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Abstract

Background

Randomized controlled trials (RCTs) pose specific challenges in rare and heterogeneous

neurological diseases due to the small numbers of patients and heterogeneity in disease

course. Two analytical approaches have been proposed to optimally handle these issues in

RCTs: covariate adjustment and ordinal analysis. We investigated the potential gain in effi-

ciency of these approaches in rare and heterogeneous neurological diseases, using Guil-

lain-Barré syndrome (GBS) as an example.

Methods

We analyzed two published GBS trials with primary outcome ‘at least one grade improve-

ment’ on the GBS disability scale. We estimated the treatment effect using logistic regres-

sion models with and without adjustment for prognostic factors. The difference between the

unadjusted and adjusted estimates was disentangled in imbalance (random differences in

baseline covariates between treatment arms) and stratification (change of the estimate due

to covariate adjustment). Second, we applied proportional odds regression, which exploits

the ordinal nature of the GBS disability score. The standard error of the estimated treatment

effect indicated the statistical efficiency.

Results

Both trials were slightly imbalanced with respect to baseline characteristics, which was cor-

rected in the adjusted analysis. Covariate adjustment increased the estimated treatment

effect in the two trials by 8% and 18% respectively. Proportional odds analysis resulted in

lower standard errors indicating more statistical power.
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Conclusion

Covariate adjustment and proportional odds analysis most efficiently use the available data

and ensure balance between the treatment arms to obtain reliable and valid treatment effect

estimates. These approaches merit application in future trials in rare and heterogeneous

neurological diseases like GBS.

Introduction

RCTs are the standard to investigate the effectiveness of medical interventions. However,

RCTs are challenging in rare heterogeneous diseases. The randomization process in RCTs

ensures that observed and unobserved patient characteristics on average are similar between

treatment arms[1]. However, it does not ensure full balance[1]. Different baseline risks for out-

come can arise between treatment arms, simply due to chance[1]. In diseases with large

between-patient differences in natural disease course, severity and outcome, small imbalances

in covariates between the treatment arms may, positively or negatively, affect the estimated

treatment effect.

Sample sizes in RCTs in rare diseases are usually small. Small trials are a subject to a greater

chance of imbalance than large trials[1]. Moreover, small RCTs can easily fail to detect treat-

ment benefits, due to lack of statistical power. In rare neurological disorders, such as inflam-

matory neuropathies like Guillain-Barré syndrome (GBS), Chronic Inflammatory

Demyelinating Polyneuropathy (CIDP) and Multifocal Motor Neuropathy (MMN), this het-

erogeneity and rarity is a major challenge for conducting RCTs.

Two approaches to optimize RCT design and analysis that have been successfully applied in

other acute neurological diseases such as stroke and traumatic brain injury are covariate

adjustment and ordinal analysis[2–4]. (Table 1) Covariate adjustment is a statistical method

that adjusts the treatment effect for baseline risk on poor outcome in the treatment arms.

When the treatment arms are imbalanced, an unadjusted analysis is suboptimal to estimate the

treatment effect. In addition, previous studies found that covariate adjustment could increase

statistical power[1, 5–9]. Ordinal analysis is an approach to analyze a full ordinal outcome

scale instead of a dichotomized version. Although these techniques already have been success-

fully applied in stroke and traumatic brain injury, it is still relevant to study this in other dis-

eases like GBS, since the effect of the different approaches can work out differently in different

study settings. The most commonly used outcome in GBS is the ordinal GBS disability score,

consisting of seven categories. Usually the scale is dichotomized into favorable or unfavorable

outcome, or the improvement on the GBS disability score from admission calculated and

dichotomized as minimal one grade improvement. In ordinal analysis the outcome is not

dichotomized but analyzed as the full ordinal scale with proportional odds analysis, preventing

loss of information[10]. Simulation studies and empirical validation studies in other fields

have demonstrated that proportional odds analysis increases statistical power in RCTs[10–13].

