containing all scenarios (|Ω| = 65) can be solved for both variants, i.e., without sampling.
While both SAA methods and the complete stochastic programs produce solutions with the same expected
revenue, the computation times differ since the SAA methods rely on solvingM = 20 MIPs, while the the
complete stochastic programs are only solved once. In Table 2, the marked computation times (*) where
obtained by solving the complete stochastic program once, rather than using the SAA method. For n = 8
customers, sample size N = 64 is used for SAA with Fixed A Priori Route and N = 16 for Full SAA. For
n = 12 customers, sample size N = 32 is used for SAA with Fixed A Priori Route. Unfortunately, Full
SAA could not solve these instances in a reasonable amount of time.

As expected, we see that the expected revenue depends on the horizon T , and that it increases for
longer horizons. This is also illustrated in Figure 6 for the n = 8 customer instances. Not surprisingly,
the best found solutions are obtained by Full SAA. Interestingly, the expected revenues obtained by Full
SAA approach the No Slots upper bound. While SAA with Fixed A Priori Route does not always find the
best solutions, the revenues obtained are on average only 3% worse and the computation times are much
smaller. This indicates that the optimal TSP tour is good a priori tour. LSH obtains solutions that are
on average 7% lower than the best found solutions, but the method requires relatively little computation
time. Notice that the computation time required by LSH essentially consists of the single expected revenue
calculation. LSH performs especially well in case of a long horizon T = 0.90TTSP. When decreasing the
time slot width w, from 0.25TTSP to 0.125TTSP, the expected revenue of the best found solutions (using
Full SAA) decreases by only 1 – 2%. Also, the solutions obtained by SAA with Fixed A Priori Route have
1 – 2% lower expected revenue when lowering the time slot width, while the solutions obtained by LSH are
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Table 2: Results for the instances with non-overlapping time slots.
Exact Exp. Rev. CPU time (s)

SAA SAA SAA SAA
n w T LSH Fixed Full No Slots LSH Fixed Full

c60 4 0.25 0.90 1.73 1.75 1.79 1.79 0.00 1.49∗ 25.57∗
0.25 0.75 1.51 1.54 1.56 1.59 0.00 1.43∗ 28.36∗
0.25 0.60 1.26 1.28 1.31 1.31 0.00 0.82∗ 6.46∗

c60 4 0.125 0.90 1.65 1.70 1.73 1.79 0.00 4.84∗ 70.78∗
0.125 0.75 1.39 1.53 1.55 1.59 0.00 2.69∗ 31.58∗
0.125 0.60 1.14 1.27 1.30 1.31 0.00 1.02∗ 9.61∗

c60 8 0.25 0.90 3.66 3.70 3.77 3.79 0.12 166.66 3018.92
0.25 0.75 3.06 3.22 3.29 3.36 0.16 268.51 6248.68
0.25 0.60 2.49 2.61 2.75 2.72 0.17 59.94 1429.13

c60 8 0.125 0.90 3.60 3.63 3.72 3.79 0.12 724.26 4752.46
0.125 0.75 2.90 3.18 3.27 3.36 0.16 735.78 5332.23
0.125 0.60 2.28 2.59 2.72 2.72 0.17 246.61 1077.33

c60 12 0.25 0.90 5.56 5.69 5.81 2.58 303.39
0.25 0.75 4.79 4.96 5.17 4.80 649.04
0.25 0.60 3.90 4.05 4.23 6.07 337.70

c60 12 0.125 0.90 5.44 5.63 5.81 2.82 1298.79
0.125 0.75 4.59 4.93 5.17 4.78 2204.55
0.125 0.60 3.67 4.02 4.23 5.73 994.01

much worse. The time slot set T contains twice as many time slots compared to width w = 0.25TTSP. It
seems that the simple decision rule used by LSH is less effective when time slots are smaller. Moreover, the
computation time needed by both SAA methods increases, also probably because the number of possible
time slots increases.

The SAA methods rely on repeated solving MIPs containing only a sampled subset of N scenarios.
This sample size N not only affects the quality of the obtained solution, but also the computation time
needed, and the quality of the obtained estimate of the optimality gap. Table 3 compares the quality of
the solution, the estimated optimality gap (Equation (31)) and the confidence interval of the optimality
gap for sample sizes of N = 2 up to 64 obtained by Full SAA. The reported confidence interval is the
rightmost term in Equation (32) with α = 0.05. We observe from the table that the estimated optimality
gaps and the confidence intervals decrease as the sample size increases. We observe too that for the
highest sample sizes, the estimated gap and the confidence interval are both relatively small and of the
same order of magnitude, making it likely that a (near-)optimal solution is found. The expected revenue
does not increase much when increasing the sample size beyond a certain point, while computation times
do increase noticeably. Similarly, Table 4 compares the quality of the solution, the estimated optimality
gap (Equation (31)) and the confidence interval of the optimality gap for sample sizes of N = 2 up to 64
of SAA With Fixed A Priori Route. The estimated optimality gaps and confidence intervals decrease as
the sample size increases. Compared to the Full SAA method, the computation times and the estimated
optimality gaps are smaller, which indicates that this restricted problem is easier to solve. The interested
reader is referred to Appendix B, which contains more detailed results of our experiments.

Figure 7 shows the relation between solution quality and computation time for the n = 8 customer
instances with time slot width w = 0.125TTSP, averaged over all instances in the set and all horizons
T ∈ {0.60, 0.75, 0.90}TTSP. The expected revenue is shown as a fraction of the expected revenue of the
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(a) Time slot width w = 0.25T TSP.
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(b) Time slot width w = 0.125T TSP.

Figure 6: Results for the instances with n = 8 customers and non-overlapping time slot sets. The error
bars of the SAA methods indicate the average estimated optimality gap with the confidence interval. The
grey dashed line highlights an (imaginary) linear relation between planning horizon and expected revenue.

best found solutions. The numbers above the points indicate the sample size N of the SAA methods. We
see that the revenues associated with LSH solutions are on average around 90% of the revenues of the
best found solutions, while SAA Fixed A Priori Route converges to around 97% of the revenues of the
best found solutions. Sample sizes of N = 16 and higher contribute little to improve the solution quality
compared to N = 8, while requiring more computation time. The best solutions are found by Full SAA.
However, Full SAA performs worse than SAA Fixed A Priori Route for sample size N = 2. Samples with
only two scenarios are likely too small to properly capture the stochastic information.
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Table 3: Results of Full SAA with M = 20 samples. Each row shows averages over 10 instances with n customers and non-overlapping time
slot sets.

Exact Expected Revenue Estimated Gap Gap Confidence Interval (α = 0.05) CPU time (s)

n w T N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64

c60 4 0.25 0.90 1.71 1.78 1.79 1.79 1.79 1.79 0.15 0.04 -0.04 -0.02 -0.01 -0.00 0.22 0.15 0.11 0.07 0.06 0.04 3.59 1.57 3.13 7.91 26.14 86.85
0.25 0.75 1.54 1.56 1.56 1.56 1.56 1.56 0.07 0.05 -0.00 0.03 0.03 0.01 0.19 0.14 0.09 0.07 0.04 0.03 7.90 1.22 2.53 6.12 18.46 58.67
0.25 0.60 1.30 1.30 1.31 1.31 1.31 1.31 -0.01 -0.03 0.00 0.01 0.01 -0.00 0.16 0.10 0.07 0.06 0.04 0.03 0.65 0.86 1.52 3.30 7.90 19.17

c60 4 0.125 0.90 1.71 1.72 1.73 1.73 1.73 1.73 0.07 0.09 0.05 0.02 0.03 0.02 0.22 0.15 0.10 0.07 0.05 0.04 13.80 1.99 3.74 11.40 49.02 234.12
0.125 0.75 1.52 1.54 1.55 1.55 1.55 1.55 0.13 0.08 0.05 -0.01 0.01 0.02 0.19 0.12 0.09 0.07 0.05 0.03 0.66 0.91 2.20 5.70 16.63 92.60
0.125 0.60 1.26 1.30 1.30 1.30 1.30 1.30 0.06 -0.00 0.01 0.00 -0.00 0.00 0.15 0.12 0.08 0.05 0.04 0.02 0.60 0.71 1.30 2.72 6.43 22.26

c60 8 0.25 0.90 3.50 3.66 3.75 3.77 0.38 0.16 0.05 0.01 0.36 0.23 0.16 0.11 48.63 126.27 1065.00 3018.92
0.25 0.75 3.10 3.20 3.26 3.29 0.38 0.22 0.13 0.08 0.32 0.21 0.14 0.09 62.74 182.23 809.21 6248.68
0.25 0.60 2.54 2.68 2.74 2.75 0.34 0.21 0.10 0.08 0.26 0.17 0.14 0.09 45.07 74.39 243.42 1429.13

c60 8 0.125 0.90 3.43 3.66 3.70 3.72 0.43 0.16 0.18 0.02 0.33 0.24 0.16 0.12 41.27 130.25 740.59 4752.46
0.125 0.75 2.97 3.19 3.25 3.27 0.52 0.28 0.18 0.09 0.28 0.20 0.15 0.09 29.01 127.16 584.37 5332.23
0.125 0.60 2.57 2.63 2.71 2.72 0.36 0.24 0.11 0.04 0.25 0.19 0.11 0.09 25.49 58.10 155.56 1077.33

Table 4: Results of SAA with Fixed A Priori Route with M = 20 samples. Each row shows averages over 10 instances with n customers and
non-overlapping time slot sets.

Exact Expected Revenue Estimated Gap Gap Confidence Interval (α = 0.05) CPU time (s)

n w T N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64

c60 4 0.25 0.90 1.74 1.75 1.75 1.75 1.75 1.75 0.10 0.05 -0.02 -0.00 0.00 0.00 0.22 0.15 0.11 0.07 0.06 0.04 0.75 0.77 1.30 2.39 4.68 9.58
0.25 0.75 1.54 1.54 1.54 1.54 1.54 1.54 0.07 0.05 -0.00 0.02 0.03 0.00 0.19 0.14 0.09 0.06 0.04 0.03 0.88 0.74 1.24 2.40 4.63 9.30
0.25 0.60 1.28 1.28 1.28 1.28 1.28 1.28 0.01 -0.01 0.02 0.02 0.02 0.00 0.15 0.10 0.07 0.05 0.04 0.02 0.49 0.65 1.18 2.21 4.26 8.55

c60 4 0.125 0.90 1.70 1.70 1.70 1.70 1.70 1.70 0.07 0.08 0.04 0.02 0.03 0.01 0.22 0.14 0.10 0.07 0.05 0.04 1.74 0.89 1.60 2.97 6.99 21.96
0.125 0.75 1.51 1.53 1.53 1.53 1.53 1.53 0.13 0.06 0.03 -0.03 0.00 0.00 0.19 0.12 0.09 0.07 0.05 0.03 0.51 0.81 1.44 2.65 5.20 17.47
0.125 0.60 1.27 1.27 1.27 1.27 1.27 1.27 0.05 0.02 0.02 0.01 0.01 0.01 0.15 0.11 0.08 0.05 0.04 0.02 0.50 0.71 1.25 2.29 4.56 9.89

c60 8 0.25 0.90 3.57 3.70 3.70 3.70 3.70 3.70 0.27 0.07 0.03 0.01 0.01 0.02 0.35 0.23 0.16 0.11 0.08 0.05 4.24 5.45 8.58 16.74 40.77 166.66
0.25 0.75 3.19 3.20 3.22 3.22 3.22 3.22 0.21 0.12 0.06 0.04 0.04 0.02 0.30 0.19 0.14 0.09 0.06 0.05 4.65 6.39 10.45 22.18 59.21 268.51
0.25 0.60 2.57 2.60 2.61 2.61 2.61 2.61 0.19 0.15 0.08 0.06 0.03 0.01 0.25 0.16 0.13 0.08 0.06 0.04 4.95 6.11 8.89 14.75 27.39 59.94

c60 8 0.125 0.90 3.57 3.62 3.63 3.63 3.63 3.63 0.23 0.12 0.16 0.03 0.03 0.03 0.32 0.23 0.15 0.12 0.07 0.05 4.36 6.01 11.24 23.23 81.86 724.26
0.125 0.75 3.06 3.18 3.18 3.18 3.18 3.18 0.33 0.17 0.12 0.06 0.04 0.03 0.27 0.19 0.15 0.09 0.07 0.05 4.81 6.72 11.78 26.16 77.38 735.78
0.125 0.60 2.53 2.56 2.59 2.59 2.59 2.59 0.29 0.20 0.09 0.03 0.04 0.02 0.23 0.17 0.10 0.08 0.06 0.04 5.19 6.73 10.34 18.84 45.54 246.61

c60 12 0.25 0.90 5.50 5.68 5.69 5.69 5.69 0.24 0.12 0.02 0.02 0.03 0.45 0.30 0.21 0.16 0.09 63.80 57.72 65.10 106.05 303.39
0.25 0.75 4.80 4.94 4.96 4.95 4.96 0.46 0.19 0.15 0.08 0.04 0.37 0.26 0.17 0.13 0.09 86.74 88.76 112.23 202.94 649.04
0.25 0.60 3.96 4.02 4.04 4.05 4.05 0.51 0.27 0.17 0.12 0.08 0.32 0.22 0.15 0.11 0.08 103.15 108.98 120.03 161.55 337.70

c60 12 0.125 0.90 5.32 5.62 5.63 5.63 5.63 0.56 0.28 0.11 0.07 0.02 0.42 0.30 0.18 0.13 0.10 67.38 61.96 81.77 217.91 1298.79
0.125 0.75 4.68 4.84 4.92 4.93 4.93 0.53 0.33 0.17 0.06 0.05 0.37 0.26 0.19 0.13 0.08 86.49 89.03 119.52 251.69 2204.55
0.125 0.60 3.87 3.98 4.00 4.02 4.02 0.57 0.33 0.22 0.03 0.07 0.31 0.22 0.16 0.11 0.09 100.80 104.58 127.63 204.72 994.01
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Figure 7: Solution quality versus computation time needed by the solution methods for solving the n = 8
customer instances with non-overlapping time slot of width w = 0.125TTSP.

