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Abstract 

Increasing global temperatures and limited fossil resources make it increasingly urgent to find 

alternative ways of producing fuels and chemicals. Metabolic engineering offers a promising 

solution to this problem by using microbes as cell factories for manufacturing a diverse set of 

products from renewable resources. However, cell factory development requires extensive 

knowledge of microbial biology as well as expensive and time-consuming strain engineering. Non-

rational methods allow the strain development process to be accelerated by taking advantage of 

evolutionary processes. 

This thesis addresses the integration of adaptive laboratory evolution into cell factory development 

workflows through computational methods. By studying a large set of Escherichia coli strains 

evolved to tolerate 11 different chemicals of industrial relevance, it was shown that there is 

significant cross-tolerance between compounds of the same chemical class, and that pre-evolving 

strains to tolerate a product can improve production rates when the evolved strain is engineered 

with a production pathway. Metabolic profiling of the evolved strains using direct-injection mass 

spectrometry showed that strains evolved in the same conditions had converged to similar 

metabolic phenotypes, suggesting that metabolism is involved in chemical tolerance. It was shown 

that the effects of individual mutations could be predicted, both by directly comparing the 

metabolic profiles of evolved strains to previously measured metabolic profiles of knockout strains, 

as well as using deep neural networks to predict metabolite level changes directly from genetic 

perturbations. 

Adaptive laboratory evolution can be used to optimize growth rates under various growth 

conditions, but through clever strain engineering it is possible to couple production to growth, 

thereby allowing optimization of production rate. This thesis also presents an algorithm based on 

genome-scale metabolic modelling that can predict genetic modifications that enable growth-

coupling in combination with addition of specific supplements to the growth medium. The algorithm 

could predict known growth-coupled strain designs that are shown to work in vivo as well as novel 

promising strain designs, for production of itaconic acid, propionic acid and for product methylation.  
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Resumé 

På grund af stigende globale temperaturer og begrænsede fossile ressourcer er det kritisk at finde 

alternative måder at producere kemikalier og brændstoffer. Dette problem kan løses ved at 

konstruere mikrobielle cellefabrikker der kan producere en bred vifte af produkter fra vedvarende 

ressourcer. Anvendelse af cellefabrikker kræver dog en vidtrækkende viden om mikrobiel biologi 

såvel som dyr og tidskrævende udvikling af mikrobielle stammer. Gennem brug af non-rationelle 

metoder kan stammeudviklingsprocessen accelereres ved at udnytte evolutionære processer. 

Denne afhandling omhandler integrering af adaptiv laboratorieevolution i udvikling af cellefabrikker 

gennem beregningsmetoder. Ved at studere et stort antal Escherichia coli stammer der er 

evolutionært udviklet til at tolerere 11 forskellige industrielt relevante kemikalier, blev det vist at 

der er betydelig kryds-tolerans mellem stoffer der har kemiske ligheder. Derudover blev det vist at 

brugen af laboratorieevolution til at forbedre en stammes produkttolerans også kan øge stammens 

evne til at producere stoffet, når der er blevet indsat en produktionspathway. Metabolisk profilering 

af de evolutionært udviklede stammer ved hjælp af direct-injection massespektrometri viste at 

stammer udviklet under de samme betingelser havde konvergeret til lignende metaboliske profiler, 

hvilket tyder på at metabolisme er involveret i kemisk tolerans. Det blev yderligere vist at 

individuelle mutationers effekter kunne forudsiges både ved at sammenligne de målte metaboliske 

profiler med tidligere målte metaboliske profiler for knockout-stammer, samt ved at anvende dybe 

neurale netværk til at forudsige ændringer i metabolitniveauer direkte fra genetiske ændringer. 

Adaptiv laboratorieevolution kan bruges til at optimere vækstrate under forskellige betingelser, 

men gennem snedige stammedesigns er det muligt at koble produktion til vækst, hvorved 

produktionsraten kan optimeres. Denne afhandling præsenterer også en algoritme baseret på 

metaboliske modeller i genoskala, som kan forudsige genetiske ændringer der kan forårsage 

vækstkobling i kombination med at specifikke supplementer tilføjes til vækstmediet. Algoritmen 

kunne forudsige kendte vækstkoblede stammedesigns som tidligere er valideret in vivo, og kunne 

også forudsige nye lovende designs til produktion at itakonsyre, propionsyre samt til produkt-

methylering.  
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Thesis outline 

A major challenge of modern society is the need to find sustainable methods for upholding our 

current way of living. This necessitates the development of renewable alternatives to oil-derived 

fuels and chemicals. Using microbial cell factories to produce useful and valuable chemicals from 

sustainable resources is a promising solution to this problem. However, developing successful cell 

factories by employing metabolic engineering is a slow and difficult process that is impeded by our 

limited understanding of microbial metabolism. 

This thesis addresses the use of so-called non-rational engineering – specifically adaptive laboratory 

evolution (ALE) – which leverages evolutionary processes to quickly optimize cell factories without 

requiring comprehensive knowledge about the functioning of the cell. The thesis, which will focus 

on computational methods that can be used in combination with ALE, is divided into two parts: Part 

I (Chapters 1-3) focuses on methods that can help understand the evolved strains resulting from 

ALE, while Part II (Chapters 4-5) focuses on the use of mathematical models to design selection 

conditions that can be used to optimize production characteristics. 

Chapter 1 contains a manuscript for a research article describing study where Escherichia coli was 

evolved to tolerate high concentrations of various potential products. Through genome sequencing 

and growth characterization we found that overall chemical tolerance obtained in the different 

evolution conditions varied widely, and that only very few mutations were universally observed 

across strains from a given condition. Furthermore, we found that evolving strains to tolerate a 

compound can also have beneficial effects on the strains’ ability to produce the compound. This 

work was done in collaboration with other researchers at the Center for Biosustainability, and 

mainly the data analysis parts, i.e. analysis of genome sequences and growth profiles, were done as 

part of this thesis. 

Chapter 2 describes a follow-up study to Chapter 1, where all the evolved tolerant strains were 

subjected to metabolomics analysis in order to study how the evolution of tolerance affects 

metabolism. It was found that strains evolved under the same condition tend to be very similar 

metabolically, such that all the tested conditions had a specific characteristic metabolic phenotype. 

This suggests that strains evolved on the same condition reach the same phenotype despite 
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considerable differences in genotype. Furthermore, the metabolic profiles of the evolved strains 

were combined with previously published metabolomics data and used to predict how each 

observed mutation impacts the function of the gene(s) it affects. Finally, a time-series perturbation 

analysis was used to investigate how different toxic environments affect metabolism.  

Chapter 3 describes a machine learning method for predicting how genetic perturbations affect 

metabolite levels. The method is based on a deep neural network and the main novelty is using 

biological networks through which signals in the input data are propagated. The motivation for 

developing such a method was to take advantage of prior knowledge encoded in networks for 

various prediction tasks using graph-structured input and output data. While the obtained 

predictive performance limits the practical use of the method, it represents a proof-of-concept of 

the technical feasibility of propagating input signals through a graph in a way that is inferred from 

the data. 

Chapter 4 contains a published book chapter about metabolic modeling and methods for integration 

of genome-scale experimental data. The chapter is a review of existing literature and serves as an 

introduction to the field of metabolic modeling. 

Chapter 5 contains a manuscript for a research article presenting OptCouple, a new modeling 

algorithm for identifying strain designs where production is coupled to growth, such that ALE can 

be used to optimize production. The main novelty of the algorithm is the possibility of 

simultaneously finding knockouts, gene insertions and additions to the growth medium, which in 

combination cause production to be growth-coupled. The algorithm is validated by showing that it 

can predict existing growth-coupled strain designs, that are shown to work in vivo, as well as new 

strain designs that are predicted to be growth-coupled in silico. 

Both Part I and Part II begin with a short overview that introduces key concepts and frames the 

chapters in a larger context. While Chapters 2 and 3 are not manuscripts in preparation, they are 

both structured as research articles and will be adapted and submitted for publication in scientific 

journals in the future.
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Part I: Metabolic engineering and evolutionary methods 

The use of microbes in the production of various commodities is an old practice that has been 

around for many centuries across most known cultures. The two major examples of this – bread and 

beverages – are both based on the growth of yeast in a sugary substrate taking advantage of 

microbe’s natural production of carbon dioxide and ethanol. In more recent times the use of 

microorganisms to produce chemicals has become increasingly deliberate and directed. Early 

examples of microbial chemical production include using filamentous fungi to produce organic 

acids, e.g. citric acid (Max et al., 2010), and using the bacterium Clostridium acetobutylicum to 

produce acetone and butanol (Weizmann and Rosenfeld, 1937). Culturing microbes solely for the 

purpose of production, in contrast to as part of food production, allows employing various process 

optimizations to maximize production outcomes specifically. Through such process optimization 

techniques, the efficiency of industrial applications of microbial production has steadily increased. 

While manufacturers up until the late 20th century have had to rely on optimizations regarding the 

physicochemical parameters of the processes, the possibility of modifying the production strain 

allowed further improvements to be made. This was first done through a process of random 

mutagenesis and subsequent screening (Rowlands, 1984), while the later availability of genetic 

engineering techniques opened new venues to the targeted creation of mutant strains with 

modified characteristics, including production capabilities (Nielsen, 2001). An example of targeted 

engineering of a production strain is the insertion of genes from other organisms, introducing a new 

metabolic pathway in the production strain. This can be beneficial as many natural producers of a 

target compound may be hard to culture in a production process. Transferring the pathway to 

another organism can thus improve production. An example of this was the production of 

cephalosporin antibiotics, which are naturally produced by fungal Acremonium species, in the 

common laboratory organism Penicillium chrysogenum (Cantwell et al., 1992). Another type of 

modifications frequently made during strain engineering is the deletion of native genes to improve 

production, e.g. by reducing formation of byproducts. An example of this was a reduction in oxalic 

acid formation during expression of heterologous proteins in the fungus Aspergillus niger, by 

deleting a gene encoding an oxaloacetate hydrolase (Pedersen et al., 2000). 
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The practice of genetically modifying microbial organisms to obtain good production strains is 

known as metabolic engineering and has become increasingly widespread since the 1990’s (Bailey, 

1991; Nielsen, 2017). Even though examples of successful metabolic engineering abound, it is by no 

means an easy process, owing to the overwhelming complexity of microbial biology. Most efforts to 

engineer useful production strains follow an iterative process, commonly called the Design-Build-

Test-Learn cycle (Nielsen and Keasling, 2016), shown in Figure 1. In the design step, the metabolic 

engineer plans a set of genetic modifications, which are expected to improve production 

characteristics. These modifications are introduced into the organism in the build step, whereby a 

new strain is made. The resulting strain is subjected to testing to evaluate how production 

characteristics have been affected by the modifications. In the learn step, the results from the tests 

are evaluated in order to gain insight into the functioning of the production process, which leads to 

new hypotheses about the production organisms that can be used to generate new designs. This 

process is known as rational engineering, as each strain is designed based on the best current 

understanding of the process. 

 

Figure 1: The Design-Build-Test-Learn cycle. 

Each of the steps in the cycle requires a significant amount of work, but in the last decade a disparity 

between the steps has emerged. New advances in genetic engineering technology has allowed 

Learn Test

BuildDesign

Design. In the design step, a 
set of modifications to the 
production strain is planned. 
This can be based on previous
results, computer simulations 
or a combination.

Build. The planned
mutant strains are created
in the laboratory, through
the use of the relevant 
genetic engineering tools.

Test. The constructed strains
are subjected to a number of 
tests in order to evaluate the 
effect of the introduced
mutations.

Learn. The results from the 
test step are analyzed to 
extract new insights about
the functioning of the 
production organism.
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genetic modifications to be performed faster than ever (Schmidt and Platt, 2017), and even the 

synthesis of completely novel DNA sequences can now be done routinely (Chao et al., 2015). 

Additionally, many assays in the testing step can be done with a very high throughput, due to the 

increasing availability of laboratory automation systems (Nielsen and Keasling, 2016). This leaves a 

significant bottleneck in the design and learn steps. In other words, the main challenges in metabolic 

engineering are currently more concerned with deciding what do to than with actually doing it. 

Several approaches to evening out this disparity have been developed. One approach is to simply 

take advantage of the increased testing throughput to collect more extensive systems data on the 

production strains. This allows more comprehensive characterization of the developed strains, such 

that subsequent strain design can focus on addressing the specific problems that are identified (Lee 

and Kim, 2015). An example is to use transcriptomics analyses to identify problematic regulatory 

effects of overproducing the target compound, e.g. causing inhibition in the production pathway or 

precursor supply (Shimizu, 2011). Overproducing a target compound can also lead to broad 

physiological problems in the cell such as cofactor imbalances or energy deficits, which can also be 

identified through detailed strain analysis and subsequently addressed by targeted modifications 

(Liu et al., 2018). 

Another approach for overcoming the bottleneck in the learn and design steps is to also take 

advantage of the high throughput in the build step, to create and screen a large number of strains 

thereby increasing the chance that one of them has improved production properties. The 

effectiveness of this depends on the throughput of the screening assay being used. This approach 

represents a deviation from the Design-Build-Test-Learn cycle towards what could be called non-

rational engineering, where decisions are not made based on a theoretical understanding, but on 

the achieved screening results alone (Shepelin et al., 2018). Non-rational engineering is an 

alternative to the Design-Build-Test-Learn cycle and the process is illustrated in Figure 2A, where 

the design and build steps are replaced by generation of variation while the test and learn steps are 

replaced by selection. The higher the screening throughput, the more of a compromise can be 

accepted with regard to the rational design and learn steps, as even random generation of 

modifications can lead to better strains if enough candidates are screened. Very high throughputs 

can be achieved if the desired phenotype can be selected for under certain growth conditions. This 
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allows rapid identification of the best performing mutants among millions of variants. The non-

rational engineering process can either utilize artificially created genetic variation in specific regions, 

e.g. through error-prone PCR, resulting in a method known as directed evolution (Vick and Schmidt-

Dannert, 2011), or, if the desired phenotype can be selected for, it can rely on the naturally occurring 

mutations in a continuously grown culture, giving rise to an iterative selection process known as 

adaptive laboratory evolution (ALE) (Portnoy et al., 2011). Directed evolution is useful if the 

metabolic engineer has a good idea of which genes or DNA regions should be mutated to improve 

the desired strain characteristic, as a large and diverse library of variants can be generated quickly. 

It has for example been used to modify heterologous pathway enzymes taken from thermophilic 

organisms to function better in Escherichia coli (Atsumi and Liao, 2008; Wang et al., 2000). ALE takes 

advantage of natural selection by continuously passaging a culture to fresh media, whereby mutants 

with increased growth rates will outcompete the other cells and become enriched in the culture 

(Winkler et al., 2013). The ALE process can be used to optimize microbial strains on a systems level, 

without any prior hypotheses about which genes should be targeted to increase growth and is very 

similar to natural evolution. After application of ALE, the final culture, or isolates from it, is subjected 

to sequencing to learn which mutations have arisen and might be responsible for the improved 

growth rate (Figure 2B). 

 

Figure 2: A) Illustration of how ALE can replace manual iterations through the Design-Build-Test-Learn cycle. B) The 
process of ALE through serial passaging of cultures. After a desired increase in fitness has been observed, isolates from 
the ALE experiment may be sequenced to investigate which mutations are responsible for the improvements. 

A B



 5 

Some traits of production strain performance are inherently related to growth and can thus be easily 

optimized with ALE. An example of this is substrate utilization. Growing cells on a sub-optimal 

substrate allows them to gradually adapt to the new condition, as there is a constant selection 

pressure for the cells that grow fastest on the new substrate (Apel et al., 2016). Evolution for 

substrate utilization can be a very useful part of strain engineering, as economic considerations can 

constrain the use of usual laboratory substrates in the production process (Hansen et al., 2017). 

Another growth-related trait that is easy to evolve is tolerance to toxic environments (Mohamed et 

al., 2017). This can also be easily achieved by growing cells in the toxic environment, whereby the 

most tolerant mutant strains will continuously be selected. In strain engineering this can be useful 

for overcoming product toxicity, which is the phenomenon where the production strain is inhibited 

by the compound it is producing. Product toxicity limits the attainable titers in the production 

process and thus the economic feasibility (Hansen et al., 2017). Additionally, during production 

processes the production strains are often grown under stressful conditions, e.g. due to suboptimal 

aeration and mixing and the use of complex feedstocks that may contain inhibitors or toxic residue 

from pretreatment. Chapter 1 describes these issues in more detail as well as an application of ALE 

to study the evolution of tolerance and the effect this has on the production characteristics of the 

strains. 

Arguably the most important characteristic of a production strain, at least for high-value products, 

is the production rate of the compound of interest. The production rate is not inherently related to 

growth, rather there is in general a tradeoff between biomass production and product formation. 

This tradeoff is a consequence of mass balance as both are sinks for limited cellular resources, the 

most important of which being carbon. Some compounds, however, are obligate by-products of 

growth, which means that the cell cannot grow without producing them. Such compounds are said 

to be growth-coupled and include for example ethanol and lactate under anaerobic growth of 

Saccharomyces cerevisiae and E. coli respectively (Clark, 1989; Deken, 1966). In addition to 

compounds that are naturally growth-coupled it is possible, through clever strain engineering, to 

construct mutant strains where the compound of interest is coupled to growth (von Kamp and 

Klamt, 2017). If a compound is growth-coupled it is possible to use ALE to indirectly optimize the 

production rate through selection of faster growing strains. Making production of a target 

compound growth-coupled often requires introduction of genetic modifications that are not 



 

 6 

intuitively obvious. It can therefore be beneficial to use model-based computational methods in the 

strain design process in order to engineer specific desired phenotypes, such as growth-coupling 

(Feist et al., 2010). Computational strain design and methods for constructing growth-coupled 

strains will be addressed in Part II of this thesis. 

After performing ALE and obtaining one or more mutant strains with improved characteristics, it is 

most often of interest to sequence the genome of the strains. The mutants might have accumulated 

random mutations that can have a detrimental effect on overall strain performance and must be 

reverted before the strain is used for production. Alternatively, a core set of mutations responsible 

for improved growth, can be identified and reintroduced into the background strain (Shepelin et al., 

2018). Additionally, sequencing the mutants can allow investigation of the mechanisms through 

which growth was improved (Sandberg et al., 2014). This can be useful for gaining an understanding 

of the strain’s characteristics and might allow for more direct rational strain engineering in the 

future. Unfortunately, it is rarely obvious why the mutations that arise in the evolved strains confer 

improvements in the phenotype. This challenge raises the need for a variety of experimental and 

computational methods for interpreting the sequencing results of strains evolved using ALE 

(Shepelin et al., 2018). Furthermore, the evolved strains can be probed in other ways to explore 

how their physiology has been altered through the ALE process. This can include growth 

characterization in various conditions or systems analyses such as transcriptomics or metabolomics. 

In combination with the genomic information gained from sequencing this can give a deeper 

understanding of the process through which the evolved strain improved. An example of how 

metabolomics can be used to elucidate details about evolved strains and the evolution process is 

described in Chapter 2, using the strains constructed in the study described in Chapter 1. Chapter 3 

describes a novel machine learning method for relating genetic mutations to changes in metabolism 

in a systematic way. Such a method can potentially help understand the effects of mutations 

observed in ALE experiments, as well as integrate other systems-level data obtained from evolved 

strains. 
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Abstract 

Tolerance toward high concentrations of product is a major barrier to achieving economically viable 

processes for biobased chemical production. Product tolerance cannot currently be rationally 

engineered due to lack of knowledge of the cellular mechanisms of chemical toxicity and tolerance. 

We used an automated platform to evolve parallel populations of Escherichia coli to tolerate 

previously toxic concentrations of 11 chemicals that have applications as polymer precursors, 

chemical intermediates, or biofuels. Re-sequencing of isolates from 88 independently evolved 

populations, reconstruction of mutations, transcriptomic and proteomic analyses, and cross-

compound tolerance profiling was employed to uncover general and specific tolerance mechanisms. 

We found that the broad tolerance of strains to chemicals varied significantly depending on the 

condition under which the strain was evolved in and that strains that acquired high levels of 

osmotolerance were also tolerant to most chemicals. Specific genetic tolerance mechanisms 

included alterations in regulatory, cell wall, and broad transcriptional and translational functions, as 

well as more chemical-specific mechanisms related to transport and metabolism. Finally, we show 

that pre-tolerizing the host strain can significantly enhance endogenous production of chemicals 

and is especially valuable when a large number of independently evolved isolates are screened. 
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1.1 Introduction 

Despite significant advances in synthetic and systems biology tools to engineer and study 

metabolism, developing microbial strains for commercial-level production of chemicals still remains 

a challenge (Van Dien, 2013). One of the major problems relates to the stressful conditions that 

production strains encounter in large-scale industrial production processes where numerous 

stresses that are not encountered in laboratory conditions are present (Deparis et al., 2017). Some 

of these stresses relate to the presence of high concentrations of a carbon source or toxic 

compounds related to feedstock processing such as ionic liquids (Mohamed et al., 2017). 

Irrespective of the production system or substrate, cells will encounter high intracellular and 

extracellular levels of the primary product that they have been engineered to produce. Frequently, 

high levels of such products can have inhibitory effects on the host organism, which effectively limits 

the titers that can be achieved and thereby the economic feasibility of the process. This issue can 

be overcome by engineering a production strain that is tolerant to higher titers of the product, 

however rational engineering of tolerance to either native or non-native chemical products is rarely 

possible due to a lack of knowledge about the molecular mechanisms of tolerance. This often 

necessitates choosing an otherwise difficult to engineer production host that already has desirable 

tolerance characteristics. Alternatively, one can use non-rational approaches to obtain strains with 

high chemical tolerance by mutagenesis, screening of transporter and other libraries, or adaptive 

laboratory evolution (ALE) (Hansen et al., 2017). ALE in particular has been successfully used to 

obtain strains that tolerate product chemicals (Winkler and Kao, 2014). In some cases the 

mechanisms of chemical tolerance have been at least partially deciphered through resequencing 

and other omics approaches applied to evolved strains (Haft et al., 2014; Kildegaard et al., 2014; 

Reyes et al., 2013), but in most cases the full toxicity and tolerance mechanisms remain to be 

determined. While ALE applied to product tolerance has resulted in strains that increase actual 

production of the target chemical (Mundhada et al., 2017), in many cases these strains have not 

shown improved production (Atsumi et al., 2010; Kildegaard et al., 2014). 

Here we take a broad approach to elucidating mechanisms of chemical tolerance across a wide 

spectrum of chemicals enabled by automated ALE as well as systematic genomic and phenotypic 

analyses of the resulting large collection of evolved strains. This approach allows us to determine 
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general features of chemical tolerance and build a large dataset as a reference for future tolerance 

studies. For two products we also investigate whether pre-evolving for tolerance can significantly 

improve production. A similar approach has been previously take to study adaptation to diverse 

stresses including some non-native chemical stresses in E. coli (Horinouchi et al., 2017), but in the 

present study we use significantly higher concentrations of chemicals to mimic industrially relevant 

conditions and evolve and characterize a significantly larger number of strains per condition. 

1.2 Materials and Methods 

1.2.1 Strains and media 

E. coli K-12 MG1655 (ATCC 47076) strain was used as a starting point strain for the adaptive 

laboratory evolution experiments and as reference strain for all subsequent characterization. 

Chemicals were purchased from either Sigma-Aldrich (Merck KGaA, Darmstadt, Germany) or Fisher 

Scientific (Part of Thermo-Fisher Scientific). Plasmids for isobutyric acid and 2,3-butanediol 

production were obtained from the authors (Xu et al., 2014; Zhang et al., 2011). 

M9 glucose medium supplemented with 10 g/L glucose was formulated with 1x M9 salts, 2 mM 

MgSO4, 100 µM CaCl2 and 1x trace elements. A stock solution of 10x M9 salts consisted of 68 g/L 

Na2HPO4 anhydrous, 30 g/L KH2PO4, 5 g/L NaCl, and 10 g/L NH4Cl dissolved in Milli-Q filtered water 

and autoclaved. M9 trace elements stock concentration was a 2000x solution containing of 3.0 g/L 

FeSO4·7H2O, 4.5 g/L ZnSO4·7H2O, 0.3 g/L CoCl2·6H2O, 0.4 g/L Na2MoO4·2H2O, 4.5 g/L CaCl2·H2O, 0.2 

g/L CuSO4·2H2O, 1.0 g/L H3BO3, 15 g/L disodium ethylene-diamine-tetra-acetate, 0.1 g/L KI, 0.7 g/L 

MnCl2·4H2O in Milli-Q filtered water and sterile filtered. 

1.2.2 Selection of initial chemical concentrations 

The toxicity of each of the chemicals was tested by screening growth of MG1655 in different 

concentrations. Biological triplicates of E. coli MG1655 were cultivated at 37 °C with 300 RPM 

shaking. After 14 to 18 h, the cultures were inoculated into M9 + 0.2 % glucose and one of the 

chosen chemicals at different concentrations. The cultures were then incubated in a BioLector 

microbioreactor system (m2p-labs GmbH, Baesweiler, Germany) at 37 °C with 1,000-rpm shaking. 

The growth rates at different concentrations were calculated for each chemical (Supplementary 
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Figure 1). Initial concentrations for adaptive laboratory evolution were chosen so that MG1655 

could obtain a growth rate of approximately 0.4 /h. 

The initial and final evolution concentrations, as well as the screening concentrations for all the 

chosen chemicals are shown in Table 1. 

Table 1: Concentrations of each chemical used during ALE and for growth screening. All concentrations are g/L. 
 

 
Initial ALE 

concentration 

 
Final ALE 

concentration 

Isolate 
screening 

concentration 

Cross-tolerance 
screening 

concentration 
1,2-propanediol 52 83 83 62 
2,3-butanediol 49 79 69 59 
Hexamethylenediamine 20 38 38 32 
Putrescine 20 38 38 32 
Glutarate 20 47.5 47.5 40 
Adipate 25 50 50 45 
Hexanoate 2 7.5 5 3 
Octanoate 3.5 10 8 8 
Isobutyrate 3 12.5 12.5 7.5 
Coumarate 4 20 10 7.5 
Butanol 5.7 16.2 11.34 11.34 

 
1.2.3 Adaptive laboratory evolution 

The starting strain K-12 MG1655 was adaptively evolved for higher concentrations of each chemical 

through independent parallel replicates. Bacterial cells were cultivated in M9 + glucose 

supplemented with the initial chemical concentration listed in Table 1, with gradual increase in each 

chemical concentration over the time span of the adaptation. Cells were serially passaged during 

exponential growth for approximately 40 days using an automated liquid-handler platform as 

described by LaCroix et al. (2017). Cells were cultured at 37 °C with full aeration at 1200 RPM stirring 

speed. Once OD600 reached approximately 1.0, 150 µL was passed into a new tube with 15 mL fresh 

media containing the respective chemical concentration. Over the course of the experiment, cells 

were kept in exponential growth phase in order to keep a constant selection pressure for growth 

rate. The OD600 was measured by a Sunrise Plate Reader (Tecan Inc., Switzerland). Growth rates 

were determined by computing the slope of log(OD) using linear regression with the Polyfit function 

in MATLAB (The Mathworks Inc., Natick, Massachusetts). When an increase in the apparent growth 
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rate was achieved (average growth rate for all of the parallel replicates) at a particular 

concentration, the chemical concentration was increased by 10-15%. This process was repeated in 

cycles until a significant increase in tolerated concentration was achieved. In incidents where the 

increase in the chemical concentration caused cells to crash, i.e. cell death, chemical concentration 

was reduced to a level that allowed cell growth. Periodically, samples were frozen in 25% v/v 

glycerol and stored at -80 °C for further use. 

1.2.4 Growth screening of ALE isolates 

1.2.4.1 Primary tolerance screening 

Populations from evolution endpoints were plated on LB agar plates and 10 individual colonies from 

each population were screen for growth at the maximum concentration for which robust growth 

rates were achieved during the evolution. Cultures of wild-type strain, E. coli K-12 MG1655, were 

used as controls. The isolates were inoculated in 500 µL M9 + glucose in deep-well plates and 

incubated in plate shaker at 37 °C and 300 RPM. The next day, cells were diluted 10X in M9 + glucose 

and 30 µL was transferred to clear-bottom 96 half-deep plates containing M9 + glucose 

supplemented with the corresponding toxic chemical at concentrations as in Table 1 (isolate 

screening concentration). The plates were incubated at 37 °C with 225 RPM shaking in a Growth 

Profiler screening platform (EnzyScreen BV, Heemstede, Netherlands). The resulting growth curves 

for all isolates were inspected qualitatively for isolates exhibiting robust growth as assessed by lag 

time, final OD and growth rate. Each of the 10 isolates from the primary screening was grouped 

according to close similarities based on the above criteria. For each population, isolates 

representative of each group were picked (2-3 isolates per population). 

