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1 Introduction

Several quantum information concepts have been fruitfully applied to the investigation of

fundamental questions in gravity: classical spacetime geometry seems somehow to hiddenly

encode information properties of a dual quantum system. Bekenstein-Hawking entropy is

indeed proportional to the area of the event horizon [1] and the laws of Black Hole (BH)

mechanics have a deep connection with thermodynamics [2]. The microscopic derivation

of the BH entropy in string theory given by Strominger and Vafa [3], even if valid just

for some particular extremal cases, suggests that the BH horizon area should be directly

linked to the number of microstates in some appropriate dual description.

The AdS/CFT correspondence provides an interesting theoretical laboratory to inves-

tigate quantum information in gravity. An example which has given us a lot of interesting

insights is the Ryu-Takayanagi construction [4–6]: it links the entanglement entropy of

the dual conformal field theory (CFT) to the geometrical area of a bulk minimal surface

hanging from the boundary. Entropy should be somehow related to the counting of degrees

of freedom in the dual quantum description of a BH. On the other hand, it turns out that

entropy is not the correct quantity to focus on in order to understand the growth of the

Einstein-Rosen bridge (ERB) in the interior of a BH [7, 8]. Indeed, the ERB connecting

two boundaries in an eternal AdS black hole continues to grow for a time scale which is

much longer compared to the thermalization scale.

Eternal BHs in AdS space are dual to two entangled copies of the same CFT living on

each of the boundaries [9]. If we take both the times tL, tR of the left and the right CFTs

– 1 –



J
H
E
P
0
6
(
2
0
1
8
)
0
6
3

running forward, this geometry is dual to a time-dependent thermofield doublet state [10].

The size of the ERB connecting the left and the right boundary asymptotically grows

linearly with time.

A promising candidate to capture this growth in the dual boundary theory is computa-

tional complexity [7, 8, 11–13]. For a quantum system, it is defined as the minimal number

of elementary unitary operations needed to reach a given quantum state, starting from an

initial reference state. In the case of quantum mechanics with a finite number of degrees of

freedom, Nielsen and collaborators [14, 15] introduced a nice geometrical tool: the problem

of quantum complexity is traced back to finding geodesics in the space of unitary evolu-

tions. In order to extend such analysis in quantum field theories, many subtleties arise and

only recently complexity calculations have been carried out for free field theories [16–18].

Another approach to complexity in quantum field theory uses the Liouville action [19] in

connection with tensor networks [20].

Two different holographic duals of quantum complexity have been proposed so far:

the complexity=volume (CV) conjecture [7, 8, 11] and the complexity=action (CA) con-

jecture [12, 13]. CV relates complexity to the volume of a codimension one surface (with

maximal volume) anchored at the boundary:

CV ∝ Max

(
V

Gl

)
, (1.1)

where G is the Newton constant and l the AdS radius. CA relates complexity to the

gravitational action IWDW evaluated in a Wheeler-DeWitt patch:

CA =
IWDW

π
. (1.2)

Both the conjectures have their own merits. In particular, while CV explicitly depends

on the AdS curvature l, CA looks more universal, because no explicit factors related to

the asymptotic of the space are present. On the other hand, recent works show that CA

seems to overshoot the Lloyd’s bound [21] at intermediate times [22] and moreover seems

to give some curious and weird features: complexity is constant before some initial time

τc and immediately after this time dCA
dτ is divergent and negative. On the other hand, CV

behaves as a monotonic and smooth function of the time. Another merit of CV conjecture

is that it can be naturally extended to consider subregions [23–25]. Another holographic

interpretation of the volume was proposed in [26].

Complexity is interesting not only to capture the linear growth of ERBs inside BHs;

for example, complexity of formation of BH was studied in [27]. It is also interesting to

study complexity in connection to other spacetimes; for example, the relation between

complexity and spacetime singularities was investigated in [28, 29] and complexity for the

AdS soliton was studied in [30]. Complexity for quenches and time-dependent couplings

was studied in [31, 32]. The effect of dilaton was discussed in [33].

It is interesting to consider extensions of holography to spacetimes that are not asymp-

totically AdS. The most relevant cases for physical applications would be flat or de Sitter

spaces; unfortunately in these cases very little is known about the dual field theory. It is
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then interesting to study non-trivial modifications of AdS/CFT where we have more direct

information about the structure of the dual. One of these cases is Warped AdS3/CFT2 [34–

37], which is a correspondence between gravity in 2 + 1 dimensions in spaces with Warped

AdS3 (WAdS) asymptotic and a putative Warped Conformal Field Theory (WCFT) in

1 + 1 dimensions. In recent times there have been significant progresses in the study of

this extension of the AdS/CFT correspondence. Using warped conformal symmetries, an

analog of Cardy formula was derived in [35]; in [36] some free examples of WCFT were

built. Entanglement entropy in WAdS space and in WCFT was studied by several authors,

e.g. [38–40]. In this paper we will address the CV conjecture for BHs in WAdS spaces.