To test the applicability and value of these approaches in rare and heterogeneous neurologi-

cal diseases, we use Guillain-Barré syndrome (GBS) as an example. GBS is a life-threatening

acute immune-mediated polyradiculoneuropathy[14, 15], which requires early diagnosis and

hospital admission for accurate monitoring, treatment and supportive care. Some patients

may show spontaneous and full recovery, while others require ventilation at an ICU for

months and remain severely disabled. Several RCTs have successfully been conducted in GBS

[16–18].
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We aimed to explore the potential benefit of covariate adjustment and proportional odds

analysis in rare and heterogeneous neurological diseases, compared to the conventional statis-

tical approaches. We hereto re-analyzed two RCTs in GBS.

Methods

Patient population

We analyzed data from two RCTs in GBS, the Plasma Exchange (PE) vs Intravenous Immuno-

globulin (IVIg) (PE vs IVIg) trial[17] and the IVIg and placebo versus IVIg and Methyl-Pred-

nisolone (MP) (IVIg vs MP) trial[18], conducted between 1986 and 2000. In the PE vs IVIg

trial, the control group received IVIg and the treatment group received PE. In the IVIg vs MP

trial, the patients receiving IVIg and placebo were considered as control patients and the

patients receiving IVIg and MP were considered as treated patients. The primary outcome in

both trials was improvement (corresponding to lower GBS disability scores) by one or more

grades on the GBS disability score after 4 weeks. The GBS disability score is an ordinal scale

ranging from 0 = healthy to 6 = dead. However, in order to estimate treatment effects for a pos-

itive outcome for all the analyses, we used the reversed GBS disability score at 4 weeks, to keep

the estimates easy to compare. For all the regression models used in this paper, higher numbers

(in outcome) mean better health outcomes.

Statistical analysis

The predicted probabilities for one grade improvement on the GBS disability score were calcu-

lated and used as a measure for baseline risk to indicate potential unbalance between the treat-

ment arms in baseline characteristics.

Table 1. Distribution of baseline predictors and outcome distribution in two randomized controlled trials in GBS.

PE vs IVIg trial IVIg + placebo vs IVIg

+ Methylprednisolon (IVIg vs MP) trial

Total

(n = 146)

Control

(PE)

(n = 73)

Treatment

(IVIg)

(n = 73)

Total

(n = 221)

Control (IVIg)

(n = 111)

Treatment

(IVIg+MP)

(n = 110)

Age (Median, Interquartile Range 25th-75th Percentile) 49 (32–63) 51 (33–66) 47 (32–61) 55 (35–67) 52 (35–67) 57 (34–68)

Preceding diarrhea 27 (19%) 16 (22%) 11 (15%) 60 (27%) 30 (27%) 30 (27%)

GBS disability score at admission

Able to walk over 10m open space with help 29 (20%) 16 (22%) 13 (18%) 58 (26%) 32 (30%) 26 (24%)

Bedridden or chair bound 92 (63%) 44 (60%) 48 (66%) 53 (49%) 78 (70%) 75 (68%)

Needs ventilation for at least a part of the day 25 (17%) 13 (18%) 12 (16%) 10 (5%) 1 (1%) 9 (8%)

Predicted probability of one or more grades

improvement on the GBS disability score after 4 weeks

0.43 0.41 0.45 0.62 0.64 0.60

One or more grades improvement on the GBS disability score after 4 weeks 63 (43%) 25 (34%) 38 (52%) 137 (62%) 63 (57%) 74 (67%)

GBS disability score after 4 weeks

0 = Healthy 0 (0%) 0 (0%) 0 (0%) 5 (2%) 0 (0%) 5 (5%)

1 = Minor symptoms 16 (11%) 6 (8%) 10 (14%) 37 (17%) 24 (22%) 13 (12%)

2 = Able to walk 10m unassisted but not able to run 30 (21%) 12 (16%) 18 (25%) 74 (34%) 31 (28%) 43 (39%)

3 = Able to walk over 10m open space with help 19 (13%) 9 (12%) 10 (14%) 22 (10%) 10 (9%) 12 (11%)

4 = Bedridden or chair bound 48 (33%) 27 (37%) 21 (29%) 54 (24%) 31 (28%) 23 (21%)

