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Abstract

Motivation: Numerous software utilities operating on mass spectrometry (MS) data are described

in the literature and provide specific operations as building blocks for the assembly of on-purpose

workflows. Working out which tools and combinations are applicable or optimal in practice is often

hard. Thus researchers face difficulties in selecting practical and effective data analysis pipelines

for a specific experimental design.

Results: We provide a toolkit to support researchers in identifying, comparing and benchmarking

multiple workflows from individual bioinformatics tools. Automated workflow composition is

enabled by the tools’ semantic annotation in terms of the EDAM ontology. To demonstrate the

practical use of our framework, we created and evaluated a number of logically and semantically

equivalent workflows for four use cases representing frequent tasks in MS-based proteomics.

Indeed we found that the results computed by the workflows could vary considerably, emphasizing

the benefits of a framework that facilitates their systematic exploration.

Availability and implementation: The project files and workflows are available from https://github.

com/bio-tools/biotoolsCompose/tree/master/Automatic-Workflow-Composition.

Contact: n.m.palmblad@lumc.nl or a.l.lamprecht@uu.nl or jison@bioinformatics.dtu.dk or

veits@bmb.sdu.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biological research today routinely involves the application of

multiple, diverse computational methods in a sequence of operations

to convert raw measurements into condensed results for biological

interpretation. In the provision of these methods as application

software, we discern two opposing paradigms. First, integrated

software packages provide the scientist with a convenient one-

stop-shop, with user-friendly but often limited functionality that

usually is operated through a graphical user interface. For example,

CompOmics (biotools:compomics-utilities) (Barsnes et al., 2011),

MaxQuant/Perseus (biotools:maxquant) (Cox and Mann, 2008),

Skyline (biotools:skyline) (MacLean et al., 2010) and Scaffold

(Searle, 2010) are especially suited for the fine-grained analysis of a

single experiment, dataset or spectrum. The contrasting paradigm

encapsulates one or a few closely related methods into discrete,

stand-alone tools, enabling the expert user with a powerful

command-line interface. Such tools excel as remixable components

in automatic data analysis pipelines for high-throughput processing,
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often referred to as workflows. The construction of bespoke work-

flows such as InSilicoSpectro (biotools:insilicospectro) (Colinge

et al., 2006), OpenMS (biotools:openms) (Röst et al., 2016) and

Proteomatic (biotools:proteomatic) (Specht et al., 2011), affords the

scientist with valuable freedom and flexibility. However, in an era

of proliferating analytical tools (Duck et al., 2016), a multitude of

data formats, high turnover of functionalities, and sometimes scant

documentation, the construction and maintenance of such pipelines

must address significant challenges:

1. Discovery of all potentially applicable tools for the task at hand;

2. Annotation of tools to understand their specific function(s) and

the technical requirements for connecting other tools, in particu-

lar supported input and output data formats;

3. Composition of workflows from the available tools including

dependencies such as format converters and other utilities;

4. Implementation of workflows by developing their logic (e.g. as

scripts) and their parameters;

5. Management of data processing by deploying, executing and

monitoring workflows;

6. Maintenance of workflows by updating tools to new versions, or

substituting obsolete or broken workflow components.

7. Validation of created workflows by checking tool interoperabil-

ity, their usability and furthermore benchmarking of the result-

ing data.

Moreover reproducibility is a major concern. When investigating

the effect of a candidate drug in a disease model, researchers use

inbred, genetically near-identical, animals to isolate the effect of the

drug from a background of biological variability. Conversely, toxi-

cologists use outbred animals to cover as much genetic variability as

possible and make sure a negative result is not specific to a particu-

lar genotype. Analogously, we may want to investigate the effect of

a particular tool or operation, ceteris paribus, and therefore generate

workflows that are similar except for the tool or operation under in-

vestigation. On the other hand, we are often interested in validating

results. For this purpose, we generate semantically equivalent work-

flows having a minimum number of shared tools, to verify the bio-

logical results are not tool-dependent. Here we are concerned with

computational reproducibility—can another researcher arrive at the

same results and conclusions starting from the same data? As data

formats become obsolete, software ceases to be updated or disap-

pears entirely, most analyses will not be reproducible indefinitely. If

the analysis relies on a single software package, the entire analysis

depends on the availability, and continued development, of that

package. Switching to another package (if at all available) will al-

most certainly produce different results.

