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A B S T R A C T

There is an increasing awareness of the importance of tumor – immune cell interactions to the evolution and
therapy responses of breast cancer (BC). Not surprisingly, numerous studies are currently assessing the clinical
value of immune modulation for BC patients. However, till now durable clinical responses are only rarely ob-
served. It is important to realize that BC is a heterogeneous disease comprising several histological and molecular
subtypes, which cannot be expected to be equally immunogenic and therefore not equally sensitive to single
immune therapies. Here we review the characteristics of infiltrating leukocytes in healthy and malignant breast
tissue, the prognostic and predictive values of immune cell subsets across different BC subtypes and the various
existing immune evasive mechanisms. Furthermore, we describe the presence of certain groups of antigens as
putative targets for treatment, evaluate the outcomes of current clinical immunotherapy trials, and finally, we
propose a strategy to better implement immuno-oncological markers to guide future immune therapies in BC.

1. Introduction

Cancer immunotherapy is a rapidly emerging field, which has
proven successful in the treatment of various tumor types, such as
lymphoma, melanoma, renal cell carcinoma, and non-small cell lung
cancer [1]. Initially, breast cancer (BC) has been considered a poorly
immunogenic tumor type and has therefore not been extensively in-
vestigated for its susceptibility to immune therapies. During the past
years, however, it became evident that certain cases of BC are strongly
infiltrated by immune cells and that the presence of these immune cells
has significant prognostic and predictive value. Although many studies
are currently examining immune therapies for BC, still only a minority
of patients appear to respond, and little is known about the underlying
mechanisms of treatment efficacy. Thus, there is an unmet need to get

better understanding of the interaction of breast cancer and the im-
mune system in order to identify potential immuno-oncological prog-
nostic and predictive markers as well as novel leads for effective mono
or combination immune therapies.

Genomics has improved our understanding of BC biology and re-
vealed 4 intrinsic molecular subtypes: luminal A (resembling the his-
tological phenotype: ER+, PR+, HER2-, Ki67-), luminal B (ER+, PR+,
HER+/−, Ki67+), HER2 (ER-, PR-, HER2+), and basal-like subtype
(ER-, PR-, HER2-). The classification of BC into subtypes bears clinical
relevance. For instance, in the treatment of the hormone receptor (HR)
positive subtypes (those that are positive for ER and/or PR) endocrine
therapy, including aromatase inhibitors or selective estrogen receptor
mediators such as Tamoxifen, play an important role. HER2 over-ex-
pressing tumors are generally treated with HER2-targeting drugs such
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as trastuzumab and pertuzumab, whereas triple negative BC (TNBC,
largely resembling the basal-like BC subtype) is mostly treated with
standard cytotoxic therapies.

Notably, and the focus of the current review, these molecular sub-
types also differ with respect to quantity and composition of tumor
infiltrating leukocytes (TILs). In BC, an enormous number of studies
have been performed in order to evaluate the prognostic and predictive
values of TILs, and their specific subsets. Although mononuclear cells
can easily be identified by H& E-stainings upon routine diagnostics, this
technique does not allow accurate assessment of different immune
subsets. Immune stainings have enabled the phenotypic distinction of
various cell types, but are often limited to those markers for which well-
characterized antibodies are available. Recent advances in im-
munogenomics have paved the way towards enhanced understanding of
specific immune subsets and their interactions with tumor cells based
on gene expression data [2–5]. In addition, emerging DNA sequencing
data has made it possible to explore mutational landscapes of BC and
investigate their relationship with TILs and immune pathways. Here,
we discuss TIL profiles, prognosis and prediction based on TIL subsets,
antigenicity, immune evasive mechanisms, and current immunotherapy
trials. Finally, we propose a strategy to select and implement immune-
oncological markers to improve therapy choices for BC patients.

2. Normal breast versus (pre)malignant breast tissues: quantity
and quality of TILs

2.1. Normal breast tissue

Immune cells in the healthy mammary gland form an active and
dynamic barrier against microbes in the mucosal layer [6]. In addition,
immune cells take part in mammary gland remodeling and are con-
sidered to play a role in cancer immune surveillance [7]. In normal
breast tissue, one generally finds low numbers of leukocytes, including
T cells (typically expressing the markers CD3, CD4 or CD3, CD8), B cells
(CD20), macrophages (CD68) and dendritic cells (CD11c) [6]. These

immune cells are not found in interlobular stroma but are restricted to
the lobules, where T cells directly associate with the epithelial layer [8].
While frequencies of macrophages and CD4 T cells are rather constant,
frequencies of CD8 T cells depend on hormonal changes and peak
within the luteal phase of the menstrual cycle, coinciding with epi-
thelial cell turnover [9].

2.2. Pre-malignant breast tissue

BC formation is a multistep process, including premalignant stages
of hyperplasia and ductal carcinoma in situ (DCIS) and the malignant
stage of invasive ductal carcinoma (IDC) [10]. The transition from
normal breast tissue to malignancy is typically accompanied by an in-
creased infiltration of leukocytes, including myeloid cells, B cells and
cytotoxic CD8 T cells [8]. First, in premalignant DCIS, an increased
lymphocytic infiltration is observed [11], which is significantly higher
in HER2+ and TN DCIS compared to HR+ DCIS [12]. In DCIS, num-
bers of neutrophils are significantly increased compared to normal
tissue, however in this tumor stage activated T cells represent the
dominant lymphocyte population [13], followed by B cells and the
immune suppressive regulatory T cells (Tregs: CD4, CD25, FOXP3)
[14]. While in normal and premalignant BC the CD4/CD8 T cell-ratio is
approximately 2, in IDC this ratio is shifted towards 0.3 [15,16].

