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Abstract

Breaking wave-induced loads on offshore structures can be extremely severe. The

air entrainment mechanism during the breaking process plays a role in the exerted

forces which is still poorly understood. More knowledge needs to be gained in this

regard, because a large number of constructions will be installed in the near future

in intermediate water depth regions (20-40 m) where waves may break under storm

conditions.

This thesis deals with the development of a numerical methodology for the reproduc-

tion of breaking waves with the related air entrainment mechanism. The methodology

was optimized for the prediction of the roller in spilling breakers which is a mixture of

entrained air and water that travels with the wave front with approximately the wave

celerity.

The approach couples the Eulerian multiphase model for the entrained air bubbles

with a volume-of-fluid method to capture the free surface. The methodology was im-

plemented within a Computational Fluid Dynamics framework through the libraries

provided by the open-source CFD package OpenFOAM. The air entrainment was

obtained with a formulation which transfers mass from the air above the free surface

into the bubbles in water.

The developed CFD solver was strategically validated against four experimental case

studies. In the first case, a flow in a bubble column was reproduced in order to test

the capability of the Eulerian multiphase model of predicting the bubble motion

and the turbulence field of the water phase. In the second case, the implemented

Volume-Of-Fluid method was verified in the simulation of regular spilling waves with-

out reproducing the air entrainment. In the third and fourth case, the performance

of the formulation for the air entrainment was analysed by simulating a single deep

water spilling wave and regular spilling waves. These tests were repeated without

entrained bubbles in order to highlight their effects on the flow.

Finally, the CFD solver was employed to investigate the impact of a laboratory spilling
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Abstract/Resumé

wave on a vertical circular cylinder. Several impacts were reproduced for different

distances of the cylinder from the breaking point. The role of the roller on the exerted

forces was evaluated by performing simulations without the inclusion of entrained

bubbles. Moreover, the computed in-line forces were compared with the measure-

ments of an experiment conducted at the Technical University of Denmark.
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Resumé

De laste som brydende bølgerne inducerer på offshore-konstruktioner kan være me-

get voldsomme. Brydende bølger spiller en vigtig rolle for de mekanismer, som giver

anledning til de udøvende kræfter. Disse mekanismer er endnu ikke forstået fuldt

ud. Det er nødvendigt at få mere viden indenfor området, da der i nærmeste fremtid

bliver bygget et stort antal konstruktioner i områder med middeldybt vand (20-40

meters dybde), hvor bølgerne godt kan bryde og ramme disse konstruktioner under

stormlignende forhold.

Dette Ph.D-projekt beskriver udviklingen af en numerisk metode til reproduktionen af

luftmedrivningsprocessen ved bølgebrydningsprocessen. Denne metode blev udviklet

til at forbedre beskrivelsen af den valse, der skabes i brydningens begyndelse. Valsen

er en blanding af vand og luft, som rives. Blandingen af vand og luft, valsen, flyttes af

bølgens forreste del med bølgens udbredelseshastighed.

Den udviklede metode koblede en flerfase ”Eulerian” model, som beskriver medrivnin-

gen af luft i overfladen, med en metode til at beskrive de frie overflade i bølger baseret

på ”VOF” (Volume of Fluid). Metoden blev implementeret i CFD (Computational Fluid

Dynamics) indenfor rammerne af open-source CFD softwaren ”OpenFOAM”. Luftme-

drivningen blev opnået gennem en empirisk formulering, som overfører luftmasse

over overfladen til vandet som luftbobler.

Den udviklede CFD-løser blev valideret mod fire eksperimentelle studier. I det før-

ste studie blev en strømning i en boblekolonne reproduceret for at teste ”Eulerian”

modellens evne til at håndterede forskellige faser i forbindelse med forudsigelsen af

boblernes bevægelse og turbulens i vandfasen. I det andet studie blev den implemen-

terede metode til at beskrive overfladen, VOF, (Volume of Fluid) uden medrivning

af luftbobler verificeret ved simulering af regulære topbrydende bølger. I det tredje

og fjerde studie analyseredes den måde, hvorpå luftmedrivningen optrådte ved at

simulere en enkelt dybt vands bølgebrydning, samt flere regulære bølger. Disse tests

blev ligeledes gennemført uden medrivningsmodellen (uden luftbobler i vandet),

hvorved virkningen af luft-medrivningen kunne analyseres.
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Zusammenfassung

Sidst, men ikke mindst, blev CFD-løseren anvendt til at undersøge topbrydende

bølgers påvirkning af en vertikal cylinder. Påvirkningen af cylinderen blev undersøgt

for forskellige afstande mellem cylinderen og brydningspunktet. Valsen som var en

blanding af luft og vand blev skubbet foran den brydende bølge. Rollen af valsen

blev evalueret ved at udføre simuleringer med og uden medrivning af luft. Derudover

sammenlignedes beregnede langsgående laste med målinger fra et eksperiment udført

ved Danmarks Tekniske Universitet.
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1 Introduction

The design of new offshore structures is based on the accurate determination of the

wave-induced loads for the verification of the overall stability and safety.

In order to find these forces, the designers have to analyse the interaction of

the structure with the (irregular) waves that likely occur at the site of interest. This

is not straightforward, because it involves the computation of, first, the propagation

of the waves to the site of interest, and then of the wave kinematics at the time of

impact. Moreover, designers need often to take into account breaking waves, making

the analysis much more challenging. The wave breaking phenomenon implies that a

certain amount of air entrains the water forming a mixture of these two fluids.

The present work is about numerical modeling of air entrainment in breaking waves.

In particular, the focus is on the role that the air plays in wave loads exerted on offshore

structures.

In order to make the reader fully understand the study, but in particular the motivation

that drove it, a brief overview about the treated topics is given in the following. Firstly,

the wave breaking phenomenon, the air entrainment process and the computation

of wave loads on offshore structures are described. The current knowledge in these

subjects is the result of the intense research carried out during the past years, therefore

some relevant numerical and experimental studies are also presented. Secondly,

the challenges in numerical simulations of air entrainment in breaking waves are

described.

1.1 Background: physical processes

1.1.1 The wave breaking phenomenon

The wave breaking is a natural process during which rough and turbulent undulations

arise at the sea surface. This phenomenon is visibly expressed by the sprays and the

"white-caps" due to the entrained air.
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Chapter 1. Introduction

In general, the breaking wave phenomenon can be described as the transformation

of a predominantly laminar flow (the wave propagation) into a turbulent motion.

Turbulence causes the simultaneous formation of eddies of many different length

scales which through a transfer of turbulent (kinetic) energy occurs. This process is

known as Kolmogorov cascade. The bigger eddies contain the energy, which is only

partially dissipated into heat due to viscosity, because the most part is transferred

to smaller scales. This transfer takes place in a range of length scales, called inertial,

where the inertia effects are dominating and the viscosity does not play a role. The

transfer ends when the size of the eddies is small enough that the viscosity becomes

important and the energy is totally dissipated into heat. These smaller scales are

known as Kolmogorov microscales. Therefore, a wave loses energy when breaking.

In shallow water areas, waves undergo shoaling when approaching the coastline. The

wave height increases and the celerity decreases. As a result, the wave front becomes

unstable and the wave breaking occurs. The region where the wave has broken and

the foamy flow has established is called surf zone. The overall mechanism of breaking

waves in the surf zone, i.e. shoaling, breaking and swashing, was broadly reviewed by

Peregrine (1983) and Battjes (1988). The former emphasized the approach to wave

breaking and the wave overturning, whereas the latter was more focused on the post-

breaking mechanics. Also Christensen et al. (2002) gave a review of the studies about

the wave breaking, but more focused on the vertical variation of the flow structures in

the surf zone.

Wave breaking plays a role in the near-shore sediment transport which has

always been a very relevant topic in the coastal engineering field. A wave can break in

different ways on a sloping beach (Fig. 1.1). The breaker types have been classified as

(Galvin, 1968):

• Spilling: a weak and small jet develops at the wave front, foam appears at the

wave crest and then it spreads down along the front of the wave developing into

a surface roller;

• Plunging: the wave front starts turning over and projecting forward as a tongue

of water or a jet, which then falls down at the trough in front of the crest, causing

a large splash;

• Collapsing: the lower portion of the front face collapses and the plunging

breaker appears truncated;

• Surging: it starts as a plunging breaker at the crest of the wave, but the base of

the wave surges up the beach before the crest can plunge forward.
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Spilling

Collapsing

Plunging

Surging

Figure 1.1: Classification of breakers (redrawn from Sorensen (1993)).

Spilling and plunging waves are characterized by different kinematics in the surf zone

as shown by Ting and Kirby (1994, 1995, 1996). These authors conducted a valuable

experimental investigation on plunging and spilling waves on a sloping beach. It was

demonstrated that the vertical mixing of mass and momentum is stronger in plunging

waves because it is carried by large-scale vortices generated by the multiple splash-ups

of the wave front. In spilling waves, the mixing is instead due to the action of smaller

scales originating from the surface roller. The authors reported the vertical variation

of undertow and horizontal turbulent velocity, measured at different locations both

upstream and downstream the breaking point, which was smaller for plunging waves

than for spilling.

The mechanisms taking place after breaking are responsible for the suspension of

sediments at the sea bed and their transport in the surf zone. Turbulent flow struc-

tures originate at the wave front during the breaking. These flow structures break

down and exchange momentum and turbulence with the underlying flow to generate

the undertow. Finally, the undertow interacts with the bed, in particular with the

wave-current boundary layer. Nadaoka et al. (1988, 1989) used the LDV technique to

visualize such turbulent flow structures in spilling breakers. The authors observed

two-dimensional horizontal spanwise eddies around the wave crest with axis parallel

to the crest line, whereas obliquely descending eddies developed behind the wave

crest, in connection with the stretching of the velocity field at a direction of about 45◦.

Coherent flow structures were observed also by Ting (2006, 2008) in a solitary spilling
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wave. A single broken wave allowed to study the evolution of the associated turbulent

velocity field separately from the effects of return flow and residual turbulence. The

authors found several occurrences of downburst of turbulence descending from above

and diverging at the bed in their experiments.

The sediment transport is offshore under spilling waves, but onshore under

plunging. This has been demonstrated by the already mentioned experiments of

Ting and Kirby (1994, 1995, 1996). The authors used the correlation in a wave period

between the measured mean horizontal velocities and the measured mean horizontal

turbulent velocities to explain the cross-shore sediment transport in the surf zone.

In spilling waves, the velocity field in a wave cycle was shown to be directed offshore

predominantly: the seaward-directed velocities are larger and kept for longer time

compared to the landward ones. At the same time, the turbulence level was found

to be constant, meaning that the turbulence decay was larger than the wave period.

Consequently, any sediment in suspension goes in the same direction as the undertow,

i.e. in the offshore direction. In plunging waves, the seaward and landward-directed

mean velocities had the same magnitude and for a similar period of time. On the other

hand, the mean horizontal turbulent velocity was found to be much higher under

the phase corresponding to the passage of the wave front. This means that the net

transport of sediments has to follow the forward, i.e. onshore, movement of the wave.

Direct measurements of bed shear stress, sediment transport patterns and re-

lated bed morphology were provided by Sumer et al. (2011, 2013). In these works, the

authors studied the whole plunging breaking process, shoaling, breaking, runup and

rundown, in solitary and regular waves respectively.

Beside the intensive experimental research, investigations on breaking waves by the

means of numerical models have been conducted. From the numerical point of

view, the wave breaking process is very challenging since it is an unsteady non-linear

viscous flow with a complex air-water interface and with a wide range of turbulent

length scales. Nevertheless, the progress made by applied mathematics and com-

puter architecture has allowed the exploitation of the Computational Fluid Dynamics

(CFD) method: the governing Navier-Stokes (N-S) equations are discretized both in

space, i.e. the domain where the flow takes place, and in time. This approach is quite

powerful, because it can replicate the wave breaking process in detail without many

simplifications, assumptions and approximations.

In CFD simulations of breaking waves, it is crucial the way how the turbulent

eddies are reproduced, from the larger to the smaller ones. It is remarked that the

action of the smaller scales is fundamental since the wave breaking is essentially a

dissipative process.

Three approaches are available for handling the wide range of turbulent length
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scales: Direct Numerical Simulation (DNS), Large Eddy Simulation (LES) and Reynolds-

Averaged Navier-Stokes (RANS). Details are given in Ferziger and Peric (2012). Briefly,

the DNS assumes that the spatial discretization, or grid size, is fine enough to "cap-

ture" all relevant scales. In the LES approach, scales down to the inertial subrange are

resolved, whereas smaller scales are modeled. When using the RANS equations, the

whole range of turbulent scales is modeled.

Therefore, the DNS approach is the simplest but the heaviest from the computa-

tional point of view. In numerical models employing this methodology, the turbulence

dissipation is totally due to the topologically generated vorticity field as showed in

Iafrati et al. (2001), Iafrati (2011) and Lubin et al. (2003). In the first two studies, the

steep wave formation, the jet development, the splash-up and the air entrainment

were reproduced. In particular, in Iafrati (2011) the attention was focused on the early

stage of the breaking, when most of the energy is dissipated.

The LES approach has gained popularity recently since the computational cost,

although high, is reduced compared with DNS. Moreover, it is conceptually simpler

than RANS because a smaller part of turbulence is modeled. The great advantage of

LES simulations, as well as DNS, is the opportunity of obtaining interesting three-

dimensional visualizations of the developed coherent flow structures (Christensen

and Deigaard, 2001, Watanabe et al., 2005, Christensen, 2006) and of the air intrusion

(Lubin et al., 2006).

Numerical studies based on the RANS approach cannot provide such accurate

three-dimensional information because of the inner derivation of the turbulence

model. Nevertheless, Lin and Liu (1998a,b), Bradford (2000), Jacobsen et al. (2012)

and Brown et al. (2016) reported numerical results for undertow and turbulence level

profiles in good agreement with the experiments in Ting and Kirby (1994, 1995, 1996).

In intermediate or deep water regions, hereafter just deep water, wave breaking is

not due to the variation in bed topography, rather it is the result of wave-wave, wave-

current or wind-wave interactions. Also ships can make waves break when they move.

In deep water, breakers are classified as in shallow water. Waves break more

often as spilling. The breaking-induced turbulent mixing enhances the exchange of

heat, mass and momentum between the atmosphere and the oceans in deep water.

The transfer of mass, i.e. the entrainment of air bubbles, is important for aquatic life

at small scales, but it also produces scatter underwater sound and scavenge biological

surfactants (Peregrine, 1983, Melville, 1996). The transfer of momentum can generate

ocean currents as clearly illustrated by Rapp and Melville (1990). They used the disper-

sive focusing technique to generate isolated breaking wave events, both spilling and

plunging. By using measurements of surface elevation and velocity in the breaking

region, the authors computed the space and time integrated flux and density term

5



Chapter 1. Introduction

of the momentum equation. Values upstream and downstream the breaking region

showed a reduction of the flux of 10% and 25% in the spilling and in the plunging case

respectively. Looking at the corresponding increase in the density, they demonstrated

that a fraction of the flux loss, 85% for the spilling and 60% for the plunging, was

transferred into a current in the underlying water.

Experiments on deep water waves have been carried out mainly for gaining knowledge

about the complicated energy budget taking place during the breaking. As already

stressed, wave breaking is a turbulent, hence dissipative, process. In the already

mention study of Rapp and Melville (1990), the authors tried to quantify the energy

loss. By the same procedure adopted for computing the terms of the momentum

equation, it was assessed that up to 40% of the total prebreaking wave energy was lost

through breaking in the first four wave periods. From this time on, the decay of energy

followed the inverse respect to the time (E ∝ 1/t). After the first four wave periods,

only a small fraction of the energy (2-4%) remained in the breaking region which was

related to the post-breaking current.

The energy lost by a wave after breaking is not simply dissipated by the viscous

scales generated by turbulence. Another factor is the energy required for the air

entrainment, that is the work needed to keep the bubbles entrained against the

buoyancy force. This amount of work is first transferred to bubbles as potential energy

and then partially "returned" by bubbles which generate small-scale turbulence while

rising. Some attempts have been made for calculating the contribution of the air

entrainment to the total dissipation: Lamarre and Melville (1991) estimated up to 50%,

Blenkinsopp and Chaplin (2011) up to 9% and Lim et al. (2015) 2015 up to 18%.

1.1.2 The air entrainment in breaking waves

The role of the entrained air is crucial for all mentioned processes connected to break-

ing. Nevertheless, the understanding of the phenomenon has been difficult because of

the lack of proper laboratory instrumentation for precise measurements of air content

and the high demand of computational resources for numerical simulations of air

intrusion. In general, the knowledge in this topic is higher for breaking in deep water

compared to shallow water depth.

Spilling and plunging breaking waves present different mechanisms driving the air en-

trainment (Peregrine, 1983, Battjes, 1988, Deane and Stokes, 2002, Rojas and Loewen,

2010, Kiger and Duncan, 2012).

Following Fig. 1.2 from Lim et al. (2015), the plunging breaker is discussed as

follows. The wave front overturns and projects forward as a jet which falls down into

the undisturbed front face of the wave (a). This is the main source of air entrainment,
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because a tube of air (cavity) results to be entrapped beneath the jet which in turn

drags some air into water. Because of the inner high pressure, the air cavity collapses

into smaller bubbles. The impact of the jet induces a clockwise circulation zone and

at the same time it produces a reactionary splash-up which in turn generates another

clockwise vortex (b). The simultaneous clockwise rotation of these two coherent struc-

tures forms a shear layer which leads to further fragmentation of the bubbles coming

from the collapse of the cavity. Between the backside of the splash and the upper sur-

face of the plunging jet, a counterclockwise roller causes more air entrainment (c, d).

The described occurrences produce the primary plume. A secondary plume is created

in a similar manner by the mentioned splash-up which acts as the initial jet (e-h). This

cycle might occur several times and other plumes might be produced. During the late

stages of the breaking, a bore-like region establishes and the air entrainment occurs

at its leading edge (i). At the same time, the first plumes outgas (j).

A spilling breaker is depicted in Fig. 1.2 (from Rojas and Loewen (2010)). The

process starts by the appearance of a rough surface (a), hence the jet formation seen

for the plunging case does not take place. The air entrainment mechanism is similar

to what happens in the bore at the final stages of a plunging breaker. In fact, air is

entrained at the leading edge of a turbulent region developing at the wave crest where

the water spills down continuously (the roller, b). As a result, a single bubble plume

grows beneath the breaker (c).

Entrainment and evolution of air bubbles in deep water breaking waves were de-

scribed in Deane and Stokes (2002). In this work, photographic studies and measure-

ments of the air entrainment mechanism under laboratory plunging breaking waves

and in the open ocean were conducted. Although waves were plunging breakers in

the laboratory, but spilling in the field, the authors recognised some similarities which

allowed to draw some general conclusions about the physical process.

The life of the entrained air plume was divided into two main phases:

• the acoustic phase when bubbles were formed;

• the quiescent phase which started when active bubble formation ceased and

ended when all bubbles degassed.

The attributes acoustic and quiescent come from the fact that only new created

bubbles emit underwater noise. The bubble size spectrum distribution measured

at the end of the acoustic phase is reported in Fig. 1.4. The mechanisms recognised

to determine such distribution were the jet
/

wave-face interaction and the turbulent

fragmentation of the air cavity. The former produced bubbles with radius rb in the

range 0.1 ≤ rb ≤ 2 mm and density (of distribution) proportional to the radius to the

power of α=−3/2. The latter originated bubble with radius in the range 2 ≤ rb ≤ 10
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Chapter 1. Introduction

Figure 1.2: Plunging breaking process based on high-speed video images from Lim et al.
(2015).

mm and density following a β = −3/2 power-law scaling. A remarkable change in

slope was observed at rb = 1 mm. This radius was identified as the Hinze scale. The

evolution of the plume during the quiescent phase was found to be rapid as showed in

the inset of Fig. 1.4 which depicts the distribution measured at the beginning of this

phase and 1.5 s later. It was observed that both slopes increased with time because of

buoyant degassing, turbulent diffusion, advection and dissolution.

The characteristics of the breaking-induced bubble plume can be analyzed through

direct measurements of void fraction in laboratory waves as done in Lamarre and

Melville (1991). In this fundamental study, three breakers with different energy content

(two plunging and one spilling-plunging) were generated in a flat bottom flume by

the dispersive focusing technique. Conductivity probes were installed in the breaking

8



1.1. Background: physical processes

Figure 1.3: Spilling breaking process based on high-speed video images from Rojas and
Loewen (2010).

Figure 1.4: Average bubble size spectrum at the end of the acoustic phase. The vertical scale is
number of bubbles per m3 in a bin radius 1 µm wide. Inset: the bubble size distribution at the
beginning of the quiescent phase (crosses) and 1.5 s into the quiescent phase (open circles).
From Deane and Stokes (2002).

region in order to map the evolution with the time of the void fraction in the bubble

plume. Values were found in the range 0-100% where full air was achieved both in the

air cavity at the beginning of the plunging breaker and at the edge between the plume

and the atmosphere. From measured maps, the authors calculated the volume per

unit length of wave crest, cross-sectional area and mean void fraction (ratio of volume

9



Chapter 1. Introduction

to area). It was found that these integral properties evolved as a simple function of

time regardless the kind of breaker. As an example, the volume rose rapidly at the

beginning of the breaking, reaching the peak value around the first quarter of the

wave period and then it decayed exponentially with less than 5% of the peak value

remaining after one period. The mean void fraction followed −2/3 power-law decay.

More details of this study will be given in Section 5.1. Similar findings were in Lamarre

and Melville (1994) for 3D waves in a flat bottom basin and in Blenkinsopp and Chap-

lin (2011) who used phase detection optical probes in waves breaking in deep water

after propagating over a shoal. Rojas and Loewen (2010), who provided void fraction

measurements for almost the identical waves used in Lamarre and Melville (1991),

observed that the spilling entrained as much air as the more energetic plunging.

The kinematics of the entrained bubble plume has been investigated by tracking

in time the centroid of the void fraction distribution. Given the wave celerity Cw at the

breaking location, Lamarre and Melville (1991) and Rojas and Loewen (2010) assessed

that the speed of the primary plume of a plunging wave was 0.7Cw , whereas the speed

of the last plume, behind the bore, was Cw . The plume of the spilling wave, since it

resembled the bore of the plunging wave, was observed to propagate with a speed of

Cw as well.

In the deep water plunging breaker experimented by Lim et al. (2015), seen in

Fig. 1.2, the maximum horizontal velocity during the breaking was 1.4Cw before the

jet formation (at the vertical front), then it became 1.68Cw at the downward jet before

the first impingement and it further increased to 2.14Cw at the beginning of the first

splash-up.

The evolution of the entrained bubble plume in a surf zone has been less investigated.

In this regard, Cox and Shin (2003) gave some insights. A spilling, a spilling-plunging

and a plunging wave were generated on a flume with sloped bottom. Void fraction and

horizontal velocities were measured simultaneously at different elevations at three

sections in the surf zone. Peak ensemble-averaged void fractions were found in the

range 15-20%. The spilling breaker showed larger values of time-averaged void frac-

tion and turbulence intensity but in general a positive correlation between these two

quantities was recognised for all breakers. Moreover, the time-averaged void fraction

followed an exponential decay in each case. A broader experimental investigation was

carried out by Kimmoun and Branger (2007). The authors measured dynamics and

kinematics of spilling-plunging waves propagating and breaking over a 1
/

15 sloping

beach. In particular, they computed the complete space-time evolution of the velocity

field over the whole surf zone and an exponential decay of the air content below the

mean sea level was observed.

Numerical simulations of air entrainment in breaking waves by CFD models are very

10



1.1. Background: physical processes

demanding because the phenomenon requires extremely high space-time resolution

to reconstruct the chaotic air-water interface, especially at the scales of bubble forma-

tion.

The first attempts to reproduce the breaking-induced bubbly flow by CFD mod-

els were made for predicting the distribution of bubbles around naval surface ships.

The presence of bubbles can modify the total resistance and the propeller efficiency

(Carrica et al., 1998, 1999, Moraga et al., 2008).

The crucial aspect in CFD models suitable for this purpose is the reproduction

of the bubble injection in water rather than the plume evolution. Recently, this issue

has been treated by adopting sub-grid formulations. The term "sub-grid" indicates

that these formulations are designed to work in domains which are not sufficiently

discretised to capture the details of the bubble formation. Therefore, the air entrain-

ment is modeled and not resolved. Numerical models of Shi et al. (2010), Ma et al.

(2011) and Derakhti and Kirby (2014) successfully adopted a sub-grid formulation for

reproducing the air entrainment in deep and shallow water breaking waves.

Shi et al. (2010) simulated the quiescent phase of the plume induced by the

laboratory breaking waves generated in Rapp and Melville (1990) and Lamarre and

Melville (1991). The flume was discretized by a 2D grid, hence the spanwise direction

was neglected. The RANS approach was employed for handling the turbulence. The

sub-grid formulation for the air entrainment was built in such a way that bubbles

were fed into water when the shear production at the free surface was larger than a

fixed threshold. The number of injected bubbles was forced to follow the distribution

given in Deane and Stokes (2002) (at the end of the acoustic phase). The velocities of

bubbles were assumed to depend on their radius. The model was reasonably capable

of reproducing the moments of the void fraction field defined by Lamarre and Melville

(1991).

Ma et al. (2011) investigated the entrained bubble plume induced by regular

waves breaking on a sloping beach. The spilling breaker in Cox and Shin (2003) was

used to validate the solution. A 2D spatial discretization and the RANS approach were

employed. The air entrainment was connected to the dissipation rate of the turbulent

kinetic energy at the free surface, i.e. bubbles were not injected if the dissipation

rate was smaller then a critical value (to be calibrated by the user). The model fairly

captured the void fraction distributions observed in the experiments at three different

sections in the surf zone. The plume roughly moved at the phase speed of the wave

at the early stages of breaking, whereas it slightly decelerated later. The exponential

decay of the total volume of entrained air was reproduced.

Derakhti and Kirby (2014) examined in depth the interaction between water and

entrained bubble plume. The authors simulated some plunging and spilling waves of

Rapp and Melville (1990), Lamarre and Melville (1991) and Rojas and Loewen (2010).

11
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A 3D spatial discretization and the LES approach were employed. The air entrain-

ment was modeled similarly to Ma et al. (2011). The model was found to predict the

void fraction and the integral properties of the plume fairly accurately. The effect of

bubbles on turbulence was analysed by looking at the production and dissipation

term of the resolved turbulent kinetic energy (TKE) transport equation. Numerical

simulations with and without inclusion of bubble motion showed that production

and dissipation were reduced and enhanced respectively in the first case. As a result,

it was found that bubbles damped the TKE by 20% and 50% in the plunging and in

the spilling breaking wave respectively. Moreover, it was assessed that the dissipation

induced by bubbles is a fraction of more than 50% of the total dissipation.