The paper is organized as follows. In section 2 we review the Warped black holes solu-

tion and we discuss mass and angular momentum in Einstein gravity; an explicit example

in a theory with ghosts is discussed in appendix A. In section 3 we compute the growth

rate of the volume of the ERB as a function of time, both for the non-rotating and rotating

cases. We conclude in section 4.

2 Black holes in Warped AdS

We will be interested in BHs with WAdS3 asymptotic [34, 41, 42]. This class of metrics

should be dual to a boundary WCFT at finite temperature. For the metric we use the

notation of [34]:

ds2

l2
= dt2 +

dr2

(ν2 + 3)(r − r+)(r − r−)
+
(

2νr −
√
r+r−(ν2 + 3)

)
dtdθ +

r

4
Ψdθ2 , (2.1)

Ψ(r) = 3
(
ν2 − 1

)
r +

(
ν2 + 3

)
(r+ + r−)− 4ν

√
r+r−(ν2 + 3) , (2.2)

where 0 ≤ r < ∞, −∞ < t < ∞, θ ∼ θ + 2π and the horizons are located at r = r+, r−
with r+ ≥ r−. Taking r+ = r− = 0 we obtain the WAdS spacetime in Poincaré patch.

The boundary is parameterized by (θ, t) and the spatial geometry is flat. The parameter ν

is related to the left and right central charges of the boundary WCFT, which in Einstein

gravity are [43]

cL = cR =
12lν2

G(ν2 + 3)3/2
. (2.3)

For ν = 1 the Banados-Teitelboim-Zanelli (BTZ) black hole [44, 45] is recovered; in

this case, the following change of coordinates

r = r̄2 , t =

√
r+ −

√
r−

l2
t̄ , θ =

lθ̄ − t̄
l2
(√
r+ −

√
r−
) , r± = r̄2± , (2.4)

brings the metric to the standard BTZ form:

ds2 = −
r̄2 − r̄2+ − r̄2−

l2
dt̄2 +

l2r̄2(
r̄2 − r̄2+

) (
r̄2 − r̄2−

)dr̄2 − 2
r̄+r̄−
l

dt̄dθ̄ + r̄2dθ̄2 . (2.5)

The case ν = 1 admits the AdS3 symmetries, i.e. SL(2,R)L × SL(2,R)R, which for generic

ν are broken to the WAdS3 symmetry group, that is SL(2,R)L ×U(1)R.
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For ν2 < 1 the solution is pathological because it has closed time-like curves. For ν2 > 1

the solution is not sick and can be realized as an exact vacuum solution of Topologically

Massive Gravity (TMG) [41, 42], New Massive Gravity (NMG) [46] and also general linear

combinations of the two mass terms [47]. We restrict our analysis to the case of positive

ν. So at the end we will consider just the case ν ≥ 1.

Strictly speaking, the relation between area and entropy holds just in Einstein gravity:

if we consider higher order corrections to the gravitational entropy, we have to use the Wald

entropy formula [48] instead of the geometrical area law. So the CV conjecture should be

directly applicable just to Einstein gravity and should be appropriately modified in order

to take into account higher order corrections in the gravitational action. A proposal for

such correction has been put forward in [23, 49]. The CA conjecture can also be generalized

to the case of higher derivatives corrections to the gravitational action, see e.g. [50–52].

As far as we know, there is no known non-pathological matter content in field theory

supporting stretched warped BHs in Einstein gravity [43]. However, they can be obtained

as solutions to a perfect fluid stress tensor with spacelike quadrivelocity [53]. Alternatively

they can arise as a solution of Chern-Simons-Maxwell electrodynamics coupled to Einstein

gravity [54, 55], but a wrong sign for the kinetic Maxwell term is required in order to

have solutions with no closed time-like curves (which corresponds to ν2 ≥ 1). Moreover,

warped BH can arise in string theory constructions, e.g. [56–58]. In the following we take

a pragmatical approach: we suppose that a consistent realization of stretched warped BHs

in Einstein gravity exists, and we investigate the CV conjecture.

2.1 Conserved charges and thermodynamics

In order to compare with the expectations for complexity, we need to discuss conserved

charges and thermodynamical quantities. In the Einstein case, the entropy is given by the

area of the outer horizon:

S = S+ =
lπ

4G

(
2νr+ −

√
r+r−(ν2 + 3)

)
. (2.6)

At least formally, we can also define the entropy associated to the inner horizon:

S− =
lπ

4G

(√
r+r−(ν2 + 3)− 2νr−

)
. (2.7)

The Hawking temperature and the angular velocity are given by [34]:

T =
ν2 + 3

4πl

r+ − r−
2νr+ −

√
(ν2 + 3)r+r−

, Ω =
2(

2νr+ −
√

(ν2 + 3)r+r−

)
l
. (2.8)

The first law of thermodynamics gives:

dM = TdS + ΩdJ . (2.9)

Following [59, 60], the existence of a holographic dual implies a quantization condition

on the product of inner and outer entropies, which in turn must be proportional to the
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conserved charges of the black hole which are quantized. Since the angular momentum

is the only quantized conserved charge, we obtain J = S−S+f(ν), where f(ν) is a so far

arbitrary function which will be fixed by thermodynamics.

