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The aftermath of acute kidney injury: a
narrative review of long-term mortality and
renal function
Gijs Fortrie1*, Hilde R. H. de Geus2 and Michiel G. H. Betjes1

Abstract

Acute kidney injury (AKI) is a frequent complication of hospitalization and is associated with an increased risk of
chronic kidney disease (CKD), end-stage renal disease (ESRD), and mortality. While AKI is a known risk factor for
short-term adverse outcomes, more recent data suggest that the risk of mortality and renal dysfunction extends far
beyond hospital discharge. However, determining whether this risk applies to all patients who experience an
episode of AKI is difficult. The magnitude of this risk seems highly dependent on the presence of comorbid
conditions, including cardiovascular disease, hypertension, diabetes mellitus, preexisting CKD, and renal recovery.
Furthermore, these comorbidities themselves lead to structural renal damage due to multiple pathophysiological
changes, including glomeruloscleroses and tubulointerstitial fibrosis, which can lead to the loss of residual capacity,
glomerular hyperfiltration, and continued deterioration of renal function. AKI seems to accelerate this deterioration
and increase the risk of death, CDK, and ESRD in most vulnerable patients. Therefore, we strongly advocate
adequate hemodynamic monitoring and follow-up in patients susceptible to renal dysfunction. Additionally, other
potential renal stressors, including nephrotoxic medications and iodine-containing contrast fluids, should be
avoided. Unfortunately, therapeutic interventions are not yet available. Additional research is warranted and should
focus on the prevention of AKI, identification of therapeutic targets, and provision of adequate follow-up to those
who survive an episode of AKI.

Keywords: Acute kidney injury, Chronic kidney disease, End-stage renal disease, Epidemiology, Survival,
Comorbidity

Introduction
Acute kidney injury (AKI) is defined as an abrupt loss in
renal function and may be caused by a wide variety of clin-
ical conditions. Historically, AKI was described as early as
the second century AD by Claudius Galenus [1] and was
initially considered a harmless transient entity with limited
implications for a patient’s prognosis. However, in recent
decades, this opinion has radically changed, and AKI has
attracted increased interest, reflected by the exponential
increase in related publications [2, 3]. Today, AKI is a
frequently seen complication of hospitalization and is inde-
pendently associated with a high risk of mortality and

progressive deterioration of renal function, which can lead
to chronic kidney disease (CKD) as well as end-stage renal
disease (ESRD) and a decrease in the quality of life [4–7].
Furthermore, recent studies suggest that AKI is also a risk
factor for other adverse outcomes, including stroke, cardio-
vascular disease, sepsis, malignancy, bone fracture, and
upper gastrointestinal hemorrhage [8–16]. The results of
these studies suggest that an episode of AKI plays a signifi-
cant role in the patient’s long-term prognosis.
However, whether there is indeed a causal relationship

between AKI and long-term adverse outcomes or
whether AKI is simply an indicator of poor clinical con-
dition remains a major topic of discussion [17–20]. A
large proportion of the currently available literature con-
sists of retrospective cohort studies that were not designed
to demonstrate a causal relationship and therefore carry a
substantial risk for selection bias, information bias, and
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residual confounding. Furthermore, the impact of AKI on
long-term adverse outcomes is highly dependent on the
presence of preexisting comorbidities, including cardio-
vascular disease, hypertension, diabetes mellitus and, in
particular, preexisting CKD. Independent of AKI, most of
these conditions strongly impact outcome measures such
as morbidity and mortality. This narrative review offers an
overview of the most relevant literature addressing the
long-term impact of AKI on mortality and renal function.

Definition and staging
For a long time, a universal definition to describe an acute
deterioration in renal function was lacking. A frequently
used term was acute renal failure (ARF), which was gener-
ally an umbrella term for an acute deterioration in renal
function and usually used to describe a situation where
emergency renal replacement therapy (RRT) was neces-
sary. Although ARF was associated with a high hospital
mortality and risk for chronic dialysis dependence [21, 22],
little was known about milder episodes of renal injury,
leading to a call for consensus criteria [23].
In 2004, the Acute Dialysis Quality Initiative (ADQI)

group published the Risk, Injury, Failure, Loss, End-stage
Renal Disease (RIFLE) criteria, which was the first consen-
sus definition for AKI [24]. Subsequently, the RIFLE cri-
teria were validated and, commensurate with an increased
stage of severity, associated with an increased risk of
short-term mortality [25, 26]. However, increasing evi-
dence has demonstrated that even minor changes in
serum creatinine are associated with an increased risk of
mortality [27–29]. Therefore, in 2007, the Acute Kidney
Injury Network (AKIN) published a refinement of the
RIFLE criteria, and henceforth, the term ARF was offi-
cially replaced by AKI [30]. The currently used cri-
teria, shown in Table 1, were published in 2012 by the
Kidney Disease: Improving Global Outcome (KDIGO)
AKI workgroup and represent a unification of the RIFLE
and AKIN criteria [31].