1.1.3 Wave loads on offshore structures

In intermediate or deep water depth, wave loads depend on the sea state at the loca-

tion of the structure which is usually described in terms of a wave spectrum. The sea

state consists of waves with different amplitudes, lengths and periods. In particular,

the ratio of amplitude and length defines the steepness of a wave. Waves with very

high steepness might undergo breaking, as example under storm conditions.

Waves with small
/

limited steepness exert on structures the fatigue loads. In

cases when the steepness is large but not much to induce natural breaking, waves

might break as a result of the impact. This occurrence generally produces larger forces

but large run-ups especially.

Waves with very high steepness breaking directly on structures exert the largest

loads which are referred to as extreme.

The fatigue loads are important for the safety and the practicability of a structure,

whereas the extreme forces determine the design of the stability. For this reason, the

understanding of the physics of impact due to collision of breaking waves has been

very important.

The characteristics of the impact pressure, hence forces, depend closely on the relative

distance between the structure and the breaking point, since the kinematics and the

shape of the breaker change throughout the breaking region. This has been clearly

showed by Hattori et al. (1994). Simultaneous measurements of the impact pressure

on a vertical wall and plunging breaking waves revealed that the most violent impact

occurred before the jet formation, when waves approached the structure with almost

vertical front. Moreover, the authors observed that the air trapped between the wall

and the wave front played a predominant role. When the wave front at the impact was

vertical, just a small amount of air bubbles was entrapped: here the peak pressure was

maximum. Conversely, when the plunging was more developed, a larger amount of

air was entrapped in form of a cavity beneath the jet and the peak pressure was lower.
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1.1. Background: physical processes

Essentially, some energy was spent during the fragmentation of the air cavity.

A strong sensitivity of maximum impact pressures on vertical walls to wave

conditions was also highlighted by the numerical study of Bredmose et al. (2009).

The authors simulated aerated violent impacts by the means of an incompressible

potential-flow model coupled with a compressible treatment of the entrapped air.

Many offshore and harbour constructions are considered as cylindrical piles or com-

posed of cylindrical members. For this reason, the rest of this section is about loads

on vertical surface piercing slender cylinders. Slender means that the dimension (the

diameter) of the cylinder is such that the incident wave field is not affected by the

presence of the structure, hence the diffraction phenomenon does not take place or it

is negligible.

Breaking wave-induced loads on cylinders have characteristics not much different

to those on vertical flat walls. As example, Chan et al. (1995) observed in their ex-

periments similar peak levels, post-peak oscillations and spatial and temporal distri-

butions, for the impact pressure. Wienke and Oumeraci (2005) confirmed that the

force induced by a plunging wave strongly depends on the distance between breaking

location and cylinder. In their experimental investigations, the maximum force was

exerted when the wave broke right in front of the cylinder and the velocity of the water

mass hitting the cylinder reached the value of the wave celerity at the breaking point.

Moreover, the force was shown to be proportional to the so-called "curling factor"

(Goda et al., 1966), which depends on the inclination of both the cylinder and the

breaker front.

The need of understanding the physics behind wave impacts on slender cylinders has

been important as much as the elaboration of efficient, effective and reliable methods

for calculating the induced loads. Scale model tests in laboratory are expensive and

often carried out under idealized conditions. Instead, numerical models are cheaper,

hence more desirable.

The force on a circular cylinder in a wave field is the result of the interaction with the

flow around it. The resultant force is due to the action of pressure and friction (Fig.

1.5).

The total force F is given by (Sumer and Fredsøe, 1997):

F(t ) =
∫ η(t )

−d

[∫ 2π

0
p(z, t )cos(φ)

D

2
dφ+

∫ 2π

0
τ0(z, t )sin(φ)

D

2
dφ

]
dz (1.1)

where:
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Figure 1.5: Sketch for the calculation of the total force on a cylinder in a wave field.

- t is the time;

- d is the water depth at the location of the structure;

- η is the surface elevation; ;

- p is the static pressure ;

- τ0 is the viscous friction ;

- D is the diameter of the cylinder.

In practical cases, the contribution of the friction can be often neglected, being a small

fraction of the total force (2-3%). The magnitude and the direction of the force are

essentially the result of the pressure distribution around the cylinder. Therefore, if

pressure is known, the calculation of the force is quite straightforward.

The CFD approach can be used for computing wave loads. In fact, the distribution

of pressure p in the whole domain is among the outputs produced by such models.

Several studies report applications of CFD models for wave loads on circular cylinders.

Among the others are: Bredmose and Jacobsen (2010) and Paulsen et al. (2014b).

Nevertheless, the demand of computational time for CFD simulations of free

surface flows, as waves are, is very high. On top of it, applications of this method for

practical designs imply large domains wherein irregular waves propagate and hit the

cylinder. In order to reduce this computational expensiveness, a CFD model can be

combined with a simpler and faster solver for the wave field away from the structure.

In this way, the CFD approach is applied on a smaller portion of the domain compris-

ing the cylinder. Examples can be found in Christensen et al. (2009) and Paulsen et al.

(2014a).

Among the numerical methods for wave loads (on slender cylinders), the most used

14



1.1. Background: physical processes

has been the application of the Morison equation (Morison et al., 1950):

F (t ) =
∫ η(t )

−d
[FD (z, t )+FM (z, t )] dz =

∫ η(t )

−d

[
1

2
ρwCD Duw,x(z, t )|uw,x(z, t )|+ρwCM Au̇w,x(z, t )

]
dz

(1.2)

where

- ρw is the density of water;

- uw,x is the water horizontal velocity at the location of the cylinder;

- u̇w,x is the water horizontal acceleration at the location of the cylinder;

- A is the cross sectional area of the cylinder;

- CD and CM are empirical coefficients.

The Morison equation gives the in-line component of the total force, where in-line

indicates the alignment with the direction of the flow. This total force is expressed

as a linear superposition of two contributions: drag FD and inertia FM . The former

accounts for pressure exerted by the flow as it was steady. The latter expresses the

extra pressure gradient due to acceleration of the flow in the immediate surroundings

of the cylinder and in the outer-flow region. The relation between pressure and wave

kinematics (U and U̇ ) is expressed through the empirical coefficients CD and CM ,

called drag and inertia coefficient respectively.

The application of the Morison equation requires the wave kinematics and the surface

elevation at the location of the cylinder. These are generally calculated by assuming

that the fluid is inviscid and the flow is irrotational and incompressible. In this way,

weakly or fully nonlinear potential flow solvers, which are computationally cheap,

can be employed. An even more simplified methodology consists in decomposing a

wave spectrum, describing the local sea state, in an enough number of components

whose motion is singularly given by the linear wave theory. Surface elevation, velocity

and acceleration at a given time and depth can be found by superposing the (linear)

expressions of all components. This is often combined with the Wheeler stretching

(Wheeler et al., 1969) that addresses the over-prediction of the linear velocity field

above still water. However, incident waves are often steep and the linear assumption

might lead to a high degree of inaccuracy.

Coefficients CD and CM are function of velocity, fluid density and diameter of the

cylinder. Several laboratory experiments, where forces on circular cylinders with
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different diameters and subjected to different wave fields were measured, have allowed

to incorporate these dependencies into only two non-dimensional quantities:

• The Reynolds number Re = Um D
νr , where Um the maximum horizontal velocity

and ν is the kinematic viscosity of the fluid;

• The Keulegan-Carpenter number KC = Um T
D , being T the wave period.

As is known, Re expresses the ratio of inertial to viscous forces. The KC number

is the ratio of the stroke of the oscillatory wave motion around the cylinder to the

diameter of the cylinder. Small values of KC indicates that the orbital motion of water

particles is smaller than the diameter of the cylinder therefore separation does not

occur or it occurs with formation of symmetric vortices. High values mean vortex

shedding regime. Sumer and Fredsøe (1997) defined the range 0 < KC ¿ 20−30 as

the inertia-dominated regime (FM À FD ), whereas KC > 20−30 as drag-dominated

regime (FD À FM ).

It is worth to remark that the Morison equation cannot be accurate for breaking wave-

induced loads. First of all, coefficients CD and CM have been derived for non-breaking

waves. Moreover, the use of the Morison equation is often combined, as already said,

with kinematics derived from potential flow solvers which do not admit reentry of

water. Another reason is that velocities in the breaker are such that vortex shedding

might take place, in contradiction with the hypothesis of irrotational flow. Therefore,

CFD is a numerical approach suitable for calculating loads induced by breaking waves.

1.2 Background: challenges in numerical simulations

of wave breaking

Numerical analyses of the wave breaking phenomenon pose arduous problems which

are connected to three factors:

• it is a two-phase flow;

• it is a flow with a wide range of turbulent length and time scales;

• it is a flow with a wide range of interfacial length scales.

These factors are now considered individually because each of them is challenging in

itself, but it should be reminded that they play at the same time.
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It is a two-phase flow

A wave is a mass of water moving in a domain in a certain time interval. If the mo-

tion of the free surface is of interest, then it is a two-phase flow because two fluids

interact: water and air. The motion of water depends on air and vice versa. This does

not automatically mean that a model for two-phase flow is the only choice for wave

simulations. Models in which the effect of air has been "replaced" with moving bound-

ary conditions at the free surface have been elaborated and employed successfully

((Christensen, 2006, Derakhti and Kirby, 2014).

It is a flow with a wide range of turbulent length and time scales

At the beginning of the wave breaking, the turbulence cascade is activated. Different

eddies, characterized by a wide range of length (led ) and time (t ) scales, are generated.

An estimation of this range can be achieved by considering a laboratory breaking

wave and assuming isotropic and homogeneous turbulence: O (10−5) < led (t ) <O (101)

m(s). The smallest scales, i.e. Kolmogorov scales, might be even smaller during active

breaking.

It is a flow with a wide range of interfacial length scales

The fact that the flow involves two fluids implies that one or more interfaces occur in

between. The issue lies in the different interfacial morphologies establishing during

the complete wave breaking process. When waves propagate, only one interface exists

up to the breking point, i.e. the free surface. At the breaking point, bubbles entrain

and thousands of interfaces occur in water. At the same time, the free surface is

"destroyed" at early stages of breaking, but it recovers the regular shape during the

evolution (the degassing) of the bubble plume. The interfacial length scale range in

laboratory breaking waves can be approximated as O (10−4) < l I <O (101) m), where

the lower limit is given by the bubble size distribution of Deane and Stokes (2002).

The main problem is therefore the broad range of time and length scales involved. Re-

solving this range requires a temporal and a spatial discretization that would increase

the computational cost tremendously (DNS). For this reason, averaging procedures

are generally applied. The turbulence-induced scales are handled with a turbulence

model, which is de facto an averaging procedure.

The different interfacial scale lengths can be also treated with averaging procedures.

The CFD methodologies for a generic two-phase flow depend on the expected in-

terface morphology. In case of simulations of breaking waves, it can be asserted

that:

• during wave propagation, the interface between air and water is the free surface

17



Chapter 1. Introduction
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Figure 1.6: Interfacial morphologies between air and water during the breaking process.

which is unique, well-defined and with length larger than the grid size (Fig. 1.6a).

Methodologies for segregated flows are suitable for this kind of motion;

• during wave breaking, entrained air undergo dispersion into water. Bubbles

have size generally smaller than the grid size (Fig. 1.6b) and solvers for dispersed

flows should be employed for their motion.

Methodologies for segregated flows are reviewed in Ubbink (1997). Surface fitting

and surface capturing methodologies are recognized. Among the latter, generally

preferred for their robustness, the most widely used approach is the volume fractions

in which phases on either side of the interface are marked with a scalar indicator

function. In a computational cell, this scalar is between 0 and 1: either 0 or 1 indicates

the presence of only one phase, whereas values in between reveal the location of the

interface. The indicator function is moved throughout the domain by a convective

transport equation.

The well-known Volume of Fluid (VOF) of Hirt and Nichols (1981) is a volume

fractions method with a donor-acceptor formulation as a differencing scheme for

the convection of the scalar indicator. This method has been so broadly employed

that the acronym VOF generally indicates a method based on the volume fractions

approach. This holds also in the present work.

Methodologies for dispersed flows are distinguished in Balachandar and Eaton (2010)

as:

• Dusty gas. The dispersed particles follow the continuous phase, i.e. have the

same velocity. The motion of bubbles reduces to a concentration equation;
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• Equilibrium Eulerian. Particles have velocity different than the continuous

phase, but function of the local surrounding fluid;

• Euler-Euler. Mass and momentum conservation equation are solved for both

phases;

• Lagrangian Point-Particle Approach. Position, mass and momentum of all

particles are tracked within a Lagrangian framework.

The present work focused on the VOF and the Euler-Euler approach. The VOF has

been chosen because it can handle the folding or the rupturing of the free surface

typical of wave breaking. The reasons behind the choice of the Euler-Euler method

will be given in Section 3.3.2.

1.3 Motivation

The need of exploiting new energy sources, both renewable and non-renewable, will

lead to the development of a large number of offshore structures in the near future.

Many of these new expected constructions will be installed in intermediate water

depth regions. For instance, several Offshore Wind Farms are under development on

20-40 m water depth in the North-Sea between UK, the Netherlands, Germany and

Denmark. In such areas, waves can break under storm conditions and, likely, as a

spilling. The induced air entrainment is known to affect the dynamics of the breaker.

Therefore, the impact of breaking waves changes compared to non-breaking and the

design of these new structures has to account also for breaking wave-induced loads.

A spilling wave is not characterized by entrapment of an air pocket, rather by a

mixture of entrained air bubbles and water, the roller, traveling with the wave front

with approximately the wave celerity. The impact of a spilling wave on a structure is

then supposed to be less violent than a plunging breaker. Therefore, spilling waves

are not supposed to undermine the overall stability of an offshore structure, but it

has been experienced that they can still cause severe damages. As example, external

access platforms, boat-landings and railings of offshore wind turbines have been often

corrupted by spilling breakers associated with large run-ups (Fig. 1.7). Nevertheless,

the effects of the roller on the structural elements are still not well-known.

In order to gain more knowledge on the role of the air, the present work aimed to

develop a numerical methodology for simulating waves that could account also for

the entrainment process.

1.4 Thesis outline

The remainder of this thesis comprises the derivation, the validation and the applica-

tion of the numerical methodology as follows:
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Figure 1.7: Severe impact of the roller on an offshore wind turbine. From Nielsen et al. (2008).

• Chapter 2 introduces the equations governing the motion of a generic two-

phase system. From this set of equations, the Euler-Euler and the VOF model

are derived highlighting an inner relation between these two approaches;

• Chapter 3 explains how the relation between the Euler-Euler and the VOF

method can be exploited in order to build a unique mathematical model. Needed

closure terms are treated, with particular attention to the formulation adopted

for the air entrainment. The implementation of the model within a CFD frame-

work is described;

• Chapter 4 illustrates the employment of the methodology for the analysis of two

experimental case studies which were used for a preliminary validation of the

numerical results. The first case is the flow in a bubble column. The second

one is the propagation and the breaking of regular waves on a sloping beach. In

both cases, the air entrainment phenomenon was not taken into account;

• Chapter 5 completes the validation through other two experimental case stud-

ies which involved the simulation of the air entrainment. The first one is the

breaking process of a spilling wave. The second one is the breaking-induced

bubbly flow established in the surf zone of the regular spilling waves studied in

Chapter 2;

• Chapter 6 reports the numerical investigation conducted on the impact of

a laboratory spilling wave against a vertical circular cylinder. The analysis is

supported by measurements taken in an experiment carried out at the Technical

University of Denmark. The role of the roller on the exerted force is examined;

• Chapter 7 summarises the thesis and offers some conclusions and suggestions

for future research.
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2 Mathematical models for two-phase
flows

Mathematical models for two-phase flows depend on the morphology of the interface

between fluids. Two different morphologies are distinguished:

• segregated when the fluids are not mixed and a single well-defined interface

occurs;

• dispersed when a fluid is dispersed into the other.

A breaking wave is a water-air flow where both morphologies manifest. The propa-

gation of the wave is a segregated flow which becomes locally dispersed when wave

breaking occurs and which regains the segregated status during the evolution of the

bubble plume.

In this work, the VOF model was chosen for simulating the wave propagation, whereas

the dispersion of entrained air bubbles was handled by the Euler-Euler approach. The

governing equations of these two models seem different, but next section will show

that the VOF method can be derived as a simplification of the Euler-Euler approach.

This derivation is shown because the numerical methodology developed in the present

work is based on the coupling between the VOF and the Euler-Euler model. As it will

be detailed in Chapter 3, the fact the former can be derived from the latter provided a

solid ground for making the coupling realizable.

The equations governing the motion of a generic two-phase system are first intro-

duced (instantaneous conservation equations). Then the Euler-Euler framework is

presented (conditional volume-averaged conservation equations). Finally, the VOF

model is derived. The exposition follows the work of Marschall et al. (2011) wherein

the complete and rigorous procedure can be found. Also the work of Márquez Damián

(2013) can be consulted for this subject.
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Vϕ

I

phase ϕ phase φ

nI
uI

ρϕ, uϕ ρφ, uφ

V

Vφ

Figure 2.1: Control volume for the derivation of the instantaneous conservation equations
(redrawn from Marschall et al. (2011)).

2.1 Instantaneous conservation equations

The control volume V depicted in Fig. 2.1 contains two phases, ϕ and φ, which are

assumed Newtonian and incompressible. Nevertheless, the density ρ is kept in the

following equations for convenience.

The volume has an arbitrary shape and it is spatially fixed within an Eulerian frame-

work. The phases occupy portions Vϕ and Vφ of the total volume which are separated

by the interface I . In each portion, it is possible to formulate the instantaneous con-

servation equations for mass and momentum of the corresponding phase. As for the

rest of the chapter, only equations for phase ϕ are reported:

∂ρϕ

∂t
+∇· (ρϕuϕ

)= 0 (2.1)

∂ρϕuϕ
∂t

+∇· (ρϕuϕ⊗uϕ) =−∇pϕ+∇·τϕ+ρϕg (2.2)

where:

- uϕ is the velocity;

- pϕ is the pressure;

- ρϕ is the density;

- g is the gravity acceleration;

- t is the time.

The viscous stress tensor τϕ is expressed for a Newtonian fluid as a function of the

deviatoric part Dϕ of the rate-of-strain tensor Sϕ = 1
2

[∇⊗uϕ+ (∇⊗uϕ)T
]

through the

viscosity µϕ:

τϕ = 2µϕDϕ = 2µϕ

[
Sϕ− 1

3

(∇·uϕ
)

I
]

(2.3)
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2.2. Conditional volume-averaged conservation equations

The system of equations is closed by discontinuity conditions at the interface I for

both mass and momentum:

ρϕ(uϕ−uI ) ·nI = ρφ(uφ−uI ) ·nI (2.4)

(pϕnI +τϕ ·nI ) = (pφnI +τφ ·nI )+σκnI (2.5)

where uI is the interfacial velocity, nI is the interface unit normal vector and κ is

the interface curvature. In Eq. 2.4 it is assumed that interfacial mass transfer do not

take place. In a water-air system, this means that there is not any condensation or

evaporation.

2.2 Conditional volume-averaged conservation equations

The mathematical model represented by Eqs. 2.1-2.5 is made more suitable for build-

ing up a CFD solver by the following successive operations:

• the equations are made conditional on the presence of a particular phase by

multiplying all terms by the indicator function f i nd defined as:

f i nd
ϕ (x, t ) =

1 if x = (x, y, z) ∈ϕ at time t ,

0 otherwise
(2.6)

Now the mathematical model can be applied on the whole volume V and not

just on Vϕ (or Vφ);

• the equations are volume-averaged. The solution of the instantaneous equa-

tions 2.1-2.5 would be a DNS approach where all interfacial scales are assumed

to be reproduced. This would require a spatial discretization prohibitive in most

practical cases.

Considering either mass or momentum of a biphasic system as a generic quantity

Φ being transported within a spatio-temporal domain (this is what conservation

equations essentially are), the application of the two operations above yields:

f i nd
ϕ Φ= 1

V

∫
V

f i nd
ϕ ΦdV = Vϕ

V

1

Vϕ

∫
Vϕ
ΦdV =αϕΦϕ

(2.7)

where αϕ ≡Vϕ
/

V is the phase volume fraction.
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Chapter 2. Mathematical models for two-phase flows

When conditional volume-averaged, conservation equations 2.1-2.2 read:

∂αϕρ
ϕ

∂t
+∇· (αϕρϕuϕ

)= 0 (2.8)

∂
(
αϕρ

ϕuϕ
)

∂t
+∇· [αϕρϕ (

uϕ⊗uϕ
)]=
−∇· (αϕpϕ)+∇·

(
αϕΓ

ϕ
)
+αϕρϕg+Mϕ

(2.9)

where Γ
ϕ

comprises the viscous and the Reynolds stress tensor and Mϕ is the inter-

facial momentum transfer. Both terms stem from the conditional volume-averaging

procedure which is applied on the fluctuating part of the convective term for the

former and on the fluctuating part of the pressure and stress tensor at the interface

for the latter.

Analogously, conditional volume averaged jump conditions at the interface become:

0 = 0 (2.10)

Mϕ+Mφ = Mσ (2.11)

where Mσ is the averaged interfacial momentum source due to surface tension. It is

remarked that Eq. 2.4 reduces to 0 = 0 if there is not mass transfer at the interface.

The introduction of phase indicator f produces in turn the following interface trans-

port equation:

∂ fϕ
∂t

+uI ,ϕ ·∇ fϕ = 0 (2.12)

It can be demonstrated that fϕ =αϕ and that, for a biphasic system where µϕÀµφ,

the conditional volume-averaged interface transport equation is

∂αϕ

∂t
+uϕ ·∇αϕ = 0 (2.13)

Bearing in mind that αϕ+αφ = 1 and defining the volumetric mixture velocity U as

follows

U =αϕuϕ+αφuφ (2.14)

the sum of continuity equations 2.8, for incompressible phases, results in:

∇·
(
αϕuϕ+αφuφ

)
=∇·U = 0 (2.15)
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2.2. Conditional volume-averaged conservation equations

It is preferable to use Eq.2.15 as the continuity equation within a CFD framework.

Equation 2.8, divided by density, can govern the transport of the interface, that is

∂αϕ

∂t
+∇· (αϕuϕ

)= 0 (2.16)

Therefore, the complete mathematical model, known as Euler-Euler, is

=⇒



∇·
(
αϕuϕ+αφuφ

)
= 0 (2.17)

∂
(
αϕρ

ϕuϕ
)

∂t
+∇· [αϕρϕ (

uϕ⊗uϕ
)]=
−∇(

αϕpϕ)+∇·
(
αϕΓ

ϕ
)
+αϕρϕg+Mϕ

(2.18)

∂
(
αφρ

φuφ
)

∂t
+∇·

[
αφρ

φ
(
uφ⊗uφ

)]
=

−∇·
(
αφpφ

)
+∇·

(
αφΓ

φ
)
+αφρφg+Mφ

(2.19)

Mϕ+Mφ = Mσ (2.20)

∂αϕ

∂t
+∇· (αϕuϕ

)= 0 (2.21)

In order to close the system of equations, constitutive relations have to be employed

for terms Γ
ϕ

and Mϕ. In general, closure models are necessary to remedy the loss of

information (the fluctuations) due to the averaging procedure.

Concerning the term Γ
ϕ

, the needed equations are provided by a turbulence

model. This is a well-known subject and it will not be treated in this chapter.

The term Mϕ takes into account the smaller-scale deformations of the interface

which disappear when the conditional volume filter is applied.

The modeling of Mϕ depends on the typology of flow strongly. If the flow is segregated,

the unique interface is larger than the grid size and then it is supposed to be fully

resolved. Instead, the interface of a dispersed phase has a characteristic length scale

generally smaller then the grid size, therefore it is totally modeled.

Marschall et al. (2011) developed a uniform closure framework that included both

kinds of flow. Conceptually, the idea was that a segregated flow could still have

some not resolved interfacial length scales that could be modeled as in a dispersion.

Practically, Marschall et al. (2011) provided mathematical expressions of Mϕ for each

category of flow.
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Chapter 2. Mathematical models for two-phase flows

2.3 Governing equations of the VOF model
From phases ϕ and φ, it can be created a fictitious mixture fluid with density and

viscosity expressed by

ρ ≡αϕρϕ+αφρφ (2.22)

µ≡αϕµϕ+αφµφ (2.23)

Two new velocity fields are defined

Um ≡ αϕρ
ϕuϕ+αφρφuφ

αϕρ
ϕ+αφρφ

(2.24)

Ur ≡ uϕ−uφ (2.25)

which are the center-of-mass velocity and the relative velocity respectively. Recalling

U =αϕuϕ+αφuφ, it is possible to express the conditional volume-averaged velocity

of both phases either as function of the center-of-mass velocity

uϕ = um + αφρ
φ

ρ
ur (2.26)

uφ = um − αϕρ
ϕ

ρ
ur (2.27)

or as function of the relative velocity

uϕ = U+ (1−αϕ)Ur (2.28)

uφ = U− (1−αφ)Ur (2.29)

Inserting Eq. 2.26 in Eq. 2.28, a relation for all velocities is

Um = U+αϕ
(
1−αϕ

) ρϕ−ρφ
ρ

Ur (2.30)

The continuity or interface transport equation 2.16 can be expressed in terms of

relative velocity Ur , through Eq. 2.26 and considering αφ = 1−αϕ, as

∂αϕ

∂t
+∇· (αϕUm

)=−∇·
[
αϕ(1−αϕ)ρφ

ρ
Ur

]
(2.31)
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2.3. Governing equations of the VOF model

Analogously for the continuity equation of phase φ

−∂αϕ
∂t

+∇· [(1−αϕ
)

Um
)=−∇·

[
αϕ(1−αϕ)ρϕ

ρ
Ur

]
(2.32)

When Eqs.2.31 and 2.32 are summed, it is obtained

∇·Um =∇·
[
αϕ

(
1−αϕ

) ρϕ−ρφ
ρ

Ur

]
(2.33)

which shows that center-of-mass velocity field of the mixture phase is not solenoidal

inside the interfacial transition region.

Substituting Eq. 2.30 into the equation above leads to

∇·U = 0 (2.34)

which shows instead that the volumetric mixture velocity field is solenoidal (as it was

found in Eq. 2.15).

The interface transport equation 2.8 can be expressed as a function of u through Eq.