Imposing that the resulting dM is an exact differential, the function f(ν) is fixed and

allows to solve for both the conserved charges:

M =
1

16G
(ν2 + 3)

(
(r− + r+)−

√
r+r−(ν2 + 3)

ν

)
, (2.10)

J =
l

32G

(
ν2 + 3

)(r−r+(3 + 5ν2)

2ν
− (r+ + r−)

√
(3 + ν2)r+r−

)
. (2.11)

An explicit realization in Einstein gravity was discussed in [54] and is reviewed in

appendix A. In the formalism of [54, 55], the mass M is identified as the conserved quantity

associated to the Killing vector 2 ∂
∂t , while the angular momentum is identified as the

conserved quantity associated to the Killing vector − ∂
∂θ . This provides a non-trivial check

that the masses guessed by thermodynamics are indeed the same as the ones computed

directly in an explicit example, which, unfortunately, has either closed time-like curves (for

ν2 < 1) or wrong sign Maxwell term and therefore ghosts (for ν2 > 1).

2.2 Expectations for the asymptotic rate of growth of complexity

In [11], it has been proposed that the asymptotic rate of increase of complexity should be

proportional to the product of temperature times entropy:

dC

dτ
' TS . (2.12)

The main motivation comes from the fact that complexity growth rate is an extensive

quantity which should have the dimensions of an energy, and which should vanish for a

static object as an extremal BH. Indeed, for the WAdS BH solutions in Einstein gravity,

we find

TS =
(r+ − r−)(3 + ν2)

16G
. (2.13)

In the next section we will find that the growth rate of the volume of the ERB in a WAdS

BH is indeed proportional to TS.

The authors of [62] proposed the following bound for the complexity growth rate:

dC

dτ
. [(M − ΩJ − ΦQ)+ − (M − ΩJ − ΦQ)−] , (2.14)

where ± indicate that the corresponding values of the quantities are computed at the outer

and inner horizons. With suitable units for complexity, the bound (2.14) seems to be

saturated in several cases. For WAdS BHs, the angular velocities computed on the inner

and outer horizons are:

Ω+ =
2

l
(

2νr+ −
√

(ν2 + 3)r+r−

) , Ω− =
2

l
(

2νr− −
√

(ν2 + 3)r+r−

) . (2.15)
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If we use the values of mass and angular momentum in eqs. (2.10)–(2.11), we find that

(M − Ω+J)− (M − Ω−J) =
(r+ − r−)

(
3 + ν2

)
16G

= TS . (2.16)

For the purpose of the case studied in this paper, the saturation of the bound in eq. (2.14)

is equivalent to eq. (2.12).

2.3 Eddington-Finkelstein coordinates

The Eddington-Finkelstein (EF) coordinates can be introduced using the light-like geodesics

of the metric in eq. (2.1). A system of EF coordinates for the WAdS BH was already intro-

duced in [61]. The coordinates that we introduce here are not the same, but they are still a

system of non-singular coordinates at the horizon, defined using infalling lightlike geodesics,

that we find convenient for our purposes. We have the following conserved quantities along

geodesics:

K = 2ṫ+
(

2νr −
√
r+r−(ν2 + 3)

)
θ̇ ,

P =
(

2νr −
√
r+r−(ν2 + 3)

)
ṫ+

r

2
Ψ(r) , (2.17)

where dots denote derivatives with respect to the geodesic affine parameter. The null

geodesics are found by imposing the additional constraint ds2 = 0. Solving the equation

of motion and specializing to K = 0, we get a particular set of geodesics satisfying

ṫ =
P
(

2νr −
√
r+r−(ν2 + 3)

)
(ν2 + 3)(r − r−)(r − r+)

, θ̇ = − 2P

(ν2 + 3)(r − r−)(r − r+)
, ṙ = ±P .

(2.18)

These geodesics can be used to introduce EF coordinates which are regular at the horizon.

The infalling geodesics correspond to the choice of sign

dθ

dr
=

2

(ν2 + 3)(r − r−)(r − r+)
,

dt

dr
= −

(
2νr −

√
r+r−(ν2 + 3)

)
(ν2 + 3)(r − r−)(r − r+)

, (2.19)

and allow to define EF coordinates (u, θu) such that

du = dt+
2νr −

√
r+r−(ν2 + 3)

(ν2 + 3)(r − r−)(r − r+)
dr , dθu = dθ − 2

(ν2 + 3)(r − r−)(r − r+)
dr .

