Evaluating heterogeneous forecasts for vintages of macroeconomic variables

Philip Hans Franses Max Welz Econometric Institute Erasmus School of Economics

EI2018-47

Abstract

There are various reasons why professional forecasters may disagree in their quotes for macroeconomic variables. One reason is that they target at different vintages of the data. We propose a novel method to test forecast bias in case of such heterogeneity. The method is based on Symbolic Regression, where the variables of interest become interval variables. We associate the interval containing the vintages of data with the intervals of the forecasts. An illustration to 18 years of forecasts for annual USA real GDP growth, given by the Consensus Economics forecasters, shows the relevance of the method.

Key words: Forecast bias; Data revisions; Interval data; Symbolic regression JEL Code: C53

This version: September 2018

Correspondence: Econometric Institute, Erasmus School of Economics, POB 1738, NL-3000 DR Rotterdam, the Netherlands, phone: +31104081273, email: franses@ese.eur.nl

Introduction and motivation

This paper is all about the well-known Mincer Zarnowitz (1969) (MZ) auxiliary regression, which is often used to examine (the absence of) bias in forecasts. This regression, in general terms, reads as

Realization = $\beta_0 + \beta_1 Forecast + \varepsilon$

Usually, the statistical test of interest concerns, $\beta_0 = 0$ and $\beta_1 = 1$, jointly.

The setting in this paper concerns macroeconomic variables. For many such variables it holds that these experience revisions. For variables like real Gross Domestic Growth (GDP), after the first release, there can be at least five revisions for various OECD countries¹.

The second feature of our setting is that forecasts are often created by a range of professional forecasters. In the present paper for example we will consider the forecasters collected in Consensus Economics². To evaluate the quality of the forecasts from these forecasters, one often takes the average quote (the consensus) or the median quote, and sometimes also measures of dispersion like the standard deviation or the variance are considered. The latter measures give an indication to what extent the forecasters disagree. Recent relevant studies are Capistran and Timmermann (2009), Dovern, Fritsche, and Slacalek (2012), Lahiri and Sheng (2010), Laster, Bennett, and Geoum (1999), and Legerstee and Franses (2015). Reasons for disagreement could be heterogeneity across forecasters caused by their differing reactions to news or noise, see Patton and Timmermann (2007), Engelberg, Manski and Williams (2009), and Clements (2010).

Recently, Clements (2017) suggested that there might be another reason why forecasters disagree, and that is, that they may target at different vintages of the macroeconomic data. Some may be concerned with the first (flash) quote, while others may have the final (say, after 5 years) value in mind. The problem however is that the analyst does not know who is doing what.

¹ http://www.oecd.org/sdd/na/revisions-of-quarterly-gdp-in-selected-oecd-countries.htm

² http://www.consensuseconomics.com/. Other professional forecasters' quotes can be found in the Survey of Professional Forecasters: https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/data-files/routput

The question then becomes how one should deal with the MZ regression. Of course, one can run the regression for each vintage on the mean of the forecasts. But then still, without knowing who is targeting what, it shall be difficult to interpret the estimated parameters in the MZ regression. At the same time, why should one want to reduce or remove heterogeneity by only looking at the mean?

To alleviate these issues, in this paper we propose to keep intact the heterogeneity of the realized values of the macroeconomic variables as well as the unknown heterogeneity across the quotes of the professional forecasters. Our proposal relies on the notion to move away from scalar measurements to interval measurements. Such data are typically called symbolic data, see for example Bertrand and Goupil (1999) and Billard and Diday (2007). The MZ regression for such symbolic data thus becomes a so-called Symbolic Regression.

The outline of our paper is as follows. In the next section we provide more details about the setting of interest. For ease of reading, we will regularly refer to our illustration for annual USA real growth rates, but the material in this section can be translated to a much wider range of applications. The following section deals with the estimation methodology for the Symbolic Regression. We will also run various simulation experiments to examine the reliability of the methods. Next, we will apply the novel MZ Symbolic Regression to the USA growth rates data and compare the outcomes with what one would have obtained if specific vintages were considered. It appears that the Symbolic MZ Regression is much more informative. The final section deals with a conclusion, limitations, and further research issues.

Setting

Consider the *I* vintages of data for a macroeconomic variable y_t^i , where i = 1, 2, ..., I and t = 1, 2, ..., T. In our illustration below we will have I = 7 and t = 1996, 1997, ..., 2013, so T = 18.

Professional forecasters, like the ones united in Consensus Economics forecasts, give quotes during the months m, where m = 1, 2, ..., M. For the Consensus Economics forecasters M = 24, and the months span January in year t-1, February in year t-1, ..., December in year t-1, January in year t, until and including December in year t. An example of the data appears in Table 1, where the quotes are presented for May 13, 2013, for the years 2013 and 2014.

The forecasts can be denoted as

$$\hat{y}_{j,t|m}$$
 with $j = 1, 2, ..., J_{t,m}$

The number of forecasters can change per month and per forecast target, hence we write $J_{t,m}$. In Table 1 this number is 29. For 2013, and in our notation, Table 1 considers $J_{2013,5}$ and for 2014 it is $J_{2014,17}$.

A key issue to bear in mind for later, and as indicated in the previous section, is that we do *not* observe

$$\hat{y}_{j,t|m}^{i}$$
 with $j = 1, 2, ..., J_{t,m}$,

that is, we do not know who of the forecasters is targeting which vintages of the data.

To run a Mincer Zarnowitz (MZ) regression, the forecasts per month are usually summarized by taking the median, by using a variance measure, or by the mean ("the consensus"), that is, by considering

$$\hat{y}_{t,m} = \frac{1}{J_{t,m}} \sum_{j=1}^{J_{t,m}} \hat{y}_{j,t|m}$$

The MZ regression then considered in practice is

$$y_t^i = \beta_0 + \beta_1 \hat{y}_{t,m} + \varepsilon_t$$

for t = 1, 2, ..., T, and this regression can be run for each m = 1, 2, ..., M. Under the usual assumptions, parameter estimation can be done by Ordinary Least Squares. Next, one computes the Wald test for the joint null hypothesis $\beta_0 = 0, \beta_1 = 1$.

