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V irtual power plants (VPP) play a crucial role in balancing the electricity smart grid. VPPs aggregate energy from
decentralized sources, for example, biogas, solar panels, or hydropower, to generate and consume electricity on

demand. We study the management of electric vehicle (EV) fleets organized in VPPs as a way to address the challenges
posed by the inflexible energy supply of renewable sources. In particular, we analyze the potential of parked EVs to
absorb electricity from the grid, and provide electricity back to the grid when needed. A fleet owner can either charge,
discharge for renting, discharge to the grid, or keep an EV idle. A unique property of our mixed rental-trading strategy is
that decisions are made between making an EV available for rental, where the location within the city matters (drivers
want a car to be close to their place of departure or arrival) and for discharging it to the grid, where location does not
matter (vehicles can discharge to the grid from any capable charging point). We study the feasibility of VPPs for a fleet of
1500 real EVs on the “Nord Pool Spot,” a North European electricity spot market. A Fourier series approach captures the
demand patterns of carsharing vehicles accurately, especially when our weighted objective function with asymmetric pay-
offs is applied. We show that the VPP can be profitable to fleet owners, ecologically advantageous through reductions in
wind power curtailment, and beneficial to consumers by reducing energy expenses.
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1. Introduction

The Intergovernmental Panel on Climate Change
(IPCC) stated that human-induced climate change
causes eight systematic environmental hazards.
Among these are flooding, extreme, and variable pre-
cipitation, increasing frequency and intensity of
extreme heat, drought, ocean acidification, and loss of
the Arctic sea ice (Field 2014). To mitigate these risks,
CO2 emissions need to be reduced. The use of electric
vehicles (EVs) in combination with renewable energy
sources is an essential step in reducing emissions.
However, renewable energy sources are extremely

intermittent: they produce electricity according to the
weather—not necessarily to what is needed. Differ-
ences between the production and consumption of
energy destabilize the grid, leading to blackouts,
which can have serious economic and physical conse-
quences, for example in hospitals, or traffic. In view
of its perishable nature, electricity cannot be stored in
large amounts. As a consequence, balancing the
demand and supply of electricity in the grid plays a
central role in realizing the potential of volatile
renewable energy sources for consumers of electricity.
Currently, idle power plants serve as back-up to
ensure that electricity is available when needed. This
approach is not only inefficient and expensive for the
society, but also limits the accommodation of increas-
ing shares of renewable energy sources. The reason
for this is that the grid has to operate increasingly
under variable supply from renewable energy
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sources, while the market share of dispatchable
power plants, such as coal or gas, diminishes and
therefore cannot guarantee back-up at all times. Our
approach offers an alternative with virtual power
plants (VPP).
As EVs are more widely adopted, storage capacity

for electricity becomes increasingly available. This
capacity may be employed to offer balancing ser-
vices to the grid (Sioshansi 2012, Vytelingum et al.
2011), but this depends on the trade-off between the
operating costs, such as battery wear, and potential
profits. In this research, we consider the electricity
stored in EV batteries as inventory. The battery can
be allocated to four, mutually exclusive states:
charge (add inventory), discharge for renting (de-
crease inventory), discharge to the grid (decrease
inventory), or left idle (no change in inventory).
While the optimal allocation of EVs over time can be
considered a multi-period inventory flow problem,
day-ahead EV allocation is much more complicated
under uncertain energy prices, when it is not known
in advance when and where EVs will be used, like
for example in a car sharing fleet. In the basic flow,
where a private person owns a single EV, inventory
can be substituted. The owner can decide between
charging, discharging, driving, and leaving idle.
When considering fleets of EVs, the location matters,
as rental demand (energy for rentals) depends on
location. We make a trade-off between a class of
demand where location matters (drivers want a car
to be close to their departure location) and a class of
demand where location does not matter (vehicles
can discharge to the grid from any capable charging
point in a city).
We develop a mixed rental-trading strategy to

analyze the potential for EV fleet owners to gain
profits from renting out cars, while at the same time
using spare battery capacity and excess electricity to
actively trade in the energy market. This fleet of
EVs is considered as a VPP, a collection of dis-
tributed energy sources, which are centrally man-
aged to generate power at consumption peaks and
absorb excess electricity when consumption is low
(Ausubel and Cramton 2010). When EVs are
charged or discharged to the grid, they are aggre-
gated to VPPs, which act on fluctuating electricity
price signals. Our strategy optimizes electricity pur-
chases of EV fleet owners in the market to charge
the fleet for the purpose of driving, or discharge at
a later stage at a price premium. The proposed strat-
egy is validated with real energy market data and
real data about electric vehicles, whose movements
we track with GSM (Global System for Mobile Com-
munications) and GPS (Global Positioning System).
This technology provides us real-time information
about battery and location of the EVs.

Previous research has addressed the impact of EVs
on the technical efficiency of the smart grid, while
assuming that driving patterns are exogenous
(Sioshansi 2012) or that battery storage is static (Vyte-
lingum et al. 2011). When driving patterns are
regarded as exogenous, this dispenses with any
uncertainty over when EVs will be available to store
electricity. By contrast, our strategy applies to uncer-
tain environments, where rental trips are not known
in advance. Moreover, we take into account the corre-
sponding costs of immobility of customers for the
fleet owner. Concerning the electricity market, we use
individual bidding preferences from a real-world
electricity auction to infer about the current and
future behavior of market participants using large-
scale data. Using individual asks and bids, we repli-
cate the market clearing mechanism including the
bids and asks of trading fleet owners. The advantage
of this approach is that we can add additional bids
and asks to this market to analyze how the market
prices change, if fleet owners place bids and asks or if
competition increases. If there is increased charging
by EVs, the demand curve shifts; if there is increased
EVs discharging, the supply curve shifts, all in accor-
dance with market auction mechanism. Based on this,
we estimate the impact of various penetration levels
of EVs on the demand and supply in the energy mar-
ket, the electricity prices that consumers pay, and the
CO2 emissions.
We validate the proposed strategy using real-life

data from the Nord Pool Spot electricity market in
Northern Europe and a fleet of 1100 EVs from Daim-
lers carsharing fleet Car2Go in San Diego, Amster-
dam, and Stuttgart, as well as a fleet of 400 EVs from
BMW’s carsharing company DriveNow in Copen-
hagen. These carsharing EVs are rented out in free
float, meaning that any customer can pick up a car
within the city boundaries, as long as the car is
returned anywhere within the city boundaries. An
incentive scheme of ten free driving minutes encour-
ages customers to park at charging stations to
recharge the EVs, when the state of charge is below
20%. In our analysis, only vehicles that are parked at
one of the charging stations can interact with the elec-
tricity market. Rentals occur on the spot, as cars can-
not be reserved more than 30 minutes in advance.
Our analysis addresses the challenges of the current

and future energy landscape in terms of the triple bot-
tom line, considering the impact for people, planet,
and profit (UN 1992). Our contribution is to help
embedding sustainable renewable energy sources in
energy systems and add to the existing knowledge
regarding EV storage and multi-period inventory
flow models with location dependent demand. We
find that our recommended strategy lowers energy
prices for consumers (people) by 3.4%, decreases the
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need to curtail renewable energy sources by 97% (pla-
net), and offers profit increases of 4.3% for fleet own-
ers (profit).
The study is structured as follows. First, we review

related literature and the theoretical background of
energy markets (section 2), and then proceed to
describe the mixed rental-trading strategy for EV fleet
owners (section 3). Next, we go in detail about the
data used and the methods applied (section 4). The
analysis and the impact of our strategy on people, pla-
net, and profit are described in section 5. We present a
summary and conclusion of our research combined
with an outlook on future work in section 6.