(2.20)

The finite expression for the coordinate change is

u = t+ r∗(r) , θu = θ − 2

(ν2 + 3)(r+ − r−)
log

∣∣∣∣r − r+r − r−

∣∣∣∣ , (2.21)

where

r∗(r) =
2νr+ −

√
r+r−(ν2 + 3)

(ν2 + 3)(r+ − r−)
log |r − r+| −

2νr− −
√
r+r−(ν2 + 3)

(ν2 + 3)(r+ − r−)
log |r − r−| .

(2.22)

In terms of these coordinates, the metric becomes

ds2

l2
= du2 − drdθu +

(
2νr −

√
r+r−(ν2 + 3)

)
dudθu +

r

4
Ψ(r)dθ2u . (2.23)
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3 Complexity=volume

3.1 Einstein-Rosen Bridge

Kruskal extension for WAdS BHs was studied in [61]. The Penrose diagrams for WAdS

BHs are the same as the ones for asymptotically flat BHs in 3 + 1 dimensional spacetime:

for the special cases r− = 0 and r+
r−

= 4ν2

ν2+3
, the diagram is the same as the one for the

Schwarzschild BH, while for generic r+
r−

it is identical to the one for the Reissner-Nordström

BH (see figures 7 and 8 of [61]). It is important to emphasize that in the ν = 1 case, which

is the AdS case, the Penrose diagram is different and is the usual AdS one.

As done in [8, 11] for the AdS and the flat cases, we consider an extremal codimension

one bulk surface extending between the left and the right side of the Kruskal diagram; we

denote the times at the left and right sides as tL, tR, respectively. The dual thermofield

double state has the following form:

|ΨTFD〉 ∝
∑
n

e−Enβ/2−iEn(tL+tR)|En〉R|En〉L , (3.1)

where |En〉L,R refer to the energy eigenstates of left and right boundary theories, β is the

inverse temperature. The usual time translation symmetry in Schwarzschild coordinates

corresponds to a forward time translation on the right side and a backward translation on

the left one [9], i.e.

tL → tL + ∆t , tR → tR −∆t . (3.2)

This corresponds to the invariance of the thermofield double state under the evolution

described by the Hamiltonian H = HL−HR in the associated couple of entangled WCFTs.

If instead we take time running forward on both the copies of the boundaries, we introduce

some genuine time dependence in the problem [10] and the volume of the maximal slice will

depend on time [11]. We will then consider the symmetric case with equal boundary times

tL = tR = tb/2 . (3.3)

3.2 Non-rotating case

In this section we will compute the volume of the ERB as a function of time [11]. We

first study the non-rotating case, setting r+ = r0 and r− = 0 in the metric in the coordi-

nates (2.23). The minimal volume is chosen along the 0 ≤ θu ≤ 2π coordinate, and with

profile functions u(λ), r(λ), written in terms of some parameter λ. The volume integral

will run from some λmin to some λmax, with associated radii rmin and rmax:

V = 2 · 2π
∫ λmax

λmin

dλ l2

√
u̇2r

4
[3(ν2 − 1)r + (ν2 + 3)r0]−

(
u̇rν − ṙ

2

)2

= 4π

∫
dλL(r, ṙ, u̇) .

(3.4)

The factor 2 takes into account the two sides of the Kruskal extension, the 2π is the result

of the integration in θu and the dots denote derivatives with respect to λ. The radius rmax

plays the role of an ultraviolet cutoff; we will take the limit rmax → ∞ at the end of the

– 7 –
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E=0.01

E=0.3

E=0.5

E=E
0

Figure 1. Solutions to eqs. (3.7) for the non-rotating case, plotted in a Penrose diagram, for

ν = 2.5 and r0 = 1. The E = E0 line, which sits at constant rmin = r0
2 , corresponds to the large tb

limit. Penrose diagram coordinates from [61] have been used.

calculation. The conserved quantity from translational invariance in u gives

E =
1

l2
∂L
∂u̇

=
ν2+3
4 u̇r(r0 − r) + νrṙ

2√
u̇2r
4 [3 (ν2 − 1) r + (ν2 + 3) r0]−

(
u̇rν − ṙ

2

)2 . (3.5)

It is then useful to gauge the parametrization symmetry for λ in such a way that V =

4πl2
∫
dλ:

u̇2r

4

[
3
(
ν2 − 1

)
r +

(
ν2 + 3

)
r0
]
−
(
u̇rν − ṙ

2

)2

= 1 , E =
ν2 + 3

4
u̇r(r0 − r) +

νrṙ

2
.

