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Abstract 
 

There are various reasons why professional forecasters may disagree in their quotes for 

macroeconomic variables. One reason is that they target at different vintages of the data. We 

propose a novel method to test forecast bias in case of such heterogeneity. The method is based on 

Symbolic Regression, where the variables of interest become interval variables. We associate the 

interval containing the vintages of data with the intervals of the forecasts. An illustration to 18 

years of forecasts for annual USA real GDP growth, given by the Consensus Economics 

forecasters, shows the relevance of the method.  
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Introduction and motivation 
 

This paper is all about the well-known Mincer Zarnowitz (1969) (MZ) auxiliary regression, which 

is often used to examine (the absence of) bias in forecasts. This regression, in general terms, reads 

as 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝛽𝛽0 + 𝛽𝛽1𝐹𝐹𝑅𝑅𝐹𝐹𝑅𝑅𝐹𝐹𝑅𝑅𝐹𝐹𝑅𝑅 + 𝜀𝜀 

 

Usually, the statistical test of interest concerns, 𝛽𝛽0 = 0 and 𝛽𝛽1 = 1, jointly. 

The setting in this paper concerns macroeconomic variables. For many such variables it 

holds that these experience revisions. For variables like real Gross Domestic Growth (GDP), after 

the first release, there can be at least five revisions for various OECD countries1.  

The second feature of our setting is that forecasts are often created by a range of 

professional forecasters. In the present paper for example we will consider the forecasters collected 

in Consensus Economics2. To evaluate the quality of the forecasts from these forecasters, one often 

takes the average quote (the consensus) or the median quote, and sometimes also measures of 

dispersion like the standard deviation or the variance are considered. The latter measures give an 

indication to what extent the forecasters disagree. Recent relevant studies are Capistran and 

Timmermann (2009), Dovern, Fritsche, and Slacalek (2012), Lahiri and Sheng (2010), Laster, 

Bennett, and Geoum (1999), and Legerstee and Franses (2015). Reasons for disagreement could 

be heterogeneity across forecasters caused by their differing reactions to news or noise, see Patton 

and Timmermann (2007), Engelberg, Manski and Williams (2009), and Clements (2010). 

 Recently, Clements (2017) suggested that there might be another reason why forecasters 

disagree, and that is, that they may target at different vintages of the macroeconomic data. Some 

may be concerned with the first (flash) quote, while others may have the final (say, after 5 years) 

value in mind. The problem however is that the analyst does not know who is doing what.  

                                                           
1 http://www.oecd.org/sdd/na/revisions-of-quarterly-gdp-in-selected-oecd-countries.htm 
2 http://www.consensuseconomics.com/. Other professional forecasters’ quotes can be found in 
the Survey of Professional Forecasters: https://www.philadelphiafed.org/research-and-data/real-
time-center/real-time-data/data-files/routput 

 

http://www.oecd.org/sdd/na/revisions-of-quarterly-gdp-in-selected-oecd-countries.htm
http://www.consensuseconomics.com/
https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/data-files/routput
https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/data-files/routput
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 The question then becomes how one should deal with the MZ regression. Of course, one 

can run the regression for each vintage on the mean of the forecasts. But then still, without knowing 

who is targeting what, it shall be difficult to interpret the estimated parameters in the MZ 

regression. At the same time, why should one want to reduce or remove heterogeneity by only 

looking at the mean?  

 To alleviate these issues, in this paper we propose to keep intact the heterogeneity of the 

realized values of the macroeconomic variables as well as the unknown heterogeneity across the 

quotes of the professional forecasters. Our proposal relies on the notion to move away from scalar 

measurements to interval measurements. Such data are typically called symbolic data, see for 

example Bertrand and Goupil (1999) and Billard and Diday (2007). The MZ regression for such 

symbolic data thus becomes a so-called Symbolic Regression.  

 The outline of our paper is as follows. In the next section we provide more details about 

the setting of interest. For ease of reading, we will regularly refer to our illustration for annual 

USA real growth rates, but the material in this section can be translated to a much wider range of 

applications. The following section deals with the estimation methodology for the Symbolic 

Regression. We will also run various simulation experiments to examine the reliability of the 

methods. Next, we will apply the novel MZ Symbolic Regression to the USA growth rates data 

and compare the outcomes with what one would have obtained if specific vintages were 

considered. It appears that the Symbolic MZ Regression is much more informative. The final 

section deals with a conclusion, limitations, and further research issues.   

 

Setting  

 
Consider the I vintages of data for a macroeconomic variable 𝑦𝑦𝑡𝑡𝑖𝑖, where 𝑅𝑅 = 1,2, . . , 𝐼𝐼 and 𝑅𝑅 =

1,2, … ,𝑇𝑇. In our illustration below we will have 𝐼𝐼 = 7 and 𝑅𝑅 = 1996, 1997, … . , 2013, so 𝑇𝑇 = 18. 