2. Theoretical Background

This section describes relevant research and explains
the general setting of balancing renewable energy
sources with EV fleets. In particular, we will describe
the research that has been done on charging EV fleets
with variable prices to save cost. Consequently, we
position our research within the literature on EVs and
the vehicle-2-grid context of selling electricity back to
the grid. Next, we introduce the methodological back-
ground and make a comparison with the related topic
of caching. Finally, we describe the functioning of the
electricity wholesale market.

2.1. Smart Charging of Electric Vehicles
The additional demand from charging EVs does not
pose serious problems to the generation capacity of
the grid in the long term (Sioshansi 2012), as grid
capacity can be increased gradually in the system.
However, the introduction of large numbers of EVs
can cause problems for grid operations: decentral
transformers and regional substations can quickly
become overloaded when not adequately managed
(Sioshansi 2012). Mak et al. (2013) outline how battery
infrastructure should be planned along highways and
how it drives the adoption of EVs. Avci et al. (2015)
explain the effect of battery swapping stations on the
take-up of EVs and their environmental impact. Both
studies emphasize the need to understand the impli-
cations of charging for the grid. Some research sug-
gests that smart charging should incorporate price
incentives that help address the peak-load issues for
transformers and substations (Valogianni et al. 2014,
Wolfson et al. 2011). Other studies recommend that
users share information about when they drive their
EVs (Fridgen et al. 2014) or indicate that area pricing
(Flath et al. 2013) be used to reduce the impact of EVs
on the grid. However, no study has focused on the
management of large-scale storage using EV fleets
distributed over different city districts with real mar-
ket and electric vehicle data.

2.2. Vehicle-2-Grid: Electric Vehicle Batteries to
Stock Electricity
Fleet owners with large numbers of EVs influence the
demand for electricity by charging their EVs (Gott-
walt et al. 2011), but they can also influence the elec-
tricity supply by making additional energy available
to the grid, especially during demand peaks. This has
been referred to as vehicle-to-grid (V2G). Current
charging infrastructure standards, Type 1 chargers
(SAE J1772, standard in North America and Japan),
and Type 2 chargers (IEC 62196, standard in the
European Union), support V2G technology. These
standards have been successfully applied for V2G in
practice. For example, the Los Angeles Air Force Base
applies V2G to create a grid independent military
base microgrid (Marnay et al. 2013); the University of
Delaware applies V2G for energy trading (Shinzaki
et al. 2015); and in the Edison Project in Switzerland
and Denmark, it is applied for demonstration
purposes (http://www.edison-net.dk/). Vytelingum
et al. (2011) investigated the effects of using static stor-
age capacity for a household to store energy when it
is cheap. They showed that a 14% saving in the
energy bill could be achieved, with carbon emissions
being reduced by 7%. Other studies demonstrated
that the yearly benefits of V2G are in the range of 20
to 120 US$ (Peterson et al. 2010) and 135 to 151 US$
(Reichert 2010), acknowledging that battery cost are a
crucial factor for the realized profitability. Based on a
price sensitivity analysis, Reichert (2010) show that
batteries are seldom used for V2G when battery
degradation costs are 50 US$/MWh, whereas they
can be profitably used at degradation cost of 10 US$/
MWh. The use of EVs as VPPs, therefore, depends on
advances in battery technology. Additionally, Tomic
and Kempton (2007) show that V2G profitability is
subject to the market setup: the shorter the interval
between the sale of electricity and the physical deliv-
ery, the larger the benefits. Kahlen and Ketter (2015)
and Kahlen et al. (2017) extend this finding by show-
ing that charging costs can be decreased with more
than 7% when trading on ancillary service markets,
and that V2G activities therefore become profitable
for fleet owners. However, these studies consider the
operating reserve market, where the commitment to
deliver electricity has to be made a week in advance.
In the day-ahead market, which is the focus of the
present study, these commitments are only made
twelve hours in advance. This allows one to make
much more accurate demand forecasts, which signifi-
cantly reduces the risk of not being able to serve ren-
tal customers. Also, since we focus on the day-ahead
market, which is much more important in terms of
the quantity traded, we are able to assess economic
implications.
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Relatively little research has been conducted into
the impact of uncertainty of rental demand as a result
of not knowing in advance when EVs are needed for
driving at which location. In contrast to previous
work, our approach can be applied even when rental
demand is not known in advance.

2.3. Methodological Background and Parallels to
the Caching Literature
Businesses are continuously under pressure to make
their operations sustainable through green operations
or closed-loop supply chains (e.g., Kleindorfer et al.
2005); and the automobile industry is no exception.
The past decade has seen the emergence of new busi-
ness models, like car sharing, aimed at increasing
vehicle utilization. The present study sets out to
demonstrate how electric vehicle fleet owners can
exploit EVs to their full potential by using excess stor-
age for energy trading. This potential can be achieved
by allocating storage efficiently to the four different
states (charging, discharging, renting, idle). We con-
sider it as a multi-period inventory flow problem as
the fleet owner needs to decide by how much he
should charge, discharge, and keep vehicles idle to
rent for rental customers to maximize his profits. To
make this decision, we develop a strategy that is
informed by research in the caching literature, which
has addressed a similar storage problem. Caching
refers to the storage of data in order to improve web
browsing performance, so that frequently accessed
information is locally available and does not need to
be downloaded again. Mookerjee and Tan (2002) ana-
lytically analyze the last-recently used policy, which
caches the most frequently accessed documents. An
extension to this policy studies the price differentia-
tion between different caching protocols (Hosanagar
et al. 2005). Storing information in anticipation of
future demand is similar to our EV storage problem,
which is why we follow a similar approach of estimat-
ing demand, developing a mixed rental-trading
strategy, and consequently empirically testing the
strategy. A parallel to the fleet dimension of our
research can be drawn with collaborative caching, in
which items are cached in multiple locations, for
example, other computers in an organization (Datta
et al. 2003). This is relevant to our study, as storage is
shared among several users (similar to carsharing),
yet location is critical, because if one’s item is stored
in someone else’s cache, accessing the item will be
slower, like an EV parked further away. Location is
important for our problem, which previously has
been modeled as an inhomogeneous Poisson process
in (Datta et al. 2003). But in addition, time is crucial
for our mixed rental-trading strategy, as the demand
for vehicles differs over the day, for example during
rush hours. Hosanagar and Tan (2012) also find that it

is difficult to manage this shared cache centrally,
because some users of the centrally managed cache
system benefit more than others from the optimal pol-
icy. To address fairness considerations, we use auc-
tion markets to allocate the EVs to their four
respective states according to the states valuations.
This process of market optimization has previously
been described in management science as a smart
market (Bichler et al. 2010, Gallien and Wein 2005,
McCabe et al. 1991). McCabe et al. (1991) and Bichler
et al. (2010) have highlighted the relevance of smart
markets for the electric power system. Energy provi-
ders are faced with a resource allocation problem.
Increasingly volatile energy supply and fluctuating
energy demand make it difficult to predict when to
deploy energy storage and additional generators. By
auctioning off the storage of EVs we are able to signal
the maximum willingness to buy or sell energy to the
market so that the EVs will always be allocated prof-
itably. The next section describes the market mecha-
nism of this auction.