Now, one can run this MZ test for each vintage of the data, but then still it is unknown what the estimated parameters in the MZ regression actually reflect. Therefore, we propose an alternative approach. We propose to consider, for t = 1, 2, ..., T, the interval

$$(\min_i y_t^i; \max_i y_t^i)$$

as the dependent variable, instead of y_t^i , and to consider

$$(\min_{j} \hat{y}_{j,t|m}; \max_{j} \hat{y}_{j,t|m})$$

as the explanatory variable, instead of $\hat{y}_{t,m}$. These two new variables are intervals, and often they are called symbolic variables. The MZ regression thus also becomes a so-called Symbolic Regression, see Bertrand and Goupil (1999), Billard and Diday (2000, 2003, 2007).

Table 2 presents an exemplary dataset for May in year *t*, so m = 17. Figure 1 visualizes the same data in a scatter diagram. Clearly, instead of points in the simple regression case, the data can now be represented as rectangles.

How does Symbolic Regression work?

When we denote the dependent variable for short as y and the dependent variable as x, we can compute for the Symbolic MZ Regression

$$\hat{\beta}_1 = \frac{Covariance(y, x)}{Variance(x)}$$

and

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

thereby drawing on the familiar OLS formulae.

Under the assumption that the data are uniformly distributed in the intervals, Billard and Diday (2000) derive the following results. At first, the averages are

$$\bar{y} = \frac{1}{2T} \sum_{t} (\max_{i} y_t^i + \min_{i} y_t^i)$$

and

$$\bar{x} = \frac{1}{2T} \sum_{t} (\max_{j} \hat{y}_{j,t|m} + \min_{j} \hat{y}_{j,t|m})$$

The covariance is computed as

$$Covariance(y, x) = \frac{1}{4T} \sum_{t} (\max_{i} y_{t}^{i} + \min_{i} y_{t}^{i}) (\max_{j} \hat{y}_{j,t|m} + \min_{j} \hat{y}_{j,t|m}) - \frac{1}{4T^{2}} \left[\sum_{t} (\max_{i} y_{t}^{i} + \min_{i} y_{t}^{i}) \right] \left[\sum_{t} (\max_{j} \hat{y}_{j,t|m} + \min_{j} \hat{y}_{j,t|m}) \right]$$

Finally, the variance is computed as

$$Variance(x) = \frac{1}{4T} \sum_{t} (\max_{j} \hat{y}_{j,t|m} + \min_{j} \hat{y}_{j,t|m})^{2} - \frac{1}{4T^{2}} \left[\sum_{t} (\max_{j} \hat{y}_{j,t|m} + \min_{j} \hat{y}_{j,t|m}) \right]^{2}$$

This expression completes the relevant components to estimate the parameters.

Standard errors

To compute standard errors around the thus obtained parameter estimates $\hat{\beta}_0$ and $\hat{\beta}_1$, we resort to the bootstrap. By collecting *T* random draws of pairs of intervals, with replacement, and by repeating this B times, we compute the bootstrapped standard errors. Together, they are used to compute the joint Wald test for the null hypothesis that $\beta_0 = 0$, $\beta_1 = 1$.

Simulations

To learn how Symbolic Regression and the bootstrapping of standard errors works, we run some simulation experiments. To save notation, we take as the Data Generating Process (DGP)

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

for i = 1, 2, ..., N. We set $x_i \sim N(0, 1)$ and $\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2)$. Next, we translate the thus generated y_i and x_i to intervals by creating

$$(y_i - |z_{1,i}|; y_i + |z_{2,i}|)$$

 $(x_i - |w_{1,i}|; x_i + |w_{2,i}|)$

where

$$z_{j,i} \sim N(0, \sigma_z^2), \ j = 1,2$$

 $w_{j,i} \sim N(0, \sigma_w^2), \ j = 1,2$

We set the number of simulation runs at 1000, and the number of bootstrap runs at B = 2000 (as suggested to be a reasonable number in Efron and Tibshirani, 1993). Experimentation with larger values of B did not show markedly different outcomes. The code is written in Python. We set *N* at 20 and 100, while $\alpha = 0$ or 5, and $\beta = -2$, or 0, or 2. The results are in Tables 3 to 6.

Table 3 shows that when we compare the cases where $\sigma_w^2 = 0.5$ versus $\sigma_w^2 = 2.0$ that a larger interval of the explanatory variable creates more bias than a larger interval for the dependent variable (compare $\sigma_z^2 = 0.5$ versus $\sigma_z^2 = 2.0$). Also, the bootstrapped standard errors get larger when the intervals of the data get wider, as expected.

Table 4 is the same as Table 3, but now $\sigma_{\varepsilon}^2 = 0.5$ is replaced by $\sigma_{\varepsilon}^2 = 2.0$. Overall this means that $\hat{\beta}$ deviates more from β when the variance σ_{ε}^2 increases. The differences across the deviations of $\hat{\alpha}$ versus α are relatively small.

Table 5 is the same as Table 3, but now N = 20 is replaced by N = 100. Clearly, a larger sample size entails less bias in the estimates, and also much smaller bootstrapped standard errors. But still, we see that $\hat{\alpha}$ is closer to α then is $\hat{\beta}$ to β .

Table 6 is similar to Table 4, but now for N = 100. A larger sample can offset the effects of increased variance σ_{ε}^2 , as the standard errors are reasonably small.

Analysis of forecasts

We now turn to an illustration of the Symbolic MZ regression. We choose to consider the forecasts for annual growth rates of real GDP in the USA, for the years 1996 to and including 2013. This makes T = 18. Our data source³ gives annual growth rates per quarter. As there are no vintages of true annual growth data available, we decide to further consider the averages of each time these four quarterly growth rates. The data intervals are presented in Table 2. The right-hand side columns of Table 2 concern the forecasts created in May of year *t*, which means the case where m = 17. This implies that we can consider 24 Symbolic MZ regressions, each for each of the 24 months.

Table 7 presents the estimation results, the bootstrapped standard errors and the p value of the Wald test for the null hypothesis that $\beta_0 = 0$, $\beta_1 = 1$. We see from the last column that a p value > 0.05 appears for the forecasts quoted in May in year *t*-1, and that after that the p value stays in excess of 0.05. However, if we look at the individual parameter estimates, we see that $\beta_1 = 0$ is with the 95% confidence interval until September, year *t*-1. So, Table 7 basically tells us that unbiased forecasts seem to appear from October, year *t*-1 onwards.

