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Abstract

Additional food for predators has been considered as one of the best established techniques in integrated

pest management and biological conservation programs. In natural systems, there are several other

factors, e.g., prey refuge, affect the success of pest control. In this paper, we analyze a predator-prey

system with prey refuge and additional food for predator apart from the focal prey in the presence of

diffusion. Our main aim is to study the interactive effects of prey refuge and additional food on the

system dynamics and especially on the controllability of prey (pest). Different types of Turing patterns

such as stripes, spots, holes, and mixtures of them are obtained. It is found that the supply of additional

food to the predator is unable to control the prey (pest) population when prey refuge is high. Moreover,

when both prey refuge and additional food are low, spatial distribution of prey becomes complex and

once again prey control becomes complex difficult. However, the joint effect of reduction in prey refuge

and the presence of appropriate amount of additional food can control prey (pest) population from the

system.

Keywords: Prey refuge; additional food; reaction-diffusion; Turing instability; pattern formation; pest

control

1. Introduction

Predator-prey systems have continuously drawn interest among mathematical biologists due to the

variety of complex biological processes (May, 1974; Hassel, 1978; Anderson and May, 1979; Hastings and

Powell, 1991; Turchin, 2003). The importance of studying predator-prey systems lies in gaining insight

into the complex processes and solve ecological problems, e.g., the control of populations of economically

damaging species, particularly of agricultural weed and insect pests. Various biological factors such as

infection/disease (Chattopadhyay and Arino, 1999), predation (Roy and Chattopadhyay, 2005), migra-

tion (Chowdhury et al., 2010), group defense (Venturino and Petrovskii, 2013), mutualism (Boucher,

1988), cannibalism (Chakraborty and Chattopadhyay, 2011), omnivory (McCann and Hastings, 1997),

Allee effects (Allee, 1931), alternative and additional food for the predator (Murdoch, 1969; Chakraborty

and Chattopadhyay, 2008), etc., alter the dynamical behavior of the prey-predator interaction processes.

Among them, prey refuge and additional food are the most common factors observed in almost every

ecosystem. In real life situations, these factors can act together and the resultant dynamics become very

complex.
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In predator-prey systems, the prey population shows a variety of different defense mechanisms to

escape from predation(Baldwin, 1996; Chakraborty et al., 2012). Among them, behavioral changes

like migration and/or refuge are most common in literature (Gonzalez-Olivares and Ramos-Jiliberto,

2003; Abrams, 2008) and this hiding behavior of prey has become a major issue in theoretical ecology

(Zhuang and Wen, 2011). Generally, refuge means any strategy which decreases the rate of predation

by a predator (Anderson, 2001). Some of the empirical and theoretical studies have shown a stabilizing

effect of prey refuge on the system dynamics and protects prey from extinction (Taylor, 1984). For

example, Connell (1970) found that spatial refuge shown by barnacle Balanus Glandula in the higher

intertidal stabilizes its interaction with the predatory snails Thais. However, the effects of prey refuge on

population dynamics are very complex. From a modeling point of view, prey refuge can be considered as

constituted by two components. Firstly, a reduction in prey mortality due to decline in predation success

affects positively the growth of prey and negatively that of predators. Secondly, the hiding behavior of

prey could be beneficial or harmful for the interacting populations (Wang and Wang, 2012). Although,

prey refuge is known to have stabilizing effects on system dynamics, predator-prey interactions can also

be destabilized and the predator population may extinct from the system as predators suffer from lower

predation success if the size of the refuge class becomes large. In spatial scale, the dynamics of a local

population largely depend upon attributes of the local habitats (Johnson, 2006).

Under resource limitation, predators may deviate from their usual diet and exhibit some inclination

towards the alternative prey to prolong their survivability. In contrast, the additional food always

provides benefits to predator population and helps them to persist in the system. The effects of additional

food to the predator and its usefulness in biological control have been studied by several researchers

(Spencer and Collie, 1995). Many of the literatures addressing biological control consider prey as pest

population and aim to control and eradicate the pest population (i.e. prey) through predation by

providing additional food to the predator. Such type of models predict that providing additional prey

increases predator population together with the predation on target prey, thus helps to decrease the

abundance of the target prey population. Both theoretical and experimental works point out that the

quality and quantity of additional food play a vital role in the controllability of the pest (Srinivasu

and Prasad, 2011). Moreover, handling time for the additional food also plays an important role in

determining the eventual state of the ecosystem (Srinivasu et al., 2007).

Predator-prey interactions generally occur over a wide range of spatial and temporal scales and the

spatial components of ecological interactions play an important role in shaping ecological communities.