5 = Needs ventilation for at least a part of the day 31 (21%) 17 (23%) 14 (19%) 26 (12%) 14 (13%) 12 (11%)

6 = Dead 2 (1%) 2 (3%) 0 (0%) 3 (1%) 1 (1%) 2 (2%)

https://doi.org/10.1371/journal.pone.0211404.t001
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To estimate treatment effects, we used two commonly used primary (dichotomous) out-

comes in GBS trials as reference; (1) favorable outcome (0–2) on the GBS disability scale at 4

weeks as outcome and (2) minimal one grade improvement on the GBS disability score

between the moment of randomization and 4 weeks as outcome, both analyzed with binary

logistic regression without covariate adjustment. Consequently, these references were com-

pared with the two approaches under study: covariate adjustment and ordinal analysis.

Covariate adjustment

With covariate adjustment, conditional treatment effects are estimated with regression models.

Adjusting for GBS disability score at admission results in an estimated treatment effect for a

patient with a given GBS disability score, while unadjusted analysis results in an average esti-

mated treatment effect over all patients, irrespective of the GBS disability score. Unadjusted

analysis is expressed by the following formula:

log odds ðimprovementÞ ¼ aþ b � treatment

, where improvement is by one or more grades on the GBS disability score, and treatment is an

indicator for the randomization arm. The coefficients α and β indicate the intercept and

regression coefficient for treatment. In logistic regression, exp(β) indicates the odds ratio

(OR).

For adjusted analysis, we used three well-known predictors of outcome[19, 20]: age, preced-

ing diarrhea and GBS disability score at admission. The covariate adjusted model is expressed

by the following formula:

log odds ðimprovementÞ
¼ aþ b � treatment þ b1 � ageþ b2 � preceding diarrheaþ b3 � GBS disability score at admission

This results in an adjusted regression coefficient β for the estimated treatment effect. In the

trial analysis, the observed difference of the unadjusted and adjusted regression coefficient for

the treatment variable is a result of imbalance and stratification[8]. We hereto calculated the

linear predictor based on age, diarrhea and GBS disability score at admission. We then calcu-

lated the difference in treatment effect that was attributable to imbalance as the difference

between the mean value of the linear predictor between the treatment arms[8]. The remaining

part of the difference between the unadjusted and the adjusted treatment effect was attributed

to stratified estimation, i.e. conditioning on covariates[8].

Proportional odds analysis

For ordinal analysis we used proportional odds logistic regression to exploit the ordinal nature

of the GBS disability score. A proportional odds logistic regression model was fitted with the

GBS disability score collapsed to a 5-point scale. We combined both healthy (0) and minor

symptoms (1), as well as needs ventilation at least a part of the day (5) and dead (6) because of

small numbers in these extreme categories. We used the reversed GBS disability scale to esti-

mate treatment effects on a positive outcome, and to keep these estimates comparable to the

estimates of the other logistic regression models on positive dichotomous outcomes (improve-

ment and favorable outcome). The proportional odds model uses an ordinal outcome variable

with more than two possible categories. It estimates a common OR over all possible cut-offs of

the outcome scale. Next, we used the difference between the GBS disability score at admission

and the GBS disability score at four weeks as outcome. A proportional odds logistic regression

model was used to analyse the difference in GBS disability score.

Efficient design and analysis of randomized controlled trials in rare neurological diseases
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Treatment effect estimates

The coefficient β of the treatment effect and the corresponding standard error (SE) were calcu-

lated for the four approaches to analyse outcome, with and without covariate adjustment. The

SE of the treatment effect indicates the precision of the calculated treatment effect. The SEs in

the proportional odds regression models are expected to be smaller than those in the logistic

models. Both trials were analysed with complete case analysis, ignoring 1 and 4 patients with

incomplete baseline data. Statistical analyses were performed in R Statistical Software version

2.15.3 using the rms package (R Foundation for Statistical Computation, Vienna, Austria).