2.4. Day-Ahead Electricity Wholesale
Market Mechanism
Fleet owners normally charge their EVs with a flat
electricity tariff negotiated with an electricity provi-
der. However, if they want to benefit from energy
price differences over time, they have to become
active in the wholesale market. A particular conse-
quence of this energy market presence is that fleet
owners have to determine the quantities of electricity
that they are willing to store and sell back to the grid,
the minimum price at which they would like to sell
electricity and the maximum price at which they
would be willing to buy the stated amount of electric-
ity, for each time slot one day-ahead. These quantities
and prices are matched with those of other buyers
and sellers in the day-ahead electricity wholesale
market. In this section, we explain the operation of
the energy market before we go in detail on our mixed
rental-trading strategy.
We consider a day-ahead market for electricity,

which is common in western economies. The market
is a platform for sellers and buyers of electricity to
make contracts, or “orders,” for the delivery of elec-
tricity the following day. Agreed prices vary for every
hour of the next day. Energy prices are determined to
clear the market by means of a double auction analo-
gous to (reverse) multi-unit auctions, in which multi-
ple buyers and sellers participate (Krishna 2002).
In the energy market, suppliers j submit ’asks’, that

state the quantity Q
j
S;t they would like to sell and the

lowest price P
j
S;t they are willing to accept, for time

slot t. Buyers k place ’bids’ that state the quantity Qk
D;t

they want to buy and indicate the maximum price
Pk
D;t they are willing to pay for a specified time slot t.
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The fleet owners assume the role of suppliers when
they discharge the EVs, and the role of buyers when
they charge EVs. After the orders are submitted, the
market operator arranges all bids and asks in merit
order: the cheapest asks and the bids with the great-
est willingness to pay are prioritized, as illustrated in
Figure 1. The asks in the merit order make up the
supply curve for electricity, while the bids in merit
order form the demand curve for electricity. The
intersection of both curves defines the equilibrium
clearing price P�

t that equalizes supply and demand.
In Figure 1 the clearing price P�

t is equal to 41.5 US$,
which is the same for all executed bids (1, 4, and 8)
and asks (3, 2, and partially 7). The clearing quantity
Q�

t defined as the sum of executed order quantities, is
equal to 20 MWh. All (partial) orders to the right of
the market clearing solution are either asks that sell
at a price that no consumer is willing to pay, or bids
by consumers that no seller is willing to accept, and
are thus rejected.

3. A Mixed Rental-Trading Strategy

Our study takes the perspective of EV fleet owners
who operate VPPs by exploiting the collective battery
capacity of their EVs for rental and energy trading.
These fleet owners are simultaneously active in the
(carsharing) rental market and the energy wholesale
market, and routinely have to decide about the
desired state of their vehicles for different time slots
one day-ahead: charging (adding inventory), dis-
charging to the grid (decreasing inventory), or leaving
idle (not changing inventory), of which the latter may
or may not lead to discharging for car rental (decreas-
ing inventory). The energy stored in EV batteries can
be used to meet peak demand in electricity consump-
tion, while available battery capacity can be made
available to store energy in times of excess supply.
Fleet owners who engage in buying or selling

electricity for arbitrage purposes, will be cautious not
to turn away rental customers, which would jeopar-
dize the much more profitable rental transactions.
Vehicles that are not rented out, can be used for
charging and discharging as long as this does not
interfere with rentals in the next time slot due to, for
instance, too low remaining battery after discharging.
As the intended transactions on the wholesale market
need to be submitted twelve to thirty-six hours in
advance, the allocation of EVs to the different states is
based on forecasts of battery availability for all time
slots on the next day.
In addition, rental patterns can be expected to differ

between different parts of cities, which are the natural
rental domains of fleet owners. As it is expensive to
relocate vehicles, which requires staff and resources,
the availability of vehicles for arbitrage will be differ-
ent between city districts. Fleet owners can exploit
these geographical differences by using vehicles at
less popular rental locations and time slots for arbi-
trage. Our proposed mixed rental-trading strategy
considers these location-dependent vehicle allocation
decisions, while assuming that demand within city
districts is relatively homogeneous, as people are
willing to walk short distances.
The day-ahead electricity market closes at noon for

the next day, implying that the bids and asks with the
respective reservation prices and quantities to charge
and discharge have to be submitted between twelve
and thirty-six hours in advance for all twenty-four
hourly time slots of the next day. Carsharing cus-
tomers, by contrast, typically decide spontaneously
whether or not to rent a car: cars are booked maxi-
mally half an hour in advance. As a consequence,
fleet owners have little deterministic information
available about future energy and rental conditions.
Figure 2 illustrates the proposed mixed

rental-trading strategy for fleet owners. It reflects the
various actions, decisions, and consequences of car
(sharing) rental and trading in the energy wholesale
market for fleet owners acting as VPPs, on a daily
basis. Each day before noon, fleet owners forecast the
number of EVs and the energy storage potential that
is available for trading, for each time slot and city dis-
trict, one day-ahead. Based on these forecasts, EV bat-
tery capacity is considered for arbitrage, if no rental is
expected, or left idle, otherwise. Next, the fleet owner
decides about the asks and bids to submit, based on
the aggregate state of charging and the available
capacity for charging across all city districts. After the
market auctioneer has determined the clearing prices
and quantities, fleet owners engage in using the avail-
able EVs for energy charging or discharging, if the
bids or asks are excepted, or add these EVs to the ren-
tal stock, if the bids or asks are not accepted. After
each time slot, when the precise usage of EVs have
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materialized, that is, rental, trade, or left idle, the
associated financial transactions are used to update
the fleet owner’s account. Below, we elaborate the
various stages of the mixed rental-trading strategy.
Table 1 summarizes notation for convenience.

3.1. Determining the Quantities to Charge and
to Discharge
Every day, the fleet owner has to decide about the
quantities to charge or discharge for all time slots of
the next day. As the rental market is uncertain, the
fleet owner’s decisions are based on forecasts of the
rental demand, and of the state of charge of EVs per
location and time slot. Though detailed location infor-
mation is provided by the GSM and GPS of the EVs
in real time, knowing one day-ahead which EV will
be used when and where is virtually impossible.
Firstly, individuals cannot always state in advance
when they need a car, and secondly, even if this were
the case, this information may not be available to fleet
owners. However, fleet owners can exploit the prop-
erties of VPPs to make aggregate EV usage predic-
tions per city district and time slot. Moreover,

location is critical for rental, but is irrelevant to
energy trading. It is not important for the grid from
where EVs deliver the actual physical electricity as a
service to the electricity markets, as long as the asks
and bids that are accepted by the market are honored
by some EVs from the fleet. Decentralized markets
that may exist in the future could even benefit from
the distributed nature of carsharing vehicles through-
out a city, which would increase the business case for
our mixed rental-trading strategy even more.
The total amounts of energy that a fleet owner can

charge from the grid (QD,t) or discharge to the grid
(QS,t) during time slot t are obtained by aggregating
the EVs’ excess storage or electricity over the locations
in a city. Specifically, the total amount of energy, QD,t,
that batteries can be charged with, that is, the bid
quantity for charging, is defined as the total storage
capacity of EVs in excess of the electricity needed for
rentals aggregated over all districts l:

QD;t ¼
XL
l¼1

qD;t;l=ð1� ecÞ ð1Þ

Forecast storage amount per district

Place bid to charge EVs

Add inventory

Place ask to discharge EVs

Decrease inventory

Idle EVs
Not used for arbitrage

Rejected offers

Rented EVs
Decrease inventory

Adjust state of charge

Accepted offers

Account profits and losses

Figure 2 Mixed Rental-Trading Strategy for EV Fleet Owners Acting as VPPs
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where ec is the efficiency rate for charging, which
captures the energy losses when converting from
alternating current to direct current, and qD,t,l is the
available storage in excess of the storage needed for
rentals at location l during time slot t. Similarly, the
total amount of energy available for discharging,
QS,t, the ask quantity for discharging, is the aggre-
gate of the EVs’ available electricity in excess of the
electricity needed for rentals over all city districts l:

QS;t ¼
XL
l¼1

qS;t;lð1� edÞ ð2Þ

with qS,t,l, the total electricity stored at location l in
excess of the electricity needed for rentals; and ed,
the efficiency rate for discharging.
The determination of the excess amounts of storage

(qD,t) or electricity (qS,t) takes into account the techni-
cal constraints of EV batteries and the driving needs
of renters. EVs can only be used for trading energy, if
they are connected to charging stations. Cars that are
rented out, or parked at locations without charging
facilities are not available for arbitrage. Moreover, as
car rental is always preferred over trading, the state of
charge of EVs at the end of time slot t, SoCt+1,i, should
always be enough to sustain the energy consumption
needed for driving during the next time slot, rt+1,i,
which implies:

SoCtþ1;i � rtþ1;i ð3Þ
The storage capacity available for arbitrage (qD,t,l) is

equal to the difference between an EV’s maximal state
of charge, SoCmax,i, and its state of charge at the begin-
ning of a time slot t, SoCt,i, aggregated over all con-
nected EVs in district l. The energy available for
discharging (qS,t,l) should respect the fleet owner’s pri-
ority in Equation (3), and consists of the difference of
the state of charge at the start of a time slot minus the
energy needed for rental, aggregated over all con-
nected EVs in location l. The contribution of an indi-
vidual EV i to the discharging amount in time slot t is
thus equal to max(0, SoCt,i � rt+1,i).

3.2. Determining the Bid Price to Charge and the
Ask Price to Discharge
The fleet owner submits offers to the energy market to
charge (bids) and discharge (asks) for every time slot
one day ahead. These offers contain both a quantity
and a reservation price. As pricing needs to be scal-
able to make inferences for multiple fleets, we
develop a pricing strategy that can be computed effi-
ciently. This strategy is based on two thresholds,
which are determined during a training period. If the
market price exceeds the first threshold, the fleet
owner should sell electricity (issue asks), while if the
price falls below the second threshold, the fleet owner
should buy electricity (issue bids). This is imple-
mented as a limit order market (Handa and Schwartz
1996).
For the bid price, we assume that the fleet owner

specifies a maximum price at which to buy for a par-
ticular time slot, PD,t, equal to the average market
clearing price for a particular time slot, �P�

tjU , observed
over the preceding time period:

�P�
tjU ¼ 1

U

XU
u¼1

P�
t�uT ð4Þ

where U is the length of the preceding period in
days, and T is the number of time slots per day. In
this way, the fleet owner’s bids are only matched if
the market clearing price is at or below the average
clearing prices observed during the training period.
For the ask price, we specify the minimum price at

which the fleet owner would be willing to sell energy
for a particular time slot, PS,t, as the average clearing
price for this time slot during a training period, �P�

tjU ,
with an adjustment for the battery deprecation cost
per kWh discharged, b: PS;t ¼ �P�

tjU þ b. This ensures
that the fleet owner will at least break even when
trading electricity, because the lowest selling price is
always higher than the price at which the electricity is
procured, including battery depreciation costs and
conversion losses.

Table 1 Table of Notation

Symbol Explanation

al Location-dependent period of the rental cycle pattern
bl Amplitude of the rental cycle pattern
b Battery depreciation costs per kWh of a charging-discharging

cycle
ec Efficiency rate during charging and conversion
ed Efficiency rate during discharging
i, I Specific electric vehicle (EV), i = 1, . . ., I
l, L District within a city (location), l = 1, . . ., L
ml,t Miles rented in district l at time t
P�
t Market clearing energy price for time slot t

Pk
D Price of a bid (demand) from buyer k = 1, . . ., K

Pj
S Price of an ask (supply) from supplier j = 1, . . ., J
�PR Price of an average rental trip in a city
qD,l,t Storage available at location l during time slot t in excess of

the storage needed for rentals
qS,l,t Electricity stored at location l during time slot t in excess of

the electricity needed for rentals
QD,t Potential to store quantities of electricity in the EVs during

time slot t; quantity of a bid (demand)
QS,t Potential electricity quantity to sell in the EVs during time slot

t; quantity of an ask (supply)
rt,i Amount of energy used for rentals of EV i in time slot t
SoCt,i State of charge of EV i at the beginning of time slot t
SoCmax,i Maximum state of charge capacity of EV i
SoCmin,i Minimum state of charge capacity of EV i
t, T Hourly time slots for delivering energy, t = 1, . . ., T
u, U Days of the estimation window, u = 1, . . ., U
pm Marginal profit per mile rented
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The market may or may not accept the fleet owner’s
offer depending on the composition of the offer as
well as on the offers of other market participants.
Once the offers are out, the market auction mecha-
nism ultimately decides when EV’s will charge or dis-
charge. If offers are rejected, the excess storage or
surplus of energy will be added to the stock of idle
EVs, which are available for rental services. If offers
are accepted, the states of charge of the electric vehi-
cles will accordingly be adjusted.

3.3. The Fleet Owner’s Account
The fleet owner generates revenues by allocating
vehicles to the states of charge, discharge, leaving
idle or rental. Trade-offs are made between buying
and selling electricity from and to the grid on the
one hand and making profits from rentals on the
other hand. If the fleet owner buys or sells more elec-
tricity, then this will reduce the rental profits, and
vice versa. After the decision about the day-ahead
fleet allocation is made, the auction mechanism has
determined the day-ahead clearing prices, and the
car rental of the next day has materialized, the fleet
owner’s daily profits follow as:

P ¼
XT
t¼1

�
QS;tðP�

t � bÞ �QD;tP
�
t þ

XL
l¼1

ml;tpm

�
ð5Þ

where T is the number of day-ahead time slots t, b
is the battery depreciation cost per kWh discharged,
L is the number of city districts in the fleet owner’s
operating area, ml,t are the miles rented in district l
during time slot t, and pm is the marginal profit per
mile rented.

