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Abstract

The increasing personalization of medical treatment demands refined imaging and increased
monitoring capabilities, as well as an improved efficacy through targeted drug delivery. Such a
transition in health care can be facilitated by the use of multimodal contrast agents. In this paper,

we present a novel type of multimodal contrast agents, that enhances contrast both in ultrasound
and in photoacoustic imaging, while at the same time being capable of triggered drug delivery.

Upon pulsed laser irradiation, polymeric microparticles—containing a dye and an oil core—can
create a cavitation bubble that subsequently emits a strong acoustic wave. We investigated different
formulations of these particles, by changing the oil content, dye concentration and probing
conditions using a combination of pulsed laser excitation and an ultrasound chirp. We demonstrated
that capsules with a core containing a low boiling point oil give the highest photoacoustic and
acoustic response. The laser activation threshold for this system is high in the visible range, but
within the near infrared medical limits. The same system also produces a stable bubble. US scattering
by these stable bubbles results in medically relevant frequencies, making the particles of interest for
biomedical and pre-clinical imaging. Finally, the system has potential to carry a functional drug-load,
and aroute to these applications is discussed.

1. Introduction

Medical care at present is facing challenges in the diagnosis and treatment of a number of diseases, such as cancer
or genetic deficiencies. These challenges seem to fall beyond the limits of traditional pharmaceutical industry
and call for new strategies. One such strategy is to deliver targeted and personalized care to account for the
individual differences within the patient population. An implicit requirement to ensure success of such a strategy
is the ability to provide early diagnosis and to precisely control the targeted therapeutic effects. For targeted
drug delivery applications, this implies refined imaging and monitoring capability as well as an increased level of
precision.

A modality that would meet these requirements is ultrasound (US). US is of particular interest as an afford-
able bedside technique, offering an unrivaled combination of resolution, a good imaging depth, and an out-
standing safety record. Traditional US imaging relies on the variation of elastic and mechanical properties within
tissue. However, this method has the disadvantage of providing relatively weak contrast and low specificity.
The first issue can be addressed by making use of US contrast agents that typically consist of phospholipid-
coated microbubbles (Calliada et al 1998, Overvelde et al 2010). These bubbles undergo volumetric oscillations
upon exposure to a US field, leading to a strong acoustic scatter that greatly improves contrast (De Jong 1993).
Additionally, these oscillations demonstrate great potential for therapeutic applications, for example, by tem-
porarily porating cell membranes to aid the delivery of a drug (Husseini and Pitt 2009). Several studies have
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demonstrated an increased cell membrane permeability in the presence of cavitating microbubbles, a process
called sonoporation (Szabo 2004, Deckers et al 2008, Frenkel 2008, Chen et al 2011). Other therapeutic applica-
tions such as blood-brain-barrier opening are currently under clinical investigation (Hynynen et al 2006, Choi
etal2011,Weietal2013).

Another potential candidate for meeting the newly set standards in medical care is photoacoustics (PA). The
contrast generation in PA imaging is based on the optical absorption of tissue components. Light is absorbed
by chromophores in the tissue that rapidly heats up, leading to thermal expansion and subsequent relaxation of
the absorbing material (Bell 1880, Mallidi et al 2011). This transient dilatation generates a pressure wave, which
can be detected in the far field and converted into an image. The large variation in optical properties amongst
tissues makes PA imaging intrinsically more specific than US imaging while maintaining the spatial resolution
of US imaging. Such improvement, however, is made at the cost of a much reduced penetration depth, typically
limited to 1 cm (Mallidi et al 2011). Here as well, contrast agents have been developed to address the penetration
issue, and these include dyes (Kim ef al 2007, Bhattacharyya et al 2008, Stantz et al 2010), nanoparticles (Li et al
2006, Mallidi et al 2009, Bayer et al 2011), microbubbles with dyed coatings (Jeon et al 2014, Lajoinie et al 2017a,
2017b), polymeric microcapsules (Lajoinie et al 2014, Yue et al 2017) and microdroplets (Wilson et al 2010).
These agents improve contrast by either absorbing light at a more favorable wavelength, within the tissue opti-
cal window, or by presenting an order of magnitude stronger absorption than native chromophores (Luke et al
2012). The use of metallic (gold, silver) nanoparticles has been predominantly investigated due to the possibility
of tuning the absorption wavelength and the large absorption cross-section provided by their plasmon reso-
nance (Choi etal 2011, Luke et al 2012). Nanotoxity of metallic agents, however, remains a serious concern (Luke
etal2012,Khannaetal 2015).