1.2.4.1 Cross-tolerance screening 

The E. coli strains were inoculated into 300 µl of M9 + glucose medium in 96 deep well plates (in 

biological triplicates) and the cultures were incubated at 37°C and 300 RPM for overnight. Next day, 

30 µl of a 10-fold was added to 270 µl of M9 + glucose supplemented with chemicals in 96 well plate 

and the plates incubated in growth profiler (EnzyScreen BV, Heemstede, The Netherlands) at 37 °C 

and 225 RPM. The chemical concentrations are shown in Table 1 (Cross-tolerance screening 

concentration). 
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1.2.5 Genome editing of E.coli 

Strains containing the relevant single gene deletions were obtained from the Keio Collection and 

were transduced into the MG1655 background strain using the protocol described in (Lennen et al., 

2011). Multiple gene deletions were constructed using the protocol described in (Lennen et al., 

2011). Site directed changes in the E. coli genome of evolved strains were done using the protocol 

described in (Lennen et al., 2015). 

1.2.6 Quantification of 2,3-butanediol production 

The hsdR gene was deleted from each of the strains evolved on 2,3-butanediol. The strains were 

then transformed with pET-RABC plasmid (Xu et al., 2014) and precultured in 300 µl of M9 + glucose 

supplemented with 5 g/L yeast extract and kanamycin (50 µg/mL) in 96 deep well plate and 

incubated at 37 °C with 300 RPM overnight (incubated for 20 h) in quadruplicates. E. coli MG1655 

ΔhsdR/pET-RABC was used as a control. The following day, 20 µL of pre-inoculum was transferred 

into 2 mL of ALE-M9-YE-Km media in 24 deep well plates and incubated at 30 °C and 300 RPM. At 

24 h and 48 h, optical densities of the culture broths were determined at 600 nm (OD600nm). Then, 

400 µL of the cultures were harvested, centrifuged at 4000 RPM for 10 min and 30 µL of the collected 

supernatants were injected into high performance liquid chromatography (HPLC). Subsequently, the 

samples were subjected to electrospray ionization mass analysis. 

The amounts of 2,3-butanediol in the supernatants were quantified by HPLC (Ultimate 3000, 

Thermo Scientific, USA) equipped with an organic acid analysis column, Aminex® HPX-87H ion 

exclusion column (300 mm x 7.8 mm, Bio-Rad Laboratories, Denmark) connected to a refractive 

Index (RI) detector and a UV detector (205 nm, 210 nm, 254 nm and 280 nm).  An isocratic elution 

with flow rate of 0.5 mL/min of 5 mM sulphuric acid was used for 30 min. Under these conditions, 

stereoisomers of 2,3-butanediol were detected under the RI detector channel at the retention times 

of 17.4 min and 18.3 min. Using the peak areas of the stereoisomers, total amount of 2,3-butanediol 

was calculated. For absolute quantification a calibration curve was drawn using 1, 5, 10, 12.5, 15 

and 25 g/L concentrations (y = 6.5119x + 0.5464, R² = 0.9999). 

The exact mass of the compounds was analyzed by using Oribtrap Fusion (Thermo Scientific, USA) 

with a Dionex 3000 RX HPLC system (Thermo Scientific, USA) in the positive and negative ion mode. 
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1.2.7 Quantification of isobutyrate production 

The yqhD gene was deleted from each of the strains evolved on isobutyrate. The strains were then 

transformed with pIBA1 and pIBA7 plasmids (Zhang et al., 2011) and precultured into 300 µl of LB 

media supplemented with kanamycin (50 µg/mL) and ampicillin (100 µg/mL) in 96 deep well plate 

and incubated at 37 ºC with 300 RPM overnight (incubated for 18 h) (in quadruplicates). E. coli 

MG1655 ΔyqhD/pIBA1/pIBA7 was used as a control. The following day, 24 µL of pre-inoculum was 

transferred into 2.4 mL of half-FIT media (1:1 FIT media: MOPS of 200 mM) media supplemented 

with antibiotics. Then the culture plates were incubated at 30 °C and 300 RPM.  After 6 hours of 

incubation, OD600 was measured and the cultures were induced with 100 µM of IPTG and continued 

the incubation at 30 °C and 300 RPM. At 24 h, 48 and 72 h, OD600 was measured again.  Then, 300 

µl of the cultures were harvested, centrifuged at 4000 RPM for 10 min and 30 µL of the collected 

supernatants were injected into HPLC. Subsequently, the samples were subjected to electrospray 

ionization mass analysis. 

The amounts of isobutyrate in the supernatants were quantified by HPLC (Ultimate 3000, Thermo 

Scientific, USA) equipped with an organic acid analysis column, Aminex® HPX-87H ion exclusion 

column (300 mm x 7.8 mm, Bio-Rad Laboratories, Denmark) connected to a refractive Index (RI) 

detector and a UV detector (205 nm, 210 nm, 254 nm and 280 nm).  An isocratic elution with flow 

rate of 0.5 mL min-1 of 5 mM sulphuric acid was used for 30 min. Under these conditions, isobutyrate 

was detected under the 210 nm UV channel at a retention time of 20.3 min. Using the peak area, 

total amount of isobutyrate was calculated. For absolute quantification a calibration curve was 

drawn using 0.5, 1, 2.5, 4, 5, 7.5 10, and 12.5 g/L concentrations (y = 35.487x - 2.3142, R² = 0.9993). 

1.2.8 Resequencing 

Genomic libraries were generated using the TruSeq® Nano DNA LT Library Prep Kit   (Illumina Inc., 

San Diego CA). Briefly, 100 ng of genomic DNA diluted in 52.5 µL TE buffer was fragmented in Covaris 

Crimp Cap microtubes on a Covaris E220 ultrasonicator (Woburn, MA) with 5% duty factor, 175 W 

peak incident power, 200 cycles/burst, and 50-s duration under frequency sweeping mode at 5.5 to 

6°C (Illumina recommendations for a 350-bp average fragment size). The ends of fragmented DNA 

were repaired by T4 DNA polymerase, Klenow DNA polymerase, and T4 polynucleotide kinase. The 

Klenow exo minus enzyme was then used to add an 'A' base to the 3' end of the DNA fragments. 
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The adapters were ligated to the ends of the DNA fragments, and the DNA fragments ranging from 

300 - 400 bp were recovered by beads purification. Finally, the adapter-modified DNA fragments 

were enriched by 3 cycle PCR. Final concentration of each library was measured by Qubit® 2.0 

Fluorimeter and Qubit DNA Broad range assay (Life Technologies). Average dsDNA library size was 

determined using the Agilent DNA 7500 kit on an Agilent 2100 Bioanalyzer. Libraries were 

normalized and pooled in 10 mM Tris-Cl, pH 8.0, plus 0.05% Tween 20 to the final concentration of 

10 nM. Denaturated in 0.2N NaOH, 10 pm pool of 20 libraries in 600 µL ice-cold HT1 buffer was 

loaded onto the flow cell provided in the MiSeq Reagent kit v2 (300 cycles) (Illumina Inc., San Diego 

CA) 300 cycles and sequenced on a MiSeq (Illumina Inc., San Diego CA) platform with a paired-end 

protocol and read lengths of 151 nt. 

1.2.9 Resequencing data analysis 

The Illumina sequencing reads were analyzed with the Breseq pipeline (Deatherage and Barrick, 

2014) through the ALEdb platform (Phaneuf et al., 2018) to generate lists of mutations for each 

evolved strain. The reference strain for this analysis was E. coli K-12 MG1655 with the Genbank 

accession number NC_000913.3. 

1.2.9.1 Mapping mutations to genes 

Each mutation was mapped to one or more genes. Intragenic mutations were mapped to any 

gene(s) whose coding sequence overlapped with the mutation. Intergenic mutations were mapped 

to the closest gene downstream from the mutation. 

1.2.10 Growth data analysis 

The growth curves generated by the instruments were processed using the croissance python 

package (http://github.com/biosustain/croissance), which performs automated growth phase 

identification and growth parameter fitting. Biomass concentration was quantified by OD600 values. 

For each extracted growth rate, a normalized growth rate was calculated by subtracting the mean 

growth rate of the wild-type strain, MG1655, on the same plate and in the same medium. This was 

done to remove the effects of any between-plate and between-experiment growth variations. 

The croissance algorithm consists of two separate steps: 
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Step 1: The growth curve is smoothed and analyzed to find regions of exponential growth. This is 

done by identifying time intervals where the first- and second-order time derivatives of the 

smoothed biomass function are strictly positive. 

Step 2: Each growth phase identified in step 1 is fitted with an exponential function of the form 

!(#) = & ∙ ()∙* + , (1) 

where μ (growth rate) is of particular interest in this study. The offset parameter b is included to 

enable analysis of growth curves that are not background-subtracted. 

Post-processing was done to filter the returned growth rates. This served both to exclude growth 

rates from growth phases that were not thought to be real, and to select between several growth 

phases in the same growth curve. Growth rates higher than 1.5 h-1 were excluded, as were growth 

phases where the absolute value of the fitted offset parameter b was larger than a certain threshold, 

c (0.5 for growth profiler curves, 4 for Biolector curves). Growth phases where the initial biomass 

concentration deviated more than c from the fitted offset b were also excluded, as these were likely 

to be secondary growth phases. Furthermore, growth curves starting after a certain time point were 

also excluded. This was done to prevent growth from contaminations from being used. The chosen 

time cutoff was dependent on the growth conditions (30-40 hours). Very short growth phases were 

also excluded as they were most likely artifacts. For standard M9 glucose cultures growth phases 

shorter than 2 hours were excluded, while the cutoff was 5 hours for cultures in the stress 

conditions. 

1.3 Results 

We selected 11 chemical compounds representing a diversity of chemical categories with variable 

initial levels of toxicity to E. coli (Figure 1a). We chose the chemicals to 1) include compounds that 

have potential as a bio-based product, 2) have examples of multiple chemical compound classes 

(diols, diamines, diacids, fatty acids, aromatic compounds), 3) include in four cases two examples of 

the same compound class, and 4) to have compounds that had the right solubility and volatility 

profile to allow ALE and downstream characterization. We included two compounds (octanoate and 

n-butanol) that have previously been used in ALE studies in E. coli (Reyes et al., 2013; Royce et al., 
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2015). For the majority of the compounds there have been efforts to engineer improved production 

in E. coli. All but one of the compounds (putrescine) are compounds that do not occur naturally in 

E. coli metabolism. The initial concentrations of the compounds were chosen so that the wild type 

strain would grow at a growth rate of approximately 0.4 h-1. 

We used an automated serial passaging platform to independently evolve a total of 88 populations 

of E. coli MG1655 in M9 glucose base media to tolerate previously toxic levels of the 11 target 

chemicals. For each chemical, 8 independent populations were evolved. The growth medium was 

kept at neutral pH to ensure an evolutionary pressure for tolerating the specific chemical 

compounds rather than tolerance towards low or high pH. During the laboratory evolution process, 

we increased the chemical concentrations from the initial concentration in a stepwise manner over 

approximately 800 generations. The starting and end concentrations that allowed population 

growth are listed in Table 1 and shown in Figure 1b. From each endpoint population, we isolated 10 

strains that were subjected to growth screening, to test their ability to tolerate the chemical they 

had been evolved in the presence of. Among these isolates, 2-3 isolates per population were 

selected for further characterization, representing as diverse growth characteristics as possible. This 

resulted in a total of 224 strains that showed robust tolerance to the chemical that they were 

evolved in the presence of. All 224 strains were subjected to whole genome resequencing and cross-

compound tolerance screening. A subset of the mutations were reconstructed in clean background 

strains to confirm their causative role in tolerance. Finally, in the cases of isobutyrate and 2,3-

butanediol we engineered production pathways into all genetically distinct isolates in order to 

determine if evolved product-tolerant strains actually show increased production when the product 

is made endogenously. The overall workflow of the study is shown in Figure 1c. 
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Figure 1: a) Chemicals selected for the study grouped by chemical category. b) Initial and final concentrations of the 
chemicals used during ALE. c) Overall workflow of the study. 

Resequencing of the evolved isolates showed that the median number of sequence variants per 

strain was 6, although a subset of the strains had more than 10 times this number. This drastic 

difference was determined to be caused by a hypermutator phenotype, as all the strains in question 

had mut* mutations (e.g. mutS). Since these hypermutator strains were assumed to have 

accumulated mostly random neutral variants, they were not included in further analysis of sequence 

variants in the evolved strains. The 1,2-propanediol condition was also dropped from the sequence 

variant analyses as only three isolates from a single population were not hypermutators. The 

median number of variants per strain among the remaining 189 strains was 5 and the numbers of 

variants for strains evolved in different conditions were quite similar (Figure 2a). A subset of strains 

contained large duplications - these were especially common in strains evolved on isobutyrate and 

coumarate (Figure 2a). A full list of the mutations in each strain can be found in Supplementary 

Table 1. 
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To investigate which cellular functions were affected by the mutations, the functional domains of 

all the mutated genes were analyzed (Figure 2b). More than half of the variants affect genes with 

regulatory or transport functions, indicating that these gene classes play a significant role in the 

evolution of tolerance. 

Even in the non-mutator strains, it is likely that a subset of the observed mutations have arisen by 

random chance and are thus not associated with tolerance. However, the availability of isolates 

from independent parallel ALE populations allows some degree of distinction between random and 

adaptive mutations. Specifically, if a mutation is observed in isolates from several independent 

populations, it is quite unlikely that it is a product of chance. In four conditions we identified genes 

that were mutated in all isolates from that condition: all glutarate and adipate strains had kgtP 

mutations while all isobutyrate strains had pykF mutations and all 2,3-butanediol strains had relA 

mutations. Aside from these, mutations in a number of other genes were observed in at least one 

strain from each population or in almost all populations as shown in Table 2. We observed limited 

overlap between the different evolution conditions in terms of the of the genes that were mutated 

- this set of genes included primarily global regulators (e.g. rpoB, rpoC and rpoA) and a handful of 

other genes that are commonly found to be mutated in E. coli ALE studies (Wang et al. 2018). In 

cases where the same gene was mutated in different evolution conditions, e.g. the RNA polymerase 

genes, the specific mutations were usually distinct indicating that the effects of the mutations may 

also be different (Supplementary Figure 2). 

Table 2: The five most commonly mutated genes for each condition. The numbers in parentheses denote the number of 
ALE populations in which mutations in the given gene were observed in at least one strain. 
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Figure 2: a) Boxplots showing the distributions of mutations per strain and duplication size per strain for each condition. 
The numbers above the boxes show the values of outliers not shown in the plots. b) Genetic variant landscape. The chart 
shows an overview of the genes mutated in the different conditions and the functional classifications of these genes. The 
width of the lines is proportional to the number of strains in which a given gene was mutated. 

In order to determine whether the strains had tolerance to a broad range of chemicals, we 

measured growth rates of all 224 isolates in the presence of moderately toxic levels of each of the 

11 chemicals. In addition, we measured growth rates of all the strains on M9 glucose to determine 

general growth improvements and on M9 glucose + 0.6 M NaCl to determine osmotic stress 

resistance of the strains. We found that strains evolved on diamines, diols and diacids were in 

general resistant to the other chemical of the same functional class (Figure 3a). In contrast, strains 

evolved on either of the medium chain-length fatty acids were not tolerant to the other medium 

chain-length fatty acid. We also tested whether strains that were tolerant to four specific 

compounds (HMDA, 2,3-butanediol, adipate and isobutyrate) were also tolerant to other similar 

compounds (diamines, diols, diacids or carboxylic acids, respectively; Figure 3b). We found that in 

most cases strains tolerant to one compound also have significantly higher growth rates on similar 

compounds compared to the ancestral strain. 
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Figure 3: Chemical cross-tolerance between similar and dissimilar compounds. a) Cross-tolerance between the 
compounds used for ALE. Circle color and size represent the mean growth rate of the group of strains relative to the 
unevolved reference strain. The grey boxes indicate pairs of compounds that are structurally similar. The growth rates 
on 0.6 M NaCl and M9 are also shown. b) Tolerance to compounds structurally related to four of the compounds used 
for ALE. Blue points represent growth rates of evolved strains, while the orange points show the growth rates of the 
reference strain. c) Distribution of global tolerance values for strains evolved on each of the 11 compounds d) Global 
tolerance as a function of osmotolerance (growth rate on NaCl) and improvement in baseline growth (growth on M9 
glucose). 

We sought to understand some of the general mechanisms that make an E. coli strain tolerant to a 

broad range of chemicals. We used the average growth rate of an ALE strain relative to the wild type 

strain across all 11 chemicals as a metric of global chemical tolerance of a strain. The global chemical 

tolerance of strains depended significantly on what chemical the specific strain had been evolved 

to tolerate (F-test, F = 10.06, p < 10-13; Figure 3c). Strains evolved on HMDA had typically high 

chemical tolerance whereas strains evolved on coumarate and hexanoate were significantly less 

tolerant to most other chemicals than the wild-type strain. We found that osmotic stress tolerance 

(as measured by the growth rate of the strain in 0.6 M NaCl) was predictive of global chemical 



 

 24 

tolerance (Pearson’s r = 0.52, p < 10-20) (Figure 3d) whereas growth rate of the ALE strain in M9 

glucose minimal media was not (Pearson’s r = 0.06, p = 0.31) (Figure 3d). Interestingly, the 

osmolarity of the medium at the end of the ALE experiments did not seem to be associated with 

either osmotolerance or global tolerance of the strain (Supplementary Figure 3). 

The mechanisms by which strains acquired tolerance to each chemical were usually quite complex 

and hard to decipher from the resequencing data alone. However, in the cases where transporter 

mutations were found in many strains it was possible to formulate a clear mechanistic hypothesis 

and test it experimentally. All strains evolved to tolerate adipate and glutarate contained mutations 

in the kgtP gene, which encodes an active alpha-ketoglutarate importer (Seol and Shatkin, 1991). 

Approximately half of these mutations were clearly deleterious for the transport function, i.e. 

deletions or insertions causing frameshifts or SNPs causing premature stop codons. We tested the 

ability of a kgtP deletion strain to grow in the presence of high levels of glutarate or adipate and 

found that especially on glutarate a kgtP deletion strain grew significantly faster than the wild type 

strain (Figure 4a and b).  Some of the diacid-evolved strains also contained apparent loss-of-function 

mutations in two other transporters, proV (ATP-binding subunit of the glycine-betaine transporter 

ProVWX) and ybjL (putative uncharacterized transporter). Deleting these transporters in addition to 

kgtP deletion increased the growth rate further on glutarate and adipate (Figure 4a and 4b) with 

the triple deletion strain reaching approximately the same growth rate on glutarate as the best 

evolved strains. Furthermore, the strains where kgtP was either deleted or otherwise inactive were 

not able to grow with glutarate as a carbon source whereas the wild type and proV and yjbL single 

deletion strains were able to grow in this condition (data not shown). 
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Figure 4: Transport modulation as a tolerance mechanism for diacids. a) Growth curves of reference strain MG1655, four 
genetically distinct glutarate-evolved strains as well as single, double and triple transporter deletion strains on 47.5 g/L 
glutarate (in M9 Glucose media). b) Growth curves of reference strain MG1655, four genetically distinct adipate-evolved 
strains as well as single, double and triple transporter deletion strains on 50 g/L adipate (in M9 Glucose media). 

We wanted to determine whether pre-evolving strains to tolerate a non-native chemical product 

would result in enhanced production when the relevant pathways are engineered into a tolerant 

host strain. We chose the two relatively simple pyruvate-derived compounds isobutyrate and 2,3-

butanediol as examples for this study because production of these compounds had previously been 

demonstrated in E. coli (Xu et al., 2014; Zhang et al., 2011) and engineering the production 

background into a large number of background strains was feasible. In the case of isobutyrate we 

also have some understanding of tolerance mechanisms from resequencing and mutation 

reconstructions. As previously mentioned, all isobutyrate-evolved strains had deletions of the pykF 

isozyme of pyruvate kinase, and this deletion alone was demonstrated to significantly improve 

isobutyrate tolerance (Figure 5a). In addition to pykF deletions some of the strains also had point-

mutations in acetolactate synthase regulatory subunits ilvH/N that are involved in feedback 

inhibition by valine. These mutations alone or in combination with pykF deletions did not confer 

improved isobutyrate tolerance (Figure 5b), but significantly improved strain growth in the presence 

of exogenous valine (Figure 5c), suggesting that they disable or reduce valine feedback inhibition. 

We hypothesize that the mechanism of isobutyrate toxicity is inhibition of 2-isopropylmalate 

synthase (encoded by the gene leuA) due to the similarity between isobutyrate and the native 

substrate alpha-ketoisovalerate (KIV) (Figure 5d). This inhibition would lead to overproduction of 

valine and feedback inhibition of the biosynthesis of all branched-chain amino acids. 
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Figure 5: Isobutyrate tolerance modulated by variants in metabolic genes. a) pykF deletion strain growth compared to 
growth of evolved and wild type strains in the presence of toxic concentrations of isobutyrate (12.5 g/L). b) Growth 
comparison of the reference strain, the IBUA8-3 isolate, and the same isolate where the ilvH point-mutation was reverted 
to wild type in the presence of toxic concentrations of isobutyrate. c) Comparison of growth curves of the same strains 
shown in panel b in the presence of 1 g/L valine. d) Schematic description of the proposed mechanism of toxicity and role 
of the major genetic changes identified in IBUA8-3 strain. 

We engineered the native production of isobutyrate into wild type MG1655 and 12 genetically 

distinct isobutyrate-tolerant strains by expressing three heterologous genes from plasmids and 

deleting a competing pathway in each strain (Figure 6a). The engineered ALE strains had highly 

variable levels of production of isobutyrate compared to the engineered reference strain (Figure 

6b). In particular some strains produced almost no isobutyrate and also grew very poorly. On the 

other hand, there were ALE strains that produced more than three times more isobutyrate than the 

engineered wild-type with a particularly large difference in production during the first 24 hours. The 

strains that produced and grew best (IBUA8-3 and IBUA8-10) both had ilvH/N mutations whereas 

the other strains lacked these mutations, indicating that the removal of acetolactate synthase 

feedback inhibition was beneficial to production. 

We also engineered production of 2,3-butanediol into MG1655 and 20 tolerant ALE strains by 

expressing three heterologous genes in the strains (Figure 6c). Deletion of the native gene hsdR 

encoding a restriction enzyme was necessary to perform the transformation. Again, there was 

significant variation in 2,3-butanediol among the engineered ALE strains, but in this case the 

majority of strains had production levels similar to the engineered wild type strain with only two 

specific ALE strains showing improved production of 2,3-butanediol compared to engineered wild 

type strain (Figure 6d). We could not identify a mechanistic basis for the improved production even 

if we could quite clearly pinpoint which mutations were responsible for the improved production 

due to differences between isolates obtained from the same ALE populations (Supplementary Table 

1). 
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Figure 6: Production of isobutyric acid and 2,3-butanediol using pre-tolerized strains. a) Production pathway schematic 
for isobutyrate, with heterologous expression of an acetolactate synthase AlsS, ketoisovalerate decarboxylase KIVD, and 
PadA to generate isobutyric acid from ketoisovalerate (KIV), with deletion of native yqhD to prevent reduction of 
isobutyraldehyde (IBAL) to isobutanol (IBOH). b) Production of isobutyrate in wild-type and evolved isolates harboring 
production plasmids for isobutyrate and deletion of yqhD after 24 and 48 hours growth in FIT (feed-in-time) medium. c) 
Production pathway schematic for 2,3-butanediol from pyruvate, with heterologous expression of BudA, BudB, and 
BudC. d) Production of 2,3-butanediol in wild-type and evolved isolates harboring a production plasmid for 2,3-
butanediol and deletion of hsdR after 48 hours in M9 + 5% glucose + 0.5% yeast extract. 

1.4 Discussion 

Consistent with previous findings described in the literature, our results show that ALE can be used 

to significantly increase the tolerance of microbial cells to an exogenously supplied chemical of 

interest. The relative increases in tolerance were largest for the chemicals that initially were most 

toxic to E. coli (primarily acids) whereas tolerance to compounds that were initially tolerated at high 

levels, such as diols, was increased more modestly. Since we neutralize the acids, the reasons for 

limited ability of E. coli to tolerate acids is not related to low pH. It is likely that further increases in 

tolerance would be achievable for most compounds by continuing the evolution experiments at 

ever increasing chemical concentrations, however, physico-chemical properties such as volatility 

and solubility become issues for many of the compounds at higher concentrations, thus limiting the 

ability to further evolve tolerant strains. In comparison to previous ALE studies, the systematic 

approach used here allows direct comparisons of the evolvability of E. coli to different conditions. 
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Resequencing of 224 tolerant strains obtained from 88 independently evolved populations revealed 

that most strains had a relatively modest number of mutations and that large genome 

rearrangements were also rare. In principle, this makes it possible to develop a good understanding 

of which genes are important for tolerance to a given compound. However, the overall genomic 

variant landscape across all strains is quite complex with most genes targeted by mutations only in 

specific evolution conditions. These results indicate that there is high diversity in mechanisms of 

toxicity and tolerance between the different chemicals. The interpretation of the resequencing data 

alone is also made difficult by the high frequency of mutations in regulatory genes that are known 

to have pleiotropic effects (RNA polymerase subunits, genes involved in stringent response, 

termination factors, etc.). The overall conclusions from the resequencing results is that there are no 

universal chemical tolerance mechanisms at the genetic level and that tolerance usually involves 

both specific (e.g. transporters) and general (e.g. adjustments in global regulation) adaptations. 

The cross-tolerance screening showed that in the case of diacids, diols and diamines, strains evolved 

to tolerate one specific chemical usually had tolerance to the other chosen chemical of the same 

class (Figure 3a). However, for the medium chain fatty acids hexanoate and octanoate, this pattern 

of cross-tolerance was not observed. It is not clear why this is the case, in particular since the genetic 

adaptations were not necessarily more similar between e.g. diamines than medium chain fatty 

acids. Furthermore, strains evolved to tolerate a specific chemical (Figure 3b) tend to be tolerant to 

a wide range of highly similar chemicals, which is of great practical relevance. Because of this, it is 

only necessary to perform ALE once for a category of chemicals (e.g. diols) in order to obtain a series 

of potential platform strains that have high levels of tolerance within the category. 

Cross tolerance profiling could also be used to define a measure of global chemical tolerance of each 

evolved strain. Global tolerance was found to be highly variable within the set of genetically distinct 

strains evolved under each condition and even more so between strains evolved under different 

conditions. Global tolerance was found to be unrelated to the growth rate of the strain on the base 

M9 glucose medium (Figure 3d) indicating that the fast growth and stress tolerance phenotypes are 

not related to each other biologically. On the other hand, the ability of a strain to grow in osmotic 

stress conditions (NaCl) was found to be significantly predictive of the global chemical tolerance of 

the strain (Figure 3d). This result is expected due to the high osmolarity of the final growth medium 

for many chemicals although the osmolarity of the evolution condition was not predictive of global 
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tolerance of a strain. Some of the strains that were highly osmotolerant (and hence globally 

chemical tolerant) contained mutations in genes such as nagC and proV that have previously been 

implicated in osmotolerance in ALE experiments (Winkler et al., 2014). Unfortunately, the exact 

mechanisms by which many of the observed mutations or their combinations confer osmotolerance 

remain somewhat elusive. The result that osmotolerance is predictive of general chemical tolerance 

indicates that choosing a well-characterized osmotolerant strain as a starting platform strain for 

metabolic engineering efforts may in general be a good strategy for any target chemical. 

Determining the exact mechanisms of chemical tolerance was challenging, but in specific cases 

where convergent mutation targets in either transporters or metabolic genes were discovered in 

independently evolved strains, mechanistic hypotheses could be generated and validated 

experimentally. Since all strains evolved on adipate and glutarate contained apparent loss-of-

function mutations in a gene encoding a known alpha-ketoglutarate transporter (kgtP), this 

transporter was likely the primary transporter importing the two diacids. Indeed, deletion of the 

transporter conferred a large increase in tolerance and prevented growth with glutarate as the sole 

carbon source. As alpha-ketoglutarate is structurally similar to glutarate and adipate, the 

transporter most likely has significant promiscuous activity towards the two diacids. Two further 

transporters were mutated in specific diacid-tolerant strains and a triple deletion of these 

transporters was sufficient to achieve levels of tolerance to glutarate and adipate almost on par 

with the evolved strains. One of these genes encoding transporters (proV, encoding the ATP-binding 

subunit of the ProVWX glycine betaine transporter complex) is a known to import the 

osmoprotectant glycine betaine whereas the other one (yjbL) is previously completely 

uncharacterized. As proV mutations were also observed in many other strains, it is likely that the 

ProVWX transporter can promiscuously import many of the chemicals and deleting proV is therefore 

beneficial for chemical tolerance in general. 