In this respect, spatial patterns are ubiquitous in nature and often change the temporal dynamics of

the system (Chakraborty, 2015; Chakraborty et al., 2015, and references therein). Pattern formation

in spatial models has been investigated continuously and become a central issue to modelers since the

pioneering work of Turing (1952). Till now, there are only few studies investigating the role of prey refuge

(Guin et al., 2015; Wang and Wang, 2012) and additional food for predator (Kumar and Chakrabarty,

2015), separately, in simple predator-prey systems affecting spatial distribution of predator and prey

populations. However, since both prey refuge and additional food for predators are simultaneously

present in most of the ecological systems, it would be interesting to see how their combined effect affects

the spatial dynamics of predator-prey systems.

To the best of our knowledge, this is the first work considering the spatial dynamics of prey and

predator with prey refuge and additional food to the predators. Here, it is assumed that a constant

portion of the prey population is taking refuge and the remaining portion is exposed to prediction.

Moreover, the additional food is not dynamic but maintained at a specific constant level either by the

nature or by an external agency. The non spatial version of our model is very close to the model by

Samanta et al. (2016). The present model is made more realistic by considering predator interference
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and spatial heterogeneity of populations. Here, our aim is to investigate the interactive effects of prey

refuge and additional food for predator on the spatial dynamics of the system. The paper is organized

as follows: in section 2, we have discussed our model. Section 3 contains the proof of boundedness

and positivity of the solution. Also, the existence and stability conditions of interior equilibrium are

investigated in this section. In the next section (section 4), we analyze the stability of the spatial version

of the model. We validate our findings numerically and have shown the formation of different patterns

w.r.t. prey refuge and additional food in section 5. The paper ends with a discussion.

2. Basic model structure

Let N be the density of prey and P be the density of predator at any time t > 0. In the absence

of predation, the prey population follows the logistic growth with an intrinsic growth rate r and envi-

ronmental carrying capacity K. The interaction between prey and predator population is assumed to

be of modified Beddington type. The prey population is assumed to take refuge, which provides them

a degree of protection from predator population. We consider that there exists a fraction mN of prey

population that occupies a refuge. The predator population is supposed to be provided with additional

food of biomass A, which is assumed to be distributed uniformly in the habitat. The additional food

is non-reproducing and is supplied at a constant rate and the number of encounters per predator with

additional food is proportional to the density of additional food. The consumption of additional food

also reduces the consumption of the prey population. The density of predator population decreases due

to natural death at a constant rate γ. If we consider the diffusion of prey and predator populations

together with the above assumptions, then we have the following reaction-diffusion system:

∂N
∂t = rN

(
1− N

K

)
− β(1−m)NP

K1+δ(1−m)N+αηA+θP +DN∇2N,

∂P
∂t = c[β(1−m)N+ηA]P

K1+δ(1−m)N+αηA+θP − γP +DP∇2P,

(2.1)

where ∇2 ≡ ∂2/∂x2 + ∂2/∂y2 is the usual Laplacian Operator in two dimensional space; DN , DP are

the self-diffusion coefficients for prey and predator, respectively, describing the movement of individuals

from a higher to lower concentration region. We assume that the system parameters do not depend on

space or time, that is, the environment is uniform. Let h1 and e1 be two constants representing handling

time of the predator per prey item and ability of the predator to detect the prey, then β = 1/h1 and

K1 = 1/e1h1 represent the maximum rate of predation and half saturation value of prey uptake by the

predator, respectively. Let h2 and e2, respectively, be the handling time of the predator per unit quantity

of additional food and ability for the predator to detect the additional food. Let us define η = e2/e1 and

α = h2/h1. The term ηA designates effectual additional food level and the constant θ scales the impact

of predator interference. The description of the parameters in the model system (2.1) is given in detail

in Table 1.

Let Ω be the two-dimensional bounded connected square domain. Model (2.1) is to be analyzed

under the following non-zero initial condition and zero-flux (or Neumann) boundary conditions:

N(x, y, 0) > 0, P (x, y, 0) > 0, (x, y) ∈ Ω = [0, R]× [0, R],

∂N
∂n̂ = ∂P

∂n̂ = 0, (x, y) ∈ ∂Ω.

In the above, n̂ is the outward unit normal vector of the boundary ∂Ω which we assume is smooth.

The main reason for choosing such boundary conditions is that we are interested in the self-organization

of pattern; zero-flux conditions imply no external input.
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3. Mathematical analysis of the non-spatial model

In this section, we restrict ourselves to the stability analysis of non-spatial model (2.1), where only

the interaction part of the model system is taken into account. We find the non-negative equilibrium

states of the model system and discuss their stability properties.

3.1. Boundedness of positive solution:

The solutions of model (2.1) always exist and stay positive. In fact, from the first equation of (2.1),

we can get:
dN

dt
≤ rN

(
1− N

K

)
.

Then by a standard comparison theorem it can be shown that

lim
t→∞

supN(t) ≤ K.