In general, these challenges are overcome by often manual efforts

including literature mining and testing of software tools, their inter-

operability and the results. To assist the beleaguered bioinformati-

cian, various workflow management systems, such as Taverna

(biotools:taverna) (Wolstencroft et al., 2013), Galaxy (biotools:ga-

laxy) (Afgan et al., 2016), KNIME (biotools:knime) (Berthold et al.,

2009), Triana (Taylor et al., 2007) and Kepler (biotools:kepler)

(Ludäscher et al., 2006) to name a few [see also recent reviews

(Leipzig, 2017; Möller et al., 2017) and Galaxy examples (Boekel

et al., 2015; Jagtap et al., 2014; Sheynkman et al., 2014)], ease the

development and execution of workflow logic. The frequently used

graphical workflow models abstract from the syntactical details of

classical programming languages, simplifying workflow creation

and execution. Although any workflow in principle can be created

in a workflow management system, solutions to specific data

analysis problems often do not exist, requiring customisation of the

environment with new tools. In such cases, comprehensive and con-

sistent information about bioinformatics software enables a re-

searcher to discover (find, understand, compare and select) tools

during workflow composition. Within the ELIXIR Tools and Data

Services Registry (Ison et al., 2015; https://bio.tools) tools are

described in terms from the EDAM ontology (Ison et al., 2013),

which provides a controlled vocabulary for bioinformatics concepts,

including data types, formats and identifiers, operations and com-

mon topics. EDAM includes for each concept a persistent and

unique identifier, a preferred term, definition and (optionally) one

or more synonyms. It thus enables a precise and practical description

of the scientific function of a tool, helping the investigation of tool

interoperability, which is essential for the composition and evalu-

ation of workflows from the entire space of possible tool combina-

tions. Tools with matching input/output type and file format are

likely to serve as compatible components of a workflow given a set

of correct and sufficiently dense tool annotations, but still need to be

tested as workflow compositions; even tools which are fully compat-

ible in principle do not necessarily provide operational workflows

and correct data treatment.

From these observations the wish to compose and test the applic-

ability of entire workflows automatically seems to be a natural next

step, and indeed several works exist that have tried to achieve this in

the bioinformatics domain. Examples include the semantic service

composition approaches in myGrid (Chen et al., 2003; Lord et al.,

2004), different agent-based approaches as reviewed in (Merelli

et al., 2007), the meanwhile discontinued BioMOBY registry

(DiBernardo et al., 2008), the OWL-based SADI framework with its

SHARE client for web service pipelining (Wilkinson et al., 2010),

the template-based semantic workflow descriptions by which Wings

extends the Pegasus workflow system (Gil et al., 2004, 2007), the

ASKALON workflow framework with its abstract workflow de-

scription language (Qin and Fahringer, 2012) and the PROPHETS

framework that makes use of temporal-logic synthesis (Lamprecht,

2013; Lamprecht et al., 2009, 2010; Naujokat et al., 2012). In the

general computer science community, the topic of automated syn-

thesis and planning of workflows has been discussed at least since

the 1990s (Margaria and Steffen, 1998; Moreno and Kearney, 2002;

Steffen et al., 1993), and gained new attention in the early 2000s

when (semantic) web services became popular (Aggarwal et al.,

2004; Rao and Su, 2005). All these approaches have in common

that their practical success depends on rich, consistent component

annotation, but this information is usually not available. The study

described in Lamprecht et al. (2011) used PROPHETS to demon-

strate on the EMBOSS sequence analysis tool suite, which was the

first collection of tools completely annotated using the EDAM

ontology, how a dense and systematic annotation boosts what auto-

matic workflow composition techniques can facilitate. It did how-

ever not compare and evaluate implementations of the different

suggested workflows against each other.

In this article, we add this next logical step. We explore the value

of formalized semantic tool descriptions for guided construction of

practical workflows for mass spectrometry (MS)-based proteomics.

Workflow creation follows a minimal framework, i.e. definition of

operations, input files and output files of the complete workflow.

We use PROPHETS to synthesize workflows based on a library of

EDAM-annotated tools registered within bio.tools. We implement

different workflows for four typical use cases in the analysis of MS

data: peptide retention time prediction, protein identification and

enrichment analysis, localization of phosphorylation and protein

quantitation using isotopic labeling. Finally, we test and compare
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the workflows on public data and thereby demonstrate both the

feasibility and potential of automatic workflow composition in bio-

informatics exemplified for MS-based proteomics.

2 Materials and methods

To illustrate how tool annotation and automated workflow creation

can help to analyze real data, we consider an exemplary set of tools

and four use cases of increasing complexity, that are described

(below) in EDAM terms (version 1.18). Multiple executable work-

flows are composed from a list of annotated tools prevalent in pro-

teomics data analysis (Fig. 1). In the following, EDAM terms are

underlined and linked to the official representation, e.g. post-trans-

lational modification (PTM) identification, or given by its ID in

brackets, [operation:3645].