Exogenous chemical tolerance alone is  not a very useful phenotype for metabolic engineering 

applications where the strains are engineered to produce a chemical endogenously. In order to 

demonstrate that pre-evolving for exogenous tolerance could help in obtaining better endogenous 

production strains we engineered production pathways for isobutyrate and 2,3-butanediol into 

genetically distinct strains that had been evolved to tolerate the respective compounds. In both 

cases we found that engineered ALE strains did not generally show increased production compared 
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to the similarly engineered wild-type strain. However, for both isobutyrate and 2,3-butanediol we 

could identify specific strains that did have significantly higher production. This indicates that pre-

evolving for exogenous tolerance would be a viable strategy for obtaining improved production 

strains as long as a sufficient number of independently evolved and genetically distinct strains are 

created and screened. With rapid improvements in genetic manipulation and automation 

technologies, engineering the same pathway into multiple strain backgrounds can be readily done, 

making this approach feasible. 

All isobutyrate-evolved strains contained pykF mutations the majority of which were clear loss-of-

function mutations. pykF mutations are commonly seen in many E. coli ALE experiments (Wang et 

al. 2018; Phaneuf et al. 2018) and pykF deletions have also been proven to allow increased 

production of many metabolites (Harder et al., 2016; Sengupta et al., 2015). It is not clear exactly 

how pykF deletion would specifically increase isobutyrate tolerance, but this deletion has been 

shown to have broad effects in redirecting fluxes in central carbon metabolism and in changing the 

regulation of pyruvate supply (Al Zaid Siddiquee et al., 2004). Deleting pykF conferred significantly 

improved tolerance to isobutyrate, but in terms of production the different ALE strains showed very 

different levels ranging from no production to three times higher production than the wild type 

strain, indicating that pykF mutations alone did not explain production differences. The highest 

producing strains from population IBUA8 had mutations in ilvH/N encoding regulatory subunits of 

acetolactate synthases. These mutations were shown to alleviate feedback inhibition by valine, 

which may explain their ability to produce higher levels of isobutyrate as the engineered strains 

contain a heterologously expressed acetolactate synthase AlsS, which increases not only isobutyrate 

production but also production of branched-chain amino acids including valine. In the case of 2,3-

butanediol production, only one of the engineered evolved strains had considerably higher 

production than the wild-type strain. The genotype of the strain did not provide clear clues to the 

reasons for improved production although the high producing strain was the only one containing a 

mutation in the acrB gene encoding a subunit of the AcrB/AcrB/AcrZ/TolC multidrug efflux pump. 

However, the mutation present in the strain was a frameshift mutation close to the 5’ end of the 

gene indicating that the efflux pump was likely inactivated. 
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1.5 Conclusion 

In this study we used ALE to evolve strains of E. coli to tolerate high concentrations of 11 different 

industrially relevant chemicals. The tolerated concentrations increased by factors of 60 % to 400 %. 

Genome sequencing of the evolved strains showed that the median number of mutations per strain 

was 6, and that only a small degree of mutation overlap was seen between conditions and even 

between independently evolved strains in the same condition. This made it difficult to infer 

mechanisms of tolerance in all but a couple of cases. Cross-compound tolerance screening revealed 

a general trend of cross-tolerance between compounds of the same class. This suggests that a single 

broadly tolerant platform strain could be used for production of several compounds of the same 

class. Furthermore, we observed that tolerance to high osmolarity was predictive of the overall 

tolerance to all 11 compounds, suggesting that high osmolarity is a significant factor of toxicity at 

the utilized concentrations. For two compounds, the evolved strains were transformed with 

plasmids carrying production pathways and screened for improved production compared to the 

wild-type. In both cases we could identify strains that produced considerably better than the wild-

type, although the majority of evolved strains had similar or reduced production compared to the 

wild-type. This suggests that pre-evolving a strain to tolerate the target compound before 

engineering production can be a viable strategy as long as a large number of independently evolved 

strains can be isolated and screened. 
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1.7 Supplementary Materials 

Supplementary Table 1: Summary of the mutations and mutated genes in all the non-mutator strains. The mutation 
names denote the type, location and change of the mutations. 

 
GENES MUTATIONS 

12PD4-6 relA, metJ, yeaR, sspA, rpsA SNP-3377240-G, SNP-4128078-G, SNP-2912634-G, SNP-962923-T, MOB-1879829-Δ1-: 

12PD6-3 lrhA, rpoA, fabR, dusA, yfgF SNP-4161155-A, SNP-4261586-C, SNP-3440194-A, MOB-2628616-IS2-5, MOB-2406831-IS2-5 

12PD6-9 rpoA, fabR, yfgF, ypjA SNP-3440194-A, MOB-2628616-IS2-5, SNP-2780609-C, SNP-4161155-A 

23BD1-6 gabP, nanK, rnb, metJ, elfA, rpoB, 
purT, relA 

MOB-998193-IS5-4, SNP-4182583-T, SNP-2794550-G, SNP-1931977-G, SNP-3369969-A, DEL-
2911491-7528, SNP-4128380-A, MOB-1347480-IS5-4 

23BD1-9 gabP, nanK, rnb, metJ, elfA, rpoB, 
purT, relA 

MOB-998193-IS5-4, SNP-4182583-T, SNP-2794550-G, SNP-1931977-G, SNP-3369969-A, DEL-
2911491-7528, SNP-4128380-A, MOB-1347480-IS5-4 

23BD2-4 nanK, uspC, metJ, rpoC, rpsA, 
gtrS, relA 

SNP-1979639-C, MOB-4128293-IS5-4, SNP-4186152-G, SNP-3369969-A, SNP-962056-T, MOB-
580116-IS5-4, SNP-2470411-G, DEL-2911491-7528 

23BD2-7 metJ, rpoC, nanK, relA, rpsA MOB-4128293-IS5-4, MOB-1096841-IS2-5, SNP-4186152-G, SNP-3369969-A, SNP-962056-T, 
MOB-580116-IS5-4, DEL-2911491-7528 

23BD2-9 metJ, rpoC, nanK, relA, rpsA MOB-4128293-IS5-4, SNP-4186152-G, SNP-3369969-A, SNP-962056-T, MOB-580116-IS5-4, 
DEL-2911491-7528 

23BD4-3 yeaR, mprA, rnb, fadB, umuD, 
metJ, rpoC, purT, relA 

SNP-1347775-A, SNP-4128361-C, SNP-2810756-T, SNP-2913536-T, DEL-4187816-15, SNP-
1931977-G, MOB-1879829-Δ1-:, SNP-4031019-A, SNP-1230727-A 

23BD4-4 yeaR, umuD, rpoC, metJ, purT, 
relA 

SNP-4128361-C, SNP-1931977-G, MOB-1879829-Δ1-:, SNP-2913536-T, DEL-4187816-15, SNP-
1230727-A 

23BD4-7 rpoC, nanK, metJ, relA SNP-4186274-T, SNP-3369969-A, SNP-4128169-G, DEL-2911491-7528 

23BD5-1 yeaR, spoT, umuD, metJ, rpoC, 
purT, relA 

SNP-4128361-C, MOB-1879829-Δ1-:, SNP-3823036-C, SNP-2913536-T, DEL-4187816-15, SNP-
1931977-G, SNP-1230727-A 

23BD5-7 ybeT, nanK, ybhP, ydhK, rpoC, 
metJ, zntR, relA 

SNP-4186274-T, SNP-1722386-T, SNP-4128379-T, SNP-824028-G, SNP-3369969-A, SNP-
3438773-G, DEL-2911491-7528, SNP-679090-G 

23BD5-10 rpoC, nanK, metJ, relA SNP-4186274-T, SNP-3369969-A, SNP-4128169-G, DEL-2911491-7528 

23BD6-1 essD, rpoC, metJ, nusG, purT, relA DEL-575786-3027, DEL-2912618-10, SNP-4185573-G, SNP-1930993-G, SNP-4128250-C, SNP-
4178172-G 

23BD7-4 treR, nanK, elfD, tolC, metJ, rpoC, 
yhjA, flu, purT, relA 

SNP-4128386-C, MOB-3668878-IS2-5, SNP-4186152-G, MOB-4466841-IS5-4, SNP-1931668-G, 
SNP-3369969-A, DEL-2911491-7528, SNP-3178128-G, SNP-2073463-A, MOB-998719-IS2-5 

23BD7-5 acrB, nanK, elfD, metJ, rpoC, flu, 
purT, relA 

SNP-4128386-C, SNP-4186152-G, SNP-3369969-A, MOB-998719-IS2-5, DEL-2911491-7528, 
INS-484102-AT, SNP-2073463-A, MOB-1931499-IS5-4 

23BD7-7 treR, nanK, elfD, tolC, metJ, rpoC, 
yhjA, flu, purT, relA 

SNP-4128386-C, MOB-3668878-IS2-5, SNP-4186152-G, MOB-4466841-IS5-4, SNP-1931668-G, 
SNP-3369969-A, DEL-2911491-7528, SNP-3178128-G, SNP-2073463-A, MOB-998719-IS2-5 

23BD8-2 ygaH, iscR, relA, rpoB, pyrE, lon SNP-2661816-G, SNP-2913641-T, SNP-4184579-G, DEL-3815810-1, SNP-2810459-C, SNP-
461034-G 

23BD8-7 ygaH, iscR, metJ, lacZ, rpoB, pyrE, 
relA 

DEL-3815810-1, DEL-365742-1, SNP-2661816-G, SNP-4128212-G, SNP-2810459-C, SNP-
2913641-T, SNP-4184579-G 

ADIP1-1 sspA, kgtP, gltP, ybjL, proV, yicC, 
uvrB, pyrE 

SNP-814029-G, DEL-3377068-21, MOB-2725207-IS1-9, SNP-3815823-A, DEL-2804648-38, 
SNP-4294366-T, DEL-889569-1, SNP-3816848-T 

ADIP1-9 allD, sspA, kgtP, ligA, gltP, ybjL, 
proV, yicC, pyrE 

DEL-3377068-21, SNP-2530235-T, MOB-2725207-IS1-9, SNP-3815823-A, SNP-546309-T, DEL-
2804648-38, SNP-4294366-T, DEL-889569-1, SNP-3816848-T 

ADIP2-5 lacY, rph, nagC, kgtP SNP-362830-A, MOB-700529-IS1-9, DEL-3815884-2, SNP-2725613-A 

ADIP2-6 lacY, rph, nagC, kgtP MOB-700529-IS1-9, SNP-362830-A, SNP-2725613-A, DEL-3815884-2 

ADIP2-10 ydcD, pyrE, nagC, kgtP SNP-1530007-A, MOB-700628-IS5-4, DEL-3815810-1, SNP-2725613-A 

ADIP3-2 yfgO, sspA, kgtP, ybjL, proV, yicC, 
pyrE 

DEL-3377068-21, MOB-2725207-IS1-9, SNP-3815823-A, DEL-2804648-38, SNP-2614996-G, 
SNP-3816848-T, MOB-889534-IS5-4 

ADIP3-4 yeaR, kgtP, sspA, ybjL, yhiL, proV, 
yicC, mltD, pyrE 

DEL-3377068-21, INS-233963-GT, MOB-2725207-IS1-9, SNP-3815823-A, MOB-3633911-IS5-4, 
DEL-2804648-38, MOB-1879829-Δ1-:, SNP-3816848-T, MOB-889534-IS5-4 

ADIP3-8 sspA, kgtP, ybjL, proV, yicC, pyrE DEL-3377068-21, MOB-2725207-IS1-9, SNP-3815823-A, DEL-2804648-38, SNP-3816848-T, 
MOB-889534-IS5-4 

ADIP4-8 purL, kgtP, malQ, ybjL, yphC, 
pdxJ, srmB, nagA, rnt, metL 

DEL-4130167-462, SNP-1728708-G, SNP-2713302-T, MOB-889488-IS1-9, SNP-2675452-C, 
SNP-2724590-T, SNP-3548179-T, SNP-2701175-C, SNP-2693818-G, INS-702444-
GCATAACGCGCACGCCCTGTTTCATCAGCTCATCGC 

ADIP6-3 spoT, kgtP, ubiE, proQ, nagC, ybjL, 
proV 

SNP-3823700-T, SNP-700928-A, DEL-2804864-13, SNP-1915297-A, SNP-2725155-T, MOB-
889534-IS5-4, SNP-4019173-G 

ADIP6-9 spoT, kgtP, proQ, nagC, ybjL, 
proV, icd, ycjG 

SNP-3823700-T, SNP-1196319-A, SNP-700928-A, SNP-1915297-A, SNP-2725155-T, MOB-
889534-IS5-4, SNP-1389396-C, DEL-2804835-7 
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ADIP6-10 spoT, kgtP, proQ, nagC, ybjL, proV SNP-2805493-T, SNP-3823700-T, SNP-700928-A, SNP-1915297-A, SNP-2725155-T, MOB-
889534-IS5-4 

ADIP7-2 kgtP, yagL, rpoS, yneO, hns, pstS SNP-2725329-A, SNP-293574-G, MOB-1293038-IS1-9, MOB-1598223-IS5-4, DEL-2867359-9, 
INS-3911001-TTTC 

ADIP7-5 ybjL, idnR, proV, sspA, kgtP MOB-889540-IS5-4, SNP-3377240-G, DEL-2725643-1, MOB-4490689-IS1-9, DEL-2804864-13 

ADIP8-3 pstS, yehD, hns, kgtP MOB-1293015-IS1-8, SNP-2724588-T, DEL-2192452-1, MOB-3911563-IS1-9 

ADIP8-7 pstS, yehD, hns, kgtP MOB-1293015-IS1-8, SNP-2724588-T, MOB-3911563-IS1-9, DEL-2192452-1 

ADIP8-10 pstS, insI1, yehD, hns, kgtP MOB-1293015-IS1-8, MOB-280003-IS5-4, SNP-2724588-T, DEL-2192452-1, MOB-3911563-
IS1-9 

BUT1-2 tqsA, adeP, manY, rob, cspC, pyrE DEL-3815810-1, SNP-3895843-C, DEL-1907330-2, SNP-1903497-C, SNP-4635114-C, MOB-
1673883-IS5-4 

BUT1-3 manY, pyrE, tqsA, cspC, rob SNP-4635114-C, SNP-1903497-C, MOB-1673883-IS5-4, DEL-1907330-2, DEL-3815810-1 

BUT1-5 tqsA, manY, yobF, ycaN, rob, pyrE MOB-1907448-IS5-4, DEL-3815810-1, SNP-1674448-A, INS-4635196-G, SNP-1903497-C, SNP-
949006-G 

BUT2-9 hfq, marC, rob SNP-1618698-A, SNP-4400407-G, DEL-3815859-82, INS-4634895-A 

BUT3-3 manY, yobF, leuA, marC, pyrE DEL-1618281-1, SNP-1903497-C, MOB-1907448-IS5-4, DEL-3815810-1, SNP-82594-G 

BUT3-6 tqsA, manY, yobF, pheU, marC, 
pyrE 

INS-4362600-C, MOB-1907448-IS5-4, DEL-3815810-1, SNP-1903497-C, MOB-1673883-IS5-4, 
DEL-1618281-1 

BUT3-7 tqsA, manY, yobF, pheU, marC, 
pyrE 

INS-4362600-C, MOB-1907448-IS5-4, DEL-3815810-1, SNP-1903497-C, MOB-1673883-IS5-4, 
DEL-1618281-1 

BUT4-4 manY, marC, rob, glmU, cspC, 
pyrE 

MOB-1907343-IS1-8, MOB-1618666-IS2-5, DEL-3815810-1, SNP-4635159-T, SNP-1903497-C, 
SNP-3915089-T 

BUT4-7 manY, marC, rob, glmU, cspC, 
pyrE, sapA 

MOB-1907343-IS1-8, MOB-1618666-IS2-5, DEL-3815810-1, SNP-4635159-T, SNP-1356672-G, 
SNP-1903497-C, SNP-3915089-T 

BUT4-9 manY, marC, rob, glmU, cspC, 
pyrE 

MOB-1907343-IS1-8, MOB-1618666-IS2-5, DEL-3815810-1, SNP-4635159-T, SNP-1903497-C, 
SNP-3915089-T 

BUT5-2 manY, marC, mppA, rob, glmU, 
cspC, pyrE 

MOB-1907343-IS1-8, DEL-3815810-1, SNP-4635159-T, DEL-1394081-2, SNP-1903497-C, MOB-
1618850-IS5-4, SNP-3915089-T 

BUT5-3 manY, marC, rob, glmU, cspC, 
pyrE 

MOB-1907343-IS1-8, MOB-1618666-IS2-5, DEL-3815810-1, SNP-4635159-T, SNP-1903497-C, 
SNP-3915089-T 

BUT6-1 manY, yobF, marC, pyrE, rob SNP-4635243-T, SNP-1903497-C, MOB-1907448-IS5-4, DEL-3815810-1, DEL-1606886-11558 

BUT6-3 manY, yobF, marC, pyrE, rob DEL-1606886-11558, SNP-1903497-C, MOB-1907448-IS5-4, SNP-4635243-T, DEL-3815810-1 

BUT6-8 manY, yobF, marC, pyrE, rob SNP-4635243-T, SNP-1903497-C, MOB-1907448-IS5-4, DEL-3815810-1, DEL-1606886-11558 

BUT7-6 manY, yobF, pyrE, rob, mppA MOB-1907611-IS5-4, SNP-4635203-T, SNP-1903497-C, DEL-3815810-1, DEL-1392752-3292 

BUT7-7 manY, yobF, pyrE, rob, mppA MOB-1907611-IS5-4, SNP-4635203-T, SNP-1903497-C, DEL-3815810-1, DEL-1392752-3292 

BUT7-9 manY, yobF, pyrE, rob, mppA MOB-1907611-IS5-4, SNP-4635203-T, SNP-1903497-C, DEL-3815810-1, DEL-1392752-3292 

BUT9-7 pyrE, manY, rob, marC, rraA DEL-4119238-18, INS-1618379-C, SNP-4635048-C, DEL-3815810-1, SNP-1903497-C 

BUT9-10 rraA, manY, marC, rob, pyrE, otsB INS-1618379-C, SNP-4635048-C, DEL-3815810-1, SNP-1903497-C, SNP-1981720-A, DEL-
4119238-18 

COUM1-2 rho, fimD, ycfQ, sapC, rpoC, polB, 
nadR 

SNP-3966727-T, SNP-4627958-T, DEL-4546637-1, SNP-1168483-T, SNP-4185540-T, SNP-
1354284-A, SNP-64352-C 

COUM2-3 rho, atpI, murC, sapF, rpoC, nadR SNP-1352163-A, DEL-102228-1, MOB-3922629-IS5-4, DEL-4627451-124, SNP-3966751-T, 
SNP-4185540-T 

COUM2-4 rho, atpI, murC, ccmA, sapF, rhaT, 
rpoC, nadR, yecT 

SNP-3966751-T, DEL-102228-1, MOB-2297586-IS5-4, DEL-4627451-124, SNP-4185540-T, SNP-
4099695-A, SNP-1352163-A, MOB-1961829-IS5-4, MOB-3922629-IS5-4 

COUM2-7 rho, atpI, murC, sapF, rpoC, nadR SNP-3966751-T, DEL-102228-1, DEL-4627451-124, SNP-4185540-T, SNP-1352163-A, MOB-
3922629-IS5-4 

COUM3-1 rho, atpI, mprA, dacA, manY, 
rpoB, hns, pyrE 

SNP-663746-T, DEL-3815810-1, DEL-2810080-1165, MOB-1293196-IS5-4, SNP-3966727-T, 
DEL-260217-13738, SNP-3922483-A, SNP-4183802-G, SNP-1903497-C 

COUM3-9 rho, atpI, mprA, dacA, manY, 
rpoB, hns, pyrE 

SNP-663746-T, DEL-3815810-1, DEL-2810080-1165, MOB-1293196-IS5-4, SNP-3966727-T, 
SNP-4183802-G, SNP-3922483-A, SNP-1903497-C 

COUM3-10 rho, atpI, mprA, dacA, manY, 
rpoB, hns, pyrE 

SNP-663746-T, DEL-3815810-1, DEL-2810080-1165, MOB-1293196-IS5-4, SNP-3966727-T, 
SNP-4183802-G, SNP-3922483-A, SNP-1903497-C 

COUM4-2 epmB, rpoA, rpsG, nadR, dcd SNP-4375431-C, SNP-3473615-T, SNP-2141832-T, SNP-3440924-G, SNP-4627567-T 

COUM4-5 rpsG, dcd, yfiN, ompN, nadR, 
rpoA 

SNP-3473615-T, SNP-2141832-T, SNP-3440924-G, SNP-2743181-G, SNP-4627567-T, SNP-
1436746-C 

COUM4-10 rpoA, rpsG, nadR, dcd SNP-3473615-T, SNP-2141832-T, SNP-3440924-G, SNP-4627567-T 

COUM5-3 rho, atpI, sapF, yphF, ypjC, glnG, 
rpoC, mrdA, nadR 

SNP-3966751-T, MOB-2784452-IS5-4, MOB-2678755-IS5-4, DEL-4054531-104, SNP-667158-T, 
SNP-4185540-T, SNP-1352163-A, DEL-4628232-1, MOB-3922629-IS5-4 
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COUM5-5 rho, sapF, ypjC, rpoC, mrdA, nadR SNP-3966751-T, MOB-2784452-IS5-4, SNP-667158-T, SNP-4185540-T, DEL-4628214-1, SNP-
1352163-A 

COUM5-8 focA, rho, atpI, sapF, ypjC, tufA, 
rpoC, mrdA, ydiJ 

SNP-3966751-T, MOB-2784452-IS5-4, SNP-954638-T, SNP-1768309-T, SNP-667158-T, SNP-
4185540-T, DEL-3471319-1, SNP-1352163-A, INS-3922570-TAG 

COUM6-2 rho, yjiP, manY, rnb, yhgE, nusA, 
pyrE 

MOB-1347892-IS5-4, DEL-3815810-1, SNP-3966727-T, SNP-4569172-A, SNP-3317438-A, SNP-
1903497-C, SNP-3530902-G 

COUM6-5 rho, yjiP, manY, rnb, yhgE, nusA, 
pyrE 

MOB-1347892-IS5-4, DEL-3815810-1, SNP-3966727-T, SNP-4569172-A, SNP-3317438-A, SNP-
1903497-C, SNP-3530902-G 

COUM6-9 rho, yjiP, manY, rnb, yhgE, nusA, 
fimC, pyrE 

DEL-3815810-1, SNP-3530902-G, MOB-4544671-+G-S5, MOB-1347892-IS5-4, SNP-3966727-T, 
SNP-4569172-A, SNP-3317438-A, SNP-1903497-C 

COUM7-5 rho, mprA, ypjA, manY, prlF, 
rpoB, ydjH, pyrE 

SNP-4183814-A, DEL-3815810-1, SNP-3966727-T, DEL-2810804-1, MOB-1856052-IS5-4, SNP-
1903497-C, INS-3277273-TTCAACA, MOB-2782626-IS5-4 

COUM7-6 rho, mprA, ypjA, manY, mgrB, 
rpoB, pyrE 

MOB-1908812-IS5-4, SNP-4183814-A, DEL-3815810-1, SNP-3966727-T, DEL-2810804-1, SNP-
1903497-C, MOB-2782626-IS5-4 

COUM8-1 manY, thrA, pyrE, mprA, yhjK DEL-3815810-1, DEL-3683736-1, SNP-1903497-C, SNP-2374-T, DEL-2801966-11843 

COUM8-6 manY, rho, pyrE, mprA, yhjK INS-3966718-GAT, SNP-1903497-C, DEL-3685181-273, DEL-3815810-1, DEL-2801966-11843 

GLUT1-3 spoT, kgtP, rnb, nagC, rpoC, ydfI SNP-4186605-C, SNP-1630841-A, SNP-3823664-C, MOB-700614-IS1-9, DEL-2725672-1, SNP-
1347104-T 

GLUT1-9 rpoC, rnb, spoT, nagC, kgtP SNP-3823664-C, MOB-700614-IS1-9, DEL-2725672-1, SNP-4186605-C, SNP-1347104-T 

GLUT1-10 yiaT, hofM, spoT, insG, sspA, kgtP, 
proV, greA 

SNP-3522182-A, INS-3377241-AGCTCACGATCCACCAGGGTC, INS-2805532-T, MOB-3328463-
IS4-11, SNP-3823664-C, MOB-3751884-IS5-4, DEL-2725672-1 

GLUT2-1 spoT, kgtP, tomB, ygjP, proV, 
nagA 

SNP-3823751-A, MOB-701614-IS1-9, DEL-2725643-1, SNP-3236414-C, DEL-2804864-13, SNP-
481075-G 

GLUT2-9 nagA, spoT, rnb, kgtP SNP-3823751-A, MOB-701614-IS1-9, DEL-2725643-1, DEL-1347882-1 

GLUT2-10 rspA, spoT, kgtP, rpoC, proV, 
nagA 

SNP-1654069-C, SNP-4186605-C, SNP-3823751-A, MOB-701614-IS1-9, DEL-2725643-1, DEL-
2804864-13 

GLUT3-5 rpoC, spoT, kgtP SNP-3823770-T, SNP-2724971-C, SNP-4186605-C 

GLUT3-7 rpoC, spoT, kgtP SNP-3823770-T, SNP-2724971-C, SNP-4186605-C 

GLUT3-9 spoT, kgtP, wzzE, ssuA, rclB, rnt SNP-318484-T, SNP-996768-A, SNP-1728882-C, INS-2725518-C, INS-3969051-G, SNP-
3823759-C 

GLUT4-1 nagC, proX, spoT, kgtP SNP-3824137-T, SNP-2724611-A, DEL-2807199-8, MOB-701188-IS1-9 

GLUT4-4 proX, spoT, nagC, kgtP SNP-2390019-A, MOB-3195220-IS186-4, DEL-2807199-8, MOB-701188-IS1-9, SNP-3824137-T, 
SNP-2724611-A 

GLUT4-10 csiD, rpoC, spoT, kgtP MOB-2788702-IS5-4, SNP-2724971-C, SNP-4186605-C, SNP-3823751-T 

GLUT5-4 ytfR, spoT, sspA, kgtP, yagU, rpoB DEL-3377359-18, DEL-2725375-1, SNP-3823106-T, DEL-303121-1, SNP-4451123-A, SNP-
4181852-C 

GLUT5-5 ytfR, spoT, rpoB, sspA, kgtP MOB-3377491-IS2-5, SNP-4451123-A, DEL-2725375-1, SNP-3823106-T, SNP-4181852-C 

GLUT5-9 ytfR, spoT, rpoB, sspA, kgtP MOB-3377491-IS2-5, SNP-4451123-A, DEL-2725375-1, SNP-3823106-T, SNP-4181852-C 

GLUT6-4 kgtP, spoT, yfjL, nagC, cspE SNP-3823105-A, DEL-657215-25, MOB-700680-IS1-9, DEL-2765456-8, SNP-2725370-C 

GLUT6-5 nagC, spoT, yfjL, kgtP, cspE SNP-2725370-C, SNP-3823105-A, DEL-657215-25, DEL-2765456-8, MOB-700680-IS1-9 

GLUT6-10 hcaD, nagA, spoT, rnt, kgtP INS-2724732-AAAAGC, MOB-701889-IS1-9, SNP-3823139-A, SNP-1728425-A, DEL-2672981-6 

GLUT7-2 spoT, rnt, nagC, kgtP SNP-701396-A, SNP-1728926-C, SNP-2724848-A, DEL-3824201-6 

GLUT7-6 nohQ, spoT, rnt, kgtP SNP-2724848-A, SNP-1636300-G, SNP-1728926-C, DEL-3824201-6 

GLUT7-7 kgtP, rlmI, yhfA, ravA, spoT, dkgA, 
rplM, nagC, rrlA, rrlC, uvrD, ybeF, 
rsmC, fruB, yhiL, tdcD, yfdC, lldR, 
yliE, rnt, aceK, roxA, yhfX 