6.4 Overlapping Time Slots

To assess the benefit of having overlapping time slots, we also solve the instance sets with the time slot
set (36) using LSH, SAA With Fixed A Priori Route and Full SAA. Table 5 shows the expected revenue
and computation time in seconds for the methods, using the same sample sizes as in Table 2. We also
report the expected revenue and computation time as a fraction of the corresponding values for the non-
overlapping time slot set. The methods are tested on the instances with n = 8 and 12 customers, with
time slot width w = 0.25TTSP and 0.125TTSP, and with horizons T ∈ {0.90, 0.75, 0.60}TTSP. The column
"Ov." indicates how many time slots in T are overlapping for any single point in time. We observe that
the revenues increase by around 3 – 5 % when using LSH, by around 2 – 3 % when using SAA with Fixed
A Priori Route and 1% – 2% when using Full SAA, while the best solutions are again obtained by Full
SAA for the n = 8 customer instances. However, the computation times for the SAA methods increase
dramatically: computation times increased 2 to 6 times when solving the instances with the overlapping
time slot set compared to solving the instances with the non-overlapping time slot set. Thus, the use of
overlapping time slots leads improves the quality of the a priori route and time slot assignment, but, in
case of the SAA methods, also to higher computation times.

6.5 Non-Anticipation and Ascending Time Slots

So far, we have investigated the performance of LSH, SAA with Fixed A Priori Route and Full SAA. In
Section 5, we presented two additional heuristics based on simplifications of the stochastic program: SAA
without Non-Anticipation and SAA with Ascending Time Slots. In SAA without Non-Anticipation, the
non-anticipatory constraints are relaxed, while in SAA with Ascending Time Slots, constraints requiring
the time slots to be ascending along the a priori route are added. Next, we investigate the benefits of
these two simplifications when they are incorporated in SAA with Fixed A Priori Route.

Table 6 shows the expected revenue and computation time of SAA without Non-Anticipation and
SAA with Ascending Time Slots as a fraction of the corresponding values when using SAA with Fixed A
Priori Route, for non-overlapping time slot set (35) and time slot width w = 0.125TTSP, which are the
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Table 5: Results for the instances with overlapping time slots.
Exact Exp. Rev. CPU time

Exact Exp. Rev. (Fact. Non-overlap) CPU time (s) (Fact. Non-overlap)

SAA SAA SAA SAA SAA SAA SAA SAA
n w Ov. T LSH Fixed Full LSH Fixed Full LSH Fixed Full LSH Fixed Full

c60 8 0.25 2 0.90 3.79 3.79 3.81 1.036 1.025 1.011 0.11 354.53 11033.42 0.970 2.127 3.655
0.25 2 0.75 3.26 3.30 3.35 1.064 1.027 1.019 0.16 838.62 32696.81 0.973 3.123 5.233
0.25 2 0.60 2.58 2.67 2.78 1.039 1.021 1.010 0.18 171.17 7666.13 1.044 2.855 5.364

c60 8 0.125 2 0.90 3.72 3.73 3.76 1.035 1.028 1.013 0.12 806.40 10819.73 0.967 1.113 2.277
0.125 2 0.75 3.02 3.24 3.29 1.040 1.017 1.008 0.16 1449.00 31261.28 0.988 1.969 5.863
0.125 2 0.60 2.35 2.63 2.74 1.033 1.015 1.007 0.17 533.17 5578.24 1.008 2.162 5.178

c60 12 0.25 2 0.90 5.81 5.81 1.046 1.021 2.20 871.08 0.856 2.871
0.25 2 0.75 5.06 5.13 1.056 1.035 4.80 4389.65 1.000 6.763
0.25 2 0.60 4.05 4.18 1.038 1.033 6.26 1878.74 1.031 5.563

c60 12 0.125 2 0.90 5.72 5.76 1.050 1.022 2.55 1828.14 0.905 1.408
0.125 2 0.75 4.72 5.01 1.030 1.016 4.81 15955.04 1.007 7.237
0.125 2 0.60 3.76 4.06 1.026 1.011 5.54 6772.20 0.967 6.813

more difficult instance sets. We see that SAA without Non-Anticipation for high sample sizes does not
affect the solution quality, but that it requires less computation time, for the n = 8 customer instance
set on average only 21% of the computation time required with customer anticipation. For the n = 12
customer instance set, the computation time benefits are mixed. When the horizon is long (T = 0.9TTSP),
computation times are significantly smaller, but when the horizon is short (T = 0.6TTSP), the computation
time significantly increases. We observe more consistent computational benefits for SAA with Ascending
Time Slots, especially for large sample sizes (N ≥ 16). Interestingly, for small sample sizes (N ≤ 4) and
long horizons (T = 0.75TTSP and T = 0.90TTSP) enforcing ascending time slots results in an increase in
expected revenue. More generally, when the horizon is long, restricting time slots to be ascending along
the (fixed TSP) a priori route does not appear to be limiting (in fact, it may offer a benefit). This is likely
due to the fact that with a long horizon, most customer arrival sequences lead in their entirety to feasible
delivery routes, which, by construction, visit customer locations in the same order as the a priori route.
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Table 6: Results of SAA without Non-Anticipation and SAA with Ascending Time Slots.
Exact Expected Revenue (Factor of Fixed Route SAA) CPU time (Factor of Fixed Route SAA)

Fixed Route SAA without Non-Anticip. Fixed Route SAA with Asc. Time Slots Fixed Route SAA without Non-Anticip. Fixed Route SAA with Asc. Time Slots

n w T N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64

c60 8 0.125 0.90 1.009 1.003 1.000 1.000 1.000 1.000 1.013 1.002 1.000 1.000 1.000 1.000 0.609 0.514 0.437 0.374 0.296 0.138 0.810 0.820 0.782 0.743 0.646 0.578
0.125 0.75 1.023 0.993 1.001 0.999 0.999 0.999 1.036 1.002 1.001 1.000 1.000 1.000 0.644 0.559 0.535 0.544 0.429 0.203 0.797 0.797 0.733 0.637 0.640 0.523
0.125 0.60 1.018 1.007 0.997 0.999 0.999 1.000 1.002 0.995 0.983 0.982 0.982 0.982 0.668 0.616 0.584 0.561 0.505 0.296 0.810 0.779 0.740 0.665 0.577 0.435

c60 12 0.125 0.90 0.995 1.001 1.000 1.000 1.000 1.050 1.001 1.000 1.000 1.000 1.259 1.203 0.959 0.480 0.195 0.890 0.983 0.967 0.833 0.752
0.125 0.75 1.019 1.007 1.001 1.000 1.000 1.047 1.014 1.001 1.000 0.999 1.271 1.220 1.096 1.877 0.742 1.004 1.004 0.926 0.704 0.549
0.125 0.60 1.005 0.999 0.999 0.999 1.000 1.016 0.990 0.988 0.986 0.986 1.251 1.248 1.290 2.028 2.154 1.076 1.042 0.950 0.719 0.422
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7 Discussion and Future Research Directions

In this paper, we introduce Strategic Time Slot Management, a novel variant of Time Slot Management
that simplifies the management of time slots during the ordering process, allows smoothing of fulfillment
center operations, and creates delivery consistency. We investigate the design problem for the single-
vehicle (or single-route) case. We model the design problem, which involves finding an a priori route and
a time slot assignment, as a two-stage stochastic program (where the second stage is an "evaluation" stage
modeling the the customer ordering process). We develop a Sample Average Approximation approach
for its solution (which uses a highly efficient Dynamic Programming algorithm to evaluate the expected
revenue over all possible order placement sequences). An extensive computational study shows the efficacy
of the solution approach and provides valuable insights in the benefits of Strategic Time Slot Management.

We see many opportunities for further research into this exciting innovative practice in the online
grocery retail sector. We discuss some of these in this final section. Specifically, we consider the exten-
sion to the multi-vehicle setting, the aggregation of customer locations, the dynamic management of a
priory routes, and the use of Benders Decomposition to improve the efficiency of the Sample Average
Approximation approach.

In practice, online grocery retailers employ multiple vehicles to serve their customers. Our two-stage
stochastic program can be modified to allow for multiple a priori routes, but it is highly likely that its
solution will be more challenging, because the a priori routes need to be balanced across the customer
locations. However, a few natural phases solution approaches are worth exploring. Once it has been decided
which groups of customer locations to serve using a single a priori route, the problem decomposes into
single-vehicle problems for each group of customer locations, and either one of the solution approaches
developed in this paper can be applied. From a business perspective, the multi-vehicle case opens up other
interesting opportunities. By allowing customer locations to be included in multiple a priori routes, their
service can be increased.

In our definition of the Strategic Time Slot Management design problem, we have assumed that the
locations that have to be visited represent a delivery address. In practice, it is more likely that the
locations that have to be visited represent areas (i.e., groups or clusters of delivery addresses). In such
an environment, new design decisions arise, e.g., how to define the areas, and the proposed methodology
may have to be revisited. It is possible to adjust the probabilities pi (and revenues ri) to reflect knowledge
about the customers in an area, but it may be better to consider a different approach, e.g., a discrete
probability distribution for the number of order placements in an area. Furthermore, it may no longer be
reasonable to assume that the service time at a “location” is constant.

In practice, the set of customers may vary over time (Picnic’s client base is growing rapidly) and
the customer characteristics may vary over time (e.g., order placement probability and revenue). This
suggest dynamic management of the a priori routes and time slot assignments. However, customer value
consistency and may not like to see their assigned time slots change (too) frequently.

Our presented two-stage stochastic program contains many big-M constraints, especially in the second
stage, which results in weak LP relaxations and, consequently, large search trees and long solve times.
However, as we have seen, given an a priori route and time slot assignment, the second stage is “simply”
an evaluation of the expected revenue. Benders decomposition may allow us to solve the integer programs
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more efficient by exploiting this structure, i.e., incorporate knowledge about the expected costs of a design
in the form of optimality cuts. Only further research can tell whether this can lead to computationally
viable approaches.

Acknowledgments

This research was funded by NWO, the Netherlands Organisation for Scientific Research, as part of the
multi-annual research programme on Sustainable Logistics, and by Stichting Erasmus Trustfonds.

References
N. Agatz, A. M. Campbell, M. Fleischmann, and M. W. P. Savelsbergh. Time slot management in attended home

delivery. Transportation Science, 45(3):435–449, 2011.

N. Agatz, A. M. Campbell, M. Fleischmann, J. van Nunen, and M. W. P. Savelsbergh. Revenue management
opportunities for internet retailers. Journal of Revenue & Pricing Management, 12(2):128–138, 2013.

E. Angelelli, C. Archetti, C. Filippi, and M. Vindigni. The probabilistic orienteering problem. Computers &
Operations Research, 81:269 – 281, 2017.

B. P. Bruck, J.-F. Cordeau, and M. Iori. A practical time slot management and routing problem for attended home
services. Omega, 81:208 – 219, 2018.

A. M. Campbell and M. W. P. Savelsbergh. Decision support for consumer direct grocery initiatives. Transportation
Science, 39(3):313–327, 2005.

A. M. Campbell and M. W. P. Savelsbergh. Incentive schemes for attended home delivery services. Transportation
Science, 40(3):327–341, 2006.

A. M. Campbell and B. W. Thomas. Challenges and advances in a priori routing. In B. Golden, S. Ragha-
van, and E. Wasil, editors, The Vehicle Routing Problem: Latest Advances and New Challenges, Operations
Research/Computer Science Interfaces, pages 123–142. Springer US, Boston, MA, 2008a.

A. M. Campbell and B. W. Thomas. Probabilistic traveling salesman problem with deadlines. Transportation
Science, 42(1):1–21, 2008b.

C. Cleophas and J. F. Ehmke. When are deliveries profitable? Business & Information Systems Engineering, 6(3):
153–163, 2014.

J. F. Ehmke and A. M. Campbell. Customer acceptance mechanisms for home deliveries in metropolitan areas.
European Journal of Operational Research, 233(1):193 – 207, 2014.

A. L. Erera, M. Savelsbergh, and E. Uyar. Fixed routes with backup vehicles for stochastic vehicle routing problems
with time constraints. Networks, 54(4):270–283, 2009.

M. Gendreau, O. Jabali, and W. Rei. Chapter 8: Stochastic vehicle routing problems. In P. Toth and D. Vigo,
editors, Vehicle Routing, volume 18 of MOS-SIAM Series on Optimization, chapter 8, pages 213–239. SIAM -
Society for Industrial and Applied Mathematics, Philadelphia, second edition, 2014.

C. Groër, B. Golden, and E. Wasil. The consistent vehicle routing problem. Manufacturing & Service Operations
Management, 11(4):630–643, 2009.



Visser and Savelsbergh: Strategic Time Slot Management 33

F. Hernandez, M. Gendreau, and J.-Y. Potvin. Heuristics for tactical time slot management: a periodic vehicle
routing problem view. International Transactions in Operational Research, 24(6):1233–1252, 2017.

P. Jaillet. A priori solution of a traveling salesman problem in which a random subset of the customers are visited.
Operations Research, 36(6):929–936, 1988.

R. Klein, M. Neugebauer, D. Ratkovitch, and C. Steinhardt. Differentiated time slot pricing under routing consid-
erations in attended home delivery. Transportation Science, 2017. doi: 10.1287/trsc.2017.0738. Published online
in Articles in Advance 20 July 2017.

A. Kleywegt, A. Shapiro, and T. Homem-de Mello. The sample average approximation method for stochastic
discrete optimization. SIAM Journal on Optimization, 12(2):479–502, 2002.

C. Köhler, J. F. Ehmke, and A. M. Campbell. Flexible time window management for attended home deliveries.
Omega, 2019. doi: 10.1016/j.omega.2019.01.001. URL http://www.sciencedirect.com/science/article/pii/
S030504831830803X.

A. A. Kovacs, B. L. Golden, R. F. Hartl, and S. N. Parragh. Vehicle routing problems in which consistency
considerations are important: A survey. Networks, 64(3):192–213, 2014.

J. Mendoza, C. Guéret, M. Hoskins, H. Lobit, V. Pillac, T. Vidal, and D. Vigo. VRP-REP: a vehicle routing
community repository, 06 2014. URL http://vrp-rep.org.

J. Oyola, H. Arntzen, and D. L. Woodruff. The stochastic vehicle routing problem, a literature review, Part II:
solution methods. EURO Journal on Transportation and Logistics, 6(4):349–388, Dec 2017.

J. Oyola, H. Arntzen, and D. L. Woodruff. The stochastic vehicle routing problem, a literature review, part I:
models. EURO Journal on Transportation and Logistics, 7(3):193–221, Sep 2018.

N. J. A. Sloane. Sequence A000522. The On-Line Encyclopedia of Integer Sequences, 2010. URL https://oeis.
org/A000522.

R. Spliet and G. Desaulniers. The discrete time window assignment vehicle routing problem. European Journal of
Operational Research, 244(2):379 – 391, 2015.

R. Spliet and A. F. Gabor. The Time Window Assignment Vehicle Routing Problem. Transportation Science, 49
(4):721–731, 2015.