Results

Patient population and reference strategies

We analysed data from 146 patients in the PE vs IVIg trial and 221 patients in the IVIg vs IVIg

+MP trial. Both trials were slightly imbalanced with regard to the baseline characteristics. In

the IVIg vs IVIg+MP trial the treatment group (with MP) had a probability of 0.60 to improve

at least one grade on the GBS disability score compared to a predicted probability of 0.64 in

the control group (without MP). So without any treatment, the prognosis of the treatment arm

was slightly better. An opposite distribution of baseline covariates between treatment arms is

shown in the PE vs IVIg trial. The treatment group (PE) has a higher predicted probability

(0.45) to improve at least one grade on the GBS disability score compared to the control group

(IVIg; predicted probability 0.41, Table 1).

Regarding the actual outcome, 63 (57%) control patients treated with IVIg and placebo and

74 (67%) patients treated with IVIg and methylprednisolone improved minimal one grade on

the GBS disability score after 4 weeks. In the other trial, 25 (34%) control patients treated with

IVIg and 38 (52%) patients receiving PE improved minimal one grade on the GBS disability

score after 4 weeks (S1 Appendix).

The treatment under study in both trials had a positive effect on health outcomes. With the

reference strategy of logistic regression on a favorable GBS disability scale (0–2) at 4 weeks as

outcome, the estimated treatment OR was 1.80 (95% confidence interval (CI) 0.84–3.85, SE

0.39, p = 0.13) in the PE vs IVIg trial and 1.69 (95% CI 0.93–3.08, SE 0.31, p = 0.09) in the IVIg

vs IVIg+MP trial. The treatment effect estimates on one grade improvement were slightly

larger (Table 2).

Covariate adjustment

With covariate adjustment, the estimated treatment effect was larger in the IVIg vs IVIg+MP

trial, partly as a result of adjustment, which makes the estimates more extreme, and partly

because of the imbalance at baseline. Poorer prognosis at baseline for the intervention (IVIg

+ MP) group implied a +31% increase in the adjusted treatment effect (Table 3). The stratifica-

tion effect of adjustment was an additional 18% increase in the treatment effect (OR = 1.96). In

contrast, the treatment effect was smaller with adjustment for baseline characteristics in the PE

vs IVIg trial. The stratification effect increased the treatment effect with 8%, but the better

prognosis in the intervention (IVIg) group at baseline reduced the estimated treatment effect

by -24%. The net effect was a difference in treatment effect of -16%. These results were similar

for all binary and ordinal outcome analyses (Table 2).

Proportional odds analysis

For illustration of the proportional odds analyses we calculated the treatment effect estimates

(ORs) for each cut-off of the reversed ordinal scale. The common OR can be interpreted as the
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pooled estimate of these binary ORs. The treatment under study in both trials had a positive

effect on health outcomes in all the ordinal analyses. In the PE vs IVIg trial the ORs over each

cut-off were relatively similar (Fig 1C and 1D. The common OR was similar as well, but the SE

and CI were smaller. In the IVIg vs IVIg+MP trial, the ORs were more variable (Fig 1A and

1B. The common OR was less extreme compared to ORs for the cut-off used in the reference

approach (0–2 vs. 3–6 and minimal one grade improvement vs. no improvement). But again,

the SE and CI were smaller. This can also be seen in Table 2; in all analyses, the proportional

odds analysis on the GBS disability score after four weeks and on the improvement on the GBS

disability score resulted in lower SEs of the treatment effect compared to the binary

approaches.

Discussion

In this study we assessed the potential benefit of the use of covariate adjustment and propor-

tional odds analysis in RCTs compared to the conventional method, by reanalyzing two GBS

trials. We found that covariate adjustment increased the estimated treatment effect in one

trial, and decreased the estimated treatment effect in the other trial, due to imbalances in

Table 2. Treatment effect analysis: Unadjusted and adjusted binary and proportional odds logistic regression.