2.1 Proteomics use cases
Use case no. 1. Suppose a chemist has developed a new chromato-

graphic column and wants to know how the chromatographic separ-

ation of the peptides depends on their amino acid composition

(Meek, 1980). Using the column in a liquid chromatography tandem

MS analysis of an. Escherichia coli tryptic digest yields multiple MS

spectra in the instrument vendor’s Thermo RAW format. The chem-

ist would like to get the Amino acid index (hydropathy), defined as

‘hydrophobic, hydrophilic or charge properties of amino acids’ for

each of the 20 amino acids (generally, an Amino acid index is ‘a

table of 20 numerical values which quantify a property, e.g. physico-

chemical or biochemical, of the common amino acids’). The chemist

knows that at least one peptide identification operation with valid-

ation of peptide-spectrum matches and one retention time prediction

operation will be necessary to get the intended index, and that pro-

tein identification is not needed (our chemist has no interest in the

proteins the peptides were derived from, indeed, they would have

been fine with synthetic peptides).

Use case no. 2. Next, our scientist faces the common task of pro-

tein identification and interpretation of lists of identified proteins by

enrichment analysis, and again starts from MS spectra in the

Thermo RAW format. After peptide database search and protein

identification, the list of proteins identified via UniProt accessions

should be analysed by gene-set enrichment analysis with respect to

KEGG pathways and annotations, reporting KEGG pathway IDs

and associated p- or q-values.

Use case no. 3. The identification and localization of post-

translational modifications is another frequent task in MS-based

proteomics. Suppose our scientist is conducting a phosphoproteomic

study and now wants to identify the phosphopeptides and localize

the phosphorylations within the peptides, that is, a PTM identifica-

tion after or concurrent with the peptide database search. To have

some control of the false discovery rate (FDR) of both the peptide

identifications and phosphorylation localization, a PTM localization

and validation of peptide-spectrum matches are necessary.

Use case no. 4. Our scientist has now graduated to more chal-

lenging problem of protein quantitation. Additionally to the opera-

tions peptide database search and validation of peptide-spectrum

matches, a quantification step is needed, specifically using iTRAQ.

2.2 Proteomics tools
As evident from the use case descriptions above, data analysis in

MS-based proteomics often involves many separate tasks, such as

raw data transformation, calibration, feature extraction, peptide

identification, protein inference, quantitation and higher-level bio-

logical analyses. For each of these tasks a number of software tools

are available, some commercial, many free, in addition to larger

integrated environments that can perform many of these tasks se-

quentially. In preparation for this study, the majority of tools listed

on ms-utils.org were manually annotated and registered in bio.tools.

The EDAM annotations for selected tools were subsequently

retrieved from bio.tools when creating the workflow specifications

(Supplementary Table S1).

2.3 Automatic workflow composition
Automatic generation of computer programs from abstract specifica-

tions (also referred to as synthesis) has been studied for decades

(Bodik and Jobstmann, 2013). We use the PROPHETS (Process

Realization and Optimization Platform using Human-readable

Expression of Temporal-logic Synthesis) framework (Version 1.3) for

automatic workflow composition. It is based on a synthesis method

that uses the Semantic Linear Time Logic (SLTL) for workflow speci-

fication and thus allows for a precise tailoring of the specification to

the userse intents via SLTL constraints (Steffen et al., 1993). Working

with PROPHETS comprises essentially three phases: Domain

Modeling, Workflow Specification, and Workflow Synthesis.

2.3.1 Domain modeling

Tools must be annotated with input and output data types to be con-

sidered. These types, and also the tool names, must be classified in

taxonomies that define categories of related types and tools, and

thus provide a controlled vocabulary for the annotations. The anno-

tations and the taxonomies together with a (possibly empty) set of

SLTL constraints (for defining general properties that the synthe-

sized workflows have to fulfill) constitute the domain model for

PROPHETS.

The domain model for the use cases was generated from the tool

annotations (indicated in Fig. 2 and comprehensively defined by

Supplementary Table S1). Every tool is listed with its name, an

EDAM Operation, and for each of input and output, an EDAM

Data and one or more EDAM Format terms. For reasons of simpli-

city we limited the annotations to one input/output per tool in this

study, although the synthesis framework is generally able to handle

multiple inputs and outputs per tool.

The domain model comprises a tool taxonomy of tool names

and the corresponding parts of the EDAM operation subontology

(Fig. 2), and a type taxonomy consisting of parts of the EDAM Data

and Format subontologies (Supplementary Fig. S1). These taxono-

mies make it possible to refer to groups (classes) of tools, data types

Fig. 1. Schematic outline of the workflow composition. PROPHETS suggests

workflows for a selection of tools from ms-utils.org and bio.tools, annotated

in terms from the EDAM ontology, under constraints such as requested oper-

ations or input and output formats. The resulting workflows are implemented

and tested on public data
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and formats in the workflow specifications, rather than concrete

instances. The only domain constraints that we defined for this

study are to avoid using msconvert (biotools:msconvert) and idcon-

vert (biotools:idconvert) twice directly after itself, in order to pre-

vent pointless chains of format conversions.