T. Sterling. Startup Picnic runs grocery delivery bus in Dutch online shopping boom. Reuters,
September 2018. Retrieved from https://www.reuters.com/article/us-netherlands-grocery-internet/
startup-picnic-runs-grocery-delivery-bus-in-dutch-online-shopping-boom-idUSKCN1LZ244.

A. Subramanyam and C. E. Gounaris. A branch-and-cut framework for the consistent traveling salesman problem.
European Journal of Operational Research, 248(2):384 – 395, 2016.

A. Subramanyam and C. E. Gounaris. A decomposition algorithm for the consistent traveling salesman problem
with vehicle idling. Transportation Science, 52(2):386–401, 2018.

S. A. Voccia, A. M. Campbell, and B. W. Thomas. The probabilistic traveling salesman problem with time windows.
EURO Journal on Transportation and Logistics, 2(1):89–107, May 2013.

X. Yang, A. K. Strauss, C. S. M. Currie, and R. Eglese. Choice-based demand management and vehicle routing in
e-fulfillment. Transportation Science, 50(2):473–488, 2016.

http://www.sciencedirect.com/science/article/pii/S030504831830803X
http://www.sciencedirect.com/science/article/pii/S030504831830803X
http://vrp-rep.org
https://oeis.org/A000522
https://oeis.org/A000522
https://www.reuters.com/article/us-netherlands-grocery-internet/startup-picnic-runs-grocery-delivery-bus-in-dutch-online-shopping-boom-idUSKCN1LZ244
https://www.reuters.com/article/us-netherlands-grocery-internet/startup-picnic-runs-grocery-delivery-bus-in-dutch-online-shopping-boom-idUSKCN1LZ244


34 Visser and Savelsbergh: Strategic Time Slot Management

A Non-anticipatory Constraints

In this appendix, we present the non-anticipatory constraints of the stochastic programming formulation
in Section 4.1. These constraints ensure that the hth arriving customer ω(h) in scenario ω places an order
if and only if it can be feasibly inserted in the current delivery route (containing only placed customers
up to h− 1). We introduce the following additional decision variables: eωhi and lωhi are the earliest arrival
time and latest arrival time at customer i, respectively, given the current delivery route after h customer
arrivals in scenario ω. In particular, eωhω(h) (lωhω(h)) are the earliest (latest) arrival times given that current
arriving customer ω(h) is inserted (even if infeasable) in the delivery route. Furthermore, x̃ωhFi and x̃ωhBj

denote if forward arc (i, ω(h)) and backward arc (ω(h), j), respectively, are used when inserting customer
ω(h) in the current delivery route. Note that we cannot use the delivery route variables xωhij since insertion
of customer ω(h) might be infeasable, and thus this customer will not be inserted into the delivery route.
Finally, decision variables wωhFi and wωhBi and indicate if there is waiting time at customer i due to the
time slot, in case of earliest arrival time (F) and in case of latest arrival time (B), respectively. These
are essentially used for booking-keeping. Let tmax be equal to the maximum travel time and let ε be the
travel time precision.

The non-anticipatory constraints are given by:

eωh
j ≥

∑
s∈Tj

asyjs ∀j ∈ Vωh
c , h ∈ {1, . . . , |ω|} , ω ∈ Ω, (37)

eωh
j ≥ eωh

i + tij − T (1− xωh
ij ) ∀ (i, j) ∈ Aωh, i, j 6= ω(h), h ∈ {1, . . . , |ω|} , ω ∈ Ω, (38)

eωh
ω(h) ≥ e

ωh
i + ti,ω(h) − (T + tmax)(1− x̃ωhF

i ) ∀ (i, ω(h)) ∈ Aωh, h ∈ {1, . . . , |ω|} , ω ∈ Ω, (39)

eωh
j ≤

∑
s∈Tj

asyjs + (T + tmax)(1− wωhF
j ) ∀j ∈ Vωh

c , h ∈ {1, . . . , |ω|} , ω ∈ Ω, (40)

eωh
j ≤ eωh

i + tij + T (1 + wωhF
j − xωh

ij ) ∀ (i, j) ∈ Aωh, i, j 6= ω(h), h ∈ {1, . . . , |ω|} , ω ∈ Ω, (41)

eωh
ω(h) ≤ e

ωh
i + ti,ω(h) + (T + tmax)(1 + wωhF

ω(h) − x̃
ωhF
i ) ∀ (i, ω(h)) ∈ Aωh, h ∈ {1, . . . , |ω|} , ω ∈ Ω, (42)

lωh
i ≤

∑
s∈Ti

bsyis ∀i ∈ Vωh
c , h ∈ {1, . . . , |ω|} , ω ∈ Ω, (43)

lωh
i ≤ lωh

j − tij + T (1− xωh
ij ) ∀ (i, j) ∈ Aωh, i, j 6= ω(h), h ∈ {1, . . . , |ω|} , ω ∈ Ω, (44)

lωh
ω(h) ≤ l

ωh
j − tω(h),j + (T + tmax)(1− x̃ωhB

j ) ∀ (ω(h), j) ∈ Aωh, h ∈ {1, . . . , |ω|} , ω ∈ Ω, (45)

lωh
i ≥

∑
s∈Tj

bsyis − (T + tmax)(1− wωhB
i ) ∀i ∈ Vωh

c , h ∈ {1, . . . , |ω|} , ω ∈ Ω, (46)

lωh
i ≥ lωh

j − tij − T (1 + wωhB
i − xωh

ij ) ∀ (i, j) ∈ Aωh, i, j 6= ω(h), h ∈ {1, . . . , |ω|} , ω ∈ Ω, (47)

lωh
ω(h) ≥ l

ωh
j − tω(h),j − (T + tmax)(1 + wωhB

ω(h) − x̃
ωhB
j ) ∀ (ω(h), j) ∈ Aωh, h ∈ {1, . . . , |ω|} , ω ∈ Ω, (48)

eωh
o = ao = 0, lωh

d = bd = T ∀h ∈ {1, . . . , |ω|} , ω ∈ Ω, (49)∑
i∈Vωh\{ω(h),d}

x̃ωhF
i = 1 ∀h ∈ {1, . . . , |ω|} , ω ∈ Ω, (50)

∑
j∈Vωh\{o,ω(h)}

x̃ωhB
j = 1 ∀h ∈ {1, . . . , |ω|} , ω ∈ Ω, (51)

x̃ωhF
i + x̃ωhB

j ≤ 1 + xω,h−1
ij ∀ (i, j) ∈ Aω,h−1, (i, j) 6= (o, d) , h ∈ {2, . . . , |ω|} , ω ∈ Ω, (52)

x̃ωhF
o + x̃ωhB

d ≤ 2−
∑

j∈Vω,h−1\{d}

xω,h−1
oj ∀h ∈ {2, . . . , |ω|} , ω ∈ Ω, (53)

ui + 1 ≤ uω(h) + n(1− x̃ωhF
i ) ∀ (i, ω(h)) ∈ Aωh, h ∈ {1, . . . , |ω|} , ω ∈ Ω, (54)

uω(h) + 1 ≤ uj + n(1− x̃ωhB
j ) ∀ (ω(h), j) ∈ Aωh, h ∈ {1, . . . , |ω|} , ω ∈ Ω, (55)

eωh
ω(h) ≤ l

ωh
ω(h) + 2(T + tmax)(1− zω

ω(h)) ∀h ∈ {1, . . . , |ω|} , ω ∈ Ω, (56)
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eωh
ω(h) ≥ l

ωh
ω(h) + ε− 2(T + tmax)zω

ω(h) ∀h ∈ {1, . . . , |ω|} , ω ∈ Ω, (57)

wωhF
i ∈ {0, 1} , wωhB

j ∈ {0, 1} ∀ (i, j) ∈ Aωh, h ∈ {1, . . . , |ω|} , ω ∈ Ω, (58)

x̃ωhF
i ∈ {0, 1} , x̃ωhB

j ∈ {0, 1} ∀ (i, j) ∈ Aω,h−1, h ∈ {2, . . . , |ω|} , ω ∈ Ω, (59)

x̃ω1F
o = 1, x̃ω1B

d = 1 ∀ω ∈ Ω. (60)

Essentially, the first constraints ensure the earliest arrival times and latest arrival times are set exactly.
These are obtained by linearizing: eωhj = max

{∑
s∈Tj

asyjs, e
ωh
i + tij

}
in case xωhij = 1 and eωhω(h) =

max
{∑

s∈Tω(h) asyω(h)s, e
ωh
i + ti,ω(h)

}
in case x̃ωhFi = 1, and lωhi = min

{∑
s∈Ti

bsyis, l
ωh
j − tij

}
in case

xωhij = 1 and lωhω(h) = min
{∑

s∈Tω(h)
bsyω(h)s, l

ωh
j − tω(h),j

}
in case x̃ωhBj = 1. Next, the x̃ωhFi and x̃ωhBj

decision variables are set correctly. Finally, the feasibility check involves checking if eωhω(h) ≤ lωhω(h). The
revenue zωω(h) of the hth arriving customer in scenario ω is only obtained if and only if eωhω(h) ≤ l

ωh
ω(h). The

time precision ε is used to capture the infeasible case: eωhω(h) ≥ l
ωh
ω(h) + ε.

B Detailed Results

In this section, we provide some detailed results of our computational study. In the following tables,
the left column contains the instance names, which consist of "STSM_c60_", followed by the number of
customer locations n ∈ {4, 8, 12}, followed by the instance number (1–10), "_Wf" with the time slot width
factor ("90", "75", "60"), followed by "o2" in case of the overlapping time slot set, and followed by "_Tf"
with the planning horizon factor ("25", "12-5").
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Table 7: Detailed results for the Linear Scaling Heuristic, the SAA method with Fixed A Priori Route and the full SAA method, over the n = 4
customer instances with non-overlapping set of possible time slots. Bold expected revenues indicate the best known solution.

Exact Expected Revenue CPU time (s)

Fixed Route SAA Full SAA Fixed Route SAA Full SAA

LSH N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 LSH N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64

STSM_c60_4_1_Wf25_Tf90 1.6615 1.6615 1.6615 1.6615 1.6615 1.6615 1.6615 1.8021 1.8021 1.8021 1.8021 1.8021 1.8021 0.0024 2.8154 0.8644 1.4682 2.5595 5.2293 11.8274 25.2291 1.6237 3.6011 9.8755 31.1044 123.1838
STSM_c60_4_2_Wf25_Tf90 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.4688 1.5833 1.5833 1.5833 1.5833 1.5833 0.0031 0.4909 0.6796 1.1927 2.3375 4.2163 9.2481 0.5308 0.6891 2.0809 3.8852 8.3945 41.7038
STSM_c60_4_3_Wf25_Tf90 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.8750 1.8750 1.8750 1.8750 1.8750 0.0023 0.4273 0.7656 1.2991 2.5274 4.6988 9.7983 0.8247 1.2134 1.8576 7.6939 17.1046 95.0539
STSM_c60_4_4_Wf25_Tf90 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 0.0024 0.4956 0.6977 1.3499 2.3511 4.7108 9.4819 0.5260 0.8053 1.5980 4.6505 13.8634 31.7876
STSM_c60_4_5_Wf25_Tf90 1.8750 1.8750 1.8750 1.8750 1.8750 1.8750 1.8750 1.7500 1.8750 1.8750 1.8750 1.8750 1.8750 0.0021 0.6368 0.7851 1.4786 2.3171 4.5692 8.7096 2.0146 1.5829 5.0816 9.1930 31.4700 91.3528
STSM_c60_4_6_Wf25_Tf90 1.8021 1.8021 1.8021 1.8021 1.8021 1.8021 1.8021 1.8021 1.8750 1.8750 1.8750 1.8750 1.8750 0.0032 0.5775 0.8206 1.2226 2.1618 5.0714 9.4624 1.5233 1.9320 2.5396 4.2746 29.2446 83.3330
STSM_c60_4_7_Wf25_Tf90 1.8750 1.8750 1.8750 1.8750 1.8750 1.8750 1.8750 1.7500 1.8750 1.8750 1.8750 1.8750 1.8750 0.0022 0.4816 0.7497 1.3151 2.4907 4.6567 9.0390 1.0653 3.4697 4.9168 14.9386 48.4599 132.4651
STSM_c60_4_8_Wf25_Tf90 1.8750 1.8750 1.8750 1.8750 1.8750 1.8750 1.8750 1.7500 1.7500 1.8750 1.8750 1.8750 1.8750 0.0032 0.5695 0.6900 1.2878 2.3719 4.9947 9.4658 2.0288 1.5289 4.9127 11.1669 41.0009 108.4211
STSM_c60_4_9_Wf25_Tf90 1.6615 1.6615 1.6615 1.6615 1.6615 1.6615 1.6615 1.6615 1.6615 1.6615 1.6615 1.6615 1.6615 0.0026 0.5359 0.7925 1.2765 2.4725 4.2511 9.3801 0.8706 1.1230 2.0323 4.7806 10.0183 50.0919
STSM_c60_4_10_Wf25_Tf90 1.6615 1.7500 1.8021 1.8021 1.8021 1.8021 1.8021 1.7500 1.8750 1.8750 1.8750 1.8750 1.8750 0.0022 0.5155 0.8425 1.1304 2.2799 4.3995 9.4262 1.3343 1.7247 2.7198 8.6871 30.7061 111.1003