2.28:

∂αϕ

∂t
+∇· (αϕU

)+∇· [αϕ (
1−αϕ

)
Ur

]= 0 (2.35)

Adopting the common assumption that both phases share the same pressure p and

summing the momentum equations 2.18 and 2.19:

∂ρUm

∂t
+∇· (ρUm ⊗Um) =−∇p +∇· (Γm +ΓI )−∇· (ρMdr i f t

)+ρg+Mσ (2.36)

where:

ΓI ≡αϕµϕ
(

∇⊗ αφρ
φ

ρ
Ur

)
+

(
∇⊗ αφρ

φ

ρ
Ur

)T
−αφµφ

[(
∇⊗ αϕρ

ϕ

ρ
Ur

)
+

(
∇⊗ αϕρ

ϕ

ρ
Ur

)T ]
(2.37)

is the interfacial friction tensor and

Mdr i f t ≡
αϕαφρ

ϕρφ

ρ
Ur ⊗Ur (2.38)

is the momentum drift-flux term.
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Chapter 2. Mathematical models for two-phase flows

The final set of Eqs. 2.34-2.36 is the so-called Drift-Flux model. The difference with

the Euler-Euler is that just one momentum equation needs to be resolved, instead

of two for both phases. The missing momentum equation in the Drift-Flux model is

replaced by a closure relation for Ur .

The simplest closure is given by the homogeneus mixture hypothesis which implies

Ur = 0 (2.39)

This assumption means that a no-slip condition is applied to the velocity fields of

the two phases, i.e. it is assumed that the velocity fields of the two phases are equal

throughout the domain. The effects of this hypothesis are:

uϕ = uφ = Um = U (2.40)

Γi = 0 (2.41)

Mdr i f t = 0 (2.42)

With the above relations, the Drift-Flux model (Eqs. 2.34-2.36) reduces to well known

VOF model:

=⇒


∇·U = 0 (2.43)
∂ρU

∂t
+∇· (ρU⊗U) =−∇p +∇·Γ−ρg+Mσ (2.44)

∂αϕ

∂t
+∇· (αϕU

)= 0 (2.45)

Since the VOF model is used for segregated flows where phases are de facto stratified,

the no-slip condition is applied at the interface where the transition between phases

takes place.

Now the unique framework of Marschall et al. (2011) for the closure of the equations

of a generic two-phase flow (Eqs. 2.17-2.21) provides a valuable point of view to

understand the application of the VOF model. In the perspective that the interfacial

boundary layer of a segregated flow is only partially resolved within a CFD method-

ology, because it is however discretized and an averaging procedure is performed,

the application of the VOF model inherently implies that the non-resolved interfacial

scales can be neglected. Likewise, it implies that the adopted spatial discretization is

fine enough for the resolved interfacial structures.
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3 The numerical methodology

In general, a numerical methodology is the combination of a mathematical model

and a solution method (Rusche, 2003).

The mathematical models suitable for representing the two-phase flow of a

breaking wave, i.e. VOF and Euler-Euler, have been presented in Chapter 2 and consist

of partial differential equations. An analytical approach cannot solve the system of

equations, therefore a numerical CFD method needs to be employed.

A numerical approach provides a discrete solution. The discretisation is operated

on the spatial domain, on the time – a breaking wave is a transient flow – and, consis-

tently, on the model equations. This method leads to a system of algebraic relations

which can be solved. The algorithm encompassing the discretisation stage and the

solution of the resulting algebraic equations will be referred to as "CFD solver".

This chapter first shows the developed mathematical model extending the findings of

Chapter 2. Then, the CFD solver is described.

3.1 The mathematical model

This study aimed to build a numerical methodology capable of handling the whole

breaking process: the segregated wave propagation, the breaking with associated air

entrainment and the evolution of the dispersed air bubble plume. In other words,

both the VOF and the Euler-Euler model were required depending on the occurring

interfacial morphology. A coupling of these two models was realized.

This coupling was the core of the present CFD solver and it was the main challenge

throughout the development process. For this reason, it will be largely elucidated in

this section, but, firstly, a necessary extension of the Euler-Euler model is introduced.

3.1.1 The Eulerian multiphase model

In the Euler-Euler model, the dispersed phase is assumed in form of spherical bub-

bles of the same size, i.e. the phase is monodispersed. Since the velocity of a bubble
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Chapter 3. The numerical methodology

depends on its size, the closure relations for the interfacial momentum transfer term

Mϕ (Mφ) can be expressed as a function of the diameter d .

Bubbles entraining water during wave breaking are not identical, but they have diame-

ter in the range 0.2-20 mm (Deane and Stokes, 2002). The entrained air is polydisperse.

Moreover, it has been already seen that the size distribution changes with time. This is

due to the buoyancy-induced degassing but also to the fact that bubbles can interact

among themselves and with the surrounding water: they can either aggregate to pro-

duce larger bubbles (coalescence) or break to generate smaller ones (breakage). A fixed

bubble size model might not be suitable for predicting the correct dynamics of the

entrained air bubble plume, because the interfacial interactions between dispersed

and continuous phase could not be sufficiently modeled.

Since the assumption of monodispersion was quite restrictive for the needs of this

study, it was chosen to model the simultaneous motion of bubbles of different size.

For this purpose, the Euler-Euler model was extended to the Eulerian multiphase

approach (Drew and Passman, 2006) which can handle the motion of N phases. The

model equations are:

=⇒



∇·
(

N∑
i=1

αi ui

)
= 0 (3.1)

∂
(
αiρi ui

)
∂t

+∇· [αiρi (ui ⊗ui )
]=
−∇(

αi p
)+∇· (αiΓi )+αiρi g+Mi

(3.2)

N∑
i=1

Mi = Mσ (3.3)

∂αi

∂t
+∇· (αi ui ) = Si (3.4)

N∑
i=1

Si = 0 (3.5)

Note that (¯̄.̄ ) has been drop and the superscript indicating the phase has become a

subscript.

The Eulerian multiphase model is identical to the Euler-Euler conceptually, i.e. the

syestem of equations has the same form of Eqs. 2.17-2.21. Nevertheless, three differ-

ences should be noted:

• an interface transport equation is solved per each phase;

• a momentum equation is solved per each phase which implies that each phase

has its own velocity field ui ;
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3.1. The mathematical model

• the term Si appears now on the r.h.s. of the interface transport equations: it

represents the interfacial mass transfer (breakage and coalescence).

The fact that N coupled momentum equations have to be solved increases the com-

putational expensiveness of the model. The multiple interface transport equations

are treated in the following section.

3.1.2 The bubble population balance equation

Equation 3.4 can be seen as the so-called bubble population balance equation (BPBE).

This is a Boltzmann’s transport equation which states the conservation of the bubble

number density f , i.e. the number of bubbles per unit volume of the domain. In the

usual form, this equation reads:

∂

∂t
n (x, v, t )+∇· [ui (x, v, t )n (x, v, t )] = S (x, v, t ) (3.6)

where:

• n(x, v, t) is the bubble number density a given time t , in the spatial range dx
about a position x and with volume between v and v+dv ;

• ui is the velocity of bubbles with volume between v and v+dv ;

• S is the source
/

sink term.

The term S can include different mass transfer processes, but only breakage and

coalescence were taken into account in this work. It was expressed as:

S (x, v, t ) = 1

2

∫ v

0
a

(
v − v ′, v ′)n

(
x, v − v ′, t

)
n

(
x, v ′, t

)
dv ′

−n (x, v, t )
∫ ∞

0
a

(
v, v ′)n

(
x, v ′, t

)
dv ′

+
∫ ∞

v
m

(
v ′)b

(
v ′)P

(
v, v ′)n

(
x, v ′, t

)
dv ′

−b (v)n
(
x, v ′, t

)
(3.7)

where:

• the first term is the birth rate of bubbles of volume v due to coalescence of

bubbles of volume v − v ′ and v with frequency a;

• the second term is the death rate of bubbles of volume v due to coalescence

with other bubbles;
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Chapter 3. The numerical methodology

• the third term is the birth rate of bubbles of volume v due to breakup of bubbles

whit volume larger than v with frequency b. The term m is the mean number

of daughter bubbles produced by breakup of parent bubble of volume v ′. The

term P (v, v ′) represents the probability density function of daughter bubbles

produced upon breakup of a parent bubble with volume v ′;

• the fourth term is the death rate of bubbles of volume v due to breakup.

Closure formulations for terms a, P , b and m are needed. Well-established relations

exist in literature and the ones employed in the present work are shown later. Here the

focus is on the necessity of using a numerical approach for solving the BPBE, since

analytical methods cannot be successful.

In this work, the Method of Classes (CM) was implemented (Kumar and Ramkrishna,

1996a,b, Ramkrishna, 2000). In this method, the continuous bubble size (diameter)

range is discretized into a finite number N of classes. Each class is represented by

a characteristic pivot with a diameter di or a volume vi equivalently (bubbles are

spherical). Moreover, each class has its own bubble number density ni and velocity

ui . Thereofre, these classes are gaseous phases with the same density ρ and viscosity ν.

The number density is related to the phase volume fraction αi as follows

αi = ni vi (3.8)

Inserting Eq. 3.8 in Eq. 3.6 and reformulating give:

∂αi

∂t
+∇· (αi ui ) = Si (3.9)

which is the interface transport equation of phase i . Note that Si now expresses Eq.

3.7 multiplied by vi .

Therefore, it has been demonstrated that the solution of the multiple interface trans-

port equations 3.4 inherently implies the discrete solution of the BPBE. Other proce-

dures for solving the BPBE within a CFD algorithm can be found in (Bannari et al.,

2008, Selma et al., 2010, Silva and Lage, 2011, Buffo et al., 2013).
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Air entrainment 
degassing

water

dispersed air bubbles (N classes)
Mass transfer among classes

Momentum transfer between classes and water 

continuous air

Free surface  

Momentum transfer 

Figure 3.1: Adopted description of a breaking wave within the Eulerian multiphase model.

3.1.3 The coupling between the VOF and the Eulerian multiphase

model

Why was the coupling necessary?

Although the answer to this question has been already addressed in previous chapters,

it is not fully stated yet.

The basis of the developed numerical methodology was the Eulerian multiphase

model and the coupling with the VOF can be considered on top of it. Before explaining

how this coupling worked, it is beneficial to first illustrate how a breaking wave was

described within the Eulerian multiphase model (Fig. 3.1).

The air above water was called continuous to distinguish it from the air entrained in

water in the form of dispersed bubbles. The interface between continuous air and

water was the free surface. As seen in the previous section, the dispersed bubbles were

represented with N phases, or classes, each of them characterized by a diameter di .

The classes had the same density and viscosity of the continuous air, hereafter just air.

The total number of phases resolved in the model was N +2: water + air + N classes.

All phases were incompressible and immiscible.

In the same figure, the interfacial transfers of mass and momentum among phases

are also reported, that is:

• water and air exchange momentum, not mass;

• air exchanges mass with bubble classes (air entrainment and degassing);

• bubble classes exchange mass among themselves and momentum with water.

Momentum exchange among bubbles due to collision was neglected.
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Chapter 3. The numerical methodology

Conceptually, just the Eulerian multiphase model would have been sufficient to sim-

ulate a breaking wave given that the momentum transfers between phases were for-

mulated in according to the local interfacial morphology. The momentum exchanged

between water and bubbles could have been modeled by the well-established relations

existing in literature for dispersed phases. Instead, there would have been an issue

regarding on how to formulate the transfer between water and air phase which were

not dispersed, but stratified. Although some studies provide reliable solutions to this

problem (Marschall et al., 2011, Štrubelj and Tiselj, 2011, Hänsch et al., 2012, Wardle

and Weller, 2013), none of them directly impose that the relative velocity between

water and air is zero (no-slip) which is the most appropriate condition for a segregated

flow. Contrarily, the VOF model ensures that the velocity of water and air is identical at

the free surface (Section 2.3). Therefore, the employment of the VOF model eliminated

the uncertainty on the momentum transfer between water and air.

Note that this issue it was not just conceptual. An appropriate momentum trans-

fer modeling was a key factor for achieving a sharp and regular simulated free surface.

The sharpness of the free surface can be explained as follows. Both the VOF and the

Eulerian multiphase model provide a free surface that is not reconstructed as a real

geometrical entity, but it is simply represented by the transition zone in which the wa-

ter void fraction αwater goes from the value 1 to 0. The thickness of this transition zone

is the sharpness of the free surface and it must be as small as possible (in the limits of

the finite volume discretisation). The term regular indicates that no instabilities must

be recognised in the solution of the pressure and velocity fields which are continuous

across the free surface. These instabilities usually manifest as wiggles upon the free

surface.

Since the simulation of a sharp and regular free surface was an essential require-

ment for the purpose of this study, the coupling with the VOF model was believed

necessary and convenient.

How does the coupling work?

The idea of coupling of a model with interface capturing capabilities, like VOF, with

one based on the Eulerian methodology (Euler-Euler or multiphase) is not new. Flows

with simultaneous dispersed and segregated interfaces are encountered in various

fields of industry and science, therefore several studies have been conducted on this

topic.

In general, two typologies of coupling can be identified:

• dynamic when it is implemented a criterion which distinguishes – runtime –

large interfacial length scales in segregated flows from small interfacial length

scales in dispersed flows in order to switch between the two coupled models

(Cerne et al., 2001, Štrubelj and Tiselj, 2011);
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3.1. The mathematical model

• static when the interfacial morphologies are known a priori and phase pairs are

preassigned to one of the two models (Hänsch et al., 2012, Wardle and Weller,

2013, Ojima et al., 2014).

Moreover, three different strategies for the coupling implementation can be recog-

nised:

• the numerical methodology is provided with the governing equations of both

models (Cerne et al., 2001);

• the framework is the Eulerian model and the interface capturing feature is

achieved by some numerical "expedients" (Cerne et al., 2001, Hänsch et al.,

2012, Wardle and Weller, 2013, Ojima et al., 2014);

• only the governing equations of the Eulerian approach are used and the closure

term Mi depends on the interfacial morphologies (Marschall et al., 2011).

A dynamic coupling was not believed necessary for this study. The reason is that,

although the interfacial length scales are within a quite broad range, there is a clear

partition on where and when all interfacial structures occur. In fact, it was expected

that:

• the segregated flow concerns the motion of water and air throughout the whole

domain and the whole simulated time interval;

• the dispersed flow involves water and bubble classes. It establishes at the

breaking time and it vanishes within few wave periods.

The static coupling of Ojima et al. (2014) was implemented in this study. The frame-

work was based on the governing equations of the Eulerian multiphase model and a

VOF solution for the free surface was obtained as follows. Air and water were consid-

ered as a mixture phase (mixt) with a single velocity field, that is the no-slip condition

umixt = uw = uair (3.10)

was imposed in the whole domain. As it has been shown in Section 2.3, it was possible

to achieve a single VOF momentum equation for the mixture of these phases by

summing the Eulerian momentum equations of water and air. Viscosity and density of

the mixture were calculated as a weighted average of the properties of the two phases,

being the volume fraction the weight

ρmixt = αwρw +αairρair

αw +αair
(3.11)

νmixt = αwνw +αairνair

αw +αair
(3.12)
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air bubbles

mixture

no-slip

Figure 3.2: Architecture of the developed numerical methodology.

The momentum equations for water and air were not solved. The bubble classes were

treated as dispersed in the mixture (occupying the entire domain) and not in water.

Air and water were still treated separately in the calculation of phase fractions. Fig. 3.2

helps in understanding this explanation.

3.1.4 The model equations

In order to accomodate the VOF model on the Eulerian multiphase framework, Eqs.

3.1-3.5 were rewritten as follows

=⇒



∇·
(

N+2∑
i=1

αi ui

)
= 0 (3.13)

∂
(
αiρi ui

)
∂t

+∇· [αiρi (ui ⊗ui )
]=

∇·
(
αiρiΓ

e f f
i

)
−αi∇pd −αi

(
g ·x

)∇ρ+αi g
(
ρi −ρ

)+Mi

(3.14)

N+1∑
i=1

Mi = Mσ (3.15)

∂αi

∂t
+∇· (αi ui ) = Si (3.16)

N+2∑
i=1

Si = 0 (3.17)

uw = uair (3.18)

where the excess pressure pd = p −ρg · x has been defined with ρ = ∑N
i=1αiρi and

x = x(x, y, z). It is the pressure without the contribution of the hydrostatic pressure.
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Closure modelings were needed for the effective stress tensor Γe f f
i , the momentum

transfer Mi and the mass exchange Si among phases. The treatment of these terms is

described in greater detail in the following.

Effective stress tensor Γe f f
i

The modeling of the turbulence in the wave breaking-induced bubbly flow poses

a challenge because objective uncertainties on the turbulent behavior of water are

enhanced by the random distribution of bubbles. Among the copious approaches

available in literature, this work adopted the one of Derakhti and Kirby (2014). The

idea was that only the turbulence of water, which was the mixture phase in the present

CFD solver, was solved and in a manner that took into account the effects of the

bubble motion (the formation of wakes and vortex shedding behind the bubbles as ex-

ample). The stress tensor Γe f f
i was named "effective" because, for the mixture phase,

it included not only the dissipation induced by the (mixture) molecular viscosity, but

also by the turbulence (velocity fluctuations) and the bubble motion. The effective

stress tensor of the classes was due just to the molecular viscous dissipation.

The LES approach was used to handle the turbulence. A top-hat filter with a width

equal to the grid-spacing ∆was used (De Villiers, 2007), consistently with the volume-

averaging procedure applied to the governing equations of the model (see Chapter

2). This filter had the effect that only length-scale scales larger than ∆ (Grid Scales,

GS) are resolved, whereas the smaller scales (Sub-Grid Scale, SGS) were modeled. The

quantities in Eqs. 3.13-3.17 have to be intended as filtered.

The effective stress tensor of the mixture could be decomposed as

Γ
e f f
mixt =Γr

mixt +Γsg s
mixt =Γr

mixt +Γsg s,SI
mixt +Γsg s,B I

mixt (3.19)

where:

• Γr
mixt is the stress tensor due to molecular kinematic viscosity (Eq. 2.3). It is

function of the resolved rate-of-strain tensor S as follows

Γr
mixt = 2νr

mixt

[
Smixt − 1

3
(∇·umixt)I

]
=

2νr
mixt

{1

2

[∇⊗umixt + (∇⊗umixt)
T ]− 1

3
(∇·umixt)I

}
= 2νr

mixtDmixt

(3.20)

• Γsg s,SI
mixt is the shear-induced SGS stress tensor. Its anisotropic part is function of

the resolved scales through the shear-induced SGS viscosity calculated by the
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employed LES model:

Γ
sg s,SI ,a
mixt =−2νsg s,SI

mixt Dmixt (3.21)

• Γsg s,B I
mixt is the bubble-induced SGS stress tensor. Its anisotropic part is function

of the resolved scales through the bubble-induced SGS viscosity calculated as in

Sato and Sekoguchi (1975):

Γ
sg s,B I ,a
mixt =−2νsg s,B I

mixt Dmixt =−2

(
0.6

N∑
i=1

αi di‖ui −umixt‖
)

Dmixt (3.22)

A total SGS viscosity could be defined as a superposition of the shear and the bubble-

induced viscosity:

ν
sg s
mixt = ν

sg s,SI
mixt +νsg s,B I

mixt (3.23)

and consequently

Γ
sg s,a
mixt =Γsg s,SI ,a

mixt +Γsg s,B I ,a
mixt =−2νsg s

mixtDmixt (3.24)

It should be noted that the eddy-viscosity approximation was used in the equation

above, i.e. the non-uniform component of the SGS stress tensor is locally aligned with

the non-uniform part of the resolved rate-of-strain tensor. Moreover, the superposi-

tion of Γsg s,SI ,a
mixt and Γsg s,B I ,a

mixt lies on the consideration that bubbles have a dimension

smaller than grid size (as required by the conditional volume-averaging procedure of

the Eulerian approach), hence smaller than the applied LES filter.

The total SGS stress tensor is given by

Γ
sg s
mixt =−Γsg s,a

mixt − 2

3
k sg s

mixtI (3.25)

since the SGS kinetic energy is defined as the trace of the SGS stress tensor. Note that

k sg s
mixt is provided by the employed LES model.

Finally, the effective stress tensor of the mixture phase was calculated as

Γ
e f f
mixt = 2

(
νr

mixt +νsg s
mixt

){1

2

[∇⊗umixt + (∇⊗umixt)
T ]− 1

3
(∇·umixt)I

}
−2

3
k sg s

mixtI

= 2
(
ν

e f f
mixt

){1

2

[∇⊗umixt + (∇⊗umixt)
T ]− 1

3
(∇·umixt)I

}
−2

3
k sg s

mixtI

(3.26)
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3.1. The mathematical model

while the effective stress tensor of the classes was

Γ
e f f
i = 2νr

i

{1

2

[∇⊗ui + (∇⊗ui )T ]− 1

3
(∇·ui )I

}
(3.27)

Similarly, the following dissipation rate terms could be formulated

εr
mixt = 2νr

mixtSmixt : Smixt (3.28)

ε
sg s,SI
mixt = 2νsg s,SI

mixt Smixt : Smixt (3.29)

ε
sg s,B I
mixt = 2νsg s,B I

mixt Smixt : Smixt (3.30)

ε
sg s
mixt = ε

sg s,SI
mixt +εsg s,B I

mixt (3.31)

εtot
mixt = εr

mixt +εsg s,SI
mixt +εsg s,B I

mixt (3.32)

The term εtot
mixt represented the dissipation rate of the resolved kinetic energy per

unit mass. The term ε
sg s,SI
mixt represented the rate of transfer of kinetic energy per unit

mass from resolved to sub-grid modeled scales.

The dynamic Smagorinsky model of Germano et al. (1991) and Lilly (1992) was em-

ployed in all simulations performed throughout this study. The underlying assumption

was that the SGS scales were in equilibrium and dissipate entirely and instantaneously

all the energy received from the resolved scales. The shear-induced viscosity νsg s,SI
mixt

and the SGS kinetic energy k sg s
mixt were determined as

ν
sg s,SI
mixt = (CS∆)2 ‖Smixt‖ (3.33)

k sg s
mixt = (C I∆)2 ‖Smixt‖2 (3.34)

Contrary to the constant Smagorinksy, in this model both coefficients CS and C I are

calculated in according to the local characteristics of the flow. This feature makes the

model suitable for predicting the turbulence field under breaking waves. In fact, since

turbulence is limited in space and time, the sub-grid viscosity and kinetic energy can

be damped near the free surface where are supposed to be reduced and in regions of

the wave field where the flow is weakly or not turbulent.

The interfacial momentum transfer M i

The momentum transfer Mi between water and bubbles was decomposed in four

contributions:

• Drag force. Because of their relative velocity with respect to the mixture, bubbles

are subject to a resisting force opposed to the direction of their movement. This
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drag force was expressed as

MD,i = 3

4
ρmixtαmixtαi CD,i

‖ui −umixt‖(ui −umixt)

di
(3.35)

The drag coefficient CD,i was determined either via the correlation of Schiller

and Naumann (1935) which assumed spherical bubbles

CD,i =


24

(
1+0.15Re0.687

i

)
Re

if Rei = ‖ui −umixt‖di

νr
mixt

≤ 1000,

0.44 if Rei > 1000

(3.36)

or through a model which took into account bubble deformation (Ishii and

Zuber, 1979, ANSYS, 2009):

CD,i =



max(CD,spher e ,CD,di st )

CD,di st = min(CD,cap ,CD,el l i pse )

CD,el l i pse = 2
3

√
9.81(ρmixt−ρi )d 2

i
σ

CD,cap = 8
3

CD,spher e =


24

(
1+0.15Re0.687∗

)
Re∗

if Re∗ = ‖ui −umixt‖di

µ∗
≤ 1000,

0.44 if Re∗ > 1000

µ∗ =µmixt(1−αi )
−2.5(µi +0.4µmixt)

µi +µmixt

(3.37)

• Lift force. The sheared non-uniform flow of the mixture makes bubbles undergo

a component of the resisting force perpendicular to the drag force which is

called lift force. It was formulated as:

ML,i =−ρmixtαmixtαi CL(ui −umixt)× (∇×umixt) (3.38)

where CL was a model constant with a value of 0.5;

• Virtual mass force. Bubbles with a relative acceleration with respect to the mix-

ture experience this extra resisting force due to the fact that also the surrounding

mass of mixture tends to accelerate. The virtual mass force was given by:

MV M ,i = ρmixtαmixtαi CV M

(
Dui

Dt
− Dumixt

Dt

)
(3.39)
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Air entrainment E 

mass from continuous air

to bubble classes 

degassing D 

mass from bubble 

classes to continuous air

water

dispersed air bubbles (N classes)

Mass transfer: breakage B and coalescence C

Momentum transfer: drag MD, lift ML, virtual mass MVM, turbulent dispersion MTD

continuous air

Free surface Mσ

Figure 3.3: Interactions among phases in a breaking wave described within the Eulerian
multiphase model.

where CV M was a model constant set to 0.5;

• Turbulent dispersion force. The turbulent eddies of mixture phase tend to scatter

bubbles as a swarm. This force was represented as

MT D,i =−3

4
CD,i

ρmixt

di

ν
sg s
mixt

Sb
‖ui −umixt‖∇αi (3.40)

where the Schmidt number Sb was taken equal to 0.8.

The momentum exchange between water and air due to surface tension was evaluated

using the model of Brackbill et al. (1992):

Mσ,mixt =σκ∇α (3.41)

where κ is the interface curvature and σ = 0.0728 N/m is the surface tension. Note

that this contribution was computed before the resolution of the coupled momentum

equations, when water and (continuous) air are treated separately.

The interfacial mass transfer Si

Figure 3.3 depicts the mass transfers occurring simultaneously during wave breaking.

As already said in Section 3.1.2, breakage (B) and coalescence (C ) were modeled as

mass transfers among bubble classes. Both models were implemented within the

Method of Classes which ensured that the number of bubbles was conserved. In this

method, the bubble volume range, comprised between vmi n and vmax , is discretized

in N classes as depicted in Fig. 3.4. Each class vi−1 ≤ v ≤ vi is represented by the pivot

xi . A geometric progression was used: xi = 2xi−1 and vi = (xi−1 +xi )/2. The width of

each class was li = vi − vi−1.
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vmin vmax

di

vi-1 vi vi+1

di-1

x1
d1 dN

li

xi-1 xi xN

Figure 3.4: Discretisation of the bubble volume range in the Method of Classes.