(3.6)

We can then solve for ṙ, u̇:

ṙ = 2

√
4E2 + (ν2 + 3) r (r − r0)

r (3 (ν2 − 1) r + (ν2 + 3) r0)
, u̇ =

4

(ν2 + 3)(r0 − r)

(
E

r
− ν

2
ṙ

)
, (3.7)

where we took the direction of λ in the direction of increasing r. These equations can be

solved numerically; some example of solutions, plotted in a Penrose diagram, are shown in

figure 1.

The minimum radius rmin is a solution of ṙ = 0:

r2min − r0rmin +
4E2

(3 + ν2)
= 0 , rmin =

r0
2

(
1±

√
1− 16E2

r20(3 + ν2)

)
, (3.8)

where the physical solution relevant for holographic complexity is the one with the + sign.

Conventionally, tb = 0 corresponds to E = 0 and rmin = r0. The tb → ∞ limit, instead,

corresponds to coincident roots for rmin in eq. (3.8), i.e. E → r0
4

√
ν2 + 3 and rmin = r0

2 .

The minimal value of the radial coordinate is inside the black hole horizon r0
2 ≤ rmin ≤ r0.

The volume can be obtained as an integral in dr:

V = 4πl2
∫
dr

ṙ
= 2πl2

∫ rmax

rmin

√
r (3 (ν2 − 1) r + (ν2 + 3) r0)

4E2 + (ν2 + 3) r (r − r0)
dr . (3.9)

– 8 –
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The difference of u coordinates is:

u(rmax)− u(rmin) =

∫ rmax

rmin

dr
u̇

ṙ

=

∫ rmax

rmin

dr

[
2

(ν2 + 3)(r0 − r)

(
E

r

√
r (3 (ν2 − 1) r + (ν2 + 3) r0)

4E2 + (ν2 + 3) r (r − r0)
− ν

)]
. (3.10)

Note that this integral is not divergent for r → r0. The volume can then be written as

follows:

V

4πl2
= E(u(rmax)− u(rmin)) +

∫ rmax

rmin

dr

{
2νE

(ν2 + 3)(r0 − r)

−
√
r [4E2 − r(r0 − r)(ν2 + 3)] [(ν2 + 3)r0 + 3r(ν2 − 1)]

2(ν2 + 3)r(r0 − r)

}
. (3.11)

It is important to emphasize that

lim
rmax→∞

u(rmax)− r∗(rmax) = tR , (3.12)

is finite and can be identified with the time at the right boundary. In the limit rmax →∞,

we can use the explicit expression

u(rmax)− u(rmin) = tR + r∗(rmax)− r∗(rmin) , (3.13)

obtained specializing eq. (2.21):

u(rmax) = tR + r∗(rmax) , u(rmin) = r∗(rmin) , (3.14)

because t = 0 at r = rmin by symmetry considerations.

Taking into account that both E and rmin depend on tR (see eq. (3.8) for the relation

among rmin and E), the time derivative of eq. (3.11) gives, after several cancellations

among terms:
1

2l

dV

dtR
=
dV

dτ
= 2πlE , (3.15)

where τ = l tb = 2l tR. At large τ , E approaches to the constant E0 = r0
4

√
ν2 + 3.

Computing the constant of motion E in eq. (3.5) for the particular value r = rmin shows

that E > 0 for τ > 0 (corresponding to u̇ > 0) and E < 0 for τ < 0 (corresponding

to u̇ < 0). Numerical calculations with the full time dependence can be obtained by

expressing τ in terms of E using eqs. (3.10)–(3.13), are shown in figure 2. For ν = 1 the

results in [11, 22] are recovered, under the change of variables in eq. (2.4).

3.3 Rotating case

We use the metric in the coordinates (2.23); the volume functional is:

V = 4π

∫ λmax

λmin

dλ l2

√
ru̇2

4
Ψ−

(
u̇

2

(
2νr −

√
r+r−(ν2 + 3)

)
− ṙ

2

)2

= 4π

∫
dλL(r, ṙ, u̇) .

(3.16)
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Figure 2. Time dependence of dV
dτ in units of πl, for r0 = 1 and various values of the warping

parameter ν.

Due to the axial symmetry, the volume is taken along the θu direction. As before, we find

the conserved quantity:

E =
1

l2
∂L
∂u̇

=

ru̇
4 Ψ−

(
u̇
2

(
2νr −

√
r+r−(ν2 + 3)

)
− ṙ

2

)
1
2

(
2νr −

√
r+r−(ν2 + 3)

)
√

ru̇2

4 Ψ−
(
u̇
2

(
2νr −

√
r+r−(ν2 + 3)

)
− ṙ

2

)2 .

