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Abstract

Understanding how painful hypersensitive states develop and persist beyond the initial

hours to days is critically important in the effort to devise strategies to prevent and/or reverse

chronic painful states. Changes in nociceptor transcription can alter the abundance of noci-

ceptive signaling elements, resulting in longer-term change in nociceptor phenotype. As a

result, sensitized nociceptive signaling can be further amplified and nocifensive behaviors

sustained for weeks to months. Building on our previous finding that transcription factor Sp4

positively regulates the expression of the pain transducing channel TRPV1 in Dorsal Root

Ganglion (DRG) neurons, we sought to determine if Sp4 serves a broader role in the devel-

opment and persistence of hypersensitive states in mice. We observed that more than 90%

of Sp4 staining DRG neurons were small to medium sized, primarily unmyelinated (NF200

neg) and the majority co-expressed nociceptor markers TRPV1 and/or isolectin B4 (IB4).

Genetically modified mice (Sp4+/-) with a 50% reduction of Sp4 showed a reduction in DRG

TRPV1 mRNA and neuronal responses to the TRPV1 agonist—capsaicin. Importantly, Sp4

+/- mice failed to develop persistent inflammatory thermal hyperalgesia, showing a reversal

to control values after 6 hours. Despite a reversal of inflammatory thermal hyperalgesia,

there was no difference in CFA-induced hindpaw swelling between CFA Sp4+/- and CFA

wild type mice. Similarly, Sp4+/- mice failed to develop persistent mechanical hypersensitivity

to hind-paw injection of NGF. Although Sp4+/- mice developed hypersensitivity to traumatic

nerve injury, Sp4+/- mice failed to develop persistent cold or mechanical hypersensitivity to

the platinum-based chemotherapeutic agent oxaliplatin, a non-traumatic model of neuro-

pathic pain. Overall, Sp4+/- mice displayed a remarkable ability to reverse the development

of multiple models of persistent inflammatory and neuropathic hypersensitivity. This suggests

that Sp4 functions as a critical control point for a network of genes that conspire in the persis-

tence of painful hypersensitive states.
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Introduction

Pain arising from peripheral tissue and/or nerve injury is driven by activity in nociceptors [1–

3]. Depending on the inciting event (inflammation, nerve injury), not only peripheral but also

spinal and/or supraspinal signaling pathways can all conspire to amplify and produce persis-

tence of pain [4–6]. At the level of the nociceptor, the basis of acute inflammatory pain and its

persistence has been studied with a focus on inflammation-induced modifications of ion chan-

nel function that result in lowering activation thresholds in the presence of the ongoing pro-

duction of endogenous sensitizing molecules [3, 7, 8]. However, other processes that drive the

persistence and transition from acute to chronic pain continue to be examined [5, 9–12].

Inflammation and/or neuropathy-induced changes in nociceptor gene expression have also

been proposed as a driver in pain persistence. For example, studies linking an increase in the

expression of TRP channels support tissue-injury induced changes in nociceptor transcription

of TRPV1 to profoundly affect nociceptor signaling [13–15]. We have previously characterized

transcriptional control elements responsible for the expression of TRPV1 in nociceptors [16,

17]. This analysis revealed a TRPV1 dual promoter system (P1 and P2) that is positively regu-

lated by Nerve Growth Factor (NGF) [17]. The proximal, P2 promoter contains a GC-rich

DNA binding domain that is required for TRPV1 transcriptional activity. Two members of the

Sp1-like transcription factor family, Sp4 and to a lesser extent Sp1, bind to the TRPV1 P2 pro-

moter domain and are proposed to positively regulate TRPV1 expression [18].

Sp4 is a member of the Sp1-like transcription factor family and is predominantly expressed

in neurons [19–22]. Sp4 has been linked to various neuronal processes including signaling

[23–26], energy production [27, 28] and conditions such as bipolar disorder [29–31]. Members

of the Sp1-like transcription factor family are distinguished by their ability to bind GC–

box domains, which are often associated with a gene’s upstream promoter region. Although

Sp1-like members share certain common characteristics of binding to GC-rich targets in vitro,

they display remarkable diversity for gene-specific regulation in vivo [32–34]. Given that

TRPV1 is necessary for the development of inflammatory thermal hyperalgesia and is impli-

cated in other experimental and clinical pain states [11, 35–39], we sought to understand the

role of Sp4 in nociception, in vivo. Although Sp4 is known to be expressed in the central ner-

vous system [40–43], we now establish the pattern of expression of Sp4 in Dorsal Root Gan-

glion (DRG) and investigate its role in models of inflammatory and neuropathic pain. We

propose that transcription factor Sp4 is required for the persistence of pain states driven by

inflammatory and neuropathic conditions.

Materials and methods

Mice

Sp4+/- C57Bl/6 heterozygous and Wild type (wt.) mice were a gift from the Department of

Cell Biology, Erasmus MC, Rotterdam, The Netherlands, and genotype was confirmed [44].

Behavioral testing of Sp4+/- heterozygous mice with a 50% reduction in Sp4 was conducted

because prior study of mice with marked attenuation of Sp4 (2–5% of residual activity) showed

structural brain defects [45], and mice with a homozygous deletion of the Sp4 N-terminal acti-

vation domain appear normal at birth but the majority died by 1 month of age [19, 44]. Sp4+/-

mice develop normally and are indistinguishable from their wt. litter mates in terms of base-

line thermal, mechanical or cold threshold testing, baseline weight or spontaneous activity as

measured by video tracking (Bioseb). TRPV1-/-; TRPV1 +/- heterozygous, and C57Bl/6 mice

were obtained from the Jackson Laboratory: Bar Harbor, ME and genotype confirmed. Mice

weighing 25–30 g were housed in a climate-controlled room on a 12 hour light and 12 hour
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dark cycle. A lab diet was available ad libitum, with the exception of when the mice were being

tested. Separate groups of male mice were used for mechanical, thermal and cold sensitivity

behavioral testing due to apparent cross testing learning. Efforts were made to minimize the

number of mice used and their discomfort. Experimental protocols were approved by the Uni-

versity of California, San Francisco, Institutional Animal Care and Use Committee (IACUC).