SNP-443040-T, DEL-3943892-1, DEL-1029739-1, SNP-3823724-T, SNP-2262665-A, DEL-
2465722-1, SNP-3263200-A, DEL-701381-1, SNP-660573-C, SNP-4219696-T, SNP-3779384-G, 
SNP-4037513-C, INS-3931183-G, DEL-2725672-1, SNP-3510180-C, SNP-874067-A, SNP-
1728884-A, SNP-3378539-G, SNP-3485967-G, SNP-3634152-C, SNP-3156603-C, SNP-
4607712-T, SNP-1187352-A, DEL-3999387-1 

GLUT8-5 rpoC, polB, proV, mprA, kgtP SNP-2725818-G, DEL-2804864-13, MOB-2810987-IS1-9, SNP-4185540-T, SNP-64352-C 

GLUT8-6 kgtP, sapC, rpoC, polB, proV, 
nagA 

DEL-2804864-13, SNP-2725232-A, SNP-1354284-A, SNP-4185540-T, INS-702338-T, SNP-
64352-C 

GLUT8-9 kgtP, yobF, sapC, sdaC, rpoC, 
proV, polB, lit 

MOB-1907448-IS5-4, DEL-2804926-1, INS-1198505-AATGATGA, DEL-2725209-9, SNP-
4185540-T, SNP-2927703-A, SNP-1354284-A, SNP-64352-C 

HEXA1-1 ptrA, rpoA, rpoC, bioB, sapB SNP-809340-G, SNP-3440378-T, SNP-3440212-A, SNP-4185540-T, MOB-2957831-IS5-4, SNP-
1354687-A 

HEXA1-4 opgH, rpoA, rpoC, bioB, sapB SNP-809340-G, SNP-3440378-T, DEL-1112435-5, SNP-3440212-A, SNP-4185540-T, SNP-
1354687-A 

HEXA1-5 sapB, rpoA, rpoC, bioB SNP-809340-G, SNP-3440378-T, SNP-1354687-A, SNP-4185540-T, SNP-3440212-A 

HEXA2-3 pykF, ompR, mdtK, prpE SNP-353944-A, SNP-1743611-A, DEL-3536285-1, SNP-1756622-A 
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HEXA2-9 ompR, mdtK, prpE SNP-1743611-A, SNP-353944-A, DEL-3536285-1 

HEXA2-10 rpoA, mdtK SNP-3440212-A, SNP-3440929-A, DEL-1744016-757 

HEXA3-1 rpoC, rpoA, yfjL, mdtK, sapA SNP-1356317-T, SNP-3440378-T, MOB-1743880-IS1-9, SNP-3440212-A, SNP-2764096-T, SNP-
4185540-T 

HEXA3-7 mdtK, rpoA, rpoC, yfjL SNP-3440212-A, SNP-3440378-T, SNP-2764096-T, MOB-1743880-IS1-9, SNP-4185540-T 

HEXA3-9 mdtK, rpoA, rpoC, yfjL SNP-3440212-A, SNP-3440378-T, SNP-2764096-T, MOB-1743880-IS1-9, SNP-4185540-T 

HEXA4-4 rpoA, ompR, proQ, glxK, hns MOB-1293196-IS5-4, MOB-542938-IS5-4, DEL-1915293-5, INS-3536332-T, SNP-3440923-T 

HEXA4-7 dosP, rpoA, ompR, proQ, hns MOB-1293196-IS5-4, INS-3536332-T, DEL-1915293-5, SNP-1564102-G, SNP-3440923-T 

HEXA4-10 rpoA, ompR, proQ, hns MOB-1293196-IS5-4, INS-3536332-T, SNP-1915353-C, SNP-3440923-T 

HEXA6-5 sapB, rpoA, mdtK SNP-3440212-C, DEL-1744675-1, SNP-1354687-A, INS-3440937-CGCTCT 

HEXA6-6 rpoA, mdtK SNP-3440212-C, DEL-1744675-1, INS-3440937-CGCTCT 

HEXA6-7 rhmD, rpoA, mdtK, sapB SNP-3440212-C, SNP-2360829-A, DEL-1744675-1, SNP-1354687-A, INS-3440937-CGCTCT 

HEXA6-9 mdtK, rpoA, rsd, sapB SNP-3440212-C, DEL-1744675-1, INS-3440937-CGCTCT, SNP-1354687-A 

HEXA7-2 ompC, emrY, rsfS, sfmF, rpoB, 
hns, rpoA 

MOB-563324-IS1-9, SNP-2481325-A, SNP-4182358-T, MOB-2312877-IS5-4, MOB-1293124-
IS5-4, SNP-3440923-T, DEL-668970-1 

HEXA8-1 ompC, yedP, sapB, cydA, barA, 
murG, rpoA 

SNP-99891-T, SNP-1354761-T, INS-2025248-TC, MOB-771258-IS5-4, MOB-2312877-IS5-4, 
DEL-2916392-12, SNP-3440923-T 

HEXA8-2 ompC, yedP, sapB, cydA, murG, 
rpoA 

SNP-99891-T, MOB-771306-IS5-4, SNP-1354761-T, INS-2025248-TC, MOB-2312877-IS5-4, 
SNP-3440923-T 

HEXA8-5 ompC, yedP, sapB, murG, rpoC, 
rpoA 

SNP-99891-T, SNP-1354761-T, INS-2025248-TC, MOB-2312877-IS5-4, SNP-3440923-T, SNP-
4187619-T 

HMDA1-10 purL, rph, spoT, lexA, proV, rpoB, 
rpsA 

SNP-2694102-A, SNP-962939-A, SNP-3816611-A, DEL-2804864-13, SNP-4257602-T, SNP-
4181786-T, SNP-3823025-A 

HMDA2-1 ptsP, proV, pyrE, rpsA MOB-2804836-IS1-9, DEL-2968163-1, DEL-3815808-1, SUB-963273- 

HMDA2-8 ptsP, proV, pyrE, rpsA MOB-2804836-IS1-9, SUB-963273-, DEL-2968163-1, DEL-3815808-1 

HMDA3-4 rpoC, nagA, pyrE, kup SNP-3933122-A, INS-702597-G, DEL-3815810-1, SNP-4188767-T 

HMDA3-5 nagC, ygeG, kup, ygbT, pyrE, ybeX SNP-3933122-A, SNP-2879763-A, DEL-3815810-1, DEL-691774-12, SNP-701405-A, SNP-
2991218-G 

HMDA3-6 gatY, rpoC, nagA, pyrE, kup SNP-3933122-A, DEL-3815810-1, MOB-2177307-IS1-9, INS-702597-G, SNP-4188767-T 

HMDA5-4 ptsP, ampC, pnp, pyrE, nagC SNP-2966573-G, DEL-3815810-1, SNP-3310266-A, SNP-4378331-G, MOB-700602-IS1-9 

HMDA5-5 ptsP, pyrE, nagC, ybeX SNP-2966573-G, DEL-3815810-1, MOB-700602-IS1-9, SNP-691321-T 

HMDA5-10 ptsP, pstB, pyrE, pepA, stpA SNP-2966573-G, DEL-3815810-1, MOB-2798597-IS1-9, SNP-4485639-C, SNP-3908248-T 

HMDA7-1 rpsG, wbbK, sspA, nusA SNP-3377173-C, DEL-2104077-1, SNP-3473612-C, SNP-3317072-C 

HMDA7-7 rpsG, sspA, nusA SNP-3377173-C, SNP-3473612-C, SNP-3317072-C 

HMDA7-10 rpsG, wbbK, sspA, nusA SNP-3377173-C, DEL-2104077-1, SNP-3473612-C, SNP-3317072-C 

HMDA8-5 mdtK, xapR, nagC, proV, cynR, 
pyrE, lhr, rnt 

SNP-1728512-C, DEL-3815808-1, SNP-1732811-T, DEL-2804864-13, SNP-2522653-A, SNP-
358399-G, SNP-700980-C, SNP-1744313-A 

HMDA8-9 mdtK, nagC, proV, pyrE, lhr, rnt SNP-1728512-C, DEL-3815808-1, SNP-1732811-T, DEL-2804864-13, SNP-700980-C, SNP-
1744313-A 

HMDA8-10 mpl, mdtK, nagC, proV, pyrE, lhr, 
rnt 

SNP-1728512-C, DEL-3815808-1, SNP-1732811-T, DEL-2804864-13, DEL-4457113-4, SNP-
700980-C, SNP-1744313-A 

IBUA1-7 ptsP, pykF, insA, rpoB SNP-20771-A, MOB-1755755-IS5-4, MOB-2967576-IS5-4, SNP-4183097-T 

IBUA1-9 yedV, pykF, rlmE, rpoB, cheR DEL-255591-18364, SNP-4182938-C, SNP-1969313-A, SNP-2037332-T, MOB-3327665-IS5-4, 
SNP-1756637-C 

IBUA2-1 rpsC, yobF, yijD, bglF, sapD, rpoC, 
pykF 

SNP-4187619-A, DEL-3905639-1, MOB-1907448-IS5-4, SNP-4161966-A, SNP-1352926-T, SNP-
3449388-T, MOB-1755687-IS5-4 

IBUA2-6 rpsC, yobF, yijD, bglF, sapD, rpoC, 
pykF 

SNP-4187619-A, DEL-3905639-1, MOB-1907448-IS5-4, INS-3449508-GAACATAACGCGACG, 
SNP-4161966-A, SNP-1352926-T, MOB-1755687-IS5-4 

IBUA2-9 rpsC, yobF, yijD, bglF, sapD, rpoC, 
pykF 

SNP-4187619-A, DEL-3905639-1, MOB-1907448-IS5-4, SNP-4161966-A, SNP-1352926-T, SNP-
3449388-T, MOB-1755687-IS5-4 

IBUA3-10 pykF, sapF, ydbA, rpoB SNP-4182820-T, SNP-1352163-A, MOB-1472662-IS5-4, MOB-1757082-+G-S5 

IBUA4-1 yjjQ, pykF, sapB, rpoB SNP-4182820-T, SNP-4603494-A, SNP-1354686-C, INS-1756894-TG 

IBUA4-8 rpsD, pykF, rpoB SNP-3441417-A, SNP-4182820-T, INS-1756894-TG 

IBUA4-9 yaiP, speA, infA, pykF, rpoB, bglG SNP-383289-T, SNP-4182820-T, DEL-3084357-1, SNP-926293-T, SNP-3906597-A, INS-
1756894-TG 
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IBUA5-2 rpoS, pykF, prfA, rpoB SNP-2866767-T, SNP-4182820-T, SNP-1265009-A, SNP-1756217-T 

IBUA5-6 rpoS, pykF, prfA, rpoB SNP-1265009-A, SNP-1756217-T, SNP-4182820-T, DEL-2867337-96 

IBUA6-7 glyQ, rpoS, pykF, rpoB, infB, pyrE SNP-3315513-G, DEL-3815808-1, INS-1756495-A, SNP-3725175-G, DEL-2867356-1, SNP-
4184792-T 

IBUA6-9 glyQ, rne, prfA, rpoC, pykF, ybbW MOB-538086-IS5-4, INS-1756495-A, SNP-3725175-G, SNP-1143323-T, MOB-4281707-IS5-4, 
SNP-1265009-A, SNP-4187214-C 

IBUA7-6 sapC, pykF, rpoB SNP-1756434-G, SNP-4182820-T, SNP-1354314-G 

IBUA7-7 sapC, pykF, rpsL, rpoB, lysU SNP-4182820-T, SNP-4354843-T, SNP-1756434-G, SNP-3474485-A, SNP-1354314-G 

IBUA7-9 gadE, pykF, sapC, rpoB SNP-1756434-G, SNP-4182820-T, SNP-1354314-G 

IBUA8-3 pykF, glyQ, ilvH DEL-3815859-82, SNP-87381-T, SNP-3725175-G, INS-1756495-A, DEL-1995819-40006 

IBUA8-4 pykF, glyQ, ilvH DEL-1995819-40006, SNP-87381-T, SNP-3725175-G, DEL-3815859-82, INS-1756495-A 

IBUA8-10 rrsA, glyQ, ilvN, pykF, yffQ SNP-3725175-G, INS-1756495-A, SNP-2563402-A, SNP-4037067-C, DEL-3815859-82, SNP-
3851044-G 

OCTA1-3 rpoA, mreB, arpA, sapB, lit INS-1198505-AATGATGA, MOB-4222091-IS1-9, SNP-3400673-C, SNP-3440923-T, SNP-
1354687-A 

OCTA1-5 lit, mreB, rpoA, yejO, sapA MOB-2290201-IS5-4, SNP-1356297-T, SNP-3400673-C, DEL-1198498-8, SNP-3440923-T 

OCTA1-9 lit, rpoA, mreB, sapA SNP-3440923-T, SNP-1356297-T, SNP-3400673-C, DEL-1198498-8 

OCTA2-10 dusB, cydX, rpoC, rlmH, nrdE SNP-2803042-A, INS-774243-T, SNP-668691-A, MOB-3410273-IS5-4, INS-4186115-
TTCCGCTGG 

OCTA2-14 dusB, rpoC, rlmH SNP-668691-A, INS-4186115-TTCCGCTGG, MOB-3410273-IS5-4 

OCTA2-16 dusB, rpoC, rlmH SNP-668691-A, INS-4186115-TTCCGCTGG, MOB-3410273-IS5-4 

OCTA4-9 rpoA, trkH, mrdB SNP-665850-T, SNP-4033217-A, SNP-3440923-T 

OCTA4-10 rpoA, trkH, mrdB SNP-665850-T, SNP-4033217-A, SNP-3440923-T 

OCTA4-13 sapD, rpoA, mreB SNP-3440923-T, SNP-3400300-A, SNP-1353062-A 

OCTA5-4 gtrS, rpoC, ydcI, yihQ MOB-4069461-IS5-4, SNP-1495028-C, SNP-4186605-C, MOB-2469636-IS5-4 

OCTA5-8 recE, ydcI, rpoC, hns, gtrS, yihQ MOB-4069461-IS5-4, SNP-4186605-C, MOB-1293196-IS5-4, MOB-1416518-IS5-4, SNP-
1495028-C, MOB-2469647-IS5-4 

OCTA5-9 rpoC, ydcI, yihQ MOB-4069461-IS5-4, SNP-4186605-C, SNP-1495028-C 

OCTA7-2 dusB, rpoC, mreC, pyrE, ycfQ DEL-3410240-1, DEL-3815808-1, SNP-1168895-T, SNP-4186605-C, SNP-3399666-A 

OCTA7-9 mreC, yfcZ, ycfQ, rpoC, dusB, pyrE DEL-3815808-1, SNP-4186605-C, SNP-2460805-A, DEL-3410240-1, SNP-1168895-T, SNP-
3399666-A 

OCTA7-10 dusB, rpoC, mreC, pyrE, ycfQ DEL-3410240-1, DEL-3815808-1, SNP-1168895-T, SNP-4186605-C, SNP-3399666-A 

OCTA8-5 gtrS, hfq MOB-2469886-IS1-9, SNP-4400417-T 

OCTA8-7 gtrS, yciA, hfq SNP-1311924-C, MOB-2469886-IS1-9, SNP-4400417-T 

PUTR2-4 rpoC, cspC, mreB SNP-4186706-A, INS-1907273-CGTCCTG, SNP-3400986-C 

PUTR2-6 rpoC, cspC, mreB SNP-4186706-A, INS-1907273-CGTCCTG, SNP-3400986-C 

PUTR3-1 rph, ygaC, spoT, iscR, lexA, edd, 
proV, nusG, fliK, icdC 

SNP-2661793-A, SNP-2799867-A, INS-2018716-CGGTGGCTG, SNP-3816611-A, SNP-1211308-
T, SNP-4257602-T, INS-2804946-T, SNP-3823025-A, SNP-1934806-T, SNP-4178239-T 

PUTR3-9 rph, spoT, yphF, yfjW, lexA, pstS, 
mreB 

MOB-2678755-IS5-4, SNP-3816611-A, SNP-3400453-G, SNP-4257602-T, DEL-2774809-1, SNP-
3823025-A, INS-3911366-T 

PUTR3-10 rph, ygaC, spoT, iscR, lexA, tyrB, 
proV, nusG, icdC 

SNP-2661793-A, SNP-2799867-A, SNP-3816611-A, SNP-4267824-C, SNP-1211308-T, SNP-
4257602-T, DEL-2904286-122, INS-2804946-T, SNP-3823025-A, SNP-4178239-T 

PUTR4-3 mrdB, cspC, proV, clpX, rpoB DEL-457406-7, INS-2805131-T, MOB-1907410-IS5-4, SNP-4183154-T, SNP-665554-T 

PUTR4-7 mrdB, proV, cspC, rpoB, rpsA MOB-1907410-IS5-4, INS-2805131-T, SNP-4183154-T, SNP-962473-T, SNP-665554-T 

PUTR4-8 glyX, ycgB, proV, rpoB, rpsA, cspC, 
mrdB 

DEL-4392446-1, SNP-4392456-G, SNP-4183154-T, SNP-962473-T, SNP-4392453-T, INS-
2805131-T, MOB-1907410-IS5-4, DEL-1236007-50, SNP-665554-T 

PUTR5-1 spoT, pykF, fliR, waaS, pstS, mreB, 
yjhG, ybcK 

DEL-3910569-7, SNP-3401016-C, SNP-4522146-A, MOB-2023551-IS5-3, SNP-3823799-T, SNP-
568660-T, SNP-1755770-A, DEL-3805056-1 

PUTR5-6 ytfR, rpoC, rpoD SNP-3214770-C, SNP-4186551-G, SNP-4452005-A 

PUTR5-8 rpoC, rpoD SNP-3214770-C, SNP-4186551-G 

PUTR6-2 yieK, stpA, pstA, sspA, murA DEL-3908805-2, SNP-3899249-G, SNP-3377150-A, SNP-3336073-G, MOB-2798597-IS1-9 

PUTR6-7 yeaR, nmpC, rph, yobF, intE, rpoC, 
proV, rpsA, cmtB, glnE 

MOB-1907448-IS5-4, SNP-4186186-C, DEL-2804864-13, MOB-1879829-Δ1-:, DEL-3815859-82, 
SNP-3079559-T, SNP-962933-G, SNP-576891-T, DEL-3197154-12, MOB-1199680-IS1-8 
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PUTR6-10 yeaR, nmpC, rph, tdcR, yobF, tolA, 
yjcF, proV, rpsA, cmtB, intE 

MOB-1907448-IS5-4, SNP-3267294-T, DEL-777151-48, SNP-4282760-C, DEL-2804864-13, 
MOB-1879829-Δ1-:, DEL-3815859-82, SNP-3079559-T, SNP-962933-G, SNP-576891-T, MOB-
1199680-IS1-8 

PUTR7-1 rpsA, spoT, mreB, nusA SNP-3823799-A, SNP-3316916-C, SNP-962922-T, SNP-3400811-T 

PUTR7-7 rpoD, rpoB, murA SNP-3214770-C, SNP-3335317-G, SNP-4183154-T 

PUTR7-9 rpoD, mdtJ, rpoB, murA SNP-4183154-T, SNP-3335317-G, DEL-1673532-181, SNP-3214770-C 

PUTR8-3 spoT, rpsG, proX, mreB, pyrE, 
argG 

SNP-3400195-A, SNP-3318960-A, DEL-3815808-1, INS-2807248-T, SNP-3473612-C, SNP-
3823811-A 

PUTR8-6 yedP, spoT, rpsG, nagC, proX, 
mreB, leuL, pyrE, argG 

SNP-2025435-A, SNP-3400195-A, SNP-3318960-A, DEL-3815808-1, INS-2807248-T, DEL-
83679-3, DEL-701233-1, SNP-3473612-C, SNP-3823811-A 

PUTR8-10 spoT, rpsG, nagC, proX, mreB, 
sfmH, pyrE, argG 

SNP-3400195-A, SNP-3318960-A, DEL-3815808-1, INS-2807248-T, DEL-700785-47, SNP-
3473612-C, SNP-562667-C, SNP-3823811-A 
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Supplementary Figure 1: Compound toxicity screening. Growth rates of MG1655 for varying concentrations of the 11 
selected compounds. Each individual concentration was tested in biological triplicates. 
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Supplementary Figure 2: Overview of the locations of observed mutations in RNA polymerase genes. The mutations are 
shown per population. Mutations found in at least one isolate from a given population are included in the plot. 
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Supplementary Figure 3: Relationship between final osmolarity of ALE and NaCl tolerance and global tolerance, 
respectively. Global tolerance is calculated as the mean tolerance to all the 11 chemicals. Each point represents a single 
evolved strain. The differences in osmotolerance and global tolerance between strains from different conditions does 
not seem to be caused by the differences in osmolarity between the conditions. 
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Chapter 2: The metabolism of evolved tolerance 

2.1 Introduction 

As seen in the previous chapter, ALE can be used to quickly produce strains with improved 

characteristics for a target phenotype. Specifically, it was demonstrated that strain tolerance to 

several industrially relevant products could be improved significantly through ALE. Sequencing the 

evolved strains allows identification of the exact genetic changes that give rise to the improved 

phenotypes. Although such improvements can be very valuable in a strain engineering process, it is 

often desirable to also obtain a deeper understanding of the evolved strains and the observed 

mutations, i.e. what impact a mutation has on the cell, and why the presence of the mutation 

confers a growth advantage in the evolution condition. Elucidating such mechanisms of adaptation 

requires further characterization of the evolved strains in order to investigate how each strain 

differs from the unevolved parent strain. For instance, changes in regulation or metabolism can give 

indications of key cellular mechanisms that mediate the adaptive improvement of a desirable 

phenotype such as tolerance. 

In metabolic engineering, where the ultimate objective is to reroute metabolic flux to production 

pathways, adaptive changes in metabolism are especially interesting. A key question to ask after 

successful strain optimization with ALE is thus whether the mutations have caused metabolic 

perturbations, and whether these perturbations are related to the observed growth adaptations. 

Metabolic changes are amenable to study using metabolomics methods, or other methods that 

derive from metabolomics such as fluxomics. While fluxomics would be the most informative way 

to examine metabolic flux rerouting, this approach primarily gives information on central carbon 

metabolism and  is also challenging to apply to large numbers of strains due to the experimental 

and computational efforts required (Niedenführ et al., 2015). Metabolomics on the other hand can 

be performed relatively quickly and cheaply and also provides insight into the functioning of the 

strain’s metabolism. Data obtained with different metabolomics methods differ with regard to both 

quality, e.g. the precision of the measurements and whether the data is absolute or relative; and 

quantity, e.g. how many metabolites are covered and how quickly a sample can be run (Griffiths and 

Wang, 2010). Since there is usually a trade-off between quality and quantity, the choice of method 

depends on the requirements for the specific use case. 
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In this chapter a metabolomic characterisation of the ALE strains obtained from the study in Chapter 

1 will be described. For this analysis a high-throughput, high-coverage untargeted metabolomics 

method (Fuhrer et al., 2011) was chosen, sacrificing some data quality in exchange for the ability to 

characterize a larger number of strains. The chosen method is a direct-injection mass-spectrometry 

method, meaning that the samples are injected into a mass spectrometer without any prior 

chromatography. Whereas more traditional chromatography-coupled mass-spectrometry methods 

provide a list of ions annotated with mass-charge ratio and column retention time, a direct-injection 

method only provides mass-to-charge ratio (Fuhrer and Zamboni, 2015). This makes the subsequent 

metabolite annotation less accurate and prevents discrimination of isomers but increases 

throughput dramatically. The method does not use any standards, which limits measurements to 

relative ion intensities but allows a high coverage of known metabolites to be obtained. Objectives 

of the metabolomic characterization of the tolerant ALE strains were to: 

1. Determine the metabolic similarity between strains evolved to tolerate the same or different 

chemicals 

2. Investigate to which extent metabolism is involved in the evolution of chemical tolerance 

3. Use the metabolomics information to elucidate in more detail the effect of each mutation 

observed in the evolved trains.  

In addition to the metabolomic characterization of the ALE strains, metabolomics was also used to 

try to characterize the toxic effects of each chemical to a wild type strain from a metabolic 

perspective. 

2.2 Methods 

2.2.1 Strains 

The strains used in this study were isolates from a series of evolution experiments designed to 

evolve chemical tolerance to industrially relevant compounds (See Chapter 1). All these strains were 

derived from E. coli K12 MG1655, which was also used as the reference strain for all analyses. As 

almost all strains evolved on 1,2-propanediol were hypermutators, no strains from this condition 

were included in this study. Due to problems with evaporation during the butanol evolutions, the 

evolved strains did not have significant increases butanol tolerance and were also not included in 
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this study. The strains that were used were evolved on 2,3-butanediol (23BD), hexamethylene-

diamine (HMDA), putrescine (PUTR), glutarate (GLUT), adipate (ADIP), hexanoate (HEXA), octanoate 

(OCTA), isobutyrate (IBUA) and coumarate (COUM). 

2.2.2 Mass spectrometry 

All metabolomics data was obtained from an Agilent qTOF 6550 instrument, using a direct injection 

method with no prior chromatography step (Fuhrer et al., 2011). 

2.2.3 Cultivations 

All cultures were grown in triplicates in 96-deep well plates with sandwich cover lids at 37 deg.C 

with shaking at 300 rpm. The growth medium was M9 (6.8 g/L Na2HPO, 3 g/L KH2PO4, 1 g/L NH4Cl, 

0.5 g/L NaCl, 1 mM MgSO4, 0.1 mM CaCl2) with 1% glucose. Additionally, the medium contained the 

following trace elements: 22.17 µM ethylenediaminetetraacetate, 7.82 µM ZnSO, 1.77 µM MnCl2, 

0.63 µM CoCl2, 0.51 µM CuSO4, 0.83 µM Na2MoO4, 5.40 µM FeSO4, 8.09 µM H3BO3, 0.30 µM KI. 

2.2.4 Metabolic profile characterization 

2.2.4.1 Sampling 

The strains were cultivated overnight and reinoculated in fresh medium. In each cultivation plate 

the MG1655 reference strain was inoculated to 12 different starting densities over a 15-fold range 

in order to obtain a large number of reference metabolite measurements at different densities. 

When the cultures were at densities between OD600 of 0.5 and 1.5 they were sampled at three to 

four timepoints with approximately 1-hour intervals. The samples (30 µL of each culture) were 

immediately quenched in 120 µL cold extraction solution (50% methanol, 50% acetonitrile). The 

densities of the cultures were measured on a Tecan Sunrise plate reader at each sampling. 

The quenched samples were incubated at -18 deg.C for 2 hours and centrifuged at 3000x g for 10 

minutes. The supernatants were transferred to clean plates, which were sealed and kept at -80 

deg.C until the time of mass spectrometry measurements. 
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2.2.4.2 Data processing 

All detected ions were matched to deprotonation products of native E. coli metabolites by 

mass/charge ratio with a tolerance of 0.003 Dalton/charge. The list of native E. coli metabolites was 

obtained from the iJO1366 genome-scale reconstruction (Orth et al., 2011). Ion intensities were 

normalized by OD and compared to the MG1655 reference. This was done by fitting a linear relation 

between log2(OD) and log2(intensity) for the MG1655 reference samples for each ion 

log123#(342#56789 = : ∙ log1;<6789 + = (1) 

For each sample a log Fold Change (logFC) for each ion was calculated by the deviation from the 

linear relation for MG1655, as shown in Figure 1. 

>?@AB = log(23#(342#5CD*) − : ∙ log(;<CD*) − = (2) 

Evolved strain logFC’s were calculated as the mean logFC for all the corresponding samples taken at 

a culture density between 0.5 and 1.5. 

 

Figure 1: Illustration of the calculation of logFC from the correlations of log(OD) and log(intensity) for the reference 
strain and a mutant strain. The blue points show OD and ion intensities for samples from the reference strain, while the 
orange points are samples from the mutant. The parallel linear trends between log(OD) and log(intensity) for the two 
strains show that the ion is systematically less abundant in the mutant strain compared to the reference strain. 
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2.2.5 Chemical perturbation 

2.2.5.1 Sampling 

Cultures of MG1655 were grown in M9 medium with 1% glucose overnight and reinoculated in fresh 

medium inside a 37 deg.C climate chamber where all the chemical perturbation experiments were 

carried out using temperature-equilibrated equipment and materials. When the cultures reached 

OD 1, a sample of 20 µL was transferred to 80 µL cold extraction mix, as a baseline measurement. 

390 µL of culture was then transferred to a well containing 10 µL of a solution of the given chemical 

and quickly mixed by pipetting. Immediately after, 200 µL of the perturbed culture was aspirated in 

an electronic pipette. At each sampling time 20 µL was dispensed into 80 µL of cold extraction mix. 