(3.17)

The expression greatly simplifies choosing a parametrization for λ such that V = 4πl2
∫
dλ,

which corresponds to setting

ru̇2

4
Ψ−

(
u̇

2

(
2νr −

√
r+r−(ν2 + 3)

)
− ṙ

2

)2

= 1 . (3.18)

This gives:

E = −ν
2 + 3

4
u̇(r − r−)(r − r+) +

ṙ

4

(
2νr −

√
r+r−(ν2 + 3)

)
. (3.19)

Solving eqs. (3.18), (3.19), we obtain the expressions:

ṙ = 2

√√√√ 4E2 + (ν2 + 3)(r − r−)(r − r+)(
2νr −

√
r+r−(ν2 + 3)

)2
− (ν2 + 3)(r − r−)(r − r+)

, (3.20)

u̇ =
2

(ν2 + 3)(r − r−)(r − r+)
√

4E2 + (ν2 + 3)(r − r−)(r − r+)
(

2νr −
√
r+r−(ν2 + 3)

)
√(

2νr −
√
r+r−(ν2 + 3)

)2
− (ν2 + 3)(r − r−)(r − r+)

− 2E

 . (3.21)
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The minimum value rmin of the radial coordinate is obtained by solving ṙ = 0:

rmin =
r+ + r−

2

(
1±

√
1− 16E2

(ν2 + 3)(r+ + r−)2

)
. (3.22)

As in the non-rotating case, the physical solution relevant for holographic complexity is

the one with the + sign. Conventionally, tb = 0 corresponds to E = 0 and rmin = r+ + r−.

The tb →∞ limit corresponds to E → (r+−r−)
4

√
ν2 + 3 and rmin = r++r−

2 .

The volume can be expressed as an integral in dr as:

V = 2πl2
∫ rmax

rmin

dr

√√√√(2νr −
√
r+r−(ν2 + 3)

)2
− (ν2 + 3)(r − r−)(r − r+)

4E2 + (ν2 + 3)(r − r−)(r − r+)
. (3.23)

It is useful to introduce the difference among the extremal values of EF coordinates:

u(rmax)− u(rmin) =

∫ rmax

rmin

dr
1

(ν2 + 3)(r − r−)(r − r+)

[(
2νr −

√
r+r−(ν2 + 3)

)

−2E

√√√√(2νr −
√
r+r−(ν2 + 3)

)2
− (ν2 + 3)(r − r−)(r − r+)

4E2 + (ν2 + 3)(r − r−)(r − r+)

]
.

(3.24)

As in the non-rotating case, t = 0 at r = rmin, and so:

u(rmax)− u(rmin) = tR + r∗(rmax)− r∗(rmin) . (3.25)

By direct computation, we find the relation

V

4πl2
=

∫ rmax

rmin

dr

[√
4E2 + (ν2 + 3)(r − r−)(r − r+)

2(ν2 + 3)(r − r−)(r − r+)√(
2νr −

√
r+r−(ν2 + 3)

)2
− (ν2 + 3)(r − r−)(r − r+)

−E
2νr −

√
r+r−(ν2 + 3)

(ν2 + 3)(r − r−)(r − r+)

]
+ E(u(rmax)− u(rmin)) . (3.26)

Using the previous definitions and simplifying the expression, we obtain again the result

dV

dτ
= 2πlE , (3.27)

where τ = l tb = 2l tR. At large τ , E approaches the constant

E0 =
(r+ − r−)

4

√
ν2 + 3 . (3.28)

Numerical calculation are shown in figure 3. As a consistency check, putting ν = 1 for the

BTZ case, we find

lim
τ→∞

dV

dτ
= πl(r+ − r−) , (3.29)
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Figure 3. Time dependence of dV
dτ in units of πl, for r+ = 3, ν = 2 and several values of r−. For

other values of ν the plots are qualitatively similar.

which is the same result found in standard coordinates on the Poincaré patch when we

perform the change of variables (2.4).

The late time limit of the maximal volume slices can be found also in a simpler way,

as in [11]. In this limit, we expect that the maximal volume slice sits at constant r, due

to translation invariance in time. We can then consider volume slices at a constant r = r̂.

Extremizing the volume from the metric in eq. (2.1), we find that the only possible maximal

constant-r slice sits at

r̂ =
r+ + r−

2
. (3.30)

Inserting this value back in the volume functional, we recover eq. (3.27) with E = E0.

4 Conclusions

The result of our calculation gives that the volume of the extremal slices in WAdS is a

monotonically growing function for τ > 0, whose late time growth rate approaches to

dV

dτ
→ πl

2
(r+ − r−)

√
3 + ν2 = ST

8πGl√
3 + ν2

, (4.1)

where S is the Bekenstein-Hawking entropy and T the Hawking temperature. The late

time rate vanishes for extremal black holes (r+ = r−) and is proportional to TS.

In AdSD, we have that the coefficient of proportionality between complexity and vol-

ume [8] is usually taken as:

C = (D − 1)
V

Gl
. (4.2)

The late-time rate of growth of the volume is:

lim
τ→∞

dV

dτ
=

8πGl

D − 1
ST . (4.3)
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For comparison, in the case of flat spacetime BHs,

lim
τ→∞

dV

dτ
≈ Grh
D − 3

ST , (4.4)

where rh is the horizon radius (≈ refer to a neglected order one prefactor [8]). Consequently,

the proportionality coefficient between the late time rate of growth of the volume and TS

depends on the kind of asymptotic of the spacetime.