AKI and long-term mortality
Even before the publication of the RIFLE criteria in 2004,
multiple studies evaluated the long-term consequences of

ARF and demonstrated that ARF was associated with an
increased risk of mortality and other adverse outcomes.
However, these conclusions were mainly based on small,
retrospective, uncontrolled cohort studies performed in
diverse clinical settings. With the lack of consensus cri-
teria for ARF, this variation resulted in significant dif-
ferences in study outcomes, which made it difficult to
generalize these results to other populations and use
them in clinical practice.
One of the first studies that described the long-term ef-

fect of AKI compared to the outcomes of patients without
AKI after thoracic surgery (n = 88) was performed in 1994
by Schepens et al. [32]. During the postsurgical period,
14% of the cohort developed AKI requiring RRT. The
5-year survival rate was 20% for these patients but was
62% for the patients without RRT (P = 0.001). This paper
triggered the publication of numerous papers on the asso-
ciation between AKI and long-term mortality, which fur-
ther led to an increase in the quality and sample size of
these studies. In 2009, Coca et al. performed a systematic
review and meta-analysis of 48 studies with follow-up
times of between 6months and 17 years [4]. The clinical
setting of the incorporated studies was heterogeneous and
included patients undergoing cardiac surgery, percutan-
eous coronary intervention, and liver or lung transplant-
ation, as well as general ICU patients. Fifteen studies were
eligible for long-term survival analysis and provided data
on long-term mortality in AKI patients (n = 8350) as well
as in non-AKI controls (n = 90,753). Overall, the mortality
rate was significantly different between the AKI patients
who survived hospital admission (mortality rate = 8.9 per
100 person-years) and the non-AKI controls (4.3 per 100
person-years). Furthermore, the risk of death increased
proportionally with the severity of AKI. Due to the hetero-
geneous AKI definitions used in the studies, the patients
were stratified into three groups: mild, moderate, and se-
vere AKI. Mild AKI was defined as an increase in serum
creatinine of > 25% or a decrease in creatinine clearance
of > 10%; moderate AKI was defined as an increase in
serum creatinine of > 50%, 100%, or > 1.0 mg/dl or a cre-
atinine concentration of > 1.7 mg/dl; and severe AKI was
defined as a necessity for RRT. The pooled rate ratios for
mild, moderate, and severe AKI compared to that of the
non-AKI controls were 1.67, 2.70, and 3.09, respectively.
While the analyses by Coca et al. included only studies

with a relatively small study population, the results of
more recently published studies with large sample sizes
are presented in Table 2A [33–42]. The largest study,
by Lafrance et al., demonstrated in a retrospective
analysis among US veterans (n = 864,933) that patients
with an episode of AKI not requiring RRT had an ad-
justed hazard ratio (HR) of 1.41 for long-term mortality
(95% CI = 1.39–1.43) [38]. When stratified by AKI severity
according to the AKIN definition, the adjusted HRs were

Table 1 Definition of AKI by the kidney disease: improving
global outcome criteria [31]

AKI stage Serum creatinine Urine output

I 1.5 to 2.0 times baseline within
7 days or ≥ 26.4 μmol/L within 48 h

< 0.5 ml/kg/h for 6–12 h

II 2.0 to 2.9 times baseline < 0.5 ml/kg/h for ≥ 12 h

III ≥ 3.0 times baseline or an increase
in SCr to ≥ 353.6 μmol/L or the
initiation of renal replacement
therapy

< 0.3 ml/kg/h for ≥ 24 h
or anuria for ≥ 12 h

AKI acute kidney injury, SCr serum creatinine concentration
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1.36, 1.46, and 1.59 for stages I, II, and III (without RRT),
respectively (P < 0.001 for the trend). Similar results were
shown for subgroup analyses restricted to patients who
survived at least 3 or 6months after discharge; even more
interestingly, the negative effect of AKI persisted in pa-
tients who showed only short-term impairment in renal
function during hospitalization. These results demonstrate
that even a short transient deterioration in renal function
is associated with a poorer outcome.
In addition to the severity of AKI, the risk of long-term