PE vs IVIg

trial

(n = 146)

Unadjusted

Adjusted�
IVIg + placebo vs

IVIg

+ Methylprednisolon

(IVIg vs MP) trial

(n = 221)

Unadjusted

Adjusted�

Binary logistic regression–

GBS disability 3–6 vs 0–2 §
OR

(95%

CI)

1.90 (0.93–

3.87)

1.80 (0.84–

3.85)

1.27

(0.75–

2.15)

1.69

(0.93–

3.08)

SE 0.36 0.39 0.27 0.31

P-value 0.08 0.13 0.38 0.09

Binary logistic regression–improvement on GBS

disability score

OR

(95%

CI)

2.08 (1.07–

4.06)

1.95 (0.96–

4.00)

1.57

(0.91–

2.71)

1.96

(1.08–

3.56)

SE 0.34 0.36 0.28 0.31

P-value 0.03 0.06 0.11 0.03

Proportional odds logistic regression–reversed

GBS disability score at 4 weeks ^
OR

(95%

CI)

1.76 (0.98–

3.19)

1.76 (0.98–

3.19)

1.12

(0.70–

1.80)

1.41

(0.87–

2.28)

SE 0.30 0.30 0.24 0.25

P-value 0.06 0.06 0.63 0.17

Proportional odds logistic regression–Δ GBS

disability score (grades improvement between

admission and 4 weeks)

OR

(95%

CI)

1.93 (1.07–

3.49)

1.80 (0.99–

3.27)

1.43

(0.89–

2.30)

1.34

(0.89–

2.32)

SE 0.30 0.30 0.24 0.25

P-value 0.03 0.05 0.14 0.14

�Adjustment for age, preceding diarrhea and GBS disability score at admission.

§ 0 = Healthy / 1 = Minor symptoms / 2 = Able to walk 10m unassisted but not able to run / 3 = Able to walk over

10m open space with help / 4 = Bedridden or chair bound / 5 = Needs ventilation for at least a part of the day /

6 = Dead

^ In order to estimate the treatment effect for a positive outcome, we used the reversed GBS disability score at 4

weeks

https://doi.org/10.1371/journal.pone.0211404.t002
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baseline characteristics between the treatment arms. Although such imbalances are fully due to

chance if a proper randomization procedure is followed, our results illustrate that their impact

on interpretability of treatment effect estimates can be substantial and can be different in sev-

eral study settings. We found that the proportional odds analysis resulted in lower standard

errors and thus smaller confidence intervals of the treatment effect estimate compared to the

conventional method of logistic regression on dichotomized outcome measures. Thus, dichot-

omization of ordinal outcome measures does not merit application. In future trials in rare and

heterogeneous neurological diseases like GBS both covariate adjustment and proportional

odds analysis are advised.

Table 3. Results of unadjusted and adjusted binary logistic regression analysis of the effect of treatment versus control on GBS disability score at four weeks in both

PE vs IVIg trial (n = 146) and the IVIg + placebo vs IVIg + Methylprednisolon (IVIg vs MP) trial (n = 221).

OR Coefficient Absolute difference in

treatment effect between

adjusted and unadjusted

Imbalance

between

treatment arms

Relative difference in

treatment effect between

adjusted and unadjusted due

to imbalance

Relative difference in

treatment effect between

adjusted and unadjusted due

to stratification

PE vs IVIg trial

Unadjusted 2.08 0.73

Adjusted for age, preceding

diarrhea and GBS disability score

at admission

1.95 0.67 - 0.06^ -0.12 -16%� 8%#

IVIg vs MP trial

Unadjusted 1.57 0.45

Adjusted for age, preceding

diarrhea and GBS disability score

at admission

1.96 0.67 0.22^ 0.14 31%� 18%#

^ Adjusted coefficient–Unadjusted coefficient

� Imbalance between treatment arms / Unadjusted coefficient

# (Absolute difference in treatment effect between adjusted and unadjusted—Imbalance between treatment arms) / Unadjusted coefficient.

https://doi.org/10.1371/journal.pone.0211404.t003

Fig 1. Treatment effect analysis: forest plots of the adjusted binary and proportional odds logistic regression in the IVIg + placebo vs IVIg

+ Methylprednisolon (IVIg vs MP) trial (a and b) and PE vs IVIg trial (c and d) show smaller confidence intervals for the common odds ratio

compared to the binary estimates.

https://doi.org/10.1371/journal.pone.0211404.g001
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Covariate adjustment

On expectation, covariate adjustment leads to more extreme treatment effect estimates and

larger standard errors for non-linear regression models.[21] The p values are a function of the

treatment effect estimates and standard error. With covariate adjustment the increase in treat-

ment effect estimate will outweigh increased in standard error and the p values will be lower

compared to unadjusted analysis[21].