The image acquisition principle in both US and PA imaging is identical. Both modalities therefore require
very similar equipment and are, in practice, easy to combine in order to benefit from their complementary char-
acteristics. Multimodal imaging with US and PA has been used for intra-vascular detection of vulnerable plaques
(Wu et al 2017) and for US-guided PA imaging of tumors (Mallidi ef al 2015a). Microdroplets (Wilson et al
2012), coated microparticles (Shih et al 2013, Lajoinie et al 2017a), and gold nanoparticles (Lu et al 2010, Wilson
et al 2012, Mallidi et al 2015b) have been proposed as agents that are both, stronger PA emitters and responsive
to US. Additionally, some of these agents have been investigated for their capability to vaporize upon optical or
acoustical triggering, leading to the formation of bubbles (Wilson et al 2012) capable of generating contrast for
US imaging (De Jong 1993).

Here, we investigate the multimodal capabilities of micron-sized polymeric capsules doped with an absorb-
ing dye located in the capsule shell. Such capsules can be triggered by a laser, leading to vaporization and forma-
tion of a bubble (Lajoinie et al 2014, 2017a). In our earlier work (Lajoinie et al 2014, 2017a), we have established
the basic physical requirements on these cavitation systems and in particular the need for the melting point of
the polymer shell to be slightly above the boiling temperature of the liquid in order to induce the vaporization.
In this paper, we extend the original high boiling point formulation, first, to a low boiling point formulation that
vaporizes preferentially its liquid core rather than the surrounding water and, second, to a different geometrical
configuration where the oil is only partially encapsulated, resulting in a total of three particle types. The first
formulation consists of PMMA polymer and a high boiling point oil core (hexadecane). The second formulation
consists of a low glass transition temperature polymer shell (Resomer, T, ~ 50 °C), filled with a low boiling
point oil (perfluoropentane). This last formulation was also produced in a Janus configuration, referred to as
‘cups’, to further reduce the activation threshold at the price, however, of a reduced overall stability. We exper-
imentally investigate both the PA and US contrast enhancement capabilities of the particles by subjecting them
first to alaser light pulse before probing the resulting bubbles with an ultrasound chirp within a few milliseconds.

2. Materials and methods

2.1. Materials

Gold nanospheres (20nm, 5.9 x 10''-7.2 x 10'! particles ml~"), Sodium cholate hydrated, Polyvinyl alcohol
(PVA), Poly(lactide-co-glycolide) Resomer RG502 (MW 7-17 and MW 28-34), Poly(methyl methacrylate) (MW
120000), hexadecane, Sudan Red, Nile Red and dichloromethane (ACS reagent) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). PDLG 5002, PDLG 5004 and PDL 02 were provided by Purac. Perfluoropentane
(PFP), Perfluoropentane (PFP) and 1-Bromoperfluorooctane (PFOB) were purchased from Fluorochem (UK).
Tween 20 was purchased from VWR (The Netherlands).

2.2. Capsules fabrication
PMMA microcapsules were prepared by a emulsion solvent evaporation technique using microsieve
emulsification (Loxley and Vincent 1998). Prior to emulsification, the oil (T, =286 °C), the polymer
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(T, = 102 °C) and the dye were dissolved in dichloromethane. The oil concentration was 2.16% w/w in the
solution and the dye concentration was 4.85% w/w as compared to the polymer.

Resomer microcapsules containing perfluorocarbon were fabricated in a similar way as the PMMA capsules.
Resomer (T, = 50 °C) was dissolved into dichloromethane along with perfluorocarbon oil (T, = 29 °C) and
the dye and subsequently placed in a 20 °C bath to ensure the full miscibility of the oil in dichloromethane. The
oil concentration was 2.42% w/w in the solution and the dye concentration was 4.89% w/w as compared to the
polymer.

The solutions were filtered through a 0.45 pm PTEE filter and emulsified through a micro sieve membrane
(Nanomi B.V., The Netherlands) with uniform pores along the surface. The emulsions were then dispersed into
an aqueous solution containing an emulsifier. This was left to stir at room temperature for atleast 3 h to evaporate
the dichloromethane, the process is depicted in figure 1(a). The hardened microcapsules were subsequently con-
centrated and washed repeatedly using vacuum filtration and using 0.05% w/w Tween 20 solution. The washed
suspension was stored at 4 °C until further use. Details on the capsules production process are given in SI-1
(stacks.iop.org/PMB/64/034001/mmedia).