 Professional forecasters, like the ones united in Consensus Economics forecasts, give 

quotes during the months m, where 𝑚𝑚 = 1,2, … ,𝑀𝑀. For the Consensus Economics forecasters 𝑀𝑀 =

24, and the months span January in year t-1, February in year t-1, …, December in year t-1, January 

in year t, until and including December in year t. An example of the data appears in Table 1, where 

the quotes are presented for May 13, 2013, for the years 2013 and 2014.  

The forecasts can be denoted as 
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𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚 with 𝑗𝑗 = 1,2, … , 𝐽𝐽𝑡𝑡,𝑚𝑚 

 
The number of forecasters can change per month and per forecast target, hence we write 𝐽𝐽𝑡𝑡,𝑚𝑚. In 

Table 1 this number is 29. For 2013, and in our notation, Table 1 considers 𝐽𝐽2013,5 and for 2014 it 

is 𝐽𝐽2014,17. 

 A key issue to bear in mind for later, and as indicated in the previous section, is that we do 

not observe  

 

𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚
𝑖𝑖  with 𝑗𝑗 = 1,2, … , 𝐽𝐽𝑡𝑡,𝑚𝑚 , 

 

that is, we do not know who of the forecasters is targeting which vintages of the data. 

 To run a Mincer Zarnowitz (MZ) regression, the forecasts per month are usually 

summarized by taking the median, by using a variance measure, or by the mean (“the consensus”), 

that is, by considering  

 

𝑦𝑦�𝑡𝑡,𝑚𝑚 =
1
𝐽𝐽𝑡𝑡,𝑚𝑚

�𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚

𝐽𝐽𝑡𝑡,𝑚𝑚

𝑗𝑗=1

 

 

The MZ regression then considered in practice is 

 

𝑦𝑦𝑡𝑡𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑦𝑦�𝑡𝑡,𝑚𝑚 + 𝜀𝜀𝑡𝑡 

 

for 𝑅𝑅 = 1,2, … ,𝑇𝑇, and this regression can be run for each 𝑚𝑚 = 1,2, … ,𝑀𝑀. Under the usual 

assumptions, parameter estimation can be done by Ordinary Least Squares. Next, one computes 

the Wald test for the joint null hypothesis 𝛽𝛽0 = 0,𝛽𝛽1 = 1. 

 Now, one can run this MZ test for each vintage of the data, but then still it is unknown what 

the estimated parameters in the MZ regression actually reflect. Therefore, we propose an 

alternative approach. We propose to consider, for 𝑅𝑅 = 1,2, … ,𝑇𝑇, the interval 
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(min
𝑖𝑖
𝑦𝑦𝑡𝑡𝑖𝑖;  max

𝑖𝑖
𝑦𝑦𝑡𝑡𝑖𝑖) 

 

as the dependent variable, instead of 𝑦𝑦𝑡𝑡𝑖𝑖, and to consider  

 

(min
𝑗𝑗
𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚;  max

𝑗𝑗
𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚) 

 

as the explanatory variable, instead of 𝑦𝑦�𝑡𝑡,𝑚𝑚. These two new variables are intervals, and often they 

are called symbolic variables. The MZ regression thus also becomes a so-called Symbolic 

Regression, see Bertrand and Goupil (1999), Billard and Diday (2000, 2003, 2007).  

 Table 2 presents an exemplary dataset for May in year t, so m = 17. Figure 1 visualizes the 

same data in a scatter diagram. Clearly, instead of points in the simple regression case, the data 

can now be represented as rectangles. 

 

How does Symbolic Regression work? 
 

When we denote the dependent variable for short as y and the dependent variable as x, we can 

compute for the Symbolic MZ Regression 

 

�̂�𝛽1 =
𝐶𝐶𝑅𝑅𝐶𝐶𝑅𝑅𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑅𝑅(𝑦𝑦, 𝑥𝑥)
𝑉𝑉𝑅𝑅𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑅𝑅(𝑥𝑥)

 

 

and  

 

�̂�𝛽0 = 𝑦𝑦� − �̂�𝛽1�̅�𝑥 

 

thereby drawing on the familiar OLS formulae.  

 Under the assumption that the data are uniformly distributed in the intervals, Billard and 

Diday (2000) derive the following results. At first, the averages are  
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𝑦𝑦� =
1

2𝑇𝑇
�(max

𝑖𝑖
𝑦𝑦𝑡𝑡𝑖𝑖 + min

𝑖𝑖
𝑦𝑦𝑡𝑡𝑖𝑖)

𝑡𝑡

 

 

and  

 

�̅�𝑥 =
1

2𝑇𝑇
�(max

𝑗𝑗
𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚 + min

𝑗𝑗
𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚)

𝑡𝑡

 

 

The covariance is computed as  

 

𝐶𝐶𝑅𝑅𝐶𝐶𝑅𝑅𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑅𝑅(𝑦𝑦, 𝑥𝑥)