Testing conditions

Freund’s Complete Adjuvant (CFA) [46] 20 μl emulsified with saline or alternately saline alone

as vehicle control were injected into the left hindpaw plantar surface of mice. Nerve Growth

Factor (NGF): 20μl of hNGF (Invitrogen) Life technologies: Recombinant Human Protein

11050-HNAC-50) (4μg / 20ul / mouse) versus saline vehicle control was intraplantarly (ipl)

injected into the left hindpaw’s plantar surface [47]. A Spared Nerve Injury (SNI) model of

neuropathic pain versus sham control was performed in mice through the ligation and transec-

tion of the sural and superficial peroneal branches of the sciatic nerve, leaving the tibial nerve

intact as described [48, 49]. Oxaliplatin-based model of neuropathic pain was accomplished by

injection of mice with oxaliplatin (Sigma) intraperitoneal (ip) 3mg/kg in saline versus saline

alone vehicle control as described [50].

Behavioral testing

Thermal latency (hargreaves test). Mice were acclimated and baseline measurements

were taken 3 days, 2 days, and one hour before injection. Mice were placed in translucent

chambers on a glass plate. Heat sensitivity was measured using an infrared source aimed at the

plantar surface of the left hindpaw [51]. Paw withdrawal latencies were measured, with a maxi-

mum cut-off time of 20 seconds (to avoid tissue damage). Measurements were taken three

times per testing point, with at least 5 minutes of rest between tests.

Mechanical (von Frey). Mechanical sensitivity was quantified as a paw withdrawal thresh-

old in response to calibrated monofilament increasing strength. Mice were placed in plastic

cages on a wire net platform. A series of calibrated von Frey filaments (starting with .4 g) were

applied perpendicularly to the plantar surface of the hindpaw with enough force to bend the

filament for approximately 1 second. This was done three times, with ten seconds between

each testing. Paw flinch and/or withdrawal were considered a positive response. The strength

of the filament was increased or decreased following a negative or positive response (respec-

tively). The stimulus producing a 50% likelihood of withdrawal response was calculated using

the “up-down” method [52]. This procedure was applied 4 times following the first change in

response. This measurement was taken three times per mouse, with 15–20 minutes of rest

between each testing.

Cold plate. Following acclimation, mice were tested at 10˚C and following a 20 minute

rest interval, again at 4 oC, for a maximal observation period of 20 sec / trial using a Cold Plate

(Bioseb—Cold Plate, USA) and translucent chamber. The time (seconds) until the first paw

flinch / shake was observed was recorded as previously described [50, 53].

Immunohistochemistry and quantitative image analysis

Male C57Bl/6 mice were sacrificed per UCSF IACUC protocol and the left L4 and L5 DRGs

removed and immersed in 4% paraformaldehyde in 0.1-M phosphate buffer (PB) for 3 hours

at 4˚C and then cryoprotected in 25% sucrose in 0.01-M phosphate-buffered saline (PBS) over-

night at 4˚C. The samples were then placed in TissueTek embedding medium (Sakura, Tokyo,

Japan) and rapidly frozen. 12 μm sections were cut using a sliding cryostat (LEICA, Tokyo,

Japan). Tissue sections were thaw-mounted onto gelatin-coated slides, washed in 0.01-M PBS
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for 30 minutes followed by 0.2% Triton X-100 (Sigma) in 0.01-M phosphate-buffered saline

(PBS-t) for 30 minutes and incubated for 60 minutes at room temperature in a blocking solu-

tion consisting of 1% normal donkey serum and 0.01-M PBS-t. The sections were then incu-

bated with a mixture of the primary antibodies in the blocking solution overnight at 4˚C. After

rinses with 0.01-M PBS-t, slices were incubated with Alexa Fluor 488-, Alexa 597-, and Alexa

649-labeled species-specific secondary antibodies (Invitrogen, Carlsbad, CA) at a dilution of

1:500 in PBS-t for 2 hours at room temperature. Images for quantitative analysis were acquired

using an epifluorescence microscope (Axiovert 200, Carl Zeiss) and for representative data

using a confocal laser scanning microscope (ECLIPSE C1, Nikon, Tokyo, Japan).

Antibodies: Rabbit anti-Sp4 (1:1000, SC-645, Santa Cruz), goat anti-TRPV1 (1:200, SC-

12498, Santa Cruz), mouse anti-neurofilament 200kD (NF200; 1:4000, N0142, Sigma), goat

anti-peripherin (1:200, SC-7604, Santa Cruz). Mouse anti-protein gene product 9.5 (PGP9.5;

1:2000, MO25010, Neuromics). Biotinylated isolectin B4 (IB4; 1:100, L3759, Sigma). Previous

studies have confirmed the specificity of anti-Sp4 antibody [43] anti-NF200 and anti-periph-

erin antibody [54] used in this study. In addition, preliminary studies confirmed the specificity

of the Sp4 antibody based on its retinal neuronal staining in mice [43] and the anti-TRPV1

antibody using TRPV1-deficient mice.