2.3. Sample preparation
First, a reference concentration of gold nanospheres was chosen, with an absorption coefficient of ~0.07 cm™ 1In
order to get a fair comparison between the various agents investigated, the concentration of PMMA-hexadecane
capsules suspension was set to match the extinction coefficient of our reference sample, which required a
40x dilution of the native sample. The concentration of the Resomer-PFP capsules suspension was prepared
to roughly match the concentration of the PMMA-hexadecane capsules suspension, corresponding to a 20x
dilution of the native sample. The same dilution was applied to the Resomer-PFP cups.

The contrast agents were investigated in a set of experimental conditions: (1) at room temperature and (2) at
body temperature, where the sample was heated to 37 °C prior to the experiment (heating bath, Medingen WB6).

2.4. Experimental setup

We tested the contrast-enhancing capabilities of the capsules in vitro. A schematic of the experimental setup is
displayed in figure 2(a). The sample was illuminated using a laser beam (Quantel Evergreen, 150 m], 532 nm,
15 Hz, 8 ns) to activate the capsules. The fluence of the laser beam was regulated by a computer-controlled
attenuator. The laser spot size was confined using a 1 mm diameter diaphragm, ensuring uniform laser spot size
and homogeneous energy density. The beam was directed through the tank before reaching a beam-dump. The
laser fluence was measured using an energy meter (Coherent FieldMaxII-P).

The samples were inserted into a water-tight sample holder, placed in a temperature-controlled water bath.
The lateral sides of the sample holder are made of glass, and the back of the sample holder consists of PDMS to
damp the acoustic wave passing through the sample during the acoustic characterization and to minimizes the
acoustic reflections from the sample. The PDMS also allowed for easy insertion of tubes in order to circulate the
sample in the sample holder continuously, ensuring the reproducibility of the measurement. The front plane is
made from a highly acoustically transparent Opticell® membrane. The sample holder was set at a 40° angle to
the transducer as to avoid interferences from acoustic reflections.

The signals were recorded by an oscilloscope (Tektronix DPO4034 Digital Phosphor) and saved to a comp-
uter. The experiment was computer-controlled and automatized using Matlab®. The timing of the experiment
was controlled using a pulse-delay generator (BNC model 575) also controlled using Matlab®.

2.5. Photoacoustic measurements

The suspension was circulated in a sample holder where it was constantly refreshed, ensuring the presence of
new capsules in the laser beam for each exposure. The suspension was irradiated with a laser fluence ranging
from 3.3 mJ cm ™2 to 322 mJ cm 2. At each energy setting, the laser was fired 10 times. The resulting PA response
was recorded with a focused broadband 1 MHz center frequency US transducer (C302 Panametrics—90% BW)
after which the signal was amplified 25x (RF preamplifier, Stanford Research Systems inc. model SR445A). The
processing of the data was performed in Matlab®. The final curves, displayed in this paper, are obtained after
averaging the peak-to-peak pressure amplitude over ten recordings made for each energy setting.

2.6. Ultrasound characterization

After activation of the capsules by the pulsed laser, the capsules were acoustically characterized. The 1 MHz
transducer was used to transmit a chirp with a ramp-up frequency from 0.3 to 2.3 MHz for a total pulse length of
200 ps and the echo was subsequently recorded. The frequency versus time content of the ultrasound burst used
to probe the bubbles produced post laser activation is depicted in figure 2(b). The frequency content of the chirp
was linearly swept with a fixed amplitude (Michaels eral 2013):
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Figure 1. Schematic production process. (a) Microcapsule fabrication process in time, on the left the emulsification process with
the solvent, the oil, the polymer and the dye. The solution is pushed through the microsieve into an aqueous solution, which is stirred
while the solvent evaporates. The polymer and oil are immiscible resulting in a phase separation between oil and polymer, while the
dye precipitates with the polymer. (b) Resulting microcapsule configurations.
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Figure 2. Schematic of the experimental setup. (a) A water tank containing the sample through which the laser is fired. The PA
response of the capsules in the sample is then recorded by a focused 1 MHz US transducer. (b) Frequency versus time plot used for
the excitation chirp for acoustic characterization.

s = wsin (271'1‘ (fo + WBTWt>> , (1)

where fj is the starting frequency, BW is the bandwidth of the chirp, T is the duration of the chirp and w is the
amplitude.

