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Abstract

Over 90 % of the world trade volumes is being carried by sea nowadays. This figure
shows the massive importance of the maritime trade routes for the world economy.
However, the evolution of their structure over time is a white spot in the modern
literature. In this paper we characterise and study topological changes of the maritime
trade network and how they translate into navigability properties of this network. In
order to do so we use tools from Graph Theory and Computer Science to describe the
maritime trade network at different points in time between 1890 and 2000, based on
the data on daily movements of ships. We also propose two new measures of network
navigability based on a random walk procedure: randomwalk discovery and escape
difficulty. By studying the maritime network evolution we find that it optimizes over
time, increasing its navigability while doubling the number of active ports. Our findings
suggest that unlike in other real world evolving networks studied in the literature up to
date, the maritime network does not densify over time and its effective diameter
remains constant.
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Introduction
The last decade had witnessed a surge in maritime flow visualization and maritime
network analysis, especially at the global scale. This stands in sharp contrast with
the very few works on such themes produced along the previous century. In the
1940s already, world maps showed the precise geographic distribution of British ves-
sels (Siegfried 1940) and of US maritime trade (Ullman 1949). But it is only in the late
1960s that geographers, claiming the need to include maritime linkages in the analysis
of ports, port systems, and port hinterlands (Rimmer 2012), pioneered the applica-
tion of Graph Theory to maritime transport (Robinson 1968), but on a more local
scale. Graph Theory which had been so popular for the analysis of other transport
systems (e.g. road, rail, river, air, and telecommunications), lost ground in the disci-
pline. Maritime transport remained the focus of broad cartographies of volume and
distribution of main routes until the late 1990s, when other geographers proposed to
measure the topological structure of the global container shipping network (Joly 1999)
and to analyze the global strategies of ocean carriers such as Maersk and CMA-CGM
(Frémont 2015).
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The explosion of computer capacity, the revival of the “science of networks”, and
the growing availability of maritime traffic data soon gave birth to numerous analyses
of global maritime flows, which greatly varied in objectives and outcomes. Physicists
for instance found rather natural to investigate the topological properties of the global
maritime network, responsible for no less than 90 % of world trade volumes, but focus-
ing primarily on container shipping (Deng et al. (2009); Doshi et al. (2012); Hu and
Zhu (2009)). They stressed the belonging to the classes of scale-free and small-world
networks using standard measures from the then buoyant research field of complex net-
works. Other contributions of the kind consisted in comparing the networks of different
fleet types (Kaluza et al. 2010) to better understand marine bioinvasions, analyzing the
inter-similarity of the container shipping and airline networks (Parshani et al. (2010);
Woolley-Meza et al. (2012)), and constructing global port-to-port matrices to estimate
the impact of various scenarios on flow distribution (Tavasszy et al. (2011); Wang et al.
(2012)). Geographers also contributed to this dynamics by mapping the nodal regions and
centrality of pivotal hub ports for container shipping (Ducruet and Notteboom (2012);
Gonzalez-Laxe et al. (2012); Wang and Wang (2011)), general cargo (Pais Montes et al.
2012), and in the multiplex graph (Ducruet 2013). Li et al. ((2015)) as well as Xu et al.
(2015) departed from the classical view of port nodes to analyze the evolution of a global
container shipping network made of large regions. Most of the other contributions to
the field consisted in analyses of local and regional maritime networks using similar
methodologies (see Tovar et al. (2015) and Ducruet (2015) for a synthesis).
This rapid review of the field raises several questions that this research would like to

tackle. First, most of the aforementioned contributions focused on container shipping,
known to be the most valuable and modern segment of maritime transport, having gone
through rapid growth and transformation of its network configurations since its emer-
gence in the mid-1950s and especially, with the advent of mega-ships since the 2000s.
If we exclude fully-fledged density maps done in recent years but only to address other
issues without any reference to networks, such as environmental impacts (see for instance
Halpern et al. (2008)), we find that other fleet types received much less attention from a
network perspective, so that the global maritime network as a whole remains poorly stud-
ied. Second, and related to the first, the focus on container shipping motivated scholars to
be the most up-to-date and therefore to analyze current topologies, namely the shape of
the network from the late 1990s onward. The extent to which recent and current topolo-
gies differ from earlier ones thus cannot be discussed or demonstrated. This lacuna is
surprising, given the efforts put on understanding, for instance, the impact of the con-
tainer revolution on world trade between 1962 and 1990 (Bernhofen et al. 2016) and the
numerous works on the impact of technological change on the port and shipping indus-
try (see Guerrero and Rodrigue (2013); Kuby and Reid (1992); Mayer (1973)). Perhaps, the
high costs related with data acquisition and encoding motivated scholars to offer a recent,
static view of the network.
In this paper, a new and dynamic analysis is proposed to fill-in such gaps. The main