4. Data and Methods

4.1. Data
Real-life data about vehicle rental and energy market
trading are used to evaluate the viability of our mixed
rental-trading strategy. This section describes the var-
ious sources and the nature of the EV rental data, the
energy market data, and the characteristics of battery
costs and conversion losses.
Rental data. We use data about EV fleets in four

cities: Amsterdam, with seven districts; Copenhagen,
with eleven districts; San Diego, with seven districts;
and Suttgart, with eleven districts.
EV usage data is available from Daimler’s EV car-

sharing service Car2Go (www.car2go.com) in San
Diego (300 EVs), Amsterdam (300 EVs), and Stuttgart
(500 EVs), and from BMW’s carsharing service Drive-
Now (www.drive-now.com) in Copenhagen (400
EVs). The data from Copenhagen are particularly rel-
evant to our analysis, as they come from the only city
which is part of the Nord Pool Spot market. Under

the carsharing services from Car2Go and DriveNow,
customers rent EVs without reservations, pay by the
minute, and drop them off at any location within the
city boundaries. Daimler and BMW currently con-
sider merging Car2Go and DriveNow, thus highlight-
ing the similarity of the two services.
The Car2Go and DriveNow data include the fol-

lowing information about idle cars: (i) current time,
which is used to determine the time slot t; (ii) vehicle
ID; (iii) GPS coordinates, which are used to define
location l; and (iv) state of charge (SoC), whether it is
parked at a charging station, and whether it is cur-
rently charging. All data are available on the web in
real-time for all 1500 EVs. Daimler AG gave permis-
sion to access a private API to harvest these data
every five minutes for research purposes. For Drive-
Now, we used a self-built web scraper to download
EV data every five minutes. Table 2 gives a snapshot
of the data. The EV data are complemented with data
about charging station locations. Access to informa-
tion about the charging state of each car and the loca-
tion of charging stations enables us to calculate how
much electricity each EV can store, and how much
electricity it can sell from each location.
Data for Stuttgart were collected from November

2013 till December 2014, and for San Diego and Ams-
terdam from March 2014 till December 2014. Data
between March 31st and April 20th 2014 are lacking
due to a server error of our web scraper. The data for
Copenhagen was collected later, from August till
December 2016 in order to validate our findings with
a city within the Nord Pool Spot region. Since Drive-
Now has a relatively new user base (it started operat-
ing in 2015 in Copenhagen, while Car2Go started four
years earlier) some of the usage patterns may not be
comparable, and therefore need to be interpreted with
caution. However, we use a rolling time horizon for
the forecasting, which will quickly pick up changing
behavioral patterns over time. The size of our estima-
tion window is sixty days.

Table 2 Sample EV Data

Time t ID i Address SoC
Charging
spot Charging

May 13,
2014
19:25:00

S-GO2059 Sommerrainstraße
90, 70374
Stuttgart

96 TRUE FALSE

May 13,
2014
19:30:00

S-GO2059 Sommerrainstraße
90, 70374
Stuttgart

96 TRUE FALSE

May 13,
2014
20:30:00

S-GO2059 Im Buchwald 19,
70186 Stuttgart

85 FALSE FALSE

Note. Only idle cars are shown; the change in battery status and time in
the last row indicates that the EV was not parked, and therefore rented.
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All EVs are subcompact cars. The EVs from Car2Go
are Smart Fortwo electric drives with a 16.5 kWh bat-
tery (SoCmax). The EVs from DriveNow are BMW i3
with an 18.8 kWh battery (SoCmax). All EVs within a
particular city thus have the same maximum state
of charge. Online Appendix S1 gives a sensitivity
analysis for battery size. Figure 3 shows the percent-
age of idle EVs over the course of a day for Stuttgart.
As may be expected, fewer EVs are idle during the
day than during the night. This pattern is especially
pronounced during the afternoon and evening rush
hours, when on average 60% of EVs are idle. A rental
peak can be observed during the morning rush hour
at 9 AM, but this peak is small compared to the peaks
in the afternoon and evening. Apparently, carsharing
is used more frequently after work, and not as much
for commuting or during office hours. The lowest
observed idleness of EVs over the whole period is
34%, which occurs in the afternoon rush hour. During
the night hours, almost all EVs are idle. At its
extreme, 94% of the cars were not used, which creates
room for arbitrage. Figure 3 also shows the percent-
age of idle EVs that are connected to a charging sta-
tion. On average, one-third of the EVs are parked at a
charging station, which percentage seems stable over
the day. Only EVs parked at a charging station can be
used to provide storage to the energy market. As the
number of charging stations can be expected to
increase over time, the trading profits that we find are
likely to be a conservative estimate.
Using real data about electric vehicle fleets world-

wide and about day-ahead electricity markets, we are
able to validate our mixed rental-trading strategy in a
representative setting. An objection might be, how-
ever, that we evaluate the profitability of EV fleets
from San Diego, Amsterdam, and Stuttgart with the
day-ahead electricity market data from a different
region, that is, Denmark. The results for these cities
need to be interpreted with care, but still we are

confident that our findings are representative for
these regions as well.
Energy market data. Detailed order information

was kindly made available by the Northern Euro-
pean Nord Pool Spot (ELSPOT) electricity market
(www.nordpoolspot.com), a day-ahead market for
the Scandinavian and Baltic region which popu-
lates about 360 buyers and sellers who trade on
average over 40,000 MWh of electricity per hour—
a fleet of 500 EVs can store approximately 0.02%
of this amount. The data consist of about eight
million individual bids and asks over the 365 days
of the year 2013. Each hourly time slot includes
more than 2000 asks or bids. Based on these data,
we reconstruct the trading settlements for all 8760
(=365 days 9 24 hours) clearing events, following
the mechanism described in section 4. Figure 4
shows the demand and supply functions for two
exemplary clearing events, for July 15, 0–1 AM,
and December 1, 5–6 PM.
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Figure 4 Demand and Supply Curves Consisting of Individual Asks
and Bids in the Nord Pool Spot Market, Complemented with
Additional Bids from EV Fleet Owners
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In the case of Figure 4, the supply curve is based on
582 asks from sellers whose asks looked like: Q1

S ¼
15,114.01MWh; . . .; Q582

S ¼ 42,304.32MWh, with cor-
responding ask prices P1

S ¼ �200US$=MWh; . . .; P582
S

¼ 2000US$=MWh. The demand curve similarly con-
sisted of 314 bids from interested buyers. The mar-
ket clearing price for this time slot amounted to
39US$/MWh at which 24,550MWh are sold. In a
similar manner, the time slot in Figure 4b involved
704 asks and 396 bids, leading to a market clearing
price equal to 41US$/MWh, trading 42,200MWh.
The Nord Pool Spot market is particularly

suited for this analysis, because it is the largest
energy market in the world, but also because it
has a large share of renewable energy sources
in the electricity mix. The latter makes it repre-
sentative of future energy markets, as more and
more energy from renewable source will come
available.
Using detailed data about actual bids and asks in

the market allows us to study the impact of the mar-
ket entrance of EV fleet owners acting as VPPs.
Moreover, it allows us to mimic the effect on market
clearance of additional orders by the fleet owner,
and thus evaluate the consequences of scaling the
mixed rental-trading strategy. The use of empirical
bid and ask data is preferred over formal modeling
of the stochastic processes involved, because the
decision making of market participants will change
when they re-evaluate their options and when they
are confronted with new choices, such as the storage
opportunities provided by EVs (Shen and Su 2007).
Battery costs and conversion losses. As the develop-

ments in battery technology are essential to deter-
mine profitability (Schill 2011), yet difficult to
predict, we consider three battery scenarios. The
first scenario assumes that battery cost are zero,
b = 0, and is meant as a benchmark. The second
scenario assumes that capital cost decrease to 70
US$/kWh, while the number of cycles increases to
7000, with a resulting battery depreciation cost of
b = 10US$/MWh. The third scenario is based on the
current battery price of approximately 150 US$/
kWh capital costs depreciated over 3000 life cycles.1