To avoid overlap with reflections traveling back to the transducer, the chirp was cut into four segments, result-
ing in a set of four chirps of 0.3-0.8,0.8—1.3, 1.3-1.8 and 1.8-2.3 MHz. The routing of the signals (recording of
the cavitation signal, emission of the chirp and recording of the chirp echo) was ensured by a custom-built high-
voltage/low-noise electronic switch. In order to monitor the evolution of the bubbles over time the set of chirps
was sent 8 times for each recording.

The chirp was generated using an arbitrary waveform generator (Tabor Electronic 1000 MS s~ ). The echo
signals were amplified 25x (RF preamplifier, Stanford Research Systems inc., model SR445A).
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Figure 3. Schematic of the experimental setup for monitoring stable bubble formation of single microcapsules. Images from the
CCD camera showing the appearance of the microcapsules, before activation and after activation, when there is no stable bubble
remaining and, when a stable bubble is produced.

The pressures emitted and received during the acoustic characterization were estimated from the calibration
of the transducer. The transducer was first calibrated in transmit, using a needle hydrophone (0.2 mm, Precision
Acoustics, UK); and then in reception using the reflection from a flat metal plate (Chen et al 1994, Sijl et al 2008).

Acoustic scatter maps were computed by taking the envelope of the received US scatter signal at a specific
fluence and taking the average over of all eight chirps sent. This was repeated for every fluence and the result was
stacked to produce the scatter map. The standard deviation maps are provided in SI-7.

2.7. Single capsules cavitation

A second setup was built to record the response of single microcapsules using an optical microscope. The
schematics of this setup is shown in figure 3. A suspension of microcapsules was injected into an OptiCell®
and a single microcapsule was located using a water-immersion objective (LUMPLFL 20x, Olympus). The
capsules were excited with an 8 ns laser pulse at a wavelength of 532 nm (Quantel Evergreen 150 mJ). The PA
response was monitored with a focused broadband 1IMHz US transducer (C302 Panametrics). The response
of the microcapsules was recorded using a CCD camera (LM165m, Lumenera, CA) at low frame rate. These
recording were too slow to visualize the cavitation dynamics but allow for sizing of the bubbles remaining after
laser activation. From the images it was determined whether a cavitation event had taken place (through capsule
destruction) and if a stable bubble was produced. We then calculated the probability of this cavitation event.
The probability was calculated as the ratio between capsules that experienced cavitation and the total number of
capsules tested.

The scattering properties of a free gas bubble in the presence an acoustic wave is well-known and well-doc-
umented (Leighton 1994). De Jong (1993) have shown that the scattering cross-section of an air bubble was 100
million times larger than that of a rigid sphere of the same size. These enhanced acoustic properties are primarily
due to the compressibility of the gas (De Jong 1993), which allows for the system to resonate under US irradia-
tion near its eigenfrequency (Szabo 2004). This resonance frequency for a free bubble can be derived from the
Rayleigh—Plesset equation and is dependent on the inertia of the surrounding liquid and inversely proportional
to the size of the bubble (Doinikov et al 2009, Overvelde et al 2010):

1 1 20
fr = 271'R0 \/; (3/@1)0 + (3I€ — 1) R—O), (2)

with f; the resonance frequency, Ry the equilibrium radius of the bubble, Py the ambient pressure, x the polytropic
exponent of the gas, p the density of the surrounding liquid and o is the interfacial tension of the bubble. An
expression neglecting the surface tension effects was already derived 80 years ago by Minnaert (Leighton 1994,
Szabo 2004, Overvelde et al 2010):

f:Ro ~ 3.28 MHz - ym. (3)
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The response of the remaining bubbles to an US pulse can be calculated using the Keller—Miksis equa-
tion (Keller and Miksis 1980, Prosperetti and Lezzi 1986, Hilgenfeldt et al 1998), as a compressible alternative to
the Rayleigh—Plesset equation:

1 . 3. Rd 4uR 20

—(RR+ZR*) = Py (R,t) = P(t) — Py — ——Pg (R,t) — — — =, 4

SRR+ 2R = B (R = ()~ Py P (Rr) = RE = (@
where p the density of the surrounding medium, R is the radius of the bubble, Py is the pressure of the gas, P(t)
is the US driving pressure, Py the ambient pressure, ¢, the speed of sound in the medium, p the viscosity of
the surrounding liquid and o is the surface tension of that liquid. The corresponding scattered pressure in the
incompressible liquid is obtained from the conservation of mass and momentum (Versluis et al 2000):

R, . .
Piar (r,t) = p~ (RR +2R?). (5)