=
1

4𝑇𝑇
�(max

𝑖𝑖
𝑦𝑦𝑡𝑡𝑖𝑖 + min

𝑖𝑖
𝑦𝑦𝑡𝑡𝑖𝑖)

𝑡𝑡

(max
𝑗𝑗

𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚 + min
𝑗𝑗
𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚)

−
1

4𝑇𝑇2
��(max

𝑖𝑖
𝑦𝑦𝑡𝑡𝑖𝑖 + min

𝑖𝑖
𝑦𝑦𝑡𝑡𝑖𝑖)

𝑡𝑡

� ��(max
𝑗𝑗

𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚 + min
𝑗𝑗
𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚)

𝑡𝑡

� 

 

Finally, the variance is computed as 

 

𝑉𝑉𝑅𝑅𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑅𝑅(𝑥𝑥) =
1

4𝑇𝑇
�(max

𝑗𝑗
𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚 + min

𝑗𝑗
𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚)2

𝑡𝑡

−
1

4𝑇𝑇2
��(max

𝑗𝑗
𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚 + min

𝑗𝑗
𝑦𝑦�𝑗𝑗,𝑡𝑡|𝑚𝑚)

𝑡𝑡

�
2

 

 

This expression completes the relevant components to estimate the parameters. 

 

Standard errors 

 

To compute standard errors around the thus obtained parameter estimates �̂�𝛽0 and �̂�𝛽1, we resort to 

the bootstrap. By collecting T random draws of pairs of intervals, with replacement, and by 

repeating this B times, we compute the bootstrapped standard errors. Together, they are used to 

compute the joint Wald test for the null hypothesis that 𝛽𝛽0 = 0,𝛽𝛽1 = 1. 
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Simulations 

 

To learn how Symbolic Regression and the bootstrapping of standard errors works, we run some 

simulation experiments. To save notation, we take as the Data Generating Process (DGP) 

 

𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖 

 

for 𝑅𝑅 = 1,2, … ,𝑁𝑁. We set 𝑥𝑥𝑖𝑖 ~ 𝑁𝑁(0,1) and 𝜀𝜀𝑖𝑖 ~ 𝑁𝑁(0,𝜎𝜎𝜀𝜀2). Next, we translate the thus generated 𝑦𝑦𝑖𝑖 

and 𝑥𝑥𝑖𝑖 to intervals by creating  

 

(𝑦𝑦𝑖𝑖 − �𝑅𝑅1,𝑖𝑖�;  𝑦𝑦𝑖𝑖 + �𝑅𝑅2,𝑖𝑖�)   

(𝑥𝑥𝑖𝑖 − �𝑤𝑤1,𝑖𝑖�;  𝑥𝑥𝑖𝑖 + �𝑤𝑤2,𝑖𝑖�)   

 

where  

 

𝑅𝑅𝑗𝑗,𝑖𝑖 ~ 𝑁𝑁(0,𝜎𝜎𝑧𝑧2),   𝑗𝑗 = 1,2 

𝑤𝑤𝑗𝑗,𝑖𝑖 ~ 𝑁𝑁(0,𝜎𝜎𝑤𝑤2),   𝑗𝑗 = 1,2 

 

We set the number of simulation runs at 1000, and the number of bootstrap runs at B = 2000 (as 

suggested to be a reasonable number in Efron and Tibshirani, 1993). Experimentation with larger 

values of B did not show markedly different outcomes. The code is written in Python. We set N at 

20 and 100, while 𝛼𝛼 = 0 or 5, and 𝛽𝛽 = −2, or 0, or 2. The results are in Tables 3 to 6.  

 Table 3 shows that when we compare the cases where 𝜎𝜎𝑤𝑤2 = 0.5 versus 𝜎𝜎𝑤𝑤2 = 2.0 that a 

larger interval of the explanatory variable creates more bias than a larger interval for the dependent 

variable (compare 𝜎𝜎𝑧𝑧2 = 0.5 versus 𝜎𝜎𝑧𝑧2 = 2.0). Also, the bootstrapped standard errors get larger 

when the intervals of the data get wider, as expected.  

 Table 4 is the same as Table 3, but now 𝜎𝜎𝜀𝜀2 = 0.5 is replaced by 𝜎𝜎𝜀𝜀2 = 2.0. Overall this 

means that �̂�𝛽 deviates more from 𝛽𝛽 when the variance 𝜎𝜎𝜀𝜀2 increases. The differences across the 

deviations of 𝛼𝛼� versus 𝛼𝛼 are relatively small.  
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 Table 5 is the same as Table 3, but now 𝑁𝑁 = 20 is replaced by 𝑁𝑁 = 100. Clearly, a larger 

sample size entails less bias in the estimates, and also much smaller bootstrapped standard errors. 

But still, we see that 𝛼𝛼� is closer to 𝛼𝛼 then is �̂�𝛽 to 𝛽𝛽. 

 Table 6 is similar to Table 4, but now for 𝑁𝑁 = 100. A larger sample can offset the effects 

of increased variance 𝜎𝜎𝜀𝜀2, as the standard errors are reasonably small.  