STSM_c60_4_1_Wf25_Tf75 1.4792 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 0.0041 0.5348 0.8195 1.2399 2.7573 4.7782 10.0782 0.7855 0.9505 2.7119 10.3745 22.4577 86.4923
STSM_c60_4_2_Wf25_Tf75 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 0.0024 0.5078 0.7021 1.1473 2.1543 3.9260 7.9171 0.6082 0.6699 1.1235 2.1235 4.9994 10.0728
STSM_c60_4_3_Wf25_Tf75 1.4792 1.4792 1.4792 1.4792 1.4792 1.4792 1.4792 1.3958 1.4792 1.4792 1.4792 1.4792 1.4792 0.0031 0.4380 0.7377 1.1834 2.1342 4.2448 9.1078 0.7640 1.4940 2.7186 6.4130 14.8199 63.7753
STSM_c60_4_4_Wf25_Tf75 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 0.0040 0.4202 0.6292 1.1739 2.3418 4.1000 8.3974 0.4971 0.6523 1.5417 2.7402 6.0544 19.2312
STSM_c60_4_5_Wf25_Tf75 1.5625 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 0.0042 3.1403 0.8872 1.2740 2.5439 5.0595 10.4118 64.5953 3.0614 5.2664 11.1210 36.1713 127.5366
STSM_c60_4_6_Wf25_Tf75 1.4792 1.4688 1.4792 1.4792 1.4792 1.4792 1.4792 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 0.0024 0.4787 0.7631 1.2345 2.4812 4.8103 9.5262 0.5882 0.7045 1.4973 3.9339 14.6264 37.1571
STSM_c60_4_7_Wf25_Tf75 1.4688 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.6615 1.6615 1.6615 1.6615 1.6615 1.6615 0.0029 0.5408 0.6867 1.1922 2.4978 4.8892 10.0838 1.2724 1.1611 3.1828 8.4496 28.5784 96.9226
STSM_c60_4_8_Wf25_Tf75 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 0.0027 0.5889 0.7355 1.3146 2.2828 4.8438 9.3381 0.9659 1.3857 3.4231 6.4650 23.8824 64.5649
STSM_c60_4_9_Wf25_Tf75 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 0.0024 1.5800 0.6631 1.2384 2.3909 4.5175 8.7567 8.1236 0.6615 1.2043 2.3138 6.7692 13.2432
STSM_c60_4_10_Wf25_Tf75 1.5625 1.5625 1.5833 1.5833 1.5833 1.5833 1.5833 1.4688 1.5833 1.5833 1.5833 1.5833 1.5833 0.0033 0.5903 0.7516 1.3969 2.3756 5.1798 9.3854 0.7811 1.4944 2.6549 7.2672 26.2311 67.7513

STSM_c60_4_1_Wf25_Tf60 1.2552 1.2552 1.2552 1.2552 1.2552 1.2552 1.2552 1.3594 1.3594 1.3594 1.3594 1.3594 1.3594 0.0033 0.5032 0.7752 1.0546 2.2310 4.5086 9.0551 1.1184 1.9572 1.5741 4.8055 13.5819 27.3861
STSM_c60_4_2_Wf25_Tf60 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.0024 0.4658 0.6333 0.9596 1.8514 3.5886 7.6681 0.5865 0.6402 1.0163 1.8270 3.5581 7.7978
STSM_c60_4_3_Wf25_Tf60 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 0.0025 0.4593 0.5674 1.1517 2.1471 3.9949 8.2498 0.5151 0.5274 1.1016 2.0517 3.8511 8.2685
STSM_c60_4_4_Wf25_Tf60 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 0.0025 0.5309 0.5719 1.1075 2.3156 4.1835 7.8556 0.5915 0.5800 1.0915 2.3628 4.3407 8.9472
STSM_c60_4_5_Wf25_Tf60 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.2552 1.2552 1.2552 1.2552 1.2552 1.2552 0.0028 0.4225 0.6150 1.3255 2.2888 4.5850 8.8924 0.5125 0.6036 1.1124 2.2844 4.5782 10.8052
STSM_c60_4_6_Wf25_Tf60 1.2552 1.3594 1.3594 1.3594 1.3594 1.3594 1.3594 1.2552 1.3594 1.3594 1.3594 1.3594 1.3594 0.0025 0.4774 0.6615 1.1647 2.3665 4.0090 8.6591 0.4548 1.0170 2.3503 5.1282 10.6993 24.0093
STSM_c60_4_7_Wf25_Tf60 1.3750 1.4792 1.4792 1.4792 1.4792 1.4792 1.4792 1.4792 1.3958 1.4792 1.4792 1.4792 1.4792 0.0027 0.6103 0.6621 1.2510 2.1507 4.7050 9.4230 0.8658 0.8959 2.4721 4.6770 14.9027 44.5551
STSM_c60_4_8_Wf25_Tf60 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 0.0027 0.5264 0.6921 1.2027 2.2351 4.3561 8.7167 0.9045 0.9145 1.5610 3.7322 9.9562 28.0523
STSM_c60_4_9_Wf25_Tf60 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 0.0023 0.4485 0.6318 1.2761 2.0957 4.1100 8.4794 0.4328 0.6282 1.3166 2.4432 4.6381 12.5873
STSM_c60_4_10_Wf25_Tf60 1.2552 1.2552 1.2552 1.2552 1.2552 1.2552 1.2552 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 0.0026 0.4909 0.6441 1.3433 2.4315 4.5552 8.5428 0.5558 0.8455 1.6513 3.6496 8.9288 19.3212

STSM_c60_4_1_Wf12-5_Tf90 1.6615 1.6615 1.6615 1.6615 1.6615 1.6615 1.6615 1.8021 1.8021 1.8021 1.8021 1.8021 1.8021 0.0024 7.5700 0.9299 1.5761 3.3393 10.9902 38.4730 86.2555 1.6130 3.6359 16.1260 55.6250 247.7796
STSM_c60_4_2_Wf12-5_Tf90 1.3750 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 0.0032 0.4582 0.8574 1.4453 2.5554 4.9989 10.8290 0.4920 1.0970 1.3952 4.0245 11.6819 43.5793
STSM_c60_4_3_Wf12-5_Tf90 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 0.0023 0.5048 0.9131 1.6266 2.9285 5.8763 17.4688 0.6895 1.8726 4.2310 11.9103 53.4223 280.7118
STSM_c60_4_4_Wf12-5_Tf90 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 0.0036 0.5659 0.8316 1.6485 2.7910 5.8778 11.9474 0.5474 1.1867 2.0411 4.1659 15.0265 46.7993
STSM_c60_4_5_Wf12-5_Tf90 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 0.0027 0.5804 0.8738 1.7252 3.0778 8.6712 22.3905 1.2922 2.1237 5.0661 18.3024 81.5265 421.8939
STSM_c60_4_6_Wf12-5_Tf90 1.8021 1.8021 1.8021 1.8021 1.8021 1.8021 1.8021 1.8021 1.7500 1.8021 1.8021 1.8021 1.8021 0.0024 5.6047 0.8421 1.3051 3.0585 7.1254 25.6569 44.5425 1.1427 2.3842 10.8330 57.2006 238.5430
STSM_c60_4_7_Wf12-5_Tf90 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.8750 1.8750 1.8750 1.8750 1.8750 0.0023 0.4848 0.9489 1.6744 3.0593 7.0180 23.2387 0.4630 4.4672 4.1142 11.6297 54.0899 186.4464
STSM_c60_4_8_Wf12-5_Tf90 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 0.0022 0.5025 0.9682 1.7258 3.1715 6.4608 26.3827 2.1051 4.3455 7.5056 15.0714 66.0987 444.9649
STSM_c60_4_9_Wf12-5_Tf90 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 0.0025 0.5311 0.8264 1.6370 2.7554 5.8854 20.4292 0.5380 0.9501 2.1475 7.6439 25.5300 119.6919
STSM_c60_4_10_Wf12-5_Tf90 1.5000 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.7500 1.8021 1.8021 1.8021 1.8021 0.0024 0.6351 0.9103 1.5991 2.9580 6.9573 22.7811 1.1028 1.1064 4.8624 14.3005 70.0406 310.7989

STSM_c60_4_1_Wf12-5_Tf75 1.3958 1.4688 1.5833 1.5833 1.5833 1.5833 1.5833 1.4688 1.5833 1.5833 1.5833 1.5833 1.5833 0.0040 0.4688 0.9131 1.5397 2.8105 5.9529 26.0239 0.5063 1.0347 2.8046 7.1306 25.3897 132.7182
STSM_c60_4_2_Wf12-5_Tf75 1.2552 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 0.0025 0.4389 0.7586 1.2524 2.2051 4.6475 9.7199 0.5019 0.6765 1.4352 2.0927 5.7087 20.3300
STSM_c60_4_3_Wf12-5_Tf75 1.3750 1.3958 1.3750 1.3958 1.3958 1.3958 1.3958 1.3958 1.3958 1.3958 1.3958 1.3958 1.3958 0.0025 0.4947 0.7691 1.4590 2.4011 4.6586 10.8821 0.6158 0.7406 1.7315 3.8623 13.3538 61.0304
STSM_c60_4_4_Wf12-5_Tf75 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 0.0039 0.4942 0.8202 1.5609 2.4940 4.8821 10.0908 0.6489 0.8866 2.0406 3.0190 7.9366 35.4175
STSM_c60_4_5_Wf12-5_Tf75 1.3958 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 0.0031 0.5205 0.9002 1.4825 2.8260 5.7130 28.5125 0.6399 1.1545 2.5329 8.3855 26.9210 189.2329
STSM_c60_4_6_Wf12-5_Tf75 1.3594 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 0.0025 0.5187 0.7520 1.2792 2.7095 5.0596 10.4021 0.5222 0.7772 1.3208 3.1917 10.6988 43.7553
STSM_c60_4_7_Wf12-5_Tf75 1.2552 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.6615 1.6615 1.6615 1.6615 0.0027 0.5966 0.8252 1.5485 2.9704 5.4037 21.6392 1.1146 0.9836 3.1228 10.7572 24.2798 143.0879
STSM_c60_4_8_Wf12-5_Tf75 1.3750 1.4688 1.5833 1.5833 1.5833 1.5833 1.5833 1.4688 1.5833 1.5833 1.5833 1.5833 1.5833 0.0026 0.5335 0.7825 1.5225 3.0910 5.5869 23.9201 0.7562 1.2579 3.4717 11.1544 29.1031 143.6727
STSM_c60_4_9_Wf12-5_Tf75 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 0.0024 0.5331 0.8147 1.3303 2.4131 5.0020 10.8423 0.6541 0.7813 1.4196 2.3552 5.3715 22.3695
STSM_c60_4_10_Wf12-5_Tf75 1.3958 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 1.5833 0.0030 0.5449 0.7710 1.4305 2.5543 5.0622 22.6646 0.6690 0.7951 2.0864 5.0258 17.4979 134.3897

STSM_c60_4_1_Wf12-5_Tf60 0.9375 1.2552 1.2552 1.2552 1.2552 1.2552 1.2552 1.2552 1.3594 1.3594 1.3594 1.3594 1.3594 0.0028 0.5139 0.7990 1.4122 2.4842 4.8346 11.3654 0.6427 0.8571 1.4942 3.1194 9.0814 44.7025
STSM_c60_4_2_Wf12-5_Tf60 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.8750 0.0023 0.4078 0.5742 1.1574 1.9290 4.0797 8.0723 0.4940 0.5631 1.0847 1.8122 3.8803 7.6118
STSM_c60_4_3_Wf12-5_Tf60 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 0.0026 0.5521 0.7569 1.1221 2.2552 4.5229 9.4198 0.6480 0.6971 1.0485 2.1206 4.2972 8.7764
STSM_c60_4_4_Wf12-5_Tf60 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 0.0033 0.4945 0.6194 1.1077 2.0981 4.2030 8.3652 0.5886 0.5950 1.1033 2.0456 4.3137 8.9354
STSM_c60_4_5_Wf12-5_Tf60 0.9375 1.1146 1.1146 1.1146 1.1146 1.1146 1.1146 1.2552 1.2552 1.2552 1.2552 1.2552 1.2552 0.0028 0.4771 0.7513 1.2902 2.2940 4.8291 11.0497 0.5610 0.6626 1.2262 2.6916 5.6144 16.2488
STSM_c60_4_6_Wf12-5_Tf60 0.9375 1.3594 1.3594 1.3594 1.3594 1.3594 1.3594 1.2552 1.3594 1.3594 1.3594 1.3594 1.3594 0.0028 0.4840 0.7366 1.1281 2.1817 4.2876 9.1154 0.6192 0.7783 1.2534 2.5460 6.2173 17.2593
STSM_c60_4_7_Wf12-5_Tf60 1.3750 1.3958 1.3958 1.3958 1.3958 1.3958 1.3958 1.3958 1.3958 1.3958 1.3958 1.3958 1.3958 0.0026 0.5612 0.7611 1.3799 2.4012 5.2520 9.9638 0.6873 0.8685 1.8031 4.4869 13.0605 43.7891
STSM_c60_4_8_Wf12-5_Tf60 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 1.2552 1.3750 1.3750 1.3750 1.3750 1.3750 0.0025 0.4950 0.7018 1.3191 2.5396 5.0070 11.2721 0.6222 0.7712 1.5253 3.2125 7.6117 30.7989
STSM_c60_4_9_Wf12-5_Tf60 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 1.4688 0.0024 0.4412 0.6848 1.1355 2.0758 4.1465 8.8745 0.5738 0.6717 1.1172 2.2641 4.6802 10.8011
STSM_c60_4_10_Wf12-5_Tf60 0.9375 1.2552 1.2552 1.2552 1.2552 1.2552 1.2552 1.2552 1.3750 1.3750 1.3750 1.3750 1.3750 0.0042 0.5429 0.6667 1.4579 2.6234 4.4167 11.3971 0.6061 0.6779 1.3233 2.8905 5.5714 33.6590
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Table 8: Detailed results for the Linear Scaling Heuristic, the SAA method with Fixed A Priori Route and the full SAA method, over the n = 8
customer instances with non-overlapping set of possible time slots. Bold expected revenues indicate the best known solution.