Under the first-order assumption that the capsules concentration is low, we neglect bubble—bubble interac-
tions. A justification for this simplification is provided in SI-4. The response of the ensemble can then be calcu-
lated by summing the individual bubble responses, with an initial size distribution according to the measured
distribution (De Jong 1993):

Ry=10
PAF) = [ PRo) plRoIF)R, ©
Ry=0
where P,(F) is the pressure received by the transducer, P,(Ry) is the pressure emitted by a bubble of radius Ry,
P(Ro|F) is the probability of a bubble having a radius Ry for a given fluence F (i.e. p(Ry) knowing F). Using the
results of single capsule experiments and equations (4)—(6), a pressure response map can be computed for PFP-
Resomer capsules for frequencies in the range of 0.3—2.3 MHz and fluences ranging from 3 to 322 mJ cm 2.

The scattering of the acoustic wave by the transiently stable bubbles created by the cavitation events was
simulated by first fitting a Gaussian probability function to the size distribution obtained during single cap-
sules experiments. The Gaussian distribution was then used to integrate the Rayleigh—Plesset equation using the
Matlab® ODE4 5-solver for the different fluences used. This procedure resulted in a prediction of the frequency
response of the bubble population generated by the laser pulse.

3. Results

Most combinations of polymer and oil have shown to result in cup shaped capsules, see SI-1 for details. Resomer
in combination with PFP and PMMA in combination with hexadecane, however, have the right interfacial
energies to result in core-shell shaped capsules. Final size of the capsulesare 6 + 1 ymand 5 & 1 um for PMMA-
Hexadecane and Resomer-PFP, respectively. Size distributions of the capsules are shown in SI-1. Here, we also test
Resomer-PFP cups that produced with a same polymer and oil than the capsules, except for a higher molecular
weight, in order to investigate the effect of morphology on the PA and US behavior of the capsules, see figure 1(b)
for a summary of the three particles tested here.

3.1. Photoacousticresponse

Figures 4(a)—(d) depict the temporal PA response of AuNPs, PMMA-hexadecane capsules, Resomer-PFP
capsules and Resomer-PFP cups for increasing fluence, respectively. The PA response for the AuNP has an
amplitude of only 0.15 kPa at the maximum fluence. In contrast, the microcapsules generated large PA signatures
with a formulation-dependent amplitude and shape.

At low fluence PMMA-hexadecane and Resomer-PFP particles display a similar bi-polar response pulse. At
higher laser fluences, however, as cavitation starts to occur, the response shifts towards a tri-polar pulse. This
third peak originates from the large positive acceleration during final bubble collapse. This last peak is then fol-
lowed by secondary oscillations corresponding to the free oscillation, or ringing, of bubbles that remained after
laser activation.

In figures 4(e)—(h) the ratio between the first and third peak is shown as a function of the fluence. The large
amplitude ratio and large deviation at low fluence is due to a very low signal to noise ratio in the recorded wave-
forms. In these plots, the activation threshold of the microcapsules corresponds to a clear jump in the peak pres-
sures ratio. Resomer-PFP capsules and cups generate secondary oscillations above ~75 m] cm ™2 and ~60 m]J
cm ™2, respectively. This threshold reduction is consistent with the incomplete encapsulation of the oil in the
cups, which therefore do not have to break open their shell (Lajoinie et al 2014).

In the absence of a volatile oil, PMMA-hexadecane capsules mainly generate transient water vapor bubbles
that collapse and disappear. Nonetheless, above ~150 mJ cm™2, gas intake by the cavitation bubble becomes
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Figure4. Photoacoustic response of (a) AuNP (b) PMMA-hexadecane capsules, (c) Resomer-PFP capsules,and (d) Resomer-PFP
cups with marked peaks; * peak 1, Ml peak 2 and e peak 3. Pressure ratio between first and third peak. (e) Gold nanoparticles. (f)
PMMA-hexadecane capsules, (g) Resomer-PFP capsules, and (h) Resomer-PFP cups.

sufficient to produce measurable secondary oscillations. The activation threshold for the PMMA-Hexadecane
capsules, clearly visible in figure 4(f), is 150 m] cm 2,

The average peak-to-peak acoustic emission from the microcapsules in response to laser activation (PA
response) for each energy setting is plotted in figure 5 together with that of a gold nanospheres suspension whose
absorbance has been matched to the capsules sample.