2.3. Malignant breast tissue

A common feature in IDC is a high overall quantity of TILs.
Interestingly, high lymphocytic numbers relate to better prognosis and
predict a favorable response to neo-adjuvant chemotherapy [17–19]
(see also Sections 3 and 4). In fact, in highly inflamed tumors, TIL
frequency was found to be a superior prognostic marker in comparison
to HR status and lymph node involvement in patients with primary
operable BC [15]. Notably, characteristics of TILs vary across molecular
subtypes of BC [20,21]. The frequency of TILs is usually high in the
more aggressive types of BC, including the ER- subtypes (HER2 and

Fig. 1. TIL frequencies and prognosis in ER+ and ER- BC: Violin plots based on average RNA expression of TIL gene signature [> 100 leukocyte related genes, manuscript in preperation]
on a log scale, per patient based on ER-status. (Data from NCBI’s Gene Expression Omnibus, accessions GSE2034, GSE5327, GSE2990, GSE7390 and GSE11121.) (A). Leukocyte subsets
which are significantly correlated (p < 0.05) with overall survival, or metastasis free survival (*), in ER+ and ER- tumors. Hazard ratios of multivariant regression analyses are shown
between brackets [HR]. Circle sizes are indicative of cohort-size (N), based on numbers of patients evaluated in one or more studies [15, 20–23, 26–46] . Studies include gene expression
based analysis, immunohistochemistry and/or flow cytometry (B).
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basal) as well as the highly proliferating luminal B subtype, but are low
in the less aggressive luminal A subtype [22,23] (Fig. 1A). Even though,
the evaluation of overall TIL frequencies, based on H& E stainings, in
feasible and clinically relevant [24,25], it is noteworthy, that TILs re-
present a heterogeneous collection of immune cells, and not all types or
subsets of immune cells are associated with a favorable clinical out-
come (Fig. 1B and explained in more detail in Section 3) Techniques
that go beyond H & E, such as PCR, flow cytometry and in situ stainings,
may be required to define the composition of TILs more accurately.

3. Prognosis of breast cancer based on TILs

Numerous studies have investigated the prognostic values of TILs
and specific subsets by means of H & E- and immune stainings, flow
cytometry or analyses of gene expression. We evaluated 33 of such
studies and schematically categorized different TIL subsets based on
hazard ratios (HR) for ER- and ER+ BC (Fig. 1B).

3.1. Prognostic TILs in ER- breast cancer

ER- tumors typically show higher numbers of TILs when compared
to ER+ tumors. Especially numbers of T- and B cells, macrophages and
myeloid derived suppressor cells (MDSC) are higher in ER- compared to
ER+ BC [21].

3.1.1. Favorable outcome
Adaptive immune cells, including cells of T- and B cell lineages, are

typically found in sites of prior, or ongoing immune reactions. High
numbers of such lymphocytes are associated with a better prognosis in
lymph node negative, primary BC patients including those with stages
I–III [15,26–28]. Moreover, numerous studies show that high fre-
quencies of CD8 effector T cells and T helper type-1 gene signatures
(Th1: IFNG, STAT1, GRZM, CXCL9) are correlated with favorable
clinical outcome, particularly in ER- tumors [22,23,25,30]. In contrast,
high numbers of Tregs in tumor tissue and blood are correlated with
favorable outcome in ER- tumors, which may reflect the initiation of
negative feedback since numbers of Tregs strongly correlate with those
of CD8 T cells and are correlated with poor prognosis in the absence of
CD8 T cells [30–32]. B cell and plasma cell (PC: CD138) gene signatures
are especially significant prognostic factors in ER- BC, but also in highly
proliferating luminal B BC [22]. Macrophages are enriched in basal-like
BC and associate with survival according to immune stainings
[15,18,28]. In agreement, myeloid and macrophage/dendritic cell sig-
natures (oa. MHCII, CD11c, CD11b) were found to have overall prog-
nostic value in BC according to large gene-expression cohorts [22,33].
Notably, higher blood lymphocyte to monocyte ratio (LMR) correlates
with overall survival (OS) in 1570 BC patients (HR: 1.63, 95% CI: 1.07-
2.49), in particular in TNBC patients (HR: 3.05, 95% CI: 1.08-8.61)
[34].

3.1.2. Unfavorable outcome
Frequencies of immature immune cells, such as MDSC (CD33) which

can originate from monocytic or granulocytic lineages, are enriched in
highly proliferating ER- tumors [21], and intra-tumoral numbers of
these cells are correlated with poor survival in ER- tumors [35]. Ele-
vated numbers of MDSCs are also found in peripheral blood of BC pa-
tients when compared to healthy controls [36]. Strikingly, also in the
blood compartment frequencies of MDSCs are associated with later
stage tumors, metastatic tumor burden, and are correlated with reduced
survival [37,38]. Also, numbers of intra-tumoral neutrophils (N, CD16)
are associated with poor BC-specific survival [15], and meta-analysis
revealed significant unfavorable prognosis in case of a high neutrophil
to lymphocyte ratio (NLR, HR(OS): 2.03, 95% CI: 1.41-2.93) [39]. High
frequencies of undifferentiated macrophages and alternatively acti-
vated, M2 macrophages (CD163) are inversely correlated with survival
[35].

3.2. Prognostic TILs in ER+ BC

In comparison with ER- BC, less studies found significant correla-
tions between immune cell subsets and clinical outcome in ER+ BC.
Overall, mostly innate immune cells cluster to the ER+, luminal A
tumors and correlate with good prognosis [21].

3.2.1. Favorable outcome
NK cells are shown to have anti-tumor activity in ER+ BC [40,41],

yet their numbers are decreased in later tumor stages [42]. Signatures
of B cells including plasma cells, plasmablasts and immunoglobulin not
only correlate with favorable outcome in ER-, but also ER+ tumors
[20,32,40].