Sampling times were 10, 20, 30, 45, 60, 80, 100, 120, 180 and 300 seconds after perturbation. This 

was replicated for three separate cultures per perturbation chemical, and nine cultures for 

perturbation with water. The used perturbation concentrations are shown in Table 1. 

2.2.5.2 Data processing 

All detected ions were matched to deprotonation products of native E. coli metabolites by 

mass/charge ratio with a tolerance of 0.003 Dalton/charge. The list of native E. coli metabolites was 

obtained from the iJO1366 genome-scale reconstruction (Orth et al., 2011). For each annotated ion, 

the response to each chemical perturbation was compared to the response to the water 

perturbation. A linear model was used to identify significant interactions between metabolites and 

chemical perturbations, i.e. metabolites that responded differently to perturbation with the 

chemical compared to water. The linear model was given as: 

log(5G) = : + =HIJKG*GIJL + =*GC7G + =HIJKG*GIJL:*GC7L + NG (3) 

The left-hand term is the logarithm of the intensity of the ion in question for a sample 2, while the 

right-hand side contains the intercept and the parameters associated with the condition and time 

point of sample 2, as well as the residual, NG. The significance of the interaction term was tested 

using analysis of variance. For each condition the interaction p-values for each ion were corrected 

for multiple comparisons using the Benjamini-Hochberg False Discovery Rate (Benjamini and 

Hochberg, 1995). A corrected p-value less than 0.05 was considered evidence that the time-

dependent response of the ion was different between the perturbation condition and the water 
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control. Additional control samples containing each one of the perturbation compounds and no cells 

were used to exclude ions that are associated with the perturbation compounds themselves. 

2.3 Results and discussion 

2.3.1 Metabolic characterization of evolved strains 

All 169 evolved strains from the nine selected evolution conditions (2,3-butanediol (23BD), 

hexamethylenediamine (HMDA), putrescine (PUTR), glutarate (GLUT), adipate (ADIP), hexanoate 

(HEXA), octanoate (OCTA), isobutyrate (IBUA), and coumarate (COUM)) as well as the reference 

strain were subjected to metabolic characterization. Including biological replicates and multiple 

samplings, this resulted in a total of 2103 samples being analysed. Of the detected ions, 544 could 

be matched to metabolites found in the iJO1366 genome-scale metabolic model of E. coli. For each 

evolved strain, a metabolic profile was constructed, defined as the calculated logFC of each of these 

544 ions compared to the reference strain. 

The first question to be addressed was that of metabolic similarity between strains evolved in the 

same and different selective conditions, respectively. This was done by comparing the metabolic 

profiles of all evolved strains measured in a standard reference condition (M9 with 1 % glucose). 

Metabolic similarity can be defined as a function of the Euclidean distance between two metabolic 

profiles in the N-dimensional metabolic space, with N being the number of measured metabolites. 

All metabolic similarities were visualized simultaneously using the nonlinear dimensionality 

reduction method t-distributed Stochastic Neighbour Embedding (t-SNE) (van der Maaten and 

Hinton, 2008). Since the metabolic similarities between independently evolved populations in 

particular were of interest, metabolic profiles for each independent population were calculated as 

a simple mean of all isolates from that population. A t-SNE visualization of the metabolic similarities 

between independently evolved populations is shown in Figure 2. The t-SNE plot shows a very clear 

trend of high similarity between populations evolved in the same condition compared to 

populations evolved in different conditions. This suggests that each evolutionary condition has 

conferred a characteristic metabolic fingerprint that distinguishes the strains evolved in a given 

condition from strains evolved in other conditions. The existence of such a characteristic metabolic 

phenotype in all strains from a given conditions is evidence of some degree of convergent evolution, 
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i.e. parallel populations finding genetically distinct paths towards similar phenotypes, as opposed 

to parallel populations evolving to metabolically distinct phenotypes with similar fitness. 

 

Figure 2: t-SNE plot of all evolution populations and MG1655 based on the mean metabolic profile of strains from each 
population. Each point represents a single independent population and is coloured by the condition it was evolved in. 

Given that each evolution condition seems to be associated with a characteristic metabolic profile, 

a relevant question was to which degree these metabolic profiles correlated with the tolerance 

phenotypes that the strains were evolved for. If the characteristic metabolic profiles are associated 

with tolerance phenotypes, it would be expected that evolution conditions with similar 

characteristic metabolic profiles would also result in strains with similar tolerance profiles, as 

measured by tolerance to each of the toxic chemicals (see Chapter 1, Figure 3a). To investigate this, 

each condition’s characteristic metabolic profile was calculated as the centroid of the metabolic 

profiles of all isolates from that condition. Similarly, the mean tolerance profile for each condition 

was calculated as the centroid of tolerance profiles of all isolates from that condition. For each of 

the 36 pairs of evolution conditions, the cosine similarity between their metabolic and tolerance 

profiles, respectively, were compared. A scatter plot of this comparison is shown in Figure 3, 

showing a positive correlation (Pearson’s r = 0.44, p = 0.0001) between metabolic similarity and 

tolerance similarity. This could indicate that the metabolic state plays a role in chemical tolerance, 
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even though non-metabolic factors are clearly also involved, given the modest correlation 

coefficient. 

 

Figure 3: Comparison of the metabolic similarity and phenotypic similarity between all 36 pairs of evolution conditions. 

Since independent populations evolved in the same condition seem to have reached similar 

metabolic phenotypes, a reasonable hypothesis would be that the metabolic phenotype in question 

is involved in the mechanism of tolerance. The reasoning in this argument is identical to the one 

used in Chapter 1 to hypothesize that a mutation arising independently in several parallel 

populations is likely to be directly related to tolerance. To investigate this hypothesis, the first step 

is to elucidate the details of the characteristic metabolic profile for each condition – in other words, 

which specific metabolic changes are characteristic for strains from a single condition? 

While the t-SNE algorithm is a powerful method for identifying complex structures in large datasets, 

it partly sacrifices interpretability compared to simpler methods. While structure found by Principal 

Components Analysis can be investigated by analyzing the individual component vectors, no similar 

strategy can be applied with t-SNE, as the dimensionality reduction is not based on a linear 

transformation but on a complex non-linear mapping (Gisbrecht and Hammer, 2015). Instead an 

approach based on decision trees was used (Tan et al., 2005). For each evolution condition a 

decision tree was used to predict whether a strain was evolved in this condition or not based on the 
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measured metabolites. Because the rules of a fitted decision tree can be easily inspected, this 

allowed identification of metabolites that are important for distinguishing strains from a given 

condition from the remaining strains. Important metabolites were found by inspecting the nodes 

near the root of the tree. The usefulness of each single metabolite for distinguishing strains could 

then be visualized by showing the distribution of relative concentrations of this metabolite within 

each group of strains (Figure 4). Each panel of Figure 4 displays the logFC values for a metabolite 

that was found to be important for distinguishing strains from at least one of the evolution 

conditions. The points represent strains, separated by the conditions they were evolved in. This 

analysis shows that there are indeed metabolites in all conditions, that have consistently either 

increased or decreased concentrations in most strains. This confirms the pattern seen from Figure 

2 of strains from the same condition being metabolically similar. 
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Figure 4: The distributions of relative metabolite concentration for eight different metabolites that were found to be 
important for distinguishing strains from at least one condition. The points represent strains split by the condition they 
were evolved in. The conditions where the given metabolite was found to be important for distinguishing strains are 
highlighted in blue.  

In some cases, the consistently perturbed metabolites correspond to similar mutations seen in all 

strains from a given condition. More specifically these cases are the strains evolved on isobutyrate, 

glutarate and adipate. The strains evolved on isobutyrate all had mutations in the pykF gene and 

also had increased phosphoenolpyruvate (PEP) levels (Figure 4a). A disruptive mutation in the 

pyruvate kinase encoded by pykF could well be expected to create a bottleneck at this step, causing 

the substrate PEP to accumulate (Chapter 1, Figure 5d). While the presence of high PEP levels in the 
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isobutyrate strains is not surprising, it can help understand the effect of pykF mutations in these 

strains. PEP is a known regulator of upper glycolysis, specifically by inhibiting phosphofructokinase 

activity (Uyeda, 2006), and thus the isobutyrate strains presumably have decreased flux through the 

Embden-Meyerhof-Parnas pathway and increased flux through the Entner-Doudoroff or pentose 

phosphate pathways instead. The strains evolved on glutarate and adipate all had mutations in the 

kgtP gene, and also had very high levels of alpha-ketoglutarate (AKG) (Figure 4b). Since kgtP encodes 

an active AKG importer (Seol and Shatkin, 1991) this might seem unintuitive. This result can however 

be explained by AKG leaking out through the cell membrane, which has previously been 

documented (Yan et al., 2011). In the absence of a transporter to bring AKG back in, it will 

accumulate extracellularly resulting in high concentrations in the whole-culture sample being 

injected into the mass spectrometer. 

The above cases are examples of convergent evolution on the genetic level, as all the independent 

populations have mutations in the same gene, which can explain the corresponding metabolic 

feature (high PEP or AKG levels respectively). In other conditions there is evidence of convergent 

evolution on the metabolic level, as all isolated strains share certain metabolic characteristics 

despite not having specific mutations in common. Examples of such conditions are HMDA and 

hexanoate. All the strains evolved on HMDA had decreased levels of deoxy-ribose-phosphate 

(Figure 4c). This cannot be explained by a common genetic change, as no single gene was mutated 

in all these strains. Indeed, one population did not have any mutational overlap with any one of the 

remaining populations. Likewise, all strains evolved on hexanoate had increased levels of methyl-2-

oxopentanoate (Figure 4d) even if these strains do not share any universal mutations. The presence 

of characteristic phenotypic (e.g. metabolic) commonalities between strains with little or no genetic 

overlap might provide insight into the mechanisms with which individual genes contribute to 

tolerance. If gene A is mutated in some strains while gene B is mutated in other strains, it is likely 

that tolerance arises mechanistically from an effect that genes A and B have in common. In trivial 

cases genes A and B might simply be analogous, e.g. subunits of the same complex or different steps 

in a linear pathway, whereas if A and B have diverse sets of effects, such as transcriptional 

regulators, overlaying the two sets of effects with each other might indicate which effects are 

important for tolerance. While this method can be used for many different types of phenotypic 
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effects, the effects of each mutation must generally first be characterized, and thus, depending on 

the effect phenotype in question, a significant amount of work is required. 

Further analyses were performed to elucidate the relationship between mutations and metabolic 

profiles in the evolved strains. A simple statistical model with a specific metabolite as dependent 

variable and mutations as independent variables could be used, but due to the very high degree of 

collinearity between the mutations (because of common ancestry as well as shared evolution 

conditions), fitting such a model was not considered feasible. Instead, previously published data on 

the relationship between genes and metabolites was used, in the form of metabolomics data for all 

single-gene knockout E. coli strains in the Keio collection (Fuhrer et al., 2017). This data provides 

information on the associations between genes and metabolites and can help estimate the impact 

on gene function of the individual mutations observed in the evolved strains, which is generally not 

known. A statistical model was used having the full metabolite profile as dependent variable and 

the impact of each mutation on the affected gene(s) as independent variable, given the gene 

knockout metabolite data from Fuhrer et al. (2017). To keep the model complexity reasonable some 

simplifying assumptions were made. First, the impact of a mutation on the function of a gene was 

quantified as a continuous univariate variable ranging from loss-of-function through neutral to gain-

of-function. Second, the combined effect of several mutations on the metabolic profile was 

assumed to simply be the sum of each individual mutation effects on the metabolic profile. The 

resulting model is a multivariate linear model given by 

P = Q ∙ R ∙ S ∙ T + N (4) 

Y is the matrix of relative metabolite concentrations in the evolved strains and has shape Nstrains x 

Nmetabolites. X is a binary design matrix encoding the mutations found in each strain and has shape 

Nstrains x Nmutations, where Nmutations is the number of unique mutations identified in the evolved 

strains. W is the parameter to be fitted and is a diagonal Nmutations x Nmutations matrix, where the 

diagonal contains the estimated impact score of each mutation (loss-of-function, neutral or gain-of-

function). M is a second binary design matrix encoding which genes each mutation affects, and has 

shape Nmutations x Ngenes, where Ngenes is the number of unique mutated genes in the evolved strains. 

Finally, K is a Ngenes x Nmetabolites matrix containing the relative metabolite concentrations in each 

single-gene knockout strain. The parameter matrix W was fitted through gradient descent by 
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minimizing the sum of squares of the error term, N. The fitted model can be used to get estimated 

impact scores, predicting whether each mutation has a loss-of-function or gain-of-function effect. 

A positive estimated impact score was interpreted as loss-of-function, while a negative estimated 

impact score was interpreted as gain-of-function. 

Validating the estimated mutation impacts is difficult since, as mentioned earlier, it is not known 

what the real impacts of most mutations are. However, a rough classification into expected 

deleterious and non-deleterious mutations can be made based on their type and location in the 

genome alone. For deletions, insertions and mobile element insertions, a mutation was expected to 

be deleterious if it was within the coding sequence of a gene, while the majority of mutations 

located outside of coding sequences were not expected to be deleterious. For SNP’s only nonsense 

(stop codon inducing) polymorphisms would be expected to be highly deleterious. Comparing the 

impacts estimated from mutation location to the impacts estimated by the model using 

metabolomics data showed that mutations expected to be deleterious were significantly more often 

estimated to have loss-of-function impacts (83 out of 156) compared to mutations not expected to 

be deleterious based on location (111 out of 305) (Fisher’s exact test, p < 0.001). This pattern of 

association between impact estimated from mutation location and impact estimated from 

metabolomics data is apparent in all four types of mutations, as seen from Figure 5, which shows 

the fraction of mutations of different types being estimated to have loss-of-function impacts. This 

supports the validity of interpreting the impact scores estimated with the model using 

metabolomics data as an indicator of whether the mutation has a gain-of-function or loss-of-

function effect. It is worth noting however, that the location-estimated impact of a mutation cannot 

be regarded as a classification of the true impact, and thus the predictive performance of the model-

estimates cannot be accurately assessed. Particularly the assumption that all missense SNP’s are 

non-deleterious is dubious, given the knowledge that many proteins are indeed sensitive to amino-

acid substitutions in active sites. 
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Figure 5: Overview of the fraction of mutations estimated to be deleterious for each mutation types. The classification 
between Deleterious (orange) and Non-deleterious (Blue) is based on the nature and position of each mutation. The 
“fraction estimated deleterious” is calculated as the fraction of mutations having estimated impact scores larger than 0. 

Even though it is not generally possible to predict the impact of missense mutations, the ALE data 

does allow inferences to be drawn in certain cases. With available genetic data from populations 

evolved in parallel in the same condition, it is possible to assess whether a missense mutation is 

likely to be deleterious by considering other mutations in the same gene, within strains from the 

same condition. For instance, the pykF gene was, as previously mentioned, mutated in all strains 

from the isobutyrate condition. Seven distinct pykF mutations were observed in the isobutyrate 

strains, of which four were clearly deleterious (frameshift mutations and mobile element 

insertions), while the remaining three were missense SNP’s. Since all these mutations were selected 

under the same condition, it is reasonable to assume that they have the same effect on the function 

of the pykF gene, i.e. inducing loss-of-function. Looking at the estimated impact scores, all seven 

mutations do indeed have positive scores (Figure 6), indicating loss-of-function impacts. The same 

can be done for other genes that were mutated in several populations from the same condition. In 

the 2,3-butanediol condition the genes metJ and purT were mutated in seven and five populations, 

respectively, out of seven. A single metJ mutation was a mobile element insertion, while seven were 
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missense SNP’s of which five have putative loss-of-function effects based on the estimated impact 

score (Figure 6). The purT gene was mutated by a mobile element and three missense SNP’s, all of 

which had putative loss-of-function effects (Figure 6). 

 

Figure 6: Estimated impact scores for pykF mutations found in the isobutyrate strains and for purT and metJ mutations 
found in the 2,3-butanediol strains. The mutations that are expected to be deleterious based on their location are 
highlighted in bold. Almost all of the missense SNP’s are estimated to be deleterious, consistent with the expectation 
that mutations in the same gene in the same condition will have the same effect. The mutation names indicate whether 
they are mobile elements (MOB), SNP’s or insertions (INS), as well as the genome location of the mutation. 

Several mutations, predominantly missense SNP’s, are also predicted to have a strong gain-of-

function impact. One of these is a mutation in the ilvH gene, which was identified in two strains 

evolved on isobutyrate. The ilvH gene encodes an acetolactate synthase which converts two 

pyruvate molecules to acetolactate as part of the branched-chain amino acid biosynthesis. The 

mutation causes a substitution near the N-terminal of the protein, which contains an ACT domain 
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responsible for feedback inhibition by valine. The strains harboring the mutation had increased 

levels of valine (see Supplementary Figure 1), consistent with a disruption of feedback regulation of 

valine biosynthesis. Such a deregulation of an enzyme would indeed be an example of a gain-of-

function mutation, as the catalytic activity would be expected to increase. The enzymatic conversion 

of pyruvate into acetolactate is also the first step of the isobutyrate biosynthesis pathway that was 

inserted into the evolved strains (Zhang et al., 2011). Interestingly, the strains with the mutation in 

ilvH or an equivalent mutation in the ACT domain mutation of the isozyme ilvN seemed to be able 

to produce isobutyrate significantly better than the other evolved strains (Chapter 1, Figure 6b 

(IBUA8-3 and IBUA8-10)). This could indicate that conversion of pyruvate into acetolactate is a 

limiting step in the production pathway due to allosteric inhibition by valine. Since valine and 

isobutyrate are chemically similar, it is also possible that the acetolactate synthase is inhibited by 

isobutyrate, resulting in deficient production of branched-chain amino acids. 

Another example of a mutation predicted to have a gain-of-function effect is a nonsense mutation 

in the rpoS gene, found in the isobutyrate strains, which encodes the stress-associated sigma factor, 

VW. Although the induced stop codon truncates the protein by 54 amino acids, removing the sigma 

factor’s domain 4 in its entirety, the estimated impact score of the mutation suggests that it confers 

a gain-of-function. In vitro experiments have shown that the deletion of domain 4, does not abolish 

the activity of VW (Gowrishankar et al., 2003). If deletion of domain 4 affects the regulation of VW it 

is possible that this will have a positive effect on VW activity. 

Overall, the linear model based on metabolic profiles of the evolved strains and knockout strains 

shows predictive value in estimating the impact a given mutation has on the gene(s) it affects, 

although the accuracy is hard to assess due to the true impact of most of the observed mutations 

being unknown. Since the data for the knockout strains need only be collected once for a given 

organism, metabolic profiling of evolved strains can be an easy way to gain some insight into the 

nature of the observed mutations. A drawback of the method is that the metabolic effects of 

knockouts can only be measured for non-essential genes. Thus, the method is unable to provide 

information on mutations that affect essential genes. A potential solution to this challenge would 

be to use a library of over- or underexpression strains as references either for all genes or just for 

the essential genes. 
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2.3.2 Perturbation time-course metabolomics 

The results presented above allow some insight to be gained into how the evolved strains have 

achieved tolerance, but in order to completely describe this process, the mechanisms of toxicity for 

the ALE conditions must be known. The nature of the toxic effects of the ALE compounds were 

investigated by perturbing wild-type MG1655 with each of nine chemicals and measuring the short-

term metabolic responses. This approach allows detection of direct interactions between 

metabolism and the perturbing chemical, and thus quantification of the degree to which the toxic 

effects are related to metabolism. To avoid major problems with ion suppression in the mass 

spectrometry measurements, perturbation concentrations in the 160-180 µM range were used. 

Even though this was significantly below the concentrations used in the ALE experiments as well as 

the minimal inhibitory concentrations (Chapter 1, Supplementary Figure 1), it was hypothesized that 

direct metabolic effects, e.g. from allosteric inhibition might still be observed. In addition to the nine 

ALE chemicals, a range of control perturbations were also carried out. The control compounds 

included antibiotics, amino acids, a synthetic uncoupler of the proton gradient and an oxidative 

stressor (Table 1). The purpose of the control compounds was to validate that the experimental 

method can be used to detect known metabolic responses. Furthermore, in case such responses 

could be detected, it might be possible to compare the response to a chemical with unknown 

mechanism of toxicity to the responses to the control compounds, for which the effects are largely 

known. 
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Table 1: Overview of the compounds used for perturbations and their concentrations. The antibiotics were used at the 
recommended concentrations for selective media. 

Compound Concentration   Compound Concentration 

2,3-butanediol 166 µM  Antibiotics Ampicillin 130 µM 

HMDA 172 µM   Kanamycin 100 µM 

Putrescine 170 µM   Chloramphenicol 130 µM 

Glutarate 174 µM  Uncoupler Dinitrophenol 170 µM 

Adipate 171 µM  Oxidative H2O2 180 µM 

Hexanoate 172 µM  Amino acids Serine 171 µM 

Octanoate 173 µM   Valine 160 µM 

Isobutyrate 172 µM     

Coumarate 152 µM  Control Water  

 

For each perturbation condition, a list of significantly responding metabolites was identified. 

Significantly responding metabolites were defined as metabolites whose time-dependent response 

to a perturbation was significantly different compared to the control (water) condition.  

As an example, in the chloramphenicol condition, the amino acids glutamate, lysine and 

leucine/isoleucine were among the metabolites found to significantly accumulate over time (Figure 

7a). This is consistent with the mechanism of action for chloramphenicol, which is to prevent growth 

by inhibiting protein synthesis. Perturbation with either serine or valine resulted in high numbers of 

significantly responding metabolites, which is consistent with the fact that both are known to inhibit 

growth through allosteric inhibition of enzymes (De Felice et al., 1979; Hama et al., 1990). For 

perturbation with valine, several intermediates of branched-chain amino acid metabolism showed 

a fast negative response (Figure 7b), consistent with valine’s known inhibition of acetolactate 

synthase, which catalyzes the first step of branch-chain amino acid synthesis. 
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Figure 7: a) Time profiles for the amino acids leucine/isoleucine, lysine and glutamate following perturbation with water 
or chloramphenicol. b) Time profiles for branched-chain amino acid intermediates following perturbation with water or 
valine. The lines show the mean relative log intensities of biological replicates (three for chloramphenicol and valine, 
nine for water), while the shaded areas show the ± 1 standard deviation range. 

A summary of the number of significantly responding metabolites for each perturbation is shown in 

Figure 8. It is evident that perturbation with eight of the nine ALE compounds results in very weak 

or no metabolic effects compared to most of the control perturbations. In contrast to the rest of 

the ALE compounds, perturbation with coumarate does seem to elicit a metabolic response. One 

reason for this difference could be that coumarate is one of the more toxic compounds, in that 

relatively low concentrations were needed to inhibit growth (Chapter 1, Supplementary Figure 1). 

However, the same approximate levels of toxicity were observed for the compounds hexanoate, 

octanoate and isobutyrate , for which, in comparison to coumarate, only very little metabolic 

response to the perturbations was seen. Additionally, the perturbation concentration for coumarate 

is still several orders of magnitude lower than the concentrations used during ALE. It seems 
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therefore, that the toxic effects of coumarate are significantly more metabolic in nature than the 

other aforementioned compounds. The compounds 2,3-butanediol HMDA, putrescine, glutarate 

and adipate, on the other hand, might have toxic effects that are not related to metabolism, or 

alternatively the lack of a metabolic response could be explained by the relatively lower toxicity of 

these compounds, which were tolerated at concentrations approximately five times higher than 

coumarate. The considerable metabolic response to coumarate compared to the other ALE 

compounds might also be explained by the natural origin of coumarate. As a precursor in plants to 

the monolignol p-coumaryl alcohol, coumarate is involved in the formation of lignin and lignans, 

both of which are implicated in plant defenses against pathogens (Bagniewska-Zadworna et al., 

2014; Qin et al., 2016). It is likely that the constituents of lignin and lignans, including coumarate, 

have been selected through evolution because of their potential for specific inhibitory bioactivity. 

For compounds that are never or very rarely found in nature, such bioactivity would be entirely 

accidental, and the affinity of interactions with metabolic enzymes would likely be much lower. 

 

Figure 8: The number of significantly responding metabolites for each perturbation condition. Data for the nine 
perturbations using the ALE compounds are colored orange, while the data for the control perturbations are colored 
blue. 



 

 64 

While the results from the control perturbations show that metabolic responses to a chemical 

perturbation can be detected using time-course metabolomics, only little information could be 

gained on the ALE compounds. Since a likely reason for the limited metabolic response to eight out 

of nine ALE compounds is that the perturbation concentrations were too low, the method might be 

better suited for investigating chemicals that are toxic at such low concentrations. On the contrary, 

the results for ampicillin and kanamycin, which were used at concentrations at which growth is 

inhibited, show that a metabolic response will not necessarily be seen just because the compound 

is toxic at the perturbation concentration. The lack of metabolic responses for these two antibiotics 

can be explained by their mechanisms of action: Ampicillin inhibits the synthesis of cell wall (Tomasz, 

1979), while kanamycin causes mistranslation (Davies and Wright, 1971), both of which will likely 

only have a modest effect on cell metabolism within the time-frame of the experiment. 

In cases where a metabolic response is detected, it would in principle be possible to use the 

responses of each metabolite to identify the specific mechanism of toxicity of a given chemical, e.g. 

targets for allosteric inhibition. As this would allow rapid identification of chemical-metabolism 

interactions, future work focusing on this aspect would be of value. 

2.4 Conclusions 

In this study high-throughput metabolomics was used to metabolically characterize a group of 

strains evolved to tolerate nine different chemicals, and to investigate the mechanisms of action for 

these chemicals. The metabolic profile characterizations of the evolved tolerant strains showed a 

strong association between metabolic profile and the condition each strain was evolved under. 

Additionally, a characteristic metabolic phenotype for a given evolution condition was often 

observed across strains with very little or no genetic commonality. This indicates that the metabolic 

phenotype is representative of the phenotypic changes that lead to improved tolerance, and that 

tolerance against a given chemical is achieved through very similar phenotypic mechanisms even 

though different strains have found different mutational paths to this phenotype. Taking advantage 

of previously published data on the metabolic effects of single-gene knockouts in E. coli, it was 

possible to use the metabolic profiles of the evolved strains to infer the impact of individual 

mutations on the functionality of the affected gene. Although the method showed promising 
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potential for differentiating between deleterious and non-deleterious mutations, additional 

validation is needed on mutations with known effects. 

Using time-course metabolomics in perturbation experiments to elucidate details of chemical 

toxicity proved to be difficult due to technical limitations on perturbation concentrations in 

combination with the relatively low toxicity of some chemicals. However, results for a set of control 

perturbations suggested that the metabolomics approach can be used to quantify the degree of 

metabolic response to a chemical perturbation. Specific metabolite responses consistent with the 

known effects of two different control perturbations could be identified, demonstrating that the 

method might be used to infer mechanisms of action from the observed responses. 
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2.6 Supplementary Materials 

 

Supplementary Figure 1: Log fold-change values for the strains evolved on isobutyrate. The strains that have mutations 
in ilvH/N are highlighted in red. These strains have increased levels of valine consistent with the hypothesized removal 
of valine feedback inhibition by these mutations. 
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Chapter 3: A deep neural network for propagation of signals 

through a metabolic network 

3.1 Introduction 

In recent years there has been a rapid increase in the performance of machine learning algorithms 

on a variety of problems. The main factor in this trend has been the advent of deep neural networks 

(LeCun, Bengio, & Hinton, 2015). Traditional neural networks, also known as multilayer perceptrons 

(MLP), have been in use since the 1980’s (Hopfield, 1988), but had started to lose popularity in the 

2000’s in favor of other algorithms such as support vector machines and other kernel-based 

methods (Hofmann, Schölkopf, & Smola, 2008).  

One of the features that has allowed modern deep neural networks to outperform most other 

machine learning algorithms is the introduction of specialized layer architectures in addition to the 

fully connected hidden layers found in MLP’s (LeCun et al., 2015). The most widespread specialized 

architectures are convolutional layers, which have successfully been used to process image, 

tomogram, and video data (Bernal et al., 2018; Karpathy et al., 2014; Krizhevsky, Sutskever, & 

Hinton, 2012), and recurrent layers which have allowed advances in analysis of sequence data, 

particularly in natural language processing (Bahdanau, Cho, & Bengio, 2015; Lipton, Berkowitz, & 

Elkan, 2015). Whereas traditional MLP’s and other machine learning algorithms usually require that 

each data point is described by a vector of features, a large advantage of convolutional layers and 

recurrent layers is that they can take input without or with only minimal processing, e.g. raw pixel 

or text data. They can thus function as trainable feature extractors, that can learn to derive 

characteristics from the data with predictive value for the given problem. 