Figure 5 illustrates the photoacoustic strength of these vaporization agents above their activation threshold
as compared to gold nanoparticles. More importantly, figure 5 demonstrates the positive effect of both, a reduc-
tion of the boiling point of the liquid and of a Janus configuration on the photoacoustic strength of the particles.
The peak pressures ratio displayed in figure 4(e) suggests that gold nanoparticles start inducing cavitation above
~120 mJ cm™?,and on the contrary to the polymeric particles, the photoacoustic response of the gold nanopar-
ticles remains quasi-linear as a function of the laser energy beyond cavitation inception.
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Figure5. PA response for increasing laser fluence. PA responses for PMMA-hexadecane capsules containing 5% dye, of Resomer-
PFP particles containing 5% dye (capsules and cups) and of gold nanoparticles. The solid lines represent the average over eight
recordings and the error bars are the standard deviation over these eight experiments. The inset is a zoom of the photoacoustic
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3.2. Microbubble generation from single microcapsules

Experiments with single microcapsules were performed to measure cavitation probability and stable bubble
probability and size. The probability of activation of Resomer-PFP capsules, shown in figure 6(a), approaches
100% already at a fluence of 96 mJ cm™2. The fraction of cavitating capsules that produce transiently stable
bubbles gradually increases from ~10% at 60 mJ cm ™2 to ~80% at 240 mJ cm 2. A fluence of 1200 mJ cm 2
results in less bubbles surviving, which we attribute to the extreme violence of the cavitation events. Figure 6(b)
displays the average bubble size after activation, which slowly increases from 1.8 zzm at 60 mJ cm ™~ to just under
3 pm, for fluences of 120 mJ cm 2 and higher.

The size of the bubbles produced by Resomer-PFP cups is similar to those generated by the capsules. From
the sizes displayed in figure 6(b) and equation (3), the bubbles created by the cavitation events of PFP-loaded
capsules and cups are expected to resonate around 1 MHz.

As seen in figure 4, PMMA-Hexadecane capsules require a much higher fluence before reaching their activa-
tion threshold. Activation, in the case of PMMA-Hexadecane capsules, rarely resulted in a stable bubble. In this
case, a size of approximately 1.5-2 p4m in radius hints at an acoustic activity predominantly around a frequency
of 2MHz.

3.3. Acousticscattering
The bubbles were probed with a chirp, in the setup of figure 2(a), sweeping the frequencies from 0.3 to 2.3 MHz.
Figure 7 displays the acoustic scatter maps and the simulated scatter map for the Resomer-PFP capsules.

The experimental and simulated scatter map displayed in figures 7(d) and (e) agree well. In both cases, the
frequency of maximum response is about 1 MHz and the bandwidth is comparable: 0.6-2.2 MHz for the com-
puted map and a 0.6-1.9 MHz for the measured map. The 1 MHz center frequency corresponds to a ~3.3 pm
radius bubble (estimated from equation (3)). The computed map displays, however, a slightly lower threshold
than the experimental results.

The acoustic activity of the Resomer-PFP cups (see figure 7(c)) is very similar to that of the capsules in terms
of center frequency, bandwidth, and onset of acoustic activity. The maximum received pressure by the transducer
in both cases is ~2 kPa, corresponding to 2% of the transmit pulse. The root mean square error between the
measured maps and the calculated map scaled to the magnitude of the measured maps is, in both cases about
17%.

Laser activation of PMMA-hexadecane microcapsules lead to a very different result. First, the pressure
received is an order of magnitude lower, 0.35 kPa, see figure 7(b). Secondly, the center frequency of the response
lies around 1.7 MHz, indicating significantly smaller bubbles (~1.8 pm radius), which is also consistent with
figure 6(b). The scatter signal of PMMA-hexadecane capsules increases from 150 mJ cm 2 onwards, which cor-
responds to the cavitation threshold observed in photoacoustic emission.
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Figure 6. Probability and size of the created bubbles. (a) Cavitation probability of the capsules (filled red bar), and probability of
the activation resulting in a stable bubble, (empty red bars), (b) mean radius of remaining bubbles and the standard deviation of this
radius (error bars) calculated on the number of experiments indicated above each bar.

The reference measurements, performed in pure water and with AuNP (figure 7(a)), produced no measur-
able US scatter, despite the evidence of cavitation from the gold nanoparticles visible in figure 4(e), suggesting
that the bubbles created by the nanoparticles are purely transient.