3.2.2. Unfavorable outcome
Gamma delta T cells (Tγδ, TCRγ/δ) are more frequent in BC com-

pared to other immunogenic tumors, such as melanoma, suggesting a
unique role of these T cells in BC [45]. Moreover, numbers of a subset of
Tγδ cells, the so-called regulatory Tγδ, correlate with advanced cancer
stages, lymph node involvement and numbers of FOXP3+ cells in ER+
BC, whereas numbers of this subset inversely correlate with those of
CD8 T cells in these tumors [46]. It is important to note that while Tregs
are correlated with good prognosis in ER- tumors, these cells are
strongly associated with adverse clinical outcome in ER+ tumors
[30,32]. Even though numbers of MDSC are generally lower in ER+
tumors, their presence is correlated with poor OS [35].

4. Prediction of breast cancer therapies based on TILs

Many studies show that standard neo-adjuvant therapies can recruit
TILs and modify the tumor microenvironment. Vice versa, TILs, when
present prior to therapy, were found to be predictive for clinical re-
sponse to neo-adjuvant therapies.

4.1. Prediction of neo-adjuvant therapies based on TILs

Besides surgical resection and radiotherapy (RT), primary operable
BC patients are frequently treated with neo-adjuvant chemotherapy
(NAC) and/or targeted therapies. It is of interest to note that numerous
studies suggest that the immune system is required to boost the efficacy
of NAC. Sequential treatment with anthracycline- or taxane-based drugs
is a common form of NAC used to treat BC, with pathological complete
responses (pCR) ranging from 10 to 30%. NAC based on anthracyclines
and taxanes can directly induce immunogenic tumor cell death, re-
sulting in increased antigen presentation. Moreover, NAC was found to
induce inflammatory pathways in tumor associated fibroblasts, such as
interferon, Wnt and TGFβ signaling pathways [47], which can enhance
recruitment of TILs. Consequently, immune gene signatures have been
revealed to predict the response to NAC across various studies, re-
gardless of molecular subtypes or treatment regime [22,48,49]. Also,
high TIL frequencies (> 60%), as assessed by H& E stainings were
predictive for response to NAC [50]. In fact, a 10% increase in TIL
frequencies resulted in 16% increase in pCR rates in TNBC (OR: 1.16),
13% in HER2 (OR: 1.13), and 33% in ER+/HER2- BC (OR: 1.31). In the
latter subtype no survival benefit was noted, which may be attributed to
differences in TIL composition (as explained in more detail in Sections
3.1 and 3.2). The predictive value of TILs in the setting of NAC is mainly
attributed to high numbers of CD8 T cells (odds ratio (OR) for pCR:
1.59–3.36, [51,52]) but also the presence of follicular T helper cells
(Tfh: CD200, CXCL13), were found to have predictive value in ER- (OR
(pCR): 1.34–1.85) as well as ER+ (OR(pCR): 2.52) BC patients, across
different studies, using both immune stainings and genomic approaches
[35,41,51]. Vice versa, chemotherapy can change the immune cell
composition in tumor tissue and blood. For example, within 2 weeks
after NAC, B-, T- and NK cells were found significantly depleted from
peripheral blood compared to pretreatment levels, with numbers of B
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and CD4 T cells remaining low up to 9 months post chemotherapy [53],
whereas numbers of MDSCs were increased [37]. Numbers of intra-
tumoral CD68 macrophages were found significantly decreased to NAC,
while those of intra-tumoral CD8 T cells were increased compared to
pre-NAC frequencies [18,37]. Strikingly, high intra-tumoral numbers of
CD3, CD4 and CD20 as well as high CD4/CD8 ratios prior to therapy
predict clinical benefit following NAC independently of subtype or
clinical parameters (OR(pCR): 17.84, [18]). In ER- tumors, pre-therapy
T- and B cell signatures were found to predict long-term (> 6 year)
outcome to anthracycline-based chemotherapy (OR(pCR):6.33, [54]).

Similar to NAC, RT can also induce immunogenic cell death, antigen
release and local inflammation, and consequently evoke an innate and
adaptive immune response directed against the tumor [55]. Interest-
ingly, in an ER-, HER2+ patient, who showed a clinical complete re-
sponse following neo-adjuvant (paclitaxel) and RT, the production of
Th1-type cytokines by tumor-specific T cells was enhanced compared to
pre-treatment [56]. Immune responses may also predict clinical re-
sponses to endocrine therapy [57,58]. In example, OS of post-meno-
pausal women treated with aromatase inhibitors, which block the
conversion of androgens into estrogens, is correlated with high numbers
of TILs, in particular high numbers of Tregs [59]. In contrast, treatment
with tamoxifen (an ER antagonist) shifts immune response from Th1-
towards Th2-type T cell responses in an estrogen-independent manner,
and may promote immune escape [60]. Treatment with trastuzumab, a
humanized antibody directed towards HER2, is at least in part depen-
dent on the immune system as this treatment induces influx of T cells,
macrophages and NK cells into tumor tissue and promotes cell-medi-
ated cytotoxicity [61]. Vice versa, pre-existing lymphocytic infiltrate
can predict response to trastuzumab treatment [62,63], although clin-
ical studies provide contradictive data. While in certain trials higher TIL
frequencies [64], or high expression of TIL gene signatures [65] at di-
agnosis were significantly associated with good response when trastu-
zumab was combined with CT, in another large clinical trial the pre-
sence of TILs was not associated with survival following the same
treatment combination [66]. Interestingly, in the same study, expres-
sion of genes related to immune function, did correlate with survival
when trastuzumab was combined with CT [67], suggesting that parti-
cular TIL subsets, rather than bulk TIL predict response. These con-
flicting results between different studies, may be explained by differ-
ences in treatment regime and HR status of patients [68]. In fact, the
latter correlates with both, TIL frequency and composition, as well as
CT responses, potentially favoring that patients treated with trastu-
zumab should be stratified according to HR status. Further research is
required to better define the predictive value of particular TIL subsets in
this patient group.