 

Analysis of forecasts 
 

We now turn to an illustration of the Symbolic MZ regression. We choose to consider the forecasts 

for annual growth rates of real GDP in the USA, for the years 1996 to and including 2013. This 

makes 𝑇𝑇 = 18. Our data source3 gives annual growth rates per quarter. As there are no vintages 

of true annual growth data available, we decide to further consider the averages of each time these 

four quarterly growth rates. The data intervals are presented in Table 2. The right-hand side 

columns of Table 2 concern the forecasts created in May of year t, which means the case where 

𝑚𝑚 = 17. This implies that we can consider 24 Symbolic MZ regressions, each for each of the 24 

months.   

 Table 7 presents the estimation results, the bootstrapped standard errors and the p value of 

the Wald test for the null hypothesis that 𝛽𝛽0 = 0,𝛽𝛽1 = 1. We see from the last column that a p 

value > 0.05 appears for the forecasts quoted in May in year t-1, and that after that the p value 

stays in excess of 0.05. However, if we look at the individual parameter estimates, we see that 

𝛽𝛽1 = 0 is with the 95% confidence interval until September, year t-1. So, Table 7 basically tells 

us that unbiased forecasts seem to appear from October, year t-1 onwards.  

 Let us now turn to the MZ regression in its standard format, that is, the explanatory variable 

is the mean of the forecasts and the variable to be explained in one of the vintages of the data. 

Table 8 presents the results for the first (flash) release real GDP annual growth rates, whereas 

Table 9 presents the results for the currently available vintage. We also have the results of all 

vintages in between, but these do not add much to the conclusions that can be drawn from Tables 

8 and 9.  

                                                           
3 http://www.oecd.org/sdd/na/revisions-of-quarterly-gdp-in-selected-oecd-countries.htm 

http://www.oecd.org/sdd/na/revisions-of-quarterly-gdp-in-selected-oecd-countries.htm
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 First, we see that the standard errors in Table 8 and 9 are much smaller than the 

bootstrapped standard errors for the Symbolic MZ Regression. This of course does not come as a 

surprise as we have point data instead of intervals. For the first vintage of data in Table 8, we see 

from the p values for the Wald test in the last column that only since March, year t, the null 

hypothesis of no bias can be rejected (p value is 0.485). One month earlier, the p value is 0.071, 

but for that month we see that 𝛽𝛽1 = 1 is not in 95% confidence interval (0.787 with a SE of 0.098). 

Note by the way that the forecasts created in the very last month of the current year (December, 

year t) are biased (p value of 0.012), at least for the first release data.  

 Table 9 delivers quite intriguing results for the forecasts concerning the most recent vintage 

of data. The p value of the Wald test becomes > 0.05 (that is, 0.083) for the quotes in May, year t, 

but note that 𝛽𝛽1 = 1 is not in 95% confidence interval for 23 of the 24 months. Only for the 

forecasts in December, year t, the forecasts do not seem biased (p value of 0.115, and 𝛽𝛽1 = 1 is in 

the 95% confidence interval (0.820 with SE of 0.088).  

 In sum, it seems that individual MZ regressions for vintages of data deliver confusing 

outcomes, which seem hard to interpret. Let alone that we effectively do not know who of the 

forecasters is targeting at which vintage. Moreover, it seems that outcomes of the Symbolic MZ 

Regression are much more coherent and straightforward to interpret. Of course, due to the very 

nature of the data, that is, intervals versus points, statistical precision in the Symbolic Regression 

is smaller, but the results seem to have much more face value and interpretability than the standard 

MZ regressions.  

 

Conclusion and discussion 
 

Forecasts created by professional forecasters can show substantial dispersion. Such dispersion can 

change over time, but can also concern the forecast horizon. The relevant literature has suggested 

various sources for dispersion. A recent contribution to this literature by Clements (2017) adds 

another potential source of heterogeneity, and this is that forecasters may target different vintages 

of the macroeconomic data. Naturally, the link between targets and forecasts is unknown to the 

analyst.  

 To alleviate this problem, we proposed an alternative version of the Mincer Zarnowitz 

(MZ) regression to examine forecast bias. This version adopts the notion that the vintages of the 
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macroeconomic data can perhaps best be interpreted as interval data, where at the same time, the 

forecasts also have upper and lower bounds. Taking the data as intervals makes the standard MZ 

regression a so-called Symbolic MZ Regression. Simulations showed that reliable inference can 

be drawn from this auxiliary regression. An illustration for annual USA GDP growth rates showed 

its merits.  

 A limitation to the interval-based data analysis is the potential size of the intervals. More 

dispersion leads to less precision, and statistical inference becomes less reliable. Also, the sample 

size for a Symbolic Regression should be quite substantial, again for reliability. This might hamper 

its use for some variables and sample sizes in macroeconomics. 

 Further applications of the new regression should shine light on its practical usefulness. 