Various problems within biology have benefited from the use of convolutional as well as recurrent 

neural networks. Convolutional networks have for example been used to identifying binding motifs 

for DNA- and RNA-binding proteins using a convolutional layer as trainable position weight matrices 

(Alipanahi, Delong, Weirauch, & Frey, 2015) and automated detection of subcellular protein 

localization in yeast from microscopy images (Pärnamaa & Parts, 2017). Recurrent neural networks 

in turn have been used among other things to predict protein secondary structure from amino acid 
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sequences (Sønderby & Winther, 2014) and predict RNA splice junctions from DNA sequences (Lee, 

Lee, Na, & Yoon, 2015). 

However, problems that can be formulated as image or sequence analysis problems are only a small 

subset of possible biological prediction tasks. A more general type of datasets is what could be 

described as graph-structured data, or network-related data. Biology in general and systems biology 

in particular is known for its large number of networks ranging from genetic interaction networks 

through regulatory networks and protein interaction networks to metabolic reaction networks 

(Bader, Kühner, & Gavin, 2008; Kitano, 2002). Datasets of measurements related to e.g. genes, 

proteins or metabolites can thus be structured in a graph according to available information of the 

relevant networks, and including information on how different data points are related to each other 

can potentially allow statistical models to better describe the data. However, it is rarely obvious 

how network structure affects the relationship between data points, and it most likely depends on 

the type of network as well as the nature of the prediction problem. A potential solution to this 

problem is to use a trainable machine learning model to infer the significance of the network 

structure directly from the data (Bronstein, Bruna, Lecun, Szlam, & Vandergheynst, 2017). 

The data used in traditional machine learning models such as MLP’s, support vector machines or 

decision trees is inherently unstructured, and such models are thus poorly suited for operating on 

graph-structured data. Deep neural architectures such as recurrent and convolutional networks 

derive part of their power from the ability to take advantage of structure in the data, in the form of 

sequences or grids, respectively. Neither can however be applied to the more general structures 

that can be represented by graphs. 

The challenge of combining machine learning and graphs such as biological networks has been 

addressed in numerous studies. This includes machine learning algorithms to infer network 

structure, e.g. in the form of protein interaction networks (Ballester & Mitchell, 2010) or 

transcriptional regulatory networks (Marbach et al., 2012), as well as algorithms that cluster or 

classify networks structures directly (Yanardag & Vishwanathan, 2015), e.g. to identify disease 

states from changes in biological networks (Mall, Cerulo, Bensmail, Iavarone, & Ceccarelli, 2017). In 

comparison, less work has focused on using prior knowledge about biological network structures to 

improve predictions based on data embedded in the network. 
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In this work a novel deep learning framework is developed to allow supervised prediction problems 

to take advantage of graph-structure between features in the input data. This framework is based 

on the concept of graph convolutional networks (GCN) developed by Kipf & Welling (2017) to do 

semi-supervised learning on datasets where observations are related to each other. The prediction 

problem used to test this deep learning framework involves using stoichiometric and regulatory 

networks of Escherichia coli metabolism to predict how a gene knockout will affect the levels of 

metabolites. The prediction problem including the types of input data, output data and graph 

structures are shown in Figure 1. 

 

Figure 1: Overview of the prediction problem used in this study. Changes in metabolite concentrations are predicted 
from predicted fluxes and genetic perturbation, using the graph structures of stoichiometric and regulatory networks. 

3.2 Methods 

3.2.1 Neural network architecture 

The deep neural network model used in this study consisted of a combination of graph convolutional 

layers (Kipf & Welling, 2017) and fully connected layers. A graph convolutional layer takes as input 

the normalized adjacency matrix, Â, for a graph, and a N x M data matrix, X, where N is the number 

of nodes in the graph and M is the number of data features per node. The trainable parameter of a 

graph convolutional layers is an M x K weight matrix, W, where K is the number of features per node 

in the output data. The activations of a graph convolutional layer are calculated as 

Y = V1	Â	Q	R9 (1) 

+ Network structure
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deep neural
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where V is the chosen non-linearity function (Kipf & Welling, 2017). The adjacency matrix is 

normalized using its degree matrix, D 

Â = <\	
]
	^	_	<\	

]
^ (2) 

which preserves symmetry in the adjacency matrix and ensures that all rows sum to one (Kipf & 

Welling, 2017). 

The graph convolutional layers used here were extended to allow the simultaneous use of several 

graph structures of a given set of nodes. The activations were instead calculated as 

Y = V(`ÂG	Q	RG

a

Gb]

) (3) 

 with i denoting the index of each graph structure and the corresponding weight matrix. During 

training this was implemented by letting Â be an L x N x N tensor and W be an L x M x K tensor and 

summing over the dimension corresponding to L. 

Four consecutive graph convolutional layers were used with the output of one feeding into the next. 

The activations from each of the four graph convolutional layers were concatenated into a single 

layer, yielding an N X TcDC matrix, with TcDC being the sum of K in each respective layer. This 

corresponds to an individual feature vector of length TcDC for each node in the graph. Finally, these 

feature vectors were fed into an MLP with a single hidden layer ending with a softmax output layer. 

The weights of this MLP were shared between all graph nodes. 

All layers except the output layer used the leaky rectified nonlinearity (Maas, Hannun, & Ng, 2013): 

d(!) = e
!																2d	! > 0
	0.01 ∙ !				2d	! ≤ 0 (4) 

 

3.2.2 Training data 

The dataset used for training was obtained from the online supplementary material of Fuhrer, 

Zampieri, Sévin, Sauer, & Zamboni (2017). 
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The input data consisted of genetic perturbations and predicted wild-type steady state fluxes. 

Genetic perturbations were encoded in a binary format, such that reactions impacted by a given 

gene knockout, had 1-inputs and the rest had 0-inputs. The flux data was input as the raw flux values 

for each reaction, predicted using parsimonious flux balance analysis, which minimizes the total sum 

of fluxes, subject to optimal biomass production (Lewis et al., 2010). The iJO1366 genome-scale 

reconstruction of E. coli (Orth et al., 2011) was used to determine the reactions impacted by a 

knockout and to predict fluxes. 

The prediction targets were binary variables encoding whether a given metabolite level was either 

increased or decreased in the mutant strain (1) or the same as in the wild-type strain (0). Significant 

changes were defined at : = 0.05 (two-tailed) using z-values calculated by Fuhrer et al. (2017). The 

mass spectrometry data from Fuhrer et al. (2017) was mapped to 310 E. coli metabolites 

(Supplementary Table 1), which were used as targets for all knockout strains. 

3.2.3 Adjacency matrix 

3.2.3.1 Stoichiometric network 

A metabolic reaction network is often represented as metabolite nodes connected by reactions. 

This, however, is not a true graph as some reactions connect more than two metabolites. Such a 

structure can be represented as a hypergraph, a generalization of a graph where edges can connect 

arbitrary sets of nodes instead of only pairs. The metabolic hypergraph can be reformulated as a 

graph by conversion into a bipartite graph, where both metabolites and reactions are nodes and 

participation of a metabolite in a reaction is represented by an edge between the respective pair of 

nodes with a weight corresponding to the stoichiometric coefficient. Such a representation was 

used to create an adjacency matrix for the E. coli metabolic reaction network. To avoid division-by-

zero problems when normalizing the adjacency matrix, all nodes were given self-connections (Kipf 

& Welling, 2017). If the nodes in the bipartite metabolic graph are ordered such that all metabolites 

precede all reactions, the adjacency matrix thus becomes the block matrix 

_W*IGH = k 0 l
lm 0

n + o (4) 
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where S is the usual stoichiometric matrix and I is the identity matrix. The stoichiometric structure 

was obtained from the iJO1366 genome-scale reconstruction of E. coli (Orth et al., 2011). 

3.2.3.2 Small molecule regulatory network 

In addition to the stoichiometric network, regulatory metabolite-reaction interactions were also 

included in the model in the form of a second graph structure. These interactions were embedded 

in a similar bipartite graph form as the stoichiometric network. The data for these interactions were 

obtained from Reznik et al. (2017). A regulatory matrix, R, was constructed with element rij 

describing the interaction between metabolite i and reaction j. A value of 1 was used for indicating 

activating interactions, -1 for inhibiting interactions and 0 for no interaction. The corresponding 

adjacency matrix was then calculated as 

_Wpqr = k 0 s
sm 0

n + o (5) 

3.2.4 Implementation and training 

The neural network including the graph convolutions were implemented in Python 3.5 using the 

Theano package (Al-Rfou et al., 2016). The training was carried out on nodes of an HPC cluster 

equipped with Tesla K40c graphics processing units. 

3.3 Results and discussion 

The neural network used to predict changes in metabolite levels contained four consecutive graph-

convolution layers, where the input data could be propagated through the metabolic network. This 

was followed by fully connected layers applied independently to every node. Between the graph-

convolution and fully connected layers was a concatenation layer, combining the outputs from all 

four graph-convolution layers. As each consecutive graph convolution enables more distant 

interactions in the graph, the concatenation allows the network to learn which combination of 

proximal and distal information provides the most predictive output. Since the graph-convolution 

layers conserve the graph structure of the input data, and the fully connected layers operate on 

individual nodes, the output has the same graph-structure as the input data. This allows the network 

to make predictions on every individual node, i.e. metabolite. Figure 2 shows a sketch of the neural 

network architecture. 
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Figure 2: Overview of the architecture of the neural network. Throughout the entire network the data maintains the 
network structure, allowing predictions on the level of individual nodes. 

The neural network was trained on the single-gene knockout metabolomics data for 1000 epochs, 

minimizing the cross-entropy between the predictions and targets. To simplify the prediction task, 

the chosen prediction target was whether a metabolite concentration was significantly changed or 

not in the knockout strain, regardless of the direction of change. To reduce overfitting, the dataset 

was randomly split into a training set (80 %) and a test set (20 %), which was used to evaluate the 

training progress after each epoch. The values of the cross-entropy loss function evaluated on the 

training and test sets throughout the training process are shown in Figure 3. As would be expected 

both the training and test losses decrease rapidly at first, after which the progress slows 

considerably. The training loss continues to slowly decrease, however the test loss stabilizes, 

indicating that further training does not generalize to new data. 

Input Graph convolution

Concatenation Node-wise feed-forward Output
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Figure 3: The values of the cross-entropy loss function evaluated on the training and test sets, respectively, following 
each training epoch. 

The network weights from the epoch with the best test performance were chosen for further 

evaluation. The overall balanced accuracy of the predictions on the test set was 0.58. Figure 4 shows 

summary plots of the prediction results. Figure 4a shows the positive prediction rates for the actual 

negatives (no change) and actual positives (change) respectively, while Figure 4b shows the 

distributions of output scores and Figure 4c shows the receiver operating characteristic. These 

results suggest that the neural network has derived some predictive value from the input data and 

the graph structure, although the predictive performance is only slightly better than random 

guessing. The plots in Figure 4 also indicate that the predictions show a clear bias towards positive 

predictions, despite the dataset containing only around 5 % positive examples. 
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Figure 4: Summary of the predictive results of the trained neural network. a) The positive prediction rates for actual 
negatives and actual positives. b) Distributions of the outputs for actual negatives and actual positives. c) Receiver 
operating characteristic of the predictive performance. 

Although the results of the trained neural network show that predictions are better than chance, 

this does not necessarily mean that the network has learned to propagate the input through the 

supplied graph structure. Training machine learning models on datasets with complex structure can 

sometimes lead to spuriously high prediction accuracies, as the model can learn to identify hidden 

but trivial patterns in the data (Chuang & Keiser, 2018). To test whether this was the case for the 

above results, the model was retrained on a control dataset. The control dataset was identical to 

the original dataset, except that the input data was randomly shuffled so that the target data 

(whether a metabolite concentration had changed) no longer corresponded to the input data (which 

reactions were affected by a knockout). If the neural network trained on the control dataset 

achieved predictive performance similar to the originally trained network, it would indicate that the 

predictive performance was a product of patterns that are not related to the input data. Conversely, 

if the originally trained network had actually learned to propagate the input data through the graph, 

the control dataset should yield a lower predictive performance. The neural network was trained 

on the control dataset using the same hyperparameters as the original training and reached a 

balanced accuracy of 0.52. This indicates that the originally trained neural network (with a balanced 

accuracy of 0.58) had indeed learned to propagate signals through the metabolic and regulatory 

networks, rather than just finding trivial patterns in the dataset. 

To investigate in more detail what the neural network had learned, the predictions were 

summarized for each individual metabolite. This allows insight into whether the 0.58 accuracy was 
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obtained by predicting all metabolites equally well, or whether a few metabolites were predicted at 

high accuracy while others were predicted near chance levels. Figure 5 shows the true positive rate 

and false positive rate for each metabolite. This shows that most metabolites are predicted to be 

either almost universally negative (lower left corner) or almost universally positive (upper right 

corner), while relatively few metabolites are predicted to sometimes be negative and sometimes 

positive. Of these few metabolites, most are predicted at near-chance levels, with only a handful 

predicted at high accuracies (upper left corner). This shows that the achieved predictive accuracy is 

based on distinguishing changing and non-changing concentrations of just a few metabolites, while 

the majority of metabolites are predicted at accuracies close to random chance. 

 

Figure 5: Predictive performance of individual metabolites. Each point shows the false positive rate and true positive 
rate for a given metabolite. 

While the predictions obtained using the deep neural network with graph-structured data did not 

reach performance levels where they would be practically useful, they still represent an interesting 

and potentially valuable step forward within machine learning in metabolic engineering. Prediction 

problems like the one attempted here are hard if not impossible to solve without including either 

graph-structures or other representations of preexisting domain knowledge in the model, and the 

results obtained here suggest that propagation of signals through a graph using deep neural 

networks is possible, even if currently not with impressive accuracy. It is also worth noting that the 

present prediction problem is inherently difficult, given the nature of the input and output data. 
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Most machine learning problems use a rich set of input features to predict one or a few outputs, 

while the prediction of metabolic changes from genetic perturbations uses a sparse input vector to 

predict a rich set of output features. Future work on graph-structured deep learning might focus on 

amending the input data with further informative features and experimenting with additional graph 

relationships between the nodes. 

3.4 Conclusion 

In this study a novel deep neural network was presented for propagating input signals through 

graph-structured stoichiometric and regulatory networks of metabolites and reactions. The network 

was tested by using genetic knockouts to predict changes in metabolite levels throughout the 

metabolic network. The obtained balanced accuracy of 0.58 showed that the network could learn 

some rules for relating genetic perturbations to metabolite levels, but further investigation showed 

that the performance was driven by good predictions on a few metabolites and near-chance 

predictions on most metabolites. Training the network on a control dataset showed that the 

predictive performance can indeed largely be ascribed to propagation of the input signals through 

the supplied graph-structures. 
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3.6 Supplementary Materials 

Supplementary Table 1: List of BiGG ID’s for all the metabolites that a detected ion in the Fuhrer et al. (2017) dataset 
was mapped to. 

1pyr5c 4mop but gal1p lald__D pyr 

23camp 4pasp camp galctn__D lald__L quin 

23ccmp 4ppan cbasp galctn__L lcts r1p 

23cgmp 4r5au cbi galt leu__L rbl__L 

23cump 5aop cdp galt1p lgt__S rib__D 

23dhb 5dh4dglc cechddd gcald lipoate rml1p 

23dhmb 6pgl cenchddd gdp lys__L ru5p__D 

23dhmp 8aonn chor gdptp lyx__L ru5p__L 

23doguln aact cinnm gg4abut mal__D s17bp 

26dap_LL ac cit ggbutal mal__L s7p 

26dap__M acac citr__L ggptrc malt sarcs 

2ahbut accoa cmp ghb man sbt6p 

2aobut acetol cpmp glc__D man1p sbt__D 

2ddg6p acgal csn glcn man6p ser__L 

2ddglcn acgam cys__D glu1sa mana skm 

2dh3dgal acgam6p cys__L glu5sa manglyc skm5p 

2dh3dgal6p acglu cytd glu__D melib sl2a6o 

2dhp acmana dca glu__L met__D so3 

2dr1p acmanap ddca glucys met__L succ 

2dr5p acmum dgdp glx mi1p__D sucglu 

2mcacn acmum6p dgmp gly micit sucorn 

2mcit acnam dgsn glyald mnl sucr 

2me4p acon_C dgtp glyb mnl1p sucsal 

2mecdp acser dha glyc msa tag6p__D 

2obut actp dhap glyc__R mthgxl tagdp__D 

2oph ade dhor__S gmhep1p nac tartr__L 

2p4c2me adn dhpppn gmhep7p no3 thdp 

2pg adp dhpt gmp ocdca thr__L 

35cgmp agm dimp gsn ocdcea thymd 

3amp ahcys dmlz gthox octa tre 

3c2hmp ahdt dpcoa gthrd op4en trp__L 

3c3hmp air dtbt gua orn ttdca 

3c4mop akg dtdpglu h2mb4p orot tyr__L 

3cmp ala_B dtdprmn hco3 pac uacgam 
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3dhq ala__D dtmp hdca pant__R uacmam 

3dhsk ala__L dxyl5p hdcea pap udp 

3gmp alaala e4p his__L paps udpacgal 

3hcinnm all__D enter histd phe__L udpg 

3hpp altrn f1p hom__L phpyr udpgal 

3hpppn ametam f6p hqn pi ump 

3mob amp fc1p hxan pnto__R ura 

3mop ara5p fdp ichor ppal uri 

3pg arbt fgam icit ppbng val__L 

3ump arbt6p fpram ile__L ppgpp xan 

4abut arg__L fprica indole pphn xmp 

4ahmmp argsuc fru inost ppi xu5p__D 

4ampm asn__L g1p ins pro__L xu5p__L 

4c2me asp__L g3p itp pser__L xyl__D 

4crsol aspsa g3pc kdo ptrc xylu__D 

4hbz athr__L g3pe kdo8p pyam5p xylu__L 

4hoxpacd atp g6p lac__D pydam 
 

4hthr btal gal lac__L pydx5p 
 

 

  



 

 84 

Part II: Model-based strain design 

As previously mentioned, designing microbial strains for chemical production processes is a difficult 

and time-consuming task. The first part of this thesis explored how non-rational methods, 

particularly adaptive laboratory evolution (ALE), can be used to improve certain characteristics of 

production strains. Some traits, such as tolerance as shown in Chapter 1, can be easily improved in 

ALE experiments, but many production-related traits such as product yields or production rates that 

cannot be trivially selected for, are harder to optimize with evolutionary processes. For this reason, 

development of good production strains almost always also requires utilization of rational 

engineering methods. Because of the complexity of microbial metabolism, and physiology in 

general, genetically modifying a strain can sometimes have unintuitive effects on the functioning of 

the cell, which makes rational design difficult. To aid in the understanding of how genetic 

modifications impact cellular processes, mathematical models of the cell can therefore be a valuable 

tool, with mathematical models of metabolism being of particular relevance for metabolic 

engineering. Metabolic models can enable system-wide analysis of the cell and e.g. help predict 

genes that should be overexpressed in order to produce a target compound (Choi, Lee, Kim, & Woo, 

2010) or construct novel pathways for synthesizing a product of interest (Pharkya, Burgard, & 

Maranas, 2004). Some models only require knowledge of the organism’s metabolic capabilities, 

much of which can be inferred from the annotated genome (Faria, Rocha, Rocha, & Henry, 2018), 

while other models can integrate experimental data such as transcriptomics or proteomics in order 

to improve the predictive accuracy. Chapter 4 will provide an introduction to genome-scale models 

of metabolism and review different methods for integrating large-scale data into the models. 

While genome-scale metabolic models can be utilized in rational computational strain design, they 

can also be used in combination with non-rational methods, e.g. ALE. It is possible to engineer 

microbial strains that must produce a given metabolite in order to grow, i.e. where production is 

growth-coupled (Feist et al., 2010). Since ALE is based on continuous selection of fast-growing 

mutant strains, in cases where production is growth-coupled, ALE will thus indirectly select mutants 

that have an increased production rate for the growth-coupled chemical. Growth-coupled strains 

can in principle be constructed without the use of computational tools, but due to the complex 

structure of metabolism, algorithms based on genome-scale metabolic models allow identification 
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of non-obvious growth-coupled designs (Klamt & Mahadevan, 2015). In Chapter 5 a novel algorithm 

for predicting growth-coupled designs is presented and validated by its ability to identify known 

experimentally validated growth-coupled designs as well as unknown designs that are growth-

coupled in silico. 
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Abstract 

Genome-scale metabolic reconstructions have found widespread use in scientific research as 

structured representations of knowledge about an organism’s metabolism and as starting points for 

metabolic simulations. With few simplifying assumptions, genome-scale models of metabolism can 

be used to estimate intra-cellular reaction rates in any organism for which a well-curated metabolic 

reconstruction is available. However, with the rapid increase in the availability of genome-scale 

data, there is ample opportunity to refine the predictions made by metabolic models by integrating 

experimental data. In this chapter, we review different methods for combining genome-scale 

metabolic models with genome-scale experimental data, such as transcriptomics, proteomics and 

metabolomics. Integrating experimental data into the models generally results in more precise and 

accurate simulations of cellular metabolism. 
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4.1 Reconstruction and analysis of metabolic networks 

It is essential to study metabolism in order to describe and understand the functioning of living cells. 

The chemical conversion of nutrients into energy, biomass and secondary products is one of the 

main components of the cellular phenotype, and a defining characteristic of life. Since the metabolic 

capabilities of an organism are ultimately determined by its genotype, advances in genome 

sequencing technologies during the last two decades have had a substantial impact on our 

knowledge about metabolism. With a fully annotated whole genome sequence of an organism, it is 

feasible to compile a database of all the biochemical reactions that can be catalyzed inside the cell. 

Besides a list of reactions and their stoichiometries, such a database, called a genome-scale 

metabolic reconstruction, often includes information that links each reaction to the genes encoding 

the enzymes that catalyze it (Price et al. 2004). The earliest published genome-scale reconstructions 

were for organisms with small genomes such as Haemophilus influenzae (Schilling and Palsson 2000) 

and Escherichia coli (Edwards and Palsson 2000), but reconstructions for more complex organisms 

including Saccharomyces cerevisiae (Förster et al. 2003), Arabidopsis thaliana (de Oliveira Dal’Molin 

et al. 2010) and Homo sapiens (Duarte et al. 2007) have followed since. Revised versions of genome-

scale metabolic reconstructions are often published when new genes are discovered or annotated 

functions of known genes are updated. 

A genome-scale metabolic reconstruction allows systematic analysis of the metabolic network of an 

organism, and can even form a starting point for whole-cell simulations (Orth et al. 2010; Karr et al. 

2012). In order to perform such analyses, the genome-scale reconstruction must be formulated as 

a mathematical model, e.g. in the form of a system of differential equations, 

tu
t#

= v ∙ w(u, y) (1) 

Here S denotes the stoichiometric matrix, derived from the genome-scale reconstruction with 

element sij denoting the stoichiometric coefficient of metabolite i in reaction j, and x is a vector of 

concentrations of all metabolites in the cell. Reaction rates, v, are a function of current metabolite 

concentrations and kinetic parameters, k. Given initial metabolite concentrations, the system of 

differential equations is readily solved numerically. While the formulation is conceptually simple, its 
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use on the genome-scale is impeded by limited knowledge of the many kinetic parameters 

(McCloskey et al. 2013). 

To avoid the issue of unknown kinetic parameters, constraint-based metabolic modeling methods 

are often used instead. Constraint-based modeling imposes constraints on the system and finds 

metabolic reaction rates that are consistent with these constraints. The most central constraint is 

the assumption of steady-state, where the concentrations of internal metabolites are assumed to 

be constant. This corresponds to setting the left-hand side of Equation 1 to zero and results in a 

system of linear equations, 

v ∙ w = z (2) 

that can be solved for the reaction rates or metabolic fluxes, v (Orth et al. 2010). The kinetic 

parameters are not accounted for explicitly in constraint-based models, which only require the 

stoichiometric matrix to be known. For most genome-scale reconstructions, the system of equations 

is underdetermined, meaning that an infinite number of flux solutions exist. One way to address 

this issue is to identify a solution that optimizes a specific objective. This is based on an assumption 

that the cell has evolved to maximize some biological objective, e.g. production of ATP or production 

of biomass. Production of biomass is modeled through a bulk-reaction that consumes biomass 

constituents such as nucleotides and amino acids in empirically determined ratios (Orth et al. 2010). 

This method is known as flux balance analysis (FBA) and has become the foundation of most work 

in constraint-based metabolic modeling. Performing flux balance analysis requires the solution of a 

linear optimization problem. The result is a set of reaction rates that satisfy the constraints of the 

system and is consistent with the defined biological objective. 

Despite the simple formulation and strong assumptions, FBA has proven useful in a number of 

metabolic modeling applications, to predict the rates of metabolic reactions, typically called the flux 

distribution (McCloskey et al. 2013). It can been used for instance to predict essential metabolic 

genes, i.e. genes that are required for the synthesis of one or more biomass constituents. This is 

done by simply removing corresponding reactions from the model and performing FBA. If the 

maximal biomass flux is zero in the knockout model, the gene is expected to be essential. 

Comparisons with experimental data from single-knockout studies have shown good 
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correspondence with the results of FBA-based essentiality predictions in E. coli and other bacteria 

such as Pseudomonas aeruginosa (Edwards and Palsson 2000; Oberhardt et al. 2008). In other 

organisms, e.g. S. cerevisiae, predictions of essentiality are less accurate, and for multiple knockouts 

in particular there is only a very low correlation between experimental data and FBA predictions 

(Heavner and Price 2015). 

The assumption of maximization of biomass production as a metabolic objective is often reasonable 

for microorganisms during exponential growth, but it will clearly not hold for most mammalian cells 

or other multicellular organisms whose evolutionary pressure has selected for far more complex 

traits than simply growth at the cellular level. As replacement for FBA, Markov chain Monte Carlo 

(MCMC) methods can be used to uniformly sample the feasible steady-state flux space described by 

Equation 2. MCMC methods provide an estimate of the joint probability distribution of fluxes and 

do not depend on a pre-specified biological objective. The applications of random sampling methods 

include the analysis of red blood cells under storage conditions (Bordbar et al. 2016), aspirin 

resistance in platelets (Thomas et al. 2015), transcriptional regulation in human adipocytes 

(Mardinoglu et al. 2014) and in bacterial communities in the human gut (Shoaie et al. 2013), as well 

as the metabolic re-wiring that takes place in epithelial to mesenchymal transition during the 

development of breast cancer (Halldorsson et al. 2017). 

4.2 Constraining metabolic models with transcriptomics and proteomics data 

Although mass balance is an essential principle, metabolism is constrained by other factors and 

physical principles as well. FBA assumes that the cell can use all metabolic reactions at a given time 

in the combination that gives the highest biomass production. However, this is contradicted by the 

fact that only a proportion of an organism’s genes will be transcriptionally active at the same time. 

Thus further constraints can be imposed on the model by leveraging information about the 

transcriptional state of the cell. This can be used to create context-specific models from generic 

models, such as the generic human reconstruction Recon1 (Duarte et al. 2007), as well as to improve 

the accuracy of flux predictions. The simplest realization of this idea utilizes the fact that an enzyme 

cannot catalyze any reaction flux if its encoding gene is not expressed. Reactions catalyzed by genes 

with transcript levels below a defined threshold can thus be forced to be inactive by removing them 

from the model. Flux distributions obtained with such a constrained model were found to be more 
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strongly correlated to experimentally measured fluxes in S. cerevisiae compared to an 

unconstrained model (Åkesson et al. 2004). More sophisticated algorithms minimize the difference 

between the predicted flux distribution and the gene expression data. The Gene Inactivity 

Moderated by Metabolism and Expression (GIMME) algorithm (Becker and Palsson 2008) finds flux 

values which minimize the utilization of reactions with low expression levels, in order to meet pre-

specified metabolic requirements such as growth. The iMAT method developed by Shlomi and 

coworkers (Shlomi et al. 2008) alleviates the need for a pre-specified cellular objective and is 

therefore suitable for analyzing mammalian cells and tissues. The method partitions gene 

expression values into three groups, corresponding to high, moderate and low expression and then 

maximizes the number of reactions with flux levels in agreement with the expression states. This 

enabled identification of tissue-specific metabolic activities in different human tissues, and the 

construction of tissue-specific models of human metabolism. An extension of iMAT was used to 

construct a model of cancer metabolism from Recon1 and expression data from cancer cell lines in 

the NCI-60 collection. The cancer model was then used to identify several cytostatic drug targets, 

and generate a list of potential selective anti-cancer treatments (Folger et al. 2011).  