2.3.2 Workflow specification

Workflow specifications in PROPHETS comprise the input data

type(s), the output data types(s), and possible additional constraints

that the synthesized sequence must fulfill. Also without knowledge

of SLTL, the constraints can easily be formulated, as PROPHETS

includes a Constraint Editor that provides natural-language tem-

plates for common workflow constraints and ensures that the gaps

in the cloze texts can only be filled with terms from the domain

model. This flexible way of working with constraints allows for a

very fine-grained and yet intuitive tailoring of the workflow specifi-

cation to the intentions of the workflow developer. The workflow

specifications for the four use cases are shown in the Results section.

Together with the domain model, the workflow specification is the

input for the synthesis algorithm.

2.3.3 Workflow synthesis

PROPHETS has various parameters for the execution of the synthesis

algorithm (cf. the framework’s online manual). For our four use cases,

PROPHETS was configured to use the pipelining synthesis process,

the simple goal constraint, the ‘tsmyoo’ synthesis algorithm and a

bounded search strategy. Generally we let the search only run until

the first lengths for which solutions were found, as to only take into

account the shortest solutions. Typically more solutions are found for

greater lengths, but they often just comprise additional steps, which

are not required to meet the specification and can thus be omitted.

2.4 Workflow implementation and evaluation
Tool compatibility from matching data and file formats does not

automatically guarantee interoperability. Experience tells us that

subtle differences in the interpretations of data format schemata rule

out some—perhaps the majority—of the proposed workflows. It is

therefore essential to validate the automatically created workflows

on real input data. PROPHETS is able to create executable work-

flow models directly from the synthesized sequences. In this study,

however, the basic tool descriptions are insufficient to configure all

the tool parameters automatically. The synthesized workflows are

thus abstract representations of analysis pipelines rather than exe-

cutable workflow instances. We manually created instances of

selected synthesis solutions (proposed workflows) in order to valid-

ate and execute them. They were implemented as Shell scripts, so

that already available scripts and workflow fragments could easily

be reused. We created a static environment by making the used soft-

ware available in a docker container on github.com/bio-tools/

biotoolsCompose/tree/master/Automatic-Workflow-Composition.

The container contains the scripts to rerun the different workflows

or adapt them to other datasets.

3 Results

We describe the workflow specifications derived from the use-case

descriptions, and the generic workflows that PROPHETS proposed

given the specifications (summarized in Table 1). We discuss and com-

pare the data output from implementing selected workflows and run-

ning them on the example datasets referred to in the use case narratives.

3.1 Synthesized workflows
Use case no. 1. translates into a specification with MS spectra [data:

0943] in Thermo RAW [format:3712] as workflow input and

Amino acid index (hydropathy) [data:1506] as workflow output.

Straightforward from the natural-language workflow description of

in Section 2.1, constraints are used to enforce the use a peptide iden-

tification [operation:3631] operation, a validation of peptide-

spectrum matches [operation:3648] operation, and a retention time

prediction [operation:3633] operation, and to avoid the use of pro-

tein identification [operation:3767].

The minimal workflow that PROPHETS finds for this specifica-

tion comprises four steps: peptide identification [operation:3631],

validation of peptide-spectrum matches [operation:3648] and reten-

tion times prediction [operation:3633], preceded by a formatting

step to convert the MS spectra [data:0943] in Thermo RAW [for-

mat:3712] into a format compatible with the peptide identification

Fig. 2. Tool taxonomy, consisting of the tools in the domain model and the corresponding parts of the EDAM Operation sub-ontology
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tools. In total PROPHETS finds 31 possible workflows of Length 4

that fulfill the specification. They are summarized in Figure 3. If we

let the synthesis look a bit further and return solutions up to a length

of 5, several more workflows are possible (388 in total, see also

Supplementary Fig. S2). Looking up to a length of 6, there are even

3, 127 possible workflows for this specification (see Supplementary

Fig. S3). From these workflows, we selected four for implementation

and evaluation:

• msconvert! Comet! PeptideProphet! rt4
• msconvert! Comet! PeptideProphet! xml2tsv! SSRCalc
• msconvert ! X! Tandem ! Tandem2XML ! PeptideProphet

! rt4
• msconvert ! X! Tandem ! Tandem2XML ! PeptideProphet

! xml2tsv! SSRCalc

Use case no. 2 implies a specification with MS spectra [data:

0943] in Thermo RAW [format:3712] as workflow input and path-

way or network [data:2600] as workflow output. Constraints are

used to express that peptide identification [operation:3631] and

gene-set enrichment analysis [operation:2436] should be used, and

in this order, and that ProteinProphet should only be used after

PeptideProphet. At least six services are required in this case to fulfill

the specification (see also Supplementary Fig. S4). We implemented

three of the 20 proposed workflows of Length 6 for evaluation:

• msconvert ! Comet ! PeptideProphet ! ProteinProphet !
extract_protein_names! GeneTrail2

• msconvert ! Comet ! PeptideProphet ! ProteinProphet !
extract_protein_names! EnrichNet

• msconvert ! Comet ! PeptideProphet ! ProteinProphet !
extract_protein_names! gProfileR

Use case no. 3 suggests a specification that again has MS spectra

[data:0943] in Thermo RAW [format:3712] as workflow input, and

protein identification [data:0945] as workflow output. Constraints

are added to formulate that PTM identification [operation:3645] is

required, that PTM identification [operation:3645] depends on val-

idation of peptide-spectrum matches [operation:3648], and that val-

idation of peptide-spectrum matches [operation:3648] depends on

peptide database search [operation:3646]. Furthermore, a constraint

ensures that Validation of peptide-spectrum matches [operation:

3648] is not used more than once. There are 13 workflows of

Length 4 suggested by PROPHETS in this case (see also the graph in

Supplementary Fig. S5D). We selected two of them to implement

and evaluate:

• msconvert! Comet! PeptideProphet! PTMProphet
• msconvert ! SearchGUI ! PeptideShaker_VPSM ! Peptide-

Shaker_PTMI

For use case no. 4, the workflow input is once again MS spectra

[data:0943] in Thermo RAW [format:3712], and the desired work-

flow output is Gene expression profile [data:0928] in any

format [format:1915]. Constraints are used to express that a

quantification [operation:3630] step, specifically iTRAQ [operation:

3639] is required, and that iTRAQ [operation:3639] depends on val-

idation of peptide-spectrum matches [operation:3648]. Again, the

shortest solutions that PROPHETS finds have a length of four. The

set of solutions comprises 16 possible workflows (see also

Table 1. Summary of workflow specifications

Use case Workflow input Workflow output Workflow constraints

No. 1 Mass spectr. spectra

in Thermo RAW

Amino acid index

(hydropathy) in

any format

(i) Use peptide identification; (ii) Use validation of peptide-

spectrum matches; (iii) Use retention time prediction;

(iv) Do not use protein identification

No. 2 Mass spectr. spectra

in Thermo RAW

Pathway or network

in any format

(i) Use peptide identification; (ii) Use gene-set enrichment analysis;

(iii) Use gene-set enrichment analysis only after peptide

identification; (iv) Use ProteinProphet only after PeptideProphet.

No. 3 Mass spectr. spectra

in Thermo RAW

Protein identification

in any format

(i) Use PTM identification; (ii) Use PTM identification only after

Validation of peptide-spectrum matches; (iii) Use validation of pep-

tide-spectrum matches only after peptide database search; (iv) Do

not use validation of peptide-spectrum matches more than once.

No. 4 Mass spectr. Spectra

in Thermo RAW

Gene expression profile

in any format

(i) Use iTRAQ; (ii) Use iTRAQ only after validation of

peptide-spectrum matches

Fig. 3. Automata-like representation of the set of proposed solutions (synthe-

sized workflows of Length 4) for use case no. 1. The graph nodes represent

data items (described by EDAM Data and Format terms), and the directed

edges are labeled with tools from the domain model, denoting that the tool

can be used with the inputs and outputs of the edge source and target, re-

spectively. Each path through this graph from the workflow input to output

node is a workflow that fulfills the specification given to PROPHETS
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Supplementary Fig. S6). We implemented two of them for

evaluation:

• msconvert! SearchGUI! PeptideShaker_VPSM! isobar
• msconvert! Comet! PeptideProphet! Libra

3.2 Implementation and results of selected workflows
Use case no. 1. As test data, we used the same E.coli digest reversed-

phase chromatography—amaZon ion trap [MS:1001542] dataset

previously used to optimize peptide identification (Holl et al.,

2015), available on cpm.lumc.nl/export/public_datasets. The tan-

dem mass spectra were searched against the UniProt reference prote-

ome for E. coli (strain K12), proteome up000000318 downloaded

20160617 (4,254 sequences). A mass measurement error tolerance

of 0.5 Da was used, allowing for isotope error (resulting in a search

window [�0.5, 3.5] Da with Comet or [�0.5, 2.5] with X!

Tandem). Methionine oxidation was considered as a variable modi-

fication and cysteine carbamidomethylation as the only fixed modi-

fication use cases 1 and 2.

The four workflows produced similar retention time models

(Fig. 4). The retention coefficients are similar for most amino acids.

The retention time predictor has a larger influence on the variety of

the results than the search engine. The most salient exceptions are

methionine (the residue with variable modification) and the basic

residues lysine and arginine which are usually only found in the

C-terminus of tryptic peptides. SSRCalc treats termini separately

whereas rt4 does not.