Overall, the above findings suggest that standard care of treatments
can modulate the tumor microenvironment and may sensitize tumors
towards immune therapies. In fact, combination of RT and NAC with
immune therapies has already shown promising results in mouse
models of BC, and is currently investigated in a number of clinical trials
(Table 1), [69–71].

4.2. Prediction of immune therapies based on TILs

Thus far, immunotherapeutic approaches to treat BC include: pep-
tide vaccines; autologous transfer of T cells, NK cells or DCs; and ap-
plication of checkpoint inhibitors. An overview of these treatments is
given in Table 1. Vaccinations in BC have been focusing mainly on
targeting the over-expressed HER2/neu antigen, for which successful
treatment has been achieved in DCIS, usually resulting in lesion
shrinkage along with activation of HER2-specific CD8 T cells [72–74].
In later stage tumors, however, at best stable disease (SD) has been
achieved using similar approaches. Adoptive transfer of autologous
HER2-specific T cells resulted in the killing of BC cells that were me-
tastasized to bone marrow, but these T cells were unable to penetrate
and resolve liver metastases [75,76]. In contrast, adoptive transfer of

allogeneic T cells or NK cells to metastatic BC patients (all subtypes) did
not result in T cell persistence and frequently led to graft versus host
disease [77], [78]. Promising clinical responses have been observed for
checkpoint inhibition in the advanced metastatic BC setting. For ex-
ample, blockade of CTLA-4 (Tremelimumab) has led to SD for> 12
weeks in 42% of heavily pre-treated ER+ patients [79]. Even better
responses, including a few complete responses and several partial re-
sponses, were observed upon treatment with a PD-1 blocking antibody
(Pembrolizumab) in TNBC patients with PD-L1-positive tumors in 2
trials (objective response rate (ORR): 18.5%, [80]; ORR: 23%, [81]).
Combinations of CTLA-4 (Tremelimumab) and PD-L1 (Durvalumab)
blockade even reached OR in 43% of stage IV, TNBC patients, however,
no OR was observed in any of the 11 HR + patients, [82] which may be
due to low numbers of CD8 T cells in these tumors (Fig. 3). In contrast,
blockade of PD-L1 (antibody not specified) in a small group of 4 stage
IV BC patients (unknown HR status) did not result in any clinical re-
sponse [83]. Notably, in that study, PD-L1 expression had not been
assessed prior to PD-L1 treatment, which may have contributed to these
contradicting results. Another large trial with a PD-L1 blocking anti-
body (Avelumab), in 168 BC patients, which were not selected for BC
subtype nor PD-L1 expression, resulted in a low ORR of 4.8%, including
1 CR and 7 PR [84]. When evaluating BC subtypes in that study, TNBC
patients had an ORR of 8.6% while HR+ patients had an ORR of 2.8%.
Even though>10% PD-L1 expression on immune cells in TNBC tumors
correlated with response, interestingly, there was no overall association
of PD-L1 expression and OR [85]. Due to the dynamic nature of PD-L1
expression (explained in Section 5), we propose to take caution when
considering to use this molecule to stratify BC patients for treatment
with checkpoint inhibitors. The presence of TILs, in particular CD8 T
cells, and (co-) expression of checkpoint molecules on these cells may
provide more discriminatory markers for therapy response when com-
pared to tumor cell PD-L1 expression. In fact, high stromal TIL numbers
were significantly correlated with a better response to PD-1 blockade
(Pembrolizumab) when administered as monotherapy in a first-line
setting for metastatic TNBC (ORR: 39.1% above median stromal TIL;
ORR: 8.7% below median stromal TIL), while PD-L1 expression did not
add to the response prediction in that cohort [86]. Promising results
have also been observed when combining checkpoint blockade with
standard chemotherapies in the neo-adjuvant, as well as the advanced
disease setting of TNBC: Upon combination of neo-adjuvant paclitaxel
and PD-1 blockade (Pembrolizumab), an impressive ORR of 71% was
observed in stage II/III TNBC patients, and an ORR of 28% was seen in
HR+ patients, which were both significantly increased when compared
to paclitaxel monotherapy (ORR: 19% and 14% in both patient groups,
respectively) [87]. In addition, combination of nab-paclitaxel and PD-
L1 blockade (Atezolizumab) in metastatic TNBC reached comparable
results (ORR: 70%) independent of PDL-1 status [88]. Notably, ORR
where higher in early lines of therapy in patients with a lower disease
burden, reaching 11% CR and 78% PR in patients with one lesion, in
contrast to 0% CR and 43% PR in patients with 3 lesions [88]. When
treating mainly HR+ metastatic BC with a combination of LAG3Ig fu-
sion protein (IMP321) with paclitaxel, an ORR of 50% was achieved
which was 25% higher compared to a historical paclitaxel treatment
results [89]. These data strongly encourage the rational of combination
therapies, particularly in BC where initial TIL numbers are low (HR+)
and sensitization of the tumor micro environment may be required for
effective immune therapies (Fig. 4).