Images taken with epifluorescence microscope were imported into Image J software (NIH,

Bethesda, MD) for quantitative analysis and Sp4 staining quantified using gray scales (0-black

to 255-white). For Sp4 immunoreactivity, DRG cells exhibiting intense nuclear staining with a

grayscale 2.0-times greater than that of the background was considered as Sp4-positive. The

cross-sectional area of DRG neuronal cell bodies were visualized by counterstaining with a

pan-neuronal marker, PGP9.5 and measured using AxioVision 4.8 (Carl Zeiss). For colocaliza-

tion of Sp4 with other neuronal markers, only neurons with clearly visible nuclei were counted

in each case. Quantitative analyses were performed on four randomly selected sections from

each DRG of 4 mice. Because a stereological approach was not used, quantification of data

may have yielded biased estimates of actual numbers of cells. To prevent duplicate counting,

we used only sections that were at least 48 μm apart.

Cell culture

Primary DRG neuronal cultures were derived from 6 to 8 week-old Sp4+/- and wt. mice using

previous methods described [55, 56].

Calcium imaging

Measurement of [Ca++]I changes in primary DRG neurons derived from Sp4+/- or wt. mice

was accomplished by plating DRG neurons on coverslips coated with poly-DL-ornithine / lam-

inin and preloaded with the calcium dye, Fura-2 AM (Invitrogen, Carlsbad, CA), for 40 min at

37˚C (2.5 μM Fura-2 in HBSS + 20 mM HEPES + 0.1% BSA). DRG neurons were visualized

through a motorized Axiovert 200 microscope (Carl Zeiss Light Microscopy, Germany)

equipped with an ICCD camera (Stanford Photonics, Stanford, CA) and controlled through

the Imaging Workbench software package (Indec Biosystems, Mountain View, CA) as previ-

ously described [56].

qRT-PCR

RNA was isolated from mouse lumbar DRG (Trizol Reagent–Invitrogen, Carlsbad, CA)

and first strand cDNA was prepared (Agilent Technologies). Using the StepOnePlus Real-

Time PCR system (Applied Biosystems, Carlsbad, CA), cDNA samples were probed with

the following primers: (Applied Biosystems-ABI) Sp4 (Cat# Hs00162095_ml), Sp1 F:
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AATTTGCCTGCCCTGAGTGC; R: TTGGACCCATGCTACCTTGC [57], Sp3 F: CAGATCATT
CCTGGCTCT; R: TCTAGATCGACACTATTGAT [58], custom primers (Invitrogen (Life Tech-

nologies) TRPV1 F: CCC ATT GTG CAG ATT GAG CAT; R: TTC CTG CAG AAG AGC
AAG AAG C; TRPA1 F: GCA GGT GGA ACT TCA TAC CAA CT; R: CAC TTT GCG TAA
GTA CCA GAG TGG; TRPM8 F: GTG TCT TCT TTA CCA GAG ACT CCA AGG CCA; R:

TGC CAA TGG CCA CGA TGT TCT CTT CTG AGT; ASIC3 F: TCACCTGTCTTGGCTC
CTC; R: TGACTGGGGATGGGATTTCTAAG [59]; TRPV4 F: CCTTGTTCGACTACGGCACTT; R:

GGATGGGCCGATTGAAGACTT [60]; Piezo1 F: CACTCTGCAGCCACAGACAT; R: CACACATC
CAGTTGGACAGG [61]; Piezo2 F: GCCCAGCAAAGCCAGCTGAA; R: GGGCTGATGGTCCACAA
AGA [61]; TREK-1 F: TTTTCCTGGTGGTCGTCCTC; R: GCTGCTCCAATGCCTTGAAC [62];

TMEM150c F: GGCATGGACGGGAAGAAATGC; R: CCAAGGACAAACTGTTGCTACACC [63].

The mRNA expression levels of the genes analyzed were normalized by GAPDH expression F:

TGCGACTTCAACAGCAACTC; R: CTTGCTCAGTGTCCTTGCTG and represented as Relative

Quantitation (RQ) using the comparative CT method as previously reported [18, 56, 64]

Statistics and analysis

Mean values were expressed as +/- SEM. When applicable, detection of behavioral differences

between multiple groups were by two-way RM ANOVA followed by Bonferroni post-hoc test.

Differences in DRG mRNA were determined with a two tailed unpaired t-test. A minimum P

value less than 0.05 was considered to show a significant difference. Analysis was performed

using Prism (GraphPad Software, La Jolla, CA).

Results

Transcription factor Sp4 is expressed in nociceptive neurons

To further understand the role of Sp4 in pain transduction, including its regulatory role in

TRPV1 gene expression, we first examined the pattern of Sp4 expression in mouse DRG neu-

rons to determine its localization relative to nociceptor markers. As shown in (Fig 1A–1C),

immune-fluorescent images of Sp4 antibody staining revealed nuclear Sp4 co-localized with

TRPV1+ and IB4+ staining neurons. Additional co-localization studies were performed (Fig

1D–1F) using anti-NF200 antibodies (marker of myelinated neurons) and peripherin antibody

(marker of unmyelinated neurons) [65]. The majority (81%) of Sp4+ DRG neurons are co-

expressed with either TRPV1 and/or IB4 (Fig 1G). Conversely, 75% of TRPV1 staining DRG

neurons (Fig 1H), stained for Sp4 and a similar percentage, (73%) of IB4+ staining DRG neu-

rons (Fig 1I) also stained for Sp4. The vast majority of Sp4+ neurons (83%) did not co-express

NF200 (Fig 1J). Conversely, 15% of NF200+ DRG neurons were Sp4+ (Fig 1K) and 91% of per-

ipherin staining DRG neurons were Sp4+ (Fig 1L) suggesting that the majority of Sp4+ neu-

rons were non-myelinated. Taken together with our observations (Fig 1M), that more than

90% of the Sp4+ neurons measured less than 400 μm2, supports the idea that transcription fac-

tor Sp4 is expressed in a subpopulation of nociceptive neurons in the DRG.

