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1 Introduction

The objective of the present report is to give a thorough description on how to implement a

3-Dimensional heat transfer solver applicable for the pultrusion process. The solver will use the

Alternate Direction Implicit method modified by Douglass & Gunn (3D-ADI-DG) [1]. A similar

solver was introduced for the first time in this specific field of application by Baran et al. [2].

The current report does however serve as a thorough introduction for the reader to create their

own solver with the associated benefits, e.g. understanding and control of all aspects of the

solver. The solver was developed, verified and validated following previous work by the authors

[4] and used to investigate the effect of varying fiber volume fraction distribution on the cure

behaviour during the pultrusion process [5].

The Pultrusion Process

Pultrusion is a continuous process for manufacturing of Fiber Reinforced Polymers (FRP) with

constant cross-section. The fibers are either impregnated in a resin bath or by resin injection

directly in the die - the latter is illustrated in Fig. 1.1. The impregnated fibers are drawn

through the heating/forming die where heaters ensure proper curing of the thermoset resin.

Figure 1.1: 2D illustration of the resin injection pultrusion process [4].

It will be assumed that the fibers are fully impregnated and no significant curing have happened

before the heating/forming die. Hence, the numerical solution is the discretized temperature

field in the heating/forming die and the FRP composite. The reader is made aware that the

present report will solely focus on heat transfer modelling and the reader is referred to [2] and

[4] for a description on how to include the chemical modelling, i.e. curing.

2 Heat Transfer Modelling - Pultrusion

The governing equation for the convection-diffusion problem at hand is the energy equation

∂ (ρcpT )

∂t
+∇ · (ρcpTu)−∇ · (λ∇T ) = S

′′′

T (2.1)

where ρ is density in
[

kg
m3

]
, cp is specific heat capacity in

[
J

kgK

]
, T is temperature in [◦C], t is

time in [s], u is velocity in
[m

s
]
, λ is the thermal conductivity (tensor) in

[
W

mK

]
and S

′′′

T is a

volumetric source term in
[

W
m3

]
. The effective material properties are calculated using the rule

of mixtures and assumed constant. The following notation is equivalent to (2.1) and will be used

to ease the understanding of the time discretization in section 2.2.
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Q̇+ qu − qλ = S
′′′

T (2.2)

In (2.2): Q̇ is the change of heat content over time and qu, qλ denotes the convective and

diffusive heat flux, respectively. In the current work, energy conservation, as described in (2.1),

will be modelled using a control volume based finite difference model (CV-FDM). The spatial

discretization, the choice of time scheme, the implementation algorithm and an example of

simulation results will be presented in the following four sections.

2.1 Spatial Discretization

The principal of energy conservation is used to set up the discretized version of the energy

equation. Fig. 2.1 illustrates the 3D notation used henceforth. The material properties ρ,

cp and λ will be assumed constant. The discretization will account for a non-uniform but

structured mesh and will only consider convection in the pulling direction (x) and further assume

this velocity to be positive and constant. Hence, u = [ux, 0, 0] = const. and ux > 0. The

diffusive heat fluxes will be evaluated using a 3-point Central Difference Scheme (CDS), while

the convective heat flux will be evaluated using a 2 point Upwind Difference Scheme (UDS).

Hence, the discretized energy equation over a control volume ∆x∆y∆z becomes

ρcp
∂T
∂t ∆x∆y∆z

+ρcpux
TP−TW

∆xw
∆x∆y∆z

−


λx

∆y∆z
∆xe

(TE − TP )− λx∆y∆z
∆xw

(TP − TW ) +

λy
∆x∆z
∆yb

(TB − TP )− λy ∆x∆z
∆yf

(TP − TF ) +

λz
∆x∆y
∆zn

(TN − TP )− λz ∆x∆y
∆zs

(TP − TS)


= S

′′′

T ∆x∆y∆z

(2.3)

The reader is encouraged to realise that (2.3) is equivalent to (2.1) - let (2.3) be divided with

the volume and subsequently let ∆x, ∆y and ∆z approach zero.