Let us now turn to the MZ regression in its standard format, that is, the explanatory variable is the mean of the forecasts and the variable to be explained in one of the vintages of the data. Table 8 presents the results for the first (flash) release real GDP annual growth rates, whereas Table 9 presents the results for the currently available vintage. We also have the results of all vintages in between, but these do not add much to the conclusions that can be drawn from Tables 8 and 9.

³ http://www.oecd.org/sdd/na/revisions-of-quarterly-gdp-in-selected-oecd-countries.htm

First, we see that the standard errors in Table 8 and 9 are much smaller than the bootstrapped standard errors for the Symbolic MZ Regression. This of course does not come as a surprise as we have point data instead of intervals. For the first vintage of data in Table 8, we see from the p values for the Wald test in the last column that only since March, year *t*, the null hypothesis of no bias can be rejected (p value is 0.485). One month earlier, the p value is 0.071, but for that month we see that $\beta_1 = 1$ is not in 95% confidence interval (0.787 with a SE of 0.098). Note by the way that the forecasts created in the very last month of the current year (December, year *t*) are biased (p value of 0.012), at least for the first release data.

Table 9 delivers quite intriguing results for the forecasts concerning the most recent vintage of data. The p value of the Wald test becomes > 0.05 (that is, 0.083) for the quotes in May, year *t*, but note that $\beta_1 = 1$ is not in 95% confidence interval for 23 of the 24 months. Only for the forecasts in December, year *t*, the forecasts do not seem biased (p value of 0.115, and $\beta_1 = 1$ is in the 95% confidence interval (0.820 with SE of 0.088).

In sum, it seems that individual MZ regressions for vintages of data deliver confusing outcomes, which seem hard to interpret. Let alone that we effectively do not know who of the forecasters is targeting at which vintage. Moreover, it seems that outcomes of the Symbolic MZ Regression are much more coherent and straightforward to interpret. Of course, due to the very nature of the data, that is, intervals versus points, statistical precision in the Symbolic Regression is smaller, but the results seem to have much more face value and interpretability than the standard MZ regressions.

Conclusion and discussion

Forecasts created by professional forecasters can show substantial dispersion. Such dispersion can change over time, but can also concern the forecast horizon. The relevant literature has suggested various sources for dispersion. A recent contribution to this literature by Clements (2017) adds another potential source of heterogeneity, and this is that forecasters may target different vintages of the macroeconomic data. Naturally, the link between targets and forecasts is unknown to the analyst.

To alleviate this problem, we proposed an alternative version of the Mincer Zarnowitz (MZ) regression to examine forecast bias. This version adopts the notion that the vintages of the

macroeconomic data can perhaps best be interpreted as interval data, where at the same time, the forecasts also have upper and lower bounds. Taking the data as intervals makes the standard MZ regression a so-called Symbolic MZ Regression. Simulations showed that reliable inference can be drawn from this auxiliary regression. An illustration for annual USA GDP growth rates showed its merits.

A limitation to the interval-based data analysis is the potential size of the intervals. More dispersion leads to less precision, and statistical inference becomes less reliable. Also, the sample size for a Symbolic Regression should be quite substantial, again for reliability. This might hamper its use for some variables and sample sizes in macroeconomics.

Further applications of the new regression should shine light on its practical usefulness. The method does have conceptual and face validity, but more experience with data and forecasts for more variables related to more countries should provide more credibility.

Figure 1: The intervals of Table 2.

Table 1: An example of the data

Survey Date: May 13, 2013	Gross D Proc real, % 2013	omestic luct change 2014
Consensus (Mean)	1,932	2,702
High Low Standard Deviation Number of Forecasts	2,300 1,572 0,159 29	3,380 2,007 0,319 29
UBS American Int'l Group	2,300 2,200	3,000 2,600
First Trust Advisors Ford Motor Company	2,200 2,172	3,000 2,996
Morgan Stanley	2,100	2,500
Eaton Corporation	2,053	2,887
Action Economics	2,000	2,800
RDQ Economics	2,000	2,600
General Motors	1,960	2,968
Swiss Ro	1,959	2,914
Macroeconomic Advisers	1,955	2 968
Moody's Analytics	1,940	3,380
Northern Trust	1,906	2,722
Citigroup	1,900	2,800
DuPont	1,900	3,000
Fannie Mae	1,900	2,500
Inforum - Univ of Maryland	1,900	2,600
Wells Capital Mgmt	1,900	2,600
Univ of Michigan - RSQE	1,880	2,735
Credit Suisse	1,868	2,300
PNC Financial Services	1,846	2,398
Nat Assn of Home Builders	1,843	2,622
IHS Global Insight	1,841	2,799
Barclays Capital	1,803	2,272
Wells Fargo	1,800	2,100
Bank of America - Merrill	1,756	2,684
The Conference Board	1,643	2,374
Georgia State University	1,572	2,007

Table 2: Forecasts and vintages as symbolic data. For the years 1996 to 2013 there are 7 vintages of quotes. For the month May in year *t* there are in between 20 to 30 forecasts. The data in this table are the lower and upper bounds of the intervals of these observations. The data are rounded (at two decimal places) for expository purposes.