question to be tackled in this paper is whether the global maritime network has topolog-
ically changed over time and how this changes translated into its navigability properties.
Based on a largely untapped historical database on worldwide merchant vessel move-
ments, we compare current and past states of network configuration, assuming that
successive andmajor technological (and wider economic) changes affected the dimension
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and architecture of the macro-system. This research contributes as well to the wider
research field on spatial and complex networks where dynamical analyses remain rather
rare, given the scarcity of accurate time series data, thus resulting in a dominance of
simulation experiments over empirical analyses (see Barthelemy (2011); Boccaletti et al.
(2006)). Especially in terms of the studies of real-world networks growth and densifi-
cation, as to the best of the authors knowledge all the real-world networks studied so
far (Leskovec et al. (2007), Strano (2012)) exhibit super-linear growth of the number of
edges with respect to the number of nodes, which contradicts the widely-spread Prefer-
ential Attachment model proposed by Barabási and Albert ((1999)). Moreover, this paper
enters the field of navigability studies of transportation networks (De Domenico et al.
(2014), Gulyas 2015) by looking at network’s efficiency from the point of view of ease of
navigation.
Our methodology consists of analyses of an unweighted network created by the ports,

standing for nodes, and passages of the ships, standing for the edges. Then we take snap-
shots of the network almost every 5 years between 1890 and 2000. By applying tools from
Graph Theory and navigability algorithms, we find that the maritime network has dou-
bled its size in terms of the number of active ports over the studied period, but the rate
of growth of the number of edges and the declining clustering coefficient indicate that
the maritime network doesn’t necessarily become denser with time, contrary to the find-
ings of Leskovec et al. (2007) for other real-world networks. Our findings indicate that we
might observe a process of network optimization which is due to some processes specific
to the maritime industry as well as to economic and technological development. The ran-
dom walk measures which we construct and apply in this paper show that navigation in
the maritime network becomes easier with time, that is, the network’s structure starts to
privilege more efficient movements and that with time it becomes easier to reach a given
port starting from any other port of the network. Surprisingly, we find that the observed
processes begin before the widespread of containerization.
The remainder of the paper is organized as follows. The second section presents the

elaboration of the historical database after its extraction from archival documents and
the network analytical tools to be applied to the resulting graph to best unravel dynamics
of change. Main results are offered in the third section, ranging from the most com-
mon methods of complex network analysis to more advanced ones in relation to the
evolving navigability of the network. The last section discusses the results and concludes
about their usefulness to further understand the specificity of current port and maritime
transport challenges.

Elaboration of a global historical database using the Lloyd’s Shipping Index
Maritime flows of merchant vessels among ports of the world have been recorded by the
maritime insurance company Lloyd’s List since the late sixteenth century, focusing pri-
marily on the British fleet but since 1890, on any other. An in-depth review of all the
research works having used such a unique source of information concluded that it still
remains unknown to most shipping specialists (including historians, geographers, and
economists). Only a dozen references to Lloyd’s List could be identified in the entire aca-
demic literature to date, mostly to retrieve the port calls of a given ship for genealogical
purposes, to identify the location of shipwrecks for underwater archaeology, to count the
vessel calls at a given port, and to measure the time gap between call date and publication
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date to analyze the evolution of telecommunications (Ducruet et al. 2015). Given their
main focus on container shipping, most studies of maritime networks rather use carrier
schedule data provided by Containerisation International, Barry Rogliano Salles (Alpha-
liner database), or company websites, while others compile information on real-time
positioning of ships such as Automated Identification System (AIS). Data from Lloyd’s
List appear to be the world’s only possible source to map and analyze global maritime
flows back in time, i.e. prior to containerization.
Since its origin, the Lloyd’s Shipping Index reports on a daily or weekly basis the lat-