The choice of time stepping scheme will be explained in detail in the following subsection. Hence,

for now the time dependent term in (2.3), related to the change of heat content, will simply be

discretized as ∆x∆y∆z · ρcp · ∆TP

∆t .

For the purpose of numerical implementation, proper weight functions are introduced and (2.3)

can be written as

H0∆TP

+Hu (TP − TW )

−


He (TE − TP )−Hw (TP − TW ) +

Hb (TB − TP )−Hf (TP − TF ) +

Hn (TN − TP )−Hs (TP − TS)


= ST

(2.4)

where ST = S
′′′

T ∆x∆y∆z, and the weight functions are defined in the following way.
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The capacity weight function:

H0 =
ρcp ·∆x∆y∆z

∆t
(2.5)

The convective weight function:

Hu = ρcpux∆y∆z (2.6)

The conductivity weight functions in the x, y and z direction, respectively, using the notation

illustrated in fig. 2.1 and 2.2:

Hw = λx
∆y∆z
∆xw

He = λx
∆y∆z
∆xe

(2.7)

Hf = λy
∆x∆z
∆yf

Hb = λy
∆x∆z
∆yb

(2.8)

Hs = λz
∆x∆y
∆zs

Hn = λz
∆x∆y
∆zn

(2.9)

Figure 2.1: Schematic illustration of the 3D finite volume grid with labelling of the CV neighbours and
CV faces.

Figure 2.2: Schematic illustration of notation used for the structured non uniform mesh (x -direction).
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2.2 Time Discretization

The numerical discretization in time will be conducted using the Alternate Direction Implicit

method modified by Douglas & Gunn (ADI-DG). The original 3D-ADI method implies dividing

each time step into three minor, consecutive time sub-steps equal in size [3]. In the modification

by Douglas & Gunn the three time sub-steps are not equal in size and should hence, to some

extend, be interpreted as overlapping - this is illustrated in fig. 2.3. The advantage of using

the modified 3D-ADI-DG method is good stability even for problems with a large convection to

diffusion heat transfer ratio (i.e. large Peclet number, Pe > 2, see [2]) - which is typically the

case for pultrusion of FRPs [4].

Figure 2.3: Illustration of the time sub stepping scheme for the ADI-DG algorithm.

For simplicity the direction chosen to be implicit for each time sub-step are x, y and z in

chronological order. Hence, for each of the three time sub-steps the energy equation (2.2) could

be written as follows.

Sub-step I:

Q̇t→t+
∆t
3 + q

t→t+ ∆t
3

u −
(
q
t→t+ ∆t

3
x + qty + qtz

)
= StT (2.10)

Sub-step II:

Q̇t→t+
2∆t

3 + q
t→t+ ∆t

3
u −

(
q
t→t+ ∆t

3
x + q

t→t+ 2∆t
3

y + qtz

)
= StT (2.11)

Sub-step III:

Q̇t→t+∆t + q
t→t+ ∆t

3
u −

(
q
t→t+ ∆t

3
x + q

t→t+ 2∆t
3

y + qt→t+∆t
z

)
= StT (2.12)

It is important to notice the unequal size of the three sub-steps, which cause the capacity weight

function (2.5) to change for each sub-step. Hence, introducing the following three sub-step

capacity weight functions:

H0x =
ρcp ·∆x∆y∆z

∆t/3
(2.13)

H0y =
ρcp ·∆x∆y∆z

2∆t/3
(2.14)

H0z =
ρcp ·∆x∆y∆z

∆t
(2.15)

The notation for the sub-step capacity weight functions is summarized in Table 1 together with

a short notation for the sub-steps - this notation will be used henceforth.
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old sub step I sub step II sub step III

Time t t+ ∆t
3 t+ 2∆t

3 t+ ∆t
Notation t tx ty tz

Capacity weight functions H0x H0y H0z

Table 1: Notation used for the ADI-DG time scheme and the sub-step capacity weight functions.