In order to compare with the AdS3 case, we can write the rate of growth of the volume

in WAdS as:
dV

dτ
→ ST 4πGl η , η =

2√
3 + ν2

. (4.5)

We may interpret the details of this result in distinct ways, depending on the exact holo-

graphic dictionary that we may conjecture between volume and complexity. For example,

it could be that complexity approaches at late time to η TS (note that η ≤ 1 if we impose

ν2 ≥ 1); if this is true, warping would make complexity rate decreases. On the other hand,

it could also be that in spaces with WAdS asymptotic the holographic dictionary between

complexity and volume is changed by some non-trivial function of the warping parameter

ν; for example, if we would have that

C =
2

Glη
V , (4.6)

the asymptotic complexity increase rate would be still TS for every ν. It would be interest-

ing to find arguments in order to be able to discriminate among these various possibilities.

From general considerations based on limits about the speed of computation, there is

a conjectured bound on the growth rate of complexity of a physical system [21]. This is

called Lloyd’s bound and states that

dC

dτ
≤ 2E

π
, (4.7)

where E is the energy associated to the physical system and units ~ = 1 are used. In

the case of BHs, the energy is identified with the BH mass, E = M . In general relativity

the definition of mass M depends on the choice of the asymptotic Killing vector used to

define the conserved quantity. In the WAdS case, the boundary spatial direction θ in the

metric (2.1) is selected by the r2 divergence at r →∞ in the dθ2 coefficient of the metric.

Our definition of mass M in eq. (2.10) is in term of the Killing vector ξt = 2 ∂
∂t ; this choice

is natural, because the norm of ξt does not diverge at the boundary. If we would choose

another Killing vector to define the mass

ξj = ξt − j
∂

∂θ
, (4.8)

then, for non-zero j, the norm of ξj would diverge as r2 for r → ∞. Instead in the AdS

case (ν = 1) the r2 divergence of the metric at infinity disappears and ξt is not a natural

time Killing vector, because it is not an eigenvector of the boundary metric.
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Since the late-time complexity rate is proportional to TS, if we want that an universal

Lloyd’s bound holds, we must require that some positive constant k exists such that kM ≥
TS for every value of r+, r− at fixed ν. If we impose this, we find that k ≥ g(ν), where

g(ν) =
6ν
√
ν2 − 1

2
√

3ν (2ν − n) + 3n
√

(ν2 − 1)
, n =

√
7ν2 + 4

√
3
√
ν2 − 1ν − 3 , (4.9)

which is a decreasing function of ν, with g(1) → ∞ and g(∞) ≈ 1.15. So it is possible,

with appropriate normalization, to introduce a Lloyd’s bound proportional to M for ν > 1.

For ν = 1 (the AdS case) instead this is not possible; but indeed we know that in this case

M is not the correct mass because ∂
∂t does not correspond to the natural time direction in

AdS; in this case there is a conjectured Lloyd’s bound in terms of the usual time direction

in AdS [13]. For ν < 1 we do not expect a Lloyd’s bound, because there are closed time-like

curves in the geometry; in this range the mass M can even be negative.

Several problems are left for further investigation:

• In this note we considered the case in which WAdS BHs are realized as solutions

of Einstein gravity with some appropriate matter content. These objects can also

be realized as vacuum solution of TMG and NMG. In these cases we expect some

higher order corrections to the CV conjecture, analog to the area corrections in the

Wald entropy formula. Some proposals have been discussed in [23, 49]. It would be

interesting to compute these corrections explicitly.

• The CA conjecture should also be investigated for the WAdS BH solutions, both in the

asymptotic rate of growth and in the initial transient period. This was initiated in [51]

for the case of TMG; in this case the late-time complexity rate is not proportional to

TS, but it still vanishes in the extremal case.

• It would be interesting to study complexity in the boundary Warped CFTs. La-

grangian examples of free Warped CFT were introduced in [36, 37].
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A An explicit model

In this appendix we consider an explicit model whose entropy satisfies the area law and

admitting the metric eq. (2.1) as a solution [54]. This is a model of Einstein gravity in (2+1)

dimensions minimally coupled to a gauge field with Chern-Simons and Maxwell terms:

S =
1

16πG

∫
d3x

{
√
g

[(
R+

2

L2

)
− κ

4
FµνFµν

]
− α

2
εµνρAµFνρ

}
, (A.1)

where εµνρ is the Levi-Civita tensorial density. Here we put a coefficient κ = ±1 in front

of the Maxwell kinetic term. The equations of motion for the gauge field are

DµF
αµ = −α

κ

εανρ
√
g
Fνρ , (A.2)
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while the Einstein equations are

Gµν −
1

L2
gµν =

κ

2
Tµν , Tµν = FµαF

α
ν −

1

4
gµνF

αβFαβ . (A.3)

We consider the set of coordinates (r, t, θ) where the metric assumes the form (2.1), and

we choose a gauge motivated by the ansatz from [54]:

A = adt+ (b+ cr)dθ , F = c dr ∧ dθ , (A.4)

where {a, b, c} is a set of constants.