DRG derived from Sp4 +/- mice have reduced TRPV1 mRNA and

capsaicin-induced calcium responses

To gain insight into the function of Sp4 in DRG neurons, we examined the expression of Sp4,

Sp1, Sp3 and TRPV1 mRNA in DRG harvested from heterozygous Sp4+/- versus wt. mice. As

shown in Fig 2A, we confirmed that Sp4 mRNA levels were reduced ~50% in Sp4+/- mouse

DRG. We also determined if Sp1-like family members Sp1 and/or Sp3 underwent compensa-

tory changes in expression as a result of Sp4+/- knockdown in DRG. This is important given

Transcription factor Sp4 is required for hyperalgesic state persistence
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that Sp3 expression is slightly increased (two-fold) in embryonic E18.5 hearts of Sp4 -/- null

mice [66], Sp3 and Sp4 can compete for Sp1 activation of the ADH5/FDH minimal promoter

[67] and over-expression of Sp1 or Sp3 in cultured DRG neurons increased TRPV1 promoter

activity in transfected DRG neurons [18]. However, no significant change in Sp1 or Sp3

mRNA was observed in Sp4+/- DRG (Fig 2A) suggesting a lack of Sp4-dependent

Overall, 81% of Sp4+ DRG neurons co-expressed one or both (TRPV1, IB4) nociceptor markers with a total of 4,150 Sp4+ neurons from 4

mice analyzed. (H) 75% of TRPV1+ DRG neurons co-expressed Sp4 with 1,765 TRPV1+ neurons analyzed. (I) 73% of IB4+ DRG neurons

co-expressed Sp4 with 1,466 IB4+ neurons analyzed. (J) Percentage of Sp4+ DRG neurons that are NF200 positive (+) or negative (-). A total

of 83% of Sp4+ neurons were NF200—with a total of 3,304 Sp4+ neurons from 4 mice analyzed. (K) 15% of NF200+ DRG neurons were Sp4

+ with a total of 2,357 NF200+ neurons counted from 4 mice. (L) A total of 91% of peripherin+ neurons were Sp4+ with 4,381 peripherin

+ neurons counted from 4 mice. (M) Cell size distribution of Sp4+ DRG neurons. Each bar represents the percentage of Sp4+ neurons

within each size range of cross-sectional areas among the total Sp4+ neurons. The cross-sectional area (size) frequency distribution (%) of

Sp4+ neurons exhibited a major peak at 100–200 and 200–300 μm2, with few Sp4+ nuclei found in larger neurons. More than 90% of the

Sp4+ neurons measured less than 400 μm2. A total of 3,785 neurons from 4 individual, C57Bl/6 mice were analyzed showing Sp4+ immune

staining nuclei. Scale bar indicates 20 μm.

https://doi.org/10.1371/journal.pone.0211349.g001
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compensation among these Sp1-like members. Finally, TRPV1 mRNA expression was reduced

by ~30% in Sp4+/- compared to wt. mice.

To quantitate the change in functional expression of TRPV1 in Sp4+/- DRG neurons, we

examined whether there were any detectable changes in the capsaicin-induced response prop-

erties of cultured DRG neurons derived from Sp4+/- mice. As shown in Fig 2B and 2C follow-

ing the application of a capsaicin concentration expected to induce a maximal response (5 μM)

[35], a striking ~80% decrease in the magnitude (AUC) of the calcium responses was observed

within the initial 10 seconds of Sp4+/- DRG neuron-derived response intervals (Fig 2D). In

addition, there appeared more delayed capsaicin-induced responses observed in the Sp4+/-

neurons (Fig 2C). When analyzed over the entire 60 second recording-interval (AUC), a

decrease in capsaicin-evoked response magnitude (Fig 2E) was also observed. The number

and percentage of capsaicin—and/or KCl—responsive DRG neurons did not differ between

wt. and Sp4+/- mice (Fig 2F and 2G). Overall, we observed that a relatively modest (30%)

reduction of TRPV1 mRNA expression in Sp4+/- DRG was associated with a robust decrease

in capsaicin-induced calcium response profiles. Given these observations, we then sought to

explore the consequence of a reduction of Sp4 on the development of pain behaviors in mice

under various nociceptive models beginning with inflammatory thermal hyperalgesia–a pain

behavior previously shown to be dependent on TRPV1 [36, 37].

Inflammation failed to induce persistent thermal hyperalgesia in Sp4+/-

mice

Given our earlier observations that TRPV1 mRNA expression in primary cultured DRG neu-

rons were positively regulated by Sp4 [18], we hypothesized that a reduction of Sp4 could dis-

rupt the development and/or maintenance of inflammatory thermal hyperalgesia based on the

notion that unencumbered Sp4-dependent transcription of TRPV1 is required for the develop-

ment and/or maintenance of inflammatory hyperalgesia. Using an established model of inflam-

matory hyperalgesia, hind-paw injection of Complete Freund’s Adjuvant (CFA) [36], in our

initial trial (Fig 3A), Sp4+/- mice failed to show development of thermal hyperalgesia on post-

injection days 2, 3, 6 and 10 as compared to a robust decrease in withdrawal latency in wt. mice

and its absence in the contralateral paw (Fig 3B). Nevertheless, to determine whether thermal

hyperalgesia may have developed transiently in Sp4+/- mice, prior to day 2, we repeated the

experiment and measured latencies at baseline, 2, 4, 6, 16 and 24 hours after CFA injection. In

contrast to our initial trial, a robust decrease in paw withdrawal latency was observed at 2, 4 and

6 hours in both the Sp4+/- and wt. mice; however, this was followed by a spontaneous reversal

and resolution of thermal hyperalgesia in the CFA Sp4+/- mice by 16 hours (Fig 3C).