Lower boundUpper boundLower boundUpper boundYear19962.453.791.802.5019973.764.492.403.8019983.664.452.803.5019994.054.853.204.2020003.675.003.905.3020010.231.241.102.8020021.602.452.203.3020032.513.111.902.6020043.584.444.305.0020052.953.533.203.7020062.663.322.803.7020071.792.231.702.402008-0.281.230.801.9020102.473.082.863.9020111.741.912.213.0520122.042.781.992.91		Vintages of real G	DP growth	Forecasts		
Year 1996 2.45 3.79 1.80 2.50 1997 3.76 4.49 2.40 3.80 1998 3.66 4.45 2.80 3.50 1999 4.05 4.85 3.20 4.20 2000 3.67 5.00 3.90 5.30 2001 0.23 1.24 1.10 2.80 2002 1.60 2.45 2.20 3.30 2003 2.51 3.11 1.90 2.60 2004 3.58 4.44 4.30 5.00 2005 2.95 3.53 3.20 3.70 2006 2.66 3.32 2.80 3.70 2007 1.79 2.23 1.70 2.40 2008 -0.28 1.23 0.80 1.90 2009 -3.28 -2.19 -3.87 -2.10 2010 2.47 3.08 2.86 3.90 2011 1.74 1.91 2.21 3.05 2012 2.04 2.78 1.99 <th></th> <th>Lower bound</th> <th>Upper bound</th> <th>Lower bound</th> <th>Upper bound</th>		Lower bound	Upper bound	Lower bound	Upper bound	
1996 2.45 3.79 1.80 2.50 1997 3.76 4.49 2.40 3.80 1998 3.66 4.45 2.80 3.50 1999 4.05 4.85 3.20 4.20 2000 3.67 5.00 3.90 5.30 2001 0.23 1.24 1.10 2.80 2002 1.60 2.45 2.20 3.30 2003 2.51 3.11 1.90 2.60 2004 3.58 4.44 4.30 5.00 2005 2.95 3.53 3.20 3.70 2006 2.66 3.32 2.80 3.70 2007 1.79 2.23 1.70 2.40 2008 -0.28 1.23 0.80 1.90 2009 -3.28 -2.19 -3.87 -2.10 2010 2.47 3.08 2.86 3.90 2011 1.74 1.91 2.21 3.05 2012 2.04 2.78 1.99 2.91	Year					
1997 3.76 4.49 2.40 3.80 1998 3.66 4.45 2.80 3.50 1999 4.05 4.85 3.20 4.20 2000 3.67 5.00 3.90 5.30 2001 0.23 1.24 1.10 2.80 2002 1.60 2.45 2.20 3.30 2003 2.51 3.11 1.90 2.60 2004 3.58 4.44 4.30 5.00 2005 2.95 3.53 3.20 3.70 2006 2.66 3.32 2.80 3.70 2007 1.79 2.23 1.70 2.40 2008 -0.28 1.23 0.80 1.90 2009 -3.28 -2.19 -3.87 -2.10 2010 2.47 3.08 2.86 3.90 2011 1.74 1.91 2.21 3.05 2012 2.04 2.78 1.99 2.91	1996	2.45	3.79	1.80	2.50	
1998 3.66 4.45 2.80 3.50 1999 4.05 4.85 3.20 4.20 2000 3.67 5.00 3.90 5.30 2001 0.23 1.24 1.10 2.80 2002 1.60 2.45 2.20 3.30 2003 2.51 3.11 1.90 2.60 2004 3.58 4.44 4.30 5.00 2005 2.95 3.53 3.20 3.70 2006 2.66 3.32 2.80 3.70 2007 1.79 2.23 1.70 2.40 2008 -0.28 1.23 0.80 1.90 2009 -3.28 -2.19 -3.87 -2.10 2010 2.47 3.08 2.86 3.90 2011 1.74 1.91 2.21 3.05 2012 2.04 2.78 1.99 2.91	1997	3.76	4.49	2.40	3.80	
1999 4.05 4.85 3.20 4.20 2000 3.67 5.00 3.90 5.30 2001 0.23 1.24 1.10 2.80 2002 1.60 2.45 2.20 3.30 2003 2.51 3.11 1.90 2.60 2004 3.58 4.44 4.30 5.00 2005 2.95 3.53 3.20 3.70 2006 2.66 3.32 2.80 3.70 2007 1.79 2.23 1.70 2.40 2008 -0.28 1.23 0.80 1.90 2009 -3.28 -2.19 -3.87 -2.10 2010 2.47 3.08 2.86 3.90 2011 1.74 1.91 2.21 3.05 2012 2.04 2.78 1.99 2.91	1998	3.66	4.45	2.80	3.50	
2000 3.67 5.00 3.90 5.30 2001 0.23 1.24 1.10 2.80 2002 1.60 2.45 2.20 3.30 2003 2.51 3.11 1.90 2.60 2004 3.58 4.44 4.30 5.00 2005 2.95 3.53 3.20 3.70 2006 2.66 3.32 2.80 3.70 2007 1.79 2.23 1.70 2.40 2008 -0.28 1.23 0.80 1.90 2009 -3.28 -2.19 -3.87 -2.10 2010 2.47 3.08 2.86 3.90 2011 1.74 1.91 2.21 3.05 2012 2.04 2.78 1.99 2.91	1999	4.05	4.85	3.20	4.20	
2001 0.23 1.24 1.10 2.80 2002 1.60 2.45 2.20 3.30 2003 2.51 3.11 1.90 2.60 2004 3.58 4.44 4.30 5.00 2005 2.95 3.53 3.20 3.70 2006 2.66 3.32 2.80 3.70 2006 2.66 3.32 2.80 3.70 2007 1.79 2.23 1.70 2.40 2008 -0.28 1.23 0.80 1.90 2009 -3.28 -2.19 -3.87 -2.10 2010 2.47 3.08 2.86 3.90 2011 1.74 1.91 2.21 3.05 2012 2.04 2.78 1.99 2.91	2000	3.67	5.00	3.90	5.30	
2002 1.60 2.45 2.20 3.30 2003 2.51 3.11 1.90 2.60 2004 3.58 4.44 4.30 5.00 2005 2.95 3.53 3.20 3.70 2006 2.66 3.32 2.80 3.70 2007 1.79 2.23 1.70 2.40 2008 -0.28 1.23 0.80 1.90 2009 -3.28 -2.19 -3.87 -2.10 2010 2.47 3.08 2.86 3.90 2011 1.74 1.91 2.21 3.05 2012 2.04 2.78 1.99 2.91	2001	0.23	1.24	1.10	2.80	
2003 2.51 3.11 1.90 2.60 2004 3.58 4.44 4.30 5.00 2005 2.95 3.53 3.20 3.70 2006 2.66 3.32 2.80 3.70 2007 1.79 2.23 1.70 2.40 2008 -0.28 1.23 0.80 1.90 2009 -3.28 -2.19 -3.87 -2.10 2010 2.47 3.08 2.86 3.90 2011 1.74 1.91 2.21 3.05 2012 2.04 2.78 1.99 2.91	2002	1.60	2.45	2.20	3.30	
2004 3.58 4.44 4.30 5.00 2005 2.95 3.53 3.20 3.70 2006 2.66 3.32 2.80 3.70 2007 1.79 2.23 1.70 2.40 2008 -0.28 1.23 0.80 1.90 2009 -3.28 -2.19 -3.87 -2.10 2010 2.47 3.08 2.86 3.90 2011 1.74 1.91 2.21 3.05 2012 2.04 2.78 1.99 2.91	2003	2.51	3.11	1.90	2.60	
2005 2.95 3.53 3.20 3.70 2006 2.66 3.32 2.80 3.70 2007 1.79 2.23 1.70 2.40 2008 -0.28 1.23 0.80 1.90 2009 -3.28 -2.19 -3.87 -2.10 2010 2.47 3.08 2.86 3.90 2011 1.74 1.91 2.21 3.05 2012 2.04 2.78 1.99 2.91	2004	3.58	4.44	4.30	5.00	
2006 2.66 3.32 2.80 3.70 2007 1.79 2.23 1.70 2.40 2008 -0.28 1.23 0.80 1.90 2009 -3.28 -2.19 -3.87 -2.10 2010 2.47 3.08 2.86 3.90 2011 1.74 1.91 2.21 3.05 2012 2.04 2.78 1.99 2.91 2013 1.86 1.01 1.57 2.20	2005	2.95	3.53	3.20	3.70	
2007 1.79 2.23 1.70 2.40 2008 -0.28 1.23 0.80 1.90 2009 -3.28 -2.19 -3.87 -2.10 2010 2.47 3.08 2.86 3.90 2011 1.74 1.91 2.21 3.05 2012 2.04 2.78 1.99 2.91 2013 1.86 1.01 1.57 2.20	2006	2.66	3.32	2.80	3.70	
2008 -0.28 1.23 0.80 1.90 2009 -3.28 -2.19 -3.87 -2.10 2010 2.47 3.08 2.86 3.90 2011 1.74 1.91 2.21 3.05 2012 2.04 2.78 1.99 2.91 2013 1.86 1.01 1.57 2.20	2007	1.79	2.23	1.70	2.40	
2009-3.28-2.19-3.87-2.1020102.473.082.863.9020111.741.912.213.0520122.042.781.992.9120131.861.011.572.20	2008	-0.28	1.23	0.80	1.90	
20102.473.082.863.9020111.741.912.213.0520122.042.781.992.9120131.861.011.572.20	2009	-3.28	-2.19	-3.87	-2.10	
20111.741.912.213.0520122.042.781.992.9120131.861.011.572.20	2010	2.47	3.08	2.86	3.90	
2012 2.04 2.78 1.99 2.91 2013 1.86 1.01 1.57 2.20	2011	1.74	1.91	2.21	3.05	
2012 1.86 1.01 1.57 2.20	2012	2.04	2.78	1.99	2.91	
2015 1.80 1.91 1.57 2.30	2013	1.86	1.91	1.57	2.30	