mortality is strongly determined by other clinical and
demographic patient characteristics, including age [43],
baseline renal function [43, 44], malignancy [43], severe
sepsis and septic shock [45, 46], recurrent episodes of AKI
[47], and particularly, renal recovery [33, 34, 38, 48–58].
There is a gradual association between the proportion of
early post-AKI renal recovery and the long-term mortality
risk. As shown in Table 3, the risk of death increases
significantly in patients with partial or no renal recovery
following AKI. In addition, the vast majority of patients
who experienced an episode of AKI have one or more
comorbid conditions, which, given the strong relationship
between preexisting comorbidities and the impact of AKI,
may result in the overestimation of long-term mortality
risk in patients with a low comorbidity burden. In 2015,
Fortrie et al. performed a retrospective cohort study on
the long-term sequelae of AKI requiring RRT in critically
ill patients without any comorbid conditions. This study
demonstrated that in-hospital mortality was equally high
among those with or without any comorbid conditions.
However, the study also demonstrated that patients with-
out comorbidity that survived an episode of AKI and were
discharged from the hospital had a good long-term
prognosis; furthermore, compared to survival in the
average Dutch population, no increased risk for mortal-
ity was found [20]. These conclusions are limited by
the retrospective nature and relatively small sample size
of the study, as only 96 of the 1067 patients were not
known to have any comorbidities. Nevertheless, the re-
sults of this study are intriguing because they add evidence
supporting the concept that comorbidity is a key player in
the long-term impact of AKI.

AKI and long-term risk for CKD and ESRD
While the association between AKI and long-term mor-
tality seems to be based on a complex interplay between
AKI and many other patient-specific factors, this inter-
play is even more complex for the association between
AKI and long-term deterioration in renal function. Many
recent studies have described the association between
AKI and progression to CKD or even ESRD, which has
led to a discussion on whether there is a causal relation-
ship between AKI and CKD or whether this association
is simply the result of methodological differences and

preexisting comorbidities such as diabetes, hypertension,
cardiovascular disease, and of course, preexisting CKD
[17, 18, 59, 60]. In 2012, Coca et al. demonstrated, in
another meta-analysis including 13 studies with a max-
imum follow-up of 75 months, a strong association be-
tween AKI and the development of CKD as well as
ESRD, with adjusted HRs of 8.82 (95% CI = 3.05–25.48)
and 3.10 (95% CI = 1.91–5.03), respectively [5]. Further-
more, those authors demonstrated that the risk of CKD
as well as that of ESRD increased in a graded fashion
with AKI severity. These results are in accordance with
the results of the large population-based studies that
evaluated the risk of ESRD in AKI survivors presented
in Table 2B [36, 37, 41, 61]. In addition, a large study
by Lo et al. that included more than 500,000 patients
with a baseline estimated glomerular filtration rate
(eGFR) of > 45 ml/min/1.73 m2 demonstrated that AKI
requiring RRT was strongly associated with the devel-
opment of stage 4 or 5 CKD, with an adjusted HR of
28.1 (95% CI = 21.1–37.6) [62].
However, the AKI survivor population is very heteroge-

neous, and AKI etiology varies widely. Therefore, identify-
ing individuals with the highest risk of renal deterioration
is greatly important. In addition to AKI, other factors as-
sociated with an increased risk of CKD or ESRD include
higher age [43, 49, 56], lower baseline renal function
[36, 43, 44, 49, 57, 63, 64], diabetes [36, 56], hyperten-
sion [36, 49, 63, 64], chronic heart failure [49, 56], low
serum albumin [49], proteinuria [64], liver failure [63],
higher Charlson comorbidity index score [49, 63], and
recurrent episodes of AKI [64]. In summary, those with
the highest risk of progression towards CKD or ESRD
after an episode of AKI are those who already have an
increased risk for CKD progression independent of an
episode of AKI. Additionally, the complexity of this
association is increased even more because the vast ma-
jority of the aforementioned risk factors are associated
with an increased risk of AKI itself [49, 65–67].
In 2009, Ishani et al. demonstrated in 200,000 hospitalized