The surprising observation that a modest baseline reduction of TRPV1 mRNA expression

in Sp4+/- DRG would subsequently result in a complete loss of the persistence of inflammatory

thermal hyperalgesia after 16 hours, as opposed to a diminished yet persistent thermal hyperal-

gesia, inspired a comparative gene-dose study with TRPV1+/- heterozygous and TRPV1-/-

null mice. As compared to the equivalent baseline hind-paw withdrawal latencies measured in

Sp4+/- and wt. mice (Fig 3C), baseline thermal latency values of TRPV1+/- (Fig 3D) and

TRPV1-/- (Fig 3E) were greater than those observed for wt. mice. When CFA-treated TRPV1

+/- mice with a 50% reduction in TRPV1 were studied, inflammatory thermal hyperalgesia

was detected only at 2 hours after CFA injection, followed by a return of thermal withdrawal

latencies to baseline control values by 4 hours. As previously reported, CFA-treated TRPV1-/-

mice (Fig 3E) failed to develop thermal hyperalgesia throughout the 24 hour study period [36,

37]. These observations support the idea that a critical level of continually expressed TRPV1 is

necessary to sustain persistent inflammatory thermal hyperalgesia.

Transcription factor Sp4 is required for hyperalgesic state persistence
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Hind-paw injection of CFA also induces a state of mechanical hypersensitivity and/or allo-

dynia as measured by a reduction in paw withdrawal threshold to calibrated monofilaments

[52]. As shown in Fig 3F, a robust decrease in mechanical withdrawal threshold was observed

following CFA injection at 2 hours in both Sp4+/- and wt. mice but with diminished mechani-

cal hypersensitivity observed at 6 hours but not 24 hours in Sp4+/- mice. This suggests that

Sp4 contributes, in part, to the maintenance of mechanical hyperalgesia. Although it is

unknown which Sp4+/- dependent gene(s) are responsible for this loss of mechanical hyper-

sensitivity, it is unlikely to be TRPV1. Despite reports of TRPV1 antagonists partially reversing

cutaneous mechanical hypersensitivity [47, 68], the study of cutaneous mechanical sensitivity

in models of genetic knock-down have not supported TRPV1 contributing a major role in

cutaneous mechanical hypersensitive states [36, 37].

Given our findings that Sp4 is required for the persistence of inflammatory hyperalgesia,

we investigated if this observation could be attributed to a general reduction of CFA-induced

inflammation, as measured by a change in CFA-induced paw swelling [46]. As shown in Fig 4,

there was no significant difference in the development or persistence of CFA-induced paw

thickness between CFA Sp4+/- and CFA wt. mice throughout the 10 day study period. We

interpret these results as evidence that Sp4 serves a critical role in the maintenance of inflam-

matory pain behaviors despite ongoing CFA-induced paw inflammation. We then sought to

examine additional models of inflammatory and neuropathic pain in Sp4+/- mice including

the use of a specific product of inflammation—Nerve Growth Factor (NGF).

NGF failed to induce persistent mechanical hypersensitivity in Sp4+/- mice

NGF has been identified as a critical tissue-derived mediator of inflammatory pain capable of

driving both acute and persistent pain as well as hyperalgesic states [69]. Elevated levels of

NGF following tissue injury have been shown to drive pain through neuroplastic changes in

nociceptor physiology and gene expression [14, 17, 70–72]. In some behavioral studies,

responses to NGF paw injection also have similarities to those reported in experimental mod-

els of nerve injury-induced neuropathic pain [69]. As shown in Fig 5A, NGF induced a state of

mechanical hypersensitivity for the initial 48 hours in Sp4+/- mice but one that was signifi-

cantly diminished in magnitude as compared to NGF-injected wt. mice. In addition, begin-

ning at 72 hours, the mechanical thresholds of NGF-treated Sp4+/- mice progressively

returned to baseline values by day 10, becoming indistinguishable from vehicle injected wt. or

Sp4+/- mice. By comparison, NGF-injected wt. mice continued to maintain a robust decrease

in mechanical threshold at day 10. We also examined the effect of Sp4 on the development of

NGF-induced thermal hyperalgesia. As shown in Fig 5B, NGF produced a transient decrease

in thermal paw withdrawal latency over a 48 hr period. Sp4+/- initially developed thermal

hyperalgesia up to 6 hours but then showed a significant reversal at 24 hrs, a profile somewhat

difference compared with wt. Veh. or Sp4 Veh (��� p< 0.0001; n = 18). (B) Non-injected contralateral right hind-paw showed no evidence of a CFA-dependent

decrease in paw withdrawal latencies (n = 18). (C) Thermal paw withdrawal latencies (sec) measured at baseline, 2, 4, 6, 16, and 24 hours following left hind-paw

CFA injection. No differences were found between baseline thermal latency of Sp4+/- and wt mice. Following CFA paw injection, Sp4+/- mice transiently developed

a decrease in paw withdrawal latency at 2, 4, and 6 hours, but showed spontaneous reversal of inflammatory thermal hyperalgesia at 16 and 24 hours (��� p<0.0001;

n = 9). (D) Comparison of CFA-induced thermal hyperalgesia in wt. versus TRPV1+/- heterozygous mice. Baseline thermal paw withdrawal latencies of TRPV1+/-

were increased compared with wt. mice (� p<0.05; n = 9). Following CFA hind-paw injection in TRPV1-/+ mice, a brief decrease in latency at 2 hours was observed

that returned to TRPV1+/- baseline values and then differed from CFA—wt. latencies at 4 hours (�� p< 0.0005; n = 9) and 6, 16, and 24 hours (��� p< 0.0001; n = 9).