The method does have conceptual and face validity, but more experience with data and forecasts 

for more variables related to more countries should provide more credibility.  
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Figure 1: The intervals of Table 2.  
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Table 1: An example of the data 

Survey Date:  Gross Domestic 
May 13, 2013  Product 
   real, % change 
   2013 2014 
     
Consensus (Mean)  1,932 2,702 
     
High  2,300 3,380 
Low  1,572 2,007 
Standard Deviation  0,159 0,319 
Number of Forecasts  29 29 
     
     
     
     
UBS  2,300 3,000 
American Int'l Group  2,200 2,600 
First Trust Advisors  2,200 3,000 
Ford Motor Company  2,172 2,996 
Morgan Stanley  2,100 2,500 
Eaton Corporation  2,053 2,887 
Action Economics  2,000 2,800 
RDQ Economics  2,000 2,600 
General Motors  1,960 2,968 
Goldman Sachs  1,959 2,914 
Swiss Re  1,953 3,220 
Macroeconomic Advisers  1,941 2,968 
Moody's Analytics  1,940 3,380 
Northern Trust  1,906 2,722 
Citigroup  1,900 2,800 
DuPont  1,900 3,000 
Fannie Mae  1,900 2,500 
Inforum - Univ of Maryland  1,900 2,600 
Wells Capital Mgmt  1,900 2,600 
Univ of Michigan - RSQE  1,880 2,735 
Credit Suisse  1,868 2,300 
PNC Financial Services  1,846 2,398 
Nat Assn of Home Builders  1,843 2,622 
IHS Global Insight  1,841 2,799 
Barclays Capital  1,803 2,272 
Wells Fargo  1,800 2,100 
Bank of America - Merrill  1,756 2,684 
The Conference Board  1,643 2,374 
Georgia State University  1,572 2,007 
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Table 2: Forecasts and vintages as symbolic data. For the years 1996 to 2013 there are 7 vintages 

of quotes. For the month May in year t there are in between 20 to 30 forecasts. The data in this 

table are the lower and upper bounds of the intervals of these observations. The data are rounded 

(at two decimal places) for expository purposes. 

 

 

  Vintages of real GDP growth   Forecasts 

  Lower bound  Upper bound  Lower bound  Upper bound 

Year    

 

1996   2.45  3.79    1.80  2.50   
1997   3.76  4.49    2.40  3.80 
1998   3.66  4.45    2.80  3.50 
1999   4.05  4.85    3.20  4.20 
2000   3.67  5.00    3.90  5.30  
2001   0.23  1.24    1.10  2.80 
2002   1.60  2.45    2.20  3.30 
2003   2.51  3.11    1.90  2.60 
2004   3.58  4.44    4.30  5.00 
2005   2.95  3.53    3.20  3.70  
2006   2.66  3.32    2.80  3.70 
2007   1.79  2.23    1.70  2.40 
2008   -0.28  1.23    0.80  1.90 
2009   -3.28  -2.19    -3.87  -2.10 
2010   2.47  3.08    2.86  3.90 
2011   1.74  1.91    2.21  3.05 
2012   2.04  2.78    1.99  2.91 
2013   1.86  1.91    1.57  2.30 
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Table 3: Simulation experiments for the case where 𝑁𝑁 = 20 and 𝜎𝜎𝜀𝜀2 = 0.5. The cells are average 

estimates of the parameters and associated standard errors (SE) across 1000 replications. 

 

𝛼𝛼 𝛽𝛽 𝜎𝜎𝑧𝑧2 𝜎𝜎𝑤𝑤2    𝛼𝛼� (SE)   �̂�𝛽 (SE)   

 

0 -2 0.5 0.5   -0.008 (0.269)  -1.843 (0.168) 
0 -2 0.5 2.0   -0.006 (0.317)  -1.581 (0.206) 
0 -2 2.0 0.5   -0.011 (0.295)  -1.912 (0.207) 
0 -2 2.0 2.0   -0.008 (0.350)  -1.631 (0.248) 
 
0 0 0.5 0.5   -0.010 (0.210)  -0.014 (0.133) 
0 0 0.5 2.0   -0.009 (0.216)  0.029 (0.126) 
0 0 2.0 0.5   -0.012 (0.256)  -0.083 (0.179) 
0 0 2.0 2.0   -0.012 (0.246)  -0.022 (0.171) 
 
0 2 0.5 0.5   -0.011 (0.191)  1.814 (0.128) 
0 2 0.5 2.0   -0.013 (0.199)  1.639 (0.137) 
0 2 2.0 0.5   -0.014 (0.223)  1.745 (0.159) 
0 2 2.0 2.0   -0.015 (0.227)  1.588 (0.164) 
 
 
5 -2 0.5 0.5   4.992 (0.269)  -1.843 (0.178) 
5 -2 0.5 2.0   4.994 (0.318)  -1.581 (0.198) 
5 -2 2.0 0.5   4.989 (0.299)  -1.912 (0.210) 
5 -2 2.0 2.0   4.991 (0.358)  -1.631 (0.250) 
 