As a result, for any ε > 0, there exists a T > 0, such that N(t) ≤ K+ ε for t > T . Then from the second

equation of (2.1), we obtain:

dP
dt ≤

[
c[β(1−m)(K+ε)+ηA]

K1+δ(1−m)(K+ε)+αηA+θP − γ
]
P.

Since ε is arbitrary, we have

lim
t→∞

supP (t) ≤ (1−m)K(cβ − γδ) + ηA(1− αγ)−K1γ

θγ
.

Therefore, we get the following theorem.

Theorem 3.1. All non-negative solutions of model (2.1) that start in R2
+ are uniformly bounded.

Important note: It is to be noted that in the absence of refuge (i.e., m = 0), and/or in the absence

of additional food (i.e., A = 0), the boundedness of the solution is similar to the results as in Theorem

3.1. That is, the solutions of the model without the above factors (single or multiple), always exist and

stay positive, and all the non-negative solutions that start in R2
+ are uniformly bounded.

3.2. Equilibrium analysis

The model system (2.1) has four non-negative equilibria, which are listed as follows:

(i) E0(0, 0), which is always feasible.

(ii) E1(K, 0), which is always feasible.

(iii) E2(0, P2), where P2 =
cηA− γ(K1 + αηA)

θγ
, which is feasible if

cηA− γ(K1 + αηA) > 0. (3.1)

(iv) E∗(N∗, P ∗), where P ∗ =
(1−m)(cβ − γδ)N∗ + cηA− γ(K1 + αηA)

γθ
and N∗ is the positive root

of the following quadratic equation:

a0N
2 + a1N + a2 = 0, (3.2)
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where

a0 = rcθβ(1−m), a1 = rcθηA+ βK(1−m)2(cβ − γδ)− rcθKβ(1−m),

a2 = βK(1−m)[cηA− γ(K1 + αηA)]− rcθηAK.

Equation (3.2) has exactly one positive root if a2 < 0.

3.3. Stability analysis

The eigenvalues of the Jacobian matrix of the model system (2.1) evaluated at the equilibrium E0

are r and
cηA

K1 + αηA
− γ. Thus, the equilibrium E0 is always unstable.

The eigenvalues of the Jacobian matrix of the model system (2.1) evaluated at the equilibrium E1 are

−r and
(1−m)(cβ − γδ)K + cηA− γ(K1 + αηA)

K1 + δ(1−m)K + αηA
. Thus, the equilibrium E1 is stable if the following

condition is satisfied:

(1−m)(cβ − γδ)K + cηA− γ(K1 + αηA) < 0.

The eigenvalues of the Jacobian matrix of the model system (2.1) evaluated at the equilibrium E2 are

r − β(1−m)[cηA− γ(K1 + αηA)]

cθηA
and − γ[cηA− γ(K1 + αηA)]

cηA
.

Thus, the equilibrium E2 if exists is stable provided the following condition is satisfied:

rcθηA− β(1−m)[cηA− γ(K1 + αηA)] < 0.

The Jacobian matrix corresponding to the interior equilibrium E∗ of the model system (2.1) can be

written as:

J
∣∣∣
E∗

=

[
a11 a12
a21 a22

]
where

a11 = −
(
r

K
− βδ(1−m)2P ∗

[K1 + δ(1−m)N∗ + αηA+ θP ∗]2

)
N∗, a12 = −β(1−m)N∗[K1 + δ(1−m)N∗ + αηA]

[K1 + δ(1−m)N∗ + αηA+ θP ∗]2
,

a21 =
c(1−m)P ∗[β(K1 + αηA+ θP ∗)− δηA]

[K1 + δ(1−m)N∗ + αηA+ θP ∗]2
, a22 = − cθP ∗[β(1−m)N∗ + ηA]

[K1 + δ(1−m)N∗ + αηA+ θP ∗]2
.

The corresponding characteristic equation of J is

λ2 +Aλ+B = 0, (3.3)

where A = −(a11 + a22), B = a11a22 − a12a21. Now, using the Routh-Hurwitz criterion together with

the above equation, we have the following theorem:

Theorem 3.2. The equilibrium point E∗ is locally asymptotically stable iff A > 0 and B > 0.

Since from the biological point of view the interior equilibrium E∗ is the most important one, we

have studied the stability behavior of the equilibrium E∗ in detail.
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3.4. Hopf-bifurcation analysis

In this section, we investigate the possibility of Hopf-bifurcation of interior equilibrium E∗ by taking

the prey refuge parameter, m, as bifurcation parameter and keeping the other parameters fixed. To

determine the nature of the equilibrium E∗ we require the sign of the real parts of the roots of the

characteristic equation

λ2 +Aλ+B = 0. (3.4)

Let λ(m) = u(m) + iv(m) be the eigenvalues of the characteristic equation (3.4). Substituting this value

in equation (3.4) and separating real and imaginary parts, we get

u2 − v2 +Au+B = 0, (3.5)

2uv +Av = 0. (3.6)

A necessary condition for the change of stability of the equilibrium E∗ is that the characteristic equation

(3.4) should have purely imaginary roots. We set m = mc such that u(mc) = 0 and put u = 0 in (3.5)

and (3.6). Then we have

−v2 +B = 0, (3.7)

Av = 0, v 6= 0. (3.8)

From equations (3.7) and (3.8), we have A(mc) = 0 and v(mc) =
√
B(mc), which implies λ(mc) =

i
√
B(mc).