2.3 Implementation of 3D-ADI-DG

The ADI-DG method involves setting up a tri-diagonal matrix system for every row or column of

control volumes (CV) in each of the three major directions. Hence, the following matrix system

is obtained

A · T = b (2.16)

where A is the tri-diagonal coefficient matrix, T is a vector with the unknown temperatures

of the row/column of CVs and b is the the right hand side (RHS) vector. The coefficients in

the matrix A and the known values in the RHS vector b is obtained from (2.4) with the time

stepping schemes illustrated in Fig. 2.3 and written in (2.10)-(2.12). The coefficients in the first

and last row of the system matrix A as well as the first and last element in b will be defined by

either a Dirichlet or a Neumann boundary condition as described in [3]. The final matrix system

(2.16) is then readily solved using e.g. the backslash operator in MATLAB1.

In the following let nx, ny, nz and i, j, k represent the number of CVs and the index in the

three spatial directions x, y, z, respectively.

Sub-step I: Implicit formulation in the x -direction.

This sub-step goes form t to t + ∆t
3 ; see (2.10), Fig. 2.3 and Table 1. For each combination of

j = [2 : ny − 1] and k = [2 : nz − 1], running through all inner CVs in the x-direction, i = [2 :

nx − 1], a coefficient matrix Ax of size nx × nx and a RHS vector bx with nx elements are set

up by evaluating (2.4) using the time scheme (2.10). Hence,

H0x

(
T txP − T tP

)
+ 1

2Hu

{
T txP − T

tx
W + T tP − T tW

}
+ 1

2Hw

{
T txP − T

tx
W + T tP − T tW

}
+ 1

2He

{
T txP − T

tx
E + T tP − T tE

}
+Hf (T tP − T tF ) +Hb (T tP − T tB)

+Hs (T tP − T tS) +Hn (T tP − T tN )

= StT

(2.17)

where the lower-diagonal (LD), diagonal (D) and upper-diagonal (UD) elements of the coefficient

matrix Ax are directly given by the coefficients of T txW , T txP and T txE , respectively. The RHS vector

bx are all the explicit parts of (2.17)2. Hence, the tri-diagonal coefficients in Ax and the RHS

vector elements in bx are given by

1https://se.mathworks.com/help/matlab/ref/mldivide.html
2parts evaluated at t
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ALDx = −1

2
Hu −

1

2
Hw (2.18)

ADx = H0x +
1

2
Hu +

1

2
Hw +

1

2
He (2.19)

AUDx = −1

2
He (2.20)

bx =



H0xT
t
P

− 1
2Hu {T tP − T tW }

+ 1
2Hw {T tW − T tP }+ 1

2He {T tE − T tP }
+Hf (T tF − T tP ) +Hb (T tB − T tP )

+Hs (T tS − T tP ) +Hn (T tN − T tP )

+StT


(2.21)

Sub-step II: Implicit formulation in the y-direction.

This sub-step goes form t to t+ 2∆t
3 ; see (2.11), Fig. 2.3 and Table 1. For each combination of

i = [2 : nx − 1] and k = [2 : nz − 1], running through all inner CVs in the y-direction, j = [2 :

ny − 1], a coefficient matrix Ay of size ny × ny and a RHS vector by with ny elements are set

up by evaluating (2.4) using the time scheme (2.11). Hence,

H0y

(
T
ty
P − T tP

)
+ 1

2Hu

{
T txP − T

tx
W + T tP − T tW

}
+ 1

2Hw

{
T txP − T

tx
W + T tP − T tW

}
+ 1

2He

{
T txP − T

tx
E + T tP − T tE

}
+ 1

2Hf

{
T
ty
P − T

ty
F + T tP − T tF

}
+ 1

2Hb

{
T
ty
P − T

ty
B + T tP − T tB

}
+Hs (T tP − T tS) +Hn (T tP − T tN )

= StT

(2.22)

where the lower-diagonal (LD), diagonal (D) and upper-diagonal (UD) elements of the coefficient

matrix Ay are directly given by the coefficients of T
ty
F , T

ty
P and T

ty
B , respectively. The RHS vector

by are all the explicit parts of (2.22)3. Hence, the tri-diagonal coefficients in Ay and the RHS

vector elements in by are given by

ALDy = −1

2
Hf (2.23)

ADy = H0y +
1

2
Hf +

1

2
Hb (2.24)

AUDy = −1

2
Hb (2.25)

3parts evaluated at t and tx
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by =