5 0 0.5 0.5   4.990 (0.261)  -0.014 (0.132) 
5 0 0.5 2.0   4.991 (0.213)  0.029 (0.122) 
5 0 2.0 0.5   4.988 (0.250)  -0.083 (0.171) 
5 0 2.0 2.0   4.988 (0.253)  -0.022 (0.167) 
 
5 2 0.5 0.5   4.989 (0.199)  1.814 (0.127) 
5 2 0.5 2.0   4.987 (0.208)  1.639 (0.135) 
5 2 2.0 0.5   4.986 (0.226)  1.745 (0.166) 
5 2 2.0 2.0   4.985 (0.221)  1.588 (0.156) 
 

 

  



15 
 

Table 4: Simulation experiments for the case where 𝑁𝑁 = 20 and 𝜎𝜎𝜀𝜀2 = 2.0. The cells are average 

estimates of the parameters and associated standard errors (SE) across 1000 replications. 

 

𝛼𝛼 𝛽𝛽 𝜎𝜎𝑧𝑧2 𝜎𝜎𝑤𝑤2    𝛼𝛼� (SE)   �̂�𝛽 (SE)   

 

0 -2 0.5 0.5   -0.015 (0.464)  -1.788 (0.260) 
0 -2 0.5 2.0   -0.013 (0.494)  -1.502 (0.288) 
0 -2 2.0 0.5   -0.017 (0.463)  -1.857 (0.291) 
0 -2 2.0 2.0   -0.015 (0.516)  -1.552 (0.326) 
 
0 0 0.5 0.5   -0.016 (0.407)  0.040 (0.244) 
0 0 0.5 2.0   -0.016 (0.407)  0.108 (0.208) 
0 0 2.0 0.5   -0.019 (0.426)  -0.029 (0.273) 
0 0 2.0 2.0   -0.019 (0.427)  0.058 (0.254) 
 
0 2 0.5 0.5   -0.018 (0.382)  1.868 (0.224) 
0 2 0.5 2.0   -0.020 (0.375)  1.718 (0.208) 
0 2 2.0 0.5   -0.021 (0.406)  1.800 (0.257) 
0 2 2.0 2.0   -0.022 (0.395)  1.667 (0.232) 
 
 
5 -2 0.5 0.5   4.985 (0.462)  -1.788 (0.265) 
5 -2 0.5 2.0   4.988 (0.490)  -1.502 (0.287) 
5 -2 2.0 0.5   4.983 (0.468)  -1.857 (0.287) 
5 -2 2.0 2.0   4.985 (0.500)  -1.552 (0.319) 
 
5 0 0.5 0.5   4.984 (0.411)  0.040 (0.234) 
5 0 0.5 2.0   4.984 (0.408)  0.108 (0.226) 
5 0 2.0 0.5   4.981 (0.448)  -0.029 (0.272) 
5 0 2.0 2.0   4.982 (0.420)  0.058 (0.243) 
 
5 2 0.5 0.5   4.982 (0.393)  1.868 (0.225) 
5 2 0.5 2.0   4.980 (0.378)  1.718 (0.210) 
5 2 2.0 0.5   4.979 (0.385)  1.800 (0.250) 
5 2 2.0 2.0   4.978 (0.387)  1.667 (0.229) 
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Table 5: Simulation experiments for the case where 𝑁𝑁 = 100 and 𝜎𝜎𝜀𝜀2 = 0.5. The cells are average 

estimates of the parameters and associated standard errors (SE) across 1000 replications. 

 

𝛼𝛼 𝛽𝛽 𝜎𝜎𝑧𝑧2 𝜎𝜎𝑤𝑤2    𝛼𝛼� (SE)   �̂�𝛽 (SE)   

 

0 -2 0.5 0.5   0.000 (0.093)  -1.878 (0.080) 
0 -2 0.5 2.0   -0.000 (0.120)  -1.589 (0.095) 
0 -2 2.0 0.5   -0.000 (0.114)  -1.866 (0.110) 
0 -2 2.0 2.0   -0.001 (0.132)  -1.580 (0.115) 
 
0 0 0.5 0.5   0.001 (0.088)  -0.036 (0.075) 
0 0 0.5 2.0   0.001 (0.086)  -0.048 (0.068) 
0 0 2.0 0.5   0.001 (0.109)  -0.024 (0.106) 
0 0 2.0 2.0   0.001 (0.105)  -0.040 (0.097) 
 
0 2 0.5 0.5   0.002 (0.110)  1.806 (0.094) 
0 2 0.5 2.0   0.003 (0.138)  1.493 (0.117) 
0 2 2.0 0.5   0.002 (0.128)  1.818 (0.118) 
0 2 2.0 2.0   0.002 (0.149)  1.501 (0.140) 
 