α	β	σ_z^2	σ_w^2	$\hat{\alpha}$ (SE)	$\hat{\beta}$ (SE)
0	-2	0.5	0.5	-0.008 (0.269)	-1.843 (0.168)
0	-2	0.5	2.0	-0.006 (0.317)	-1.581 (0.206)
0	-2	2.0	0.5	-0.011 (0.295)	-1.912 (0.207)
0	-2	2.0	2.0	-0.008 (0.350)	-1.631 (0.248)
0	0	0.5	0.5	-0.010 (0.210)	-0.014 (0.133)
0	0	0.5	2.0	-0.009 (0.216)	0.029 (0.126)
0	0	2.0	0.5	-0.012 (0.256)	-0.083 (0.179)
0	0	2.0	2.0	-0.012 (0.246)	-0.022 (0.171)
0	2	0.5	0.5	-0.011 (0.191)	1.814 (0.128)
0	2	0.5	2.0	-0.013 (0.199)	1.639 (0.137)
0	2	2.0	0.5	-0.014 (0.223)	1.745 (0.159)
0	2	2.0	2.0	-0.015 (0.227)	1.588 (0.164)
5	-2	0.5	0.5	4.992 (0.269)	-1.843 (0.178)
5	-2	0.5	2.0	4.994 (0.318)	-1.581 (0.198)
5	-2	2.0	0.5	4.989 (0.299)	-1.912 (0.210)
5	-2	2.0	2.0	4.991 (0.358)	-1.631 (0.250)
5	0	0.5	0.5	4.990 (0.261)	-0.014 (0.132)
5	0	0.5	2.0	4.991 (0.213)	0.029 (0.122)
5	0	2.0	0.5	4.988 (0.250)	-0.083 (0.171)
5	0	2.0	2.0	4.988 (0.253)	-0.022 (0.167)
5	2	0.5	0.5	4.989 (0.199)	1.814 (0.127)
5	2	0.5	2.0	4.987 (0.208)	1.639 (0.135)
5	2	2.0	0.5	4.986 (0.226)	1.745 (0.166)
5	2	2.0	2.0	4.985 (0.221)	1.588 (0.156)

Table 3: Simulation experiments for the case where N = 20 and $\sigma_{\varepsilon}^2 = 0.5$. The cells are average estimates of the parameters and associated standard errors (SE) across 1000 replications.

α	β	σ_z^2	σ_w^2	$\hat{\alpha}$ (SE)	$\hat{\beta}$ (SE)
0	-2	0.5	0.5	-0.015 (0.464)	-1.788 (0.260)
0	-2	0.5	2.0	-0.013 (0.494)	-1.502 (0.288)
0	-2	2.0	0.5	-0.017 (0.463)	-1.857 (0.291)
0	-2	2.0	2.0	-0.015 (0.516)	-1.552 (0.326)
0	0	0.5	0.5	-0.016 (0.407)	0.040 (0.244)
0	0	0.5	2.0	-0.016 (0.407)	0.108 (0.208)
0	0	2.0	0.5	-0.019 (0.426)	-0.029 (0.273)
0	0	2.0	2.0	-0.019 (0.427)	0.058 (0.254)
0	2	0.5	0.5	-0.018 (0.382)	1.868 (0.224)
0	2	0.5	2.0	-0.020 (0.375)	1.718 (0.208)
0	2	2.0	0.5	-0.021 (0.406)	1.800 (0.257)
0	2	2.0	2.0	-0.022 (0.395)	1.667 (0.232)
5	-2	0.5	0.5	4.985 (0.462)	-1.788 (0.265)
5	-2	0.5	2.0	4.988 (0.490)	-1.502 (0.287)
5	-2	2.0	0.5	4.983 (0.468)	-1.857 (0.287)
5	-2	2.0	2.0	4.985 (0.500)	-1.552 (0.319)
5	0	0.5	0.5	4.984 (0.411)	0.040 (0.234)
5	0	0.5	2.0	4.984 (0.408)	0.108 (0.226)
5	0	2.0	0.5	4.981 (0.448)	-0.029 (0.272)
5	0	2.0	2.0	4.982 (0.420)	0.058 (0.243)
5	2	0.5	0.5	4.982 (0.393)	1.868 (0.225)
5	2	0.5	2.0	4.980 (0.378)	1.718 (0.210)
5	2	2.0	0.5	4.979 (0.385)	1.800 (0.250)
5	2	2.0	2.0	4.978 (0.387)	1.667 (0.229)

Table 4: Simulation experiments for the case where N = 20 and $\sigma_{\varepsilon}^2 = 2.0$. The cells are average estimates of the parameters and associated standard errors (SE) across 1000 replications.