(E) Comparison of CFA-induced thermal hyperalgesia in wt. versus TRPV1 -/- null mice. Baseline withdrawal latencies of TRPV1-/- mice were increased compared

with wt. mice (�� p<0.0005; n = 6). Following CFA injection of TRPV1 -/- mice, no evidence of thermal hyperalgesia was observed and latencies differed from CFA–

wt. mice for all time measured (��� p<0.0001; n = 6). (F) Sp4 +/- heterozygous mice developed inflammatory mechanical hypersensitivity that was diminished at 6

hours. Baseline mechanical thresholds did not differ between Sp4+/- and wt. mice. Sp4+/- CFA mice showed a diminished mechanical threshold at 6 hours when

compared to wt.—CFA mice (p< 0.01; n = 12) but did not differ at 24 hours. Statistical comparisons: Bars = +/- SEM, Two-way ANOVA, with Bonferroni’s test.

Prism, GraphPad).

https://doi.org/10.1371/journal.pone.0211349.g003
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similar to that observed with CFA Sp4+/- mice (Fig 3C). Overall, Sp4+/- mice were associated

with a failure to develop persistent NGF-induced mechanical hypersensitivity and NGF-

induced thermal hyperalgesia.

Sp4+/- did not block mechanical hypersensitivity in a model of Spared

Nerve injury (SNI)

Despite observations that each model of nerve injury may result in some component of inflam-

mation [73], experimentally they are often considered distinct from primary inflammatory sti-

muli such as peripheral injection of CFA (Fig 3) or the isolated application of products of

inflammation, e.g. NGF (Fig 5A and 5B). Considering the loss of persistent CFA and NGF-

induced thermal and mechanical hypersensitivity observed in Sp4+/- mice were associated

with inflammatory models, we questioned whether the SNI model would also develop persis-

tent mechanical hypersensitivity [48, 74]. As shown in Fig 5C, following SNI, both Sp4+/- and

wt. mice developed a rapid onset (1 day) and persistent (28 day) decrease in mechanical with-

drawal thresholds throughout the study period. No differences in threshold testing were

detected between Sp4+/- and wt. groups.

Oxaliplatin failed to induce persistent cold or mechanical hypersensitivity

in Sp4+/- mice

Although the pain associated with the platinum-based anticancer agent oxaliplatin is one of

the most recognized adverse consequences of its administration, the mechanism(s) driving the

associated cold allodynia and mechanical hypersensitivity remains elusive [75–77]. Rodent

models using oxaliplatin have been established that emulate many of the painful symptoms

experienced clinically by patients receiving oxaliplatin [78–80].These include oxaliplatin-

induced decrease in cold plate latencies and cutaneous mechanical thresholds [80–83]. In con-

trast, persistent thermal hyperalgesia does not apparently develop in mice treated with oxali-

platin but is observed with cisplatin treatment [81]. Oxaliplatin has been shown to direct its

painful hyperalgesic behaviors through a subset of specialized primary afferent nociceptors
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https://doi.org/10.1371/journal.pone.0211349.g004
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within sensory ganglion that express the cell surface lectin IB4 [80]. Since we observed 35% of

Sp4+ DRG neurons co-express IB4 (Fig 1), we examined the consequence of Sp4+/- reduction

on oxaliplatin-induced cold and mechanical allodynia.

As shown in Fig 6A and 6B, following oxaliplatin injection (3mg/kg ip), Sp4+/- mice failed

to develop persistent cold hypersensitivity as measured at 4˚C (48 hours– 14 days) and at 10˚C

at its maximal effect (72 hours) and 6 days, when compared to oxaliplatin-injected wt. mice.

As shown in Fig 6C, oxaliplatin-induced mechanical hypersensitivity was initially observed up

to 48 hours, but then was followed by a progressive reversal, attaining values similar to controls
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https://doi.org/10.1371/journal.pone.0211349.g005
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for Sp4+/- and wt. mice by days 14 and 21. Taken together, Sp4+/- mice were associated with a

reduction in magnitude and reversal of persistent oxaliplatin-induced cold and mechanical

hypersensitivity. Oxaliplatin’s action on peripheral nociceptors includes activation of nocicep-

tive gene transcription, as evidenced by increased mRNA and functional channels encoding

cold-sensing TRPA1 / TRPM8 and enhanced cold hypersensitivity [81–85]. In search for a

possible explanation of why a decrease in Sp4 would result in a loss of oxaliplatin cold and

mechanical hypersensitivity, as shown in Fig 6D, we found that both TRPA1 and TRPM8

mRNA expression was reduced in Sp4+/- DRG. Although future studies will be required to

test this hypothesis, we speculate that persistent oxaliplatin-induced cold hypersensitivity is

linked to Sp4-dependent transcription of TRPA1 and/or TRPM8.

Given the possibility that Sp4 may regulate other known genes implicated in mechanical

hypersensitivity, we also probed a subset of genes previously reported to be expressed in DRG

that have mechano-sensitive properties. As shown in Fig 6E, when expressed mRNA levels of

ASIC3 [86], TRPV4 [87], Piezo1 [88], Piezo2 [89], TREK1 [90] and TMEM150c [63, 91] were

examined, we were unable to observe a change in their mRNA expression as a result of a

reduction of Sp4+/-.

Discussion

Our findings suggest that the ability of certain hyperalgesic states to persist for days to weeks is

dependent on the abundance and presumed activity of transcription factor Sp4. We propose

that the expressed level of TRPV1 during an inflammatory state which is positively regulated

by Sp4, is required for the persistence of inflammatory thermal hyperalgesia. Depending on

the inflammatory and/or neuropathic condition, we also propose that Sp4 serves a broader

role, beyond the regulation of TRPV1, in the development and persistence of painful mechani-

cal and cold hypersensitive states.