 
5 -2 0.5 0.5   5.000 (0.095)  -1.878 (0.082) 
5 -2 0.5 2.0   5.000 (0.120)  -1.589 (0.097) 
5 -2 2.0 0.5   5.000 (0.114)  -1.866 (0.111) 
5 -2 2.0 2.0   5.000 (0.139)  -1.580 (0.112) 
 
5 0 0.5 0.5   5.001 (0.086)  -0.036 (0.077) 
5 0 0.5 2.0   5.001 (0.088)  -0.048 (0.070) 
5 0 2.0 0.5   5.001 (0.107)  -0.024 (0.105) 
5 0 2.0 2.0   5.001 (0.107)  -0.040 (0.094) 
 
5 2 0.5 0.5   5.002 (0.108)  1.806 (0.093) 
5 2 0.5 2.0   5.003 (0.138)  1.493 (0.120) 
5 2 2.0 0.5   5.002 (0.127)  1.818 (0.116) 
5 2 2.0 2.0   5.002 (0.149)  1.501 (0.143) 
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Table 6: Simulation experiments for the case where 𝑁𝑁 = 100 and 𝜎𝜎𝜀𝜀2 = 2.0. The cells are average 

estimates of the parameters and associated standard errors (SE) across 1000 replications. 

 

𝛼𝛼 𝛽𝛽 𝜎𝜎𝑧𝑧2 𝜎𝜎𝑤𝑤2    𝛼𝛼� (SE)   �̂�𝛽 (SE)   

 

0 -2 0.5 0.5   0.002 (0.161)  -1.926 (0.129) 
0 -2 0.5 2.0   0.001 (0.176)  -1.645 (0.131) 
0 -2 2.0 0.5   0.001 (0.174)  -1.914 (0.146) 
0 -2 2.0 2.0   0.001 (0.183)  -1.637 (0.139) 
 
0 0 0.5 0.5   0.003 (0.158)  -0.084 (0.131) 
0 0 0.5 2.0   0.003 (0.156)  -0.104 (0.119) 
0 0 2.0 0.5   0.002 (0.177)  -0.072 (0.146) 
0 0 2.0 2.0   0.002 (0.174)  -0.096 (0.137) 
 
0 2 0.5 0.5   0.004 (0.180)  1.758 (0.146) 
0 2 0.5 2.0   0.004 (0.200)  1.436 (0.158) 
0 2 2.0 0.5   0.003 (0.190)  1.770 (0.164) 
0 2 2.0 2.0   0.004 (0.210)  1.444 (0.174) 
 
 
5 -2 0.5 0.5   5.002 (0.158)  -1.926 (0.126) 
5 -2 0.5 2.0   5.001 (0.175)  -1.914 (0.128) 
5 -2 2.0 0.5   5.001 (0.175)  -1.914 (0.148) 
5 -2 2.0 2.0   5.001 (0.190)  -1.637 (0.141) 
 
5 0 0.5 0.5   5.003 (0.161)  -0.084 (0.129) 
5 0 0.5 2.0   5.003 (0.162)  -0.104 (0.122) 
5 0 2.0 0.5   5.002 (0.175)  -0.072 (0.153) 
5 0 2.0 2.0   5.002 (0.175)  -0.096 (0.141) 
 
5 2 0.5 0.5   5.004 (0.176)  1.758 (0.148) 
5 2 0.5 2.0   5.004 (0.197)  1.436 (0.161) 
5 2 2.0 0.5   5.003 (0.191)  1.770 (0.165) 
5 2 2.0 2.0   5.004 (0.211)  1.444 (0.185) 
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Table 7: Symbolic regression results. Bootstrapped standard errors are in parentheses. 

 

Forecast origin  𝛽𝛽0   𝛽𝛽1   p value Wald test  

 

January, year t-1  2.879 (2.448)  -0.141 (0.762)  0.032 
February, year t-1  3.041 (2.014)  -0.206 (0.648)  0.028 
March, year t-1  2.689 (2.122)  -0.080 (0.658)  0.021 
April, year t-1   2.683 (2.090)  -0.076 (0.659)  0.033 
May, year t-1   2.147 (2.231)  0.118 (0.734)  0.055 
June, year t-1   1.773 (2.485)  0.250 (0.786)  0.108 
July, year t-1   0.649 (2.927)  0.655 (0.956)  0.394 
August, year t-1  -0.104 (2.640)  0.941 (0.893)  0.703 
September, year t-1  0.554 (2.682)  0.703 (0.959)  0.749 
October, year t-1  -0.459 (1.417)  1.148 (0.502)  0.944 
November, year t-1  -0.412 (1.395)  1.156 (0.501)  0.951 
December, year t-1  -0.324 (0.889)  1.131 (0.318)  0.915 
 