Theorem 3.3. The necessary and sufficient conditions for the occurrence of Hopf-bifurcation from the
equilibrium E∗ is that there exists m = mc such that

(a) A(mc) = 0,

(b)

[
dRe(λ(m))

dm

]
m=mc

6= 0.

Proof: The eigenvalues of the characteristic equation (3.3) are λ1,2 =
−A±

√
A2 − 4B

2
. Here, A and

B are the functions of the parameter m, when other parameter values are fixed. Moreover, we assume

that there exists some m = mc such that A(mc) = 0 and B(mc) > 0. Therefore, the positive real parts

of these eigenvalues change the sign when m passes through mc. Subsequently, the system switches its

stability provided that the transversality condition is satisfied.

Differentiating equations (3.5) and (3.6) w.r.t. m and put u = 0, we have

A
du

dm
− 2v

dv

dm
= −dB

dm
,

2v
dv u

dm
+A

dv

dm
= −v dA

dm
.

Solving the above system of equations, we have[
dRe(λ(m))

dm

]
m=mc

= −

[
2v2 dAdm +A dB

dm

A2 + 4v2

]
m=mc

6= 0

provided

[
2v2

dA

dm
+A

dB

dm

]
m=mc

6= 0. This completes the proof of the theorem.
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4. Stability analysis of the spatial model

In this section, we will focus on the effect of diffusion on the model system (2.1) about the positive

equilibrium point. Specifically, we are interested in investigating the Turing instability of the system

where the uniform steady state of the system without diffusion is stable, but it is unstable in the partial

differential equations with diffusion terms. Turing’s revolutionary idea was that passive diffusion could

interact with the chemical reaction in such a way that even if the reaction by itself has no symmetry-

breaking capabilities, diffusion can destabilize the symmetry so that the system with diffusion can have

them (Turing, 1952). To study this, first we consider the linearized form of system (2.1) about the

equilibrium E∗(N∗, P ∗) as follows:

∂n

∂t
= a11n+ a12p+DN

(
∂2n

∂x2
+
∂2n

∂y2

)
,

∂p

∂t
= a21n+ a22p+DP

(
∂2p

∂x2
+
∂2p

∂y2

)
, (4.1)

where N = N∗ + n, P = P ∗ + p. Here, (n, p) are small perturbation of (N,P ) about the interior

equilibrium point E∗(N∗, P ∗). Let us consider the solution of system (4.1) in the form(
n

p

)
=

(
nk
pk

)
eξt+i(κxx+κyy)

where ξ is the growth rate of perturbation in time t, κx and κy represent the wave numbers of the

solutions. The Jacobian matrix of the linearized system can be written as:

J̃ =

(
a11 −DN (κ2x + κ2y) a12

a21 a22 −DP (κ2x + κ2y)

)
.

In the spatial model, the value of ξ depends on the sum of the square of wave numbers κ2x + κ2y
(Baurmann, 2004). As a result, both wave numbers affect the eigenvalues. This makes it clear that

some Fourier modes will vanish in the long-term limit whereas others will amplify. For the sake of

simplicity, we can make use of ξ being rotational symmetric function on the κxκy − plane and substitute

κ2 = κ2x + κ2y and obtain the results for the two-dimensional case from the one-dimensional formulation.

The corresponding characteristic equation is given by

ξ2 + Ãξ + B̃ = 0, (4.2)

where

Ã = A+ κ2(DN +DP ),

B̃ = B − (a11DP + a22DN )κ2 +DNDPκ
4.

Using the Routh-Hurwitz criterion together with the above equation, we have the following theorem:

Theorem 4.1. The equilibrium point E∗ is locally asymptotically stable in the presence of diffusion iff
Ã > 0 and B̃ > 0.

Clearly, A > 0 implies Ã > 0. Therefore, diffusive instability occurs only in the case when B > 0,

but B̃ < 0. Hence, the condition for diffusive instability is given by

H(κ2) = DNDPκ
4 − (a11DP + a22DN )κ2 +B < 0. (4.3)
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This shows that diffusion can induce the loss of stability with respect to perturbation of certain wave

numbers. Here, H is a quadratic function of κ2 and the graph of H(κ2) = 0 is a parabola. Let, the

minimum of H(κ2) = 0 is reached at κ2 = κ2c , where κ2c is given by

κ2c =
a11DP + a22DN

2DNDP
> 0. (4.4)

As a11 +a22 < 0 and κc is real then we must have a11a22 < 0. Thus, a sufficient condition for instability

is that H(κ2c) < 0. Therefore, with the above value of κ2c , the condition for diffusive instability given in

equation (4.3) can be written as

(a11DP + a22DN )2 > 4DNDPB. (4.5)

The critical wavenumber κc of the growing perturbation is given by equation (4.4). After a little algebra,

one can find that a change of sign in H(κ2) occurs when κ2 enters or leaves the interval (κ2−, κ
2
+) where

κ2± =
a11DP + a22DN ±

√
(a11DP + a22DN )2 − 4DNDPB

2DNDP
.