Being j and k (with x j ≥ xk ) a couple of bubbles which collide and merge, the coales-

cence source and sink term were given by

Ci =
j≥k∑
∀k

(
1− 1

2
δ j ,k

)[
γi

(
x j +xk

)
a(x j , xk )n j nk

]−ni

N∑
j=1

a(xi , x j )n j (3.42)

where:

• δ j ,k was the Kronecker delta;

• γi was a coefficient which (linearly) distributed a bubble produced by coales-

cence to the two nearest classes. It was calculated as

γi =



(x j +xk )−xi−1

xi −xi−1
xi−1 ≤ (x j +xk ) ≤ xi

xi+1 − (x j +xk )

xi+1 −xi
xi ≤ (x j +xk ) ≤ xi+1

0 otherwise

(3.43)

• a(x j , xk ) was the coalescence frequency written as a product of collision rate

θ j ,k and coalescence efficiency PC as in Prince and Blanch (1990)

a =



θ j ,k PC (d j ,dk )

θ j ,k = 0.089πn j nk (d j +dk )2(εsg s
mixt)

1/3(d 2/3
j +d 2/3

k )1/2

PC (d j ,dk ) = exp

−
(

r j ,kρmixt

16σ

)1/2

(εsg s
mixt)

1/3ln
h0

h f

r 2/3
j ,k


r j ,k =

[
1

2

(
2

d j
+ 2

dk

)]−1

h0 = 10−4m

h f = 10−8m

(3.44)
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3.1. The mathematical model

The breakage source and sink term were expressed under the hypothesis that a mother

bubble splits into two identical daughter bubbles with half of the volume:

Bi =
N∑
j

2n j b(x j )−b(x j )ni (3.45)

where b(x j ) was the breakup frequency of Martìnez-Bazàn et al. (1999a,b)

b(x j ) = 0.25n j

√
8.2(d j ε

sg s
mixt)

2/3 −12σ/(ρmixtd j )

d j
(3.46)

It should be noted that, in both models, the physical phenomena are driven by the

turbulence field of the mixture phase through εsg s
mixt.

The degassing of bubbles was modeled as in Hänsch et al. (2012) wherein it was

assumed that dispersed bubbles immediately turn into (continuous) air when they

reach the free surface. The transfer rate of mass from every class to air phase was

expressed as

Di = ϕairρiαi

at∆t
(3.47)

where ∆t was the time step of the simulation and at = 50 a constant. The term ϕair

was a blending function detecting the continuous air field above the free surface. It

was given by

ϕair = 0.5tanh[100(αair −0.5)]+0.5 (3.48)

The air entrainment was reproduced by a sub-grid scale model which essentially was

a volume source
/

sink term added to the continuity equations of classes and air. The

model of Derakhti and Kirby (2014) was adopted wherein the authors related the air

entrainment rate to the dissipation rate εsg s,SI
mixt as follows

Ei = cen

4π

ρmixt

σ
αmixt

(
si li∑N

i ( di
2 )2si li

)
ε

sg s,SI
mixt (3.49)

where:

- cen was a parameter which regulated the amount of entrained bubbles;

- si was the size spectrum of entrained bubbles (ah = 1 mm is the Hinze scale)
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si =


(

di

2

)− 10
3

if

(
di

2

)
> ah(

di

2

)− 3
2

if

(
di

2

)
≤ ah

(3.50)

Bubbles were entrained at the free surface cells when ε
sg s,SI
mixt was larger than a fixed

value. This threshold was needed to "switch on" the air entrainment mechanism

only during the active breaking when bubbles form actually. In fact, the term si was

consistent with the bubble size distribution observed in Deane and Stokes (2002) (see

Section 1.1.2).

An important aspect is now remarked. This formulation essentially related the

entrainment to the sub-grid dissipation rate which was in according with the fact

the simulated bubbles were smaller than the grid size. Moreover, the formulation

assumed that the entrainment was induced by turbulence activity at the free surface,

which implied that the air entrainment caused by the jet impingement and successive

air cavity fragmentation was in principle not reproducible in plunging breaking waves.

Nevertheless, the focus of this study was on spilling waves, therefore the model was

believed suitable. Both cen and the threshold for εsg s,SI
mixt needed to be calibrated by

comparison with experimental measurements of void fraction.

In conclusion, the term Si representing the inter phase mass exchange was given by:

Si = Bi +Ci +Di +Ei (3.51)

It is stressed that terms Bi and Ci were zero for water and continuous air phase.

3.2 The CFD solver

The solver was built by the means of the open-source CFD software OpenFOAM

(version 2.3.1). This is essentially a package of C++ libraries which can be flexibly as-

sembled for creating numerical solvers of continuum problems. OpenFOAM is based

on the framework of the finite volume method (FVM) and it can support unstructured

meshes for arbitrary complex geometries (Weller et al., 1998).

As any other CFD solver implemented in the OpenFOAM environment, the developed

one consisted of (Rusche, 2003, Marschall et al., 2011)

• Spatial and temporal discretisation. The spatial domain was split in control

volumes (CV, or cells). Similarly, the time domain was divided in time steps;
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3.2. The CFD solver

• Equations discretisation. The model equations were first integrated over each

control volume. By applying the Gauss’ theorem, the resulting volume integrals

were translated into surface integrals which were calculated by interpolating the

cell-centered values to the CV surfaces. This procedure led to a set of algebraic

equations which held for each cell-centered values and were written in terms of

neighboring cell values;

• Solution of the discretized equations. The cell-centered values were calculated

by solving the coupled algebraic equations with an algorithm that ensured

accuracy and correctness of results.

For the discretisation of the model equations, OpenFOAM adopts a second-order

accurate finite volume method which is a good compromise between accuracy and

computational cost. This procedure requires the employment of differencing schemes

for interpolating the cell-centered values to the cell faces. These face values can be

expressed:

• in terms of the old time-level cell values (Euler explicit);

• in terms of the new time-level cell values (Euler implicit);

• as arithmetic mean from the cell values at both the old and the new time levels

(Crank-Nicholson method).

The theory concerning the domain and the equation discretization within the second

order finite volume method is not given here as it can be found in several works (Jasak,

1996, Ubbink, 1997, Rusche, 2003, Marschall et al., 2011, Márquez Damián, 2013).

Instead, the adopted discretised form of Eqs. 3.14-3.16 is reported in the following

along with a brief description of the differencing schemes employed in this work.

3.2.1 Equation discretisation and differencing schemes

The illustration of the discretised Eqs. 3.14-3.16 implemented in OpenFOAM needs

the following definitions:

• ol d is the old time step;

• new is the new time step;

• the subscript f indicates the value interpolated at the face of the cell;

• S f is the outward pointing face area vector normal to the face f ;

• Fi =αi , f ui , f ·S f is the face mass flux.
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UD
L
U
D

CD

R

λ

1

2

1 2

Figure 3.5: The limitedLinear scheme represented in the Sweby’s diagram (Sweby, 1984)

.

Moreover, it is necessary to clarify the concept of high-order differencing schemes

(HRS) within the flux-limiting scheme framework (Jasak, 1996, Márquez Damián,

2013). Flux-limiting is a switching methodology in which the discretisation practice

depends on the local characteristics of the solution. In practice, the face-value of a

generic quantityΦ can be calculated as the sum of the flux by the upwind scheme (UD)

and a second-order antidiffusive flux from a combination of the linear (CD,Lax and

Wendroff (1960)) and the linear upwind scheme (LUD, Warming and Beam (1976)):

Φ f =ΦUD +λΦ(CD+LUD) (3.52)

where the limiter λ is a function of a local parameter R which can "detect" the charac-

teristics of the flow. If the flow is such that the solution could be unbounded, hence

unstable, λ is decreased. For λ = 0, the scheme is upwind solely.

The HRS are implemented in OpenFOAM as follows:

Φ f = (1−λ)ΦUD +λΦCD (3.53)

The different schemes differentiate from the "shape" of the limiter that is the function

λ=λ(R). In the present work, the limitedLinear scheme gave the limiter as

λ= max[min(2R,1),0] (3.54)

which can be depicted as in Fig. 3.5. If R is negative, λ=0 and the scheme is UD. If R is

positive, λ=1 at maximum which corresponds to CD. It is known that UD is first-order

accurate, unconditionally stable and diffusive, whereas CD is second-order accurate

buy it does not guarantee boundedness.
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Continuity equation 3.13

∑
f

N+1∑
i=1

αi , f ui , f ·S f =
∑

f

N+1∑
i=1

Fi = 0 (3.55)

This summation comprises the N classes and the mixture phase, because, as it will

be seen further, it is calculated after the resolution of the coupled N +1 momentum

equations.

Interface transport equation 3.16

The interface transport equation 3.16 was first rewritten in terms of U and Ur and

then discretised as follows:

αnew
i −αol d

i

∆t
+

∑
f
αol d

i , f

(
N+2∑
j=1

F ol d
j

)
V

+

∑
f
αol d

i , f

(
N+2∑

j=1, j 6=i
αol d

j , f Uol d
r, f ·S f

)
V

= Sol d
i (3.56)

• the Euler explicit method was applied for the time integration which is first

order accurate and stable if the Courant number Co is smaller than one;

• the time-derivative term was first-order approximated;

• in the first convective term, the face-value αi , f was obtained with the MUSCL

HRS scheme (Van Leer, 1997);

• in the second convective term, the face-value α j , f was given by the interface-

Compression scheme (see Deshpande et al. (2012), Márquez Damián (2013)).

For the phase pair water-air, Uol d
r, f is zero because of the no-slip condition Eq.

3.10. Nevertheless, this second convective term is important because it has the

effect of compressing the interface counteracting the numerical diffusion in the

solution of the phase fraction field. Following the approach of Weller (2008), the

term was recovered through the compression velocity Uc, f given by

Uol d
c, f ·S f = min

Cη

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

(
N+2∑
j=1

F ol d
j

)
S f

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
,max


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

(
N+2∑
j=1

F ol d
j

)
S f

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


(

nI ·S f
)

(3.57)

The direction of the compression velocity was normal to the interface because

of term nI which was defined in such a way that the compression velocity could

vanish far from the free surface. The constant Cη was specified by the user and

Cη = 1 was chosen in this work.
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Momentum equation 3.14

The equation is written for a phase i of the N classes. The equation for the mixture

phase is analogous, but it contains the sum of the momentum exchanges with all N

classes.

ρnew
i αnew

i unew
i −ρol d

i αol d
i uol d

i

∆t
+

∑
f

[
unew

i , f

(
ρol d

i , f F ol d
i

)]
V

=∑
f

(
αnew

i µnew
e f f ,i

)
f

(∇⊗unew
i

)⊥
f

V
+

∑
f

{
αnew

i µnew
e f f ,i

[(∇⊗uol d
i

)T
]dev }

f

V
+

+Mol d
L,i +Mol d

T D,i+

+
(
ρnew

mixtα
new
i αnew

mixtCV M
Duol d

mixt

Dt
+ρnew

mixtα
new
i αnew

mixtCV M
Dunew

i

Dt

)
(3.58)

• the Euler implicit method was applied to the convective term. The scheme is

first order accurate and unconditionally stable. The face-value ui , f was obtained

with the limitedLinear scheme;

• the effective stress tensor was handled semimplicitly. The term was split in two

contributions: one was treated with the Euler implicit (first term on the r.h.s.)

and the other explicitly (second term on the r.h.s). The face value αnew
i µe f f ,i

was expressed with the CD scheme. For the surface normal gradient of ui , the

CD scheme was applied with an explicit correction for non-orthogonal meshes;

• the lift and the turbulent dispersion force were explicit (Rusche, 2003);

• the virtual mass force was split into two parts (Rusche, 2003): one was explicit

(fifth term on the r.h.s.) and the other was implicit (sixth term on the r.h.s);

• the time-derivative term was first-order approximated;

• the drag force and the terms involving gravity acceleration and pressure do not

appear here because they were treated differently (see Section 3.2.2);

• It should be noted that Eq. 3.14 becomes singular when the phase fraction αi

approaches zero. To overcome this issue, the phase-intensive form of Rusche

(2003) is generally implemented. In this work, the treatment in Wardle and

Weller (2013) was instead adopted. In practice, if the void fraction of a phase

was smaller than a user-specified limit value (generally 1e-03), a "residual drag"

was still calculated as a function of this void fraction threshold and of an user-

specified "residual slip" (generally 1e-03 m s−1). The artificious "residual drag"
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did not affect the results and stabilized the phase momentum coupling. It is

stressed that the residual value of the void fraction was not taken into account

in the resolution of the continuity equations.

It should be noted that both Eq. 3.56 and Eq. 3.58 are systems where every row

represents one algebraic equation for each cell of the domain.

3.2.2 The solution procedure

The most important steps of the solution procedure are illustrated in Fig. 3.6 .

• domain discretisation. It is realized by a mesh tool provided in the OpenFOAM

package;

• input files reading. Files with initial values and boundary conditions for αi

and ui are needed for all N +2 phases as well as for pd , νsg s,SI
mixt and k sg s

mixt. More-

over, an other single input file is read with a list of properties of each phase:

diameter, density, viscosity, drag, lift, virtual mass, turbulence dispersion force

formulation, "residual" void fraction and "residual" velocity;

• mixture phase creation. The mixture phase is created (Eqs. 3.10-3.12);

• turbulence field updating. Based on the calculated umixt, ν
sg s
mixt and k sg s

mixt are

updated (Eqs. 3.33- 3.34). Moreover, the total dissipation rate εtot
mixt is determined

(Eq. 3.32) since it is needed for expressing the source term of Eq. 3.56;

• interface transport equations resolution. The MULES algorithm solves Eq.

3.56. The void fractions of all N +2 phases are computed ensuring that
∑N+2

i αi =
0. Details about how this algorithm works for a two-phase system can be found

in Márquez Damián (2013). The extension of MULES for multiphase flows

followed the work of Wardle and Weller (2013);

• mixture phase updating. Density and viscosity of the mixture phase are up-

dated in according to the new values of αw and αair (Eqs. 3.11-3.12);

• momentum equations resolution. The PISO algorithm (Issa, 1986) solves the

pressure-velocity coupling under the crucial assumption that it is much stronger

than the non-linear coupling in the convection term. This hypothesis was

definitely reasonable in this study as the resolution of Eq. 3.56 required very

small time steps, hence the non-linearity could be assumed to vary slowly. PISO

is a segregated approach which means that the equations are solved sequentially

and not simultaneously. Details of the different steps can be found in (Jasak,

1996, Marschall et al., 2011, Márquez Damián, 2013). It is stressed that the drag
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Figure 3.6: Flow chart of the developed CFD solver.

force and the gravity terms, that were excluded in the discretisation of Eq. 3.58,

are reintroduced as fluxes during the PISO iterations (in the spirit of Rhie-Chow

Rhie and Chow (1983)). At the end of this step, pressure pd , velocities of classes

ui and velocity of mixture umixt are known;

• velocity equalisation The no-slip condition Eq. 3.10 is applied again for de-

termining uw and uair that are needed by MULES in the new time iteration,

whereas the new value of umixt is used in the turbulence field updating step.

The CFD solver could be configured to work without taking into account the motion of

bubble classes. This modality could be realized by "switching off" the air entrainment

formulation either using cen = 0 or applying a very large threshold for εsg s,SI
mixt in Eq.

3.49. As another option, it was also possible to exclude bubbles from the simulation at

the input step.
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3.3 Some remarks about the numerical methodology

Now that all elements of the methodology have been given, it is possible to expatiate

upon some important questions which arose during the development process.

3.3.1 Issues in the implemented VOF model

Either under the configuration without classes or with classes but far from the break-

ing region, the sum of the bubble void fractions is zero. In such cases, the CFD solver

gave substantially the same results of the VOF solver interFoam, already implemented

in OpenFOAM (version 2.3.1). In other words, the VOF solution of the developed CFD

solver is as accurate as the state of the art in the OpenFOAM environment. Neverthe-

less, this had also a negative implication. In fact, although interFoam has been widely

used in both research and industry, it is well known that it suffers from some large

unphysical (spurious) velocities at the free surface in the air phase. The developed

CFD solver suffered from the same issue. This section not only shows the effects of

the spurious velocities, but it wants also to stress that they were "inherited" from

interFoam whose VOF approach was adopted in the present study.

In order to show these spurious velocities, the following test case was set-up. A 2D

domain 1.5 m high by 1.5 m wide in the vertical x-z plane was discretised with a

uniform mesh of cell size 0.01 m and it was filled with water up to z = 0.6 m. Air

and water phase were considered inviscid and the surface tension was neglected.

The case was hydrostatic because no external forces were applied, except the gravity.

A simulation was performed both with interFoam and the present CFD solver (no

bubbles). Figure 3.7 depicts the void fraction and the magnitude of the velocity after

10 seconds respectively. Although the free surface was horizontal and stable, it is

clearly recognisable that the hydrostatic conditions did not hold as a velocity field

developed, especially in the air phase. Moreover, it can be noted the both models gave

almost identical results.

Vukčević (2016) explained the origin of the spurious velocities as follows. For the

simulated test case, momentum equation 3.14 can be rewritten as

∂
(
ρu

)
∂t

=−∇pd − (
g ·x

)∇ρ (3.59)

The r.h.s. of the equation above can be seen as a jump condition at the interface

for the dynamic pressure. Since interFoam as well as the present CFD solver are

segregated solvers, a natural imbalance between gradient of dynamic pressure and

gradient of density is produced (at the free surface). In fact, pressure and density
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Figure 3.7: Void fraction (top) and magnitude of velocity (bottom) at t = 10 s.

are not resolved simultaneously. Therefore, the prediction of the velocity from the

momentum equation, that is before the resolution of the pressure, is affected by this

inconsistency. This implies

∂
(
ρu

)
∂t

6= 0 (3.60)

which means that a velocity field develops in time and especially in the air phase

because it is lighter than water (u is given by the r.h.s. of Eq. 3.59 divided by density).

Furthermore, the inconsistency in Eq. 3.59 is increased if the density and the

dynamic pressure gradient are determined with ordinary discretisation schemes that
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cannot take into account the discontinuity at the free surface. In the simulated case,

neither interFoam nor the developed CFD solver were provided with such schemes.

As reported in Vukčević (2016), the spurious velocities are different than the so-called

parasitic currents which constitute another issue of originating from the numerical

representation of the surface tension effect interFoam (Deshpande et al., 2012, Scar-

dovelli and Zaleski, 1999). The parasitic currents were not important in this study.

It is reminded that action of the surface tension was not modeled for bubbles since

their interfaces were not reconstructed, whereas it was taken into account at the free

surface where the curvature is very small though (Eq. 3.41).

On the other hand, the existence of spurious velocities was a concern because

they develop right at the free surface where the air entrainment takes place. Fur-

thermore, simulations by the means of interFoam have shown that waves can break

prematurely (Jacobsen et al., 2012) or even nonphysically, that is when the breaking

process is not supposed to happen (Amini Afshar, 2010). The spurious velocities may

be among the causes of both occurrences because they affect the kinematics of the

wave front.

An example of distorted wave propagation is now presented. The case had the follow-

ing properties:

• Domain: a 2D wave flume 18 m long and 1.2 m high with flat bottom;

• Discretisation: uniform mesh of cell size 0.01 m;

• Wave: Stokes 5th order with H = 0.01 m and T = 0.767 s;

• Initial conditions: still water (depth d = 1 m).

The surface elevation η along the flume at t = 14 s is displayed in Fig. 3.8. The

comparison with the analytical solution is quite good until x = 7 m, thereafter an

unphysical shoaling-like process is visible. The breaking point is located at around x

= 9.5 m. Figure 3.9 depicts the profiles of the horizontal velocity at x = 9 m under a

crest at t = 8.35 s and the successive trough.

The comparison with the analytical profile is good up to the wave top where spu-

rious velocities manifested as a sort of overshooting. Similar observations are in

Wroniszewski et al. (2014) where the role of the compression velocity in Eq. 3.57 was

also investigated.

As shown in Vukčević (2016), the spurious velocities can be eliminated by solving the

pressure-density coupling inside the pressure equation and by employing discretisa-

tion schemes corrected for handling the discontinuity at the free surface.
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Figure 3.9: Horizontal velocity profiles along the depth of the flume at x = 9m.

The research of a method for eliminating the problem was beyond the scope of the

present study. Nevertheless, some precautions were used in the numerical settings of

simulations in order to mitigate the effects.

3.3.2 Why the Eulerian multiphase model?

The necessity of taking into account the polydispersion of the entrained air excluded

the Euler-Euler model. The use of the Eulerian multiphase approach was neither

the only option nor the cheapest computationally. The drawback of the Eulerian

multiphase is the large number of coupled continuity and momentum equations to

be solved. It will be seen in the next chapters that a number of classes up to 14 was

used, corresponding to 16 continuity equations (considering also water and contin-
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uous air) and 15 momentum equations (classes and mixture phase). Therefore, the

computational cost of the developed solver was high.

As reported in Section 1.2, different methodologies for dispersed flows were available.

Excluding the Lagrangian Point-Particle and the DNS approach which would have

been more expensive in this study, the Dusty Gas and the Equilibrium Eulerian could

have been an option. Both are computationally cheaper than the Eulerian multiphase

because some assumptions are made for the bubble velocities. In particular, the Dusty

Gas assumes that bubbles have the same velocity and equal to the water velocity.

This assumption can be done when bubbles are really small and do not affect the

water flow. For bigger bubbles, the Equilibrium Eulerian models the bubble velocities

through some expressions function of the bubble size and the velocity of water. An

example of application for air entrainment in waves can be found in Shi et al. (2010).

The advantage of both models lies on the fact that momentum equations for bubbles

are not solved.

From the theoretical point of view, the suitability of the mentioned models for the

purpose of this study could be assessed through the procedure in Balachandar and

Eaton (2010) as follows. To parametrize the behaviour of a single bubble dispersed in

water, the authors used the Stokes number St which is the ratio of the characteristic

bubble timescale τb,i to a characteristic timescale of the flow τ∆. The larger St , the

less bubbles follow the flow of water. Balachandar and Eaton (2010) expressed St as

Sti =
τb,i

τ∆
=

2
(
ρai r
ρw

)
+1

36

(
1

1+0.15Re0.687
i

)(
di

∆

)2 (
∆

ηk

)4/3

(3.61)

where ηk is the Kolmogorov microscale.

For a case representative of the numerical simulations performed in this study, the

range of suitability of each model could be expressed as in Fig. 3.10. It is stressed

that the lower St limit of each range indicates the point at which the application of

the model is not convenient anymore, but still allowed. Therefore, the Equilibrium

Eulerian model could have been chosen for predicting the motion of the smaller

classes with good accuracy, but at the same time it could not have been suitable for

the bigger ones. The Eulerian multiphase model could be capable of handling the

motion of all classes.

The number of classes used in the performed simulation could have been reduced

by the employment of a more efficient method for handling the bubble population

balance equation than the method of classes. As example, given the same width of the
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bubble size range, the Direct Quadrature Method of Moments (DQMOM) (Marchisio

and Fox, 2005) requires less classes to describe the evolution of the size distribution,

given the same width (Bannari et al., 2008, Selma et al., 2010). Nevertheless, the

implementation of this method was left for future improvements of the solver.

3.3.3 Was the already existing multiphaseEulerFoam suitable for

this study?

OpenFOAM (version 2.3.1) was provided with the hybrid VOF-Eulerian CFD solver

called multiphaseEulerFoam of Wardle and Weller (2013). This model could flexibly

predict the flow of multiple phases with interfaces both dispersed and segregated

within the Eulerian multiphase approach. The (static) coupling consisted of an op-

tional numerical compression of any interface, between a pair of phases, that was

expected to be segregated.

The suitability of the coupling implemented in multiphaseEulerFoam was evaluated

at the beginning of the development process (Tomaselli and Christensen, 2015). A

bubble column flow (as in Section 4.1) and a solitary breaking wave were performed.

In the former case, the model correctly handled the free surface and the bubble mo-

tion. Instead, the latter case showed some issues regarding the representation of the

free surface. Although it was almost as sharp as the one obtainable with the pure

VOF solver implemented in OpenFOAM, the wave profile exhibited some unphysical

undulations at the crest.

In the author’s opinion, these instabilities originated from the modeling of the
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Figure 3.11: Results at t = 10 s of the simulation performed by multiphaseEulerFoam.

momentum exchange between water and continuous air at the free surface and espe-

cially of the drag force contribution. In fact, multiphaseEulerFoam treated all N +2

phases as dispersed. Numerically, this implicated that momentum transfers (drag, lift,

virtual mass, turbulent dispersion) among all phases had to be modeled, also between

water and continuous air (contrarily to the actual CFD solver). In order to obtain a

VOF-type solution for the motion of the free surface, the optional numerical compres-

sion was applied for the water-continuous air pair. The undulations were caused by

the fact that multiphaseEulerFoam was not provided with any models for drag force

between stratified phases as in Marschall et al. (2011), but it used the formulation of

Schiller-Naumann (Eq. 3.36) which is actually valid for dispersed bubbles.

For the sake of completeness, the hydrostatic case presented in Section 3.3.1 was

performed also by multiphaseEulerFoam. Results are reported in Fig. 3.11. The

comparison with Figs. 3.7b-3.7d clearly reveals that the direct imposition of the

no-slip condition was crucial for the stability of the free surface. In particular, the

undulations at the free surface mentioned above are visible.

In conclusion, the coupling of multiphaseEulerFoam was not believed applicable for

the objectives of the present study where a sharp and stable free surface was essential.

However, its Eulerian multiphase framework was largely used for developing the CFD

solver in object.
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3.3.4 Why was the air assumed incompressible?

The compressibility of the air phases was neglected because of the following reasons:

- the present model was optimized for spilling wave impacts on slender mono-

piles, therefore air pockets were not supposed to be entrapped between the

wave front and the surface of the structure;

- numerical simulations were conducted at a laboratory scale, therefore impact

pressures were expected close to the atmospheric value;

- although the speed of sound in the roller is supposed to be reduced compared

to the value both in pure water and in pure air, velocities at a laboratory scale

are such that the Mach number results smaller than 0.3 which is the limit of

validity of the incompressible flow assumption.
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The validation process of the CFD solver needed to cover many aspects because of

the coupling of two different models. Firstly, the two approaches were tested sep-

arately and results are reported in this chapter. Note that this does not mean that

the Eulerian multiphase and the VOF model were not coupled, rather that the CFD

solver was employed in case studies that "stressed" one approach more than the other.

In this first part, the validation involved two experimental cases: a bubble column flow

and the breaking of regular waves. In the former, the focus was on the capability of the

Eulerian multiphase framework of predicting the bubble motion and the turbulence

field of the water phase. The latter was simulated in order to test the VOF algorithm.

An important remark is that all simulations of this chapter were performed with the

air entrainment formulation "switched off" as explained in Section 3.2.2.

4.1 A bubble column flow

Bubble column reactors are widely used in chemical, petrochemical and biochemical

processes and a huge research has been carried out on CFD simulations of bubble

column flows (Bannari et al., 2008, Selma et al., 2010, Ojima et al., 2014). In the context

of the present study, this case was chosen not only to test the implementation of the

Eulerian multiphase framework, but also for performing a sensitivity analysis of the

adopted closure terms (Section 3.1.4).