est movement of each vessel between two or more ports, including dates of departure
and arrival, tonnage capacity, operating company, flag, date of build, and additional com-
ments in the case of damage, loss, or war event. The somewhat difficult readability of the
older publications and the limitations of existing Optical Character Recognition (OCR)
software forced us to concentrate our efforts on the extraction of vessel calls by port and
inter-port link. The choice was made to extract one entire publication every five years or
so between 1890 and 2000, a couple of years before the paper version ceased to exist. From
2009 onwards, such data is only available in expensive digital format. We believe that this
period is a relevant time frame to cover the most important transitions from sail to steam,
combustion, containerization, and mega-carriers, with a good balance between the peri-
ods pre- and post-containerization. Nowadays, the Lloyd’s company insures about 80 %
of the world fleet and therefore is historically a leader on the market with a monopoly
power, centralizing most of the information on maritime transport flows.
The stability of the document structure and contents, notwithstanding a huge growth in

the number of movements, makes the 5-year snapshots comparable over time. But given
the fact that this publication was daily or weekly, extracting only one item in the entire
year inevitably created a potential bias in the representativeness of the data sample, dif-
ficult to estimate in comparison to the yearly figure. One solution has been to target the
same period for every item, namely around April, to strengthen the robustness of our
database to seasonal effects. However, the fact that we have a sample of data only from one
month in a specific season (Spring) can potentially bias the results, as traffic can exhibit
different patterns along the year, for example when goods need to be delivered before
Christmas. Moreover, the global historical database did not come out ready. Immense
efforts were put on data verification and cleaning: 10,253 place names were checked with
scrutiny taking into account regular changes in port names (e.g. Port Swettenham in
Malaysia becoming Klang or Port Klang) and exclude passage points such as straits and
channels in order to keep only commercial ports in the database. Some test of the accu-
racy of the Lloyd’s data were conducted in Ducruet et al. (2015), where, for example, the
authors confirmed that over the entire period 1890–2000, the correlation with Chinese
port tonnage was over 0.8, showing that regardless the data extraction technique and par-
tial time coverage of the data base, the extracted data are sufficiently representative for
maritime network flows. The resulting flow matrix or network is an undirected graph
encompassing 22 different years of observation and constructed to allow the application
of various tools originating from Graph Theory and Complexity Science.

Methodology
Graph Theory provides us with a powerful toolkit for the modelling and treatment of data
which exhibit pairwise relations, such as a transportation network. In the case of the data
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derived from the Lloyd’s Shipping Index, we treat each port as a node of the network, and
the edges (the connections between the ports) are added if we observe at least one move-
ment of a ship from port A to B in a given time period.We obtain in this way an undirected
and unweighted graph G = (N ,E), with the set of nodes (N) and edges (E). In this work
we do not take into account the intensity of movements among the ports; that is, each
edge in the network has a weight of 1 and contributes equally to the scores that we obtain
while performing calculations on the network. This is certainly a simplification, which
overlooks the intensity of flows, by looking only at the existing connections which we
can observe in the maritime network. As a result, busy links, such as Singapore-Shanghai
contribute to the the network in the same way as the links at which we observed only one
movement during the studied period. This simplification is not harmful if one wants to
study just the topological properties of the network, as it is the case in the present paper,
and not necessarily the intensity of flows or congestion effects. For the studies of flows
per se, weighting by tonnage or number of calls seems to be a necessity. As previously
discussed, we only have a portion of data every 5 years, covering only a part of the yearly
movements of the world fleet. However, they do provide a reasonable overview of the
most important connections and ports, and they do keep track of the networks evolution
over time.