Use case no. 2. Three workflows, all based on Comet but using

the three different enrichment tools EnrichNet (Glaab et al., 2012),

GeneTrail2 (Stöckel et al., 2016) and g:Profiler (Reimand et al.,

2016), suggested by PROPHETS were realized. Here we show three

using the Comet peptide database search tool (Fig. 3). EnrichNet

and GeneTrail2 are Web Services that require some additional speci-

fication in the workflow to set up, call and retrieve data from the

servers. These embedded workflow components encapsulate the

tools and can be reused in other workflows integrating these serv-

ices. g:Profiler can be installed locally and accessed running on a

local instance of R.

To test the workflows, we used all eight LTQ Orbitrap Velos

[MS:1001742] gas-phase fractionation datasets from a characteriza-

tion of the platelet granule proteome (Zufferey et al., 2014),

ProteomeXchange dataset PXD000618. The data were searched

against the UniProt reference proteome for Homo sapiens, proteome

up000005640 downloaded 20160617 (70 615 sequences). Mass

measurement error up to 5 ppm was allowed, with isotope error as

before. Only peptides with PeptideProphet probability of at least 0.8

and 7 residues and within m/z tolerance of 0.05 were included.

The EnrichNet API is limited to input of 1000 genes or proteins.

Therefore, we restricted the analysis to all identified proteins with

minimum ProteinProphet-estimated probability of presence of 1.

Where they could be specified, i.e. in GeneTrail2 and g:Profiler, a

minimum enriched set size of 5 and a maximum set size of 1000 was

used. The workflows were run on the same day (Nov 8, 2017) with

versions 1.1 (EnrichNet), 1.5 (GeneTrail2) and 0.6.1 (g:Profiler R

package) of the enrichment analysis tools. GeneTrail2 used release

31 (20150901) of the ConsensusPathDB-human database, including

KEGG. The g:Profiler used annotations from the KEGG FTP

Release June 19, 2017.

The three workflows could all successfully analyze the eight test

datasets. The results from the three different enrichment analyses

are however not identical. As the data were collected in a platelet ac-

tivation experiment, we would (somewhat naı̈vely) expect ‘platelet

activation’ [KEGG:04611/GO:0030168] to be the most enriched

pathway or annotation. However, only g:Profiler returns ‘platelet

activation’ as the most enriched term. In GeneTrail2, it appears in

the eighth spot. EnrichNet does not find this annotation to be

enriched at all. The top 6 (and 19 of the top 25) enriched annota-

tions/pathways found by EnrichNet (based on Comet search results)

were also among the 25 most significantly enriched in at least one of

GeneTrail2 and g:Profiler. The top 25 results for the three enrich-

ment analysis tools are found in Supplementary Table S2.

Use case no. 3. Two workflows were selected from the

PROPHETS proposals having tool combinations known to work to-

gether. To evaluate the workflows, we used a complex dataset con-

taining a synthetic mixture of modified peptides (Chalkley et al.,

2013), available at ftp://iprg_public:ABRFftp.peptideatlas.org/2012/

distro, providing ground truth allowing comparison of workflows with

respect to accuracy of FDR estimation. The peptide spectra were

searched against the given database.

Workflow 1: Converted mass spectra files were processed by the

SearchGUI package, which generates a decoy database from the

given combined database. Search parameters were set to precursor

ion tolerance 50 ppm, fragment ion tolerance 0.1 Dalton, fixed

modification was carbamidomethylation, variable modifications

were oxidation of methionine, phosphorylation of serine, threonine

and tyrosine, mono- and dimethylation of arginine and lysine, trime-

thylation and acetylation of lysine and sulfonation of tyrosine.

Moreover, a maximum of three missed cleavages was defined. The

database search engine was set to MS-generating function (GF)þ
(Kim and Pevzner, 2014).

The MS-GFþ engine produced results were processed by

PeptideShaker and written into the tab-separated values (TSV) for-

mat. Only modified peptides with 90% confidence and confident/

doubtful [D-score (Vaudel et al., 2013) and phosphoRS score (Taus

et al., 2011)] localizations were considered.

Workflow 2: Comet database search was carried out with

the same search parameters as above. Peptide FDRs were

calculated using PeptideProphet (command xinteract), where default

parameters were used. False localization rates were estimated by

PTMProphet and pep XMLfiles were converted to the TSV format

by a script from the protk toolkit (https://github.com/iracooke/

protk). The data were filtered for modified peptides, InterProphet

score > 0.9 and a minimal PTMProphet score of 0.9 for PTM

localization.The results from the two workflows and the list of syn-

thetic peptides from the original paper were compared by an R

Fig. 4. Comparison of retention time coefficients in use case no. 1
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script. pepXML file from Workflow 2 was imported into R using

the XML library.