The bubble column flow experimentally investigated by Deen et al. (2000) was mod-

eled. The column had a square cross-section of 0.15 × 0.15 m2 and a height of 1 m,

filled with water up to 0.45 m (Fig. 4.1). Air was fed into the column via a diffuser plate

placed at the bottom. The set of experimental data used for this validation consisted

of:

• instantaneous axial water velocity measured at the horizontal centerline of the
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Figure 4.1: Experimental setup in Deen et al. (2001).

column at a height of 0.25 m from the bottom;

• horizontal distribution of the mean axial water velocity at a height of 0.25 m

from the bottom;

• horizontal distribution of axial and radial turbulence quantities (r.m.s. veloci-

ties) at a height of 0.25 m from the bottom;

• horizontal distribution of the Sauter mean diameter at a height of 0.25 m from

the bottom (from Hansen (2009));

The case was set-up as follows:

• Mesh. Uniform 3D hexahedral mesh with 22550 cells of size 0.01 m;

• Number of phases. Water (w), air (air) and N =11 classes (b) with 0.001 ≤ di ≤
0.01 m;

• Boundary conditions. The diffuser plate at the bottom (inlet) was modeled by a

central area of 0.03 × 0.03 m2 from which only one dispersed bubble class with

diameter d = 0.004 m was introduced from the bottom with α = 1 and uz = 0.12

m s−1. This diameter was observed to be the mean bubble size, then it could
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4.1. A bubble column flow

represent the hydrodynamical behavior of the whole bubble population (Deen

et al., 2001). At the rest of the inlet, phase fractions and velocities were equal to

zero for all phases. At the top (outlet), the atmospheric value was assigned to

pressure and a backflow was allowed only for air (with velocity normal to the

boundary). The other conditions are listed in Table 4.1.

• Drag force formulation. The Ishii-Zuber formulation (Eq. 3.37) was employed;

• Time range simulation. Simulation started at t = 0 s and ended at t = 620 s.

umixt ub,i αw αair αb,i pd ν
sg s,SI
mixt k sg s

mixt

inlet D. D. D. D. D. N. D. D.

walls no-slip no-slip N. N. N. N. N. N.

outlet N./D. N./D. N./D. N./D. N./D. D. N. N.

Table 4.1: Boundary conditions employed in the numerical simulations of the experiments in
Deen et al. (2001). N . = Neumann (gradient equal to zero). D. = Dirichlet (fixed value). N ./D.
= Neumann for outflow and Dirichlet for inflow.

The choice of the grid needs to be expatiated. The derivation of the Eulerian multi-

phase model assumes that the control volume size comprises all interfacial scales.

This constraint has to be obeyed also in the numerical applications of the model. The

spatial filter, hence the cell size, should be in the inertial subrange of the turbulence

spectrum in the LES approach. In order to meet both requirements, it was assigned

the same value to the uniform cell size and to the upper limit of the bubble size range.

However, Milelli (2002) suggested that the cell size must be at least 50% larger than

the largest diameter in order to increase the accuracy of the LES computation.

Results presented in the rest of this section were averaged in time (¯̄.̄ ), unless they

are reported as instantaneous. The averaging operation started at t = 30 s in order to

exclude the initialization of the flow.

The variation with the time of the axial water velocity is depicted in Fig. 4.2a. The

turbulent character of the flow was captured consistently to Fig. 2 of Deen et al. (2001).

Figure 4.2b shows the simulated and experimental axial water mean velocity. The

agreement was very good. As expected, numerical values were more symmetric with

respect to the axial line because, as noted in Deen et al. (2000), the sample period in

the experiments was too short to obtain steady time averaged data. Moreover, it can
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Figure 4.2: Axial water velocity. (a) Instantaneous at (0.0, 0.0, -0.20) m. (b) Mean horizontal
profile at z = -0.20 m.

be noted that the downflow of water alongside the plume was correctly reproduced.

The model was found to be reliable in predicting the turbulence levels. In Figure 4.3,

the simulated and experimental mean turbulence levels and mean resolved turbulent

kinetic energy (k
r
mixt) are reported. The r.m.s velocities were determined directly

form the resolved velocity field. As in Deen et al. (2001), the TKE was calculated as

k
r
mixt = 0.5(u′2

w,z +2u′2
w,x).

The agreement for the r.m.s. velocities as well as for the TKE is good and the

expected radial symmetry is recognisable. It is apparent from these figures that the

grid size, hence the spatial filter of the LES model, was adequate to solve not only

the mean flow, but also a large part of the turbulence scales. The sub-grid scale

contribution to the total TKE was very small (not shown).

In this section and for the rest of the present work αb indicates the (total) bubble

phase fraction:

αb =
N∑
1
αi (4.1)

The horizontal distribution at z = -0.20 m of the simulated mean bubble phase fraction

αb is depicted in Fig. 4.4a. The study of Deen et al. (2000) did not report any measure-

ments of αb. The calculated values were consistent with the results of Bannari et al.

(2008) and Selma et al. (2010) wherein similar bubble column flows were investigated.

The distribution of the total bubble phase fraction along a horizontal centerline at a
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Figure 4.3: Turbulence quantities along the horizontal centerline at z = -0.20 m. (a) Mean
turbulence levels. (b) Mean TKE.

certain elevation is commonly referred to as gas hold-up.

The bubble size distribution is commonly expressed through the Sauter diameter

d32 which is given by

d32 =
∑N

1 αi∑N
i (αi

/
di )

(4.2)

Figure 4.4b displays the distribution of the Sauter diameter at z = -0.20 m. The

experimental values are from Hansen (2009). It is apparent that the overall comparison

is good, but the prediction is worse at x = -0.060 m. The reason could be that the time-

averaged values of the experimental measurements were not steady yet. However, the

CFD solver reasonably predicted the fact that bigger bubbles moved in the middle

of the column, whereas smaller ones approached the walls on average. As observed

in Selma et al. (2010), bubbles tended to aggregated in the column center because

coalescence dominated, while breakage was predominant close to the sides.

Figure 4.5 displays the instantaneous bubble phase fraction and Sauter diameter field

at t = 620 s on the axial plane. It is possible to appreciate that:

• the meandering of the bubble plume observed in the experiments was captured.

Bubbles were periodically pushed laterally by the lift force acting in the direction

perpendicular to their rising velocity and, as a consequence, they drastically

decelerated;
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Figure 4.4: Bubble distribution profile at z = -0.20 m. (a) Mean gas hold-up. (b) Mean Sauter
diameter.

• the bubble motion produced large-scale eddies in water phase;

• the degassing formulation (Eq. 3.47) was effective as bubbles disappeared

almost instantaneously as they reached the free surface (z = 0.0 m);

• the coupled VOF, which still worked in this simulation, guaranteed a stable free

surface with limited spurious velocities. For consistency with the degassing

model, it was assigned the diameter of the N th class to the air above the free

surface.

Figure 4.5b indicates that the Sauter diameter was mainly in the range 0.006 < d32 <

0.007 m. It is important to note that this does not mean that the most part of bubbles

had size in that range (at t = 620 s). The Sauter diameter is obtained with an average

weighted with the void fraction of classes, hence is based on the volume and not on

the number of bubbles.

The distribution of the mean number of bubbles is given in Fig. 4.6.

In agreement with the observations of Deen et al. (2000, 2001), the largest part of

the bubble population had size of 0.004. Nevertheless, it is clear that the classes

with diameter smaller than 0.004 m were not involved actually. This was due to the

simplified breakage model (a bubble could split only into two bubbles with the same

volume) combined to the fact that only bubbles with a diameter of 0.004 m were

imposed as a boundary condition at the bottom. As investigated in Buwa and Ranade

(2002), the representation of the diffuser plate at the bottom as well as the bubble
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Figure 4.5: Instantaneous flow at t = 620 s on the axial plane. Black arrows indicate the velocity
field of the mixture. (a) Bubble phase fraction αb. (b) Sauter diameter d32.
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Figure 4.6: Mean number of dispersed bubbles for each class.

population fed into the column are two factors that play a role in this regard.

The simulation described above was used as reference case (R) for a sensitivity

analysis which involved the following aspects: number of classes, drag formulation,

turbulence model and bubble-induced contribution term (Eq. 3.22). The performed

tests are listed in Table 4.2.

Test N d [m] Drag LES Smagorinsky model BIT model
R 11 0.001-0.01 Ishii-Zuber dynamic yes
A 1 0.001 Ishii-Zuber dynamic yes
B 1 0.004 Ishii-Zuber dynamic yes
C 1 0.01 Ishii-Zuber dynamic yes
D 1 0.004 Ishii-Zuber constant yes
E 1 0.004 Ishii-Zuber dynamic no
F 11 0.001-0.01 Schiller-Naumann dynamic yes

Table 4.2: Test matrix for the sensitivity analysis on number of classes N , diameter d , drag
formulation, BIT model and LES turbulence model.

Cases A, B and C were run with a single class. The diameters used in A and C were

the minimum and the maximum of the range used in the reference case respectively,

whereas the diameter in B could be considered as representative of the whole bub-

ble population (Deen et al., 2001). The objective was to estimate how much the

results improved by taking into account a (discrete) range of bubble size, rather than
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Figure 4.7: Comparison of results of cases A, B, C and R. Profiles along the horizontal centerline
at z = -0.20 m.

a monodisperse population. The comparison for the mean axial water velocity, the

gas hold-up, the turbulence levels and the TKE is shown in Fig. 4.7. The predictions

were wrong in case A. Because of their small size, the velocity of bubbles relative to

mixture phase was really modest. Therefore, an equilibrium condition established in

the flow such that bubbles simply followed the water motion. In particular, the action

of the lift force was so reduced that the plume did not meander. As a consequence, all

profiles in Fig. 4.7 for case A present a large central peak.

Results of cases B and C fairly matched the experiments, but as expected the agree-
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ment was less good compared to the reference case. In particular, the mean and r.m.s.

axial water velocity were overestimated in both cases. The distribution of the gas

hold-up is almost the same.

It can be objected that case R with 11 classes did not produce results much

better than A and B where a single class was employed. This is true especially when

considering that case R ran for 30 hours approximately, whereas cases A and B needed

only 10 hours (both on 16 cores of an HPC cluster). Nevertheless, three aspects have

to be considered:

• it was adopted a simplified breaking formulation that "penalized" some of the

classes (cf. Fig. 4.6);

• the bubble size distribution is quite narrow in bubble columns (Chen et al.,

2005) and the assumption of a single bubble size is generally justified;

• the bubble size distribution was known a priori, allowing to use reasonable

values for the diameter (cases B and C).

Still in the configuration with a single bubble class (d = 0.004 m), the employment of a

constant Smagorinsky model was tested in case D. The importance of applying the

LES Smagorinsky model with a dynamic determination of CS is clear from Fig. 4.8.

The constant Smagorinsky, where CS had a fixed value of 0.2, increased the effective

viscosity νsg s,SI
mixt and damped the bubble plume dynamics. Similarly to case A, the

simulated mean axial water velocity is steeper and exhibits a large central peak. Since

the plume meandering was substantially suppressed, turbulence levels were limited,

the radial ones particularly. Instead, the clear reduction of

√
u ′2

z was mainly due to

the fact the constant Smagorinsky model did not damp ν
sg s,SI
mixt as approaching the

walls which is instead an important feature of the dynamic version. Similar findings

are in Dhotre et al. (2008), Zhang et al. (2006).

The same figure displays the results of case E where the bubble-induced turbulence

term was not taken into account. From the comparison with case R, it is apparent

that the this term played a role at the center of the column where the flow was more

turbulent. Therefore, the predicted mean axial water velocity, the turbulence levels

and the TKE increased around x = 0 in case E.

Finally, the role played by the drag force formulation was verified. The other contribu-

tions to the momentum exchange between bubbles and mixture phase, i.e. lift, virtual

mass and turbulent dispersion force, were not treated in this analysis. The reason

is that the drag force was essential in the developed CFD solver for the numerical

stability of the PISO algorithm in cells with no bubbles (see Section 3.2.1).

The Schiller-Naumann drag model (Eq. 3.36) was used in case E. The number
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Figure 4.8: Comparison of results of cases D, E and R. Profiles along the horizontal centerline
at z = -0.20 m.

of classes was 11 since the drag exerted on a bubble is function of the diameter. The

comparison in Fig. 4.9 reveals slight differences in the prediction of the mean axial

water velocity. As a major finding, a large underestimation of the turbulence quanti-

ties in case E was recognised. In fact, the implementation of the Schiller-Naumann

model was not provided with any corrections for distorted bubbles that instead were

assumed as rigid spheres. The Ishii-Zuber model applied such corrections in case R.

As a result, the drag coefficient CD was generally smaller in case E compared to case R,
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Figure 4.9: Comparison of results of cases F and R. Profiles along the horizontal centerline at
z = -0.20 m.

hence the momentum exchange diminished.

In conclusion, this case study has mainly shown that the implemented Eulerian

multiphase model could successfully reproduce the dynamics of a bubble population.

Particular emphasis has been given to the prediction of the water turbulence field

which was induced by the motion of bubbles. The liquid-bubble interaction was a

crucial aspect in the simulations of breaking waves presented in Chapter 5.

70



4.2. Regular spilling waves without entrained bubbles

4.2 Regular spilling waves without entrained bubbles

The capability of the coupled VOF method was tested against the laboratory breaking

waves of Ting and Kirby (1994, 1996). The experimental investigation was carried out

in a flume 40 m long by 0.60 m wide by 1.00 m high filled with water to a depth of h =

0.40 m. Cnoidal regular waves, produced by a piston-type generator, propagated over

a flat bottom and broke in the form of a spilling breaker on a constant sloping beach

(1:35). The wave height H was 0.125 m in the constant-depth region and the period T

was 2.0 s.

Given that ( 〈·〉 ) and (¯̄·̄ ) represent phase averaging and time averaging respectively,

the experimental data used for the validation consisted of:

• maximum phase averaged surface elevation (〈η〉max), minimum phase averaged

surface elevation (〈η〉min) and phase- and time- averaged surface elevation (〈η〉)
along the flume;

• phase- and time- averaged streamwise water velocity 〈u〉 measured at different

depths at the locations listed in Table 4.3;

• time-averaged water turbulent kinetic energy k computed at different depths at

the locations listed in Table 4.3.

The case was set-up as follows:

• Mesh. The computational domain, sketched in Fig. 4.10, was 22.65 m long by

0.30 m wide and the height of the domain was variable from 0.60 m at the left

boundary (inlet) to 0.21 m at the right one (outlet). The vertical dimensions

of the left and right boundary were chosen such that their difference was not

large in order to reach a good compromise, in the sloping part, between aspect

ratio, non-orthogonality and skewness of cells. The mesh consisted of 1444000

hexaedral cells with a cell size of 0.015 m in the flat part of the domain;

• Number of phases. The simulation was performed under the no-bubbles con-

figuration, therefore only water (w) and air phase were used;

• Boundary conditions. Waves were generated by the means of the utility de-

scribed in Jacobsen et al. (2012) which employs the relaxation method for wave

generation and absorption. A relaxation zone of 4 m (from the inlet) was used

for generating the wave. In this portion of the domain, the utility imposed

conditions for αw, αair and umixt variable with the time according to the stream

function theory. The absorption zone at the outlet was not employed. At the top,

the atmospheric value was assigned to pressure and a backflow was allowed
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Figure 4.10: Domain adopted for the numerical simulation of the experiment in Ting and
Kirby (1994, 1996). Not to scale.

section s1 s2 s3 s4 s5 s6 s7 s8
x [m] -1.265 5.945 6.665 7.275 7.885 8.495 9.110 9.725

dsw [m] 0.4 0.208 0.185 0.169 0.152 0.137 0.119 0.097
h [m] 0.4 0.212 0.192 0.175 0.161 0.148 0.133 0.112

Table 4.3: Locations of measurements with corresponding local still water depths dsw and
local phase- and time-averaged wave heights h in the experiment of Ting and Kirby (1994,
1996)

only for air (with velocity normal to the boundary). The other conditions are

given in Table 4.4;

• Drag force formulation. Since entrained bubbles were not taken into account,

the formulation for the drag force was not necessary;

• Time range simulation. The simulation was performed for 50 wave periods and

it took 48 hours on 32 cores of an HPC cluster.

boundary umixt αw αair pd ν
sg s,SI
mixt k sg s

mixt

inlet D. D. D. N. D. D.

outlet N. N. N. N. N. N.

bottom no-slip N. N. N. N. N.

top N./D. N./D. N./D. D. N. N.

sides slip N. N. N. N. N.

Table 4.4: Boundary conditions employed in the numerical simulation of the experiments
in Ting and Kirby (1994, 1996). N . = Neumann (gradient equal to zero). D. = Dirichlet (fixed
value). N ./D. = Neumann for outflow and Dirichlet for inflow.
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Figure 4.11: Comparison of predicted mean, max and min phase-averaged surface elevation
η against experimental data along the x-axis of the domain.

The same set-up was employed for a simulation with bubbles in Section 5.2. The

present case was considered as a comparison term to investigate the effects of the

air entrainment, hence the same mesh had to be adopted. A standard grid sensitivity

analysis was not performed since the minimum cell size was constrained by the

maximum bubble diameter, as seen in the bubble column case. On the other hand, a

larger average cell size was not chosen, because the mesh was judged already coarse

(≈ 8 cells per wave height in the constant-depth region).

Before illustrating the comparison between experimental and numerical results, the

concept of spanwise averaging is elucidated. In Ting and Kirby (1994, 1996), phase-

and time-averaging operation were applied on the instantaneous measurements

taken along the centerline of the wave tank (x-direction in Fig. 4.10). The present

numerical results were instead first averaged in the longshore direction (spanwise,

y-axis in Fig. 4.10) and then phase- and time-averaged. The average along the y-axis

was possible because uniform numerical conditions held in the longshore direction.

In the perspective of the Reynolds decomposition of a quantity, the spanwise averaged

value could be interpreted as an organized motion and the deviation from the average

as the turbulent fluctuation (Christensen and Deigaard, 2001). This procedure was

advantageous because it allowed to obtain reliable turbulent fluctuations within a

limited number of simulated wave periods.

All results presented in the rest of this section were averaged along the y-direction

( ·̃ ) and phase-averaged over the last 30 wave periods.

Figure 4.11 displays the comparison of 〈η〉max, 〈η〉min and 〈η〉 along the flume.

It is apparent that the breaking was premature. The numerical breaking point was

recognised at xbr,exp ≈ 5m, whereas the experimental one was at xbr,si m = 6.40 m. Nev-
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ertheless, the post-breaking decay of 〈η〉max followed the experiments. The premature

breaking was partially due to the spurious velocities (see Section 3.3.1). Another expla-

nation is the coarse mesh resolution together with the fact that the aspect ratio of cells

in the surf zone could not be equal to one. In fact, Jacobsen et al. (2012) performed nu-

merical simulations of the same case by the means of the equivalent solver interFoam
(see Section 3.3.1) and observed that the performance of the VOF algorithm worsened

when the aspect ratio of cells was larger than one. These reasons were responsible

also for the simulated wave setup which occurred further along the flume than was

in the experiments. However, the CFD solver still predicted the increase of the mean

water level that balanced the decrease of momentum after breaking.

The vertical profiles of 〈ũ〉mixt,x at the locations of Table 4.3 are shown in Fig. 4.12. It

should be noted that normalized depths are used. Results revealed that 〈ũ〉mixt,x was

generally overestimated. Nevertheless, the overall agreement is good. In particular,

the CFD solver predicted the offshore-directed undertow current which balanced the

mass of water transported onshore in the upper part of the wave during the breaking

process. As reported in Ting and Kirby (1994, 1996), the undertow decreased towards

the bottom outside the surf zone (s1, s2), whereas it increased near the bottom in-

side the surf zone (s3-s8). Furthermore, the gradient of the profiles (∂〈ũ〉mixt,x
/
∂z)

is consistent with the experimental one in the bulk of the water column, hence the

prediction of the momentum mixing was good at intermediate depths (Christensen,

2006). The worse results near the bottom could be due to the applied no-slip condition

combined with a poor mesh resolution. The spurious velocities played a role in the

sharp increase of 〈ũ〉mixt,x near the free surface.

The resolved turbulent kinetic energy was calculated as

k̃r
mixt =

1

2

(〈
ũ ′2

〉
mixt,x

+
〈

ũ ′2
〉

mixt,y
+

〈
ũ ′2

〉
mixt,z

)
(4.3)

The total TKE is found adding the sub-grid scale contribution:

k̃ tot
mixt = k̃r

mixt + k̃ sg s
mixt (4.4)

Figure 4.13 shows the vertical profiles of the square root of time-averaged total TKE at

the different locations. In Ting and Kirby (1994, 1996), the TKE was computed from

section s4. A good agreement was achieved in the comparison. Numerical results

followed the common assumption that, in a spilling breaking wave, turbulence is

generated beneath the surface roller which propagates towards the shoreline and then

it is slowly spread downward by convection and diffusion. In fact, the TKE was larger

near the free surface and decreased towards the bottom.
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Figure 4.12: Comparison of numerical and experimental vertical profiles of phase- and time-
averaged streamwise velocity 〈ũ〉mixt,x at different locations. Circles: experiments. Solid line:
present CFD solver
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Figure 4.13: Comparison of experimental and numerical time-averaged TKE at different

locations. Circles: experiment. Solid line: k̃
tot

mixt. Dashed line: k̃
sg s

mixt.
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The fact that the simulated flow was almost laminar in section s2, which was located

almost 1 m downstream the numerical breaking point, suggested that the initial-

ization of the simulated breaking process was delayed. Also in a spilling wave, the

incipient breaking process depends on the motion of the wave front which was not

reconstructed accurately enough in the numerical simulation. For this reason, the

present comparisons were still made at the locations reported in Ting and Kirby (1994,

1996), instead of at locations with the same distance relative to the breaking point.

In conclusion, this case study has shown that the VOF algorithm of the developed

CFD solver was capable of handling the motion of a breaking wave, although some

issues were identified (premature breaking, large velocities at the free surface and

overestimation of TKE). Nevertheless, it is reminded that the same problems would

have been found if the same numerical simulation was performed by interFoam. The

purpose of the present case study was not to show any improvements in this regard.
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This chapter presents the investigation performed on the adopted air entrainment

formulation. Two different laboratory spilling breakers were simulated, i.e a single

deep water wave and the regular waves breaking on a sloping beach illustrated in

Chapter 4. Unlike the first part of the validation, these two case studies also tested

the reliability of the coupling in simulations where the role of the VOF model and the

Eulerian multiphase approach was of the same importance.

5.1 A single deep water spilling wave

The study of Lamarre and Melville (1991) provided a quantitative study on the air

entrainment occurring in laboratory breaking waves as described in Section 1.1.2.

The experimental facility was a flume 25 m long by 0.70 m wide filled to a depth of 0.60

m. In each repetition of the experiment, a single breaker was generated by focusing

a dispersive wave packet of Nl c linear components with amplitude ai , frequency fi ,

phase Φi and wave number ki . The wave packet was parametrized by the global

steepness G = akc , the central frequency fc and the band ∆ f = fNlc − f1 over which

frequencies fi were uniformly spaced.

The focusing was operated on the crests of all components which were synchro-

nized at point xbr,th and at time tbr,th . In other words, it was prescribed a theoretical

breaking by focusing the energy of all components at point xbr,th and at time tbr,th .

By the superposition of all linear components, the analytical surface elevation at the

wave paddle was given by:

η (0, t ) =
Nl c∑
i=1

ai cos
[
2π fi

(
t − tbr,th

)+kw,i xbr,th
]

(5.1)

Frequencies fi and the wave numbers ki were determined as follows:

1. Nlc , G = akc , fc and ∆ f
/

fc were chosen;
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2. f1 = fc − 1
2 (∆ f ) and fi = fi−1 + ∆ f

Nl c−1 for i = 2,3,4...Nl c ;

3. kc calculated from the dispersion relation
(
2π fc

)2 = kc tanh(kc d);

4. ai defined as a
/

Nl c therefore ai =G
/

(Nlc kc ).

5. ki computed from dispersion relations
(
2π fi

)2 = ki tanh(ki d)

In the experiments,∆ f = 0.88 Hz and fc = 0.88 Hz were chosen. Three values were used

for G , i.e. 0.54, 0.45 and 0.38, which produced a plunging, a less energetic plunging

and a spilling breaker respectively. The experiment consisted of generating these

waves and mapping the entrained air bubble plume by the means of electrical probes.

Only the spilling wave was simulated in the present study.

The experimental data used for this validation consisted of:

• The cross-sectional area Ab of the bubble plume

Ab =
∫

Ab

dAb (5.2)

• The total volume Vb of the bubble plume

Vb = ly

∫
Ab

αb dAb (5.3)

where ly is width of the flume;

• The averaged bubble phase fraction αave
b

αave
b = Vb

Ab
(5.4)

• The horizontal and vertical centroid of the plume

Xb =
∫

Ab
αbx dAb

Vb
(5.5)

Zb =
∫

Ab
αbz dAb

Vb
(5.6)

The bubble phase fraction probes used in Lamarre and Melville (1991) were insensitive

to values lower than 0.003. The same threshold was applied to the numerical results.

The spanwise averaged bubble phase fraction α̃b was used in the formulas above.

The case was set-up as follows:
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5.1. A single deep water spilling wave

• Mesh. The computational domain was 18.0 m long by 0.70 m wide by 1.00

m height. The still water depth was at 0.60 m. The mesh was uniform and

comprised 5160960 hexaedral cells of size 0.0125 m;

• Number of phases. Three simulations were performed: no-bubbles, N = 7

(0.0025 m ≤ di ≤ 0.01 m) and N = 14 (0.0005 m ≤ di ≤ 0.01 m). The simu-

lations were performed without taking into account the bubble coalescence

because the first tests showed that the adopted modeling (Eq. 3.44) was time-

consuming for large domains. Shi et al. (2010) obtained good results for the

same case neglecting the bubble coalescence transfer;

• Boundary conditions. Waves were generated by the means of the utility de-

scribed in Jacobsen et al. (2012) which employs the relaxation method for wave

generation and absorption. A relaxation zone of 4 m (from the inlet) was used

for generating the wave. In this portion of the domain, the utility imposed

conditions for αw, αair and umixt variable with the time according to Eq. 5.1.

An absorption zone of 4 m was used at the end of the domain. At the top, the

atmospheric value was assigned to pressure and a backflow was allowed only

for air (with velocity normal to the boundary). The other conditions are given in

Table 5.1;

• Drag force formulation. Schiller-Neumann (Eq. 3.36);

• Air entrainment parameters. cen = 20 and εsg s,SI
mixt = 0.1 m2 s−3 as threshold (Eq.

3.49);

• Time range simulation. The flow was simulated for 25 s and it took 24 hours for

the case without bubbles, 27 hours with 7 classes and 50 hours with 14 classes

on 40 cores of an HPC cluster.

umixt ub,i αw αair αb,i pd ν
sg s,SI
mixt k sg s

mixt

inlet D. N. D. D. N. N. D. D.

outlet N. N. N. N. N. N. N. N.

bottom slip slip N. N. N. N. N. N.

top N./D. N./D. N./D. N./D. N./D. D. N. N.

sides slip slip N. N. N. N. N. N.

Table 5.1: Boundary conditions employed in the numerical simulations of the experiments
in Lamarre and Melville (1991). N . = Neumann (gradient equal to zero). D. = Dirichlet (fixed
value). N ./D. = Neumann for outflow and Dirichlet for inflow.
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z
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Figure 5.1: Domain adopted for the numerical simulation of the experiment in Lamarre and
Melville (1991). Not to scale.