Topological measures used to analyze the network’s evolution

In the first part of our analysis we use the classical network measures in order to
describe topological properties of the maritime trade network derived from the Lloyd’s
Shipping Index publications. The different network measures, which will be further
discussed, allow us to draw conclusions about the structure of connections between
the ports of the world maritime network and about its evolution over time. In this
work our goal is to investigate the structure of the maritime trade network and to
see how it relates to its efficiency. Understanding the underlying structural proper-
ties of the network is the first step to future research and modelling of the maritime
network evolution, which in turn can be useful for simulations of its future devel-
opments. Thanks to the availability of data from different moments in time, we can
constructs snapshots of the maritime trade network every 5 years, and therefore fol-
low some global measures to see what evolutionary processes can be observed in
this network. For a comprehensive overview of different network measures consult
Newman (2010).
The first and the most classic network measure which is largely used to characterize

both node’s centrality and global network evolution is the node degree. This measure cor-
responds to the number of neighbors each individual node has in the network and can be
explained intuitively as the number of unique ”trading partners” of a given port in a given
time period. In this paper we will focus on the average degree, as it is a measure of the
density of the network and of the proportional increase of the number of sea connections
(edges) with the number of ports (nodes).
The second and the third network measures which we use are the average shortest path

length and the effective diameter. The first can be defined as the average of all topologi-
cal distances between all pairs of nodes present in G along the shortest paths, while the
diameter is the longest shortest path of the network. Formally, the average shortest path
can be expressed as
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SG = 1
n(n − 1)

∑

i�=j
d(ni, nj)

Where d(ni, nj) is the topological distance between a pair of two nodes and it means
the number of “hops” between two nodes of the network. Both the average shortest path
length and the diameter rely on topological distance between the pairs of ports, which
can be a proxy for the speed of delivery of goods that are being shipped around the net-
work. The shorter the average shortest path is, the faster (at least, in topological sense) the
goods can arrive to their final destination. Following the steps of Leskovec et al. (2007),
we compute the effective diameter, taking into account the 0.9th percentile distance in the
network in order to avoid noise which often appears in the measurement of the diam-
eter, and to to ensure comparability between our studies and those of the evolution of
other real world networks. In order to calculate the effective diameter it was necessary
to compute the shortest paths between all pairs of nodes and to plot a cumulative den-
sity function of the distances. We then took the 0.9th percentile to define the effective
diameter. Both measures are calculated at the global level.
The last global classic measure borrowed directly from Graph Theory is the cluster-

ing coefficient, which tells us how dense the network is and captures the probability with
which the neighbors of ni are also connected to one another. The clustering coefficient can
be defined as the ratio of the number of edges present in the node’s direct neighborhood
over the number of all potential edges in this neighborhood. Formally,

Ci = 2ei
ki(ki − 1)

where k stands for the number of nodes in the neighborhood, ei stand for the edges
present in the neighborhood of ni Just like discussed above, the nominator stands for
the number of edges present in the neighborhood (multiplied by two, because this is an
undirected graph), and the denominator captures the number of all possible edges which
could exist in this neighborhood. We use average clustering coefficient in order to get
a global measure which enables us to describe the network as a whole in one number
per time period. This measure, combined with others, enables us to draw conclusions
about the density of the network and its organization. It allows us to see if the network
tends to evolve towards a more hub-and-spoke model, where shipping companies rely on
transhipment rather than on direct links between all ports.
Turning towards local measures, we calculate the closeness centralitywhich captures the

number of hops from a node to any other node in a network. In other words, it measures
the topological distance from ni to all other nodes in a network along the shortest paths.
The higher the closeness centrality, the easier it is to get to other nodes of the network, as
closeness centrality is the inverse of the sum of topological distances, formally

Cc(ni) = 1∑
j d(ni, nj)

Where d stands for topological distance.
Closeness centrality is really important from the point of view of individual ports, as it

delivers us information about the time of delivery of goods from the port of interest to
any other port in the network. The more central the port is, the shorter the route taken by
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good shipped from this port will be, which can be a proxy for costs. However, closeness
does not take into account the overall efficiency of the network, as it favors direct links
rather than transshipment.
Another well-known centrality measure which we use is the betweenness centrality,

which tells us if the node lays on a crossroads of many routes in the network, there-
fore occupying a priviledged position of a so-called ”middle man”, or a hub, where the
goods are transshiped. Formally, the betweenness centrality corresponds to the propor-
tion of the shortest paths passing through ni to the number of all the shortest paths in the
network between all pairs of nodes. Formally,

Cb =
∑

s,t∈N

σst(ni)
σst

where σst(ni) is the number of shortest paths passing through the node and σst is the
number of shortest paths between all pairs of nodes.