At the moment, an increasing number of clinical studies are focusing
on immune therapies for BC of various subtypes. A main category of
immune treatments is represented by (combinations of) antibodies
blocking the checkpoints PD-1, PD-L1, CTLA-4, and LAG-3. In addition
to the checkpoint blockade studies mentioned above, another 91 trials
are currently being scheduled (blockade of PDL-1: 13x; CTLA-4: 10x;
PD-1: 62x; LAG3: 6x, according to clinicaltrials.gov). In addition to
checkpoint blockers, vaccine studies are performed directed against
over-expressed antigens other than HER2, such as hTERT, surviving and

D. Hammerl et al. Seminars in Cancer Biology 52 (2018) 178–188

181



p53. And finally, adoptive transfer studies with T cells have started,
either those with T cells engineered with a Chimeric Antigen Receptor
(directed against: HER2 (3x), EpCAM, ROR1, MUC1 and CD133) or a T
cell Receptor (directed against: survivin or Cancer Germline Antigens:
Mesothelin, NY-ESO1:3x, MAGE-A4, PRAME and SSX1), (according to
clinicaltrials.gov).

5. Immunogenicity of breast cancer knows several flavors

Immunogenicity of tumor tissue determines the initiation of an anti-
tumor adaptive immune response, and depends on various factors, in-
cluding the quantity and quality of TAA and their presentation to in-
filtrating immune cells. TAAs are typically categorized in different
groups of antigens, including shared antigens which are generally over-
expressed in tumors, but not restricted to malignant tissues (and also
expressed by normal tissues). Some shared antigens, such as oncoviral
antigens and Cancer Germline Antigens (CGAs), are predominantly
expressed in tumors and, in case of CGAs, also in immune privileged
tissues of the germline. Besides shared antigens, TAAs also include non-
shared antigens, such as tumor-specific neo-antigens, which derive from
mutated proteins, and are absent in normal tissues.

Most of these groups of TAAs have been exploited for their use as
immunotherapeutic targets in many different tumors. In BC most ex-
perience has been gained with the targeting of over-expressed antigens.
Even though over-expressed antigens are not tumor-specific, cancer
vaccines directed towards such antigens, including HER2, MUC1, and
hTERT, could induce partial regression and induce immune responses
against these antigens in a number of BC patients without major side
effects (reviewed in [90,91]). Virus specific DNA can drive tumor for-
mation and lead to expression of oncoviral antigens. Virus specific DNA
(EBV, HPV and MMTV) is significantly more frequently detected in BC
compared to normal breast tissues [92]. For instance, expression of
human retrovirus type K (HERV-K) is enriched in BC, including BC cell

lines, and antibody titers are significantly increased in women with
DCIS and IDC when compared to healthy controls [93]. Also, Measle
Virus (MV) was detected in 64% of BC including DCIS, and its expres-
sion correlated with younger age and lower grade tumors [94]. No-
tably, human cytomegalovirus (CMV) is expressed in 100% of primary
BC specimens and 95% of lymph node metastases [95], while it is
generally not expressed in normal tissues [96]. Although in general the
presence and reported immunogenicity of viral antigens is evident, the
therapeutic potential of this class of TAAs in BC is not clear, nor have
these antigens yet been targeted in BC patients. CGAs have not yet been
targeted frequently either, while the majority of BC express at least a
single CGA [97]. Although CGAs are expressed throughout all tumor
stages, including DCIS and all histotypes [98], expression levels and
number of expressed CGAs are significantly increased in high grade and
ER- BC (highest in basal-like BC) (Fig. 2A). Interestingly, especially
TNBC patients and BRCA carriers often co-express multiple CGAs
[99,100]. Besides their high and tumor-specific expression of at least
some CGAs, these antigens represent therapeutically relevant target
antigens since they have been reported to elicit humoral immune re-
sponse and were shown in some instances to contribute to BC devel-
opment. In example, patients with CGA+ BC have demonstrated en-
hanced antibody titers against these antigens, and CGAs, have been
reported to be associated with increased EMT, genomic instability,
angiogenesis and tissue invasion in BC [101–103]. Not surprisingly,
expression of these CGAs is often linked to adverse outcome. With re-
spect to neo-antigens, expression of these antigens is governed by the
mutational load of tumors. Compared to other cancer types, BC has an
average mutational load of 1 somatic mutation per Mb, which ranks
these tumors among the lower half of a large series of different human
cancer types [104]. A mutational load of 10 somatic mutations per Mb
(=150 non-synonymous mutations in all expressed genes) is considered
sufficient to elicit a T cell response in melanoma [105]. This suggests
that the overall chance of T cells recognizing neo-antigens in BC is

Table 1
Overview of immune therapy clinical trials in BC.

DC vaccination Target Stage/type Patients Clinical outcome References

Her2/neu peptides (MHCI and II) HER2 0/HER2 11 PR: 64% [72]
Her2/neu peptides (MHCI and II) HER2 0/HER2 27 PR: 88%, CR: 40%(ER-); 5.9%(ER+) [73,74]
autologous APC + Her2/neu cDNA HER2 IV/HER2 18 PR: 5%, SD: 16% [151]
autologous DC II,IIIA/ER-, PR- 31 PD: 100% [152]
wt p53 peptide (MHC II) P53 IV 26 SD: 30% [153]

Vaccination (not DC)
Mam-A cDNA Mam-A IV 7 NA [154]
E75 Her2 peptide (HLA-A2/A3) HER2 0/HER2 182 DFS: 94.3% [155]
MDA-MB-231 (CD80+, HLA-A2, HER2) cell line HER2 IV 30 SD: 30% [156]
AE37 Her2/neu peptide (MHCII) HER2 0 15 NA [157]

Checkpoint inhibitors
anti PD-L1 (not specified) PDL1 IV 4 PD: 100% [83]
tremelimumab CTLA4 IV/ER+ 26 SD: 42% [79]
pembrolizumab PD1 IV/TNBC 27 CR: 2.7%, PR: 15%, SD:26% [80]
pembrolizumab PD1 IV/TNBC 52 CR: 4% PR: 19%, SD: 17% [81]
avelumab PDL1 II/IV 168 CR:0.6% PR: 4.8% SD:24% [84]
pembrolizumab + paclitaxel PD1 II, III/Her2- 69 CR: 71.4% (TNBC), CR: 28% (HR+) [87]
durvalumab + tremelimumab PDL1, CTLA4 IV/ER+, TNBC 18 PR: 43% (TNBC), 0% ER+ [82]
atezolizumab + nab-paclitaxel PDL1 IV TNBC 32 CR: 4,2% PR:66.7% SD: 20.8% [88]