In this gauge, the Maxwell equations give:

α = κ
ν

l
. (A.5)

From the Einstein equations, in order to require absence of closed time-like curves (ν > 1),

we have to choose κ = −1 and the following value of the parameters:

L = l

√
2

3− ν2
, c = l

√
3

2
(ν2 − 1) , (A.6)

which are simultaneously defined only when 1 < ν2 < 3. So there is conflict between

absence of closed time-like curves and presence of ghosts (κ = −1).

In ref. [54] the conserved charges associated to asympthotic isometries of the black

hole have been computed starting from the following form of the metric in the coordi-

nates (t̃, r̃, θ̃):

ds2 = pdt̃2 +
dr̃2

h2 − pq
+ 2hdt̃dθ̃ + qdθ̃2 , (A.7)

with functions given by

p(r̃) = 8Gµ , q(r̃) = −4GJ
α

+ 2r̃ − 2
γ2

L2
r̃2 , h(r̃) = −2αr̃ , (A.8)

and U(1) gauge field

A = At̃dt̃+Aθ̃dθ̃ , At̃(r̃) =
α2L2 − 1

γαL
+ ζ , Aθ̃(r̃) = −4G

α
Q+

2γ

L
r̃ , (A.9)

where

γ =

√
1− α2L2

8Gµ
, (A.10)

and ζ is a gauge constant.

We can put the metric (2.1) in the form (A.7) by means of the coordinate change:

t̃ =

√
l3

ω
t , r̃ = r −

√
r+r−(ν2 + 3)

2ν
, θ̃ =

√
ωl3

2
θ , (A.11)

where

ω =
ν2 + 3

2νl

(
ν(r+ + r−)−

√
r+r−(ν2 + 3)

)
. (A.12)
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The previous set of transformations is such that the gauge field in the coordinates (t, r, θ)

can be written as A = adt+ (b+ cr)dθ, motivating the ansatz (A.4).

The quantities µ,J , Q appearing in the previous solution are respectively identified

with the mass, angular momentum and charge of the black hole. The equations of motion

and the change of coordinates do not uniquely fix the charge Q, while we identify

µ =
ν2 + 3

16Gl2

(
r+ + r− −

√
r+r−(ν2 + 3)

ν

)
, (A.13)

J =
2ν(r+ + r−)

√
r+r−(ν2 + 3)− (5ν2 + 3)r+r−

8Gl
(
ν(r+ + r−)−

√
r+r−(ν2 + 3)

) . (A.14)

As it is pointed out in [54], the set {µ,J , Q} satisfies the first law of thermodynamics in

the form

dµ = TdS + ΩdJ + ΦtotdQ , (A.15)

where the total electric potential is shown to be Φtot = 0, thus eliminating the contribution

from the charge of the black hole.

This special form of the first law of thermodynamics is a consequence of the choice

of the Killing vectors associated to mass and angular momentum in [54], since all the

contributions coming from the charge are eliminated.

A direct match with the mass M and angular momentum J coming from the thermo-

dynamic analysis in (t, r, θ) coordinates gives:

µ =
M

l2
, J = − 4J

ωl2
. (A.16)

In order to get the conserved charges associated to isometries in (t, r, θ) coordinates, we

need to adjust the normalization conditions:

• The angular range 0 ≤ θ ≤ 2π corresponds to 0 ≤ θ̃ ≤ 2π
√
ωl3

2 , so extensive quantities,

such as mass, entropy and angular momentum in (t, r, θ) coordinates get an extra
√
ωl3

2

factor if we want to preserve the length of the integration along [0, 2π].

• Killing vectors are transformed as:

∂

∂t
=

√
l3

ω

∂

∂t̃
,

∂

∂θ
=

√
ωl3

2

∂

∂θ̃
. (A.17)

• In [54] it is defined Ω = −h(r+)/q(r+), while in eq. (2.10), (2.11) we followed the

conventions of [34], where an additional factor of l is put in the denominator both for

the angular velocity and the Hawking temperature. Choosing the last normalization

amounts to modify µ → µ/l, with the other conserved charges of the black hole

unchanged.

Taking into account all these corrections, we get that the mass in (t, r, θ) coordinates with

the Killing ∂
∂t is M/2 and the angular momentum associated to the Killing − ∂

∂θ is J . The

1/2 factor in the normalization of the mass is reminiscent of Komar’s anomalous factor

and it is also pointed out for similar computations in [42].
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