Following results are reported in non-dimensional time and space expressed as in

Lamarre and Melville (1991)

x∗ = x −xbr,si m

Lc
(5.7)

t∗ = t − tbr,si m

Tc
(5.8)

where xbr,si m and tbr,si m are the location and the time of the simulated breaking

and Lc = 2π
/

kc and Tc = 1
/

fc are the central wave length and central period of the

wave packet respectively. The exact definition of breaking in a laboratory spilling

wave is ambiguous. In fact, the wave front evolves gradually from the non-broken

status and there is not a specific reference as the forward-projected jet hitting the

undisturbed free surface in plunging waves. In this case study, the breaking was

defined as occurring when a bulge was observed at the wave front, therefore slightly

later (0.2 s) than the time of the maximum (not broken) surface elevation. This choice

was consistent with Rapp and Melville (1990) wherein the observed breaking point

was defined as the starting of significant air entrainment.

The development and the evolution with the time of the simulated bubble plume

within the first wave period in the case with 7 classes is shown in Fig. 5.2. The

wave broke as spilling, but the breaker was close to become plunging. Therefore, an

interfacial structure resembling a small forward-projected jet was recognised, but

the spatial resolution was not fine enough for the VOF algorithm to reconstruct it

accurately. It will be shown that this occurrence affected the prediction of the amount

of entrained bubbles. The initial bulge
/

cavity can be observed at t∗ = 0.03, then

the CFD solver reproduced the development of a single bubble plume as it should

have been for a spilling wave (see Section 1.1.2). At t∗= 0.5, the expected bore front

established and air entrainment at the toe of this front became the main source of

dispersed bubbles. The plume advanced with the bore region with a thickness of ≈
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Figure 5.2: Breaking process in the case with 7 classes. The bubble plume is bounded by the
isosurface αb = 0.0001 [-].

5 cm and a length of 1.50 m in according to the observations of Rojas and Loewen

(2010) who investigated the same wave experimentally.

The following remark is necessary before describing the results. The free surface was

simulated by the means of a VOF approach, therefore it was not reconstructed, but

arbitrarily defined as the isosurfaceαmixt = 0.5. As said in Section 3.1.4, the adopted air

entrainment formulation of Derakhti and Kirby (2014) (Eq. 3.49) was derived under the

83



Chapter 5. Validation: part II

assumption that the source of entrainment was a turbulent-dependent mechanism

as the one occurring in pure spilling waves. Since the breaker of the present case

was almost plunging, it was unavoidable that a certain amount of (continuous) air

entrained the water in the breaking region where the free surface could not be sharp

anymore. As a result, this entrained air was "dispersed" in the same manner as in a

simulation performed by a standard VOF solver. Instead, the CFD solver, through the

air entrainment formulation Eq. 3.49, should have "transferred" the phase fraction

of this entrained continuous air (αair) into the dispersed bubble phase fraction (αb).

Nevertheless, this exchange could not be neither instantaneous nor complete to not

undermine the numerical stability of the CFD solver. Consequently, the bubble phase

fraction was generally underestimated, but the variation with time was captured.

Figure 5.3 depicts the evolution of the spanwise averaged bubble phase fraction with

the time over the first wave period after breaking in the case with 7 classes.

The small entrapped air cavity can be recognised at t∗ = 0.03 with a maximum

bubble phase fraction of ≈ 0.30. At t∗ = 0.12, the roller was larger and the bubble phase

fraction was still around 0.30 which was in agreement with the numerical simulations

of Derakhti and Kirby (2014), but smaller compared to the measurements of (Rojas

and Loewen (2010), Fig. 17b) where α̃b ≈ 0.50 was measured. The difference was

attributed to α̃air. Then the wave front became unstable and rough as water spilt

down the face of the wave until t∗ = 0.50. During these stages, the maximum of α̃b,

which was still ≈ 0.30, was closer to the experiments of (Rojas and Loewen (2010),

Fig. 18b), because the bubbles not captured at the beginning already escaped in the

experiments. At t∗= 0.5, the bore region established and α̃b decreased with the time

until t∗= 1.0. The development of a "tail" of bubbles could be also recognised. During

these stages, the entrainment mainly occurred at the leading edge of the bore front.

The integral properties of the bubble plume reported in Lamarre and Melville (1991)

are compared in Fig. 5.4 for cases with 7 and 14 classes. In the experiments, measure-

ments started at t∗ = 0.25.

Both the experimental and the simulated volume V b and area Ab are normalized

through the maximum volume per unit length of crest measured in the experiments

which was 0.0025 m3 m−1. Concerning the volume (Fig. 5.4a), the experiments re-

vealed a sharp increase at 0 ≤ t∗ ≤ 0.25 when the maximum value was reached and

then a rapid decrease with only 5% of the initially entrained air remaining after a wave

period. The evolution of the volume was essentially driven by the motion of bubbles

with a radius larger than 1 mm (Hinze scale). The rising at 0 ≤ t∗ ≤ 0.25 was due to such

bigger bubbles originated in the bulge
/

cavity (see Section 1.1.2). The rapid decrease

was caused by the fast degassing of the same bubbles, because they have larger rise

velocity compared to smaller bubbles. The CFD solver reproduced a time-variation
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5.1. A single deep water spilling wave

Figure 5.3: Variation with the time of the spanwise averaged volume fraction of the entrained
bubbles α̃b in the case with 7 classes. The red contour line is for α̃b = 0.0001 [-]. The black
contour line is the free surface.

of the volume in agreement with the experiments, but the maximum value was only

≈ 30% of the experimental one. A similar underestimation was found in Derakhti

and Kirby (2014). As already explained, the reason lied on the difficulty of the CFD

solver in handling the initial entraining which was not purely induced by a turbulent-

dependent mechanism. In fact, the agreement improved from t∗ ≈ 0.35 when the

bore induced-entrainment began. Still concerning the volume of the plume, cases

with 7 and 14 classes did not show remarkable differences, since both reproduced the

motion of bubbles with a radius larger than 1 mm which are the ones that played a role.
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Figure 5.4: Experimental and simulated integral properties of the bubble plume. (a) Normal-
ized total volume of entrained air per unit length of crest. (b) Normalized cross-sectional area
of the bubble plume. (c) Averaged bubble phase fraction.

In the experiments, the cross-sectional area was found to not vary much with the

time in the interval 0.25 ≤ t∗ ≤ 1 as it was mainly dependent on bubbles with a ra-

dius smaller than 1 mm which outgassed slowly and stayed in water for longer time

(Fig. 5.4b). A decrease was observed after the first wave period. The CFD solver

gave the same time-variation, but smaller values were again found. As explained in

Derakhti and Kirby (2014), discrepancies in this comparison were expected since Ab

significantly depended on the minimum bubble phase fraction considered for the

calculation (0.003). In fact, Lamarre and Melville (1991) reported that the area of the

plume did not reach its asymptotic value for the chosen threshold. Furthermore, it is

important to note that the case with 14 classes showed slightly better results because

the motion of bubbles with a radius smaller than 1 mm was also taken into account.

In the experiments, the averaged bubble phase fraction reached the value of 0.15. The

comparison in Fig. 5.4c confirmed the expected underestimation until t∗ ≈ 0.35 in

the numerical results.

The horizontal and vertical centroid are compared in Fig. 5.5. The CFD solver consis-

tently predicted that the plume moved at the phase speed of the wave (Fig. 5.5a) and

almost horizontally (Fig. 5.5b). Nevertheless, the simulated plume did not slow down

at t∗ ≈ 0.75 as in the experiments as well as the vertical centroid was slightly overesti-

mated. These discrepancies were related to the threshold applied to the bubble phase

fraction as explained above.

Figure 5.6 depicts the time-variation of the bubble population in the case with 14

classes. In particular, the evolution of the normalized bubble number density is shown
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Figure 5.5: Comparison of the experimental and simulated centroids of the bubble plume.

in Fig. 5.6a. Larger bubbles with relatively higher rise velocity tended to escape the

water quickly, therefore their density reached the maximum at the first stages of the

breaking when the entrainment was more intense. As example, the density of bubbles

with a radius of 2.5 and 5 mm rapidly reached the maximum value at t∗ = 0.20 and

at the end of the first wave period was already reduced by 80%. The entrainment of

bubbles with smaller size occurred since the beginning of the breaking, but, because

of their longer retention time in water, their density reached the maximum value later

and approximately when the bore motion started. As example, the density of bubbles

with a radius of 0.25 and 0.4 mm was maximum at 0.50 ≤ t∗ ≤ 0.75 and then decreased

gradually, being reduced only by 50% at t∗ = 1.5. The density of the Hinze scale, i.e.

radius equal to 1 mm, reached the maximum value at t∗ = 0.45 and the rate of the

outgassing was as much as the one of the bigger bubbles.

The simulated bubble size spectrum is displayed in Fig. 5.6b for t∗ = 0.20 and

t∗ = 0.75. The two slopes reported on the plot, based on the results of Deane and

Stokes (2002) (see Section 1.1.2, Fig. 1.4), characterized the initial distribution of

bubbles bigger and smaller than the Hinze scale (Eq. 3.50). It can be recognised that

these slopes changed with the time. This was due to buoyant degassing and bubble

breakage. Nevertheless, the variation of the slope was not the same for small and big

bubbles, because of the differences explained above. The spectrum of bubbles with a

radius larger than 1 mm steepened more and faster than that of smaller bubbles (with

a radius less than 1 mm). At t∗ = 0.20, the spectrum slope was still −3
/

2 at the smaller

radii, whereas it already increased at 1 ≤ rb ≤ 5 mm since the larger bubbles escaped

earlier. At t∗ = 0.75, the spectrum slope at rb ≤ 1 mm increased as well.
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Figure 5.6: Case with 14 classes. (a) Evolution of the normalized bubble number density for
different bubble diameters. (b) Bubble size spectrum at t∗ = 0.20 (blue line) and at t∗ = 0.75
(ciano line).

Beside the validation against the available measurements in Lamarre and Melville

(1991), an investigation of the influence of the entrained air on the turbulence was

performed as in Derakhti and Kirby (2014). As discussed in Section 1.1.2, the dispersed

bubbles play a role in the dissipation occurring during breaking. Part of the wave

potential energy is spent to keep the air entrained against the buoyancy force. This

energy is partially returned to water when bubbles rise up creating small turbulent

scales which in turn enhance the viscous dissipation into heat (at the Kolmogorov

microscales).

In the developed numerical methodology, the assumption was that bubbles were

smaller than the grid size which was equivalent to the spatial filter applied by the

LES turbulence model. Therefore, the turbulent scales associated with the motion of
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bubbles were in the inertial subrange where the energy was transferred to the smaller

scales and then dissipated. This process was modeled by the bubble-induced dissipa-

tion term ε
sg s,B I
mixt (Eq. 3.30).

The following analysis quantified the increase of the dissipation in the simula-

tion with bubbles compared to the case without. Furthermore, the same investigation

was done on the resolved turbulent kinetic energy, which was expected to be reduced

because of the enhanced dissipation.

Figure 5.7 depicts the time-variation of the spanwise averaged total sgs dissipation

rate ε̃sg s
mixt = ε̃sg s,SI

mixt + ε̃sg s,B I
mixt with bubbles (7 classes) and without. Comparing the two

cases, the sub-grid dissipation rate was enhanced at 0 ≤ t∗ ≤ 0.5 when the bubble

phase fraction was greater. At 0.5 ≤ t∗ ≤ 1, ε̃sg s
mixt decreased and similar values were

found with and without bubbles meaning that the contribution of ε̃sg s,B I
mixt was smaller.

The noticeable sub-grid dissipation rate followed the development of the bubble

plume (red contour line) and it was collocated in regions with higher vorticity as

demonstrated in Fig. 5.8.
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Figure 5.7: Variation with the time of the spanwise averaged sgs dissipation rate ε̃sg s
mixt [m4 s−3]

with bubbles (7 classes, left side) and without (right side). The red contour line is for α̃b =
0.0001 [-]. The black contour line is the free surface.
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Figure 5.8: Variation with the time of the spanwise averaged vorticity Q̃r
mixt [s−2] with bubbles

(7 classes, left side) and without (right side). The red contour line is for α̃b = 0.0001 [-]. The
black contour line is the free surface.

91



Chapter 5. Validation: part II

no − bubbles

7 classes

14 classes

−

5
2

∫

x
,z
ǫ̃
m
ix
t
[m

4
s−

3
]

t∗ [-]
0.1 0.25 0.5 0.75 1 1.251.5

10
−5

10
−4

10
−3

10
−2

Figure 5.9: Viscous ε̃r
mixt ( ), shear-induced ε̃

sg s,SI
mixt ( ) and bubble-induced ε̃

sg s,B I
mixt

( · · ) dissipation rate per unit length of crest integrated in space over the breaking region
with bubbles (7 and 14 classes) and without.

The different contributions to the total spanwise averaged dissipation rate, i.e. viscous,

shear-induced and bubble-induced, were integrated in space over two wave lengths

downstream the breaking point and the results are plotted in Fig. 5.9. The two cases

with bubbles provided similar values for each contribution, therefore the smaller

bubbles played a minor role in the dissipation process and they did not affect the

water turbulence field. A spike can be spotted at t∗ ≈ 0.30 in the results of the case

with 14 classes, likely due to some numerical instabilities.

In the simulations with and without bubbles, the viscous dissipation rate ε̃r
mixt

(per unit length of crest) was the smallest contribution during the first wave period,

since the Kolmogorov microscale was much smaller than the grid size (the Reynolds

number was high). In 0 ≤ t∗ ≤ 1, the simulations with bubbles generally showed re-

duced values of viscous and shear-induced dissipation rate, meaning that the resolved

rate-of-strain tensor was limited by the entrained air. The bubble-induced dissipation

rate was predominant, being comparable with the other two contributions form t∗ ≈
1. At the end of the first wave period, the decay of the three dissipation rates started to

follow the -5
/

2 slope reported by Rapp and Melville (1990) and Drazen and Melville

(2009).

An estimation of the total dissipation per unit length of crest occurred in the three

cases was obtained by integrating the total dissipation rate over the time. Looking at

Fig. 5.10, the following observations can be made:
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Figure 5.10: Viscous ε̃r
mixt ( ), shear-induced ε̃sg s,SI

mixt ( ), bubble-induced ε̃sg s,B I
mi xt ( · · )

and total ε̃tot
mixt ( ) dissipation per unit length of crest with (7 and 14 classes) and without

bubbles.

• almost the whole dissipation occurred within the first wave period after breaking

in each case;

• the total dissipation in the simulations with bubbles was 250% larger compared

to the no-bubbles case;

• the bubble-induced dissipation accounted for approximately 70% of the total

dissipation;

• the (resolved) viscous dissipation was relatively small.

These findings were consistent with the work of Derakhti and Kirby (2014), although

the total dissipation in the present study was much smaller (1 J m−1 < 2.6 J m−1).

The reason could be a different implementation of the LES dynamic Smagorinsky

turbulence model, adopted in both studies, because the largest discrepancy lied on

the shear-induced dissipation. However, both the present study and Derakhti and

Kirby (2014) underpredicted the total dissipation found in the experiments which was

estimated as 4.3 J m−1.

The same typology of analysis was performed on the resolved turbulent kinetic energy.

The time-variation of the spanwise averaged resolved TKE is depicted in Fig. 5.11 for

the case with 7 classes.
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Figure 5.11: Variation with the time of the spanwise averaged resolved TKE k̃r
mixt [m2 s−2] with

bubbles (7 classes, left side) and without (right side). The red contour line is for α̃b = 0.0001 [-].
The black contour line is the free surface.
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Figure 5.12: Time-variation of the spanwise averaged resolved TKE integrated in space over
two wave lengths after breaking. (a) Linear scale axes. (b) Logarithmic scale axes.

A TKE cloud originated at the wave front at the beginning of the breaking process and

it developed with the time like the bubble plume in Fig. 5.3. In particular, similarities

were apparent on the tail beneath the wave front. This was not unexpected since it is

known that smaller bubbles, which formed the tail, are transported by the occurring

coherent turbulent structures. Furthermore, it can be recognised that the TKE cloud

did not penetrate the whole water column. The mixed layer depth was 0.4Hbr,si m

approximately, where Hbr,si m is the wave height at the breaking point.

The spanwise averaged resolved TKE was integrated in space over two wave lengths

for the three cases as shown in Fig. 5.12. The resolved TKE per unit length of crest

was damped by approximately 20% when bubbles were included, with both 7 and

14 classes. In fact, the damping started at t∗ ≈ 0.25. At 0 ≤ t∗ ≤ 0.25 the results are

comparable since the dispersed bubbles not only enhanced the dissipation but also

the production of turbulence as explained in Derakhti and Kirby (2014). The same

results plotted in logarithmic scale axes in Fig. 5.12b revealed that the decay of the

turbulent kinetic energy followed the inverse respect to the time as observed in Rapp

and Melville (1990) and Drazen and Melville (2009).
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5.2 Regular spilling waves with entrained bubbles

The case study illustrated in Section 4.2 was analysed again, but with the inclusion of

dispersed bubbles.

Cox and Shin (2003) investigated the same spilling regular waves of Ting and Kirby

(1994, 1996) and measured the void fraction and the streamwise water velocity in the

surf zone at three (horizontal) distances (sb1, sb2, ab3) from the breaking point and

at different depths. These measurements were used to validate the predicted bubble

phase fraction distribution. Table 5.2 reports the three sections and the depths at

which the comparisons were made. Some of the experimental data were taken from

Ma et al. (2011) wherein a numerical study similar to the present one was carried out.

sb1 (+0.74 m) sb2 (+0.87 m) sb3 (+1.10 m)

depth1 [m] +0.025 +0.025 +0.025

depth2 [m] +0.015 +0.015 +0.015

depth3 [m] 0.0 +0.005 -0.015

depth4 [m] - -0.005 -

depth5 [m] - -0.015 -

Table 5.2: Sections and corresponding depths at which the predicted bubble phase fraction
was compared with the experimental measurements of Cox and Shin (2003).

The case was set-up as follows:

• Mesh. The computational domain was the same adopted for the simulation

without bubbles and it is sketched in Fig. 4.10;

• Number of phases. The simulation was performed with N = 5 (0.0025 m ≤
di ≤ 0.0062 m). The exclusion of classes with diameters 0.008 m and 0.01 m,

compared to the case of the single spilling wave with 7 classes, was necessary in

order to not employ a large grid size in the surf zone. Bubble coalescence was

not taken into account;

• Boundary conditions. Waves were generated by the means of the utility de-

scribed in Jacobsen et al. (2012) which employs the relaxation method for wave

generation and absorption. A relaxation zone of 4 m (from the inlet) was used

for generating the wave. In this portion of the domain, the utility imposed

conditions for αw, αair and umixt variable with the time according to the stream

function theory. The absorption zone at the outlet was not employed. At the top,
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5.2. Regular spilling waves with entrained bubbles

the atmospheric value was assigned to pressure and a backflow was allowed

only for air (with velocity normal to the boundary). The other conditions are

given in Table 5.3;

• Drag force formulation. Schiller-Neumann;

• Air entrainment parameters. cen = 10 and εsg s,SI
mixt = 0.05 m2 s−3 as threshold (Eq.

3.49);

• Time range simulation. The simulation was performed for 50 wave periods and

it took 332 hours on 32 cores of an HPC cluster (almost seven times longer than

the no-bubbles simulation).

umixt ub,i αw αair αb,i pd ν
sg s,SI
mixt k sg s

mixt

inlet D. N. D. D. N. N. D. D.

outlet N. N. N. N. N. N. N. N.

bottom no-slip slip N. N. N. N. N. N.

top N./D. N./D. N./D. N./D. N./D. D. N. N.

sides slip slip N. N. N. N. N. N.

Table 5.3: Boundary conditions employed in the numerical simulations of the experiments
in Cox and Shin (2003). N . = Neumann (gradient equal to zero). D. = Dirichlet (fixed value).
N ./D. = Neumann for outflow and Dirichlet for inflow.

The development and the evolution with the time of the instantaneous bubble plume

during a wave period is shown in Fig. 5.13.

At t∗ = 0, the wave front broke at around x = 5.0 m and the roller started to form

at the crest. At the same time, one or more bubble plumes were already evolving some

meters downstream the breaking point. They were both induced by the previous main

wave and caused by some other small breakers occurring in the surf zone. During

the rest of the period, the water spilt down the face of the wave and a bore formed

gradually. The new generated plume interacted with the remainder of the previous

one. At t∗ = 1, the same breaker was recognised at around x = 5.0 m, but the already

developed plume in the surf zone had a different shape compared to t∗ = 0.
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Figure 5.13: Evolution with the time of the breaking-induced bubbly flow in the surf zone.
The bubble plume is bounded by the isosurface αb = 0.0001 [-].
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Figure 5.14: Comparison of predicted mean, max and min phase-averaged surface elevation
η against experimental data along the x-axis of the domain with and without bubbles.

The same plots of Section 4.2 are shown now. All results were averaged along the

y-direction ( ·̃ ) and phase-averaged (〈·〉) over the last 30 wave periods in order to be

compared with the case without bubbles consistently.

Figure 5.14 displays the minimum, the mean and the maximum surface elevation

along the flume. The vertical profiles of 〈ũ〉mixt,x at the locations of Table 4.3 are

displayed in Fig. 5.15. As expected, both comparisons did not show particular changes

in the case with bubbles.

Figure 5.16 shows the vertical profiles of the square root of time-averaged total tur-

bulent kinetic energy at the different locations of Table 4.3. Although results were

similar, it can be appreciated the general tendency of the total TKE to be limited by the

presence of dispersed bubbles as it was seen for the single spilling wave of Section 5.1.

In particular, the reduction was more intense at the top of the water column because

the bubble plume was mainly located near the free surface. Therefore, the TKE was

limited at its source that is beneath the bore propagating towards the shoreline. The

damping was recognised over the entire water column at sections s7 and s8. This

was due not only to the smaller TKE diffused from the bore, but also to a deeper

penetration of the bubble plume as represented in Fig. 5.17. The red, the green and

the yellow isosurfaces comprise bubbles with a diameter of 0.0025 m, 0.004 m and

0.0063 m respectively at a certain time instant after breaking. The smaller bubbles,

transported by some descending eddies, penetrated more the water column. In fact,

Ting and Kirby (1994, 1996) observed that dispersed bubbles reached the bottom in

the inner surf zone and not in proximity to the breaking point.

The comparison of the cases with and without bubbles could suggest that the role
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Figure 5.15: Comparison of numerical and experimental vertical profiles of phase- and time-
averaged streamwise velocity 〈ũ〉mixt,x at different locations with and without bubbles. Circles:
experiments. Solid line: present CFD solver.

of the dispersed air was not crucial, in particular in the estimation of the turbulent

kinetic energy. Nevertheless, it should be reminded that the exclusion of bubbles did

not imply that the air entrainment was not taken into account. In fact, the developed

numerical procedure was such that, even in a simulation without bubbles, some con-

tinuous air above the free surface entrained the water during breaking as a solution

of the VOF algorithm. This air could not be properly treated as dispersed, but it still

formed a roller-like mixture traveling with the wave front. Therefore, the development

of turbulence was similar in both cases, with a slight overestimation without bubbles
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Figure 5.16: Comparison of experimental and numerical time-averaged TKE at different

locations. Circles: experiment. Solid line: k̃
tot

mixt. Dashed line: k̃
sg s

mixt.

x = 5.0 m 9.08.07.06.0

Figure 5.17: Isosurfaces for αb,i = 0.0001 [-] of bubbles with a different diameter at a certain
time step after breaking. Red: 0.0025 m. Green: 0.004 m. Yellow: 0.0063 m.

because of the missing extra dissipation rate term. Furthermore, it can be assumed

that the different density between the upper and the lower part of the water column
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Figure 5.18: Section sb1. Left y-axis: experimental (circles) and simulated phase-averaged
bubble phase fraction 〈α̃〉b. Right y-axis: simulated total TKE k̃ tot

mixt with ( ) and without
bubbles ( ).

led to a weak penetration of the TKE over the depth in the surf zone. The simulation

without bubbles still reproduced such difference, since the VOF algorithm calculated

the density of the mixture from the phase fraction of water and continuous air (Eq.

3.11) which were somehow mixed in the surf zone.

The case with bubbles allowed an investigation on the correlation between bubble

phase fraction and TKE in the surf zone.

Figures 5.18-5.20 depict the comparison between simulated and experimental

bubble phase fraction at the three sections and corresponding depths listed in table

5.2. These figures suggest that:

• the CFD solver captured the sharp increase and the exponential decay of 〈α̃〉b

at a given location as well as the decrease of the peak with the depth;

• values of 〈α̃〉b were underestimated in particular near the wave crest. Never-

theless, section sb3 showed a larger underestimation (-50%) compared to sb1

and sb2 which could not be due only to the explained deficiencies of the ap-

proach. A reason could be that the sampling frequency adopted to output the
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Figure 5.19: Section sb2. Left y-axis: experimental (circles) and simulated phase-averaged
bubble phase fraction 〈α̃〉b. Right y-axis: simulated total TKE k̃ tot

mixt with ( ) and without
bubbles ( ).

instantaneous α̃b was not adequate and this likely led to miss the peak of the

distribution;

• it is apparent that bubble phase fraction and TKE were correlated;

• the TKE was generally reduced in the case with bubbles as it was found in

Section 5.1.

A further investigation was carried out on the correlation between bubble phase
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Figure 5.20: Section sb3. Left y-axis: experimental (circles) and simulated phase-averaged
bubble phase fraction 〈α̃〉b. Right y-axis: simulated total TKE k̃ tot

mixt with ( ) and without
bubbles ( ).

fraction and turbulence following Cox and Shin (2003). For consistency with the rest of

the present study, the total TKE was employed as a measure of the turbulence intensity,

whereas Cox and Shin (2003) used the streamwise turbulent velocity
〈

ũ ′2
〉

mixt,x
since

only the streamwise water velocity was measured. Ma et al. (2011) demonstrated that

these two quantities are comparable in this case.

Both 〈α̃〉b and k̃ tot
mixt were time-averaged over the "wet" period at sections sb1,

sb2, sb3 and at all depths above the mean trough level. Results are plotted in Figs.

5.21-5.22.

The experimental values of Cox and Shin (2003) indicate that:

• the bubble phase fraction and the streamwise turbulent velocity increased with

increasing the horizontal position from the breaking point;

• the bubble phase fraction decreased with depth;

• the bubble phase fraction reached the maximum just above the mean trough

level and it decreased towards the mean crest.