After these cycles, the current battery technology is
able to store only 85% of the original storage capac-
ity and is considered obsolete. The corresponding
battery depreciation cost are b = 50US$/MWh.
Whenever a fleet owner trades, the wear-out depre-
ciation costs of the battery capacity used needs to
be taken into account for that transaction. Further-
more, about 3% to 4% of the energy is lost due to
the conversion efficiency (ec) when the EV is
charged (Reichert 2010). When energy is delivered
to the grid from the EVs battery, 2.4% of the energy
is lost (ed). Every time the VPP is, used we have to

account for these costs to arrive at accurate
estimates of the actual benefits. With the direct cur-
rent lines that are being planned these conversion
losses would be reduced, enhancing our business
case.
Limitations of the data. With the data from both

real electric vehicle fleets around the world and real
day-ahead market data we are able to substantiate
our claims in a representative setting. However, we
evaluate the profitability of EV fleets from San Diego,
Amsterdam, and Stuttgart with the day-ahead elec-
tricity market data from Denmark. Because of this
geographic discrepancy the results for these cities
need to be interpreted with care. Nevertheless, we are
confident that our findings are also representative for
these regions for two reasons. First, the analysis of the
DriveNow data from Copenhagen, which matches the
day-ahead market data from Denmark geographi-
cally, shows similarly positive results to the other
cities. Second, the day-ahead markets in the respec-
tive cities operate according to the same double auc-
tion principle and have comparable market clearing
prices. For detailed information please refer to
Appendix S2. Sensitivity Analysis: Market Price.

4.2. Methods
The amounts of energy to charge and discharge in
each day-ahead time slot, qD,t and qS,t, are forecasted
by means of a bottom up approach: first, the amounts
of energy to charge or discharge for each location l
and time slot t, qD,t,l and qS,t,l, are forecasted, after
which aggregate day-ahead forecasts are obtained by
summing over the locations.
The hourly excess storage amounts exhibit strong

cyclical patterns over time, which is illustrated by Fig-
ure 5, showing the autocorrelation functions of excess
storage for selected districts in the three cities of inter-
est. These patterns suggest alternating sequences of
excess storage and excess electricity, which differ
between the three cities. While some districts, such as
Down Town San Diego, exhibit daily recurring pat-
terns as in Figure 5a, other districts, such as Indre By
in Copenhagen exhibit weekly patterns as in Fig-
ure 5b. Yet other districts reveal a combination of
weekly and daily patterns, such as Nieuw-West in
Amsterdam, see Figure 5c.
We adopt a Fourier series approach to forecast

these complex seasonal patterns of excess storage and
excess energy for each district. The available storage
for charging vehicles at location l and time slot t is
represented by the following:

qD;l;t ¼
X7
k¼1

fbD;l � sinð2p� k� tl=aD;lÞ þ bD;l

� cosð2p� k� tl=aD;lÞg
ð6Þ
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where bD,l defines the amplitude of the repeating
rental pattern in district l and aD,l defines the peri-
ods of the repeating rental pattern in district l. The
available storage for discharging vehicles at location
l and time slot t is modeled as follows:

qS;l;t ¼
X7
k¼1

fbS;l � sinð2p� k� tl=aS;lÞ þ bS;l

� cosð2p� k� tl=aS;lÞg
ð7Þ

where bS,l defines the amplitude of the repeating ren-
tal pattern in district l and aS,l defines the periods of
the cyclical excess energy pattern in district l. Seven
Fourier terms are used to capture potentially various
forms of seasonality. Single parameters aD,l and aS,l
are assumed per region, in order to conveniently han-
dle the computational consequences of simulating the
impact of EV fleets with different sizes.
In addition, we adopt an asymmetric weighted

loss function to estimate models (6) and (7), which
weights positive and negative forecast errors differ-
ently. Ordinary objective functions, such as the min-
imization of the sum of squared forecast errors, are
less suitable in view of the asymmetric pay-offs
(Amaldoss and Jain 2002, Christoffersen and Die-
bold 1996, 1997, Elliott et al. 2005, Granger 1999,
Granger and Pesaran 2000, Zellner 1986). Not being
able to rent out cars is much more expensive for
the fleet owner (the average price in a city �PR a ren-
tal customer pays for a drive is 15 US$) than the
cost of selling electricity on the energy market P�

t .
The asymmetric weighted objective function penal-
izes forecasts according to the costs in each direc-
tion. Under-forecasting excess storage is heavily
penalized, as this storage could jeopardize the
much more profitable rental services, while over-
forecasting the excess storage is much less penal-
ized, as the associated payoff is low compared to
rental profits. The objective function for the two
models is defined as:

min
al;bl

XN
t¼1

wt;ljqt;l � q̂t;lj ð8Þ

with wt;l ¼
P�
t if qt;l � q̂t;l � 0

jqt;l�q̂t;lj
SoCmax;l

�PR þ P�
t if qt;l � q̂t;l\0

(
ð9Þ

in order to avoid repetition, qt,l refers to qD,t,l or
qS,t,l depending on whether the excess storage (6)
or the excess energy (7) functions are estimated.
Likewise, al refers to aD,l or aS,l and bl refers to
bD,l or bS,l; N is the total number of time slots
used in the optimization, and SoCmax,l is the aggre-
gate of the maximum state of charge of EVs in a
city district l.

5. Analysis: The Triple Bottom Line

In this section, we analyze the results of our simula-
tion with the mixed rental-trading strategy for EV
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Figure 5 Autocorrelation Functions of the Storage Availability in Dif-
ferent Cities [Color figure can be viewed at wileyonline
library.com]
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fleet owners. We evaluate the effects of VPPs that con-
sist of EVs in terms of the triple bottom line. First, we
evaluate the effect of mixed rental and energy trad-
ing on the financial viability under competition for
the fleet owner (profit), we then analyze the effects on
the electricity price for consumers (people), and
finally we consider the impact on carbon emissions
(planet).

5.1. Profit: Fleet Perspective
For the fleet owner, it is important that EVs are opti-
mally allocated among the states of charging, dis-
charging (rentals), discharging (grid), and being idle.
This is important because this allocation affects the
profits of the fleet owner and the risk he faces of not
being able to serve his core business, the rental to
customers. We analyze the profits of the allocation,
and how the profit is influenced by fleet size and
competition.