January, year t   -0.000 (0.812)  0.999 (0.269)  1.000 
February, year t  -0.167 (0.559)  1.043 (0.188)  0.951 
March, year t   0.052 (0.429)  0.987 (0.146)  0.992 
April, year t   -0.087 (0.420)  1.016 (0.141)  0.966 
May, year t   -0.009 (0.403)  0.976 (0.130)  0.880 
June, year t   -0.075 (0.386)  0.990 (0.127)  0.789 
July, year t   -0.142 (0.331)  1.025 (0.106)  0.856 
August, year t   -0.068 (0.332)  1.011 (0.118)  0.956 
September, year t  -0.077 (0.317)  1.000 (0.107)  0.855 
October, year t   -0.057 (0.291)  1.011 (0.109)  0.965 
November, year t  -0.095 (0.276)  1.024 (0.105)  0.923 
December, year t  -0.087 (0.219)  1.006 (0.081)  0.760 
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Table 8: MZ results, based on the consensus forecasts, first release data. Standard errors are in 

parentheses. 

 

Forecast origin  𝛽𝛽0   𝛽𝛽1   p value Wald test  

 

January, year t-1  2.969 (0.258)  -0.028 (0.085)  0.000 
February, year t-1  2.898 (0.276)  -0.024 (0.092)  0.000 
March, year t-1  2.809 (0.293)  0.002 (0.097)  0.000 
April, year t-1   2.708 (0.288)  0.028 (0.096)  0.000 
May, year t-1   2.625 (0.283)  0.058 (0.094)  0.000 
June, year t-1   2.533 (0.276)  0.090 (0.092)  0.000 
July, year t-1   2.389 (0.266)  0.141 (0.088)  0.000 
August, year t-1  2.271 (0.244)  0.163 (0.081)  0.000 
September, year t-1  2.178 (0.258)  0.187 (0.086)  0.000 
October, year t-1  1.558 (0.331)  0.363 (0.110)  0.000 
November, year t-1  1.229 (0.361)  0.466 (0.120)  0.000 
December, year t-1  0.900 (0.350)  0.592 (0.116)  0.014 
 
January, year t   0.729 (0.361)  0.675 (0.120)  0.021 
February, year t  0.441 (0.295)  0.787 (0.098)  0.071 
March, year t   0.101 (0.284)  0.916 (0.094)  0.485 
April, year t   0.101 (0.247)  0.937 (0.082)  0.661 
May, year t   0.009 (0.212)  0.997 (0.070)  0.999 
June, year t   0.009 (0.182)  1.002 (0.061)  0.986 
July, year t   0.034 (0.162)  0.988 (0.054)  0.974 
August, year t   -0.114 (0.141)  1.013 (0.047)  0.519 
September, year t  -0.082 (0.124)  1.008 (0.041)  0.621 
October, year t   -0.175 (0.085)  1.035 (0.028)  0.073 
November, year t  -0.141 (0.067)  1.033 (0.022)  0.089 
December, year t  -0.160 (0.055)  1.051 (0.018)  0.012 
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Table 9: MZ results, based on the consensus forecasts, most recent released data (computed: 

September 2018). Standard errors are in parentheses. 

 

 

Forecast origin  𝛽𝛽0   𝛽𝛽1   p value Wald test  

 

January, year t-1  3.046 (0.219)  -0.059 (0.071)  0.000 
February, year t-1  2.983 (0.236)  -0.060 (0.076)  0.000 
March, year t-1  2.910 (0.253)  -0.039 (0.082)  0.000 
April, year t-1   2.811 (0.251)  -0.012 (0.081)  0.000 
May, year t-1   2.737 (0.248)  0.015 (0.080)  0.000 
June, year t-1   2.674 (0.245)  0.036 (0.079)  0.000 
July, year t-1   2.566 (0.241)  0.075 (0.078)  0.000 
August, year t-1  2.470 (0.227)  0.089 (0.074)  0.000 
September, year t-1  2.390 (0.241)  0.109 (0.078)  0.000 
October, year t-1  1.858 (0.316)  0.256 (0.102)  0.000 
November, year t-1  1.587 (0.349)  0.341 (0.113)  0.000 
December, year t-1  1.331 (0.355)  0.442 (0.115)  0.000 
 
January, year t   1.208 (0.373)  0.509 (0.121)  0.000 
February, year t  1.007 (0.351)  0.590 (0.114)  0.002 
March, year t   0.760 (0.372)  0.687 (0.121)  0.035 
April, year t   0.766 (0.353)  0.707 (0.114)  0.037 
May, year t   0.684 (0.333)  0.765 (0.108)  0.083 
June, year t   0.691 (0.323)  0.768 (0.105)  0.072 
July, year t   0.700 (0.307)  0.759 (0.098)  0.046 
August, year t   0.576 (0.310)  0.776 (0.101)  0.083 
September, year t  0.602 (0.302)  0.773 (0.098)  0.066 
October, year t   0.516 (0.291)  0.799 (0.094)  0.102 
November, year t  0.535 (0.278)  0.802 (0.090)  0.087 
December, year t  0.516 (0.272)  0.820 (0.088)  0.115 
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