Given the large number of variable modifications, the database

search engines were forced to carry out a computationally expensive

database search. In consequence, confidence estimation of peptide

database search and PTM localization was driven towards their lim-

its. Hence, we expected the results of each workflow to be biased to-

wards e.g. certain peptide properties. Figure 5 shows exactly these

trends demonstrating small overlap between the workflows as well

as with the synthetic peptides that were added to the sample. We

also compared how well the two workflows identified modification

types. Phosphorylations and acetylations were increasingly detected

in Workflow 1 while methylations and especially dimethylations

gave more hits in Workflow 2. Sulfonations and trimethylations

could not be distinguished from phosphorylations and acetylations

when using PTMProphet.

Use case no. 4. To compare the output from the two iTRAQ

tools proposed by PROPHETS, two workflows were generated for

Libra and isobar respectively. To compare the tools and workflows,

we used Orbitrap Velos FTMS datasets previously collected

(Latosinska et al., 2015) for a comparison of iTRAQ to label-free

quantification. The raw data is available at ProteomeXchange

PXD002170.

Workflow 1: As in use case no. 3, the data were processed

by the command line tools of the SearchGUI package. Search param-

eters were set to precursor ion tolerance 10 ppm, fragment ion toler-

ance 0.05 Da, fixed modification were carbamidomethylation and

iTRAQ of lysine and N-termini, variable modifications were oxida-

tion of methionine and iTRAQ of tyrosine. Moreover, a maximum

of one missed cleavages was defined. The database search engine

was set to MS-GFþ and we used the Swiss-Prot human complete

proteome as database (January 2017, 20 202 sequences).

PeptideShaker processed the resulting files and the validated pepti-

des were imported into R using the isobar library. Only peptides

with above 80% confidence were considered.

Workflow 2: msconvert converted files were submitted to Comet

database search with the same search parameters as above. Peptide

FDRs were calculated using PeptideProphet (command xinteract)

with default parameters. Quantified protein values were calculated

by Libra. Subsequent comparison of expression profiles was carried

out in R.

We present the final result of the workflows by providing relative

protein expression values for samples of non-muscle invasive and

muscle invasive bladder cancer of four patients each. Operations

like peptide database search and protein quantification require mul-

tiple algorithms for optimal performance. The methods used differ

between the two workflows and we expected the results to be differ-

ent to a certain degree. Figure 6 shows the results of the quantifica-

tion. Both workflows quantify around 2500 proteins with an

overlap of about two thirds. The 1742 commonly quantified pro-

teins exhibit similar expression values with respect to expression

changes between different biological replicates or cancer types.

Direct comparison of protein expression shows agreement over a

wide range but low expression values. Such a discrepancy most

likely leads to diverging groups of differentially regulated proteins,

and therefore has the potential to yield different biological

interpretations.

4 Discussion

We have shown that the specification of operations, data types and

formats enables the identification of compatible tools and compos-

ition of a set of tentatively viable workflows as permutations of a

data analysis plan. Compatibility inferred from tool annotation does

(a)

(b)

Fig. 5. Comparison of the two workflow results in use case no. 3. (a) Venn dia-

gram of identified modified peptides in both workflows and the synthetic pep-

tides that have been added to the biological sample. (b) Different

identification efficiency with respect to PTM types

(a)

(c)

(b)

Fig. 6. Results of use case no. 4. (a) Protein identification and quantification

lead to an overlap of 1742 commonly quantified proteins in both workflows.

(b) Identical samples (same color) become different for the two workflows

when mapped to the first two principal components. However, they still re-

main sufficiently similar to distinguish biological replicates or non-muscle in-

vasive from muscle-invasive bladder cancer. (c) Direct comparison of protein

expression shows strong distortion at low ratios versus the mean where

Workflow 2 provides much higher values. This observation can be confirmed

for the other iTRAQ channels
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not, however, guarantee interoperability or a well-working work-

flow; some tools are optimized for particular datasets and may not

work well, or even at all, on other data of the same type and format.

To assess tool interoperability, it is necessary to benchmark them in

multiple workflows. We demonstrated how automatic workflow

composition suggests executable ensembles of tool combinations for

both specific and general tasks, providing a framework to evaluate

interoperability and identify incompatibilities.

For all use cases, we found at least slightly different results when

comparing the different workflows. Our assessment of reproducibil-

ity tested the robustness of data (do different experimental measure-

ments lead to the same end results?) and analysis (do different tool

combinations give similar end results?). For use cases 2–4, we found

quite significant differences between the workflow results; yielding

different sets of pathways (use case 2), bias towards different PTM

types (use case 3) and different quantification of low ratios (use case

4). This strongly suggests that as many workflows as feasible should

be benchmarked on ‘ground truth’ data (e.g. from https://abrf.org/re

search-group/proteome-informatics-research-group-iprg) to identify

optimal tool combinations. With the approach presented here, it

will now be possible to compare many new pipeline instances to

commonly used workflows on the basis of benchmarking datasets

and therefore identify best-suited alternatives for specific groups of

operations as well as for data types (e.g. different MS instruments).