Adoptive Transfer of immune cells
autologous T cells HER2 IV/HER2 1 NA [75]
allogenic T cell mix IV 9 PR: 56% [77]
autologous T cells + bispecific antibody HER2, CD3 IV/HER2+/− 23 SD: 27% [76]
allogenic NK cells IV 6 NA [78]

Other therapies
oxidized mannam MUC1 MUC1 II/MUC1+ 31 NA [158]
zoledronate (ydT cell agonist) + IL2 IV 10 PR: 10%, SD: 20% [159]
IMP321 (LAG3Ig fusion protein) + paclitaxel MHCII IV 30 PR: 50% SD:40% [89]

NA, not assessed; PR, partial response; CR, complete response; SD, stable disease; PD, progressive disease; DFS, disease free survival; DTH, delayed type hypersensitivity; Tγδ, gamma
delta T cell.
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rather low. Within BC, however, the median mutational load increases
upon higher tumor grades, and the mutational load is significantly in-
creased in ER- subtypes (highest in Basal-like BC), compared to ER+
subtypes, regardless of BC histotypes [106], (Fig. 2B). These findings
suggest that more aggressive, ER- BC may be susceptible for the im-
munological targeting of neo-antigens. Besides the number of muta-
tions, some mutational signatures were found to be more immunogenic
than others. The most prevalent mutational signatures in BC are age-,
APOBEC- and BRCA1/2-related signatures [104]. APOBEC3 B (A3B)
expression is enhanced in ER-, HER2+ subtypes, and correlates with
lymph node metastasis [107] and poor prognosis [108]. Interestingly,
we have shown previously that APOBEC signatures may create posi-
tively charged, neo-antigens, which are associated with increased T cell
infiltration in ER + BC [109]. A3B deletion, on the other hand, leading
to hyper-mutation, correlates with IFNy/STAT1 expression and immune
cell signatures [107]. The exact mechanism and role of A3 B and
APOBEC mutagenisis in BC immunogenicity requires further research.

6. Immune evasion of breast cancer counteracts effective therapy

High expression levels of tumor associated antigen (TAA) in late
stage and HER2+, ER- BC or TNBC, and high frequencies of TILs in
these subtypes do not correlate with each other [110], suggesting that
either not all TAAs are equally immunogenic and/or that these tumors
have undergone immune editing. The latter generally refers to the
shaping of tumor antigenicity under the selective pressure of effector
immune cells, which may precede, although not in a causative manner,
the establishment of immune evasive mechanisms [111–113]. Such

immune evasive mechanisms may include down-regulation of antigen
presentation, lack of immune effector cells, enrichment of immune
suppressor cells, and up-regulation of checkpoint molecules [2,3].

6.1. Antigen presentation

Critical for the recognition of tumor cells by T cells is that peptides
derived from TAAs are presented on human leukocyte antigen (HLA)
molecules expressed on the surface of tumor cells or antigen-presenting
cells. In fact, expression of genes related to the HLA-A antigen pre-
sentation pathway correlates with expression of genes related to T cells,
and was found to be most significantly associated with survival within
TNBC patients [114]. Especially higher grade BC often (30–40% of
tumors) down-regulate classical HLA-A, HLA-B, HLA-C molecules,
which are required for the activation of CD8 T cells, and up-regulate
non-classical HLA-E, HLA-F, HLA-G molecules, which may promote
immune escape [115–117]. Besides HLA-A, expression of transport-as-
sociated proteins (TAP1/TAP2), which are required for proper antigen
loading, is also down-regulated in high-grade BC [118]. TAP1/TAP2
down-regulation, however, is independent from HLA-A, B, C down-
regulation [119], pointing to lack/absence of redundancy of various
components of the HLA antigen presentation pathway with respect to
immune escape. Besides downregulation of gene expression, mutations
in antigen presentation and IFN response genes may provide yet an-
other mechanism of immune escape. Mutations in β2-microglobulin
(B2 M), a component of MHC class I, and JAK1/2, kinases downstream
of IFN receptors, can lead to resistance to checkpoint blockade
[120,121] and potentially other immune therapies. While JAK1/2
mutations affect only a minority of primary BC, and only truncated
mutations (1.3% of BC) are associated with poor prognosis [120], BC
metastases were found to have acquired additional JAK/STAT driver
mutations [122].

6.2. Immune effector and suppressor cells

The frequency of clonally expanded, activated T cell is decreased in
IDC compared to DCIS [13], suggesting that in IDC the level of anti-
genicity or T cell recruitment is less, and/or that the level of T cell
suppression is high. In general, exclusion from tumor tissue or com-
promised activity of intra-tumoral CD8 T cells may in some cases be the
direct consequence of aberrant expression of chemokines, adhesion
molecules and/or extracellular matrix components (ECM), which to our
knowledge has not been investigated yet in BC. Furthermore, there is
increasing evidence that oncogenic pathway alterations can contribute
to T cell exclusion or comprised T cell activity [112]. Interestingly, loss
of PTEN and a highly active PI3 K pathway, which was found to cor-
relate with a lack of T cells in melanoma [123], frequently occur in
basal-like BC (35%) [124]. More over, PI3 K pathway alterations are
the most common driver mutations in BC, affecting 49% of luminal A
tumors and 7% of basal-like BC [124], and may therefore contribute to
heterogeneiety with respect to TILs in these BC subtypes. In addition, in
TNBC, a lack of T cells has been reported to be associated with RAS/
MAPK pathway activation [125]. Exclusion or compromised activity of
CD8 T cells, in other cases, may also be the indirect consequence of
enhanced presence of M2 macrophages, MDSC, Tregs and/or cancer
associated fibroblasts (CAFs) [126]. CAFs can promote angiogenesis
and/or endothelial to mesemchymal transition (EMT), and release
suppressive cytokines, such as IL1, IL6 and TGFβ, which can drive the
formation of immune suppressor cells [127,128]. In BC, immune sup-
pressor cells, including MDSC and M2, can promote tumor growth and
metastasis and suppress T- and NK cell function by releasing suppres-
sive mediators, such as IL10, IDO1, reactive oxygen species (ROS) and
nitric oxide (NO) [129,130]. Enhanced recruitment of MDSC is con-
sidered to be related to increased expression of ELF5 and CCL2 in ER-
BC, and enhanced IFN-signaling was found to induce immune sup-
pressive activities of MDSC [131]. Tregs are recruited by CCL5 and