Randomwalk measures - locally computable centrality metrics

In the second part of our analyses we run algorithms on the network to measure its
navigability. In a way, we leave the concept of a static network in order to analyse the
potential flows on the underlying structure, metaphorically treating the network as a sort
of preexisting infrastructure, like rail or pipelines. Navigability is a crucial concept in any
transportation network (De Domenico et al. (2014), Gulyás (2015)). Intuitively it captures
the ease with which one can travel from any point A to B in a network, which is of huge
importance when the delivery times and efficient route planning are of essence, as it is
in the maritime network. The algorithmic measures, which we propose in this paper, tell
us how easy it is to move around the network, and also which nodes are the privileged
ones, meaning that if we start a walk at that node, we will be able to visit many other
nodes. Our aim is to see how the navigability of the maritime network changed over time
together with the underlying topological structure.Wewould like to know if globalization,
new technologies (like containerization) have pushed the network towards an optimal,
more navigable organization. According to de Domenico et al. (2014) random walks are a
good proxy to determine networks navigability, as they capture the dynamic functionality
of the network. However, the classical random walk measures which attract substantial
attention in the literatue (Lovasz 1996) are usually global and require time consuming
computations, which depend on the size of the network. The best known examples of
such measures are the cover time, which gives us the number of steps necessary to visit
all the nodes in the network, mixing time, which gives us the number of steps that the
random walker needs to perform to get lost in the graph, or the hitting time, which tells
us how many steps will be needed before the random walker reaches the node of inter-
est. Short random walks present an interesting, yet not that popular alternative to these
global measures, especially provided that they can give us interesting information about
the neighbourhood structure of the network and are computable locally, which reduces
time complexity of such operations.
In the present paper we propose a random walk discovery measure, which tells us how

many unique nodes can be visited, if a walker (say, a ship) moving randomly around the
network, starts at node ni and performs 100 steps. The question we ask here is: howmany
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nodes are discovered in T steps of a random walk? By knowing the properties of short
random walks on graphs, we know that some specific topological structures enable better
scores than others. In a good case, when the graph looks locally like a tree with nodes of
degree equal to at least 3, the number of nodes discovered will be close to T. However, in
a bad case, which is a line, the number of nodes discovered will be roughly equal to

√
T .

The theoretical lower bound is 3√T nodes discovered in T steps in any network (Barnes
and Feige 1993). In practice, this means that a higher degree of the node or of nodes in its
neighborhood leads to better discovery rates. Secondly, in clustered networks, better dis-
covery rate is observed when communities are strongly interconnected. The more nodes
are visited by the random walker, the better the position of the node in the network from
the point of view navigability. We iterate the random walk discovery algorithm 100 times
for each node of the network and take the average as final score in order to avoid statistical
biases. The choice of a proper leght of the random walk is important, however, in order
to be able to study the local neighborhood of nodes it is necessary and enough to make
sure that the chosen number of steps is not too large and that it is smaller than the mixing
time in the graph in question, because once the limit of the mixing time is exceeded, our
measure will be insensitive to the starting node. The mixing time in for example expander
graphs is of the order log(N), where N is the total number of nodes in the graph. The
algorithm written in pseudocode can be found in the Appendix.
The second algorithmic measure which we use is the escape difficulty. In this algorithm

we ask the walker to start her random walk at node ni and we count how many steps
she had to make in order to be at least 4 hops away from ni. More formally speaking, we
want to see how many steps need to be performed by the mobile agent moving randomly
around the network to escape the 3-neighborhood of ni. The considered measure cor-
responds precisely to the hitting time of the node outside of the 3-neighborhood of the
starting node in the considered graph. It may be represented as the hitting time from the
staring node ni to the special node v in the graph obtained from our network by merging
all nodes outside of the 3-neighborhood of ni into a single node. The hitting time is a basic
and well studied randomwalk parameter on graphs (Lovasz 1996).We remark that a sym-
metrized version of the hitting time between a pair of nodes, known as the commute time,
describes the electrical resistance between this pair of nodes (Tetali 1991). Thus our mea-
sure reflects the electrical flow between the node ni and the outside of its 3-neighborhood.
Electrical flows are in turn related to the maximal flow problem (Christiano et al. (2011)),
under an appropriare weighting of links. Same as in the case of the random walk dis-
covery, we iterate the algorithm 100 times and then take the average in order to obtain
the final score. The escape difficulty measure will provide us with information about the
direct neighborhood of the node. If the score is high we can conclude that it is plausible
that the node lies in a small, highly connected cluster with few links to the outside world.
If the score is low, it means that it is easy for the mobile agent to escape the 3-neighorhood
and that node must lie on bridge between clusters. The algorithm written in pseudocode
can be found in the Appendix.