Since Åkesson and coworkers first used gene-expression data to constrain metabolic models, a large 

number of methods that integrate expression data and flux predictions have been published. An 

evaluation of many of these methods, by their ability to predict flux distributions in E. coli and S. 

cerevisiae, showed that none of them performed significantly better than parsimonious FBA, an 

extension of FBA that finds the flux distribution with the smallest sum of fluxes that can support the 

optimal objective value (Machado and Herrgård 2014). This suggests that gene transcription levels 

do not correlate strongly with reaction fluxes, at least in microbial cells, which is not surprising 

considering that translational efficiency, post-translational modifications and allosteric regulation 

all have an effect on fluxes as well. 

A step closer to the actual reactions than mRNA abundance is protein concentration. A certain 

correlation between mRNA and protein concentration is to be expected (Gry et al. 2009), and 

several methods for integrating gene expression data into metabolic models can indeed use protein 

abundance data with the same algorithms, simply by replacing gene expression thresholds with 

protein abundance thresholds (Becker and Palsson 2008; Machado and Herrgård 2014). However, 
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there have also been attempts to more explicitly incorporate proteomics data into the modeling 

frameworks. A central component of enzyme kinetics is the concept of the catalytic capacity of an 

enzyme. Each enzyme molecule can only perform a certain number of conversions per second; an 

increased flux will therefore require a larger number of enzymes at some point. The maximum 

possible flux, represented by the Vmax parameter, can be calculated from the enzyme concentration 

and catalytic turnover number, kcat 

{C|} = ~H|* ∙ [Ä] (3) 

If the catalytic turnover parameters are known, this relationship can be used to constrain fluxes 

using protein concentration data. In the GECKO modeling framework (Sánchez et al. 2017), a 

constraint is added for each enzyme, representing the enzyme’s degree of utilization, where the 

upper bound is set to the measured enzyme concentration. The utilization of an enzyme is obtained 

by summing Ç/~H|*	 for all reactions catalyzed by that enzyme. Using GECKO with a proteomics 

dataset for S. cerevisiae, Sanchez and coworkers showed that the space of possible fluxes was 

reduced considerably by excluding all flux distributions that were not consistent with the observed 

enzyme levels. On the other hand, the fluxes predicted for S. cerevisiae grown in glucose limited 

minimal medium did not have a significantly smaller error compared to experimentally measured 

fluxes than those predicted with FBA. It is possible however, that the advantage of using proteomics 

data will be larger in cases where the assumption of maximal growth is not valid, e.g. under stress 

conditions or in genetically perturbed strains. GECKO can also be used in the absence of proteomics 

data by imposing a single overall constraint on the total enzyme mass. This resulted in more accurate 

predictions of maximal growth rates on a wide range of different carbon sources, for which FBA 

tends to overestimate growth rate. Another interesting growth effect that was captured by 

including an overall protein constraint is the shift from respiration to fermentation at high growth 

rates. This overflow metabolism, also known as the Crabtree effect in yeast (Crabtree 1929) and the 

Warburg effect in cancer cells (Warburg et al. 1927), cannot be captured by FBA, where simply the 

flux distribution with the highest biomass yield is found, independently of growth rate. The overflow 

effect is most likely caused by respiratory enzymes having a higher proteome cost than fermentative 

enzymes (Basan et al. 2015), which means that at high growth rates protein allocation becomes 

limiting and fermentation becomes more efficient even though it has a lower energy/carbon yield. 
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Overflow metabolism has been modeled e.g. in E. coli (Basan et al. 2015), S. cerevisiae (Sánchez et 

al. 2017) and cancer cells (Shlomi et al. 2011), by different models with the common trait of 

somehow constraining the proteome. 

The causes of the Warburg effect in cancer cells were studied using Recon1 by placing a constraint 

on total enzyme concentration to account for enzyme solvent capacity (Shlomi et al. 2011). To 

compute the contribution of each enzyme to the total concentration, an estimate of the enzyme 

turnover number was required. Estimates for 15% of the reactions could be obtained from 

biochemical databases, the rest was assigned a fixed value of 25/s. Using FBA and random sampling, 

the Warburg effect was shown to be a consequence of metabolic adaptations to increase biomass 

productivity. Further analysis revealed the preference of cancer cells to take up glutamine instead 

of other amino acids. 

Resource allocation between cellular processes in Bacillus subtilis was recently analyzed using a 

method that incorporates genome-wide protein quantification data and extracellular nutrient 

concentrations with a metabolic reconstruction (Goelzer et al. 2015). The method, Resource Balance 

Analysis (RBA), links flux to enzyme abundance, assuming a relationship similar to Equation 3, while 

incorporating information on protein activity and protein localization. The use of RBA is fairly 

involved compared to the methods described earlier and requires specification of a large number 

of parameters. The parameters were partly obtained from Uniprot and partly inferred from data. 

RBA accurately predicted the allocation of resources in B. subtilis over a wide range of conditions. 

In vivo knockouts of enzymes which were expressed but predicted to have zero flux in the model 

resulted in significantly increased growth (Goelzer et al. 2015). This suggests that the method may 

be useful for constructing minimal cell factories, e.g. for protein production. 

4.3 Models of metabolism and macromolecular expression 

The previously described methods for combining omics data and metabolic models are mostly based 

on heuristically formulated constraints and/or objectives. When the measured quantities – such as 

mRNA and protein abundances – are not explicitly accounted for in the modeling framework, they 

cannot be seamlessly integrated into it. To address this problem, an extended modeling framework 

that explicitly models the expression of macromolecules, such as RNA and protein, has been 
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developed. Construction of such models of metabolism and expression (ME-models) began with the 

reconstruction of the macromolecular expression network of E. coli, analogously to the metabolic 

network (Thiele et al. 2009). Transcription of a given gene to produce mRNA is modeled as a reaction 

consuming nucleotides in proportions consistent with the specific sequence, and similarly 

translation is modeled as a reaction consuming charged tRNAs while producing protein and 

uncharged tRNAs. In order to model how metabolic catalysis is dependent on translation of a 

specific protein and how translation of a protein is dependent on transcription of its gene to mRNA, 

these different reactions must be coupled (Thiele et al. 2009; Lerman et al. 2012). A certain quantity 

of an enzyme can only catalyze a limited reaction flux and Equation 3 can be rearranged to enable 

calculation of the minimum amount of enzyme required to catalyze a given flux 

[Ä] ≥
Ç
~H|*

(4) 

Equation 4 represents a constraint that can be used to couple metabolic reactions to the enzymes 

that catalyze them. Identical constraints can be formulated for ribosomes and mRNA in translation 

reactions and for RNA-polymerase in transcription reactions. A constraint-based modeling 

framework, however, does not model concentrations of metabolites (or enzymes) and is thus not 

directly compatible with such constraints. To circumvent this it is necessary to account for growth-

related dilution. In a growing cell, metabolite pools are continuously diluted, because of the 

expanding intracellular volume, by a rate equal to the product of the growth rate and metabolite 

concentration. This means that in steady-state, catalysis of a reaction requires that the catalyzing 

enzyme be produced at a rate proportional to the growth rate. Enzymatic conversion of compound 

A into compound B by enzyme E thus becomes (Lloyd et al. 2017): 

_ +
Ö
~H|*

Ä → á (5) 

In FBA the requirement of enzyme production is modeled through the composition of the biomass 

reaction, but since this reaction is determined a priori¸ FBA cannot model how biomass composition 

changes under different growth rates and conditions. With ME-models the empirical biomass 

reaction is replaced by explicitly modeling the relationship between metabolism and 

macromolecular expression. ME-models can thus directly predict the expression levels of different 
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proteins, which can be compared with omics datasets. A ME-model of the thermophilic bacterium 

Thermotoga maritima (Lerman et al. 2012), found moderate correlations between predicted and 

experimentally measured mRNA profiles (r= 0.54), protein expression profiles (r = 0.57), as well as 

proteome amino acid composition (r = 0.79). A ME-model of E. coli showed improved prediction of 

growth rates in different nutrient conditions compared to FBA (Thiele et al. 2012), and could 

accurately predict several internal fluxes (O’Brien et al. 2013). Additionally, since ME-models 

explicitly include the cost of producing the enzymes required for various pathways, they implicitly 

limit the total proteome size and thus also capture metabolic overflow effects, such as the acetate 

overflow metabolism in E. coli (O’Brien et al. 2013). 

Whereas traditional constraint-based metabolic models include, and can thus directly predict, 

growth rate, uptake and secretion rates and internal fluxes, ME-models can additionally predict 

expression profiles and proteome composition, and thus they can also be directly constrained by 

expression and proteomics data. Because of this, ME-models represent an intuitive and theoretically 

justified method of integrating transcriptomics and proteomics data into metabolic models. They 

have not yet found broad usage in the metabolic modeling community, presumably because of the 

time it takes to run simulations (several orders of magnitude higher than with FBA), and the lack of 

related model and software infrastructure, but these issues are continuously being addressed (Yang 

et al. 2016; Lloyd et al. 2017). 

4.4 Augmenting models with metabolomics data 

In a discussion of data integration in metabolic models, it is impossible not to mention 

metabolomics. Different analytical methods, e.g. enzymatic assays, chromatography and mass 

spectrometry, can be used to take snapshots of the cellular metabolism with varying resolution, 

coverage, precision and throughput. However, they all provide useful information about the 

concentrations of metabolite pools in the cell. One of the earliest uses of metabolomics data to 

improve metabolic modeling was metabolic flux analysis (MFA), which utilizes time-course 

metabolite concentration data from cultures fed with isotopically labeled substrates to infer flux 

values in the metabolic network (Stephanopoulos 1999; Sauer 2006). This is done by monitoring 

how the isotopes, e.g. 13C or 15N, spread to downstream metabolite pools over time. The advantage 

of this method is that the resulting fluxes can be used directly to constrain metabolic models or to 
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compare the validity of different simulation methods. However, MFA is labor- and cost intensive 

and works best on a smaller subset of the entire metabolic network, typically just the central carbon 

metabolism (Antoniewicz 2015; Gopalakrishnan and Maranas 2015). 

Changes in extracellular metabolite concentrations over time can be used to estimate uptake and 

secretion rates and constrain the flux space. However, since constraint-based modeling frameworks 

model fluxes under an assumption of steady-state, internal metabolite concentration data at a 

single time point without isotopic labeling cannot be directly utilized. Despite this, metabolomics 

data can still be used to either constrain the models or to provide new insights in combination with 

the simulation results. In order to model cells that are not in steady-state, such as human blood cells 

undergoing physiological changes during storage, Bordbar and coworkers devised a method called 

unsteady-state FBA (Bordbar et al. 2017). Using time-course metabolomics they determined the 

rate of accumulation or depletion for internal metabolites, which was then modeled by adding 

source and sink reactions to the metabolic model. These reactions were then constrained to have 

fluxes corresponding to the experimentally determined rates of concentration changes. Subsequent 

MFA revealed that the fluxes predicted with this method were more accurate than those obtained 

by regular FBA. 

Aside from enforcing steady state, a commonly used constraint in constraint-based models is to 

force certain fluxes to only go in one direction. This is straightforward for some reactions whose 

thermodynamics make it practically irreversible under biological conditions. Other reactions are 

closer to equilibrium and can go in both directions depending on specific conditions. The 

spontaneous direction of a reaction can be calculated by the formula 

Δâä = Δâä° + så	>?@(ç) (6) 

If the left-hand side (the reaction Gibbs free energy) is negative, the reaction will proceed 

spontaneously in the forward direction, while it will proceed spontaneously in the reverse direction 

if the reaction Gibbs free energy is positive. Δâä° is the reaction Gibbs free energy under standard 

conditions, RT is the gas constant times the absolute temperature and Q is the reaction quotient, 

containing the concentrations of the reaction products and substrates. The standard Gibbs free 

energy must in principle be determined experimentally, but in most cases it can be calculated from 
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the structure of the participating metabolites and already known reaction Gibbs free energies for 

other reactions (Noor et al. 2013). This means that a dataset of metabolite concentrations can be 

used to constrain reactions to a specific direction depending on the specific metabolic conditions, 

reducing the space of feasible fluxes significantly (Soh and Hatzimanikatis 2014). In many simulated 

growth conditions, it can be sufficient simply to constrain reaction directionalities according to the 

most common mode of operation without regard to actual metabolite concentrations. Some 

reactions however, occur in the unconventional direction under extreme conditions, such as very 

high CO2 concentrations. In such cases using thermodynamics and metabolite data to inform 

reaction directionalities will be particularly beneficial and can lead to more accurate simulations 

(Soh et al. 2012). 

Constraint-based simulations can also be combined with metabolomics data in another way. In 

addition to calculating a flux distribution, simulating a constraint-based model also provides so-

called shadow prices. Each shadow price is linked to a metabolite and reflects how much the 

objective function, e.g. growth, could be improved if the model were allowed to get some of that 

metabolite “for free”. In other words a shadow price is a measure of how limiting a given 

metabolite’s mass balance is for the objective function. Depending on the algorithm used to solve 

the FBA problem, shadow prices are either a byproduct of the solution process or can be obtained 

with modest computational effort. 

Zampieri and coworkers investigated the evolution of antibiotic resistance in E. coli using adaptive 

laboratory evolution (Zampieri et al. 2017). By maximizing and minimizing flux through each 

reaction in the model and calculating the shadow prices, the authors could identify reactions, which, 

when maximized or minimized, resulted in shadow prices that were consistent with the observed 

patterns of metabolite concentration changes. Those reactions were hypothesized as being targets 

of evolution, whose flux should be increased in order to increase antibiotic resistance. 

Besides constraint-based modeling, the most common way to simulate cellular metabolism is with 

kinetic models. This involves the solution of the system of differential equations shown in Eq. 1 from 

given initial metabolite concentrations. As previously described, one of the challenges with this 

approach is the requirement of knowing the values of all the kinetic parameters of the system. For 

small biochemical systems, the kinetic parameters can sometimes be determined individually 
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through in vitro experiments, but for genome-scale models this is not feasible. Additionally there is 

no guarantee that the in vitro kinetic parameters are representative of how an enzyme functions in 

vivo (Teusink et al. 2000). Instead of the bottom-up approach of experimentally determining each 

parameter, a top-down approach may be used, where the model parameters might initially be 

estimated from prior information, such as in vitro data, but are predominantly selected by fitting 

simulation results to genome-scale experimental data. This has long been done for small-scale 

networks, using metabolomics and MFA data (Jamshidi and Palsson 2008; Srinivasan et al. 2015), 

however with continual increases in dataset sizes and computing power, it has also become feasible 

to do this for genome-scale networks. Recently a genome-scale kinetic model of E. coli was 

published along with estimated values for all kinetic parameters (Khodayari and Maranas 2016). The 

model parameters were fitted using experimental flux data and model predictions were validated 

against metabolomics data. In addition the model could quantitatively predict product yields of 24 

different compound in 320 mutant strains, which was considerably better than the constraint-based 

simulation methods it was tested against. In another study kinetic models of human red blood cells 

were used to investigate individual variations in susceptibility to side effects of the hepatitis B drug 

Ribavirin (Bordbar et al. 2015). By measuring intracellular metabolite levels in red blood cells of 24 

patients, they could determine individual kinetic parameter values for each of the patients, and 

show that those parameters were predictive of whether the patient was sensitive to side effects. 

Furthermore, the identified relationships between kinetic parameters and sensitivity to drug side-

effect were consistent with known mechanisms of Ribavirin side effects. These results show that 

kinetic modeling frameworks have the potential to significantly outperform constraint-based 

simulations, and that with modern omics technologies and computer power, it is feasible to 

parametrize them sufficiently to predict metabolic behavior (Saa and Nielsen 2017). 

4.5 Combining metabolic models and machine learning methods 

The term machine learning covers a broad range of methods where large datasets are used to infer 

relationships between variables or to predict various outcomes from given input data. Often this is 

done without much consideration of specific mechanisms of the studied phenomena. Such data-

driven methods can of course be applied to metabolic data, but with limited connection to biological 

mechanisms, the results are often difficult to interpret. Instead, machine learning methods can be 
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combined with domain-specific biological knowledge, such as the information encoded within a 

genome-scale reconstruction, to create hybrid methods that also take advantage of the metabolic 

network structure. 

Plaimas and coworkers predicted gene essentiality in E. coli using a hybrid method (Plaimas et al. 

2008). Instead of using FBA to predict essentiality as described previously, they defined a set of 

features for each reaction, including metrics of network topology, gene expression data and 

predicted FBA fluxes. These features were fed into a support vector machine classifier together with 

labels from experimental essentiality data (Baba et al. 2006). The predictive accuracy of gene 

essentiality was 92%, compared to 85% for FBA. Furthermore, the genes where essentiality was not 

correctly predicted were retested experimentally, and in several cases the authors identified errors 

in the original experimental dataset. By removing single features from the input data one at a time, 

the authors could also identify which features were most important for accurately predicting 

essentiality. Prediction with FBA suffers mainly from two problems, namely that the metabolic 

network might be incomplete, and that the assumption of growth optimality does not always hold 

(O’Brien et al. 2015). A hybrid method can instead learn from data, utilizing the biological context, 

e.g. in the form of a metabolic network, only when it improves prediction performance. A similar 

method was recently used to predict drug side effects (Shaked et al. 2016). A list of drugs known to 

inactivate one or more enzymatic reactions was used as training data, with features corresponding 

to the minimum and maximum possible FBA flux for each reaction after deactivating the drug’s 

target reaction(s) in the Recon1 model. Support vector machine classifiers were then trained to 

predict which (if any) side effects the drug would have. Using a feature selection method it was also 

possible to find the features that were most strongly associated with a given side effect. Many of 

the results were found to be consistent with the published literature of these drug side effects. 

A third example of a combination of machine learning with metabolic network data was used to 

predict novel drug-reaction interactions for cancer therapy (Li et al. 2010). The method requires the 

construction of a reaction flux similarity matrix. This matrix was obtained using the GIMME 

algorithm to predict reaction fluxes from gene expression data in 59 cancer cell lines. Reactions with 

the same flux profile across the cell lines were said to have a high similarity, while reactions with 

different flux profiles had a low similarity. The reaction flux similarity matrix was combined with 
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knowledge of existing drug-reaction interactions, using a K-nearest neighbors algorithm, to predict 

new interactions. 

Where purely model-based algorithms may suffer from lack of biological knowledge such as kinetic 

parameters, the use of machine learning methods in biomedical research is often hampered by 

difficulties in interpreting the results. The examples above show that the two methodologies can be 

combined to achieve results that are informed by experimental data, while maintaining biologically 

relevant relationships between variables. Such hybrid methods can be used to build accurate 

predictive models, while also providing new biological insights and will without doubt find 

widespread use in the future. 

4.6 Conclusions 

Genome-scale models of metabolism have found applications ranging from industrial biotechnology 

to human health. These models can now be readily built for any organism to predict metabolic 

phenotypes such as the effect of a gene knock-out on cell growth. Advanced formulations of 

genome-scale models allow integrating diverse omics data types including transcriptomics, 

proteomics and metabolomics data to the modeling. Advanced genome-scale models make more 

accurate condition-dependent model predictions, and expand the range of predicted intracellular 

variables from metabolic fluxes to concentrations of metabolites and proteins. Genome-scale 

mechanistic models can also be combined with purely data-driven machine learning methods to 

obtain hybrid mechanistic/statistical models with the potential for improving predictive 

performance. With increasing amounts of different omics data types becoming available for all 

organisms, the modeling approaches described in this chapter can be further improved and 

extended to obtain highly predictive models of cellular processes. 
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Abstract 

Biological production of chemicals is an attractive alternative to petrochemical-based production, 

due to advantages in environmental impact and the spectrum of feasible targets. However, 

engineering microbial strains to overproduce a compound of interest can be a long, costly and 

painstaking process. If production can be coupled to cell growth it is possible to use adaptive 

laboratory evolution to increase the production rate. Strategies for coupling production to growth, 

however, are often not trivial to find. Here we present OptCouple, a constraint-based modeling 

algorithm to simultaneously identify combinations of gene knockouts, insertions and medium 

supplements that lead to growth-coupled production of a target compound. We validated the 

algorithm by showing that it can find novel strategies that are growth-coupled in silico for a 

compound that has not been coupled to growth previously, as well as reproduce known growth-

coupled strain designs for two different target compounds. Furthermore, we used OptCouple to 

construct an alternative design with potential for higher production. We provide an efficient and 

easy-to-use implementation of the OptCouple algorithm in the cameo Python package for 

computational strain design. 
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5.1 Introduction 

The use of microorganisms as cell factories offers the possibility of producing a wide range of 

chemicals from renewable sources, as well as manufacturing natural compounds too complicated 

for chemical synthesis in large amounts (Becker and Wittmann, 2015). However, successfully 

engineering microorganisms to produce a target compound most often requires trial-and-error 

experimentation with different possible pathways, and even when production is achieved, many 

iterations of subsequent optimization are usually necessary to increase production rate and yield to 

satisfy industrial needs (Lee and Kim, 2015). 

One strategy for optimizing chemical production in microbial strains is to utilize the power of natural 

selection in adaptive laboratory evolution (ALE) experiments (Portnoy et al., 2011; Shepelin et al., 

2018). This allows the identification of mutant strains with enhanced viability under the evolution 

conditions. The inherent selection for cells that are able to grow faster than the rest of the 

population makes it easy to optimize for characteristics such as product tolerance or substrate 

utilization, while directly improving production characteristics such as production rate, titer and 

yield is more difficult (Hansen et al., 2017; Shepelin et al., 2018). Indeed, with the advent of more 

and more methods, models, and databases for automated running and analysis of ALE experiments, 

such as eVOLVER (Wong et al., 2018), ALEsim (LaCroix et al., 2017), and ALEdb (Phaneuf et al., 2018), 

the need for new selective pressures by clever strain and experimental design becomes the primary 

challenge for evolutionary strain engineering. 

Using evolution to improve biochemical production rates can be achieved by coupling production 

to growth, i.e. ensuring that production is a necessary by-product of cell growth, such that 

adaptations that increase the growth rate of the cells will also increase production. For a review of 

examples of successful growth-coupling for biochemical production, see e.g. Shepelin et al. (2018). 

A recent successful example is the growth-coupling of itaconic acid production in Escherichia coli by 

four gene deletions, a downregulation, and glutamate supplementation that ensure formation of 

itaconic acid to prevent accumulation of PEP inside the cell (Harder et al., 2016). The design was 

aided by the computation of minimal cut sets (MCS), which are sets of gene knockouts that will 

prevent all undesirable flux distributions while maintaining the ability to produce the target 

compound (Klamt and Gilles, 2004; von Kamp and Klamt, 2014). 
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Since growth-coupling strategies are not always obvious from looking at a metabolic map of the 

microorganism, it is beneficial to use genome-scale metabolic models together with computational 

methods like the MCS framework, to quickly search the design space for strain modifications that 

can potentially make production growth-coupled. One of the first computational methods for 

predicting strategies for improving bio-production was OptKnock (Burgard et al., 2003). OptKnock 

uses a mixed integer linear programming (MILP) formulation to predict gene knockouts that allow 

higher production under growth-optimal conditions. While the predictions made by OptKnock will 

allow for increased production, they will not necessarily make production growth-coupled, as 

alternative pathways can be used instead. The algorithm RobustKnock (Tepper and Shlomi, 2009) 

seeks to solve this problem by predicting knock-out combinations that maximize the minimal 

production under optimal growth. The more recent algorithm gcOpt (Alter et al., 2018) is similar to 

RobustKnock, but requires a fixed growth rate to be set, allowing the formulation to be simplified. 

In addition to finding gene knockouts, there are also algorithms, e.g. the RobOKoD algorithm 

(Stanford et al., 2015), that attempt to increase production rates by predicting native genes to 

under- and overexpress. However, growth-coupling a production pathway alleviates the need for 

such expression level perturbations, since these can be optimized subsequently by means of ALE 

(Shepelin et al., 2018). 

It has been shown that almost all metabolites in E. coli can be growth-coupled through knockouts, 

but in many cases this would require deletion of an infeasible number of genes (von Kamp and 

Klamt, 2017). Growth coupling may be easier to achieve by inserting heterologous genes that alter 

host metabolism in addition to knocking out native genes. The algorithm OptStrain (Pharkya et al., 

2004) predicts both knockouts and insertions for increasing production, but does so in a two-step 

process. First, heterologous reactions that enable or improve the production capabilities are 

identified from a database of known reactions. This can be a novel production pathway or 

stoichiometrically favourable alternate reactions. Subsequently, knockouts that increase the 

possible production yield at maximal growth are identified using the OptKnock algorithm. With a 

two-step procedure like OptStrain, it is only possible to find heterologous genes and knockouts that 

improve production independently of each other. To solve this problem the algorithm SimOptStrain 

(Kim et al., 2011) does simultaneous prediction of gene insertions and knockouts. This enables the 

identification of heterologous gene insertions that have beneficial effects, only in the presence of 
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specific knockouts. An example of a design where heterologous genes and knockouts are combined 

is the growth-coupling of product methylation in a cysteine auxotrophic E. coli strain described by 

Luo and Hansen (2018). Insertion of CYS3 and CYS4 from Saccharomyces cerevisiae enable cysteine 

synthesis from supplemented methionine through a pathway that requires flux through S-

adenosylmethionine (SAM)-dependent methyltransferase reactions. As seen in this design as well 

as the previously mentioned itaconic acid production design, growth-coupling strategies can result 

in auxotrophies, such that the growth medium must be supplemented with additional nutrients, i.e. 

methionine and glutamate, respectively. Although auxotrophies are generally undesirable in 

production processes as the addition of a supplement can incur a significant extra cost, auxotrophic 

growth-coupled strains can still be very useful in the strain development phase, particularly in 

combination with ALE (Shepelin et al., 2018). The recent algorithm SelFi (Hassanpour et al., 2017) 

attempts to couple growth to the flux catalysed by a target enzyme by constructing a carbon supply 

pathway including the target reaction and disabling alternative carbon supply pathways. This is done 

using a combination of knockouts and heterologous gene insertions as well as medium 

supplements. However, similar to OptStrain this is done in a two-step process, potentially excluding 

some designs. Furthermore, since growth coupling is achieved by constructing a new carbon supply 

pathway, the scope of target reactions is limited to reactions that can feasibly be incorporated into 

such a pathway.  

Here we introduce OptCouple, an algorithm that simultaneously finds gene knockouts, insertions 

and modifications to the growth medium that result in coupling the production of a target chemical 

to growth in microorganisms. We have validated OptCouple by showing that it can predict known 

successful growth-coupling designs for the common production host E. coli and have used it to 

predict novel growth-coupling strategies. 

5.2 Materials and methods 

All computations were carried out in Python 3.6.4. A list of installed packages and an 

implementation of the entire prediction workflow, and scripts for the described analyses can be 

found in the supplementary material. Simulations were done using the iJO1366 genome-scale 

reconstruction of E. coli (Orth et al., 2011) as well as the reduced EColiCore2 model (Hädicke and 
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Klamt, 2017). Simulations were performed with a maximum glucose uptake rate of 10 mmol/gDW/h 

and a maximum oxygen uptake of 1000 mmol/gDW/h. 

5.2.1 MILP-based optimization of growth-coupling potential 

The following section will go through the mathematical optimization problem forming the core of 

OptCouple. For the full mathematical formulation, see supplementary materials. 

Growth-coupling potential can be defined as the increase in maximal growth rate obtained when 

allowing flux through the target reaction, i.e. the reaction producing the chemical of interest. 

The symbol M is used to denote a full metabolic model with metabolites èG∀	2 ∈ í and reactions 

ìî	∀	ï ∈ s, the target reaction, ì*|6ñ7*, with the biomass reaction, ìóGIC|cc, as the objective function, 

while the symbol M* is used to denote the metabolic model without the target reaction. 

If we use f to denote objective function of a problem, the growth-coupling potential, U, can be 

mathematically described as: 

ò = dô(S) − dô(S∗) (1) 

where dô is used to denote the optimal objective value of a problem. 

Every linear optimization problem can be converted into a dual problem (Ignizio and Cavalier, 1994), 

which will be denoted by a D-subscript, i.e. MD. One property of duality in linear optimization is that 

the dual problem will have the same optimal objective value as the primal, however if M is a 

maximization problem, MD will be a minimization problem, and vice versa. 