3.4. Temperature effect

To mimic more clinically relevant temperature conditions, the experiments were performed at a temperature of
37 °C. The result of the PA response is displayed in figures 8(a) and (d). The response of the PMMA-hexadecane
capsules is slightly increased at higher temperature. Increasing the medium temperature lowers the difference
between the capsule vaporization temperature threshold and the ambient temperature. The activation energy
is thereby reduced and the laser energy threshold decreases accordingly (from 150 mJ cm™?2 to 133 mJ cm™2).
Thus, the observation is in line with the theoretical prediction. At a given ambient temperature T, and assuming
a constant light absorption coefficient v and heat capacity c:

Eash(Tr) = aEpger = pVCp(Tu - Tr) (7)
The 2 measured energy thresholds therefore provide a rough estimate of the activation temperature:

T, = BTn=BTe 500 (8)
E, — E
whereT,; = 22°CandT,, = 37°Carethetwo experimental ambient temperatures and E; and E, are the two
energy thresholds for cavitation, at those ambient temperatures.
First order thermodynamics considerations (detailed in SI-5) dictate that the Resomer-PFP capsules should
display a plateau in their response, as a function of the laser energy, and that the plateau temperature for the poly-

mer shell decreases linearly with the bath temperature.
2

Using the glass transition of the Resomer Tg g, = 50 °Cand the activation energy of E;, = 75m]Jcm™* at
ambient temperature T,; = 22 °Cin combination with a plateau temperature of Tpjareqy = 117 °C forabath
temperature T,, = 37 °C (see SI-5) leads to a laser energy Eplarequ:
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which agrees well with figure 8(d).

The scattering at body temperature is shown in figures 8(b), (c), (e) and (f). The center frequency scattered by
the bubble created from the PMMA-hexadecane capsules shifts from 1.7 to 1.4 MHz at 37 °C, see figure 8(c). This
result suggests that the temperature increase causes an increase of the transiently stable bubble size by ~20%. For
the Resomer-PFP capsules the frequency shift with temperature is not significant, see figure 8(f).
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The amplitude of the scattered pressure for Resomer-PFP capsules, follows the same trend as the PA response,
compare figures 8(d) and (e). PMMA-hexadecane capsules display no significant change in scattered pressure
amplitude with temperature, even though the PA response was higher at 37 °C. This lack of temperature depend-
ence indicates that the number of residual bubbles is similar at both temperatures.

4. Discussion

In this study, we investigated the feasibility of multimodal imaging with two formulations of microcapsules,
PMMA-hexadecane and Resomer-PFP, and we found that both enhance contrast in PA and US as compared to
AuNPs.

The single-capsule experiments performed on PMMA-hexadecane capsules showed limited response and
almost no remaining stable bubbles. Nonetheless, the PA pulse showed a tri-polar response indicating transient
bubble formation. This emission is probably produced by a small amount of capsules with more dye and thus a
higher absorption than the average capsule.

Also the PA signal showed transition to a tripolar pulse above ~150 mJ cm™2. These oscillations and the
corresponding remaining bubbles are attributed to the exchange of dissolved gas in the liquid by the vapor bub-
ble during the initial cavitation event. Gas exchange leads to the creation of a stable gas bubble (Suslick et al 1990,
Leighton 1995) that requires time to dissolve back into the medium (Epstein and Plesset 1950). In the present
case, dissolution of the gas bubble is further slowed down by the local heating of the surrounding liquid, which
reduces the saturation concentration of dissolved gases (Suslick et al 1990, Leighton 1995). The details of this
process require further investigation.

The lower amplitude of the third peak in the PA response of the Resomer-PFP capsules, in combination with
the strong secondary oscillations, clearly indicates that the collapse of the cavitation bubble is dampened by a
transiently stable gas bubble. Furthermore, the lower frequency of these oscillations, as compared to the ringing
generated by PMMA-hexadecane, hints to the formation of larger bubbles (Szabo 2004 ), which is consistent with
the vaporization of a volatile oil core.

The amplitude response of the Resomer-PFP cups is higher than that of the capsules. This can be partially
caused by their lower activation threshold. Even though the PA response was higher and showed a lower thresh-
old for the cups than for the capsules, the pulse-echo signal strength is similar (see figures 5 and 7(c), (d)). Thus,
the probability of producing a stable remaining bubble is likely to be marginally lower for the cups than for the
capsules.

According to the current hypothesis (Lajoinie et al 2014), nucleation of the capsules is triggered when the
polymer shell melts. Therefore, in an ideal case, these light-absorbing microcapsules should display a step
response as a function of the laser energy rather than a gradual increase as is observed here. We attribute this
smoothing out of the response to a variability of the capsules absorption yield and its size within the probed
volume.