elderly that patients with AKI but without preexisting CKD
as well as patients with preexisting CKD but without AKI
have an increased risk of developing ESRD. In addition,
those authors demonstrated that an episode of AKI in pa-
tients with CKD exponentially potentiates the development
of ESRD (adjusted HR= 41.2, 95% CI = 34.6–49.1) [36].
These results are in accordance with those published
by Wu et al. in 2010 [57], which demonstrated in a
population of over 9000 surgical ICU patients with a me-
dian follow-up of 4.6 years that patients with both AKI and
CKD had an adjusted HR of 91.6 (95% CI = 49.3–170.1) for
ESRD. Furthermore, a subgroup analysis was performed
in a cohort stratified by renal recovery at hospital dis-
charge, which was defined as a serum creatinine concen-
tration at discharge of < 50% above the baseline serum
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creatine concentration. Patients who experienced an epi-
sode of acute-on-chronic kidney disease without renal
function recovery at hospital discharge had the great-
est risk for ESRD compared to patients without AKI
and CKD (adjusted HR = 212.7), followed by those
with acute-on-chronic kidney disease with recovery
(HR = 74.1), those with AKI without recovery (HR = 61.0),
those with CKD without AKI (HR = 42.6), and those with
AKI with recovery (HR = 4.5) (all P values < 0.001). Al-
though no consensus criteria for renal recovery have been
developed, these results are in accordance with the results
of most other recently published studies that evaluated the
impact of renal recovery or post-AKI renal function on
CKD or ESRD (Table 3) [49, 52, 56–58, 68]. In contrast,
one postoperative study by van Kuijk et al. did not demon-
strate a gradual relationship between AKI with or without
renal recovery and CKD, and the relative risk was equally
high in both groups [68]. This difference could result from
the short timeframe in which renal recovery was deter-
mined (day 3 after diagnosis). Furthermore, the highest
incidence rate of complications after AKI is observed dur-
ing the first consecutive year but appears to decline in sub-
sequent years. Fortrie et al. showed a strong association
between AKI and impaired renal function 1 year following
transplantation in a cohort of patients who underwent car-
diac transplantation [69]. However, with longer follow-up,
only AKI requiring RRT was associated with further deteri-
oration of renal function. In contrast to AKI, renal function
at 1 year following transplantation was strongly associated
with further renal deterioration [70].
In conclusion, AKI is statistically an independent risk

factor for CKD as well as for ESRD. However, the mag-
nitude of this risk depends on the presence of premorbid
conditions and the susceptibility to accelerated injury
with impaired renal recovery. In other words, the impact
of AKI on long-term outcomes depends on the residual
renal function and repair capacity after renal stress. Fur-
thermore, hyperfiltration can camouflage structural renal
damage in a previously healthy kidney because the
estimated glomerular filtration rate can be preserved
for an extended duration. However, eventually, the
renal self-repair capacity is exceeded due to continued
degenerative processes, and the impact of AKI accelerates
progression to CKD and ESRD. A schematic representation
of this concept is shown in Fig. 1.

Acute and long-term pathophysiological changes
associated with AKI
The results of epidemiological clinical research are in line
with the suggested pathophysiological mechanisms under-
lying a poor renal outcome after AKI. Currently, the patho-
physiology of AKI is still incompletely understood and is
mediated by a complex interplay among multiple patho-
physiological processes. Whether this process eventually

results in continued irreversible renal damage is highly
dependent on residual renal function and repair capacity.
Over the past decade, more insight has become available
on pathophysiologic mechanisms acting during AKI. While
these insights are primarily based on animal studies, they
provide knowledge on the complex interplay of factors
leading to kidney injury and offer potential targets for
future therapy [71]. Because the etiology of AKI is very het-
erogeneous, AKI can initiate multiple pathophysiological
pathways, often resulting from an imbalance in oxygen
supply and demand. This imbalance results in hypoxemia
and oxidative stress, which subsequently lead to endothelial
damage, immune system activation and inflammation, and
interstitial edema and vasoconstriction, which in return
further decrease the oxygen supply [72]. Furthermore,
dependent on the etiology of AKI, other factors may con-
tribute to the development of AKI, including venous renal
congestion due to heart failure, altered microcirculatory
flow distribution due to sepsis, microthrombi due to vascu-
lar occlusive disease, tubular obstructions due to cast
nephropathy, immune complex precipitation, or postrenal
obstruction [73–76].
In minor and transient episodes of kidney injury, the

kidney possesses multiple mechanisms to limit this dam-
age and even the possibility of tissue repair [71, 77]. How-
ever, in prolonged and severe episodes of kidney injury,
these mechanisms fail. In patients with sustained AKI or
preexisting CKD, the integrity and connection between
the peritubular capillaries and the tubular cells are lost,
resulting in tubular dedifferentiation, apoptosis, continued
capillary damage, and chronic hypoxemia. These events
subsequently activate multiple proinflammatory, profibro-
tic pathways, which further impairs renal integrity, and
the tubular regeneration capacity [78–81]. Ultimately, this
cascade will result in a self-sustaining process of persistent
inflammation, hyperfiltration, progressive tubular damage,
glomerulosclerosis, and tubulointerstitial fibrosis that
eventually leads to CKD, ESRD, and associated complica-
tions [81–83]. However, this process is also the corner-
stone in the development of CKD in general. Therefore,
determining whether the continued renal deterioration is
the result of AKI as an independent entity or simply an
indicator of progressive CKD is difficult. However, these
results indicate that AKI, at a minimum, accelerates these
processes (Fig. 1).