In particular, we have H(κ2) < 0 (i.e., instability) for κ2− < κ2 < κ2+.

Note that the diffusive instability cannot occur unless the diffusivity ratio is sufficiently away from

unity. Indeed, recall that a11 + a22 < 0 and therefore a11 < −a22 (where a22 < 0). Then, from the

condition (4.4), we obtain:

DP

DN
> −a22

a11
> 1. (4.6)

Condition (4.6) is a general necessary condition of Turing instability applicable to any two-species sys-

tem. In particular, it means that the diffusive instability cannot occur for DP = DN .

In explicit form, the condition (4.5) becomes[(
r

K
− βδ(1−m)2P ∗

[K1 + δ(1−m)N∗ + αηA+ θP ∗]2

)
N∗DP

+
cθP ∗[β(1−m)N∗ + ηA]

[K1 + δ(1−m)N∗ + αηA+ θP ∗]2
DN

]2

> 4DNDP[(
r

K
− βδ(1−m)2P ∗

[K1 + δ(1−m)N∗ + αηA+ θP ∗]2

)
N∗ cθP ∗[β(1−m)N∗ + ηA]

[K1 + δ(1−m)N∗ + αηA+ θP ∗]2

+
c(1−m)P ∗[β(K1 + αηA+ θP ∗)− δηA]

[K1 + δ(1−m)N∗ + αηA+ θP ∗]2
β(1−m)N∗[K1 + δ(1−m)N∗ + αηA]

[K1 + δ(1−m)N∗ + αηA+ θP ∗]2

]
.(4.7)

Looking at the above analytic conditions, it is not clear how the local asymptotic stability and the

Turing instability depend on the prey refuge and the additional food parameters. Therefore, further

investigation is carried out in the form of numerical simulation.

5. Numerical simulation

For the numerical simulation, we have chosen the parameter values as given in Table 1 and show

qualitative results. Unless it is mentioned, the values of the parameters used for the numerical simulations

are the same.
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Table 1: The set of parameter values in the model system (2.1).

Parameter Description Value
r Maximum growth rate of prey 0.5
K Carrying capacity of prey 3
β Maximum rate of predation 0.6
δ Proportionality constant 1
m Proportion of refuge protecting the prey 0.1
α Relative handling time for additional food to prey item 0.01
η Relative ability of the predator to detect additional food to prey 0.01
A Amount of additional food to the predators 0.04
c Maximum growth rate of the predator 1
γ Death rate of predator 0.25
θ Scaling the impact predator interference 0.4
K1 Half saturation value of the predator 0.4
DN Self-diffusion coefficient of prey 0.01
DP Self-diffusion coefficient of predator 1
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Figure 1: Temporal dynamics of prey and predator at A = 0.04 and different values of m: (a) m = 0.03 and (b) m = 0.1.
Other parameter values are the same as in the Table 1.

5.1. Temporal dynamics

At first, we study the temporal dynamics of the system. The critical value of the prey refuge

parameter (m), at which stability loss occurs, has been calculated by considering a fixed value for the

additional food (A = 0.04) and is found to be mc ≈ 0.0499. At m = 0.03, which is less than the critical

value, the dynamics of the system shows oscillatory behavior (Figure 1(a)). While at m = 0.1, which

is greater than the critical value, the system becomes asymptotically stable (Figure 1(b)). Very large

values of m results in the extinction of predator population (not shown in figure).

Next, we examine the effect of additional food (A) on the stability of the system. We keep m fixed at

0.03 and chose choose the value of A as A = 1 and find that the solution trajectories are oscillating (Figure

2(a)). Now, we increase A to A = 11 and find that the oscillations are damped, making equilibrium

E∗ stable (Figure 2(b)). The critical value of A where the stability of the system changes is found as

A = 8.5. Very large values of A results in the extinction of prey population (not shown in figure).

In the next section, we have investigated how the stability behavior changes in the presence of

diffusion in prey and predator populations and form different types of Turing patterns.
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Figure 2: Temporal dynamics of prey and predator at m = 0.03 and different values of A: (a) A = 1 and (b) A = 11.
Other parameter values are the same as in the Table 1.