Benchmarking however might suffer from distinct performance

when considering different data types such as different experimental

setups or different biological sources. Thus still big community

efforts will be required to create sets of different ground truth data

that allow for generalized conclusions.

We showed only the results of a few workflow instances, but

saw that one can, for example, easily obtain thousands of candidate

workflows in use case no. 1 even from our small collection of anno-

tated tools. The combinatorial explosion can be contained some-

what by employing more constraints in the workflow synthesis,

describing the intended solution better and thus making the solution

space smaller. In the case of too many proposed workflows, filtering

by context knowledge like known tool compatibility, simultaneous

availability in dedicated workflow management systems (e.g.

GALAXY or KNIME) and software rankings will decrease their

number. Alternatively, fewer workflows will be obtained by restrict-

ing the workflow synthesis to a smaller number of well-known tools.

For simplicity, our study was restricted to single input/output

descriptors, but in reality many tools have multiple input or output

data types and support multiple file formats. If such annotations or

a larger tool collection were considered, more flexible ways to pro-

cess the candidate workflows would be needed. Instead of just rank-

ing the solutions by length, the framework could, e.g. apply

estimated computational efficiency, or information from bio.tools

such as license, supported platform, accessibility and cost, to limit

the search space, or even provide an interactive interface that lets a

user browse through possible solutions much like an online route

planner.

Regarding maintenance, workflows constructed from multiple,

independently developed tools may appear fragile, as the failure

(or unavailability) of any single link in the chain will break the

workflow. However, since such tools are performing a single,

well-defined task, they are easier to replace. Most operations in pro-

teomics data analysis at least, are well served by multiple tools in

the public domain. It is therefore crucial to have tools formally

annotated with respect to input/output formats and the type of oper-

ations performed.

All the tools and annotation terms required for this work have

been registered in bio.tools and EDAM, respectively. At the outset,

bio.tools included few tools for proteomics analysis and EDAM

only a few relevant concepts. Creating the required EDAM concepts

and tool annotations involved expert understanding of the field, and

knowledge of specific tools gained from reading documentation or

publications, with cycles of curation to ensure semantic consistency.

In some cases, unexpected synthesis results indicated imprecise or

erroneous domain modeling, and led to revisions of the ontology or

individual tool annotations. Thus, a substantial manual effort

was required for tool annotation and ontology development.

Nonetheless, the groundwork is laid for future studies in proteomics

that may also serve as an exemplar for other domains. The bio.tools

data and EDAM are freely accessible for community additions, ex-

tension and re-use, and with progressive expert curation can provide

a rich source of information for generating domain models for

workflow synthesis applications. For example, in future publications

we are going to describe the process and best practices of ontological

modelling in EDAM and semantic annotation in bio.tools in general

and in particular target a more comprehensive coverage of the

prevalent proteomics analysis tools and concepts. We anticipate, for

scenarios similar to our use cases, to generate workflows from a

much larger set of tools, or eventually even the complete bio.tools

corpus of currently >10 000 software tools and databases.

Workflow registration, and annotation of underlying tool opera-

tions and their supported data formats, are core goals of bio.tools

which will support future workflow composition efforts.

In this article, we have demonstrated a proof of concept. Much

further work is needed to provide an implementation suitable for

the non-expert bench user, and many challenges stand in the way of

this vision. In summary, this includes the modelling of complex tools

with multiple inputs and outputs, flexible ways to rank and filter

prospective workflows, the algorithmic complexity of synthesis

algorithms, specification and synthesis of non-linear workflows (i.e.

workflows with parallelism, loops or conditional branchings), provi-

sion of reliable benchmarking datasets for different analyses, and

the automated implementation of workflow solutions, to name a

few. We envision to work together with the developer of workflow

management systems, to integrate our method there to provide add-

itional workflow composition support to their users. For example, if

running the synthesis from within, say, a Galaxy server, then it

could be made aware of what software tools are available on that

server. Workflow generation could then be restricted to already

installed software, or components already available on the server

could be prioritized over those that are not. Furthermore, the syn-

thesized workflows could be exported in exchange formats like the

Common Workflow Lanugage (Amstutz et al., 2016) and provided

along with containerized tool packages to facilitate their execution

on various platforms.

In summary, we have taken another small step towards plug-

and-play workflow composition, where researchers only need to

specify the overall setup of their bioinformatics pipeline to automat-

ically receive directly executable and benchmarked software solu-

tions. We believe that the field is ripe for further work, and we

welcome collaborations in all areas.
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