The data from the single capsule experiments were used to compute the simulated pressure response map for
Resomer-PFP capsules. This was not done for the other particles because of the limited statistical relevance of the
data collected. The geometry of the Resomer-PFP cups also complicates the observation as the oil droplet core
often faces downwards by gravity, and is therefore partially occluded by the polymer. The orientation of the cups
may have resulted in unaccounted cavitation events.

Microbubbles used as US contrast agents, rely on their second harmonic or subharmonic backscatter to
improve contrast (Shekhar et al 2014). In our experiments, chirps were used to probe the bubble oscillations.
During the eight chirps sent, no significant harmonics were observed in the backscattered signals (Borsboom
etal2005).

In the current study we have used mono-disperse particles, resulting in a mono-disperse stable bubbles and
thus consistent US scattering. However, the US scattering properties of the capsules is expected to change by
altering the size of the capsules. The US scattering properties are directly related to the size of the bubbles pro-
duced upon photoacoustic activation. The bubble size is correlated to the volume available for vaporization,
either encapsulated in the case of the low boiling point core capsules, or by the surface area of the particles in case
of ahigh boiling point core.

Previous studies have investigated bubble—bubble interactions within a bubble cloud (Testud-Giovanneschi
etal 1990, Kurz and Thomas 2010, Tinne et al 2010, Yoichiro and Shin 0000). Most of these studies are based on
the bubble-bubble interaction between two bubbles and report asymmetry, deformation and attraction (Tes-
tud-Giovanneschi et al 1990). These interactions between bubbles can be experienced up to a distance of 10 radii
(Testud-Giovanneschi et al 1990, Tinne et al 2010). Despite the statistically large inter-bubble distance, >30x
their radius (see SI-4 for justification), we cannot rule out a hypothetical influence of these interactions, owing to
the statistical nature of this argument, and to the large size of the initial cavitation bubbles. Coalescence can also
not be ruled out at this stage, although no direct evidence of it has been observed.
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Figure 8. Response of laser activated capsules at 20 °C and 37 °C Resomer-PFP capsules. (a) PA response. (b) Pulse-echo response,
average received pressure, for increasing fluence. (c) Pulse-echo response, average received pressure, for different frequencies.
PMMA-hexadecane capsules. (d) PA response. (e) Pulse-echo response, average received pressure, for increasing fluence. (f) Pulse-
echo response, average received pressure, for different frequencies.

First order thermodynamics considerations detailed in SI-5 justify the existence of a plateau in figure 8(d)
and predict its position. The signal amplitude, however, is expected to reach similar values in both cases but
appear to be significantly lower at 37 °C than at 20 °C. This may be a sign of spontaneous activation of a fraction
of the agents during the incubation at 37 °C, leaving less capsules available for laser activation.

The absence of temperature effect on the frequency of the maximum US scatter is consistent with the vapori-
zation of a preexisting, volume-limited volatile core. Vaporizing water (as is the case for the PMMA-hexadecane
capsules) requires much more energy than vaporizing PFP. Therefore, at energies around the activation thresh-
old of the PFP-filled particles, only the volatile core is vaporized, which result in bubbles with a constant size
(neglecting thermal dilation). Subsequently, the US frequency response remains unchanged.

Currently, these first formulations of PFP-loaded particles still present activations thresholds that are slightly
elevated in view of medical safety reccommendations. However, the improved response over traditional agents
make them promising for clinical applications, since the probability of a vaporization event and the probability
of producing a stable bubble are high. The threshold for the activation of these capsules can be further reduced by
increasing the dye loading efficiency of the polymer shell. Other possibilities to reduce the threshold would be a
liquid core with alower boiling point and a polymer with a lower glass transition temperature.

Additionally, the dye could be replaced by a dye absorbing in the NIR or IR range, thereby increasing the MPE.
This would be beneficial in terms of imaging depth as well.
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5. Conclusions

The results of our study demonstrate that both PMMA-Hexadecane and Resomer-PFP particles in suspension
are capable of enhancing multimodal contrast in a combined US and PA imaging modality. However, the
threshold and signal strength of PFP-loaded capsules were shown to be more advantageous. For PFP-loaded
capsules, the PA activation threshold was found to be around the medically relevant values and the US scatter was
readily measured and proved to be maximum at medically relevant frequencies. The surrounding temperature
was shown to affect both the maximum PA signal and US contrast generation from Resomer-PFP capsules and
the proposed agents display an increased efficiency at body temperature. The response of the capsules to a laser
pulse can be advantageously combined with US to increase the amount of information provided by the contrast
agents.
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