Each potential perturbation, i.e. gene knock-out, knock-in, as well as addition of a growth medium 

supplement, can be represented by a binary variable, 5î ∈ P		∀		ï ∈ s, controlling the flux of the 

reaction associated with the given perturbation, i.e. native reactions, heterologous reactions and 

exchange reactions, for knockouts, knock-ins and medium supplements, respectively. Additional 

coupling constraints are added to ensure that a given reaction can only carry flux when its 

corresponding perturbation variable, 5î, has a value of 1 (see supplementary material). 
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The goal is to formulate an optimization problem that optimizes U, by finding an optimal 

combination of values for the control variables, Y and reaction fluxes, v: 

S&!2è2õ(ú,ù	dô(S) − dô(S∗) (2) 

This can be formulated as a bi-level optimization problem: 

	 (3) 

S&!2è24(ú	d(S) − d(S∗)   

subject to: 

        S&!2è24(ù	d(S) 

        subject to:  

                l ∙ Ç = 0 

                Çî = 0	∀	ï ∈ {ï	|	5î = 0} 

        S&!2è24(ù	d(S∗)  

        subject to: 

                l ∙ Ç = 0 

                Çî = 0	∀	ï ∈ {ï	|	5î = 0} 

                Ç*|6ñ7* = 0 

 

The bi-level formulation can be interpreted as finding the combination of control values that allows 

the highest growth-coupling potential, subject to the constraints that the fluxes (v) of M and M* 

must be optimal for growth (under the given control variable values). 

The bi-level formulation can be converted into a single optimization problem by replacing M* with 

its dual form, M*
D: 

S&!2è2õ(ú,ù	d(S) − 	d(S°
∗ ) (4) 

Since M is a maximization problem and M*
D is a minimization problem, maximizing this expression 

automatically ensures that d(S) = dô(S) and d(S°
∗ ) = dô(S°

∗ ), and since the optimal objective 
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value of a dual problem is the same as the optimal objective value of its primal, the 

expression dô(S) − dô(S°
∗ ) still corresponds to the growth-coupling potential. 

To maintain computational feasibility of the problem, maximum numbers of knock-outs, insertions 

and media modifications, respectively, can be set as constraints on the binary variables. 

OptCouple is implemented in the cameo Python package (Cardoso et al., 2018) for computational 

strain design (https://github.com/biosustain/cameo), and an implementation can also be found in 

the supplementary material. 

5.2.2 Selecting allowed gene insertions and medium supplements 

The set of allowed heterologous gene insertions was obtained from metanetx (Moretti et al., 2016), 

through the universal model interface of the Python package cameo (Cardoso et al., 2018). Only 

reactions with a cross-reference to the BiGG database were used. To avoid drastically increasing 

running times due to the large pool of heterologous reactions, the list of allowed insertions was 

reduced according to the number of allowed simultaneous insertions. If a single insertion was 

allowed, only reactions with metabolites native to the host were allowed. For higher numbers of 

allowed insertions, the heterologous reaction network was pruned such that only reactions whose 

metabolites could be reached with the allowed number of inserted reactions were included. The list 

of allowed medium modifications is specified manually. For all predictions described in this work 

the list comprised fructose, lactate, acetate, and all 20 standard proteinogenic L-amino acids 

5.2.3 Running MILP optimizations 

The MILP problems were optimized using the Gurobi solver (ver 7.5.2) through the optlang interface 

(Jensen et al., 2017). The computations were run on nodes of an HPC cluster equipped with Intel 

Xeon 2660v3 processors and 128 GB memory. The problems were solved to optimality, and 

subsequently reoptimized using Gurobi’s solution pool feature to collect additional optimal and sub-

optimal integer solutions. The second optimization was run with a time-limit approximately ten 

times the running time of the first optimization, up to a maximum of 30 hours. For problems that 

could not be solved to optimality within 30 hours, only as many suboptimal solutions as possible 

were collected from the second run. Each problem was optimized multiple times and the identified 

solutions from each run were all pooled together to increase the number of obtained solutions. 
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Since the identification of integer solutions is not deterministic, and since multiple solutions from 

the same run tend to be similar, this allowed a more diverse sampling of the solution space. 

5.2.4 Reducing solution redundancy 

With other MILP-based algorithms like OptKnock (Burgard et al., 2003), a common practice is to 

gradually increase the number of allowed knockouts, to avoid getting solutions with unnecessary 

knockouts. With three different upper limits on modifications (for knockouts, gene insertions and 

medium supplements, respectively), such a strategy is significantly more time-consuming. Instead, 

a postprocessing workflow was used to identify the predicted modifications in each solution that do 

not contribute to growth-coupling. Each solution was simulated, and each modification was 

removed one at a time. If a modification could be excluded without eliminating growth-coupling, it 

was removed from the solution. Solutions that could be reduced to the same set of modifications 

were merged into a single solution. The remaining solutions were summarized by production and 

growth rates, as well as a production envelope plot. 

5.3 Calculation 

OptCouple is based on an MILP formulation, conceptually similar to the formulations used in existing 

algorithms like OptKnock, RobustKnock and SimOptStrain. MILP formulations are an efficient way 

of optimizing an objective function over a combinatorial space, such as the space of possible genetic 

modifications. The objective function of OptCouple is the growth-coupling potential (Figure 1), 

defined as the amount with which the maximal growth rate will be decreased by preventing the 

target compound from being produced. Using the broadest definition of growth-coupling, 

sometimes called weak growth-coupling, namely that optimal growth requires a non-zero 

production flux (Feist et al., 2010; Klamt and Mahadevan, 2015), production is growth-coupled if 

and only if the growth-coupling potential is strictly positive. Optimizing for the growth-coupling 

potential ensures that the predicted strain designs and medium conditions will be easy to evolve 

with ALE to increase production, as the producing strains will have a large advantage over the non-

producing strains. The algorithm RobustKnock maximises the minimum production at optimal 

growth instead, which also ensures growth-coupling, however the difference in growth rate 

between producers and non-producers can sometimes be marginal. 
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Figure 1: Visual depiction of the growth-coupling potential on a production envelope. 

Most previous methods try to find the single most optimal solution based on the chosen objective 

function. Since the most optimal solution (regardless of the objective function) might not be 

practically feasible for a strain engineering project, OptCouple uses an alternate approach to 

generate a large pool of different growth-coupled designs. These solutions can then be evaluated 

based on multiple parameters in order to find candidate strategies to implement in vivo. The 

workflow of OptCouple is shown in Figure 2. In step 1, before running the MILP optimization, a 

metabolic model must be chosen, as well as the reaction to optimize. Furthermore, the universe of 

modifications must be defined. This includes deciding which native reactions may be knocked out, 

which heterologous reactions can be added, and which modifications to the medium are allowed. 

In step 2, the MILP problem is formulated, with binary variables to represent the allowed 

modifications. In step 3, the problem is solved using a dedicated MILP solver. Since the 

mathematically optimal solution is not necessarily the best strategy for a given metabolic 

engineering project, multiple solutions are identified in a single run, with high computational 

efficiency by using a solver with the capacity to find “solution pools”. Step 4 involves analysing the 

solutions found in step 3 and selecting one or more candidate strategies. Before manual inspection 

the number of solutions is automatically reduced by merging redundant solutions, i.e. separate 

solutions with only trivial differences, and ranking e.g. by growth-coupling potential or potential 

production rate. 
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Figure 2: Overview of the workflow used for predicting growth-coupling designs with OptCouple. 

5.4 Results and discussion 

Initial testing of OptCouple was done to validate the novel objective function based on growth-

coupling potential, and its ability to predict strain designs that are growth-coupled in silico. For this 

case, we chose propionic acid, which is an industrially relevant chemical that has not yet been 

produced biologically in economically viable amounts (Eş et al., 2017), and for which growth-

coupling in E. coli has not been demonstrated. Furthermore, propionic acid is a native metabolite of 

E. coli, avoiding the necessity of first identifying or predicting a production pathway. OptCouple was 

run with a maximum of three knockouts, three insertions and one medium supplement, using a 

demand reaction for propionic acid as target. After removing redundancies in the predictions, two 

promising designs were identified, as seen in Table 1, which both produce propionic acid using the 

propionyl-CoA succinate CoA-transferase (PPCSCT) reaction. The first design, which is illustrated in 
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Figure 3, achieves growth-coupling by establishing propionic acid as a by-product of the supply of 

succinyl-CoA, which is a precursor for the biomass components methionine, lysine and murein. This 

is done by knocking out the native routes of producing succinyl-CoA (AKGDH and SUCOAS) as well 

as the recycling reaction for propionic acid (ACCOAL). The second design couples the PPCSCT 

reaction to the biosynthesis of NAD, establishing production of propionic acid as a by-product. 

 

Figure 3: Overview of the designs predicted with OptCouple for growth-coupling of propionic acid. A) Pathway map of 
one of the predictd designs. Propionic acid production is coupled to succinyl-CoA production through the propanoyl-CoA 
succinate CoA-transferase. Alternative routes to succinyl-CoA are knocked out. B) Production envelope for the design 
shown in A. C) Production envelope of the second growth-coupled design, which couples production of propionic acid to 
the biosynthesis of NAD. 

Both of the strain designs for propionic acid lead to growth-coupling through non-obvious 

combinations of knockouts, but only require knockouts. To demonstrate the full potential of 
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OptCouple and to test its ability to predict designs that are growth-coupled in vivo, we further 

evaluated the algorithm by its ability to identify known and experimentally validated growth-

coupling strategies that require knockouts as well as medium supplements and gene insertions. We 

chose to use the itaconic acid growth-coupling of Harder et al. (2016) (requiring knockouts and 

medium supplement) as well as the product methylation growth-coupling of Luo & Hansen (2018) 

(requiring knockouts, medium supplement and gene insertions). Heterologous production of 

itaconic acid in E. coli can be achieved by the insertion of a single heterologous gene, cadA 

(Aspergillus terreus), encoding an enzyme that decarboxylates aconitic acid into itaconic acid 

(Harder et al., 2016). Growth-coupling has been realised by Harder et al. (2016) by knocking out the 

genes encoding isocitrate lyase, succinyl-CoA synthase, pyruvate kinase and phosphotransacetylase, 

as well as down-regulating isocitrate dehydrogenase. Additionally, Harder et al. (2016) inserted an 

orthologous citrate synthase to prevent allosteric regulation, but since the constraint-based 

modeling framework used here does not account for regulation, this modification was disregarded. 

When these modifications are applied to the iJO1366 genome-scale model of E. coli no growth-

coupling is seen, as maximal growth does not allow for any production of itaconic acid. In order to 

attempt to reproduce the design, we chose to use the reduced metabolic model EColiCore2 

(Hädicke and Klamt, 2017) instead. When the modifications from Harder et al. (2016) are introduced 

into this model, optimal growth does allow for production of itaconic acid, although it is not 

required. 



 

 118 

 

Figure 4: Overview of the itaconic acid growth-coupling designs. The red crosses are reactions that were knocked out by 
Harder et al. (2016). The reactions whose names are written in blue are reactions that were commonly knocked out in 
the designs predicted by OptCouple. 

The itaconic acid-producing reaction was added to the model prior to running OptCouple, as the 

scope of this work was not to predict production pathways, but to identify growth-coupling 

strategies for an existing pathway. The algorithm was run, allowing up to six knockouts and a single 

medium supplement. A selection of the solutions is shown in Table 1. The majority of the identified 

designs contained modifications that are consistent with the design by Harder et al. (2016), as 

shown in Figure 4. This includes disrupting the TCA cycle downstream of aconitate, the glyoxylate 

shunt, as well as reactions that can act as a sink for pyruvate or acetyl-CoA. Additionally, the 

algorithm suggested the addition of glutamate or glutamine to the medium, as also required in the 

design by Harder et al. (2016). The similarities between these results and the design by Harder et al. 

(2016) provided an indication that OptCouple can be used to predict combinations of knockouts and 

medium supplements and create functional strategies for coupling chemical production to growth. 
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While the results obtained for growth-coupling of itaconic acid demonstrated the utility of the 

algorithm for predicting knockouts and medium modifications, they did not require prediction of 

gene insertions. To test the ability of OptCouple to predict such modifications, the product 

methylation growth-coupling design of Luo & Hansen (2018) was used. This time the iJO1366 

genome-scale model was chosen, as the modifications suggested by Luo & Hansen (2018) do confer 

growth-coupling in this context. To predict designs for product methylation, a dummy reaction 

converting SAM into S-adenosylhomocysteine (SAH) and an exportable methyl group metabolite 

was created and used as target reaction. The algorithm was run with a single knockout, two 

insertions and one medium supplement allowed. Among the predicted strategies we found a design 

that consisted of the exact same combination of modifications as suggested by Luo & Hansen (2018), 

while designs with several minor variations were also predicted. These variations consisted of 

different knockouts or insertions but resulted in the same general mechanism of growth-coupling, 

by requiring product methylation to convert SAM into SAH as part of the conversion of 

supplemented methionine into cysteine required for biomass production. The ability to predict the 

exact design of the validated methylation growth-coupling, as well as alternative seemingly 

equivalent designs, indicates that OptCouple can reliably be used to predict new feasible growth-

coupling strategies, requiring a combination of gene knockouts, insertions and medium 

supplements.  
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Table 1: Overview of selected predicted growth-coupling strategies for the three test cases. For each design is shown the 
required modifications, the production rate and yield at optimal growth (mmol/gDW/h and mol/mol glucose) and the 
growth-coupling potential, U, i.e. the difference in maximal growth rate between producers and non-producers. The 
knocked out and inserted reactions are denoted by their BIGG identifiers. The supplemented are denoted by standard 
three-letter amino acid abbreviations. 

Knockouts Insertions Supplements Production rate Yield U 
Propionic acid:          

ACCOAL, SUCCOAS, AKGDH     0.50 0.05 0.95 

MCITD, MTHFC, PFL     0.90 0.09 0.91 
      
Itaconic acid:          

GLUDy, ICL, SUCCOAS   L-glu 7.64 0.764 1.10 

GLNS, ICL, SUCCOAS   L-gln 0.24 0.024 1.11 

ACKr, AKGDH, ICL, PGL, POX   L-ile 5.68 0.568 0.29 

AKGDH, G6PDH2r, ICL, MDH, MGSA, PYK   L-asp 6.32 0.632 0.60 
      
Product methylation:          

SERAT CYSTL, CYSTGL L-met 0.10 0.01 1.02 

ASPTA AHSERL2, HSERTA L-met 2.69 0.269 0.97 

 

While the itaconic acid growth-coupling by Harder et al. (2016) results in a high production with 

yields of up to 0.68 mol/mol glucose, the methylation growth-coupling by Luo and Hansen (2016) 

has the disadvantage that only a relatively small flux is forced through the target pathway. Since 

methylation is required for the cell to synthesise cysteine, the growth-coupling will not drive 

methylation to exceed the cellular demand for cysteine which is quite low (Orth et al., 2011). We 

therefore used OptCouple to predict alternative growth-coupling strategies, which would be able to 

force a higher flux through the target methylation reaction. One such strategy was discovered, that 

uses product methylation to convert supplemented methionine into the amino acids aspartate, 

threonine and isoleucine, while disabling the native production of these. This will demand a higher 

flux through the methylation reaction at a given growth rate than the original design coupling 

methylation to cysteine biosynthesis. Figure 5 shows the two growth-coupling designs and their 

respective production envelopes. The production envelope for the alternative design (Figure 5C) 

shows a larger potential production rate by growth-coupling (indicated by the height of the right-
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most point) than the original design (Figure 5B), consistent with the combined higher cellular 

demand for aspartate, threonine and isoleucine compared to cysteine (Orth et al., 2011). 

 

Figure 5: Overview of a subset of the predicted growth-coupling designs for product methylation. A) Pathway map 
showing the mechanisms of two growth-coupling strategies. The design of Luo & Hansen (2018) (orange) converts L-
homocysteine into L-cysteine. The alternative design found here (blue) converts L-homocysteine in to L-threonine, L-
isoleucine and L-aspartic acid. Both designs require supplementing the medium with methionine. B) Production envelope 
of the growth-coupling design of Luo & Hansen (2018). C) Production envelope of the alternative growth-coupling design 
found in this study. 

The above results prove that OptCouple can be used to identify combinations of knockouts, gene 

insertions and medium supplements that make production of various compounds coupled to 

growth in E. coli. The algorithm could easily find designs allowing up to 7 modifications with running 

times less than 24 hours. The fact that OptCouple identifies designs that are identical or very similar 

to prominent, experimentally validated growth-coupling designs indicates that it will also be able to 

find novel valid growth-coupling designs. 

The main novelty and advantage of OptCouple is the possibility of simultaneously identifying 

complex combinations of three different types of modifications. Currently, other strain design 

algorithms exist that attempt to find growth-coupled designs through the identification of one or 
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two types of modifications simultaneously. Recent examples are SimOptStrain (Kim et al., 2011) that 

simultaneously identifies gene knockouts and insertions, whereas SelFi (Hassanpour et al., 2017) 

can suggest all three types of modifications, but only medium supplements and gene knockouts are 

identified simultaneously. Several successful designs, however, such as the product methylation 

growth-coupling (Luo and Hansen, 2018), show that considering all three types of modifications at 

once can enable the identification of new growth-coupling strategies. 

OptCouple guarantees that the resulting designs are truly growth-coupled. This is in contrast to e.g. 

SimOptStrain, which uses the same objective function as OptKnock, and thus does not specifically 

predict growth-coupling, as competing pathways are still allowed. A potential drawback of using the 

growth-coupling potential as objective function in OptCouple is that there is no explicit optimization 

of the target flux that can be achieved by growth-coupling. An example of this issue is seen in the 

identified growth-coupling strategies for propionic acid. The design identified by OptCouple ensures 

the production of propionic acid to supply the cell with either NAD or methionine, lysine and murein, 

all of which are only needed in relatively small amounts. The consequence is that the growth-

coupled production rate of propionic acid will not be sufficient for a commercially viable process, 

given the modest market price of propionic acid (Rodriguez et al., 2014). Even though this limits the 

practical utility of some growth-coupling strategies identified by OptCouple, it does not significantly 

reduce the utility of the algorithm itself. Computationally predicted strain designs should always be 

assessed manually before being implemented in the laboratory, as their feasibility can also be 

affected by a range of factors not considered in the models, e.g. thermodynamics, regulation, 

toxicity, etc. Through the use of suboptimal solution pools, OptCouple can quickly identify many 

design alternatives, which means that many candidate designs are obtained, increasing the 

likelihood that at least one will be deemed feasible and have a high growth-coupled production rate. 

As with all model-based predictions, the quality of the results strongly depends on the quality of the 

model that was used. As one of the most commonly used organisms for metabolic modeling, the E. 

coli genome-scale model is relatively comprehensive. While nothing prevents OptCouple from being 

used in other organisms, the predicted designs should be curated even more thoroughly if a less 

complete metabolic model is used. The in vivo presence of enzymes that are not accounted for in 

the model can effectively abolish the growth-coupling of a predicted design, as they can allow the 
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cell to circumvent the growth-coupling mechanism. Conversely, if a model contains reactions that 

are not active in vivo, e.g. due to transcriptional repression, some growth-coupling strategies will 

require more modifications in silico than they would in practice. This is seen in the experimentally 

validated itaconic acid growth-coupling design (Harder et al., 2016), which does not show growth-

coupling when simulated with iJO1366, whereas the reduced model EColiCore2 did allow 

production at optimal growth. However, during optimization with ALE, repressed reactions could 

become active allowing the cell to circumvent growth-coupling mechanisms predicted with reduced 

models. Therefore, it would most likely be preferable to use the most complete model available for 

the chosen organism. 

5.5 Conclusion 

OptCouple is an MILP-based optimization algorithm that can find combinations of gene knockouts, 

heterologous gene insertions, and additions to the growth medium, that allow the stoichiometric 

coupling of a product of interest to growth. In our validation tests OptCouple was able to reproduce 

successful growth-coupling designs from the published literature and find alternative designs that 

allow for a higher production flux. Furthermore, we showed that OptCouple can be used to predict 

novel candidate growth-coupling designs for target compounds where no growth-coupling has 

previously been demonstrated. 
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5.8 Supplementary Materials 

Mathematical formulation of OptCouple 

The metabolic model used in OptCouple is given by a set of metabolites èG∀	2 ∈ í, and a set of 

metabolic reactions ìî	∀		ï ∈ s. A stoichiometric matrix S encodes which metabolites participate in 

each reaction (Orth et al., 2010). R is partitioned by the three subsets, sJ|*Gù7, s¢7*76I£IñIDc and 

s|KKG*GIJc, representing native reactions, heterologous reactions and boundary reactions for 

potential medium additions, respectively. Furthermore, some reactions ìî	∀	ï ∈ sG667ù76cGó£7 can 

only proceed in the forward direction, while the remaining reactions can proceed in both directions. 

Each reaction is associated with a binary control variable, 5î ∈ P		∀		ï ∈ s. 

The primal problem (M) optimizes biomass production subject to stoichiometric constraints, limited 

glucose uptake and genetic modifications, Y: 

S&!2è24(w	ÇóGIC|cc  

subject to: 

        ∑ 4Gî ∙ Çîî∈q = 0		∀		2 ∈ í 

        Çî
CGJ ∙ 5î ≤ Çî ≤ Çî

C|} ∙ 5î			∀		ï ∈ 	s 

        Çñ£H_D¶*|ß7 ≤ 10 

        Çî ≥ 0		∀	ï ∈ sG667ù76cGó£7 

        5î ∈ {0, 1}, ∀	ï ∈ s	 

        ∑ (1 − 5î)î∈q®©™L´¨ ≤ TJ|*Gù7 

        ∑ 5îî∈q≠¨™¨ÆØ∞Ø±Ø≤≥ ≤ T¢7*76I£IñIDc 

        ∑ 5îî∈q©¥¥L™LØ®≥ ≤ T|KKG*GIJc 
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The problem can be modified to not allow flux in the target reaction ì*|6ñ7*, resulting in M*: 

S&!2è24(w	ÇóGIC|cc  

subject to: 

        ∑ 4Gî ∙ Çî = 0,|q|
îb] 			∀		2 ∈ í 

        Çî
CGJ ∙ 5î ≤ Çî ≤ Çî

C|} ∙ 5î,					∀		ï ∈ 	s 

        Ç*|6ñ7* = 0 

        Çñ£H_D¶*|ß7 ≤ 10 

        Çî ≥ 0,				∀	ï ∈ sG667ù76cGó£7 

        5î ∈ {0, 1}, ∀	ï ∈ s 

        ∑ (1 − 5î)î∈q®©™L´¨ ≤ TJ|*Gù7 

        ∑ 5îî∈q≠¨™¨ÆØ∞Ø±Ø≤≥ ≤ T¢7*76I£IñIDc 

        ∑ 5îî∈q©¥¥L™LØ®≥ ≤ T|KKG*GIJc 

 

M* can then be converted to its dual form, S°
∗  (as described by Burgard et al. (2003)): 

S232è24(µ,∂	10 ∙ Öñ£DHIc7_D¶*|ß7  

subject to: 

        ∑ ∑G
c*IGH¢ ∙ 4Gî + Öî = 0,				∀	ï ∈ s,			ï ≠ ,2?è&44|r|

Gb]  

        ∑ ∑G
c*IGH¢ ∙ 4G,óGIC|cc + ÖóGIC|cc = 1|r|

Gb]  

        Öî
CGJ ∙ 11 − 5î9 ≤ 	Öî ≤ 	Öî

C|} ∙ (1 − 5G),				∀	ï ∈ s, ï ≠ #&ì@(#  

        5î ∈ {0, 1}, ∀	ï ∈ s 

        ∑ (1 − 5î)î∈q®©™L´¨ ≤ TJ|*Gù7 

        ∑ 5îî∈q≠¨™¨ÆØ∞Ø±Ø≤≥ ≤ T¢7*76I£IñIDc 

        ∑ 5îî∈q©¥¥L™LØ®≥ ≤ T|KKG*GIJc 

 

Here ∑G
c*IGH¢ represent dual variables of the stoichiometric constraints in the primal, while ÖG  

represent other flux bounds. The minimum and maximum values, Öî
CGJ and Öî

C|}  as well as 
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Çî
CGJ	and Çî

C|}can be found by sequentially minimizing and maximizing the variables or by using a 

sufficiently large constant (the big-M method). 

The two problems S and SK
∗  are combined and optimized simultaneously, together with the binary 

variables Y: 

 S&!2è24(w,∂,µ,π	ÇóGIC|cc − 10 ∙ 	Öñ£DHIc7_D¶*|ß7    OptCouple 

subject to: 

        ∑ 4Gî ∙ Çî = 0|q|
îb] 	∀		2 ∈ í 

        Çî
CGJ ∙ 5î ≤ Çî ≤ Çî

C|} ∙ 5î			∀		ï ∈ 	s 

        Çñ£H_D¶*|ß7 ≤ 10 

        Çî ≥ 0		∀	ï ∈ sG667ù76cGó£7 

        ∑ ∑G
c*IGH¢ ∙ 4Gî + Öî = 0,				∀	ï ∈ s,			ï ≠ ,2?è&44|r|

Gb]  

        ∑ ∑G
c*IGH¢ ∙ 4G,óGIC|cc + ÖóGIC|cc = 1|r|

Gb]  

        Öî
CGJ ∙ 11 − 5î9 ≤ 	Öî ≤ 	Öî

C|} ∙ (1 − 5G),				∀	ï ∈ s, ï ≠ #&ì@(#  

        5î ∈ {0, 1}, ∀	ï ∈ s 

        ∑ (1 − 5î)î∈q®©™L´¨ ≤ TJ|*Gù7 

        ∑ 5îî∈q≠¨™¨ÆØ∞Ø±Ø≤≥ ≤ T¢7*76I£IñIDc 

        ∑ 5îî∈q©¥¥L™LØ®≥ ≤ T|KKG*GIJc 
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Concluding remarks 

Adaptive laboratory evolution (ALE) can be a valuable addition to rational engineering during 

development of microbial cell factories. Sequencing of evolved isolates can reveal new engineering 

targets for the evolved phenotype that could not have been predicted from preexisting knowledge. 

Additionally, studying the evolved strains can yield insight into the mechanisms with which the 

targeted phenotype improved. 

In this thesis, it was shown that ALE could be used to improve chemical tolerance of Escherichia coli 

– a phenotype that is difficult to engineer rationally due to a lack of knowledge about toxicity 

mechanisms. The concentrations of chemicals that the evolved strains could tolerate were high 

enough to be relevant in the context of bioproduction. Although only little information could be 

gained about the mechanisms of tolerance, cross-compound screenings revealed that tolerance to 

one compound tends to be generalizable to a wide range of chemically similar compounds. This 

demonstrates that it is possible to use broadly tolerant platform strains for production of several 

products, without having to evolve tolerance to each individual product. For two compounds it was 

also shown that some evolved tolerant strains were able to produce the respective compounds at 

higher rates than the background strain, further demonstrating the utility of ALE in cell factory 

development. 

Metabolomic characterization of the evolved strains showed a high degree of convergent evolution 

on the metabolic level despite only limited convergence on the genetic level. This suggests that 

metabolism plays a significant role in tolerance against the tested chemicals. The metabolic profiles 

of the evolved strains were also used to develop a method for predicting the impact of a mutation 

on the gene that it affects. This method can be beneficial in interpreting the mutations that are 

observed after an ALE experiment and is not limited to strains evolved for tolerance. Another 

method for interpreting mutations observed in ALE was presented, which was based on deep neural 

networks. While artificial intelligence and machine learning have the potential to revolutionize the 

field of metabolic engineering like it has other fields, it is still limited by the comparatively small 

datasets available in biology. 
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The greatest challenge of using ALE in cell factory engineering is finding ways to select for the 

phenotype that is to be improved. In particular it is desirable to be able to select for mutants that 

produce a target compound at high rates. This is possible by making production coupled to growth 

such that the target compound becomes a necessary by-product. Although growth-coupling 

production usually requires complicated rewiring of metabolism, it can be done through the use of 

mathematical models of metabolism. This thesis presented a new model-based algorithm for 

identifying genetic modifications that cause growth-coupling in combination with one or more 

supplements to the growth medium. The algorithm allowed prediction of promising design 

strategies for growth-coupling, however these strategies need to be validated in vivo and are not 

guaranteed to work. Future work might focus on directly integrating experimental data into 

algorithms for predicting growth-coupling in order to improve predictions and make the predicted 

designs more likely to function in vivo, which would further increase the effectiveness of ALE for cell 

factory development. 

 

 