Indeed, we found increased standard errors in all adjusted analyses compared to the unad-

justed analyses. The better prognosis in the treatment group decreased the treatment effect

estimate β after covariate adjustment in the PE vs IVIg trial. In the IVIg vs MP trial, the treat-

ment group had a lower probability of favorable outcome. Therefore, in the IVIg vs MP trial

covariate adjustment led to a larger β and a smaller p value.

Covariate adjustment increases statistical power, despite the larger standard error.[1, 7]

When there are no baseline imbalances, the adjusted conditional estimates will be more

extreme than the unadjusted marginal estimates[22]. However, the size and the direction of

the difference between the unadjusted and adjusted estimates are dependent on the strength of

the prognostic factors and the imbalance in baseline risk between the treatment- and control

group in the specific trial and this is shown in our study. When investigating the effectiveness

of a medical intervention in rare and heterogeneous neurological diseases, such as GBS, one

has to deal with small sample sizes. We therefore recommend performing covariate adjustment

in future trials in rare and heterogeneous neurological diseases. For GBS this covariate adjust-

ment should be applied with known predictors for (functional) outcome, specifically age, pre-

ceding diarrhea, GBS disability score and MRC sum score[19, 20].

The outcome ‘minimal one grade improvement’ implicitly involves a form of covariate

adjustment. The baseline disease severity of the patient is taken into account in the analysis by

estimating improvement for each patient from his or her own starting position at admission

(Table 4). This principle of a measure of change between baseline and follow up seems attrac-

tive to control for baseline imbalance. However, analyzing change does not control for baseline

imbalance because of regression to the mean[23, 24]; baseline values are negatively correlated

with change because patients with high scores at baseline generally improve more than those

with low scores[25]. Therefore covariate adjustment with the absolute baseline value is still

preferable over implicitly taking into account baseline severity in the outcome measure

‘improvement’. Moreover, disease severity at baseline is not the only covariate we could adjust

for. Especially, the age of the patient will be an important covariate in most neurological

diseases.

Thus, in general, ignoring baseline imbalance between treatment arms in trials may cause

invalid conclusions on both the magnitude and significance of the treatment effect estimate

compared to analysis using covariate adjustment. The impact on interpretability of treatment

effect estimates can be substantial and can be different in several study settings. When design-

ing a trial, the analysis plan should be precisely pre-specified. Also, the covariates that will be

used for adjustment should be pre-specified. Previous studies have shown that the stronger the

relation of the covariates with outcome, the larger the increase in statistical power with covari-

ate adjustment will be[5, 26, 27]. In GBS, predictors of outcome are relatively well known[19,

20] and therefore pre-specifying important baseline variables for covariate adjustment is possi-

ble in GBS trials.

Proportional odds analysis

It is evident that the GBS disability scale is not a linear scale. For example, improvement from

“needs ventilation for at least a part of the day” to “bedridden or chair bound” is not the same
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improvement as the improvement from “able to walk over 10m open space with help” to “able

to walk 10m unassisted but not able to run”. However, whether or not the ordinal outcome

under study is a linear scale is not relevant for the validity of the proportional odds analysis.