Results
By analyzing the results obtained for the database covering a portion of movements of
ships during the period 1890–2000 we can say that the maritime network has changed its
structure over time by quite a bit.
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The size of the maritime network

First of all, the network has substantially increased its size between 1890 and 2000. Note
that we take into account only the active ports, that is the ones which either received or
sent at least one ship in a given time period. In Fig. 1 we have reported the fluctuations
in the number of active ports over the years. We observe a growth of the network which
almost doubles its number of nodes between 1890 and 2000. We also see that this growth
is rather steady over time. In the year 1890 we have 1011 ports that were active during
the period of data collection, while in 2000 this number goes up to 1944 active ports. This
constant increase in the number of active ports can be explained with progressive glob-
alization and strengthen international trade, as well as the development of global supply
chains.
In terms of the number of existing connections, we see that their number grows as well,

and that the increase of the number of edges is not much faster than the growth of the
number of nodes (Fig. 2). This indicates that while the network grows, it evolves towards
its specific structure.
There exist models, especially the well-known Preferential Attachment, which predict

that the increase in the number of edges should be linear in the number of nodes, which
means that the average degree should not change over time. By observing the average
degree computed for each time period in the studied maritime network, we find it to be
equal to 11.6 in 1890 and then to grow slowly with some fluctuations until 1930 when we
observe a drop, and then in 1951 it goes up again to reach its peak in 1990 (16.9), only to
drop dramatically in the 2000 to a value similar to that from 1890. In the year 2000 the
average degree is equal to 11.9, only by 0.3 higher than in 1890, with twice as many active
ports (Fig. 3). Provided that the scores for average degree are the same at the beginning
and the end of the studied period, we cannot exclude the possibility that the network
evolved accordingly to some version of the Preferential Attachment model, which could
potentially take into account the question of geographical distance between ports.

Evolving topology

The considerations of the average network degree from the previous subsection are espe-
cially interesting when compared to the existing literature on network densification.
Leskovec at al. (2007) study the evolution of a number of real world networks, such as
the scientific paper citation network, network of actors, email network etc. and find that

Fig. 1 Number of active ports (1890–2000)
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Fig. 2 Number of active sea connections (1890–2000)

the number of edges always grows super-linearly with respect to the number of nodes.
This effect of growth of the average degree in real world networks is puzzling, because it
contradicts Preferential Attachment model (Barabási and Albert 1999) which predicts a
perfectly linear increase of the number of edges with the number of nodes. One example
of a real world network which is close to the linearity of growth is the road network in the
Milan region (Strano et al. 2012). The network which they study exhibits a rather constant
average degree over time, with only a very slight increase of the order of 0.2, this however
can be due to the nature of the road network, which is planar, which means that it can be
drawn on a sphere in such a way that no links will overlap or cross. This property leads to
important consequences for the network structure, because the maximal degree of nodes
in constrained by space. In the case of road network nodes are defined as road junctions,
therefore it is hard to expect many nodes of degree more than 10 and large variations in
the average degree over time. The maritime network, like the road network, is a spatial
and transportation network, but with one major difference — it is not planar. Therefore,
the maritime network does not suffer from the “natural” limitation of the maximal num-
ber of neighbors, as each port can develop as many connections with as many ports as
it wishes to. In the case of the maritime network we seem to observe an unusual effect
where first the number of edges grows super-linearly, but at the end of the sample goes
back to its initial level.