The predicted values of 〈α̃〉b actually showed a maximum above the mean trough level

and decreased with depth. The increase with the distance from the breaking point was
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Figure 5.21: Vertical variation above the mean trough level of the phase- and time-averaged
bubble phase fraction 〈α̃〉b at sections sb1 (circles), sb2 (diamonds) and sb3 (squares). Red
line: present CFD solver. Black line: experiment.

not recognised especially at sections sb3 where values were largely underestimated as

discussed above. The simulated TKE was in fair agreement with the experimental one,

but overestimated in all sections likely because of the spurious velocities. Further-

more, a reduction of TKE could be recognised at sb1 and sb2 in the case with bubbles.

Values of averaged bubble phase fraction and averaged TKE in Figs. 5.21-5.22 are

plotted together in Fig. 5.23. As in the experiments of Cox and Shin (2003), a positive

linear correlation was recognised at sb1 and sb2 up to the maximum of the bubble

phase fraction, whereas at sb3 the large underestimation of 〈α̃〉b affected the results.

The same correlation was found by Lim et al. (2015) in a laboratory plunging breaker.

In conclusion, the case studies illustrated in this chapter have shown that:

• the developed coupling between the Eulerian multiphase and the VOF model

was stable;

• the implemented air entrainment formulation of Derakhti and Kirby (2014) was

reliable;

• the main effect of the dispersed bubbles was to reduce the turbulent kinetic

energy. This damping, although apparent, was not found large when compared

to the results of a standard VOF algorithm which took into account the air phase,

hence the variation of density in the water column after breaking.
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Figure 5.22: Vertical variation above the mean trough level of the non-dimensional time-
averaged turbulent kinetic energy at sections sb1, sb2 and sb3.
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6 Application: breaking wave impact on
a cylinder

The developed CFD solver was employed for reproducing the impact of a spilling

breaking wave on a vertical circular cylinder which was chosen as representative of a

real mono-pile offshore structure.

The numerical analysis was conducted at a laboratory scale, since experimental mea-

surements of the force exerted on the same cylinder by the same wave were available.

The experiment was carried out at the Technical University of Denmark, but before

the development of the CFD solver and not by the authors of the present study.

As in the experimental tests, the relative distance between the breaking point and the

location of the cylinder was varied in the numerical simulations which were performed

with and without the inclusion of dispersed bubbles. This procedure was followed in

order to:

• understand how the in-line force exerted on the cylinder changed within the

breaking region. In this regard, the experiment already gave a clarification;

• verify whether a proper modeling of the air entrainment changed the computed

value of the in-line force compared to a standard VOF method which already

takes into account the mixture of air and water after breaking.

The following sections cover the experiment, the numerical reproduction of the labo-

ratory waves and of the impact.

6.1 The experiment

6.1.1 Experimental setup

The experiment took place at the Technical University of Denmark but it was not

conducted by the authors of the present study.

The investigation was carried out in a flume 28 m long by 0.60 m wide by 0.80 m high
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Figure 6.1: Sketch of the laboratory wave flume where the experiment was conducted. Top:
3D view. Bottom: view from above.

filled with water to a depth of hsw = 0.40 and with a flat bottom. At the inlet, waves

were produced by a piston-type wave generator provided with Active Wave Absorption

Control System (AWACS) developed by DHI Water & Environment in order to avoid

spurious reflection from the wavemaker. A system to absorb waves was installed at

the end of the flume.

Figure 6.1 depicts the experimental setup. The cylinder was made of aluminum

and has a diameter D = 0.05 m. It was equipped with two force transducers which

measured the force at the bottom and at top. The total force was defined as the sum

of these two contributions. A rail along the centerline of the bottom of the flume

(x-axis) allowed to place the cylinder at different locations. The surface elevation was

measured by the means of wave gauges (WG) at four stations: WG1 at 9.90 m from

the inlet of the flume, and WG2, WG3, WG4 at -0.25 m, +0.0, +0.25m from the cylinder

respectively. The experimental setup can be appreciated also in photographs taken

during the experiment (Fig. 6.2).

Several tests were performed. A test consisted of generating waves from still water con-

ditions and simultaneously measuring both the surface elevation at the four gauges

and the forces on the cylinder (bottom and top). The generated waves produced a

single spilling breaker at a certain time and location. For each test, 14 repetitions of

this procedure were carried out.
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6.1. The experiment

Figure 6.2: Arrangement of cylinder and wave gauges WG1, WG2, WG3 and WG4 in the
experiment.

The generated waves were the same in each test, but the cylinder was placed at a

different location with respect to the fixed wave breaking point. Wave gauges WG2,

WG3 and WG4 were moved as well, whereas WG1 was kept at 9.90 m from the inlet in

each test. The scope was to measure how the exerted forces varied inside the breaking

region, where the bubble plume, hence the roller, evolved both in space and time as it

has been seen in Chapter 5.

The locations at which the cylinder was mounted in terms of distance (in meters)

relative to the breaking point (X ) were: -0.50, -0.10, -0.05, +0.0, +0.05, +0.10, +0.15,

+0.20, +0.25, +0.30, +0.35, +0.40, +0.45, +0.50, +0.55, +0.60, +0.65, +0.70, +1.0 and +1.5.

6.1.2 The experimental spilling breaker

A spilling breaker was obtained by the means of a dispersive focusing technique

similar to the one described in Section 5.1. The wave packet was derived from a
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Figure 6.3: JONSWAP spectrum employed to derive the linear components of the wave packet
for the wave generation in the experiment.

parameterized JONSWAP spectrum given by

Sη =
[

0.0624

0.230+0.0336γ− 0.185
1.9+γ

]
H 2

s f 4
p f −5γβexp

[
−5

4

(
fp

f

)4
]

(6.1)

where

β= exp

[
− ( f − fp )2

2σ2 f 2
p

]
with σ=

0.07 if f ≤ fp ,

0.09 if f > fp

The values of the peak enhancement γ, the significant wave height Hs and the peak

frequency fp = 1
/

Tp were chosen in order to obtain a spectrum representative of a

scaled scenario in the North Sea at deep
/

intermediate water depth. The values are

reported in the table below.

peak enhancement γ [-] significant wave height Hs [m] peak period Tp [s]

3.3 0.084 1.7

Table 6.1: Parameters of the employed JONSWAP spectrum.

The resulting JONSWAP spectrum was discretized in Nlc = 80 linear components as

depicted in Fig. 6.3.
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Each component was expressed as

ηi = Ai [cos(ωi t )−ki x +Φi ] (6.2)

and had a frequency fi = 2π
/
ωi (middle of each bar) and an amplitude Ai =

√
2Sη,i∆ f

with∆ f = fi+1− fi . The wave length Li = 2π
/

ki was calculated as suggested in (Veritas,

2000).

Li = Ti

√
(g hsw )

√√√√√ 1+∑4
j=1α jω

j

1+ω
(
1+∑4

j=1α jω
j
) with


α1 = 0.666

α2 = 0.445

α3 =−0.105

α4 = 0.272

(6.3)

PhasesΦi were determined by synchronizing the downcrossing point of each com-

ponent at xbr,th = 13.5 m and tbr,th = 0 s . It was verified that the synchronization of

the downcrossing points, instead of the crests, focused the energy in a way that the

breaker could be a spilling.

The superposition of all components gave the surface elevation at the wave paddle ηp

ηp =
80∑

i=1
ηi = Ai

[
cos(ωi t )−ki xp +Φi

]
(6.4)

which was transformed into the paddle horizontal displacement through the Biésel

transfer functions.

6.1.3 The results of the experiment

In order to better understand the following comparisons with the numerical results,

an example of the outputs given by a single repetition of a test is shown in this section.

The case is for the cylinder placed right at the breaking point (X = 0 m) which was

observed at xbr,exp = 11.20 m. The photographic sequence of the impact and of the

development of the bubble plume is reported in Fig. 6.4.

The time-variation of surface elevation at the four wave gauges is displayed in Fig.

6.5a. Recalling that WG2, WG3 and WG4 were in each test at -0.25 m, +0.0 m and +0.25

m from the cylinder respectively, in this test WG2 was at x = 10.95 m, WG3 at x = 11.20

m and WG4 at x = 11.45 m, whereas WG1 was at x = 9.90 m as in all tests.
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(a) (b) (c)

(d) (e) (f )

Figure 6.4: Photographic sequence of the impact and of the development of the bubble plume
for the case X = 0.

A wave train propagated along the flume with different wave heights. Because of the

focusing, the height of the highest wave at a given point x of the flume increased

with increasing x. At a certain location, the height of the highest wave was too large

compared to the depth (the bottom was flat) and this wave broke. As already said, the

wave breaking was observed to start at x = 11.20 m when the height Hbr,exp became

0.22 m approximately. The period of the breaking wave Tbr,exp was estimated to be

1.80 s.

The surface elevation at WG3 and the total force on the cylinder are plotted together

in Figs. 6.5b. As expected, the maximum force occurred before the maximum surface
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Figure 6.5: Case X = 0 m. (a) Time-variation of the experimental surface elevation η at the
four wave gauges installed along the flume. (b) Time-variation of the experimental surface
elevation η at WG3 and the simultaneous total in-line force exerted on the cylinder. (c) Time-
variation of the analytical surface elevation η at WG3 based on the linear wave theory and the
simultaneous total in-line force exerted on the cylinder given by the Morison equation.

elevation. Figure 6.5c displays the same time series based on the application of the lin-

ear wave theory and the Morison equation. The nonlinear effects in the experiments

are evident from the comparison of the figures.
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Figure 6.6: The maximum value of the experimental total in-line force exerted on the cylinder
placed at different locations X .

Figure 6.6 shows the maximum values of the experimental total in-line force mea-

sured at the different distances X , mainly within the breaking region. It can clearly

appreciated that the maximum of total in-line force increased after the breaking and

then decreased, reaching a maximum 0.50 m downstream the breaking point approxi-

mately. Therefore, the maximum instantaneous force did not occur when the cylinder

was at the breaking point.

6.2 The numerical reproduction of the laboratory waves

Before the simulation of the impacts with and without dispersed bubbles by the

developed CFD solver, it was necessary to find the proper set-up in order to achieve an

accurate numerical reproduction of the laboratory waves. In particular, two aspects

were investigated through several tests:

• a proper input wave signal, i.e. the boundary conditions at the inlet of the

numerical flume, in order to obtain the experimental spilling breaker;

• a good prediction of the wave breaking that is the motion of the roller and of the

breaking-induced bubble plume.

The final set-up was the following:

• Mesh. These tests were performed by employing a computational domain

without the cylinder as depicted in Fig. 6.7. The domain was 25.0 m long by

0.60 m wide by 0.6 m height. The still water depth was at 0.40 m. The mesh was

uniform and comprised 4608000 hexaedral cells of size 0.0125 m;

114



6.2. The numerical reproduction of the laboratory waves

• Number of phases. Three simulations were performed: no-bubbles, N = 7

(0.0025 m ≤ di ≤ 0.01 m) and N = 14 (0.0005 m ≤ di ≤ 0.01 m). The simu-

lations were performed without taking into account the bubble coalescence.

The case without bubbles was used for testing the wave input signal;

• Boundary conditions. Waves were generated by the means of the utility de-

scribed in Jacobsen et al. (2012) which employs the relaxation method for wave

generation and absorption. A relaxation zone of 4 m (from the inlet) was used

for generating the wave. In this portion of the domain, the utility imposed

conditions for αw, αair and umixt variable with the time as it will be shown later.

An absorption zone of 4 m was used at the end of the domain. At the top, the

atmospheric value was assigned to pressure and a backflow was allowed only

for air (with velocity normal to the boundary). The other conditions are given in

Table 6.2;

• Drag force formulation. Schiller-Neumann (Eq. 3.36);

• Air entrainment parameters. cen = 10 and εsg s,SI
mixt = 0.01 m2 s−3 as threshold (Eq.

3.49);

• Time range simulation. The flow was simulated from 0 to 35 s and it took 21

hours for the case without bubbles, 40 hours with 7 classes and 55 hours with 14

classes on 40 cores of an HPC cluster;

umixt ub,i αw αair αb,i pd ν
sg s,SI
mixt k sg s

mixt

inlet D. N. D. D. N. N. D. D.

outlet N. N. N. N. N. N. N. N.

bottom slip slip N. N. N. N. N. N.

top N./D. N./D. N./D. N./D. N./D. D. N. N.

sides slip slip N. N. N. N. N. N.

Table 6.2: Boundary conditions employed in the numerical simulations of the experiment
without cylinder. N . = Neumann (gradient equal to zero). D. = Dirichlet (fixed value). N ./D. =
Neumann for outflow and Dirichlet for inflow.

6.2.1 The input wave signal

The input wave signal was the set of boundary conditions to be prescribed at the inlet

of the domain for both αw, αair and umixt in order to generate the wave train. The case
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z
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Figure 6.7: Domain adopted for the numerical simulation of the experiment. Not to scale.

without bubbles was used to test the signal. The experimental measurements for the

case X = 0 m (Section 6.1.3) were employed to assess the accuracy of the numerical

reproduction of the generated waves.

The first tests concerned the direct application of Eq. 6.4 and the corresponding rela-

tions for umixt,x and umixt,z based on the linear wave theory, but they did not produce

satisfying results. The comparison with the experimental surface elevation at the four

wave gauges revealed that the simulated wave train evolved differently (not reported

here).

For a better accuracy, it was decided to reconstruct the input signal from the experi-

mental measurements. Practically, the reconstruction consisted of deriving the linear

components to be superposed (Eq. 6.4) not from the JONSWAP spectrum as in Section

6.1.2, but through the application of a Fourier transform algorithm on the experimen-

tal time series. In particular, the Fourier transform was applied on both the measured

displacement of the wave paddle and the measured surface elevation at WG1. The

results are displayed in Fig. 6.8 and it can observed that:

• the shape of the spectrum of the actual paddle displacement is slightly different

than the one derived from the prescribed JONSWAP spectrum in Fig. 6.3. In fact,

the input signal from Eq. 6.4 was further tailored at the laboratory;

• the spectrum of the experimental wave train evolved between the inlet and WG1

which was 9.90 m farther downstream. In particular, new components with

frequencies around 0.2 Hz and 1 Hz arose. The former suggest that standing

waves with a long period likely established. The latter indicate the nonlinearities

of the generated waves.

The linear components provided by the Fourier transform algorithm were superposed

to obtain the input wave signal. As an example, a portion of the reconstructed surface

elevation at the paddle, derived from the measured paddle displacement (Fig. 6.8a), is

shown in Fig. 6.9.
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Figure 6.8: Case X = 0 m. Variance spectrum of the experimental paddle horizontal displace-
ment (a) and of the experimental surface elevation at WG1 (b).
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Figure 6.9: Reconstruction of surface elevation at the paddle from the experimental paddle
displacement. Thick black line: experimental paddle displacement. Green line: reconstructed
paddle displacement. Blue line: reconstructed surface elevation at the paddle. Red line:
reconstructed surface elevation at the paddle after the application of the amplification factor.

The thick black line is the paddle displacement signal which overlaps the green line

representing the reconstructed signal. The blue line is the surface elevation at the

paddle found by applying the Bièsel transfer function. The meaning of the red line will

be explained later. Furthermore, the time series for umixt,x and umixt,z were calculated

consistently.

The numerical simulations carried out with both reconstructed input wave signals

were not successful. A large wave formed right after the inlet boundary and broke

prematurely in the generation zone (within 4 m from the inlet). This occurrence was
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attributed to the chosen wave generation method. In fact, the prescription of the

time-variation of both the water phase fraction and the velocities at the inlet was an

approximation since the actual movement of the paddle was not replicated. Moreover,

the piston-type wavemaker generated some turbulent motions around the paddle

which were not taken into account, especially near the gap between the paddle and

the sides of the flume.

In order to remedy the premature breaking, the input wave signal was multiplied

by an amplification factor A f . The best results were obtained for A f = 0.80. This sort

of adjustment, although arbitrary, is also employed in laboratory experiments when

the amount of energy in a wavepacket is too high and waves break at the paddle. The

reduced input signal is represented with a red line in Fig. 6.9.

The reconstruction from the two experimental signals, paddle displacement and sur-

face elevation at WG1, are compared in Figs. 6.10-6.11. From this figures, it is apparent

that the employment of the paddle displacement signal gave much better results,

hence it was used throughout the rest of this analysis.

Looking at Fig. 6.10, it can be appreciated that the CFD solver fairly reproduced the

surface elevation at each wave gauge. The highest waves of the train suffered from

some discrepancies at the crests and at the troughs. The former were attributed to

the mesh resolution which was not relatively high (17 cells for the height of the high-

est wave). The latter were likely caused by the linear theory adopted for the wave

generation procedure which neglected nonlinear interactions among the components.

The wave breaking was observed to start at xbr,si m = 12.65 m and tbr,si m = 27.35 s when

the wave height Hbr,si m was 0.207 cm approximately. This breaking point is intended

to be the time instant at which the surface elevation reached the maximum value and

the wave front broke. The period of the breaking wave Tbr,si m was calculated to be

1.80 s.

6.2.2 The wave breaking

For the present investigation on the role of the roller in a wave breaking-induced

impact against a cylinder, an accurate simulation of the air entrainment phenomenon

was necessary.

The calibration of the air entrainment formulation, that is the choice of the value for

cen and of the threshold for εsg s,SI
mixt , was achieved through the same analysis presented

in Section 5.1 for the experimental spilling breaker of Lamarre and Melville (1991).
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Figure 6.10: Time-variation of the experimental and simulated surface elevation at WG1,
WG2, WG3 and WG4 for the case where the input wave signal was reconstructed from the
experimental paddle displacement.
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Figure 6.11: Time-variation of the experimental and simulated surface elevation at WG1,
WG2, WG3 and WG4 for the case where the input wave signal was reconstructed from the
experimental surface elevation at WG1.
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In the present case, the best results were obtained by choosing cen = 10 and εsg s,SI
mixt =

0.01 m2s−3.

The numerical air entrainment became noteworthy at xen,si m = 13.25 and ten,si m =

27.6 s, therefore 0.60 m downstream the point xbr,si m when the bulge of air and water

formed. As discussed in Section 5.1, this occurrence was defined as the breaking.

The breaking point (xen,si m , ten,si m) and the corresponding wave length Len,si m

and period Ten,si m = 1.80 s were used to express the non-dimensional space x∗ and

time t∗ (Eqs. 5.8).

Figure 6.12 shows the time-variation of the spanwise averaged (¯̃.̄ ) bubble phase frac-

tion with the time over the first wave period after breaking in the case with 7 classes.

It can be recognised that the evolution of the bubble plume was similar to the one

depicted in Fig. 5.3. For this reason, the measurements of Lamarre and Melville (1991)

were used to validate the calibration also in the present case. The same comparisons

introduced in Section 5.1 are given in the following. Since the two breakers were

comparable, the obtained results can be expatiated analogously.

The integral properties of the bubble plume are plotted in Fig. 6.13. The apparent

differences between Fig. 5.4a and Fig. 6.13a come from the fact that, in the present

case, the total volume Vb was normalized through the maximum value 0.0015 m3 m−1

instead of 0.0025 m3 m−1, which was the maximum volume measured in Lamarre and

Melville (1991). The maximum volume predicted in the present spilling breaker was

higher then the one in the simulation in Section 5.1 (0.0008 m3 m−1). The visualiza-

tion of the videos recorded during the experiment as well as of the animations of the

numerical simulations suggested that the present spilling breaker was not close to

become plunging, therefore it was believed less energetic than the one in Lamarre

and Melville (1991). Nevertheless, since the air entrainment was more dependent on

a turbulent mechanism, the CFD solver was more effective in transferring the mass

from the continuous air into dispersed bubbles as discussed in Section 5.1 and the

total volume of the plume per unit length of crest was higher. From the comparison

of Fig. 6.13b and Fig. 5.4b, it can be appreciated the sensitivity of the cross-sectional

area to the kind of breaker. The averaged bubble phase fraction was underestimated

as already explained in previous chapters.

The horizontal and vertical centroid are compared in Fig. 6.14 and again the CFD

solver predicted that the plume moved horizontally at the phase speed of the wave.

The time-variation of the bubble number density is shown in Fig. 6.15a. The bubble

size spectrum at two different time instants is depicted in Fig. 6.15b.

121



Chapter 6. Application: breaking wave impact on a cylinder

Figure 6.12: Variation with the time of the spanwise averaged volume fraction of the entrained
bubbles α̃b in the case with 7 classes. The red contour line is for α̃b = 0.0001 [-]. The black
contour line is the free surface.
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Figure 6.13: Experimental and simulated integral properties of the bubble plume. (a) Normal-
ized total volume of entrained air per unit length of crest. (b) Normalized cross-sectional area
of the bubble plume. (c) Averaged bubble phase fraction.
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with (7 and 14 classes) and without bubbles.

The investigation of the influence of the entrained air on the turbulence showed the

same results of Section 5.1, i.e. the resolved turbulent kinetic energy field was damped

because the motion of the dispersed bubbles enhanced the sub-grid dissipation rate.

Nevertheless, this damping was found to be larger for the present spilling breaker. In

fact, the integration of the different contributions of the spanwise averaged sgs dissi-

pation rate over two wave lengths (Fig. 6.16) and especially the successive integration

over the time (Fig. 6.17) revealed that the bubble-induced dissipation was enhanced

compared to the breaker in Section 5.1. In particular, Figure 6.17 suggests that:

• almost the whole dissipation was concentrated within the first wave period after

breaking;

• the total dissipation in the simulations with bubbles was 300% larger compared

to the no-bubbles case;

• the bubble-induced dissipation accounted for approximately 70% of the total

dissipation;

• the (resolved) viscous dissipation was relatively small.

The time-variation of the spanwise averaged total sgs dissipation rate is depicted in

Fig. 6.18. The same considerations done on Fig. 5.7 can be repeated.

The increased damping of the resolved turbulent kinetic energy is not visible in Fig.

6.19 where the time-variation of the spanwise averaged resolved TKE is illustrated (for
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the case with 7 classes), but becomes clear in Fig. 6.20 where the spanwise averaged

resolved TKE is integrated in space over two wave lengths. Concerning the present

breaker, the adopted number of classes produced a difference. In the case with 14

classes, the TKE was damped by approximately 50%, whereas by approximately 35%

with 7 classes. For the breaker of Section 5.1, the reduction was by 20%. Also Derakhti

and Kirby (2014) found that the damping was larger in a "pure" spilling breaker than

in a plunging or spilling/plunging.

The performed analysis on the simulated wave breaking led to the following conclu-

sions:

• the calibration of the air entrainment formulation was believed appropriate

since both the motion of the roller and the evolution of the bubble plume was in

agreement with the experimental measurements of Lamarre and Melville (1991)

where comparable breaking waves were investigated. This setup was used for

the simulations of the wave impact on the cylinder;

• the prediction of the bubble entrainment by the CFD solver was really sensitive

to the kind of breaker. As expected, it was found that the closer the breaker to be

a spilling, the smaller the influence of the coupled VOF algorithm on the total

amount of entrained air. As a consequence, more entrained air was treated as

dispersed;

• since the volume of the dispersed bubbles was larger, the damping of TKE

consistently increased.
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Figure 6.18: Variation with the time of the spanwise averaged sgs dissipation rate ε̃sg s
mixt [m4

s−3] with (7 classes, left side) and without bubbles (right side). The red contour line is for α̃b =
0.0001 [-]. The black contour line is the free surface.
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Figure 6.19: Variation with the time of the spanwise averaged resolved TKE k̃r
mixt [m2 s−2] with

bubbles (7 classes, left side) and without (right side). The red contour line is for α̃b = 0.0001 [-].
The black contour line is the free surface.
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Figure 6.20: Time-variation of the spanwise averaged resolved TKE integrated in space over
two wave lengths after breaking. (a) Linear scale axes. (b) Logarithmic scale axes.

6.3 The numerical reproduction of the impact

The setup described in the previous sections was used for reproducing the impact of

the spilling breaker against the cylinder. In fact, a series of simulation was executed

and in each of them the distance X of the cylinder relative to the breaking point was

changed as in the experiment. At each X , the simulation was performed without and

with the inclusion of dispersed bubbles. In both cases, the total in-line force on the

cylinder was computed and then compared in order to understand the role of the

entrained bubbles in the impact.

6.3.1 A remark on the breaking point

Three breaking points have been defined so far and are reported in Table 6.3

simulations

experiment broken wave front significant air entrainment

(br,exp) (br, si m) (en, si m)

x [m] 11.20 12.65 13.25

t [s] not available 27.35 27.60

Table 6.3: The three breaking points involved in the present analysis.
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The fact that xbr,si m (tbr,si m) did not match with the experimental breaking point was

expected, but it did not concern, since this investigation was based on the relative

distance X between the cylinder and the breaking point, therefore a comparison could

be done on the same X .

On the other hand, the shift in the numerical simulations between the beginning

of the breaking at xbr,si m (tbr,si m) and the formation of the bulge at xen,si m (ten,si m)

implied that the numerical entrainment started at x = 13.25 m (0.60 m downstream the

breaking point), hence no differences between the impact without and with bubbles

could be recognised before this point. In fact, the simulations with bubbles were not

even performed for X < 0.60 m.

The importance of this remark becomes apparent looking again at Fig. 6.6

which shows the maximum values of the experimental total in-line force at different

X = xc yl ,exp − xbr,exp . The role of the roller could not be investigated exactly where

the maximum exerted force increased that is in the range 0 m ≤ X ≤ 0.60 m. The

experimental videos of the impacts in this range showed that the entrainment of air

was relatively small, hence it could be hypothesized the bubbles played a minor role

in the observed increase of the force. However, this hypothesis needs to be verified

with further research.

6.3.2 A remark on the computation of the in-line force

The computation of the in-line force on the cylinder was not straightforward. The

issue concerned the definition of the free surface in order to determine the wet portion

of the cylinder, hence the zone (the cells) where pressure and tangential stress had to

be integrated (see Section 1.1.3).

As already said, the free surface was arbitrarily defined at αmixt = 0.5 and this limit is

commonly applied to the integration of pressure and friction around a cylinder. It was

decided to not apply such limit in this study. The pressure and the tangential stress

were summed over all boundary faces of the cylinder in order to compute the total

in-line force. The reason was that the employment of a limit such as αmixt = 0.5 could

"cut" some of the cells situated in the roller region where the analysis was actually

focused. Moreover, the definition of a free surface in the breaking region could be

disputable.

The cylinder was divided in a discrete number of subelements as in Fig. 6.21. The

integration of pressure and tangential stress was performed separately on each subele-

ment. The two resulting discrete forces, one due to pressure F i
x,p and the other to

friction F i
x,τ, were believed applied on the center of each subelement. Both the total

force due to pressure and the one due to friction were the sum of all discrete contri-
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Figure 6.21: Discretisation adopted for the calculation of the in-line force exerted on the
cylinder in the numerical simulations.

butions. The total in-line force was defined as F =∑
i F i

x,p +∑
i F i

x,τ. The subelement

between z = -0.400 m and z = -0.262 m was not taken into account as it represented

the force transducer at the bottom.