Proportional odds analysis merely requires ordering of outcomes. The proportional odds anal-

ysis estimates the treatment effect on each cut-off of the scale, instead of estimating the treat-

ment effect on the difference between the averages scores in the treatment arms, as linear

regression. The proportional odds model results in a common OR, which is interpretable as a

pooled OR over all ORs for the different cut-offs. The common OR is formally valid if the ORs

for each cut-off are the same (the proportional odds assumption). We can, however, interpret

the common OR as a summary measure of the treatment effect, even if the ORs differs slightly

per cut-off[12, 28]. The common OR can also be interpreted as the average shift over the total

ordinal outcome scale caused by the treatment under study[10–13]. Moreover, simulation

studies have shown that ordinal analysis is more efficient than binary analysis, even if the pro-

portional odds assumption is violated[11]. Because the ordinal analysis uses the full ordinal

outcome scale instead of one dichotomy, the variability will be smaller compared to binary

analysis. This was confirmed in our study, where the proportional odds resulted in lower stan-

dard errors compared to the binary approaches. Although the importance of applying propor-

tional odds analysis already has been assessed in other diseases, it is still relevant to study this

for specific cases like GBS. For example it is important to have more insight in the effect of

treatment on the different cut-offs for the specific ordinal outcome measure, in this case the

GBS disability score, and see if the proportional odds assumption holds.

In the PE vs IVIg trial, the ORs for each cut-off were very similar and as a result the com-

mon OR was also similar. Thus, with the smaller SE, the p value was lower. In contrast, in the

IVIg vs IVIg+MP trial, the ORs were more scattered. One explanation is chance: the ORs for

the different cut-offs are uncertain, especially at the tails of the outcome scale where numbers

are usually small. However, almost all binary ORs have confidence intervals that overlap.

Another explanation is that the effect is truly different for different cut-offs, although this is

Table 4. Characteristics of four methods of treatment effect analysis in GBS trials. Approach in bold is the recom-

mended approach.

Takes into account

baseline imbalance

Takes into account

ordinal nature of the outcome measure

Unadjusted binary logistic regression

on cutoff for GBS disability score

NO NO

Adjusted binary logistic regression

on cutoff for GBS disability score

YES NO

Unadjusted binary logistic regression

on� 1 grade improvement on GBS disability score

PARTLY� NO

Adjusted binary logistic regression

on� 1 grade improvement on GBS disability score

YES NO

Unadjusted proportional odds logistic regression

on GBS disability score

NO YES

Adjusted proportional odds logistic regression

on GBS disability score

YES YES

Unadjusted proportional odds logistic regression

on Δ GBS disability score

PARTLY� YES

Adjusted proportional odds logistic regression

on Δ GBS disability score

YES YES

�Only baseline GBS disability score, no other covariates.

https://doi.org/10.1371/journal.pone.0211404.t004
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clinically unlikely. The cut-off chosen in the reference approach in the analysis of improve-

ment appeared to be the most optimal cut-off from a statistical perspective, since it was the

only cut-off resulting in a significant treatment effect.

However, if we assume a relatively constant treatment effect across the different cut-offs of

an ordinal outcome scale, it is unpredictable which cut-off will show the strongest effect.

Therefore, the ordinal analysis is a ‘safe’ choice and the common OR is a fair representation of

the effect of treatment on the ordinal outcome compared to the binary approach, because it

takes into account improvement over all levels of the GBS disability score. Since it is also more

efficient, we recommend the use of the full ordinal outcome scale in future trials in rare and

heterogeneous neurological diseases. In observational studies, ordinal analyses could be com-

bined with propensity score methods to maximize statistical power.

Limitations

Patients with missing covariate data were excluded from the analyses. Data from 367 patients

were analyzed rather than 372 patients in the original analyses. We did not assess heteroge-

neous treatment effects according to baseline risk, which could influence the ability of covari-

ate adjustment to improve the statistical power in an RCT. In this study we only investigated

GBS which may not fully be representative for other neurological disorders, although covariate

adjustment and proportional odds analysis have shown advantages in other fields, such as

stroke and traumatic brain injury[3, 4, 7, 12].

Conclusion and implications

Covariate adjustment corrects for baseline imbalance and increases power. Proportional odds

analysis optimally exploits the ordinal nature of outcome scales. A combined approach is

advised for reliable and efficient estimation of treatment effects in small RCTs in rare and het-

erogeneous diseases like GBS.
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