Exact Expected Revenue CPU time (s)

Fixed Route SAA Full SAA Fixed Route SAA Full SAA

LSH N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 LSH N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16

STSM_c60_8_1_Wf25_Tf90 3.9031 3.9031 3.9031 3.9031 3.9031 3.9031 3.9031 3.6094 3.9031 3.9031 3.9031 0.0950 3.4415 4.4383 6.6333 11.4799 21.9048 43.9930 16.5561 40.0104 195.6657 1776.0971
STSM_c60_8_2_Wf25_Tf90 3.5232 3.3281 3.7271 3.7271 3.7271 3.7271 3.7271 3.3739 3.6094 3.7271 3.7271 0.1154 3.9636 4.8255 8.5346 15.1091 27.2425 88.3367 40.3693 121.2001 738.6884 2133.1758
STSM_c60_8_3_Wf25_Tf90 3.7822 3.8496 3.8750 3.8750 3.8750 3.8750 3.8750 3.8750 3.8309 3.8752 3.8752 0.1033 3.8968 4.8266 6.9839 14.2025 26.8991 56.1909 41.9264 38.4854 260.9196 2500.5682
STSM_c60_8_4_Wf25_Tf90 3.7526 3.7526 3.7526 3.7526 3.7526 3.7526 3.7526 3.7526 3.7652 3.7897 3.8685 0.1144 4.0004 5.2342 9.0758 16.5579 38.5290 96.4141 35.7914 239.3991 961.4871 3188.7477
STSM_c60_8_5_Wf25_Tf90 3.5997 3.6094 3.6094 3.6094 3.6094 3.6094 3.6094 3.6623 3.7718 3.8032 3.7941 0.1232 4.1491 5.5844 9.5241 16.8424 60.5236 287.1675 62.9295 102.9088 5549.5045 4453.8667
STSM_c60_8_6_Wf25_Tf90 3.6723 3.6723 3.6723 3.6723 3.6723 3.6723 3.6723 3.4688 3.6723 3.7790 3.7986 0.1101 4.4451 5.9422 9.3176 16.6980 35.5423 213.7624 83.6241 159.1652 663.2798 3206.9923
STSM_c60_8_7_Wf25_Tf90 3.7114 3.7114 3.7114 3.7114 3.7114 3.7114 3.7114 3.6466 3.5670 3.7114 3.7443 0.1164 4.6133 5.6425 9.9454 15.0967 36.7025 177.9607 49.2442 131.1813 1117.8503 2862.7628
STSM_c60_8_8_Wf25_Tf90 3.6004 3.1945 3.5892 3.6535 3.6535 3.6535 3.6535 3.1605 3.5901 3.7283 3.7283 0.1178 4.7082 5.7314 8.3310 16.1865 53.6368 223.8823 74.1009 115.0879 387.7500 2036.1914
STSM_c60_8_9_Wf25_Tf90 3.4514 3.3544 3.4847 3.4847 3.4847 3.4847 3.4847 3.0694 3.4052 3.5549 3.5738 0.1350 4.6519 6.6524 9.0949 29.6796 64.3446 280.8740 46.8127 242.0769 405.7612 5471.5734
STSM_c60_8_10_Wf25_Tf90 3.6417 3.3404 3.6417 3.6417 3.6417 3.6417 3.6417 3.3404 3.4688 3.6417 3.6417 0.1354 4.5454 5.5988 8.3403 15.5081 42.3359 198.0217 34.9472 73.2097 369.0437 2559.2699

STSM_c60_8_1_Wf25_Tf75 3.1775 3.2958 3.2044 3.2958 3.2958 3.2958 3.2958 3.1589 3.3785 3.3911 3.4141 0.1559 4.5643 6.4295 8.9811 19.9606 61.6603 278.5116 48.5438 167.0430 569.2882 4027.0389
STSM_c60_8_2_Wf25_Tf75 2.8570 3.3652 3.3875 3.3875 3.3875 3.3875 3.3875 3.3652 3.4040 3.3467 3.4040 0.1779 4.2026 5.5323 8.1894 14.8325 29.0533 69.6919 28.3048 100.2021 233.0675 1489.8695
STSM_c60_8_3_Wf25_Tf75 3.0509 3.2067 3.2559 3.2559 3.2559 3.2559 3.2559 3.1995 3.3404 3.3661 3.3661 0.1624 4.6289 5.7173 10.1604 21.5367 45.3234 310.1643 124.1529 404.1429 555.8855 9126.9930
STSM_c60_8_4_Wf25_Tf75 3.3846 3.3945 3.3846 3.3958 3.3958 3.3958 3.3958 3.2168 3.2733 3.4013 3.3958 0.1438 4.6547 5.8701 11.6729 20.6831 49.0279 225.9224 93.1554 239.1346 2976.6316 9096.4595
STSM_c60_8_5_Wf25_Tf75 3.2940 3.3700 3.3700 3.3700 3.3700 3.3700 3.3700 3.3297 3.2392 3.3752 3.3940 0.1389 4.5104 6.5466 9.9706 20.6422 60.1048 234.4747 37.0950 227.4143 709.7707 5723.8579
STSM_c60_8_6_Wf25_Tf75 3.1957 3.1957 3.2209 3.2209 3.2209 3.2209 3.2209 3.1946 3.1247 3.2684 3.3062 0.1598 4.7442 6.4841 10.4842 24.7503 84.8021 293.6710 64.6147 101.4237 609.6594 6224.1714
STSM_c60_8_7_Wf25_Tf75 3.0415 3.0624 3.1768 3.1985 3.1985 3.1985 3.1985 2.9704 3.1768 3.1985 3.1985 0.1639 4.4341 6.2788 9.5096 22.7311 50.1757 259.0523 25.3499 89.5528 240.9273 5098.2877
STSM_c60_8_8_Wf25_Tf75 2.8794 2.9951 2.9951 2.9951 2.9951 2.9951 2.9951 2.8679 3.1023 3.0417 3.1036 0.1699 4.8698 6.9787 10.6423 24.6122 67.0397 338.4555 71.1735 209.9303 651.8929 6062.6008
STSM_c60_8_9_Wf25_Tf75 3.0821 3.0365 3.0365 3.0821 3.0821 3.0821 3.0821 2.9832 3.0972 3.1752 3.2005 0.1574 4.6310 6.7447 12.2971 23.2291 64.0581 376.0803 48.5877 120.3312 598.5351 4319.1691
STSM_c60_8_10_Wf25_Tf75 2.6537 2.9700 2.9700 2.9700 2.9700 2.9700 2.9700 2.7427 2.8546 3.0808 3.0808 0.2104 5.2452 7.3652 12.5547 28.8211 80.9024 299.0979 86.4154 163.1040 946.4163 11318.3486

STSM_c60_8_1_Wf25_Tf60 2.8176 2.8480 2.8480 2.8480 2.8480 2.8480 2.8480 2.9334 2.8792 2.9868 2.9875 0.1651 4.8108 6.3189 8.3898 15.6796 29.7538 64.2492 33.1143 103.8569 261.8309 1634.7490
STSM_c60_8_2_Wf25_Tf60 2.2488 2.8836 2.8836 2.8836 2.8836 2.8836 2.8836 2.8836 2.8836 2.9725 2.9725 0.1892 4.8524 5.5318 8.4785 13.6876 25.8520 52.5835 17.6806 32.3701 147.7220 665.8355
STSM_c60_8_3_Wf25_Tf60 2.6838 2.6838 2.7082 2.7082 2.7082 2.7082 2.7082 2.4965 2.7576 2.8226 2.8566 0.1604 4.8657 5.8194 9.2240 14.8513 27.1714 59.5624 29.5206 87.6572 325.1373 2143.9151
STSM_c60_8_4_Wf25_Tf60 2.6894 2.7835 2.7835 2.8140 2.8140 2.8140 2.8140 2.7537 2.8933 2.9227 2.9227 0.1662 4.6648 5.9374 8.7172 15.1675 25.8052 55.7624 111.7284 96.4924 359.6765 3835.2491
STSM_c60_8_5_Wf25_Tf60 2.8006 2.8006 2.7843 2.7843 2.8006 2.8006 2.8006 2.7422 2.8791 2.9738 2.9677 0.1440 4.6440 5.9317 9.3655 13.8207 26.5754 68.1286 34.9557 104.3251 465.2014 1379.4820
STSM_c60_8_6_Wf25_Tf60 2.5238 2.6614 2.7231 2.7231 2.7231 2.7231 2.7231 2.5813 2.7251 2.8292 2.8437 0.1647 5.1073 6.3265 8.4686 14.3497 25.2397 54.8248 102.2259 89.8386 153.5815 968.9124
STSM_c60_8_7_Wf25_Tf60 2.4110 2.4853 2.4491 2.4853 2.4853 2.4853 2.4853 2.4298 2.5578 2.6669 2.6914 0.1869 5.3267 6.5883 8.8033 16.1161 37.6671 90.3331 32.7989 68.4255 194.7554 1194.7916
STSM_c60_8_8_Wf25_Tf60 2.3610 2.4214 2.5111 2.5111 2.5111 2.5111 2.5111 2.3847 2.5787 2.6293 2.6293 0.1842 4.9680 6.0706 8.6449 15.0399 25.7868 56.5473 49.6963 68.3227 175.6209 1054.3839
STSM_c60_8_9_Wf25_Tf60 2.1964 2.0017 2.1855 2.1964 2.1964 2.1964 2.1964 2.2078 2.3875 2.3901 2.3875 0.1691 4.9952 6.2922 9.4278 13.9326 24.8817 49.5870 21.8400 44.7094 160.8514 654.4509
STSM_c60_8_10_Wf25_Tf60 2.1178 2.1366 2.1318 2.1527 2.1527 2.1527 2.1527 2.0281 2.2081 2.2502 2.2523 0.1963 5.3146 6.3208 9.3621 14.8717 25.2167 47.8552 17.1185 47.9426 189.8527 759.5215

STSM_c60_8_1_Wf12-5_Tf90 3.7615 3.7500 3.7500 3.7615 3.7615 3.7615 3.7615 3.3281 3.7500 3.6952 3.7615 0.1040 3.9563 4.9225 8.7993 18.5688 54.8438 538.7934 40.1630 26.5288 415.2341 4592.2336
STSM_c60_8_2_Wf12-5_Tf90 3.3856 3.4688 3.4688 3.4688 3.4688 3.4688 3.4688 3.7271 3.7081 3.7271 3.7271 0.1318 4.2028 6.4548 11.0658 28.1497 110.0208 1037.2753 28.8422 150.1300 791.0801 4334.6335
STSM_c60_8_3_Wf12-5_Tf90 3.7822 3.8750 3.8750 3.8750 3.8750 3.8750 3.8750 3.4688 3.8750 3.8750 3.8752 0.0971 3.5378 5.0760 8.0878 17.2512 36.2496 128.7391 23.0065 87.9150 185.2899 1141.4483
STSM_c60_8_4_Wf12-5_Tf90 3.7526 3.7500 3.7526 3.7526 3.7526 3.7526 3.7526 3.7500 3.6737 3.7442 3.8138 0.1152 3.9937 5.9574 9.9091 19.1638 50.2655 336.4036 26.1002 290.5343 1025.1359 3275.3905
STSM_c60_8_5_Wf12-5_Tf90 3.5061 3.5390 3.6094 3.6094 3.6094 3.6094 3.6094 3.5390 3.7500 3.7500 3.7567 0.1249 4.4999 5.8132 11.9400 21.4197 72.4673 769.1475 54.6559 67.8557 1417.8360 5317.1676
STSM_c60_8_6_Wf12-5_Tf90 3.6723 3.6723 3.6723 3.6723 3.6723 3.6723 3.6723 3.4421 3.6723 3.7318 3.7318 0.1062 4.3968 5.2746 12.2487 23.8709 74.8885 729.5053 25.6565 61.3926 817.3733 5875.7588
STSM_c60_8_7_Wf12-5_Tf90 3.6265 3.4583 3.6309 3.6265 3.6309 3.6309 3.6309 3.1773 3.6106 3.6999 3.6999 0.1314 4.4428 6.1455 11.6838 20.8904 68.3698 656.3330 17.6250 107.0085 409.3292 2688.8927
STSM_c60_8_8_Wf12-5_Tf90 3.5862 3.5044 3.5436 3.6016 3.6016 3.6016 3.6016 3.3120 3.5862 3.6330 3.6330 0.1228 4.3163 6.6641 10.3772 23.3863 98.0254 956.7291 14.7194 250.3772 346.3732 7843.6362
STSM_c60_8_9_Wf12-5_Tf90 3.3914 3.3287 3.3557 3.3914 3.3914 3.3914 3.3914 3.2917 3.4784 3.5370 3.5563 0.1527 5.4617 7.4493 14.8303 37.4131 145.0833 1129.6980 152.9094 174.8461 1345.9369 10790.7560
STSM_c60_8_10_Wf12-5_Tf90 3.4860 3.3531 3.5177 3.5177 3.5177 3.5177 3.5177 3.3101 3.4736 3.5773 3.6038 0.1349 4.8348 6.3029 13.4438 22.1509 108.3703 959.9330 28.9909 85.8991 652.3539 1664.6751

STSM_c60_8_1_Wf12-5_Tf75 2.9789 3.0521 3.2658 3.2658 3.2658 3.2658 3.2658 2.7122 3.3087 3.4141 3.4141 0.1688 4.7476 7.0400 11.7453 23.3689 71.2499 581.9934 20.0721 182.5327 517.8883 4804.9619
STSM_c60_8_2_Wf12-5_Tf75 2.7283 3.3281 3.3875 3.3875 3.3875 3.3875 3.3875 3.3805 3.3875 3.4222 3.4146 0.1461 4.3266 6.0447 10.4924 19.1942 36.9817 428.6065 37.2190 63.2814 319.2527 1893.4117
STSM_c60_8_3_Wf12-5_Tf75 3.0278 2.9816 3.2552 3.2552 3.2552 3.2552 3.2552 3.1048 3.1381 3.3661 3.3661 0.1480 4.9671 6.3671 10.6689 24.4786 71.6143 752.2795 38.8600 101.2073 588.4222 7958.0495
STSM_c60_8_4_Wf12-5_Tf75 3.1502 3.3945 3.3958 3.3958 3.3958 3.3958 3.3958 3.3574 3.3653 3.3958 3.3958 0.1442 4.7602 7.1971 11.0376 19.2292 55.1553 667.6586 42.2215 317.8649 1180.1973 6034.6153
STSM_c60_8_5_Wf12-5_Tf75 3.2746 3.1849 3.3404 3.3019 3.3404 3.3404 3.3404 3.0621 3.3404 3.3031 3.3923 0.1224 4.7135 5.8769 13.2683 27.2301 104.3487 874.4288 20.6508 115.8654 1048.9828 11314.5908
STSM_c60_8_6_Wf12-5_Tf75 2.7507 3.0917 3.0969 3.1224 3.1273 3.1273 3.1273 2.7701 3.1573 3.2419 3.2872 0.1656 5.2662 7.2626 12.1276 25.5297 102.1824 762.5815 52.1618 120.9413 767.1049 4240.4143
STSM_c60_8_7_Wf12-5_Tf75 2.8231 3.0624 3.1773 3.1773 3.1773 3.1773 3.1773 2.9664 3.1096 3.1773 3.1773 0.1702 4.7757 7.0377 10.8474 28.3924 52.9676 618.6154 24.9892 105.7839 329.2869 4675.8158
STSM_c60_8_8_Wf12-5_Tf75 2.8222 2.6844 2.8682 2.8849 2.8849 2.8849 2.8849 2.7480 2.9210 3.0812 3.0812 0.1543 4.9005 6.7596 10.8923 32.0799 85.1768 837.5822 20.6083 87.1496 352.8540 4906.6893
STSM_c60_8_9_Wf12-5_Tf75 2.8966 3.0365 3.0365 3.0406 3.0406 3.0406 3.0406 3.0365 3.1469 3.1469 3.1469 0.1541 4.6107 6.7199 13.5884 28.5326 93.9260 995.7139 19.4317 69.5771 287.7850 2085.8885
STSM_c60_8_10_Wf12-5_Tf75 2.5620 2.7354 2.9374 2.9374 2.9374 2.9374 2.9374 2.5495 3.0035 2.9763 3.0035 0.2049 5.0259 6.9042 13.1637 33.5195 100.2246 838.3208 13.9019 107.4354 451.9738 5407.8218