Implications for the bedside and a glimpse into
the future
Unfortunately, the increased knowledge and awareness
of AKI still has a limited impact on clinical practice. In
summary, the current treatment regime for AKI has
not changed in recent decades and stresses preventive
measures, such as limiting nephrotoxic medication and
iodine-containing contrast fluids and providing adequate
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fluid expansion during the use of predictable potential
stressors [84, 85]. Additional experimental interven-
tions, including remote ischemic preconditioning and
pharmacological interventions, have been studied but have
limited effects [86]. The results of the long-awaited STO-
P-AKI trial are recently published [87]. This multicenter
double-blind placebo-controlled clinical trial evaluates the
safety and efficacy of human recombinant alkaline phos-
phatase as an anti-inflammatory treatment for patients
with septic AKI. While the first published results were
promising, human recombinant alkaline phosphatase did

not improve short-term renal function. However, the au-
thors demonstrated that there was a significant difference
in mortality and major adverse kidney events in favor of
the patients treated with recombinant alkaline phosphat-
ase. Therefore, additional research is warranted to evalu-
ate the role of recombinant alkaline phosphatase in the
treatment of AKI.
Those at risk for AKI require consequent hemodynamic

monitoring, including adequate follow-up of urine output,
which is mandatory for the early detection of AKI. There-
fore, automated electronic alerts (E-Alerts) for AKI could

Fig. 1 A schematic representation of the long-term sequelae of AKI. The kidney figures represent the baseline renal function. AKI, acute kidney
injury; ESRD, end-stage renal disease
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facilitate the early recognition of AKI. While it seems
logical that such an intervention would raise awareness
and improve patient care, the results of studies on this
topic are conflicting [88–91]. For example, Wilson et al.
recently performed a large randomized clinical trial in-
cluding approximately 2400 patients and demonstrated
that the use of E-Alerts had no beneficial effect [91]. The
use of E-Alerts may even be potentially harmful and can
lead to overtreatment when the data are misinterpreted.
However, it is of pivotal importance that AKI survivors

preserve renal function as much as possible to prevent
the further acceleration of renal deterioration. Therefore,
tight control of hypertension, proteinuria, diabetes melli-
tus, cardiovascular disease, and other relevant comorbid-
ities seems warranted, as the clinical efficacy of these
strategies has been proven to slow or prevent the pro-
gression of CKD [92, 93]. In contrast to patients with
known CKD, only a small proportion of patients who ex-
perience an episode of AKI, even an episode requiring
RRT, are offered follow-up by a nephrologist. In 2012,
Siew et al. demonstrated in approximately 4000 AKI sur-
vivors that the cumulative incidence of referral to a
nephrologist in the first year was only 8.5%, while the
mortality rate during this surveillance period was 22%.
Furthermore, the severity of AKI did not affect the refer-
ral rate [94]. Subsequently, Harel et al. studied the asso-
ciation between follow-up by a nephrologist within 90
days post-AKI and survival. Those authors used propen-
sity score analyses to match patients with and without
follow-up by a nephrologist and reported that, overall,
only 41% of the patients had follow-up in the outpatient
clinic and that these patients were most likely those with
preliminary CKD [95]. More interestingly, Harel et al.
found that post-AKI outpatient follow-up was associated
with a 24% reduction in mortality after a surveillance
period of 2 years. While these results potentially provide a
solution to reduce the long-term complications of AKI,
clinical trials are required for improved clarity. Currently,
a large randomized clinical trial is underway in Canada to
address this issue [96]. Publication of the results is ex-
pected in 2022 and may have important implications for
the long-term follow-up, treatment and outcome of AKI
survivors.

Conclusions
AKI is a highly complex syndrome associated with in-
creased mortality and loss of renal function in the long
term. Although most evidence has been obtained through
retrospective research, the results of the numerous well-de-
signed large studies indicate that a causal relationship be-
tween AKI and a worsened long-term prognosis is highly
likely. Furthermore, these studies have offered essential
insight into the populations with the greatest risk for poor
prognosis, including the elderly, those with preexisting

comorbidities, and particularly, those with preexisting renal
impairment. While these findings are undoubtedly of great
importance, they still have limited significance for
clinical practice, as effective therapeutic interventions
are not yet available. Therefore, the main focus of fu-
ture research should be on the prevention of AKI, the
identification of therapeutic targets, and the provision of
adequate follow-up and treatment to preserve the renal
function of patients who survive an episode of AKI.
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