5.1.1. Allocation to States: Charging, Discharging
(Rentals), Discharging (Grid), Idle. We find that
the allocation of our mixed rental-trading strategy
is profitable for fleet owners with a very low risk
of reducing the service level for rental customers.
Our strategy allocates a fleet’s EVs to the four
states of charging (adding inventory), discharging
for renting (decreasing inventory), discharging to
the grid (decreasing inventory), or being idle (no
change in inventory) to maximize the fleet owners
profits. This allocation is based on forecasts of the
electricity available for discharging and storage for
charging during the previous sixty days per loca-
tion. Figure 6 gives an example of the rolling win-
dow forecast of the available excess energy for
discharging for three districts, Mitte, Ost, and Wan-
gen, in Stuttgart. The figures show the observed
available excess energy for trading in individual
time slots, a fitted model based on the minimiza-
tion of the sum of squared forecast errors (SSE),
and the holdout sample predictions: one based on
the same SSE model, and one based on the mini-
mization of asymmetric weighted forecast errors
(8). Given the high cost of missing a rental com-
pared to the cost of not being able to trade, the
model based on (8) yields more conservative fore-
casts of the electricity available for discharging. In
fact, only for one day during the holdout period in
Figure 6, on the noon of July 26, 2016, for one dis-
trict, Stuttgart Mitte, this model under-predicts (as
marked in Figure 6a), where more EVs should
have been reserved for rentals than indicated by
the forecast. Note that the opposite, that is, over-
prediction, where the model indicates that less stor-
age is available than there actually was, happens
frequently (as marked in Figures 6a–c). However,

this type of decision error is not as costly and fleet
owners lose out on only a few cents, while at the
same time the chance that one of these EVs cannot
be rented out, is decreased.
The observed daily excess storage patterns differ

between the districts. For example, Figure 6a for Stutt-
gart Mitte reveals that relatively much storage is avail-
able for discharging during noon, while Figure 6b for
Stuttgart Ost and Figure 6c for Wangen show that
more storage for discharging is available during the
night. The available storage variability, though, is lar-
ger in Ost than in Wangen. These differences between
districts are advantageous for the trading decisions of
the fleet owner, as the aggregate storage available for
trading is distributed more or less evenly over the day.
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Figure 6 Forecasts of the Excess Energy Available for Discharging for
the Districts Mitte, Ost, and Wangen in Stuttgart [Color figure
can be viewed at wileyonlinelibrary.com]
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The number of EVs that is to be allocated to the
charging state is determined with the asymmetric
weighted objective function (8) in the same way as for
discharging. The other two states, leaving idle and
discharge for renting, are the EVs that remain. These
EVs are idle until a customer decides to rent them. In
the next section, we consider how the allocation deci-
sion pays off for the fleet operator financially.

5.1.2. Benchmarking. For the four cities consid-
ered, Figure 7 shows the fleet owner’s annual profits
under three conditions: (i) exclusively rentals under a
flat electricity tariff; (ii) a mixed rental-trading strat-
egy with uncertain day-ahead rental demand and
electricity prices; and (iii) a mixed rental-trading strat-
egy with perfect information about day-ahead rental
demand and electricity prices. The latter outcome
serves as a benchmark to indicate how much annual
profit the fleet owner could have achieved, if rental
transactions and energy prices had been perfectly
known in advance. If EV fleet owners, like Car2Go or
DriveNow, offer their EVs without the pre-booking
option, then they may come close to the benchmark
profits. But they will never reach this outcome
because of the uncertainty in the rental and energy
markets.
In the four cities, EV fleet owners make more profits

when applying the mixed rental-trading strategy than
only renting out their EVs. The mixed rental-trading
strategy with VPPs consistently outperforms the ren-
tal-only strategy and comes close to the benchmark
assuming perfect information. Across cities, we see an
annual profit increase per vehicle of between 173 US$
and 252 US$ depending on the city (2.5% and 4.3%)
compared to the benchmark with perfect information
where between 262 US$ and 447 US$ (3.9% and 7.7%)
are theoretically possible per EV. In the next section
we show how the annual profit is influenced by fleet
size and competitive effects.

5.1.3. Fleet Size and Competitive Effects.
Forecasting the excess storage or electricity available
for trading, as a basis for the fleet owner’s allocation
decisions, is facilitated by the size of the fleet. As fleet
size increases, it becomes easier for fleet owners to
forecast at which locations idle EVs can be reserved
for charging or discharging.
Figure 8a shows the profits per EV as a function of

fleet size, for Copenhagen. It shows that annual profit
per EV increases steeply for fleet sizes between 25 and
100 vehicles and then gradually levels off for larger
fleet sizes. The monotonously increasing pattern sug-
gests that it is best for fleet owners to have a fleet,
which is as large as possible for VPP purposes. Com-
petition has the opposite effect, however. The more
EV fleets compete as VPPs on the energy market, leav-
ing all other bids and asks as is, the more the arbitrage
opportunities between low and high prices are
reduced. Figure 8b shows how trading profits vary
with the share of EVs relative to rental vehicles with
internal combustion engines. Note that we do not
assume a change in total demand because if demand
increases, also the supply will increase in the long run
canceling each others effect out on average (Sioshansi
2012). Therefore, we focus on the effect of our mixed
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rental-trading strategy on the market equilibrium
over the course of the hours of a day.
We assume perfect competition among fleet

owners on the electricity market due to more than
2000 market participants, where we simulate the
situation where several independent fleet owners of
500 EVs each participate in the electricity market as
VPP.
These independent fleet owners submit bids and

asks to the market. Equilibrium prices are deter-
mined by the supply and demand from many
actors. No single participant can set the prices for
electricity. As a group, however, these fleet owners
do have an effect on the market. As illustrated in
Figure 8b, the market yields diminishing returns
for every additional EV that enters the market until
the EV market share reaches about 20%. Fleet own-
ers make relatively high profits when the share of
EVs in the market is low (<20%). Under these cir-
cumstances, each fleet owner annually makes
between 173 US$ and 168 US$ per EV, of which
between 20 US$ and 23 US$ can be attributed to
discharging profits and the rest comes from savings
from cheaper charging.
When many EVs charge at low prices and sell at

high prices, the market price difference for arbitrage
decreases. This effect rewards early adopters with
premium returns. When the market share of EVs is
above 20% virtually all additional profits for fleet
owners come from charging EVs at a cheaper than
average rate. These findings are consistent with Peter-
son et al. (2010) and Reichert (2010), who found prof-
its of 20–120 US$ and 135–151 US$ respectively, but
for a low market share of EVs. This is an important
contribution because, unlike previous research, we do
take into account the uncertainty about when EVs are
likely to be used, and yet we demonstrate that
this type of mixed rental-trading strategy can be
profitable.

5.1.4. Battery Cost Effects. Battery depreciation
costs appear to have a marginal impact on the prof-
itability of the mixed rental-trading strategy. The total
profits for a fleet owner in the first scenario with no
battery depreciation cost are only 9% higher than
those in the third scenario with battery costs equal to
50 US$/MWh. This somewhat surprising outcome
may be explained by the fact that the majority of
orders are high-volume trades with low profit mar-
gins, and thus represent only a small share of the total
annual trading profits. Most of the trading profits are
generated from a few asks that involve small quanti-
ties, but have extremely high arbitrage margins, so
that battery depreciation costs are of relatively little
importance. We therefore find that battery deprecia-
tion plays a limited role for our strategy, which may

be different for other strategies, like the one consid-
ered by Reichert (2010). Different outcomes may also
be due to energy market differences, but in view of
the increasing share of renewable energy sources
worldwide, the Nord Pool Spot market is considered
a relatively attractive information source. See Online
Appendix S2 for a sensitivity analysis of the market
price.