5.2. Spatial dynamics

5.2.1. Proof of the existence of spatial heterogeneity

Diffusion driven instability in reaction-diffusion systems has been proposed as a mechanism for pat-

tern formation in numerous embryological and ecological contexts. Mathematically, an equilibrium point

is called diffusion-driven instability if it is asymptotically stable in the absence of diffusion but is unsta-

ble in the presence of diffusion. To check the existence of Turing instability, we look at the conditions

obtained analytically. First, we plot the polynomial H(κ2) (equation (4.3)) w.r.t. κ2 for different values

of m and A by keeping the other parameters fixed (Figure 3). At A = 0.04, the range of κ2 for which

H(κ2) remains negative decreases as m increases and finally H(κ2) becomes completely positive for

m > 0.16. That is, by increasing the value of m, the possibility of the occurrence of Turing instability

decreases. On the other hand, keeping m fixed at m = 0.1, by increasing the value of A, the range of κ2

for which H(κ2) remains negative increases. That is, by increasing the additional food, the possibility of

the occurrence of Turing patterns increases. The largest real part of ξ also provides information about

the existence of Turing instability and are plotted w.r.t. κ2 for different values of m and A (eq. 4.2).

With an increase in the value of m, the maximum of the real part of ξ decreases and ultimately becomes

completely negative for large values of m. On the other hand, with an increase in A, the real part of ξ

increases and becomes positive for a range of κ2 at high values of A. The positivity of the largest real

part of the eigenvalues for an interval of κ2 represents the existence of diffusive instability.

5.2.2. Combined effects of prey refuge and additional food on the stability

Next, we investigate how the stability of the system changes as both prey refuge (m) and additional

food (A) change simultaneously. For this reason, we vary m and A and plot stability regions in (m,A)

plane (Figure 5). Here, the regions A (gray) and B (green) represent the predator and prey extinct

regions, respectively. The region C (white) stands for the asymptotic stability of the coexisting equilib-

rium (E∗) irrespective of the presence and absence of diffusion. The regions D1 (cyan) and D2 (blue)

represent the regions of Turing instability, i.e., where the system with diffusion becomes unstable and

shows spatial pattern formation although it is stable without diffusion. The specialty of D2 is that if

we make one of the variables (either m or A) zero from here, then the system will reach to a situation

with no spatial pattern formation. That is, within this region, pattern formation strictly depends on

the interactive effects of prey refuge and additional food; absence of one of the factors (depending on

the other one) from this situation would lead to homogeneous distribution of populations. The region

E (red) represents Turing-Hopf region, where there is a possibility of the formation of inhomogeneous
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of A (using eq. (4.3)). Black dashed lines represent H(κ2) = 0. Other parameter values are the same as in the Table 1.
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Figure 4: Dispersion relation plotting the real part of the eigenvalues at (a) A = 0.04 and different values of m, (b) m = 0.2
and different values of A (using eq. 4.2). Black dashed lines represent Re(ξ) = 0. Other parameters are the same as in the
Table 1.

stationary patterns due to the interaction of Turing instability and the appearance of oscillations due to

Hopf-bifurcation. However, in the present study, we mainly concentrate on the Turing pattern forma-

tions. It is clear from Figure 5 that both prey refuge and additional food are important for determining

different dynamics of the system. For example, if we change m when there is no additional food (A = 0),

we see that for small values of m populations form spatial patterns whereas beyond some critical value

of m, pattern formation is not possible. Very large values of m results in predator extinction. Now,

in the presence of additional food (A > 0), the pattern formations can occur for larger values of m.

However, at A = 15, small values of m can also result in the disappearance of the pattern formation.

In this situation, Turing patterns can be observed only for intermediate values of m. Furthermore, in

the presence of very large amounts of additional food for predator, prey refuge must be very high for

the survival of the prey population and no pattern emerges in these scenarios. On the other hand, if we

vary additional food (A) in the absence of prey refuge (m = 0), we see that small additional food results

in spatial pattern formation. However, for a very narrow range of A, the system becomes pattern free
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Figure 5: Different stability regions in (m,A) parametric space. Regions A (gray), B (green), C (white), D1 (cyan), D2

(blue) and E (red) correspond to predator extinction, prey extinction, stable regions, Turing patterns, Turing patterns and
Turing-Hopf domain, respectively. The speciality of D2 is that assigning no prey refuge or no additional food from region
D2 would lead to pattern free state. Other parameters are the same as in the Table 1.

and larger values result in prey extinction. Now, for certain intermediate values of m, e.g., m = 0.3,

Turing patterns can be observed only for some intermediate ranges of A. Interestingly, when prey refuge

becomes very high, e.g., m = 0.7, the presence of additional food does not affect the stability of the

system; there is no possibility of Turing patterns in the system.