STSM_c60_8_1_Wf12-5_Tf60 2.7750 2.7509 2.8176 2.8238 2.8238 2.8238 2.8238 2.9218 2.8426 2.9875 2.9825 0.1364 4.9115 6.5530 10.1542 20.2583 41.0107 264.6366 34.5398 90.8302 214.4942 1724.5450
STSM_c60_8_2_Wf12-5_Tf60 1.8749 2.8836 2.8836 2.8836 2.8836 2.8836 2.8836 2.9055 2.8397 2.9725 2.9725 0.1927 4.9751 6.7795 10.0193 17.8106 44.6785 246.1209 20.2827 38.9297 98.3588 486.6320
STSM_c60_8_3_Wf12-5_Tf60 2.4849 2.6725 2.7082 2.7082 2.7082 2.7082 2.7082 2.7514 2.8065 2.8226 2.8566 0.1633 5.0570 6.0915 10.6632 18.0639 53.4839 224.0327 34.3140 44.6249 244.1074 760.5341
STSM_c60_8_4_Wf12-5_Tf60 2.5780 2.7600 2.8140 2.8140 2.8140 2.8140 2.8140 2.5822 2.8404 2.9031 2.9291 0.1518 5.2500 7.2289 10.4625 19.3675 46.0957 405.9890 28.2953 85.5509 335.2479 2448.3325
STSM_c60_8_5_Wf12-5_Tf60 2.7073 2.6321 2.7709 2.7709 2.7709 2.7709 2.7709 2.6869 2.8693 2.8693 2.8693 0.1597 5.6231 7.2911 10.9253 20.6142 54.7886 232.4117 67.2963 138.6443 267.0550 1995.8084
STSM_c60_8_6_Wf12-5_Tf60 2.3956 2.5702 2.6319 2.6385 2.6385 2.6385 2.6385 2.5014 2.7487 2.8118 2.8292 0.1818 5.0186 7.3724 9.9299 19.1178 44.2544 306.2187 16.5422 71.7356 81.8062 527.9710
STSM_c60_8_7_Wf12-5_Tf60 2.0461 2.3785 2.4072 2.4517 2.4517 2.4517 2.4517 2.5965 2.5607 2.6323 2.6323 0.1914 5.8367 7.2842 12.0329 23.6500 58.8941 382.9372 19.4411 57.2712 94.8675 1716.7317
STSM_c60_8_8_Wf12-5_Tf60 2.0954 2.3183 2.4788 2.4788 2.4788 2.4788 2.4788 2.3949 2.3194 2.5093 2.5374 0.1632 4.8633 6.2641 9.3935 17.5570 46.0856 227.0039 10.4070 29.2446 79.8245 582.9247
STSM_c60_8_9_Wf12-5_Tf60 2.0771 2.1931 1.9527 2.1931 2.1931 2.1931 2.1931 2.3875 2.1798 2.3875 2.3875 0.1730 4.8156 6.4007 9.5061 15.9667 34.9632 102.2418 11.5050 13.4315 47.5519 197.7013
STSM_c60_8_10_Wf12-5_Tf60 1.7699 2.1178 2.1021 2.1178 2.1366 2.1366 2.1366 1.9844 2.2506 2.2506 2.2506 0.2167 5.5228 6.0753 10.3477 15.9671 31.1015 74.4960 12.2588 10.7288 92.3193 332.1204



38 Visser and Savelsbergh: Strategic Time Slot Management

Table 9: Detailed results for the Linear Scaling Heuristic and the SAA method with Fixed A Priori Route,
over the n = 12 customer instances with non-overlapping set of possible time slots. Bold expected revenues
indicate the best known solution.

Exact Expected Revenue CPU time (s)

Fixed Route SAA Fixed Route SAA

LSH N = 2 N = 4 N = 8 N = 16 N = 32 LSH N = 2 N = 4 N = 8 N = 16 N = 32

STSM_c60_12_1_Wf25_Tf90 5.5843 5.6822 5.8249 5.8249 5.8249 5.8249 2.1853 54.0131 46.0148 53.2191 70.1212 106.7082
STSM_c60_12_2_Wf25_Tf90 5.4224 5.3321 5.5830 5.6157 5.6157 5.6157 2.3778 66.7636 62.5304 69.7368 112.8079 390.8039
STSM_c60_12_3_Wf25_Tf90 5.6583 5.6422 5.7727 5.7727 5.7727 5.7727 2.3212 63.3391 54.9321 62.2141 160.2439 196.5460
STSM_c60_12_4_Wf25_Tf90 5.1805 5.4543 5.6442 5.6442 5.6442 5.6442 2.7320 68.5092 60.2900 68.2493 113.2490 524.9806
STSM_c60_12_5_Wf25_Tf90 5.8490 5.2299 5.8490 5.8490 5.8490 5.8490 2.3378 65.0484 51.2255 57.0308 79.7275 146.3618
STSM_c60_12_6_Wf25_Tf90 5.6852 5.5991 5.6852 5.6852 5.6852 5.6852 2.4116 54.4269 55.4539 61.6628 80.4407 219.9455
STSM_c60_12_7_Wf25_Tf90 5.5325 5.6277 5.7689 5.7689 5.7689 5.7689 2.4971 65.8473 57.1857 59.4171 89.4279 237.7508
STSM_c60_12_8_Wf25_Tf90 5.4736 5.4736 5.4736 5.4736 5.4736 5.4736 3.2367 71.4775 75.2617 88.4082 161.0514 540.4247
STSM_c60_12_9_Wf25_Tf90 5.5121 5.3137 5.4468 5.5121 5.5121 5.5121 3.3342 67.3734 64.5633 74.7631 122.7309 561.0369
STSM_c60_12_10_Wf25_Tf90 5.6938 5.6179 5.7926 5.7926 5.7926 5.7926 2.3168 61.2263 49.7309 56.3057 70.7395 109.3079

STSM_c60_12_1_Wf25_Tf75 5.1949 4.8283 5.2049 5.2049 5.2049 5.2049 4.4816 82.9824 85.9124 106.8819 180.5659 471.3842
STSM_c60_12_2_Wf25_Tf75 4.8804 4.8055 5.1626 5.1626 5.1626 5.1626 3.6263 93.3897 86.7213 117.3851 220.9816 851.7633
STSM_c60_12_3_Wf25_Tf75 4.9778 5.1488 5.1817 5.2596 5.2650 5.2650 4.4646 78.3220 62.8467 82.3130 176.1439 452.6085
STSM_c60_12_4_Wf25_Tf75 5.1404 5.0765 5.3122 5.3122 5.3122 5.3122 3.5138 72.2123 72.0937 85.8769 127.5098 500.1635
STSM_c60_12_5_Wf25_Tf75 4.5680 4.5558 4.5680 4.5785 4.5558 4.5785 5.3836 96.8942 107.9190 143.2834 295.0963 953.2172
STSM_c60_12_6_Wf25_Tf75 4.2664 4.3203 4.2771 4.3203 4.3203 4.3203 5.8707 96.3667 117.1630 144.9426 229.2006 699.3830
STSM_c60_12_7_Wf25_Tf75 4.7278 4.4259 4.6977 4.7278 4.7278 4.7278 5.6674 98.2860 104.3954 131.8186 229.0817 783.5195
STSM_c60_12_8_Wf25_Tf75 4.3223 4.5276 4.6622 4.6622 4.6622 4.6622 5.7252 88.2139 100.4725 129.8239 233.9715 800.7313
STSM_c60_12_9_Wf25_Tf75 4.6654 5.1495 5.1868 5.1868 5.1868 5.1868 5.4438 80.9890 66.7838 80.8778 152.4848 384.7232
STSM_c60_12_10_Wf25_Tf75 5.1418 5.1418 5.1418 5.1418 5.1418 5.1418 3.8209 79.7024 83.2738 99.1277 184.3195 592.8886

STSM_c60_12_1_Wf25_Tf60 4.6521 4.7447 4.7447 4.7447 4.7394 4.7447 3.9741 82.9817 83.8924 87.4160 115.0189 204.7282
STSM_c60_12_2_Wf25_Tf60 3.9421 3.9459 3.9421 3.9598 3.9598 3.9598 7.3086 100.3619 113.4457 124.0396 185.6677 393.9685
STSM_c60_12_3_Wf25_Tf60 4.6486 4.7520 4.8303 4.8303 4.8303 4.8303 4.7805 88.5578 86.7858 91.4642 129.4033 373.7768
STSM_c60_12_4_Wf25_Tf60 4.0876 4.3004 4.3275 4.3275 4.3275 4.3275 6.6449 100.8419 93.8195 112.8896 171.1242 402.5906
STSM_c60_12_5_Wf25_Tf60 3.5724 3.7863 3.8017 3.8017 3.8017 3.8039 6.7885 112.7140 124.2569 132.9490 168.3619 337.0604
STSM_c60_12_6_Wf25_Tf60 3.1733 3.2514 3.2592 3.3049 3.3548 3.3548 5.5494 106.1913 104.2180 122.8342 136.2410 177.9632
STSM_c60_12_7_Wf25_Tf60 3.6965 3.5156 3.6965 3.8633 3.8633 3.8633 8.3091 124.0270 135.1714 146.9474 192.9509 415.9389
STSM_c60_12_8_Wf25_Tf60 3.5972 3.4636 3.6759 3.6759 3.6759 3.6759 5.5628 111.3648 114.9324 130.9928 169.6236 313.4555
STSM_c60_12_9_Wf25_Tf60 3.6877 3.9640 3.9640 3.9596 3.9640 3.9640 5.0215 106.3236 123.7089 123.7566 165.0307 343.3478
STSM_c60_12_10_Wf25_Tf60 3.9391 3.8737 3.9704 3.9812 3.9812 3.9812 6.7810 98.1170 109.5882 127.0347 182.0349 414.1833

STSM_c60_12_1_Wf12-5_Tf90 5.5066 5.2448 5.7500 5.7655 5.7776 5.7776 2.3850 65.8500 44.1981 54.3693 134.9812 385.2594
STSM_c60_12_2_Wf12-5_Tf90 5.2433 5.2524 5.5833 5.5833 5.5833 5.5833 2.6582 69.4539 57.8022 101.4496 414.6294 2069.4738
STSM_c60_12_3_Wf12-5_Tf90 5.6390 5.0976 5.7286 5.7286 5.7286 5.7286 2.4031 68.5153 55.7336 63.3229 225.7595 872.2101
STSM_c60_12_4_Wf12-5_Tf90 5.1462 5.4619 5.5669 5.6117 5.6117 5.6117 2.8610 57.5870 57.6327 70.9460 216.9346 1904.9969
STSM_c60_12_5_Wf12-5_Tf90 5.7490 5.7168 5.7490 5.7490 5.7490 5.7490 2.4456 62.5716 60.5600 70.8758 127.3747 871.9879
STSM_c60_12_6_Wf12-5_Tf90 5.5047 5.5559 5.5559 5.5559 5.5559 5.5559 2.8432 65.0964 60.5588 66.9923 190.8727 867.3575
STSM_c60_12_7_Wf12-5_Tf90 5.5279 5.4533 5.7061 5.7061 5.7061 5.7061 2.4781 72.9719 60.3661 83.5022 179.9716 1566.4406
STSM_c60_12_8_Wf12-5_Tf90 5.4736 4.9246 5.4736 5.4736 5.4736 5.4736 3.3094 78.3622 88.0674 124.4634 327.7584 1679.8830
STSM_c60_12_9_Wf12-5_Tf90 5.0745 5.2109 5.3197 5.3543 5.3596 5.3596 4.5551 74.9225 82.1746 110.3169 247.6428 2204.1870
STSM_c60_12_10_Wf12-5_Tf90 5.5781 5.2649 5.7604 5.7604 5.7604 5.7604 2.2301 58.4285 52.5357 71.4133 113.1881 566.0928

STSM_c60_12_1_Wf12-5_Tf75 4.9443 4.8513 5.2279 5.2279 5.2279 5.2279 4.2709 77.2775 78.0905 99.8830 165.3338 1685.1748
STSM_c60_12_2_Wf12-5_Tf75 4.7780 4.7968 5.0964 5.1197 5.1197 5.1197 3.5259 81.2134 91.3775 129.2035 324.5923 3708.0222
STSM_c60_12_3_Wf12-5_Tf75 4.9258 5.0872 5.2435 5.2435 5.2435 5.2435 4.0064 78.8456 73.1175 91.9901 182.2727 1008.1529
STSM_c60_12_4_Wf12-5_Tf75 4.9006 5.1293 4.9375 5.1416 5.1293 5.1416 4.1193 80.7601 86.6242 111.1064 257.6471 2221.3376
STSM_c60_12_5_Wf12-5_Tf75 4.3132 4.1362 4.3226 4.4760 4.5618 4.5618 5.8712 87.9523 104.4498 154.9304 382.9253 3427.8149
STSM_c60_12_6_Wf12-5_Tf75 4.2771 4.0287 4.3481 4.3481 4.3481 4.3481 5.1084 95.3078 105.7635 136.5887 230.4836 1297.6855
STSM_c60_12_7_Wf12-5_Tf75 4.6342 4.5628 4.5810 4.7403 4.7403 4.7403 5.7335 105.9455 112.5144 142.3870 398.4774 3768.3559
STSM_c60_12_8_Wf12-5_Tf75 4.0351 4.5276 4.5579 4.6790 4.6790 4.6790 6.2053 92.3490 91.8528 133.5928 254.6292 1934.4967
STSM_c60_12_9_Wf12-5_Tf75 4.3364 4.9625 5.1997 5.1876 5.1997 5.1997 4.9446 84.4399 62.1639 90.6096 129.2090 814.3490
STSM_c60_12_10_Wf12-5_Tf75 4.7296 4.7046 4.9183 5.0401 5.0401 5.0401 3.9727 80.7794 84.3630 104.8995 191.2982 2180.1435

STSM_c60_12_1_Wf12-5_Tf60 4.0790 4.6866 4.6136 4.6866 4.6866 4.6866 4.9431 81.7832 74.1336 90.1975 120.4882 475.6193
STSM_c60_12_2_Wf12-5_Tf60 3.7493 3.8748 3.9192 3.9192 3.9325 3.9325 6.3762 95.5789 103.9744 144.2867 248.6884 959.7797
STSM_c60_12_3_Wf12-5_Tf60 4.3761 4.7754 4.7607 4.7754 4.7754 4.7754 4.0898 83.4859 87.3460 101.1399 196.4607 2605.6792
STSM_c60_12_4_Wf12-5_Tf60 3.9297 4.0539 4.2919 4.2919 4.2919 4.2919 6.1308 94.6704 100.5323 137.3664 252.3394 1212.5255
STSM_c60_12_5_Wf12-5_Tf60 3.3277 3.5935 3.5458 3.7208 3.7208 3.7208 6.0105 106.0885 116.7447 133.8756 227.0442 1029.3909
STSM_c60_12_6_Wf12-5_Tf60 2.8374 3.0901 3.3548 3.3548 3.3653 3.3653 5.6934 98.6656 98.4402 112.0250 140.7067 316.6168
STSM_c60_12_7_Wf12-5_Tf60 3.4996 3.3783 3.8011 3.7021 3.8011 3.8011 7.4473 125.8111 132.1124 145.0633 226.8241 946.1685
STSM_c60_12_8_Wf12-5_Tf60 3.5021 3.4548 3.6872 3.6872 3.6945 3.6945 5.1737 106.0972 107.5046 119.5732 187.0179 686.9838
STSM_c60_12_9_Wf12-5_Tf60 3.5624 3.8829 3.9481 3.9481 3.9481 3.9481 5.4866 106.0334 115.9209 149.3930 237.4099 657.4959
STSM_c60_12_10_Wf12-5_Tf60 3.8185 3.9296 3.8856 3.9495 3.9393 3.9375 5.9062 109.8266 109.0889 143.4043 210.2703 1049.8073
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Table 10: Detailed results for the instances with overlapping sets of possible time slots. Bold expected
revenues indicate the best known solution.