5.2. People: Societal Perspective
In contrast to the diminishing returns under competi-
tion for fleet owners, there are increasing benefits for
consumers of electricity in a society, when more EVs
participate in VPP trading. Market prices decrease
for consumers and the operation of power plants is
optimized.
As fleet owners make additional energy available

to the market, the energy supply increases while
demand remains the same, which lowers the clearing
price. However, when fleet owners charge their EVs
for use as VPPs, the demand increases while supply
remains the same, adversely affecting the clearing
price for consumers. Both affect the overall system
cost in a positive way. Figure 9 shows the electricity
price reduction for electricity consumers in a society
as a function of the EV market share. The figure sug-
gests that the average wholesale market price is sig-
nificantly lower when VPPs are available, even
though this depends on the market share of EVs to a
large extent. The effect on the electricity price is most
pronounced when the market share is between 5%
and 60%, and the wholesale electricity price is
reduced by 1.5% to 3.4%. This price reduction is
somewhat less when battery depreciation costs are
higher and competition increases, because under
these conditions fewer trading orders are made. The
price reductions are significant for all three battery
depreciation scenarios at the 1% significance level,
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based on a two sample t-test with unequal variances.
By contrast, previous research found a 14% reduction
in energy prices (Vytelingum et al. 2011), which how-
ever does not consider the trade-off between driving
and balancing the grid.

5.3. Planet: Carbon Emissions
EVs have 10% to 25% lower global warming poten-
tial than combustion engine vehicles when account-
ing for all life-cycle emissions (Hawkins et al.
2013). This includes the additional emissions aris-
ing during the battery production, which are on
average 15% of an EVs life-cycle emissions (Notter
et al. 2010). In our study, we seek to isolate the
effect emission reductions caused by VPPs. We do
not consider emission reductions from fuel effi-
ciency of EVs and potential emission increases
from producing vehicle parts and batteries (com-
bustion engine vehicles vs. electric vehicles). The
latter effects can then be included by other studies
with a broader scale. Our mixed rental-trading
strategy reduces CO2 emissions, as we will now
explain in detail.
For each hourly time slot t, there is an amount of

electricity xt that is produced by renewable energy.
As renewable energy is prioritized due to low mar-
ginal cost in the merit order, any demand that
exceeds xt will be met with non-renewable energy
sources. In the opposite case, when xt exceeds the
demand, the production of renewable energy needs
to be curtailed, which means that, for example,
wind turbines that have enough wind to produce
electricity, need to be shut down. Our mixed rental-
trading strategy tends to buy electricity to charge
the EVs when there is less demand than renewable
energy production. Therefore, it reduces the need to
curtail renewable energy sources, and feeds this
electricity back to the grid when the demand
exceeds the renewable energy production. This has
a positive effect on the total CO2 reduction of the
energy system.
To assess the CO2 reduction potential of our

mixed rental-trading strategy, we measure the
quantity of energy that did not need to be curtailed
and instead replaces a non-renewable energy unit
at a later point in time. For this analysis, we con-
sider: the amount of renewable energy xt that is
generated during each time slot t; the total demand
for electricity in this time slot; the amount of
energy that was charged to the electric vehicles
during the time slot; and the amount of energy
that was discharged from the batteries to the grid
during time slot t.
We find that in Denmark, if 250,000 electric vehicles

(10% of all vehicles) were to participate in the electric-
ity market as described in this study, the curtailment

of wind energy could be reduced by 25,000 MWh
annually (36%). With 750,000 electric vehicles (30% of
all vehicles), the grid could even avoid curtailment of
66,000 MWh annually (97%). This reduces the amount
of CO2 emissions, as the wind turbines can run at full
capacity at all times.

6. Conclusion and Future Work

Increasing volatility in energy production due to dis-
tributed sources of renewable energy creates chal-
lenges, but also provides scope for new business
models. We have presented a strategy, which is both
profitable for electric vehicle fleet owners and sustain-
able for society and planet. The proposed mixed ren-
tal-trading strategy allows fleet owners to charge their
electric vehicles more cheaply, use their storage
capacity for arbitrage trading, and rent out these vehi-
cles as usual. Our mixed rental-trading strategy rec-
ommends the optimal states for all electric vehicles in
the fleet across charging (adding inventory), discharg-
ing for driving (decreasing inventory), discharging to
the grid (decreasing inventory), or being idle (no
change in inventory). Fleet owners make a trade-off
between a class of demand where location matters
(drivers want a car to be close to their place of depar-
ture) and a class of demand where location does not
matter (vehicles can discharge to the grid from any
capable charging point). We have developed an objec-
tive function with asymmetric losses, which considers
the asymmetric cost of renting, charging, and dis-
charging at different city districts in Amsterdam,
Copenhagen, San Diego, and Stuttgart. The mixed
rental-trading strategy is well suited to predict
demand with unique characteristics across different
districts of a city. We show that our mixed rental-trad-
ing strategy enhances the profits of electric vehicle
fleet owners significantly; they can earn between 173
US$ and 252 US$ (2.5%–4.3%) more profits annually
per electric vehicle under the current Nord Pool Spot
market prices. These profit ranges are similar to those
mentioned by Peterson et al. (2010) and Schill (2011).
But, by contrast, our results take into account the
uncertainties of EV rental demand and the variable
prices on the day-ahead market. While we demon-
strated the usefulness of our arbitrage strategy in the
carsharing setting, it can also be extended to the cach-
ing literature. In particular, our forecast model with
asymmetric payoffs could prove useful in differentiat-
ing valuable content for example commercials that
earn more profits than other content.
We applied large-scale analytics to data from

energy markets and electric vehicle fleets in order to
create a smart market for electricity. We have demon-
strated that optimizing this market from a profit-max-
imizing perspective has desirable externalities for the
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triple bottom line of people, planet, and profit. For
people, there are welfare gains for individual con-
sumers and society as a whole due to reductions in
the average electricity price for all consumers in a
society by up to 3.4%. We have also presented evi-
dence that our mixed rental-trading strategy reduces
CO2 emissions, because renewable energy sources
would not need to be curtailed. We find that, if 30% of
all vehicles in Denmark were electric vehicles, they
could avoid curtailment by 97%.
Depending on battery technology developments,

fleet owners can make significant profits with this
strategy. Though, profit levels will decrease when
more vehicle fleet owners compete on this market. In
our current approach we focus on idle electric vehi-
cles. Future research could elicit the valuations and
preferences of consumers relating to electric vehicle
availability. Consumers might, for example, decide to
postpone trips in the electric vehicle, if they can make
a good arbitrage deal. An alternative for fleet owners
would be to offer service levels for electric vehicle
availability in which they segment customers accord-
ing to their flexibility. The study of incentive struc-
tures and mechanisms of electric vehicle storage in
micro grids is another promising field of application
for VPP because power generation, storage, and
charging needs to be micromanaged. Individual
homes that have solar panels or small windmills com-
bined with an electric vehicle and other storage capac-
ity could function as self-sufficient microgrids, and
smart electric vehicle charging could be used to help
prevent losses in solar and wind parks. Future
research should also consider the implications that
technological paradigm shifts such as inductive
charging and autonomous driving will have.
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Note

1www.forbes.com/sites/samabuelsamid/2015/10/28/lg-
chem-may-be-on-the-verge-of-dominating-ev-battery-ind
ustry/#52d4d003144d (accessed date February 10, 2016)
and www.saftbatteries.com/force_download/li_ion_ba
ttery_life__TechnicalSheet_en_0514_Protected.pdf (accessed
date February 10, 2016).
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