Sp4 is expressed in putative nociceptors

In support of Sp4 playing a critical role in the regulation of peripheral pain transduction, we

examined the neurochemical characteristics of Sp4-positive lumbar DRG neurons using anti-

sera to TRPV1 and IB4, established markers of primary afferent nociceptors, [80] as well as

anti-NF200 and anti-peripherin antibodies [65]. Together, with our previous report of Sp4

mRNA and immune-reactive Sp4 protein expression in DRG [18], our histochemical charac-

terization of Sp4+ DRG neurons (Fig 1) appears to unite two overlapping populations of

small-medium sized DRG neurons under resting conditions: TRPV1+ thermally-responsive

and IB4+ mechanically-responsive nociceptors [92–94]. Since small-medium sized

TRPV1-positive and IB4-positive neurons with unmyelinated axons are considered to be noci-

ceptive [1], our results suggest that Sp4 expression in DRG is preferentially expressed in a sub-

set of primary afferent nociceptors.

Beyond our evidence that certain Sp4+ DRG neurons co-express TRPV1 (Fig 1G and 1H),

we sought to link the consequence of a 50% reduction of Sp4 on measures of TRPV1 expres-

sion and functional activity ex vivo. We found a reduction in TRPV1 mRNA and in the

at 72 hours (��� p<0.0001) and 6 days (� p<0.05). Sp4+/- OX and Sp4+/- Veh. did not significantly differ at 72 hours, 6 days,10 days and 14 days (N = 6

/group). (C) Mechanical threshold testing of Sp4+/- mice injected with OX (3mg/kg ip) on day 0, induced a decrease in mechanical threshold within 24 hours

in both Sp4+/- and wt. mice. Beginning at 72 hours (p<0.05), Sp4+/- OX induced mechanical allodynia progressively reversed at 6 days (p<0.005), 10 days,

14 days and 21 days (��� p<0.0001) approaching Veh—injected control values by 14–21 days. wt. OX mice showed mechanical allodynia days 1–21 (n = 6).

Two-way RM ANOVA, with Bonferroni’s test. (D) Sp4+/- DRG expressed a reduction in TRPA1 and TRPM8 mRNA levels as compared to wt. DRG. (E) No

change in ASIC3, TRPV4, Piezo1, Piezo2, TREK-1 or TMEM150c mRNA expression was detected in Sp4+/- as compared to wt. DRG (� p< 0.05 n = 3; ��

p<0.005 n = 6; triplicate samples, two-tailed unpaired t-test. Bars = +/- SEM. Prism, GraphPad).

https://doi.org/10.1371/journal.pone.0211349.g006
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magnitude of capsaicin-evoked calcium responses in Sp4+/- DRG neurons (Fig 2). These find-

ings are consistent with our prior characterization of a dual promoter structure of the rat

TRPV1 gene [17]. In our model, the promoter closest to the predominant RNA start site of

TRPV1 transcription, promoter P2, reflects a Sp4-targeted binding sequence (GC box) and evi-

dence of Sp4 binding by ChIP assay. We also proposed the existence of an upstream promoter

P1, reflecting a TATA box-containing structure not associated with Sp4 binding [17, 18].

Although not yet fully characterized, it is likely that other factors contribute to the expression of

TRPV1 in DRG neurons and may utilize the P1 and/or P2 sites within the dual promoter struc-

ture [95]. These include nuclear factors Runx1 and C/EBPbeta proposed to bind and activate a

proximal TRPV1 promoter site in PC12 cells [95] and HDAC4, proposed to regulate TRPV1

expression in inflammatory hyperalgesia [96]. Together with our immunohistochemical obser-

vations (Fig 1), we propose that at least two subpopulations of TRPV1-expressing DRG neurons

exist. One under the regulation of Sp4 and responsible for inflammatory thermal hyperalgesia

(promoter P2) and another under the regulation of promoter P1.

Inflammatory thermal hyperalgesia in Sp4+/- mice is not persistent

The activation of TRPV1 under conditions of inflammation is understood to drive the patho-

physiology of thermal hyperalgesia, as measured by a decrease in thermal paw withdrawal

latency and its absence under a null genetic phenotype (TRPV1-/-) [36, 37] [97–99]. We

observed that although the CFA-treated Sp4+/- mice with a ~30% reduction of TRPV1 mRNA

resulted in the early (2–6 hour) development of inflammatory thermal hyperalgesia (Fig 3C),

thereafter, Sp4+/- mice underwent a spontaneous resolution of the pain behavior–despite

ongoing evidence of inflammatory paw swelling (Fig 4). Investigating this further, we went on

to compare these findings with that observed in mice with a fixed (50%) reduction in TRPV1

expression but presumably normal transcriptional activity in the active allele. As shown in Fig

3D, CFA TRPV1+/- heterozygous mice developed thermal hyperalgesia only at 2 hours, fol-

lowed by its resolution to control values. Peripheral inflammation has been reported to lead to

an increase in TRPV1 expression in a subpopulation of DRG neurons, including CGRP posi-

tive and IB4 positive rat DRG neurons [13, 100]. Therefore, under inflammatory conditions

driving an increased demand for TRPV1, a reduction in TRPV1 transcriptional capacity at

promoter P2 as a result of the Sp4+/- heterozygous state represents a plausible model to

explain the development then loss of thermal hyperalgesia over a time frame of hours.