α	β	σ_z^2	σ_w^2	$\hat{\alpha}$ (SE))	$\hat{\beta}$ (SE)	
0	-2	0.5	0.5	0.000	(0.093)	-1.878	(0.080)
0	-2	0.5	2.0	-0.000	(0.120)	-1.589	(0.095)
0	-2	2.0	0.5	-0.000	(0.114)	-1.866	(0.110)
0	-2	2.0	2.0	-0.001	(0.132)	-1.580	(0.115)
0	0	0.5	0.5	0.001	(0.088)	-0.036	(0.075)
0	0	0.5	2.0	0.001	(0.086)	-0.048	(0.068)
0	0	2.0	0.5	0.001	(0.109)	-0.024	(0.106)
0	0	2.0	2.0	0.001	(0.105)	-0.040	(0.097)
0	2	0.5	0.5	0.002	(0.110)	1.806	(0.094)
0	2	0.5	2.0	0.003	(0.138)	1.493	(0.117)
0	2	2.0	0.5	0.002	(0.128)	1.818	(0.118)
0	2	2.0	2.0	0.002	(0.149)	1.501	(0.140)
5	-2	0.5	0.5	5.000	(0.095)	-1.878	(0.082)
5	-2	0.5	2.0	5.000	(0.120)	-1.589	(0.097)
5	-2	2.0	0.5	5.000	(0.114)	-1.866	(0.111)
5	-2	2.0	2.0	5.000	(0.139)	-1.580	(0.112)
5	0	0.5	0.5	5.001	(0.086)	-0.036	(0.077)
5	0	0.5	2.0	5.001	(0.088)	-0.048	(0.070)
5	0	2.0	0.5	5.001	(0.107)	-0.024	(0.105)
5	0	2.0	2.0	5.001	(0.107)	-0.040	(0.094)
	_						
5	2	0.5	0.5	5.002	(0.108)	1.806	(0.093)
5	2	0.5	2.0	5.003	(0.138)	1.493	(0.120)
5	2	2.0	0.5	5.002	(0.127)	1.818	(0.116)
5	2	2.0	2.0	5.002	(0.149)	1.501	(0.143)

Table 5: Simulation experiments for the case where N = 100 and $\sigma_{\varepsilon}^2 = 0.5$. The cells are average estimates of the parameters and associated standard errors (SE) across 1000 replications.