Fig. 3 Average node degree (1890–2000)
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Another major difference between the maritime network and the findings of Leskovec
et al. (2007), is that the maritime network exhibits a constant effective diameter equal to
4 over the entire period, so we do not observe the phenomenon of shrinking diameter
which Leskovec et al. (2007) find for all the networks studied by them. It seems that the
maritime trade network is a network of unique evolutionary properties, which have not
been yet observed in other real world networks, that, surprisingly, shared many common
evolutionary traits. These findings place the maritime network at a hot spot for studies
of the evolution of the real-world networks in complexity science, because it creates a
need for better understanding of its evolution and a need for a potentially completely new
model of network growth.
In order to deepen our understanding of the evolution and densification of themaritime

network we have calculated the average clustering coefficient for each time period (the
results are presented in Fig. 4). We find that the average clustering coefficient decreases
steadily over the period between 1940 and 2000, which indicates a change in the network
structure. Perhaps we cannot go as far as to say that we observe network sparsification,
but, especially by looking at the clustering coefficient, we can say that we observe a reor-
ganization of the network, and that it becomes less clustered with time, which supports
the hypothesis that the network develops into a more hub-and-spoke structure. We also
find that the clustering starts to fall in 1940, that is long before the widespread of con-
tainerization, which would be the usual suspect for the cause of network optimization,
understood as a tradeoff between network’s navigability and maintenance cost. This net-
work optimization process can be noticed also in the behavior of the average shortest path
length. The results of the average shortest path are reported in Fig. 5, where we can see
that the average topological distance between each pair of nodes is small, around 3 for the
entire period under study. It increases over the time period, but only very slightly, passing
from 2.88 to 3.23, even though the size of network increases tremendously.

Network centralization

Let us turn towards the measures on the local level. First we look at the degree distribu-
tion in each time period, then we compute the gini coefficient in order to see the level
of inequalities in our network. We have calculated the gini coefficient for all the nodes

Fig. 4 Average clustering of the maritime network (1890–2000)



Kosowska-Stamirowska et al. Journal of Shipping and Trade  (2016) 1:10 Page 12 of 17

Fig. 5 Average shortest path lenght (1890–2000)

in the network and the top 100 nodes in order to check for potential hierarchical struc-
ture. The results are reported in Fig. 6. We find that the inequalities in degree are much
smaller among the top 100 nodes than for the entire network, as it oscillates around 0.3
for the top 100 and around 0.7 for the whole network. A similar pattern can be found by
looking at the gini coefficient of betweenness, where we find that the distribution for the
entire network is really unequal, whereas the scores for top 100 nodes are much more
equal (Fig. 7). These findings indicate that the network has some well-connected nodes
which span the network and which are rather equal among each other, while we observe
significant inequalities in the network as a whole, indicating that apart from the top 100
nodes, there must be numerous not so well-connected ports which create links to those of
higher degree. These findings would go in favor of the hypothesis that the network devel-
ops towards a more hub and spoke structure, favouring efficient transshipment, which is
already indicated by the results of the average clustering coefficient.
We have applied the same methodology to analyze the individual scores of closeness

centrality and we report the results in Fig. 8. We find that the distribution of closeness
scores is very equal, as it is close to 0. We still find that the closeness distribution for the
top 100 ports is almost perfectly equal, while the inequalities in the entire network are
relatively larger, but these differences are really small.

Fig. 6 Gini coefficient of degree for Top 100 ports and for the entire network (1890–2000)
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Fig. 7 Gini coefficient of the betweenness centrality scores for Top 100 ports and for the entire network
(1890–2000)

Network’s navigability

In order to measure the navigability of the maritime network we have created the random
walk discovery measure, which tells us how many unique nodes are visited by a walker on
the network in a random walk starting from a node ni. Each time the walker performed
100 steps and the procedure has been repeated for each node 100 times. We constructed
the individual scores by taking the average of all iterations. We then took the average of
all individual scores and reported them in Fig. 9. We find that the average number of
unique nodes visited in a single walk increases over time, indicating an increase in the
network’s navigability. In general we observe a clear upward trend in the average random
walk discovery starting from 1900, which becomes even more visible starting from 1946 -
long before containerization has even begun. However, we do observe some drops in 1920,
1946, and, most surprisingly in the year 2000, when the drop is the largest in the whole
period under study. The last drop is especially puzzling, because the beginning of the 21st
century is known to be the period of increased globalization and increased optimization
performed by maritime operators. It is possible that the effect which we observe in the
year 2000 is due to the limited amount of data which has been used for this study, or is
linked to the fact that since the year 2000 we started to observe an important trend in ship