Fig. 2. Antigen expression across BC subtypes. Violin plots show average CGA gene ex-
pression on a log scale, per patient, based on molecular subtypes. Differences in CGA
frequency per molecular subtype are significant (p < < 0.0001, Kruskal Wallis test).
CGA genes list was derived from CT Database and include CGA genes that were available
on Affymetric U133a chip, data from GSE2034, GSE5327 (A). Violin plots show the total
number of predicted neo-antigens [109] per patient, based on molecular subtypes. Dif-
ferences in neoantigen frequency per subtype are significant (p < 0.0001, Kruskal Wallis
test) (B).

D. Hammerl et al. Seminars in Cancer Biology 52 (2018) 178–188

183



CCL22, which are produced by CD8 T cells and DC [132]. Next to in-
hibition of CD8 T cells, Tregs can directly promote BC metastasis in a
paracrine manner [132].

6.3. Checkpoint molecules

As a consequence of an ongoing adaptive immune response, CD8 T
cells, but also their target cells, up-regulate the expression of a number
of immune checkpoint molecules, which slow down and ultimately
inhibit active tumor killing by T cells. PD-L1, for instance, is expressed
in a quarter of all BCs and high expression levels correlate with poor OS
across all subtypes [133]. PD-L1 expression is particularly high in in-
flammatory BC (IBC, defined by symptoms resembling an inflamma-
tion, mostly ER-), and correlates with T- and B- cell signatures, most
significantly those covering cytotoxic T cells, interferon and TNFα
pathways [134]. Early BC stages, such as DCIS do not yet express PD-
L1, however, in triple negative DCIS, APCs do already show strong PD-
L1 expression [14]. Besides acquired expression of PD-L1 by the in-
ducers IFNα/β or IFNγ, which are well-recognized products of activated
immune cells or resident stromal cells, also mutations in PTEN and
PI3 K which occur in 30% and 40% of BC, respectively, were found to
provide inherent expression of PD-L1 [135]. Moreover, EMT was found
to induce PI3 K and MEK-dependent up-regulation of PD-L1 in BC
[136]. PD-L1 expression in BC is accompanied by expression of other
immune suppressive checkpoints, like IDO1 and TGFb, as well as the
expression of T cell co-inhibitory receptors, such as PD-1, CTLA-4, TIM-
3 and LAG-3 [134,136]. PD-1 expression is commonly up-regulated
after T cell activation and PD-1 positive T cells can be detected in blood
of early stage BC patients, while peripheral changes in the expression of
other checkpoint molecules such as CTLA-4 are not observed [137].
Within tumors, T cells positive for PD-1 are generally restricted to

tertiary lymphoid structures (TLS), which are present in tumor stroma
and composed of B- and T cells. TLS are often representative of a strong
and ongoing immune response, and are present in 60% of BC, including
all molecular subtypes [138]. In TNBC, the expression of PD-1 and LAG-
3 tends to be associated with good prognosis. PD-1 and LAG-3 positive
TILs were found in 30% and 18% of BC, respectively, and 15% of tu-
mors were double positive for these markers, most likely indicating the
presence of exhausted T cells [139]. Checkpoint molecules are not only
up-regulated on CD8 T cells as PD-1 and TIM-3 were also found to be
up-regulated on CD4+ Tfh cells in BC, which was associated with both
a reduced CXCL13 production and a reduced capability of stimulating B
cells [140]. Interestingly, in metastatic lesions, only 5% and 3% were
found positive for the PD-1 and PD-L1, respectively [141], suggesting
that immune evasive mechanisms described for primary tumors may
not always be present in metastases, arguing that other immune escape
mechanism may be more dominant in advanced diseases.

7. Future therapies should combine tumor sensitization and T cell
treatments

Here we propose a strategy that implements immune-oncological
markers to better select immune therapies in BC subtypes, and ratio-
nalize whether or not there is a requirement for sensitization for im-
mune therapies based on our current understanding of BC’s immune
evasion and immunogenicity. In Fig. 4, we have distinguished ER+ and
ER- BC, and described steps in selecting (combination) immune thera-
pies:

Across BC subtypes, ER+ tumors, in particular luminal A BC, are
the least immunogenic since they have the lowest numbers of TILs and
the lowest expression levels of CGAs and neo-antigens (Fig. 3). Because
of the low abundance of antigen, immune therap ies targeting TAAs in