5.2.3. Different types of pattern formations

After establishing the existence of Turing instability and gaining information about how different

stabilities change with m and A, now we investigate different Turing patterns of system (2.1). To

explore the spatio-temporal dynamics of the model system (2.1) in two dimensional spatial domain, the

system of partial differential equations is numerically solved using a finite difference method. The forward

difference scheme is used for the reaction part and standard five point explicit finite difference scheme

is used for two dimensional diffusion terms with a time step size ∆t =
1

40
. The model is studied with

positive initial conditions and Neumann boundary condition. The initial conditions are always a small

random perturbation around the equilibrium E∗. After the initial period during which the perturbation

spreads, the system goes into either a time-dependent state, or an essentially steady state solution. It is to

be noted here that the time at which we stopped the simulations is sufficient to assume that the patterns

attained the stationary state and they do not change further with time. During numerical simulation

different types of dynamics have been observed and it is found that the distributions of predator and

prey are always of the same type. Thus, we have restricted our analysis of pattern formation to one

distribution and only shown the distribution of prey for instance. We look at different situations by

varying one of the parameters between m and A at a time from the regions D1 and D2 of Figure 5 and

keeping the other one fixed.

Different spatial patterns of the prey population emerge as we vary prey refuge (m) by keeping the

value of additional food (A) fixed at A = 14 (Figure 6(a-c)). The absence of prey refuge (m = 0) results

in spot patterns, i.e., where the prey abundance is higher in isolated zones (Figure 6(a)). In view of
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Figure 6: Stationary Turing patterns developed by prey at (a-c) A = 14 and different values of m, (d-f) m = 0.15 and
different values of A at time t = 20000. Variations in m results in the pattern sequence spots to stripes to holes, whereas
variations in Am results in the opposite pattern sequence holes to stripes to spots. Other parameter values are same as in

the Table 1.

population dynamics, “spots”pattern means that the prey population is driven by the predator to a very

low level in majority of the spatial region and the final result is the formation of patches of high prey

density surrounded by areas of low prey densities (Alonso et al., 2002). Now, as we increase the value

of prey refuge, we get a mixture of stripe and spot patterns (figure is not shown). At m = 0.34, there

is regular peaks and troughs of prey density, hence the stripe pattern emerges (Figure 6(b)). Further

increase in prey refuge results in the mixture of stripes and holes (figure is not shown). However, for

large prey refuge (m = 0.351), the model dynamics exhibits a transition from stripes-holes growth to

holes replication, where the prey population is in the isolated zone with low density and the remaining

region is of high density (Figure 6(c)). Therefore, by increasing the value of m, the pattern sequence

“spots → stripe-spot mixture → stripes → stripe-hole mixtures → holes”is observed.

Next, we look at different pattern formations by varying additional food A by keeping prey refuge

as constant (m = 0.15) (Figure 6(d-f)). In the absence of additional food supply (A = 0), we observe

holes patterns (Figure 6(d)). As we increase additional food supply, the mixture of holes and stripes

emerges (figure is not shown). As we reach the value A = 5, the whole space is dominated by stripe

patterns (Figure 6(e)). Further increase in additional food supply results in the mixture of stripes and

spots (figure is not shown). For larger values of additional food (A = 10), spot pattern dominates the

space (Figure 6(f)). Therefore, in this case, an increase in additional food results in the pattern sequence

“holes → stripe-hole mixture → stripes → stripe-spot mixtures → spots”. Thus, it is inferred that by

increasing the level of additional food to the predator, there is a transition from the prey predominant

state to predator predominant state when prey refuge is present in the system.
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6. Discussion

In real world ecological systems, the mechanisms and scenarios of pattern formation in models of

interacting populations have been a focus of intensive studies in theoretical ecology. A spatiotemporal

predator-prey system is known to exhibit a wide variety of complex spatial pattern formations (Malchow

et al., 2008). Since, predator-prey interactions affect species composition and community dynamics, the

complexity in a community depends on the type of predation, which differs for different predators. In

this respect, the supply of additional food to the predator strengthen predation pressure by increasing

predator density and increases the chance of survival of predator populations (Chakraborty and Chat-

topadhyay, 2008). In response, prey species also uses different strategies, such as smell, color, injection

of some poisonous agent, size, skin, body cover, refuge etc. Among them, prey refuge is considered

as one of the important factors for the biological control of pests because large prey (pest) refuge can

increase prey (pest) density and lead to prey (pest) population outbreaks (Hawkins et al., 1993). In the

present work, we have investigated the combined effect of prey refuge and additional food for predator

on the spatial distribution of predator and prey populations.

In the absence of diffusion, our result shows stabilizing effects of both prey refuge and additional food

for predators which resembles the result of Samanta et al. (2016). Large prey refuge and additional food

for prey predator result in predator and prey extinction, respectively. Very high prey refuge decreases

food availability for predators and thus predator population get extinct. On the other hand, very high

availability of additional food increases predator abundance and finally prey population get extinct due

to high predation pressure, although predator population can survive solely on additional food source.