Fig. 8 Gini coefficient of closeness centrality scores for Top 100 ports and for the entire network (1890–2000)
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Fig. 9 Average randomwalk discovery (1890–2000)

upscaling, which has led to exclusion of smaller ports that were unable to handle such
large vessels. If the studies of the fuller dataset confirm that the average random walk
discovery started to deteriorate in the 21st century, we would have a really interesting
phenomenon to explain.
Another measure of navigability which we propose in this paper is the escape diffi-

culty, where we check how many steps need to be performed by a random walker to
leave the 3-neighborhood of ni. In theory, it is most difficult for the walker to leave the
3-neighborhood if ni is located in a small clique or dense subnetwork with few links to
the rest of the network. Such network structure would correspond to a very regionalized
world, where ports tend to develop connections mostly with their neighbors. If the score
of the escape difficulty is low, we can suspect that the node lies in a sparse and highly con-
nected neighborhood (formally, in a part of the graphwith good expansion), such as a tree,
or a forest, rather than a collection of weakly connected clusters. This would also be the
case for a network with hub-and-spoke structure. Indeed, this is what we find by launch-
ing the escape difficulty procedure for each node of the maritime network and by taking
the average of all the scores (just as in the case of random walk discovery, we iterate the
algorithm 100 times for each node). The results are reported in Fig. 10, where we observe
a downward-sloping trend in the average escape difficulty, whose values become smaller

Fig. 10 Average number of steps needed to escape the 3-neigborhood (1890–2000)
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with time, passing from 8.37 to 5.93 between 1890 and 2000. However, it goes through
rather large variations, especially the peak between 1925 and 1930, when the value of the
average escape difficulty was over 11, so we cannot claim that the trend is very clear.

Conclusion
In the present paper we have constructed a network of maritime connections thanks to
the data extracted from the Lloyd’s Shipping Index, a database containing information
on daily movements of ships of almost the entire world fleet. Our data cover the years
between 1890 until 2000, where we have information about the movements of ships dur-
ing at least 2 weeks in regular intervals of 5 years. This data enabled us to construct
snapshots of the network of sea connections at different moments in time and to follow
its evolution. Most of the existing studies of real world networks focus on the static net-
works due to scarcity of quality data. One of the few examples of such studies is the work
by Leskovec et al. (2007) who find that real world networks tend to follow two laws, that is
densification and shrinking diameters. Our work proposes a dynamic view on a real world
and truly global network. In particular, we find that the maritime network doesn’t neces-
sarily densify with time and that its effective diameter remains constant over the period
of a century, even though during this period the size (number of nodes) of the network
doubles. In the case of the maritime network we seem to observe a strange phenomenon
of network optimization, which begins long before the widespread of containerization,
and exhibits itself in the decreasing clustering coefficient and increasing navigability. The
maritime network tends to be also quite unequal, having the top ports creating a sort of a
“rich club”, which again, together with global networkmeasures, suggests that the network
structure tends to evolve towards a hub-and-spoke structure. Moreover, we construct two
new algorithmic measures of network’s navigability which are based on the random walk
procedure. The random walk discovery measures the ease of exploration of a network in
a given number of steps, while the escape difficulty tells us how hard is it to leave a 3-
neighborhood of a given node, and therefore provides us with valuable insights about the
global network structure. Similar studies need to be conducted on a fuller data sample in
order to confirm the observed trends and check for possible seasonal effects. It would be
certainly interesting to study the peaks and the falls of the network measures which seem
to align with some well-known events from the world history, such as the Great Depres-
sion and the 2nd World War. At this stage of research we are unable to isolate the effects
of precise events on the network structure in such a way that we could establish a causal
relationship. Such studies would require data of much finner density than just 5 years and
potentially external control variables to isolate the precise effects. All of which we leave
for future research.

Appendix

Algorithm 1 RandomWalk Discovery
1. Starting at node ni, repeat 100 times:

• Pick a neighbor of the current node uniformly at random.
• Move to that neighbor.

2. Return the number of distinct nodes visited during the 100 steps of the walk.



Kosowska-Stamirowska et al. Journal of Shipping and Trade  (2016) 1:10 Page 16 of 17

Algorithm 2 Escape difficulty
1. Starting at node ni, repeat:

• Pick a neighbor of the current node uniformly at random.
• Move to that neighbor.

until the distance of the current node from ni is more than 3.
2. Return the number of performed steps of the walk.
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