Exact Exp. Rev. CPU time (s)

SAA SAA SAA SAA
LSH Fixed Full LSH Fixed Full

STSM_c60_8_1_Wf12-5o2_Tf90 3.8091 3.8091 3.8482 0.1122 496.7008 4803.4290
STSM_c60_8_2_Wf12-5o2_Tf90 3.5833 3.5922 3.7271 0.1041 1138.4635 7770.2280
STSM_c60_8_3_Wf12-5o2_Tf90 3.8752 3.8752 3.8933 0.0996 176.8945 1928.3496
STSM_c60_8_4_Wf12-5o2_Tf90 3.7526 3.8027 3.8368 0.1240 446.3710 6349.6148
STSM_c60_8_5_Wf12-5o2_Tf90 3.7394 3.7394 3.7757 0.1065 611.0241 8574.7235
STSM_c60_8_6_Wf12-5o2_Tf90 3.7723 3.7723 3.7785 0.1182 1026.2595 10678.3739
STSM_c60_8_7_Wf12-5o2_Tf90 3.7714 3.7775 3.7775 0.1125 791.9994 2793.7330
STSM_c60_8_8_Wf12-5o2_Tf90 3.7278 3.7351 3.7351 0.1239 730.1920 19331.7780
STSM_c60_8_9_Wf12-5o2_Tf90 3.5243 3.5243 3.5984 0.1432 1705.1862 41888.1546
STSM_c60_8_10_Wf12-5o2_Tf90 3.6705 3.6705 3.6705 0.1364 940.9034 4078.8893

STSM_c60_8_1_Wf12-5o2_Tf75 3.3292 3.3292 3.4141 0.1411 1830.8676 30803.0189
STSM_c60_8_2_Wf12-5o2_Tf75 2.9868 3.3875 3.4222 0.1364 772.5951 4302.2054
STSM_c60_8_3_Wf12-5o2_Tf75 3.1212 3.2828 3.3570 0.1581 1319.1536 82933.8089
STSM_c60_8_4_Wf12-5o2_Tf75 3.1619 3.3958 3.3812 0.1524 1126.0975 39800.3692
STSM_c60_8_5_Wf12-5o2_Tf75 3.2183 3.3855 3.4278 0.1347 1234.1769 20971.7485
STSM_c60_8_6_Wf12-5o2_Tf75 3.0200 3.2366 3.3497 0.1668 908.8826 23894.2788
STSM_c60_8_7_Wf12-5o2_Tf75 2.9472 3.1960 3.1960 0.1640 1827.0931 25937.2847
STSM_c60_8_8_Wf12-5o2_Tf75 2.7794 2.9490 3.0812 0.1763 2390.5861 54197.6124
STSM_c60_8_9_Wf12-5o2_Tf75 2.6080 3.1074 3.2148 0.1522 1822.7014 10039.0893
STSM_c60_8_10_Wf12-5o2_Tf75 2.9915 3.0929 3.1054 0.1781 1257.8017 19733.4258

STSM_c60_8_1_Wf12-5o2_Tf60 2.7330 2.8238 2.9825 0.1633 541.1096 9784.6687
STSM_c60_8_2_Wf12-5o2_Tf60 2.1463 2.8836 2.9725 0.1561 369.8185 2268.8561
STSM_c60_8_3_Wf12-5o2_Tf60 2.4849 2.8153 2.8566 0.1768 489.8252 4643.4262
STSM_c60_8_4_Wf12-5o2_Tf60 2.5780 2.8140 2.9355 0.1569 795.0578 17883.8778
STSM_c60_8_5_Wf12-5o2_Tf60 2.7772 2.8611 2.8769 0.1621 1011.1436 7311.9611
STSM_c60_8_6_Wf12-5o2_Tf60 2.3956 2.7231 2.8437 0.1881 478.5715 2665.4961
STSM_c60_8_7_Wf12-5o2_Tf60 2.1989 2.4517 2.7145 0.1673 926.8967 6718.1597
STSM_c60_8_8_Wf12-5o2_Tf60 2.0286 2.5787 2.6270 0.1786 414.6327 2377.4768
STSM_c60_8_9_Wf12-5o2_Tf60 2.1560 2.1931 2.3875 0.1704 169.9912 1202.7767
STSM_c60_8_10_Wf12-5o2_Tf60 2.0510 2.1366 2.2506 0.2248 134.6988 925.7496

STSM_c60_12_1_Wf12-5o2_Tf90 5.7974 5.8249 2.3256 378.4126
STSM_c60_12_2_Wf12-5o2_Tf90 5.7550 5.7550 2.5474 1962.8252
STSM_c60_12_3_Wf12-5o2_Tf90 5.8939 5.8939 2.0300 287.9451
STSM_c60_12_4_Wf12-5o2_Tf90 5.7387 5.7933 2.3546 973.0745
STSM_c60_12_5_Wf12-5o2_Tf90 5.8454 5.8663 2.3382 475.6658
STSM_c60_12_6_Wf12-5o2_Tf90 5.6214 5.6214 2.5086 2396.2897
STSM_c60_12_7_Wf12-5o2_Tf90 5.8165 5.8278 2.2851 1021.1384
STSM_c60_12_8_Wf12-5o2_Tf90 5.3339 5.4822 4.0867 7250.0155
STSM_c60_12_9_Wf12-5o2_Tf90 5.5364 5.6307 2.9939 3186.1611
STSM_c60_12_10_Wf12-5o2_Tf90 5.8258 5.8744 2.0144 349.8826

STSM_c60_12_1_Wf12-5o2_Tf75 5.2630 5.3346 4.1298 5402.3894
STSM_c60_12_2_Wf12-5o2_Tf75 5.0978 5.1974 3.3740 14447.6435
STSM_c60_12_3_Wf12-5o2_Tf75 5.0251 5.2953 3.4756 5928.6411
STSM_c60_12_4_Wf12-5o2_Tf75 4.9754 5.2042 3.4820 7656.0720
STSM_c60_12_5_Wf12-5o2_Tf75 4.4311 4.6868 7.4584 63771.7534
STSM_c60_12_6_Wf12-5o2_Tf75 4.1540 4.3882 5.3126 9362.9319
STSM_c60_12_7_Wf12-5o2_Tf75 4.7184 4.9418 5.8420 30246.9255
STSM_c60_12_8_Wf12-5o2_Tf75 4.1531 4.7199 6.0980 10533.0046
STSM_c60_12_9_Wf12-5o2_Tf75 4.4392 5.2466 5.2953 2497.1227
STSM_c60_12_10_Wf12-5o2_Tf75 4.9871 5.0715 3.6438 9703.8714

STSM_c60_12_1_Wf12-5o2_Tf60 4.3852 4.7251 4.0970 2209.5098
STSM_c60_12_2_Wf12-5o2_Tf60 3.9438 3.9354 5.6232 10980.0181
STSM_c60_12_3_Wf12-5o2_Tf60 4.0510 4.8840 5.4026 7141.3359
STSM_c60_12_4_Wf12-5o2_Tf60 4.0184 4.3244 6.3066 12546.3243
STSM_c60_12_5_Wf12-5o2_Tf60 3.5936 3.8084 5.3802 6986.7271
STSM_c60_12_6_Wf12-5o2_Tf60 3.1447 3.3653 4.9358 603.6254
STSM_c60_12_7_Wf12-5o2_Tf60 3.3955 3.8703 7.2837 7756.2249
STSM_c60_12_8_Wf12-5o2_Tf60 3.5997 3.7108 5.0177 4120.8814
STSM_c60_12_9_Wf12-5o2_Tf60 3.6352 4.0073 4.7563 6936.4447
STSM_c60_12_10_Wf12-5o2_Tf60 3.8829 3.9784 6.5914 8440.9017
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Table 11: Detailed results of the fixed a priori route SAA method without non-anticipation and ascending time slot constrained models.
Exact Expected Revenue CPU time (s)

Fixed Route SAA without Non-Anticip. Fixed Route SAA with Asc. Time Slots Fixed Route SAA without Non-Anticip. Fixed Route SAA with Asc. Time Slots

N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64

STSM_c60_8_1_Wf12-5_Tf90 3.7271 3.7615 3.7615 3.7615 3.7615 3.7615 3.7500 3.7615 3.7615 3.7615 3.7615 3.7615 2.4183 2.5801 3.9271 7.4264 15.8959 45.0299 3.3011 3.9169 7.3390 14.6990 31.7612 376.2952
STSM_c60_8_2_Wf12-5_Tf90 3.4688 3.4688 3.4688 3.4688 3.4688 3.4688 3.4688 3.4688 3.4688 3.4688 3.4688 3.4688 2.6040 3.1202 5.2243 9.0929 24.9866 83.2923 3.4324 5.3698 8.6577 20.5252 63.1485 471.0335
STSM_c60_8_3_Wf12-5_Tf90 3.8750 3.8750 3.8750 3.8750 3.8750 3.8750 3.8750 3.8750 3.8750 3.8750 3.8750 3.8750 2.2741 2.5159 3.6938 6.2540 14.3819 28.8374 2.9344 4.1879 6.5308 13.3571 29.1872 112.8012
STSM_c60_8_4_Wf12-5_Tf90 3.7500 3.7526 3.7526 3.7526 3.7526 3.7526 3.7500 3.7526 3.7526 3.7526 3.7526 3.7526 2.2837 2.9607 4.4024 7.2868 13.3788 36.1131 3.3101 4.7490 8.2128 14.6286 36.3415 217.0630
STSM_c60_8_5_Wf12-5_Tf90 3.6094 3.6094 3.6094 3.6094 3.6094 3.6094 3.5535 3.6094 3.6094 3.6094 3.6094 3.6094 2.5978 2.9894 4.7340 8.1718 19.9849 64.8780 3.7408 4.7346 9.2928 16.2516 51.1763 403.5600
STSM_c60_8_6_Wf12-5_Tf90 3.6723 3.6723 3.6723 3.6723 3.6723 3.6723 3.6723 3.6723 3.6723 3.6723 3.6723 3.6723 2.7666 2.7376 4.6795 8.0213 24.8834 98.6641 3.2979 4.1457 9.7408 17.0279 46.8285 464.5423
STSM_c60_8_7_Wf12-5_Tf90 3.4583 3.6309 3.6309 3.6309 3.6309 3.6309 3.6265 3.6309 3.6309 3.6309 3.6309 3.6309 2.9208 3.0603 4.9243 8.2980 19.8742 82.5935 3.4216 5.1894 8.5727 16.0881 52.7549 404.9751
STSM_c60_8_8_Wf12-5_Tf90 3.5436 3.6016 3.6016 3.6016 3.6016 3.6016 3.5436 3.5862 3.6016 3.6016 3.6016 3.6016 2.6729 3.5160 4.6316 10.1374 26.7600 107.8462 3.4643 5.8256 7.9409 18.7856 62.3044 575.8033
STSM_c60_8_9_Wf12-5_Tf90 3.3836 3.3914 3.3914 3.3914 3.3914 3.3914 3.3914 3.3914 3.3914 3.3914 3.3914 3.3914 3.1187 3.9878 7.0661 13.6640 58.2805 350.1663 4.5906 6.0472 11.4334 25.2074 87.4793 601.4894
STSM_c60_8_10_Wf12-5_Tf90 3.5177 3.5177 3.5177 3.5177 3.5177 3.5177 3.5177 3.5177 3.5177 3.5177 3.5177 3.5177 2.9366 3.4231 5.8410 8.6144 23.7610 100.1150 3.8700 5.1000 10.1624 16.0353 68.0360 558.9897