β	σ_z^2	σ_w^2	$\hat{\alpha}$ (SE)	$\hat{\beta}$ (SE)	
-2	0.5	0.5	0.002	(0.161)	-1.926	(0.129)
-2	0.5	2.0	0.001	(0.176)	-1.645	(0.131)
-2	2.0	0.5	0.001	(0.174)	-1.914	(0.146)
-2	2.0	2.0	0.001	(0.183)	-1.637	(0.139)
0	0.5	0.5	0.003	(0.158)	-0.084	(0.131)
0	0.5	2.0	0.003	(0.156)	-0.104	(0.119)
0	2.0	0.5	0.002	(0.177)	-0.072	(0.146)
0	2.0	2.0	0.002	(0.174)	-0.096	(0.137)
2	0.5	0.5	0.004	(0.180)	1.758	(0.146)
2	0.5	2.0	0.004	(0.200)	1.436	(0.158)
2	2.0	0.5	0.003	(0.190)	1.770	(0.164)
2	2.0	2.0	0.004	(0.210)	1.444	(0.174)
-2	0.5	0.5	5.002	(0.158)	-1.926	(0.126)
-2	0.5	2.0	5.001	(0.175)	-1.914	(0.128)
-2	2.0	0.5	5.001	(0.175)	-1.914	(0.148)
-2	2.0	2.0	5.001	(0.190)	-1.637	(0.141)
0	0.5	0.5	5.003	(0.161)	-0.084	(0.129)
0	0.5	2.0	5.003	(0.162)	-0.104	(0.122)
0	2.0	0.5	5.002	(0.175)	-0.072	(0.153)
0	2.0	2.0	5.002	(0.175)	-0.096	(0.141)
2	0.5	0.5	5.004	(0.176)	1.758	(0.148)
2	0.5	2.0	5.004	(0.197)	1.436	(0.161)
2	2.0	0.5	5.003	(0.191)	1.770	(0.165)
2	2.0	2.0	5.004	(0.211)	1.444	(0.185)
	β -2 -2 -2 -2 -2 -2 -2 -2	$\beta \qquad \sigma_z^2 \\ -2 \qquad 0.5 \\ -2 \qquad 0.5 \\ -2 \qquad 2.0 \\ -2 \qquad 2.0 \\ 0 \qquad 0.5 \\ 0 \qquad 0.5 \\ 0 \qquad 0.5 \\ 0 \qquad 2.0 \\ 2 \qquad 0.5 \\ 2 \qquad 0.5 \\ 2 \qquad 0.5 \\ 2 \qquad 2.0 \\ 2 \qquad 2.0 \\ -2 \qquad 2.0 \\ -2 \qquad 2.0 \\ 0 \qquad 0 \qquad 0.5 \\ 0 \qquad 2.0 \\ 2 \qquad 0.5 \\ 0 \qquad 0 \qquad 0 \qquad 0.5 \\ 0 \qquad 0$	$\beta \qquad \sigma_z^2 \qquad \sigma_w^2 \\ -2 \qquad 0.5 \qquad 0.5 \\ -2 \qquad 0.5 \qquad 2.0 \\ -2 \qquad 2.0 \qquad 0.5 \\ -2 \qquad 2.0 \qquad 2.0 \\ 0 \qquad 0.5 \qquad 0.5 \\ -2 \qquad 2.0 \qquad 2.0 \\ 0 \qquad 0.5 \qquad 0.5 \\ 0 \qquad 0.5 \qquad 2.0 \\ 0 \qquad 2.0 \qquad 0.5 \\ 0 \qquad 2.0 \qquad 2.0 \\ 2 \qquad 0.5 \qquad 0.5 \\ 2 \qquad 0.5 \qquad 2.0 \\ 2 \qquad 0.5 \qquad 2.0 \\ 2 \qquad 2.0 \qquad 0.5 \\ 2 \qquad 0.5 \qquad 2.0 \\ 0 \qquad 0 \qquad 0.5 \qquad 0.5 \\ -2 \qquad 0.5 \qquad 2.0 \\ 0 \qquad 0 \qquad 0.5 \qquad 0.5 \\ -2 \qquad 0.0 \\ 0 \qquad 0 \qquad 0.5 \qquad 0.5 \\ 0 \qquad 0 \qquad 0 \qquad 0.5 \qquad 0.5 \\ 0 \qquad 0$	β σ_z^2 σ_w^2 $\hat{\alpha}$ (SE -2 0.5 0.5 0.002 -2 0.5 2.0 0.001 -2 2.0 0.5 0.001 -2 2.0 2.0 0.001 -2 2.0 2.0 0.001 0 0.5 0.5 0.003 0 0.5 2.0 0.002 0 2.0 2.0 0.002 0 2.0 2.0 0.002 2 0.5 0.5 0.002 2 0.5 0.5 0.002 2 0.5 0.5 0.002 2 0.5 0.5 0.002 2 0.5 0.5 0.004 2 2.0 2.0 5.001 -2 0.5 0.5 5.002 -2 0.5 0.5 5.003 0 0.5 2.0 5.003 0 2.0 5.0	β σ_z^2 σ_w^2 $\hat{\alpha}$ (SE) -2 0.5 0.5 0.002 (0.161) -2 0.5 2.0 0.001 (0.176) -2 2.0 0.5 0.001 (0.174) -2 2.0 2.0 0.001 (0.183) 0 0.5 0.5 0.003 (0.158) 0 0.5 2.0 0.002 (0.177) 0 2.0 2.0 0.002 (0.177) 0 2.0 2.0 0.002 (0.174) 2 0.5 0.5 0.004 (0.180) 2 0.5 2.0 0.004 (0.200) 2 0.5 2.0 0.004 (0.210) -2 0.5 0.5 5.001 (0.175) 2 0.5 2.0 5.001 (0.175) -2 2.0 2.0 5.001 (0.175) -2 2.0 2.0 5.003 (0.161) 0 0.5 5.003 (0.162) 0 0.5 5.002 (0.175) -2 2.0 2.0	β σ_z^2 σ_w^2 $\hat{\alpha}$ (SE) $\hat{\beta}$ (SE) -2 0.5 0.5 0.002 (0.161) -1.926 -2 0.5 2.0 0.001 (0.176) -1.645 -2 2.0 0.5 0.001 (0.174) -1.914 -2 2.0 2.0 0.001 (0.173) -1.637 0 0.5 0.5 0.003 (0.158) -0.084 0 0.5 2.0 0.003 (0.158) -0.084 0 0.5 2.0 0.003 (0.177) -0.072 0 2.0 2.0 0.002 (0.174) -0.096 2 0.5 0.5 0.004 (0.180) 1.758 2 0.5 2.0 0.004 (0.200) 1.436 2 2.0 2.0 5.001 (0.175) -1.914 -2 0.5 0.5 5.002 (0.158) -1.926 -2 0.5 0.5 5.001 (0.175) -1.914 -2 2.0 2.0 5.003 (0.161) -0.084

Table 6: Simulation experiments for the case where N = 100 and $\sigma_{\varepsilon}^2 = 2.0$. The cells are average estimates of the parameters and associated standard errors (SE) across 1000 replications.

Table 7: Symbolic regression results. Bootstrapped standard errors are in parentheses.

Forecast origin	eta_0	β_1	p value Wald test
January, year t-1	2.879 (2.448)	-0.141 (0.762)	0.032
February, year t-1	3.041 (2.014)	-0.206 (0.648)	0.028
March, year <i>t</i> -1	2.689 (2.122)	-0.080 (0.658)	0.021
April, year <i>t</i> -1	2.683 (2.090)	-0.076 (0.659)	0.033
May, year <i>t</i> -1	2.147 (2.231)	0.118 (0.734)	0.055
June, year <i>t</i> -1	1.773 (2.485)	0.250 (0.786)	0.108
July, year <i>t</i> -1	0.649 (2.927)	0.655 (0.956)	0.394
August, year <i>t</i> -1	-0.104 (2.640)	0.941 (0.893)	0.703
September, year <i>t</i> -1	0.554 (2.682)	0.703 (0.959)	0.749
October, year <i>t</i> -1	-0.459 (1.417)	1.148 (0.502)	0.944
November, year <i>t</i> -1	-0.412 (1.395)	1.156 (0.501)	0.951
December, year t-1	-0.324 (0.889)	1.131 (0.318)	0.915
January, year t	-0.000 (0.812)	0.999 (0.269)	1.000
February, year t	-0.167 (0.559)	1.043 (0.188)	0.951
March, year <i>t</i>	0.052 (0.429)	0.987 (0.146)	0.992
April, year <i>t</i>	-0.087 (0.420)	1.016 (0.141)	0.966
May, year t	-0.009 (0.403)	0.976 (0.130)	0.880
June, year t	-0.075 (0.386)	0.990 (0.127)	0.789
July, year <i>t</i>	-0.142 (0.331)	1.025 (0.106)	0.856
August, year t	-0.068 (0.332)	1.011 (0.118)	0.956
September, year t	-0.077 (0.317)	1.000 (0.107)	0.855
October, year t	-0.057 (0.291)	1.011 (0.109)	0.965
November, year t	-0.095 (0.276)	1.024 (0.105)	0.923
December, year t	-0.087 (0.219)	1.006 (0.081)	0.760

Table 8: MZ results, based on the consensus forecasts, first release data. Standard errors are in parentheses.