However, the stable coexistence of both the populations changes in the presence of diffusion. At this

point, our results differ with the results obtained by Samanta et al. (2016) since spatial heterogeneity of

populations was not included in the previous study. Both the populations show spatial pattern formation

in a specific region of the (m,A) parameter space. When the amount of additional food is less than a

critical level, there is a possibility of spatial pattern formation depending on the prey refuge; low prey

refuge can substantially form different stable patterns in space. However, both the populations show

stable abundances both in time and space irrespective of additional food supply to the predator when

prey refuge is high. Therefore, spatial pattern formation is possible only when both prey refuge and

additional food supply to the predator remain within certain critical ranges. There are also cases when

spatial patterns emerge only due to the interactive effects of prey refuge and additional food; lowering one

of the values (depending on the other one) by sufficient amount would lead to homogeneous distribution

of populations. As a conclusion, we can say that both prey refuge and additional food for predator

interact to determine the possibility of spatial pattern formations in predator and prey populations.

Natural systems show different types of pattern formations due to the predator-prey interactions

(Chakraborty, 2015). Our model also shows different types of Turing patterns: holes, stripes, spots and

their mixtures. These patterns are actually representative of the distribution of predator and prey in

space. Holes patterns by prey population represent prey dominance whereas spots represent predator

dominance. In the absence of additional food, variations in prey refuge generate stripes, holes and their

mixtures. However, in the presence of a certain amount of additional food, low prey refuge can also

show spots and the mixture of spots and stripes together with the other patterns as found in the absence

of additional food. In this case, the pattern sequence follows “spots → spots-stripes mixture → stripes

→ stripes-holes mixture → holes”as prey refuge increases. Previously, in simple diffusive predator-prey

systems, prey refuge was found to be responsible for generating spots, stripes and their mixtures (Guin

et al., 2015; Wang and Wang, 2012). However, our study additionally reveals that holes, which are low

prey abundances at specific zones, can also be observed by increasing prey refuge for certain range of

additional food for predators. On the other hand, in the absence of prey refuge, variations of additional
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food show stripes, spots and their mixtures. However, for certain range of prey refuge, low additional

food can also show holes and the mixture of holes and stripes together with other patterns as observed

in the absence of prey refuge. In this case, the pattern sequence follows “holes → holes-stripes mixture

→ stripes → stripes-spots mixture → spots”as additional food supply increases. Previously, spots and

holes have been documented in the presence of additional food for predators (Kumar and Chakrabarty,

2015). The present study shows that the variations of additional food can additionally show stripes and

the mixture of stripes with holes and spots for certain range of prey refuge. Therefore, our study reveals

that, not only the existence of pattern formation, the interactive effect of prey refuge and additional

food for predator also determines the type of pattern formation by the prey and predator populations,

and also establishes the importance of considering both the factors at a time.

Providing additional food to predators has been considered as one of the best established techniques

in integrated pest management and biological conservation programs (Bilde and Toft, 1998; Coll and

Guershon, 2002; Harmon, 2003; Harwood and Obrycki, 2005; Murdoch et al., 1985; Sabelis and van

Rijn, 2005; Shannon et al., 2007; van Baalen et al., 2001; van Rijn et al., 2002; Wade et al., 2008).

Additional food provided to the predator has the ability to control the ecosystem by eradicating the

pest population (Srinivasu et al., 2007). However, in natural systems, there are several other factors

which affect pest control. When prey (pest) refuge is relatively high, it helps pest population to escape

predation and thus pest population dominates in most of the spatial region with low abundance at some

specific places. In this situation, it is very difficult to control the pest population. Once we are able to

regulate prey (pest) refuge, then by providing additional food to the predator it is possible to restrict the

spread of pest populations in space and allow the pest population to become abundant only in isolated

zones in the spatial region. At this point, it is easy to control the pest population. However, when

both prey refuge and additional food are low, spatial distribution of pest population becomes complex

(stripes; not shown in figures) and thus again pest control becomes difficult. In natural systems, pest

population takes refuge under natural habitats within and around farms. Removal of natural habitat

fundamentally alters biological communities (Philpott et al., 2008; Perfecto et al., 2009; Mendenhall

et al., 2011; Melo et al., 2013; Liu et al., 2014). It is found that predators of crop pests are also very

much sensitive to the natural habitat loss because the natural habitat provides predators with additional

prey, refuges during the disturbances, and sites for breeding, hibernation and roosting (Landis et al.,

2000; Bianchi et al., 2006; Chaplin-Kramer et al., 2011; Jirinec et al., 2011). Thus, a complete removal

of natural habitat would not only reduce prey (pest) refuge, but simultaneously it would also result

in a reduction in additional food supply to the predator population, which would ultimately make the

spatial distribution of pest population complex and difficult to control. However, instead of completely

removing the natural habitat, we can regulate prey refuge and additional food by removing a specific

portion of natural habitat to control pest population.
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