H0yT
t
P

− 1
2Hu

{
T txP − T

tx
W + T tP − T tW

}
+ 1

2Hw

{
T txW − T

tx
P + T tW − T tP

}
+ 1

2He

{
T txE − T

tx
P + T tE − T tP

}
+ 1

2Hf {T tF − T tP }+ 1
2Hb {T tB − T tP }

+Hs (T tS − T tP ) +Hn (T tN − T tP )

+StT


(2.26)

Sub-step III: Implicit formulation in the z -direction.

This sub-step goes form t to t + ∆t; see (2.12), Fig. 2.3 and Table 1. For each combination of

i = [2 : nx − 1] and j = [2 : ny − 1], running through all inner CVs in the z-direction, k = [2 :

nz − 1], a coefficient matrix Az of size nz ×nz and a RHS vector bz with nz elements are set up

by evaluating (2.4) using the time scheme (2.12). Hence,

H0z

(
T tzP − T tP

)
+ 1

2Hu

{
T txP − T

tx
W + T tP − T tW

}
+ 1

2Hw

{
T txP − T

tx
W + T tP − T tW

}
+ 1

2He

{
T txP − T

tx
E + T tP − T tE

}
+ 1

2Hf

{
T
ty
P − T

ty
F + T tP − T tF

}
+ 1

2Hb

{
T
ty
P − T

ty
B + T tP − T tB

}
+ 1

2Hs

{
T tzP − T

tz
S + T tP − T tS

}
+ 1

2Hn

{
T tzP − T

tz
N + T tP − T tN

}
= StT

(2.27)

where the lower-diagonal (LD), diagonal (D) and upper-diagonal (UD) elements of the coefficient

matrix Az are directly given by the coefficients of T tzS , T tzP and T tzN , respectively. The RHS vector

bz are all the explicit parts of (2.27)4. Hence, the tri-diagonal coefficients in Az and the RHS

vector elements in bz are given by

ALDz = −1

2
Hs (2.28)

ADz = H0z +
1

2
Hs +

1

2
Hn (2.29)

AUDz = −1

2
Hn (2.30)

bz =



H0zT
t
P

− 1
2Hu

{
T txP − T

tx
W + T tP − T tW

}
+ 1

2Hw

{
T txW − T

tx
P + T tW − T tP

}
+ 1

2He

{
T txE − T

tx
P + T tE − T tP

}
+ 1

2Hf

{
T
ty
F − T

ty
P + T tF − T tP

}
+ 1

2Hb

{
T
ty
B − T

ty
P + T tB − T tP

}
+ 1

2Hs {T tS − T tP }+ 1
2Hn {T tN − T tP }

+StT


(2.31)

4parts evaluated at t, tx and ty
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2.4 Results

The 3D-ADI-DG model has been used for a thick glass fiber-polyurethane composite beam with

a square cross-section [5]. The steady state temperature and degree of cure predictions at chosen

cross-section positions are shown in Fig. 2.4. The reader should notice how the outer parts of

the profile (corner and facecenter) is heated and cured predominantly in the first half of the die

while curing of the inner parts (quarter diagonal and center) are taking place over the full die

length.

Figure 2.4: Numerical steady state temperature and degree of cure predictions inside a glass fiber-
polyurethane pultruded beam during manufacturing.

3 Conclusion

The current report has presented a detailed guide on how to obtain a numerical solution to a

3-dimensional heat transfer problem using the ADI-DG method (considering convection solely

in one of the major spatial directions). A 3-point central difference scheme and a 2-point upwind

difference scheme were used to discretized the diffusive and the convective heat fluxes, respec-

tively. The proposed ADI-DG solver was applied for the first time for pultrusion by Baran et al.

[2] and later implemented, validated and used by the authors in [4] and [5].
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