STSM_c60_8_1_Wf12-5_Tf75 2.9796 3.2658 3.2658 3.2658 3.2658 3.2658 3.2658 3.2658 3.2658 3.2658 3.2658 3.2658 3.0558 3.5040 6.4973 11.0704 31.5784 107.8857 3.6149 5.6549 8.9807 16.7690 55.4372 447.9929
STSM_c60_8_2_Wf12-5_Tf75 3.3875 3.3875 3.3875 3.3875 3.3875 3.3875 3.3875 3.3875 3.3875 3.3875 3.3875 3.3875 2.6311 2.9497 4.5604 8.0277 14.2662 30.0408 3.4786 4.7057 6.9731 11.7955 22.4847 62.3979
STSM_c60_8_3_Wf12-5_Tf75 3.2301 3.2552 3.2552 3.2552 3.2552 3.2552 3.2552 3.2552 3.2552 3.2552 3.2552 3.2552 3.1525 3.4958 6.0082 12.4979 30.9285 135.6080 3.7003 4.8488 8.7547 17.5858 62.2315 460.8348
STSM_c60_8_4_Wf12-5_Tf75 3.3945 3.3945 3.3945 3.3958 3.3945 3.3945 3.3945 3.3958 3.3958 3.3958 3.3958 3.3958 3.1897 3.9581 5.6595 9.2092 20.3343 75.7201 3.6125 5.5472 8.3418 14.2431 35.5176 297.8309
STSM_c60_8_5_Wf12-5_Tf75 3.2737 3.3157 3.3404 3.3404 3.3404 3.3404 3.2746 3.3404 3.3404 3.3404 3.3404 3.3404 3.0474 3.4143 6.0717 12.7319 31.6774 79.7117 3.6609 4.7409 9.6385 19.1618 64.2913 388.2181
STSM_c60_8_6_Wf12-5_Tf75 3.0917 3.0969 3.1224 3.1273 3.1273 3.1273 3.1224 3.1273 3.1224 3.1273 3.1273 3.1273 3.2461 4.0869 6.5142 13.8971 41.0246 266.6782 4.3119 6.2680 9.4924 18.4323 60.9058 448.0205
STSM_c60_8_7_Wf12-5_Tf75 3.1773 3.0624 3.1773 3.1773 3.1773 3.1773 3.1773 3.1773 3.1773 3.1773 3.1773 3.1773 3.1575 3.9364 5.4151 14.3135 25.4096 78.8207 3.8969 5.8379 7.4699 16.2835 33.7906 340.6008
STSM_c60_8_8_Wf12-5_Tf75 2.8682 2.8682 2.8682 2.8682 2.8682 2.8682 2.8682 2.8849 2.8849 2.8849 2.8849 2.8849 3.1596 3.8662 6.5449 16.3215 31.2751 126.8162 4.0825 5.2869 8.6509 19.8237 50.0239 506.4594
STSM_c60_8_9_Wf12-5_Tf75 3.0365 3.0406 3.0406 3.0406 3.0406 3.0406 3.0406 3.0406 3.0406 3.0406 3.0406 3.0406 2.9899 4.0061 6.4390 15.1562 36.4679 251.5266 4.0041 5.0414 8.4999 14.7995 54.2874 381.5282
STSM_c60_8_10_Wf12-5_Tf75 2.8253 2.8646 2.9374 2.9374 2.9374 2.9374 2.8646 2.9374 2.9374 2.9374 2.9374 2.9374 3.3371 4.3536 9.3516 29.0292 69.2299 341.3582 3.9499 5.6559 9.5786 17.7568 56.0491 510.8178

STSM_c60_8_1_Wf12-5_Tf60 2.7569 2.8193 2.8193 2.8193 2.8238 2.8238 2.7750 2.8238 2.8238 2.8238 2.8238 2.8238 3.2557 3.9000 5.1441 9.0675 18.9008 45.5700 3.7897 4.9560 7.6189 13.9170 27.5799 171.9146
STSM_c60_8_2_Wf12-5_Tf60 2.8836 2.8836 2.8836 2.8836 2.8836 2.8836 2.7885 2.7885 2.7885 2.7885 2.7885 2.7885 3.2223 3.8018 5.5926 9.6311 18.3875 43.3384 4.0331 5.1990 7.3350 11.4290 22.2420 46.7502
STSM_c60_8_3_Wf12-5_Tf60 2.6838 2.6838 2.6838 2.6838 2.7082 2.7082 2.6499 2.6499 2.6499 2.6499 2.6499 2.6499 3.2902 3.6742 5.7314 8.9747 23.4747 54.1036 4.1055 4.8997 7.7262 13.2604 35.4110 212.8174
STSM_c60_8_4_Wf12-5_Tf60 2.8140 2.8140 2.8140 2.8140 2.8140 2.8140 2.6835 2.7111 2.7111 2.7111 2.7111 2.7111 3.4378 4.4670 6.1328 10.5467 22.0836 58.0159 4.2688 5.6767 8.4842 13.7978 30.6732 117.3729
STSM_c60_8_5_Wf12-5_Tf60 2.7709 2.7709 2.7351 2.7709 2.7351 2.7709 2.7543 2.7709 2.7709 2.7709 2.7709 2.7709 3.8753 4.5008 7.1720 11.7259 28.5874 88.0497 4.2550 5.1070 7.1264 11.0616 21.5481 45.4145
STSM_c60_8_6_Wf12-5_Tf60 2.6385 2.6385 2.6385 2.6385 2.6385 2.6385 2.5743 2.5798 2.5798 2.5798 2.5798 2.5798 3.5764 4.3349 5.8300 10.9631 23.5014 97.9710 4.3001 5.7772 7.3826 12.0223 26.1502 150.4211
STSM_c60_8_7_Wf12-5_Tf60 2.4517 2.3650 2.4517 2.4517 2.4517 2.4517 2.3785 2.3785 2.3785 2.3785 2.3785 2.3785 3.4163 5.3658 8.3058 16.5302 34.7903 123.0234 4.5202 5.7700 8.3511 13.9507 29.0170 111.6655
STSM_c60_8_8_Wf12-5_Tf60 2.4467 2.4788 2.4788 2.4788 2.4788 2.4788 2.3983 2.3983 2.3983 2.3983 2.3983 2.3983 3.1733 3.7920 5.5009 11.9789 28.6332 146.0873 4.0354 4.9971 7.3054 12.8555 28.1082 123.4183
STSM_c60_8_9_Wf12-5_Tf60 2.1931 2.1750 2.1931 2.1931 2.1931 2.1931 2.1931 2.1931 2.1931 2.1931 2.1931 2.1931 3.4964 3.6102 4.9818 8.1620 16.4449 36.8356 4.1642 5.0193 7.1409 11.0895 21.2128 46.7235
STSM_c60_8_10_Wf12-5_Tf60 2.0822 2.1178 2.1178 2.1366 2.1366 2.1366 2.1366 2.1366 2.1366 2.1366 2.1366 2.1366 3.9116 4.0517 6.0174 8.1891 15.3016 36.3302 4.5699 5.0887 8.0286 11.8658 20.9211 45.3334

STSM_c60_12_1_Wf12-5_Tf90 5.2464 5.7500 5.7482 5.7655 5.7776 5.5363 5.7776 5.7500 5.7776 5.7776 83.7416 50.8089 61.1498 79.3689 109.8826 52.2678 44.2673 53.1667 126.0778 333.7008
STSM_c60_12_2_Wf12-5_Tf90 5.2433 5.5756 5.5833 5.5833 5.5833 5.5756 5.5833 5.5736 5.5833 5.5833 87.1618 70.4414 74.6887 137.7360 481.0526 59.0494 60.7431 87.4320 339.3201 1374.2260
STSM_c60_12_3_Wf12-5_Tf90 5.0976 5.7286 5.7286 5.7286 5.7286 5.6623 5.7286 5.7286 5.7286 5.7286 89.9179 64.8665 70.2441 114.4821 186.8967 54.6424 53.5981 59.7212 160.6991 808.7656
STSM_c60_12_4_Wf12-5_Tf90 5.4619 5.6117 5.6117 5.6117 5.6117 5.5240 5.6117 5.6117 5.6117 5.6037 75.0044 78.8100 73.2261 98.7951 217.0527 57.8245 60.8042 71.1250 160.4782 1294.6037
STSM_c60_12_5_Wf12-5_Tf90 5.6067 5.7490 5.7490 5.7490 5.7490 5.7490 5.7490 5.7490 5.7490 5.7490 85.0054 73.5252 72.6361 87.3116 234.9051 59.3452 61.5641 70.1823 112.6171 622.5531
STSM_c60_12_6_Wf12-5_Tf90 5.5559 5.5559 5.5559 5.5559 5.5559 5.5559 5.5559 5.5559 5.5559 5.5559 81.3550 72.1905 74.7952 90.9266 154.3548 62.0900 59.1844 66.7256 163.5777 724.7494
STSM_c60_12_7_Wf12-5_Tf90 5.4532 5.7061 5.7061 5.7061 5.7061 5.7061 5.6414 5.7061 5.7061 5.7061 91.6315 74.4922 78.8027 93.9101 270.6743 65.2318 54.7727 95.0020 148.2436 1159.7824
STSM_c60_12_8_Wf12-5_Tf90 4.7170 5.4736 5.4736 5.4736 5.4736 5.4736 5.4736 5.4736 5.4736 5.4736 96.3188 94.7179 105.2276 122.9318 436.6353 71.4073 83.8464 95.4203 261.2101 1199.8132
STSM_c60_12_9_Wf12-5_Tf90 5.2454 5.3596 5.3596 5.3596 5.3596 5.3121 5.3543 5.3596 5.3596 5.3596 76.7321 97.2040 101.7171 138.6826 270.1679 63.8044 77.2254 120.1937 217.1184 1719.5768
STSM_c60_12_10_Wf12-5_Tf90 5.2732 5.7604 5.7604 5.7604 5.7604 5.7504 5.7604 5.7604 5.7604 5.7604 81.6896 68.2787 72.0228 81.5619 170.6479 53.7201 53.3864 71.4326 126.3429 526.0402

STSM_c60_12_1_Wf12-5_Tf75 4.8513 5.2279 5.2279 5.2279 5.2279 5.2279 5.2279 5.2279 5.2279 5.2279 98.3162 98.8826 109.2436 134.7372 365.6516 78.0342 83.8173 100.5930 133.0182 1041.1875
STSM_c60_12_2_Wf12-5_Tf75 4.9806 4.9763 5.1197 5.1197 5.1197 5.0272 5.1197 5.1197 5.1197 5.1197 112.8603 109.1091 131.4278 853.9698 1710.3347 80.6986 85.4832 105.6722 182.2824 1419.9356
STSM_c60_12_3_Wf12-5_Tf75 5.0365 5.1533 5.2435 5.2435 5.2435 5.0386 5.1418 5.2122 5.2112 5.2122 102.8032 88.1420 82.5830 113.3189 192.1517 79.3797 72.9448 91.8609 145.6492 846.5322
STSM_c60_12_4_Wf12-5_Tf75 5.0490 4.9538 5.1416 5.1416 5.1416 5.1416 5.1416 5.1416 5.1416 5.1416 103.6698 99.9329 115.8350 319.3993 1296.6096 82.1390 84.3757 105.2749 197.2661 1063.4402
STSM_c60_12_5_Wf12-5_Tf75 4.2956 4.5317 4.5618 4.5618 4.5618 4.5618 4.4836 4.5618 4.5618 4.5618 124.1180 121.9281 171.3355 735.2106 3637.0891 95.6363 114.5503 145.2865 218.8141 1717.4212
STSM_c60_12_6_Wf12-5_Tf75 4.2632 4.3481 4.3481 4.3481 4.3481 4.3481 4.3481 4.3481 4.3481 4.3481 119.0631 127.8721 166.9888 450.8146 1770.3602 97.8766 102.5467 125.3987 195.9718 901.4580
STSM_c60_12_7_Wf12-5_Tf75 4.6020 4.6710 4.7155 4.7403 4.7403 4.7048 4.7403 4.7403 4.7403 4.7403 149.2846 146.1491 186.3191 1411.9680 4833.8691 105.8977 106.3960 126.0700 222.7280 2071.7740
STSM_c60_12_8_Wf12-5_Tf75 4.4945 4.6790 4.6790 4.6790 4.6790 4.6790 4.6790 4.6790 4.6790 4.6790 105.6408 114.5681 147.5254 434.4093 1342.2964 94.6567 97.4407 121.5170 186.8270 1113.3455
STSM_c60_12_9_Wf12-5_Tf75 5.1997 5.1997 5.1997 5.1997 5.1997 5.1997 5.1997 5.1997 5.1997 5.1997 81.5818 75.1289 82.4635 97.3169 187.5717 71.2577 61.0995 85.0182 124.2602 701.4577
STSM_c60_12_10_Wf12-5_Tf75 4.8898 5.0401 5.0401 5.0401 5.0401 5.0355 5.0401 5.0401 5.0401 5.0401 102.0338 104.7939 115.7785 173.3158 1027.9595 83.1579 84.9354 100.3256 164.4683 1228.4116

STSM_c60_12_1_Wf12-5_Tf60 4.6866 4.6866 4.6866 4.6866 4.6866 4.6866 4.6866 4.6866 4.6866 4.6866 109.4825 92.9320 100.4600 121.2256 206.6856 78.0694 74.0172 84.3795 95.5767 328.2925
STSM_c60_12_2_Wf12-5_Tf60 3.8828 3.8962 3.9192 3.9192 3.9271 3.8610 3.8928 3.8928 3.8928 3.8928 116.9711 135.3956 180.1247 431.2156 2385.3898 116.6058 122.7827 134.8512 158.9862 388.5506
STSM_c60_12_3_Wf12-5_Tf60 4.7754 4.7754 4.7754 4.7754 4.7754 4.6140 4.5733 4.6140 4.6140 4.6140 101.6079 104.6101 118.9192 212.8830 1097.4690 94.8699 99.7918 107.5646 144.0709 818.6896
STSM_c60_12_4_Wf12-5_Tf60 4.0332 4.2919 4.2919 4.2919 4.2919 4.1793 4.2919 4.2919 4.2919 4.2919 117.0939 114.5617 150.8606 427.9423 1535.0184 91.6307 89.6395 113.2007 151.3897 437.6976
STSM_c60_12_5_Wf12-5_Tf60 3.6824 3.7208 3.7208 3.7208 3.7208 3.6824 3.5831 3.6824 3.6824 3.6824 129.5768 134.5546 188.1788 539.3760 6775.7358 113.6634 116.5301 124.3152 139.7335 374.2221
STSM_c60_12_6_Wf12-5_Tf60 3.0322 3.2697 3.3548 3.3548 3.3548 3.2697 3.2697 3.2727 3.2727 3.2727 134.0134 128.2238 137.4901 172.6271 353.4880 106.5911 112.0920 124.2948 142.5646 239.6341
STSM_c60_12_7_Wf12-5_Tf60 3.5672 3.6668 3.6600 3.8011 3.8011 3.6712 3.6595 3.6595 3.6712 3.6712 135.8225 147.0092 183.0306 701.9748 4389.4471 127.3216 130.3706 142.0604 177.5961 402.6723
STSM_c60_12_8_Wf12-5_Tf60 3.4862 3.5914 3.6872 3.6872 3.6872 3.5756 3.5803 3.5803 3.5756 3.5803 137.0103 141.1547 183.9404 448.9265 1488.3729 109.5195 109.5975 114.5667 147.2923 367.7725
STSM_c60_12_9_Wf12-5_Tf60 3.9366 3.9380 3.9481 3.9481 3.9481 3.8829 3.9380 3.9481 3.9481 3.9481 141.5846 156.1215 214.8520 714.2293 1314.4637 131.4733 116.5352 136.7639 157.3700 329.9344
STSM_c60_12_10_Wf12-5_Tf60 3.8139 3.9176 3.9495 3.9495 3.9495 3.9296 3.9296 3.9393 3.9393 3.9393 137.4779 151.0314 188.0568 382.2591 1864.6716 114.4817 117.8070 130.0936 156.9745 511.5410
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