Fig. 3. Schematic illustration of immunity and evasive mechanisms in BC. BC subsets are categorized according to hormone receptor ER and PR (blue) or HER2 (pink) expression of tumor
cells (brown). Antigenicity (ao. CGAs and neo-antigens) increases from luminal to basal type BC. Overall TIL quantity (gray background) increases from lumA to basal type BC, and its
increase is related to tumor cell proliferation (Ki67). With respect to TIL quality, lumA tumors have relatively more innate immune cells, whereas the highly proliferating lumB, her2 and
basal BCs are enriched for adaptive immune cells and immune suppressor cells. In particular, basal BC is enriched for exhausted CD8 T cells. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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ER+ BC require extensive screening for pre-defined antigens, which is
costly and time consuming. Therefore, immune therapies using check-
point inhibition, which do not directly target TAAs, but rather TILs,
may show more potential in ER+ BC, since the presence of TILs can
easily be assessed by H& E or immune stainings of routine biopsies.
Thus far checkpoint blockade as monotherapy in ER+ tumors has re-
sulted in SD at best (see Section 4.2). In a subset of ER+ BC patients
with deficiency in DNA mismatch repair (MMR) genes [142], muta-
tional load may represent an independent parameter for therapy se-
lection. In general, however, we argue that the presence of TILs rather
than mutational load serves as a more robust marker for patient stra-
tification in BC, making it at this point in time not opportune to mea-
sure MSI for BC. Even though TILs in ER+ BC are generally scarce and
composed of innate rather than adaptive immune cells, it is important
to note that significant heterogeneity exists with respect to quantity and
quality of TILs (own observations; manuscript in preparation). The
presence of effector CD8 T cells, and the expression of immune
checkpoint molecules on these T cells are indicative of an antigen-in-
itiated immune response, which is anticipated to robustly predict suc-
cess of checkpoint blockade in patients with these tumors. Therefore the
presence of these markers, in particular CD8 T cells (which reflects an
ongoing immune response) should be assessed in the first step when
designing therapies (Fig. 4 step1). In case CD8 T cells are absent one
could opt for combinitation therapies, since NAC was found to increase
TIL levels [143] and to enhance the CD8/Treg ratio (see Section 4.1),
and therefore may further enhance treatment efficacy in ER+ BC. In
fact, such combinations have shown to increased pCR rates by 13–25%,
when compared to NAC monotherapy (Table 1). The immunogenicity of
tumors may also be increased by epigenetic drug treatment, including
DNA-methyltransferase and/or histone deacetylase inhibitors, which
were found to promote expressions of CGAs, MHC-I as well as co-sti-
mulatory molecules in particular in tumor cells [144], [145]. A few
clinical studies are currently examining the combination of epigenetic
drugs and checkpoint inhibitors in ER+ BC [146]. Even though results
have not yet been published, combining cytotoxic therapies and/or
epigenetic drugs with checkpoint inhibitors should be considered in-
teresting strategies to treat ER+ BC.

In contrast to ER+ tumors, ER- tumors (HER2, TNBC) are in-
trinsically more immunogenic. Among all BC subtypes, TNBC bear the
highest numbers of T cells, which are accompanied by the highest
frequencies of neo-antigens and CGAs, and intra-tumoral CD8 T cells
are often present with an exhausted T cell phenotype (Fig. 3). Thus,
TNBCs may represent a subtype of BC most sensitive to immune ther-
apeutic interventions. However, antigenicity does not always predict
response to checkpoint inhibition [147]. Even though clinical trials
have resulted in higher response rates to checkpoint blockade in TNBC
tumors when compared to ER+ tumors (Table 1), the majority of me-
tastatic patients, however, does not show any clinical benefit to
checkpoint blockade as monotherapy. This lack of response may be due
to heterogeneity with respect to expression of checkpoint molecules or
numbers of TILs. Indeed, high numbers of TILs and CD8 T cells were
predictive for response to checkpoint inhibitors as first-line and second-
line (following irradiation and chemotherapy) treatment for metasta-
sized TNBC [86,148]. Therefore, also in ER- tumors, the presence of
CD8 T cells should be assessed first. Most likely T cells are present. In
case checkpoint molecules are present, one could again opt for therapy
with checkpoint inhibitors. Multiple checkpoint molecules should be
evaluated, since ER- tumors often co-express these molecules, which
may prevent an effective monotherapy-approach. Indeed, the combi-
nation of durvalumab and tremelimumab resultated in an about 2-fold
increased ORR of 43% in TNBC patients [82] when compared to
monotherapy approaches. In case these checkpoint moelcules are not
expressed, but immune suppressor cells are present (assessed in step 3),
inhibitors of these suppressor cells provide a therapeutic option
[149,150]. In some cases CD8 T cells are absent. Underlying reasons for
CD8 T cell exclusion in a subset of TNBC patients, despite expression of
TAAs, could be lack of or a compromised antigen presentation by tumor
cells and/or activation of oncogenic pathways. When CD8 T cells are
absent, we therefore suggest to assess MHC class I expression (which
reflects capability of antigen presentation). In case MHC class I is ex-
pressed, then in the next steps assessments of TAAs and corresponding T
cells are informative toward the option of adoptive therapy of T cells. In
case MHC class I is not expressed, one could opt for therapy with PI3 K
and MEK-inhibitors that are found to up-regulate expression of MHC

Fig. 4. Strategy to optimally implement immuno-oncological markers to guide selection of therapies for ER+ and ER- BC patients. Thick arrows indicate the most likely path. Strategies
are explained in more detail in Section 7.

D. Hammerl et al. Seminars in Cancer Biology 52 (2018) 178–188

185



class I and PD-L1 in TNBC [150]. In more general terms, epigenetic
drugs, RT and/or NAC also represent therapeutic options to sensitize
tumors for T cell treatments, such as adoptive T cell therapy.

In conclusion, BC subtypes are heterogenous with respect to quan-
tity and quality of TILs, occurrence of immune evasive mechanisms,
and antigenicity. Therefore all these factors should be assessed and
taken into account when designing and selecting optimal (combination-
) immune therapies for a selected group of BC patients.
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