This remark made on the computation of the in-line force implies another important

consideration. The threshold on αmixt has generally the effect of "cutting" potential

numerical inaccuracies in some cells right above the free surface. This is particularly

true when an OpenFOAM-based solver is employed, because of the already mentioned

spurious velocities (see Section 3.3.1). Since the VOF algorithm of the developed CFD

solver suffered from these inaccuracies (see Section 4.2), which could be mitigated

by the dispersed bubbles only partially (see Section 5.2), the adopted strategy for

computing the force allowed to not ignore the problem arbitrarily, rather to "visualize"

and discuss it. Therefore, the pressure and the tangential stress could be integrated

also over the boundary faces of cells where spurious velocities produced not feasible

results, especially in the breaking region.

6.3.3 The results of the numerical simulations

The computational domain used for the simulation of the spilling breaker (Fig. 6.7)

was modified to accomodate the cylinder. The outer dimensions were the same, but

the mesh could not be regular anymore since in proximity to the cylinder was as in Fig.

6.22. Forty cells were used in the first layer around the cylinder with dimension 0.004

m × 0.015 m × 0.0125 m. The constraint on the minimum volume of a cell, which

must have contained at least one bubble of the class with the largest diameter, did not

allow a higher resolution.
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Figure 6.22: Mesh around the cylinder. Plane x-y .

The adopted boundary conditions are repeated in the table below for the domain with

the cylinder.

umixt ub,i αw αair αb,i pd ν
sg s,SI
mixt k sg s

mixt

inlet D. N. D. D. N. N. D. D.

outlet N. N. N. N. N. N. N. N.

bottom slip slip N. N. N. N. N. N.

top N./D. N./D. N./D. N./D. N./D. D. N. N.

sides slip slip N. N. N. N. N. N.

cylinder no-slip slip N. N. N. N. N. N.

Table 6.4: Boundary conditions employed in the numerical simulations of the experiment
with cylinder. N . = Neumann (gradient equal to zero). D. = Dirichlet (fixed value). N ./D. =
Neumann for outflow and Dirichlet for inflow.

Since a large number of computationally demanding simulations had to be performed,

it was decided to employ only seven classes (N = 7, 0.0025 m ≤ di ≤ 0.01 m). Section

6.2.2 has shown some slight dissimilarities between simulations with 7 and 14 classes,

but it cannot be excluded that they were relevant for this investigation. In practice,

bubbles with a radius smaller than the Hinze scales were neglected. Although the

impact of the roller was the main focus and the "excluded" small bubbles would have

been concentrated in the tail of the plume, it will be seen later that the enhanced

dissipation and the damped TKE might have played a role in the value of the total

force predicted with bubbles. The employment of 14 (or more) classes was left for

future analyses.
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In order to better understand the following figures, it is stressed that the locations of

the cylinder are expressed through two quantities:

X = xc yl ,exp −xbr,exp = xc yl ,si m −xbr,si m (6.5)

x∗
c yl ,si m = xc yl ,si m −xen,si m

Len,si m
(6.6)

The location X was used for comparing the experimental and numerical results.

The non-dimensionalisation in x∗
c yl ,si m was already applied for the analysis on the

development of the bubble plume, therefore it could be useful for relating the position

of the cylinder, hence the force exerted, to the status of the roller. Furthermore, the

non-dimensional time was expressed as

t∗ = t − ten,si m

Ten,si m
(6.7)

The time-variation of the total force computed in the case X = 0 m (x∗
c yl ,si m ≈ -0.18) is

shown in Fig. 6.23. In particular, the contributions from pressure and from friction are

depicted. It is reminded that simulations with bubbles were not run for cases X < 0.60

m. The agreement between experimental and numerical results was fair in Fig. 6.23a.

It was estimated that the Reynolds number Re and the Keulegan-Carpenter number

KC were ≈ 1.5·105 and ≈ 70 respectively at the wave crest. Therefore the contribution

from friction was negligible and the force was essentially due to the action of pressure

around the cylinder.

The remarkable overestimation of the peak force (+20 %) could be explained

with the discussion made in Section 6.3.2, but it was also believed that the resolution

of mesh played a role as well, especially concerning the reconstruction of the bound-

ary layer around the cylinder. The values of Re and KC indicated that separation

occurred and the vortex shedding regime established, hence the proper localisation

of the separation points became relevant. The adopted mesh likely did not allow

the CFD solver to reproduce the correct pressure around the cylinder, especially at

the top of the water column where the major contributions to the total force were

exerted (Fig. 6.23b). It is reminded that the employment of a finer mesh around the

cylinder was a not practicable solution, given the mentioned limitation on the cell size.

The numerical simulations were performed as above at X = -0.50 m and X = +0.0 m

only without bubbles and from X = +0.60 m to X = +2.00 m, with an interval of 0.10 m,

both without and with bubbles. For each simulation, i.e. at each X , the total in-line

force was computed and the value of the peak force was registered.

Figure 6.24 shows the experimental and simulated maximum values of the total

in-line force at the different locations of the cylinder expressed through the distance
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Figure 6.23: Experimental and predicted total in-line force exerted on the cylinder in the case
X = +0.0 m without entrained bubbles. (a) Time-variation. (b) Distribution along the cylinder
at the instant when the total force reached its maximum. The dashed line is the elevation of
the free surface at the same time and in proximity to the cylinder.

x∗. The following observations can be made:

• the trend of the experimental variation was captured by the CFD solver. The

maximum peak force was found at around x∗ = 0 (X = +0.60 m) in agreement

with the experiment;

• an overestimation of the predicted force was obtained at each x∗ both without

and with bubbles, especially at around x∗ = 0;

• the forces computed in cases with bubbles was larger at each x∗. The difference

was small up to x∗ ≈ 0.35 and became more relevant for larger values of x∗;
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Figure 6.24: Variation of the maximum total in-line force exerted on the cylinder placed at
different locations x∗.

• few experimental tests were conducted in the range x∗ > 0, where instead the

cases with bubbles could be performed.

The overestimation of the force compared to the experiment was also the result of the

strategy adopted for its computation. The mesh resolution was another factor that

played a role surely. However, this aspect was not further examined. The main scope

of this analysis was to test whether the simulation of the air entrainment could change

the computed force compared to a standard VOF method and how these potential

changes could be related with the evolution of the roller and the bubble plume. In

this perspective and at a status of this investigation that could be considered prelimi-

nary, the experimental measurements were used more to qualitatively compare the

variation of the force with changing the distance X from the breaking point, rather

than as a reference to be matched at each value of X .

The comparison between experimental and numerical results both without and with

inclusion of dispersed bubbles is shown for x∗ ≈ 0.03 (X = +0.70 m), x∗ ≈ 0.12 (X =

+1.00 m) and x∗ ≈ 0.27 (X = +1.50 m) in Figs. 6.25-6.27.

In each case the reproduction of both the surface elevation and the force was in fair

agreement with the experimental results. The peak of the predicted forces occurred

slightly after than in the experiment (Figs. 6.25c-6.26c-6.27c). The dissimilarities

between the predicted forces were very small. The maximum value in the simulation

with bubbles is larger in each case. In fact, the maximum force was larger in the case

x∗ ≈ 0.12 because of an isolated spike at t∗ ≈ 0.16. It was verified that this outlier value
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was produced by a local numerical instability above the free surface and it was not

excluded from the integration of pressure and friction as discussed in Section 6.3.2.

Nevertheless, this issue occurred only in this case among all simulations.

Small undulations with high frequency are apparent at the peak of the force in

the simulation with bubbles in the first two cases, whereas the variation is smoother

in the third one. These small oscillations were attributed to the bubble entrainment

which was more chaotic at the beginning of the breaking. Conversely, undulations of

the force appeared in the simulation without bubbles in the case x∗ ≈ 0.27 (X = +1.50

m). Probably, this was caused by a missing proper reproduction of the roller which

was instead already established at the time of the impact in the simulation with air

entrainment.

The difference in the magnitude of the force was expected to be originated at the

top of the water column that is the region where the roller evolved. This is confirmed

in Figs. 6.25d-6.26d-6.27d which show the distribution of the force along the cylinder.

From these figures, it can be seen that the forces exerted at the top of the wave were

the larger contributions to the total force, hence the role of the roller is in general

potentially relevant. Moreover, the discrete forces exerted in the roller region were

larger in the simulation with bubbles than in the one without. In particular, it was

observed that the relative difference at each location x∗ increased with increasing x∗.

This was related to the fact that the size of the roller became larger (in the simulation

where the air entrainment was simulated).

Since the bubble plume traveled with the wave celerity (t∗ ∝ x∗, Fig. 6.14a), the

cylinder was impacted, in each of the three cases above, within the range in which

the volume of the simulated bubble plume increased sharply to the maximum value

and the roller grew quickly (Fig. 6.13a). Therefore, the fact that the forces at the

top of the water column varied largely with the time did not surprise. Nevertheless,

the difference the forces predicted without and with bubbles was found really small,

whereas it became remarkable at x∗ > 0.3 (Fig. 6.24), hence after the plume reached

its maximum volume. This aspect was investigated by analysing the case x∗ ≈ 0.43

below.

Figures 6.28a-6.28b display that dissimilarities between the simulation without and

the one with bubbles occurred only during the passage of the plume. From Fig. 6.28c,

it can be appreciated that the peak of the force in the simulation with bubbles was

delayed and more intense (+45%). This peak did not manifest as a consequence of

some numerical instabilities as in Fig. 6.26c, rather as a steep but continuous increase.

Figure 6.28d highlights that the larger contributions to the total force were exerted in

the region of the roller where the differences between the two forces originated.
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Figure 6.25: Case x∗ ≈ 0.03 (X = +0.70 m). Experimental and numerical results both without
and with entrained bubbles. (a) Time-variation of the surface elevation in proximity to the
cylinder. (b) Time-variation of the total in-line force on the cylinder. (c) Close-up around the
time instant when the peaks occurred. (d) Distribution along the cylinder of the total in-line
predicted forces at the instants of their maximums. The dashed line is the elevation of the free
surface at the same time and in proximity to the cylinder.
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Figure 6.26: Case x∗ ≈ 0.12 (X = +1.00 m). Experimental and numerical results both without
and with entrained bubbles. (a) Time-variation of the surface elevation in proximity to the
cylinder. (b) Time-variation of the total in-line force on the cylinder. (c) Close-up around the
time instant when the peaks occurred. (d) Distribution along the cylinder of the total in-line
predicted forces at the instants of their maximums. The dashed line is the elevation of the free
surface at the same time and in proximity to the cylinder.
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Figure 6.27: Case x∗ ≈ 0.27 (X = +1.50 m). Experimental and numerical results both without
and with entrained bubbles. (a) Time-variation of the surface elevation in proximity to the
cylinder. (b) Time-variation of the total in-line force on the cylinder. (c) Close-up around the
time instant when the peaks occurred. (d) Distribution along the cylinder of the total in-line
predicted forces at the instants of their maximums. The dashed line is the elevation of the free
surface at the same time and in proximity to the cylinder.
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Figure 6.28: Case x∗ ≈ 0.43 (X = +2.00 m). Experimental and numerical results both without
and with entrained bubbles. (a) Time-variation of the surface elevation in proximity to the
cylinder. (b) Time-variation of the total in-line force on the cylinder. (c) Close-up around the
time instant when the peaks occurred. (d) Distribution along the cylinder of the total in-line
predicted forces at the instants of their maximums. The dashed line is the elevation of the free
surface at the same time and in proximity to the cylinder.
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Figure 6.29 illustrates the time interval in which the bubble plume passed through

the cylinder in the simulation with air entrainment. The simultaneous distribution of

pressure on the cylinder in both simulations is shown in Figs. 6.30-6.33. It is stressed

that the excess pressure is reported, i.e. the actual pressure minus the hydrostatic

contribution.

From Fig. 6.28c, it is apparent that the differences between the forces began at around

t∗ = 0.40 when the roller reached the cylinder (cf. Fig. 6.29). Before this time instant,

the distributions of pressure, hence the total in-line forces, were almost identical as at

t∗ = 0.37 (Fig. 6.30).

The maximum value of the force predicted without bubbles occurred at t∗ ≈
0.40. The distribution of pressure at this time presented some localized high values

right below the free surface at αmixt = 0.5. At the same time, the force in the simulation

with bubbles was smaller.

The results at time t∗ = 0.43 of Fig. 6.31 allowed a comparison of the character-

istics of the impact when the force was maximum in both simulations. In fact, the

peak of the force predicted without air entrainment occurred at t∗ = 0.41, whereas it

happened at t∗ = 0.44 in the simulation with bubbles. The distribution of pressure was

not available at these two time instants, but it could be assumed that the differences

were negligible. Figure 6.29 reveals that the cylinder was surrounded by the plume

at time t∗ = 0.43, being the front of the roller already downstream. The thickness of

the plume was estimated to be 0.07 m approximately. The pressure on the cylinder

was distributed differently than in the simulation without bubbles. The higher values

were spread over a wide area, instead of being concentrated locally. As a result, the

peak force was larger. This could have been the effect of the roller which enhanced

the mixture of air and water and leveled out the pressure distribution.

At time t∗ = 0.47, the disparity between the forces reduced (+24% with bubbles).

The distribution of pressure was still more uniform in the simulation with air entrain-

ment. The cylinder was in the middle of the plume with a thickness around 0.07 m.

At times t∗ = 0.50, the two predicted pressure distributions reappeared again

similar.

At times t∗ = 0.53, 0.56 and 0.60 the force reduced in both simulations progres-

sively and became negative. At t∗ = 0.60, almost the entire plume was downstream

the cylinder.

This analysis on case x∗ ≈ 0.43 allowed to highlight an interesting finding. The roller

and the wave front arrived at the cylinder simultaneously, but the peak force did not

occur at this moment, but later when the cylinder was already "within" the plume.

Therefore, it could be argued that the effects of the roller on the force were not directly

connected to its impact. Instead, the different time-variation of the force might have
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been caused by the changes on the flow induced by the bubbles as described in Sec-

tion 6.2.2. This hypothesis could be supported by the observation that the impact of

the roller did not produce larger differences even when its size was at the maximum.

In fact, Fig. 6.24 has shown that the effect of the air entrainment on the force became

important at distances x∗ reached when the volume of the bubble plume, that is the

size of the roller to some extent, was already decaying (t∗ ≥ 0.30). The dissipation

and the damping of TKE were already relatively large at the same time according to

Figs. 6.17-6.20, whereas they were smaller when the volume of the bubble plume was

maximum. Therefore, the numerical effect of the bubble motion on the force became

more remarkable as the roller traveled farther for a period of time sufficiently long to

induce changes on the flow.

Recalling the objectives of this investigation given at the beginning of the chapter, it

can be concluded that:

• the force exerted by an experimental spilling wave on a vertical circular cylinder

was not maximum when the cylinder was located at the breaking point, but

downstream (0.50 m precisely);

• numerical simulations showed that the total in-line force changed when the

air entrainment and the motion of the roller were simulated compared to a

prediction without bubbles that is the one provided by a standard VOF method;

Concerning the last point, it was observed that:

• the force changed only in the interval when the plume passed through the

cylinder;

• the differences increased with increasing the distance of the cylinder from the

breaking point;

• the peak of the force was delayed;

• the force was generally larger.

Physical argumentations which related the variation of the measured force in the

breaking region to the evolution of the roller were not given. Further research, sup-

ported with a more suitable set of laboratory measurements, is needed for this scope.
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Figure 6.29: Case x∗ ≈ 0.43 (X = +2.00 m). Evolution of the breaking-induced roller with the
time. The bubble plume is bounded by the isosurface αb = 0.0001 [-].
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Figure 6.30: Case x∗ ≈ 0.43 (X = +2.00 m), t∗ = 0.37 and t∗ = 0.40. (a) Distribution of pressure
on the upper portion of the cylinder in the simulation with bubbles (left column) and without
(right column). White lines indicate the free surface for αmixt = 0.5 (lower line) and αmixt = 0.1
(upper line). Magenta lines mark the bubble plume defined as αb = 0.0001 [-]. (b) Distribution
along the cylinder of the total in-line force predicted with bubbles (red) and without (green).
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Figure 6.31: Case x∗ ≈ 0.43 (X = +2.00 m), t∗ = 0.43 and t∗ = 0.47. (a) Distribution of pressure
on the upper portion of the cylinder in the simulation with bubbles (left column) and without
(right column). White lines indicate the free surface for αmixt = 0.5 (lower line) and αmixt = 0.1
(upper line). Magenta lines mark the bubble plume defined as αb = 0.0001 [-]. (b) Distribution
along the cylinder of the total in-line force predicted with bubbles (red) and without (green).
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6.3. The numerical reproduction of the impact
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Figure 6.32: Case x∗ ≈ 0.43 (X = +2.00 m), t∗ = 0.50 and t∗ = 0.53. (a) Distribution of pressure
on the upper portion of the cylinder in the simulation with bubbles (left column) and without
(right column). White lines indicate the free surface for αmixt = 0.5 (lower line) and αmixt = 0.1
(upper line). Magenta lines mark the bubble plume defined as αb = 0.0001 [-]. (b) Distribution
along the cylinder of the total in-line force predicted with bubbles (red) and without (green).
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Figure 6.33: Case x∗ ≈ 0.43 (X = +2.00 m), t∗ = 0.57 and t∗ = 0.60. (a) Distribution of pressure
on the upper portion of the cylinder in the simulation with bubbles (left column) and without
(right column). White lines indicate the free surface for αmixt = 0.5 (lower line) and αmixt = 0.1
(upper line). Magenta lines mark the bubble plume defined as αb = 0.0001 [-]. (b) Distribution
along the cylinder of the total in-line force predicted with bubbles (red) and without (green).
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7 Summary and future work

In impacts of breaking waves on offshore structures it is still not well-known how the

air entrainment phenomenon affects the exerted loads. In particular, the interaction

between the roller characterizing the entrainment in spilling waves and a mono-pile

structure is still poorly understood. With the aim to gain some knowledge on this

topic, a numerical methodology capable of handling the whole wave breaking process,

i.e. generation, propagation and air bubble entrainment, was developed during a

Ph.D. study and presented in this thesis.

The numerical methodology consisted of a mathematical model suitable for the prob-

lem in object and its implementation within a Computational Fluid Dynamics (CFD)

framework in order to obtain a numerical solution. The final result of the development

process was a CFD solver.

A breaking wave was treated as the flow of a two-phase system composed of air and

water. The mathematical model was based on the application of the Navier-Stokes

equations for such two-phase flow combined with a LES turbulence approach.

In general, the way how the Navier-Stokes equations are handled within a two-

phase system depends on the morphology of the interface between fluids, i.e. seg-

regated or dispersed. The CFD solvers commonly employed for breaking waves are

derived under the assumption that the flow is segregated, hence that the length scale

of the interface between air and water is larger than the scale adopted for the spatial

discretisation. This assumption is usually valid up to the breaking point. Once the

wave breaks, air entrains into water undergoing a dispersion in the form of bubbles

which are likely much smaller than the adopted grid size. Nevertheless, CFD solvers

for segregated flows, based on the Volume-Of-Fluid (VOF) approach as example, are

broadly employed for numerical reproductions of breaking waves because the focus

is generally on the overall motion of the free surface.

The scope of the present study required a mathematical model that could treat

both the motion of the free surface and the breaking-induced bubbly flow. In prin-
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ciple, a CFD solver for segregated flow could have been suitable, given the adopted

mesh so fine that the interface of bubbles could be reconstructed. Since experimental

observations have shown that the smaller entrained bubbles have a radius of 0.1 mm,

the employment of a VOF solver was believed impracticable.

In order to handle the whole breaking process in reasonable spatial discretisations,

it was elaborated a mathematical model which coupled the Eulerian multiphase ap-

proach for the entrained dispersed bubbles with a VOF algorithm to capture the free

surface.

The coupling was developed by describing a breaking wave as follows. The air

above the free surface was called continuous to distinguish it from the air dispersed

in water in the form of bubbles. The dispersed air was split in different classes, each

of them representing bubbles with the same diameter. Each class was treated as

dispersed in the mixture of water and continuous air which was considered as a single

phase only in the solution of the momentum equations in order to accommodate the

VOF approach. Therefore, the continuity equations were solved for each class, for

water and for continuous air, whereas the momentum equations were solved for each

class and the mixture.

Formulations for mass and momentum transfers among phases were imple-

mented. The air entrainment was formulated as the mass transferred from continuous

air to each class. Following Derakhti and Kirby (2014), this transfer took place at the

free surface cells where the shear-induced sgs turbulence energy dissipation rate

was higher than an user-specified threshold. The escaping of bubbles through the

free surface was modeled as mass moving from each class to continuous air. Other

mass exchanges concerned breakage and coalescence among bubbles. Momentum

equations accounted for drag, lift, virtual mass and turbulent dispersion force as

inter-phase momentum transfer.

The CFD solver was built by the means of the libraries provided by the open-

source CFD package OpenFOAM. The governing equations were discretised on col-

located grids using the finite volume method. The pressure-velocity coupling was

handled by the PISO algorithm.

The CFD solver turned out to be a complex assembly of different elements. At the

beginning, the solver underwent a long and heavy testing in order to assess the stabil-

ity and the numerical accuracy of each component. This stage of the development

process has not been reported in this thesis but it was crucial. The effects induced by

bubbles were not expected large, hence it was avoided that they could be mistaken for

some numerical inaccuracies.

The CFD solver was validated through the simulation of four experimental case stud-
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ies. The numerical results were compared with the measurements in each case.

In the first two cases, the air entrainment formulation was not used. The strategy

was to test the reliability of the Eulerian multiphase model and of the VOF algorithm

separately but operating under the coupled configuration.

The first case was about the flow in a bubble column. The comparison with the

experimental measurements showed that the solver could reproduce the dynamic of

a bubble population and especially the induced turbulence field in water.

The second case was on regular waves breaking as spilling on a sloping beach.

The agreement with the experimental results was fair, but the main aspect was that

the VOF algorithm was found as accurate as the one implemented in OpenFOAM and

it did not suffer from any instabilities because of the coupling with the other model.

The third case tested the air entrainment modeling in a single deep water spilling

wave. The comparison with experimental observations and measurements revealed a

reasonable performance of the CFD solver. The prediction of the maximum volume

of the bubble plume as well as the averaged bubble phase fraction was found underes-

timated. Since the experimental wave was close to be a plunging, such discrepancies

were expected. The air entrainment formulation was derived in Ma et al. (2011) and

Derakhti and Kirby (2014) under the hypothesis the mechanism depends on the tur-

bulence intensity at the free surface solely, hence it produces the best results when

the breaker is purely spilling. Nevertheless, this was not as issue as the focus of this

study was on spilling waves.

The simulation of the same case repeated without bubbles allowed to identify the

effect on whole flow when the entrainment of air was taken into account. The main

findings were that the total sub-grid dissipation rate was enhanced and, consequently,

the turbulent kinetic energy of the resolved scales was reduced.

The fourth case was the simulation of the same regular spilling waves of the second

case, but with the prediction of the bubbly flow in the surf zone. The solver correctly

repeated the entrainment as many times as the number of simulated waves. The

inclusion of bubbles slightly improved the results obtained in the second case, espe-

cially concerning the turbulent kinetic energy. Nevertheless, these difference were not

found large, because, even if the formation of bubbles was not taken into account, the

air above the free surface still underwent a sort of dispersion in water.

Finally the CFD solver was ready to be employed for an investigation on the impact of

a spilling wave against a circular cylinder at a laboratory scale. Both in the experiments

and in the numerical simulations, the cylinder was located at different distances from

the breaking point, upstream and downstream. At each distance, two simulations
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were performed, one without and the other with bubbles. It was showed that the

CFD solver overestimated the force at each X . Nevertheless, the in-line force was

calculated as the integration of pressure and friction over all boundary cells of the

cylinder, without neglecting some potential numerical inaccuracies that could happen

exactly above the free surface. A definition of a free surface – de facto a threshold

on the number of cells where the integration is performed – could have even led to

the opposite result, that is to un underestimation of the computed force compared

to the experimental results. However, the predictions with and without bubbles, in

agreement with measurements, clearly showed that the maximum value of the total

in-line force was exerted when the cylinder was at around 0.50 m from the breaking

point.

It was found that the peak of the total in-line force predicted with bubbles was

delayed and generally larger especially for the farther locations of the cylinder from

the breaking point. Furthermore, the distribution of pressure on the cylinder was

more uniform when the passage of the roller was reproduced. It was argued that these

effects were not directly related to the impact of the roller on the cylinder, rather to

the changes that the reproduction of the air entrainment induced on the flow in the

breaking region.

Physical argumentations for the variation of the measured force in the breaking

region in connection with the evolution of the roller were not given. Nevertheless,

this point was beyond the objectives of the present research. The main scope was the

development of a methodology that could support further investigations on this prob-

lem and especially the assessment that a standard VOF solver might not be sufficient

to carry out such investigations. In fact, the differences in the predictions of the force

with and without bubbles demonstrated that the simulation of the air entrainment

played a role.

Future works should focus on either further applications of the current CFD solver or

changing the mathematical model in order to produce more simplified approaches.

A deeper investigation on the characteristics of the flow around the cylinder in the

case of the laboratory spilling wave impact is suggested. A major analysis should

be conducted on the degree of reconstruction of the boundary layer with the corre-

sponding set of appropriate boundary conditions. Since the resolution of the mesh

around the cylinder is limited by the size of bubbles, the opportunity of excluding

the classes with a larger size could be evaluated. The employment of a turbulence

approach provided with a wall function could be worthy, but it should be verified

whether it would conflict with the current stability of the air entrainment modeling.

Above all, any further numerical analysis on this case should be supported by many

more experimental measurements. The force should be measured at farther distances
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from the breaking point. Moreover, measurements of pressure around the cylinder at

the elevations invested by the roller would be extremely useful.

The current version of the developed CFD solver does not appear suitable for practical

engineering applications since it is still computationally demanding. The main factor

is that the larger the number of phases, the longer the simulation given the discretised

domain. Beside some possible code optimization, two main paths are suggested in

order to improve the performances:

• the implementation of the Direct Quadrature Method of Moments (DQMOM)

for handling the solution of the bubble population balance equation with a

reduced number of classes;

• the production of simplified approaches on the basis of successive approxi-

mations. In fact, the developed methodology is very general, but it could be

tailored for some specific applications of the CFD solver. As example, in the

resolution of the momentum equations, the bubble classes with the smaller size

could be grouped into a single phase which has the same velocity of the mixture

(partial Equilibrium Eulerian approach). An alternative would be to group all

classes into a single phase with its own velocity field determined on the basis

of the Sauter diameter. A very practical engineering tool could be given by the

development of a formulation for the sgs turbulent energy dissipation rate that

takes somehow into account the enhancement induced by the air entrainment

without the need of simulating the motion of bubbles.
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