Forecast origin	β_0	eta_1	p value Wald test
January, year t-1	2.969 (0.258)	-0.028 (0.085)	0.000
February, year <i>t</i> -1	2.898 (0.276)	-0.024 (0.092)	0.000
March, year <i>t</i> -1	2.809 (0.293)	0.002 (0.097)	0.000
April, year <i>t</i> -1	2.708 (0.288)	0.028 (0.096)	0.000
May, year <i>t</i> -1	2.625 (0.283)	0.058 (0.094)	0.000
June, year <i>t</i> -1	2.533 (0.276)	0.090 (0.092)	0.000
July, year <i>t</i> -1	2.389 (0.266)	0.141 (0.088)	0.000
August, year <i>t</i> -1	2.271 (0.244)	0.163 (0.081)	0.000
September, year <i>t</i> -1	2.178 (0.258)	0.187 (0.086)	0.000
October, year <i>t</i> -1	1.558 (0.331)	0.363 (0.110)	0.000
November, year <i>t</i> -1	1.229 (0.361)	0.466 (0.120)	0.000
December, year <i>t</i> -1	0.900 (0.350)	0.592 (0.116)	0.014
January, year t	0.729 (0.361)	0.675 (0.120)	0.021
February, year t	0.441 (0.295)	0.787 (0.098)	0.071
March, year t	0.101 (0.284)	0.916 (0.094)	0.485
April, year t	0.101 (0.247)	0.937 (0.082)	0.661
May, year t	0.009 (0.212)	0.997 (0.070)	0.999
June, year t	0.009 (0.182)	1.002 (0.061)	0.986
July, year t	0.034 (0.162)	0.988 (0.054)	0.974
August, year t	-0.114 (0.141)	1.013 (0.047)	0.519
September, year t	-0.082 (0.124)	1.008 (0.041)	0.621
October, year t	-0.175 (0.085)	1.035 (0.028)	0.073
November, year t	-0.141 (0.067)	1.033 (0.022)	0.089
December, year t	-0.160 (0.055)	1.051 (0.018)	0.012

Table 9: MZ results, based on the consensus forecasts, most recent released data (computed: September 2018). Standard errors are in parentheses.

Forecast origin	eta_0	β_1	p value Wald test
January, year t-1	3.046 (0.219)	-0.059 (0.071)	0.000
February, year t-1	2.983 (0.236)	-0.060 (0.076)	0.000
March, year <i>t</i> -1	2.910 (0.253)	-0.039 (0.082)	0.000
April, year <i>t</i> -1	2.811 (0.251)	-0.012 (0.081)	0.000
May, year <i>t</i> -1	2.737 (0.248)	0.015 (0.080)	0.000
June, year <i>t</i> -1	2.674 (0.245)	0.036 (0.079)	0.000
July, year <i>t</i> -1	2.566 (0.241)	0.075 (0.078)	0.000
August, year t-1	2.470 (0.227)	0.089 (0.074)	0.000
September, year t-1	2.390 (0.241)	0.109 (0.078)	0.000
October, year t-1	1.858 (0.316)	0.256 (0.102)	0.000
November, year <i>t</i> -1	1.587 (0.349)	0.341 (0.113)	0.000
December, year t-1	1.331 (0.355)	0.442 (0.115)	0.000
January, year t	1.208 (0.373)	0.509 (0.121)	0.000
February, year t	1.007 (0.351)	0.590 (0.114)	0.002
March, year t	0.760 (0.372)	0.687 (0.121)	0.035
April, year t	0.766 (0.353)	0.707 (0.114)	0.037
May, year t	0.684 (0.333)	0.765 (0.108)	0.083
June, year t	0.691 (0.323)	0.768 (0.105)	0.072
July, year t	0.700 (0.307)	0.759 (0.098)	0.046
August, year t	0.576 (0.310)	0.776 (0.101)	0.083
September, year t	0.602 (0.302)	0.773 (0.098)	0.066
October, year t	0.516 (0.291)	0.799 (0.094)	0.102
November, year t	0.535 (0.278)	0.802 (0.090)	0.087
December, year t	0.516 (0.272)	0.820 (0.088)	0.115

References

Bertrand, P. and F. Goupil (1999), Descriptive statistics for symbolic data, in *Symbolic Data Analysis* (H.H. Bock and E. Diday, editors), Berlin: Springer Verlag, 103-124.

Billard, L. and E. Diday (2000), Regression analysis for interval-valued data, in *Data Analysis, Classification, and Related Methods* (H.A.L. Kiers, J.-P. Rasson, P.J.F. Groenen and M. Schader, editors), Berlin: Springer Verlag, 369-374.

Billard, L. and E. Diday (2003), From the statistics of data to the statistics of knowledge, *Journal of the American Statistical Association*, 98, 470-487.

Billard, L. and E. Diday (2007), *Symbolic Data Analysis: Conceptual Statistics and Data Mining*, Chichester: Wiley

Capistran, C., and A. Timmermann (2009), Disagreement and biases in inflation expectations, *Journal of Money, Credit and Banking* 41 (2-3), 365-396.

Clements, M.P. (2010), Explanations of the inconsistencies in survey respondents forecasts, *European Economic Review*, 54 (4), 536-549.

Clements, M.P. (2017), Do forecasters target first or later releases of national accounts data? ICMA Centre Discussion Papers in Finance icma-dp2017-03, Henley Business School, Reading University.

Dovern, F., U. Fritsche and J. Slacalek (2012), Disagreement among forecasters in G7 countries, *The Review of Economics and Statistics* 94 (4), 1081-1096.

Efron, B. and R.J. Tibshirani (1993). An Introduction to the Bootstrap. London: CRC Press.

Engelberg, J. C.F. Manski, and J. Williams (2009), Comparing the point predictions and subjective probability distributions of professional forecasters, *Journal of Business & Economic Statistics*, 27 (1), 30-41.

Genre, V., G. Kenny, A. Mayler and A. Timmermann (2013), Combining expert forecasts: Can anything beat the simple average? *International Journal of Forecasting* 29 (1), 108-121.

Lahiri, K., and X. Sheng (2010), Measuring forecast uncertainty by disagreement: The missing link, *Journal of Applied Econometrics* 25 (4), 514-538.

Laster, D., P. Bennett and I.S. Geoum (1999), Rational bias in macroeconomic forecasts, *Quarterly Journal of Economics* 114 (1), 293-318.

Legerstee, R. and P.H. Franses (2015), Does disagreement amongst forecasters have predictive value?, *Journal of Forecasting* 34 (4), 290-302.

Patton, A.J. and A. Timmermann (2007), Testing forecast optimality under unknown loss, *Journal* of the American Statistical Association, 102, 1172-1184.