Sp4+/- mice fail to develop persistent NGF-dependent mechanical

hypersensitivity

Nerve Growth Factor (NGF), a neurotrophic factor and product of inflammation, has been

shown to be essential for peripheral nociceptor development and to help maintain the nocicep-

tor phenotype in adulthood–especially TRPV1 expression [11, 101–104]. Under conditions of

peripheral inflammation including CFA, tissue and nerve injury, increased levels of NGF

direct both acute and persistent hyperalgesic states in animals and humans [14, 15, 69, 105–

107]. As shown in Fig 5, experimental models of intraplantar injection of NGF can induce

short-term thermal hyperalgesia. Whereas both thermal and mechanical hyperalgesia initially

develop rapidly, only NGF-induced mechanical hypersensitivity continued longer-term and

can persist for weeks [47, 108, 109]. These observations have supported the notion that NGF

drives not only acute nociceptor sensitization at the level of the peripheral transducing ele-

ments as exemplified by TRPV1 [71, 110–113], but also drives persistent hyperalgesic states

through increased membrane expression [72, 114], translation of nociceptive proteins [115]

and likely transcription [17].
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As shown in Fig 5A, we observed a rapid development of NGF-induced mechanical hyper-

sensitivity in Sp4+/- mice, but one reduced in magnitude that began to spontaneously resolve

after 48 hours, returning to control—baseline values in 10 days. Although the mechanism(s) of

a Sp4+/- associated blockade of NGF-induced mechanical hypersensitivity is unknown, it is

plausible to speculate that it includes reduction of nociceptive components directly involved in

mechanotransduction involving Sp4-dependent genes—beyond TRPV1. This may include

TRPA1, given its association with mechanical hypersensitivity [116–118], ability to be upregu-

lated by NGF [119] and expression in IB4-expressing DRG neurons [120]. A neuronal popula-

tion we now observe to co-express Sp4 (Fig 1I). Moreover, Sp4+/- DRG is associated with

reduced TRPA1 mRNA expression (Fig 6D). Future studies will be required to fully define the

gene(s) responsible for Sp4-dependent mechanical hypersensitivity.

Sp4+/- did not block the development of mechanical hypersensitivity in a

model of spared nerve injury (SNI)

We studied a model of neuropathic pain (spared nerve injury—SNI) [48] and observed no dif-

ference in the time of onset, magnitude or duration of mechanical threshold testing between

Sp4+/- and wt. mice (Fig 5C). Although models of nerve injury have been associated with an

increase in NGF production, a driver for neuropathic pain behaviors, the disparity between

CFA / NGF versus SNI in Sp4+/- mice may reflect the idea that SNI-induced mechanical

hypersensitivity is primarily dependent on the activation of spinal microglia that in turn are

proposed to induce and sustain mechanical hypersensitivity [49]. Conversely, microglial acti-

vation is not well correlated to inflammation (CFA-induced) decreases in mechanical thresh-

old testing [121]. Overall, this suggests that a divergent set of SNI-dependent pathways and/or

genes exist that are largely independent from Sp4 transcriptional regulation.

Sp4+/- mice fail to develop persistent oxaliplatin-induced cold and

mechanical hypersensitivity

Chemotherapy Induced Peripheral Neuropathy (CIPN) encompasses a wide range of clinical

symptoms that include early post-treatment pain, paraesthesias, sensory ataxia, and is inclusive

of oxaliplatin, cold and mechanical allodynia (for review, see [122, 123]). Despite the pain asso-

ciated with platinum-based anticancer agents being widely recognized and certain underlying

mechanisms elucidated [75–77], efforts to translate these findings into effective treatments in

clinical practice have been disappointing [77, 82, 122–127]. As shown in Fig 6, Sp4+/- mice

failed to develop persistent oxaliplatin-induced cold hypersensitivity (4˚C; 10˚C) and mechan-

ical hypersensitivity. Since the peripheral sensory abnormalities associated with oxaliplatin are

understood to be primarily a consequence of their binding to the DNA of sensory neurons

[128], the reversal and subsequent loss of oxaliplatin-induced pain behaviors in Sp4+/- mice

implies that exposure to platinum agents is not linked irreversibly to these pain behaviors.

Although we have suggested TRPA1 and TRPM8 as Sp4-dependent genes underlying the

persistence of certain oxaliplatin-induced hypersensitivity, oxaliplatin-induced pain behaviors

due to remodeling of non-TRP channels have also been reported [129]. Nevertheless, in a tar-

geted analysis of other genes with properties of mechanical activation expressed in DRG, we

failed to demonstrate that ASIC3, TRPV4, Piezo1, Piezo2, TREK1 or TMEM150c were signifi-

cantly changed under conditions of Sp4+/- knockdown (Fig 6E). Therefore, it is unlikely that

Sp4- dependent changes in the abundance of these genes explain the reduction and/or reversal

of mechanical hypersensitivity observed in our experiments. Rather, one may speculate that

Sp4-dependent loss of mechanical hypersensitivity is multifactorial. This may include contri-

butions by the CNS given the limitation of our Sp4 knockdown mice [23–28] and reports that
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other regulatory features may be involved, such as changes in Sp4-dependent dendritic prun-

ing–a form of synaptic plasticity [41]. Therefore, our findings suggest that ongoing gene tran-

scription by Sp4, likely in nociceptors, play a critical role to sustain oxaliplatin-induced cold

and mechanical hypersensitivity.

Conclusions

Given its expression in a subset of small to medium sized DRG neurons with nociceptor mark-

ers, transcription factor Sp4 is well positioned to regulate nociceptor genes that engender criti-

cal roles in the control of pain transduction and the persistence of hypersensitive states.

Consistent with this notion, a 50% reduction of Sp4 expression resulted in a profound loss of

persistent hypersensitivity across multiple behavior models of pain in the time course of hours.

Although our studies initially focused on the relationship between Sp4, TRPV1 and thermal

hyperalgesia, our results more broadly suggest that a larger Sp4-dependent gene network or

nociceptive transcriptome exists inclusive of TRPV1, TRPA1 and TRPM8. This implies that

Sp4 is a critical control point for interrupting a network of genes underlying the persistence of

painful hypersensitive states.
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